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Abstract 

Classical differential geometry can be encoded in spectral data, such as Connes’ 
spectral triples, involving supersymmetry algebras. In this paper, we formulate 
non-commutative geometry in terms of supersymmetric spectral data. This leads 
to generalizations of Connes’ non-commutative spin geometry encompassing non-
commutative Riemannian, symplectic, complex-Hermitian and (Hyper-) Kähler 
geometry. A general framework for non-commutative geometry is developed from 
the point of view of supersymmetry and illustrated in terms of examples. In 
particular, the non-commutative torus and the non-commutative 3-sphere are 
studied in some detail. 

e-mail: juerg@itp.phys.ethz.ch, grandj@math.harvard.edu, anderl@ihes.fr 



Contents 

1. Introduction 1 

2. Spectral data of non-commutative geometry 5 

2.1 The N = 1 formulation of non-commutative geometry 5 
2.2 The N = (1,1) formulation of non-commutative geometry 21 
2.3 Hermitian and Kähler non-commutative geometry 31 
2.4 The N = (4,4) spectral data 39 
2.5 Symplectic non-commutative geometry 39 

3. The non-commutative 3-sphere 42 

3.1 The N = 1 data associated to the 3-sphere 42 
3.2 The topology of the non-commutative 3-sphere 45 
3.3 The geometry of the non-commutative 3-sphere 51 
3.4 Remarks on N = (1,1) 54 

4. The non-commutative torus 58 

4.1 The classical torus 58 
4.2 Spin geometry (N = 1) 59 
4.3 Riemannian geometry (N = (1,1)) 63 
4.4 Kähler geometry (N = (2,2)) 66 

5. Directions for future work 68 

References 73 

1 



1. Introduction 

The study of highly singular geometrical spaces, such as the space of leaves of certain 
foliations, of discrete spaces, and the study of quantum theory have led A. Connes to de-
velop a general theory of non-commutative geometry, involving non-commutative measure 
theory, cyclic cohomology, non-commutative differential topology and spectral calculus, 
[Co1 —5]. A broad exposition of his theory and a rich variety of interesting examples can 
be found in his book [Co1 ]. Historically, the first examples of non-commutative spaces 
carrying geometrical structure emerged from non-relativistic quantum mechanics, as dis-
covered by Heisenberg, Born, Jordan, Schrödinger and Dirac. Mathematically speaking, 
non-relativistic quantum mechanics is the theory of quantum phase spaces, which are 
non-commutative deformations of certain classical phase spaces (i.e., of certain symplectic 
manifolds), and it is the theory of dynamics on quantum phase spaces. Geometrical aspects 
of quantum phase spaces and supersymmetry entered the scene implicitly in Pauli’s theory 
of the non-relativistic, spinning electron and in the theory of non-relativistic positronium. 
Later on, the mathematicians discovered Pauli’s and Dirac’s theories of the electron as a 
powerful tool in algebraic topology and differential geometry. 

In a companion paper [FGR1 ], hereafter referred to as I, we have described a formulation 
of classical differential geometry in terms of the spectral data of non-relativistic, supersym-
metric quantum theory, in particular in terms of the quantum theory of the non-relativistic 
electron and of positronium propagating on a general (spinc) Riemannian manifold. The 
work in I is inspired by Connes’ fundamental work [Co1— 5], and by Witten’s work on 
supersymmetric quantum theory and its applications in algebraic topology [Wi1, 2 ]; it 
attempts to merge these two threads of thought. Additional inspiration has come from the 
work in [AG, FW, AGF, HKLR] on the relation between index theory and supersymmet-
ric quantum theory and on supersymmetric non-linear σ-models, as well as from the work 
by Jaffe and co-workers on connections between supersymmetry and cyclic cohomology 
[Ja1—3]. To elucidate the roots of some of these ideas in Pauli’s non-relativistic quan-
tum theory of the electron and of positronium has proven useful and suggestive of various 
generalizations. 

The work described in the present paper has its origins in an attempt to apply the methods 
of non-commutative geometry to exploring the geometry of string theory, in particular of 
superstring vacua; see [CF,FG]. In trying to combine quantum theory with the theory of 
gravitation, one observes that it is impossible to localize events in space-time arbitrarily 
precisely, and that, in a compact region of space-time, one can only resolve a finite number 
of distinct events [DFR]. One may then argue, heuristically, that space-time itself must 
have quantum-mechanical features at distance scales of the order of the Planck length, 
and that space-time and matter should be merged into a fundamental quantum theory of 
space-time-matter. Superstring theory [GSW] is a theoretical framework incorporating 
some of the features necessary for a unification of quantum theory and the theory of 
gravitation. Superstring vacua are described by certain superconformai field theories, 
see e.g. [GSW]. The intention of the program formulated in [GF, FG] is to reconstruct 
space-time geometry from algebraic data of superconformai field theory. In the study 
of concrete examples, one observes that, in general, the target spaces (space-times) of 
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superconformal field theories are non-commutative geometrical spaces, and the tools of 
Connes’ non-commutative geometry become essential in describing their geometry. This 
observation has been confirmed more recently in the theory of D-branes [Pol, Wi4 ]. 
The purpose of this paper is to cast some of the tools of non-commutative (differential) 
geometry into a form that makes connections to supersymmetric quantum theory manifest 
and that is particularly useful for applications to superconformai field theory. The methods 
and results of this paper are mathematically precise. Applications to physics are not 
treated here; but see e.g. [FGR2]. Instead, the general formalism developed in this paper 
is illustrated by an analysis of the geometry of the non-commutative torus and of the fuzzy 
3-sphere; more details can be found in [Gr]. 

Next, we sketch some of the key ideas underlying our approach to non-commutative ge-
ometry; for further background see also part I and [FGR2 ]. 

Connes has shown how to formulate classical geometry in terms of algebraic data, so-called 
spectral triples, involving a commutative algebra A — C∞(M) of (smooth) functions on 
the smooth manifold M under consideration, a Hilbert space H of spinors over M on 
which the algebra A acts by bounded operators, and a self-adjoint Dirac operator D on 
H satisfying certain properties with respect to A. As explained in [Co1 ], it is possible to 
extract complete geometrical information about M from the spectral triple (A, H, D). 
The definition of spectral triples involves, in the classical case, a Clifford action on certain 
vector bundles over M, e.g. the spinor bundle or the bundle of differential forms. As was 
recalled in ref. I, the latter bundle actually carries two anti-commuting Clifford actions 
— which can be used to define two Dirac-Kähler operators, D and D. It turns out that 
the algebraic relations between these operators are precisely those of the two supercharges 
of N = (1, 1) supersymmetric quantum mechanics (see part I, especially section 3, for 
the precise meaning of the terminology): These relations are {D, D} = 0 and D2 = D2. 
The commutators [D,a] and [D,a], for arbitrary a E A, extend to bounded operators 
(anti-commuting sections of two Clifford bundles) acting on the Hilbert space H, of square-
integrable differential forms. Furthermore, if the underlying manifold M is compact, the 
operator exp(— ε D2) is trace-class for any ε > 0. One may then introduce a nilpotent 
operator 

which turns out to correspond to exterior differentiation of differential forms. 
From the N = (1,1) supersymmetric spectral data (A, H, D, D) just described, one can 
reconstruct the de Rham-Hodge theory and the Riemannian geometry of smooth (compact) 
Riemannian manifolds. 

N = (1, 1) supersymmetric spectral data are a variant of Connes’ approach involving 
spectral triples. They are very natural from the point of view of supersymmetric quantum 
theory and encode the differential geometry of Riemannian manifolds (not required to be 
spinc manifolds). 

In a formulation of differential geometry in terms of spectral data (A, H, D, D,...) with 
supersymmetry, additional geometrical structures, e.g. a symplectic or complex structure, 
appear in the form of global gauge symmetries commuting with the elements of A but 
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acting non-trivially on the Dirac-Kähler operators D and D; see part I. For example, a 
global gauge symmetry group containing U(l) x U(l) generates four Dirac-Kähler opera-
tors — the “supercharges” of N = (2, 2) supersymmetry — from D and D and identifies the 
underlying manifold M as a Kähler manifold. A global gauge symmetry group contain-
ing SU(2) x SU(2) leads to eight supercharges generating an N = (4,4) supersymmetry 
algebra and is characteristic of Hyperkähler geometry; see also [AGF, HKLR]. Complex-
Hermitian and symplectic geometry are encoded in N = (2, 2) supersymmetric spectral 
data with partially broken supersymmetry. A systematic classification of different types of 
differential geometry in terms of supersymmetric spectral data extending the N = (1,1) 
data of Riemannian geometry has been described in I (see section 13 for an overview, and 
[FGR2]). 

In this paper, we generalize these results from classical to non-commutative geometry, start-
ing from the simple prescription to replace the commutative algebra of functions C∞(M) 
over a classical manifold by a general, possibly non-commutative *-algebra A satisfying 
certain properties. Section 2 contains general definitions and introduces various kinds of 
spectral data: We start with an exposition of Connes’ non-commutative spin geometry; 
most of the material can be found in [Co1 ], but we add some details on metric aspects 
ranging from connections over curvature and torsion to non-commutative Cartan structure 
equations. In subsection 2.2, we introduce spectral data with N = (1,1) supersymmetry 
that naturally lead to a non-commutative analogue of the de Rham complex of differential 
forms. Moreover, this “Riemannian” formulation of non-commutative geometry allows for 
immediate specializations to spectral data with extended supersymmetry — which, in the 
classical case, correspond to manifolds carrying complex, Kähler, Hyperkähler or symplec-
tic structures. Spectral data with higher supersymmetry are treated in subsections 2.3 — 
2.5. In subsection 2.2.5, we discuss the relationship between spectral triples, as defined by 
Connes, and spectral data with N = (1,1) supersymmetry: Whereas in the classical case, 
one can always pass from one description of a smooth manifold to the other, the situation 
is not quite as clear in the non-commutative framework. We propose a procedure how to 
construct N = (1, 1) data from a spectral triple — heavily relying on Connes’ notion of a 
real structure [Co4] -, but the construction is not complete for general spectral triples. 
Furthermore, subsection 2.2.6 contains proposals for definitions of non-commutative man-
ifolds and non-commutative phase spaces, as suggested by the study of N = (1,1) spectral 
data and by notions from quantum physics. 

In sections 3 and 4 we discuss two examples of non-commutative spaces, namely the “fuzzy 
3-sphere” and the non-commutative torus. The choice of the latter example does not re-
quire further explanation since it is one of the classic examples of a non-commutative space; 
see e.g. [Co1, Co5, Ri]. Here we add a description of the non-commutative 2-torus in terms 
of spectral data with N = (1,1) and N = (2, 2) supersymmetry, thus showing that this 
space can be endowed with a non-commutative Riemannian and a non-commutative Käh-
ler structure. This is not too surprising, since the non-commutative torus can be regarded 
as a deformation of the classical flat torus. The calculations in section 4 also provide an 
example where the general ideas of subsection 2.2.5 on how to construct N = (1, 1) from 
N = 1 spectral data can be carried out completely. 
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The other example, the non-commutative 3-sphere discussed in section 3 (see also [Gr]), 
represents a generalization of another prototype non-commutative geometrical space, name-
ly the fuzzy 2-sphere [Ber, Ho, Ma, GKP]. We choose to study the 3-sphere for the fol-
lowing reasons: First, in contrast to the fuzzy 2-sphere and the non-commutative torus, it 
cannot be viewed as a quantization of a classical phase space. Second, it is the simplest ex-
ample of a series of quantized spaces arising from so-called Wess-Zumino-Witten-models — 
conformal field theories associated to non-linear σ-models with compact simple Lie groups 
as target manifolds, see [Wi3 ]. There is reason to expect that the spectral data arising 
from other WZW-models — see [FG, FGR2] for a discussion — can be treated essentially 
by the same methods as the fuzzy 3-sphere associated to the group SU(2). 
In view of the conformal field theory origin, one is led to conjecture that, as a non-
commutative space, the non-commutative 3-sphere describes the non-commutative geom-
etry of the quantum group Uq(sl2), for q = exp(2πi/k + 2) where k ϵ Z+ is the level of 
the WZW-model. The parameter k appears in the spectral data of the non-commutative 
3-sphere in a natural way. One may expect that the fuzzy 3-sphere can actually be de-
fined for arbitrary values of this parameter, since the same is true for the quantum group. 
As in the example of the non-commutative torus with rational deformation parameter, a 
truncation of the algebra of “functions” occurs for the special values k ϵ Z+, leading to 
the finite-dimensional matrix algebras used in section 3. 

In section 5, we conclude with a list of open problems arising naturally from our discussion. 
In particular, we briefly comment on other, string theory motivated applications of non-
commutative geometry; see also [FG, FGR2 ]. 

The present text is meant as a companion paper to I: Now and then, we will permit 
ourselves to refer to [FGR1] for technical details of proofs which proceed analogously to 
the classical case. More importantly, the study of classical geometry in part I provides the 
best justification — besides the one of naturality — of the expectation that our classification 
of (non-commutative) geometries according to the supersymmetry content of the spectral 
data leads to useful and fruitful definitions of non-commutative geometrical structure. 
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2. Spectral data of non-commutative geometry 

In the following, we generalize the notions of part I from classical differential geometry to 
the non-commutative setting. The classification of geometrical structure according to the 
“supersymmetry content” of the relevant spectral data, which was uncovered in [FGR1], 
will be our guiding principle. In the first part, we review Connes’ formulation of non-
commutative geometry using a single generalized Dirac operator, whereas, in the following 
subsections, spectral data with realizations of some genuine supersymmetry algebras will 
be introduced, allowing us to define non-commutative generalizations of Riemannian, com-
plex, Kähler and Hyperkähler, as well as of symplectic geometry. 

2.1 The N = 1 formulation of non-commutative geometry 

This section is devoted to the non-commutative generalization of an algebraic description 
of spin geometry — and, according to the results of section 12, of general Riemannian 
geometry — following the ideas of Connes [Co1]. The first two subsections contain the 
definition of abstract N = 1 spectral data and of differential forms. In subsection 2.1.3, 
we describe a notion of integration which leads us to a definition of square integrable 
differential forms. After having introduced vector bundles and Hermitian structures in 
subsection 2.1.4, we show in subsection 2.1.5 that the module of square integrable forms 
always carries a generalized Hermitian structure. We then define connections, torsion, 
and Riemannian, Ricci and scalar curvature in the next two subsections. Finally, in 2.1.8, 
we derive non-commutative Cartan structure equations. Although much of the material 
in section 2.1 is contained (partly in much greater detail) in Connes’ book [Co1], it is 
reproduced here because it is basic for our analysis in later sections and because we wish 
to make this paper accessible to non-experts. 

2.1.1 The N = 1 spectral data 

Definition 2.1 A quadruple (A, H, D, γ) will be called a set of = 1 (even) spectral 
data if 

1) H is a separable Hilbert space; 
2) A is a unital *-algebra acting faithfully on H by bounded operators; 
3) D is a self-adjoint operator on H. such that 

i) for each a ϵ A, the commutator [D, a] defines a bounded operator on H, 
ii) the operator exp(—ϵ D2) is trace class for all ε > 0 ; 

4) γ is a Z2-grading on H, i.e., γ = γ*= γ- 1, such that 

As mentioned before, in non-commutative geometry A plays the role of the “algebra of 
functions over a non-commutative space”. The existence of a unit in A, together with 
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property 3 ii) above, reflects the fact that we are dealing with “compact” non-commutative 
spaces. Note that if the Hilbert space Ή. is infinite-dimensional, condition 3ii) implies 
that the operator D is unbounded. By analogy with classical differential geometry, D is 
interpreted as a (generalized) Dirac operator. 
Also note that the fourth condition in Definition 2.1 does not impose any restriction on 
N = 1 spectral data: In fact, given a triple (A, Ή,Ε)) satisfying the properties 1 - 3 from 
above, we can define a set of N = 1 even spectral data (A,by setting 

Ή = A = ÀX12 , 

D = D X τι , γ = 1H X τ3 , 

where Ti are the Pauli matrices acting on C2. 

2.1.2 Differential forms 

The construction of differential forms follows the same lines as in classical differential 
geometry: We define the unital, graded, differential *-algebra of universal forms, Ω•(A), 
as in [Co1, CoK ]: 

(2.1a) 

where δ is an abstract linear operator satisfying δ2 = 0 and the Leibniz rule. Note that, 
even in the classical case where A = C∞(M) for some smooth manifold M, no relations 
ensuring (graded) commutativity of Ω•(4) are imposed. The complex conjugation of 
functions over M is now to be replaced by the *-operation of A. We define 

(δα)* = —δ(α*) (2.1b) 

for all a ϵ A. With the help of the (self-adjoint) generalized Dirac operator D, we introduce 
a *-representation π of Ω•(4) on Ή, 

ππ(a) = a , π(δα) = [D,a] , 

cf. [Co1] or eq. (I2.12). A graded *-ideal J of Ω•(4) is defined by 

(2.2) 

Since J is not a differential ideal, the graded quotient Ω•(A)/J does not define a differential 
algebra and thus does not yield a satisfactory definition of the algebra of differential forms. 
This problem is solved as in the classical case. 
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Proposition 2.2 [Co1] The graded sub-complex 

where J 1 := 0 and δ is the universal differential in Ω•(.Α), is a two-sided graded differential 
*-ideal of Ω•(Α). 

We define the unital graded differential *-algebra of differential forms, Ω•D(A), as the 
graded quotient Ω•(A)/(J + δJ), i.e., 

(2.3) 

Since Ω•D(A) is a graded algebra, each Ωk
D(A) is, in particular, a bi-module over A = 

Ω°D(A). 

Note that π does not determine a representation of the algebra (or, for that matter, of 
the space) of differential forms Ω•D(Α) on the Hilbert space Ή: A differential K-form is an 
equivalence class [ω] ϵ Ωk

D(A) with some representative ω ϵ Ωk(A), and π maps this class 
to a set of bounded operators on Ή, namely 

π([ω]) = π(ω) + π(δJk_1) . 

In general, the only subspaces where we do not meet this complication are π(Ωo, (A)) = A 
and π(ΩD(A)) = π(Ω1(Α)). However, the image of Ω•D(A) under π is Z2-graded, 

because of the (anti-)commutation properties of the Z2-grading γ on Ή, see Definition 2.1. 

2.1.3 Integration 

Property 3ii) of the Dirac operator in Definition 2.1 allows us to define the notion of 
integration over a non-commutative space in the same way as in the classical case, see 
part I. Note that, for certain sets of N = 1 spectral data, we could use the Dixmier trace, 
as Connes originally proposed; but the definition given below, first introduced in [CFF], 
works in greater generality (cf. the remarks in section I2.1.3). Moreover, it is closer to 
notions coming up naturally in quantum field theory. 
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Definition 2.3 The integral over the non-commutative space described by the N = 1 
spectral data (A, H D, γ) is a state f on π(Ω•(A)) defined by 

where Limϵ→0+ denotes some limiting procedure making the functional f linear and 
positive semi-definite; the existence of such a procedure can be shown analogously to 
[Co1, 3], where the Dixmier trace is discussed. 

For this integral f to be a useful tool, we need an additional property that must be 
checked in each example: 

Assumption 2.4 The state f on π(Ω•(A)) is cyclic, i.e., 

for all ω, η ϵ Π(Ω•(A)). 

The state f determines a positive semi-definite sesqui-linear form on Ω•(A) by setting 

(2.4) 

for all ω, η ϵ Ω•(Α). In the formulas below, we will often drop the representation symbol 
π under the integral, as there is no danger of confusion. 
Note that the commutation relations of the grading γ with the Dirac operator imply that 
forms of odd degree are orthogonal to those of even degree with respect to (·,·). 

By Kk we denote the kernel of this sesqui-linear form restricted to Ωk(A). More precisely 
we set 

(2.5) 

Obviously, Kk contains the ideal Jk defined in eq. (2.2); in the classical case they coincide. 
Assumption 2.4 is needed to show that K is a two-sided ideal of the algebra of universal 
forms, so that we can pass to the quotient algebra. 

Proposition 2.5 The set K is a two-sided graded *-ideal of Ω•(Μ). 
PROOF: The Cauchy-Schwarz inequality for states implies that K is a vector space. If 
ω ϵ Kk, then Assumption 2.4 gives 

(ω*, ω*) = f π(ω)*π(ω) = f π(ω)π(ω)* = 0 , 
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i.e. that K is closed under the involution *. With ω as above and η ϵ ΩΡ(Α), we have that 

(ηω, ηω) = f π(η)π(ω)π(ω)*π(η)* = f π(ω)*π(η)*π(η)π(ω) 

< \\

π
(η)\\1 f π(ω)*π(ω) = 0 

where || · ||H is the operator norm on Β(H). On the other hand, we have that 

(ωη, ωη) = f π(ω)π(η)π(η)*π(ω)* < \\π(η)\\
2

H
 f π(ω)π(ω)* = 0 , 

and it follows that both ω η and ηω are elements of K, i.e., K is a two-sided ideal. ■ 

We now define 

(2.6) 

The sesqui-linear form (·,·) descends to a positive definite scalar product on Ωk(A), and 
we denote by Hk the Hilbert space completion of this space with respect to the scalar 
product, 

(2.7) 

Hk is to be interpreted as the space of square-integrable k-forms. Note that Ή• does not in 
general coincide with the Hilbert space that would arise from a GNS construction using the 
state f on Ω•(A): Whereas in Ή•, orthogonality of forms of different degree is installed 
by definition, there may exist forms of even degree (or odd forms) in the GNS Hilbert 
space that have different degrees but are not orthogonal. 

Corollary 2.6 The space Ω•(A) is a unital graded *-algebra. For any ω ϵ Ωλ(A), the 
left and right actions of ω on Ωp(A) with values in Ωp+k(A), 

mL(ω)η := ωη , mR(w)η := ηω , 

are continuous in the norm given by (·, ·). In particular, the Hilbert space Ή• is a bi-module 
over Ω•(A) with continuous actions. 

PROOF: The claim follows immediately from the two estimates given in the proof of the 
previous proposition, applied to ω ϵ Ωk(A) and η ϵ Ωρ(A). ■ 

This remark shows that Ω•(A) and Ή• are “well-behaved” with respect to the Ω•(A)-
action. Furthermore, Corollary 2.6 will be useful for our discussion of curvature and 
torsion in sections 2.1.7 and 2.1.8. 
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Since the algebra Ω•(Α) may fail to be differential, we introduce the unital graded dif-
ferential *-algebra of square-integrable differential forms Ω•D(Α) as the graded quotient of 
Ω•(A) by K + δK, 

(2.8) 

In order to show that Ω•D(Α) has the stated properties, one repeats the proof of Proposition 
2.2. Note that we can regard the A-bi-module Ω•D(A) as a “smaller version” of Ω•D(Α) 
in the sense that there exists a projection from the latter onto the former; whenever one 
deals with a concrete set of N = 1 spectral data that satisfy Assumption 2.4, it will be 
advantageous to work with the “smaller” algebra of square-integrable differential forms. 
The algebra Ω•D(A), on the other hand, can be defined for arbitrary data. 

In the classical case, differential forms are identified with the orthogonal complement of 
Cl(k-2) within Cl(k), see [Co1] and the remarks in part I, after eq. (I2.15). Now, we use 
the scalar product (·, ·) on Hk to introduce, for each k > 1, the orthogonal projection 

PδKk-1c-i : Hk Hk (2.9) 

onto the image of δKk-11 in , and we set 

w±:=(1-PδKk-1)w ϵ Hk (2.10) 

for each element [ω] ϵ Ωk(Α). This allows us to define a positive definite scalar product 
on Ωk(Α) via the representative ω1 : 

([w], [n]) := (ω±, η±) (2.11) 

for all [ω], [n] ϵ Ωk(Α). In the classical case, this is just the usual inner product on the 
space of square-integrable k-forms. 

2.1.4 Vector bundles and Hermitian structures 

Again, we simply follow the algebraic formulation of classical differential geometry in order 
to generalize the notion of a vector bundle to the non-commutative case: 

Definition 2.7 [Co1] A vector bundle ε over the non-commutative space described by 
the N = 1 spectral data (A, H, D, γ) is a finitely generated projective left A-module. 

Recall that a module ϵ is projective if there exists another module F such that the direct 
sum ϵ + F is free, i.e., E + F = An as left A-modules,for some n ϵ N. Since A is an 
algebra, every A-module is a vector space; therefore, left A-modules are representations of 
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the algebra A, and ϵ is projective iff there exists a module F such that E+ F is isomorphic 
to a multiple of the left-regular representation. 

By Swan’s Lemma [Sw], a finitely generated projective left module corresponds, in the 
commutative case, to the space of sections of a vector bundle. With this in mind, it is 
straightforward to define the notion of a Hermitian structure over a vector bundle: 

Definition 2.8 [Co1] A Hermitian structure over a vector bundle E is a sesqui-linear 
map (linear in the first argument) 

(·,·) : ϵ x ϵ → A 

such that for all a, b ϵ A and all s, t ϵ ϵ 
1) ( as, bt) = a (s, t) b* ; 
2) (s, s) > 0; 

3) the A-linear map 

5 

where :={ɸ ϵ Hom(ϵ, A) | ɸ (as) = ɸ (s)α* }, is an isomorphism of left A-
modules, i.e., g can be regarded as a metric on ϵ. 

2.1.5 Generalized Hermitian structure on Ωk(A) 

In this section we show that the A-bi-modules Ωk(A) carry Hermitian structures in a 
slightly generalized sense. Let A be the weak closure of the algebra A acting on Ho, i.e., 
A is the von Neumann algebra generated by Ω°(A) acting on the Hilbert space Ή°. 

Theorem 2.9 There is a canonically defined sesqui-linear map 

<., .>D : Ωk(A) x Ωk(A) → Â 

such that for all a, b ϵ A and all w, n ϵ Ωk(A) 
1) (aw, bn)

D
 = α(ω,η)

D
 b* ; 

2) (ω, ω )
D
 > 0; 

3) (ωα, η)
D
 = (ω, η a* )

D
 . 

We call (·,·)
D
 a generalized Hermitian structure on Ωk(A). It is the non-commutative 

analogue of the Riemannian metric on the bundle of differential forms. Note that (., .)D 

takes values in A and thus property 3) of Definition 2.8 is not directly applicable. 

PROOF: Let w, n ϵ Ωk(A) and define the C-linear map 

ω, η(α) = f αηω* , 
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for all a ϵ Ω°(A). Note that a on the rhs actually is a representative in A of the class 
a ϵ Ω°(A), and analogously for ω and η (and we have omitted the representation symbol 
π). The value of the integral is, however, independent of the choice of these representatives, 
which is why we used the same letters. The map φ satisfies 

* a a |φω, η(a)| < f aa* | f ωn*ηω* <(α,α)2

 f ωη*ηω* 

Therefore, φω, η extends to a bounded linear functional on Ή0, and there exists an element 
( n )D ϵ Ή0 such that 

φω, η(χ) = (χ,(ω,η)
D

 ) 

for all x ϵ Ή°; since (·,·) is non-degenerate, áω,ηñD is a well-defined element; but it 
remains to show that it also acts as a bounded operator on this Hilbert space. To this end, 
choose a net {ai} Ì Ω0(A) which converges to áω,ηñD. Then, for all b,c  Ω0(A), 

and it follows that 

|(áw,nñDb,c)| = |(áw,ηñD cb*)| = |(cb*, áw,nñD)| 

= |cb*ηw*| = |w*cb*η| = | b*ηw*c 

≤ |b*b|½ | c*wη*ηw*|1½ ≤ wη* ||H b*b|½ |c*c 

≤ ||wn*||h (b, b)½ (c, c)½ . 

In the third line, we first use the Cauchy-Schwarz inequality for the positive state , and 
then an estimate which is true for all positive operators on a Hilbert space; the upper 
bound ||wη*||h again involves representatives ω, η  π(Ωk(A)), which was not explicitly 
indicated above, since any two will do. 
As Ω0(A) is dense in 0, we see that (ω,η)D indeed defines a bounded operator in H0, 
which, by definition, is the weak limit of elements in Ω0(A), i.e., it belongs to A. Properties 
1-3 of (·, - )D

 are easy to verify. 

Note that the definition of the metric á·,·ñD given here differs slightly from the one of 
refs. [CFF, CFG]. One can, however, show that in the N = 1 case both definitions agree; 
moreover, the present one is better suited for the N = (1, 1) formulation to be introduced 
later. 
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2.1.6 Connections 

Definition 2.10 A connection  on a vector bundle ε over a non-commutative space is 
a -linear map 

 : ε → Ω1D (A) A ε 
such that 

( as) = δα  s + as 

for all a  and all s  ε. 

Given a vector bundle ε, we define a space of ε-valued differential forms by 

ΩD(ε) := ΩD(Α) 
A
 ε; 

if  is a connection on ε, then it extends uniquely to a -linear map, again denoted , 

 : ΩD(ε) → ΩD+1 (ε) (2.12) 

such that 
(ωs) = δω s + (-l)kw s (2.13) 

for all ω  ΩkD(A) and all s  ΩD(ε). 

Definition 2.11 The curvature of a connection  on a vector bundle ε is given by 

R () = - 2 : ε → Ω2D (A) A ε. 

Note that the curvature extends to a map 

R() : Ω(ε) → ΩD+2(ε) 

which is left A-linear, as follows easily from eq. (2.12) and Definition 2.10. 

Definition 2.12 A connection  on a Hermitian vector bundle (ε, á·,·ñ) is called unitary 
if 

δ á s,t ñ = ás , t ñ — á s ,t ñ 

for all s, t  £, ε where the rhs of this equation is defined by 

(ω  s,t) = ω á s,t ñ, (s, h t) = á s,t ñh* (2.14) 

for all ω, η  Ω1D(A) and all s, t  ε. 
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2.1.7 Riemannian curvature and torsion 

Throughout this section, we make three additional assumptions which limit the generality 
of our results, but turn out to be fulfilled in interesting examples. 

Assumption 2.13 We assume that the N = 1 spectral data under consideration have 
the following additional properties: 

1) K0 = 0. (This implies that Ω0D(A) = A and Ω1D(A) = Ω1 (A), thus Ω1D(A) carries 
a generalized Hermitian structure.) 

2) Ω1D(A) is a vector bundle, called the cotangent bundle over A. (Ω1D,(A) is always 
a left A-module. Here, we assume, in addition, that it is finitely generated and 
projective.) 

3) The generalized metric á ·,· ñD on Ω1D(A) defines an isomorphism of left A-modules 
between Ω1D(A) and the space of A-anti-linear maps from Ω1D(A) to A, i.e., for 
each A-anti-linear map 

φ : Ω1D (A) → A 

satisfying φ(αω)) = φ(ω)α* for all ω  Ω1D(A) and all α  A, there is a unique 
ηφ  Ω1D(A) with 

Φ(ω) = áηφ,ωñD. 

If N = 1 spectral data (A, , D, γ) satisfy these assumptions, we are able to define non-
commutative generalizations of classical notions like torsion and curvature. Whereas tor-
sion and Riemann curvature can be introduced whenever Ω1D(A) is a vector bundle, the 
last assumption in 2.13 will provide a substitute for the procedure of “contracting indices” 
leading to Ricci and scalar curvature. 

Definition 2.14 Let  be a connection on the cotangent bundle Ω1D(Α) over a non-
commutative space (A, , D, γ) satisfying Assumption 2.13. The torsion of  is the A-
linear map 

T() := δ - m o  : Ω1D(A) → Ω2D (Α) 

where m : Ω1D(A) A Ω1D(A) → Ω2D(Α) denotes the product of 1-forms in ΩD(A).. 

Using the definition of a connection, A-linearity of torsion is easy to verify. In analogy to 
the classical case, a unitary connection  with T() = 0 is called a Levi-Civita connection. 
In the classical case, there is exactly one Levi-Civita connection that, in addition, is a real 
operator on the complexified bundle of differential forms. In contrast, for a given set of 
non-commutative spectral data, there may be several (real) Levi-Civita connections - or 
none at all. 

Since we assume that Ω1D(A) is a vector bundle, we can define the Riemannian curvature of 
a connection  on the cotangent bundle as a specialization of Definition 2.11. To proceed 
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further, we make use of part 2) of Assumption 2.13, which implies that there exists a finite 
set of generators {EA } of Ω1D(A) and an associated “dual basis” {εA } ÌΩ1D(A)*, 

:= {Φ : Ω1D(A) → A | φ(αω) = αφ(ω) for all a  A, ω  Ω1D,(A) } , 

such that each ω  Ω1D(A) can be written as ω = εA(W)EA, see e.g. [Jac]. Because the 
curvature is A-linear, there is a family of elements {RAQ } Ω2D(Α) with 

R() =εΑ RA BEB (2.15) 

here and in the following the summation convention is used. Put differently, we have 
applied the canonical isomorphism of vector spaces 

ΗοmA (Ω1D(A), Ω2D(A)  Ω1D(A))  Ω1D(A)* A Ω1D(A) 

- which is valid because Ω1D, (Α) is projective - and chosen explicit generators EA, εA. Then 
we have that R()w = εA(W)R

A

B  E
B for any 1-form ω  Ω1D(A). 

Note that although the components RA
B need not be unique, the element on the rhs of eq. 

(2.15) is well-defined. Likewise, the Ricci and scalar curvature, to be introduced below, 
will be invariant combinations of those components, as long as we make sure that all maps 
we use have the correct “tensorial properties” with respect to the A-action. 
The last part of Assumption 2.13 guarantees, furthermore, that to each εA there exists a 
unique 1-form  Ω1D(A) such that 

εA(w) = á w, eAñD 

for all ω  Ω1D(A). By Corollary 2.6, every such eA determines a bounded operator 
ML(EA) 1 → 2 acting on 1 by left multiplication with EA- The adjoint of this 
operator with respect to the scalar product (·, ·) on  is denoted by 

eadA : 2 → 1 . (2.16) 

eadA is a map of right Α-modules, and it is easy to see that also the correspondence εA →eadA 
is right A-linear: For all b  A, ω  Ω1D(A), we have 

(εΑ · b)(ω) = εA(w) . b= á w,eAñb = áw,b*eAñ , 

and, furthermore, for all ξ1  1, ξ2  2, 

(b*eA(ξ1),ξ2) = (eA(ξ1), bξ2) = (ξ1, eadA (bξ2)) , 

where scalar products have to be taken in the appropriate spaces Hk. Altogether, the 
asserted right A-linearity follows. Therefore, the map 

εA  RAB  EB → eadA  RAB  EB 
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is well-defined and has the desired tensorial properties. The definition of Ricci curvature 
involves another operation which we require to be similarly well-behaved: 

Lemma 2.15 The orthogonal projections PdK-1 on Ήk, see eq. (2.9), satisfy 

PdKk-1 (axb) = aPdKk-1(x)b 

for all a, b  A and all x  Hk. 
PROOF: Set P : = PdKk-1, and let y  PHk. Then 

(P(axb), y) = (axb, P(y)) = (axb, y) = (x, a*yb* ) = (x, P(a*yb*)) = (aP(x)b, y ) , 

where we have used that P is self-adjoint with respect to (·,·), that Py = y, and that the 
image of P is an A-bi-module. ■ 

This lemma shows that projecting onto the “2-form part” of R.A
B

 is an A-bi-module map, 
i.e., we may apply 

eadA  RAB  EB → eadA  (RAB)  EB 

with (Ra
b) = (1 - PδK1) BAB as in eq. (2.10). Altogether, we arrive at the following 

definition of the Ricci curvature, 

Ric() = ead ((R
A
B)) EB  1 A Ω1D(A), 

which is in fact independent of any choices. In the following, we will also use the abbrevi-
ation 

RicB := eadA ((RA

B
)) 

for the components (which, again, are not uniquely defined). 
From the components RicB we can pass to scalar curvature. Again, we have to make 
sure that all maps occurring in this process are A-covariant so as to obtain an invariant 
definition. For any 1-form ω  Ω1D (A), right multiplication on H0 with ω defines a bounded 
operator mR(w), 0 → 1, and we denote by 

wadR: 1 → 0 (2.17) 

the adjoint of this operator. In a similar fashion as above, one establishes that 

(wa)adR (x) = wadR(xa*) 

for all x  H1 and a  A. This makes it possible to define the scalar curvature r () of a 
connection  as 

r() = (EB*)adR(Ric
B
) H0. 

As was the case for the Ricci tensor, acting with the adjoint of mR(EB*) serves as an 
analogue for “contraction of indices”. We summarize our results in the following 
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Definition 2.16 Let  be a connection on the cotangent bundle Ω1D(A) over a non-
commutative space (Α,H, D,γ) satisfying Assumption 2.13. The Riemannian curvature 
R() is the left A-linear map 

R () = -2 : Ω1D(A) → Ω2D (A) A Ω1D (A). 

Choosing a set of generators EA of Q
1D

(A) and dual generators of Ω1D (A)*, and writing 
R() = εA  RAB  EB as above, the Ricci tensor Ric () is given by 

Ric() = Ric B  EB  H1 A Ω1D(A), 

where RicB := adA((R
A
B)) see eqs. (2.10) and (2.16). Finally, the scalar curvature 

r () of the connection  is defined as 

r() = (EB*)ad R, (RicB)  H0, 

with the notation of eq. (2.17). (Note that, in the classical case, our definition of the scalar 
curvature differs from the usual one by a sign.) Both Ric() and r () do not depend on 
the choice of generators. 

2.1.8 Non-commutative Cartan structure equations 

The classical Cartan structure equations are an important tool for explicit calculations 
in differential geometry. Non-commutative analogues of those equations were obtained in 
[CFF, CFG]. Since proofs were only sketched in these references, we will give a rather 
detailed account of their results in the following. Throughout this section, we assume that 
the space Ω1D(A) is a vector bundle over A. In fact, no other properties of this space are 
used. Therefore all the statements on the non-commutative Cartan structure equations for 
the curvature will hold for any finitely generated projective module ε over A; the torsion 
tensor, on the other hand, is defined only on the cotangent bundle over a non-commutative 
space. 

Let  be a connection on the vector bundle Ω1D(A), then the curvature and the torsion of 
 are the left A-linear maps given in Definitions 2.16 and 2.14, 

R() : Ω1D(A) → Ω2D(A) A ,Ω1D(A), 

T() : Ω1D(A) → Ω2D(A). 

Since the left A-module Ω1D(A) is finitely generated, we can choose a finite set of generators 
{EA}A=1,.., N Ì Ω1D(A), and define the components ΩAB  Ω1D(A), RAB  Ω2D (A) and 
TA  Ω2D(A) of connection, curvature and torsion, resp., by setting 

EA = - ΩAB EB (2.18) 
R () EA = RAB  EB, (2.19) 
T() EA = TA. (2.20) 
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Note that the components ΩΑ
Β and RA

B are not uniquely defined if Ω1D(Α) is not a free 
module. Using Definitions 2.16 and 2.14, the components of the curvature and torsion 
tensors can be expressed in terms of the connection components: 

RA

B
 = δΩAB + ΩAC ΩCB, (2.21) 

TA = δEA + ΩABEB. (2.22) 

As they stand, eqs. (2.21) and (2.22) cannot be applied for solving typical problems like 
finding a connection without torsion, because the connection components ΩΑ

 B cannot be 
chosen at will unless Ω1D(Α) is free. We obtain more useful Cartan structure equations if 
we can relate the components ΩΑ

Β to those of a connection  on a free module AN. To 
this end, we employ some general constructions valid for any finitely generated projective 
left A-module ε. 

Let { EA
 }A= 1,...,N be the canonical basis of the standard module AN, and define a left 

A-module homomorphism 

for all a A  A. Since Ω1D(Α) is projective there exists a left A- module F such that 

Ω1D(A)  F  AN. (2.24) 

Denote by i : Ω1D) → AN the inclusion map determined by the isomorphism (2.24), 
which satisfies p o i = id on Ω1D(A). For each A = 1,..., N, we define a left A-linear map 

(2.25) 

It is clear that εA(w)EA = ω for all ω  AN. With the help of the inclusion i, we can 
introduce the left A-linear maps 

(2.26) 

for all A = 1,..., N. With these, ω  Ω1D (Α) can be written as 

ω = ρ(ί(ω)) = ρ(εΑ(ί(ω))ΕΑ) = εΑ(ω)ΕΑ , (2.27) 

and we see that {A} is the dual basis already used in section 2.1.7. The first step towards 
the non-commutative Cartan structure equations is the following result; see also [Kar ]. 

Proposition 2.17 Every connection  on AN 

 : AN → Ω1D(A)  AN 
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determines a connection  on Ω1D(A) by 

 = (id  p) ο  o i, (2.28) 

and every connection on Ω1D(A) is of this form. 

PROOF: Let  be a connection on AN - which always exists (see the remarks after the 
proof). Clearly,  = (id  p) ο  o i is a well-defined map, and it satisfies 

 (aw) = (id  p)( (a i(w))) = (id  p)(δa  i(ω) + ai(w)) = δa w + aw 

for all a  A and all ω  Ω1D(A). This proves that  is a connection on Ω1D(A). 
If ∆' is any other connection on Ω^,(ν4), then 

' -   HomA(Ω1D(A), Ω1D(A) A Ω1D(A)), 

where HomA denotes the space of homomorphisms of left A-modules. Since 

id  P : Ω1D(A)  A AN → Ω1D(A) A Ω1D(A) 

is surjective and Ω1D(A) is a projective module, there exists a module map 

φ : Ω1D(A) → Ω1D(A) A AN 

with 
' -  = (id  p) ο φ . 

Then φ := φ ο p  HomA (AN, Ω1D(A) 
A
 AN ), and  + φ is a connection on AN whose 

associated connection on Ω1D(A) is given by ': 

(id  p) ο ( + φ) ο i =  + (id  p) ο φ = ' . 

This proves that every connection on Ω1D(A) comes from a connection on AN. ■ 

The importance of this proposition lies in the fact that an arbitrary collection of 1-forms 
{ΩΑB}A, B=1,...,N C Ω1D(A) defines a connection  on AN by the formula 

 ((aAeA) = δaA  EA - aAΩAB  EB, 

and conversely. Thus, not only the existence of connections on AN and Ω1D(A) is guaran-
teed, but eq. (2.28) allows us to compute the components ΩAB of the induced connection 
 on Ω1D(A). The action of  on the generators is 

EA = (id  p)(i(EA)) = (id  p)(εB(i(EA))EB) = (id  p)(εB(EA)EB) 

= (id  p)(δεΒ(ΕΑ)  (EA)  EB - εB(EA) ΩBC  EC) 

= δεΒ(ΕΑ) EB - εc(EA) ΩCB  EB, 
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where we have used some of the general properties listed before. In short, we get the 
relation 

ΩA
B

 = εc(EA) ΩC
B
 - δεΒ(ΕΑ) (2.29) 

expressing the components of the connection  on Ω1D(A) in terms of the components of 
the connection  on AN. 
Upon inserting (2.29) into (2.21,22), one arrives at Cartan structure equations which ex-
press torsion and curvature in terms of these unrestricted components. We can, however, 
obtain equations of a simpler form if we exploit the fact that the map  →  is many-
to-one; this allows us to impose some extra symmetry relations on the components of the 
connection . 

Proposition 2.18 Let ΩΑ
Β be the coefficients of a connection  on AN, and denote by 

 the connection on AN whose components are given by ΩΑ
Β := εc(EA) Ωc DεB(ED). 

Then, these components enjoy the symmetry relations 

εc(EA)Ωc
B = ΩΑ

Β ΩΑcεΒ(Εc) = ΩΑ
Β , (2.30) 

and  and  induce the same connection on Ω1D(A). In particular, every connection on 
Ω1D(A) is induced by a connection on AN that satisfies (2.30). 

PROOF: We explicitly compute the action of the connection  induced by  on a generator, 
using eqs. (2.27,28) and the fact that all maps and the tensor product are A-linear: 

EA = - ΩΑ

Β
  EB = δεΒ(ΕΑ)  EB - εc(ΕΑ) Ωc B  E

B 

= δε
Β

(ΕΑ)  EB - ε
c

(EA)ε
D

(Ec) ΩD
 F

ε
B

(EF)  EB 

= δεΒ(ΕΑ)  EB - εD (εc(ΕΑ)Εc)ΩD
F  εB(EF)EB 

= δεΒ(ΕΑ)  EB - εD(ΕΑ) ΩD
F Ω EF 

This shows that  is identical to the connection induced by . The symmetry relations 
(2.30) follow directly from A-linearity and (2.27). ■ 

We are now in a position to state the Cartan structure equations in a simple form. 

Theorem 2.19 Let ΩΑ
Β and ΏΑ

Β be as in Proposition 2.18. Then the curvature and 
torsion components of the induced connection on Ω1D(A) are given by 

RA
B = εc(ΕΑ)δΩcΒ + ΩΑcΩcΒ + δεc(ΕA) δεΒ(Εc) , 

TΑ =εΒ(ΕΑ)δΕΒ + ΩΑ
Β
ΕΒ . 

PROOF: With eqs. (2.21,29,30) and the Leibniz rule, we get 

RAB = δQA

B
 + {Ω

AC
 - δεc(EA))(ΩcB - δεΒ(ΕC)) 

= δ (εc(EA) ΩcB) + ( ΩAc - δεc(ΕΑ)) ( ΩcΒ - δεΒ(Εc)) 

= εc(EA)δΩ
CΒ

 + ΩAc Ω
CΒ

 + δεc(ΕΑ) δεΒ(Εc) - ΩΑcδεΒ(Εc) . 
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The last term does in fact not contribute to the curvature, as can be seen after tensoring 
with EB: 

ΩA
cδεB(Ec)  ® EB = -δ(ΩAB) EB + (δΩA

C)  εB (EC)EB = 0 , 

where we have used the Leibniz rule, the relations (2.30) and A-linearity of the tensor 
product. 
To compute the components of the torsion, we use eqs. (2.22,29) analogously, 

TΑ = δEA + ΩA

B
EB - δεΒ(ΕΑ)ΕΒ = δEA + ΩA

B
EB - δEA + ε

B
(EA)δEB , 

which gives the result. ■ 

The Cartan structure equations of Theorem 2.19 are considerably simpler than those one 
would get directly from (2.29) and (2.21,22). The price to be paid is that the components 

ΩAB are not quite independent from each other, but of course they can easily be expressed 
in terms of the arbitrary components ΩA

B according to Proposition 2.18. Therefore, the 
equations of Theorem 2.19 are useful e.g. for determining connections on Ω1D(A) with 
special properties. We refer the reader to [CFG] for an explicit application of the Cartan 
structure equations. 

2.2 The N = (1,1) formulation of non-commutative geometry 

In this section, we introduce the non-commutative generalization of the description of 
Riemannian geometry by a set of N = (1,1) spectral data, which was presented, for the 
classical case, in section 2.2 of part I. The advantage over the N = 1 formulation is that 
now the algebra of differential forms is naturally represented on the Hilbert space H. 
Therefore, calculations in concrete examples and also the study of cohomology rings will 
become much easier. There is the drawback that the algebra of differential forms is no 
longer closed under the *-operation on H, but we will introduce an alternative involution 
below and add further remarks in section 5. 
The N = (1,1) framework explained in the following will also provide the basis for the 
definition of various types of complex non-commutative geometries in sections 2.3 and 2.4. 

2.2.1 The N = (1,1) spectral data 

Definition 2.20 A quintuple (A, H, d, 7,*) is called a set of N = (1, 1) spectral data if 
1) H is a separable Hilbert space; 
2) A is a unital *-algebra acting faithfully on H by bounded operators; 
3) d is a densely defined closed operator on H. such that 

i) d2 = 0, 
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ii) for each a  A, the commutator [d,a] extends uniquely to a bounded 
operator on H, 

iii) the operator exp(—εΔ) with Δ = dd* + d*d is trace class for all ε > 0 ; 
4) γ is a 2-grading on H, i.e., γ = γ*= γ- 1, such that 

i) [ γ, a ] = 0 for all a  A, 
ii) {γ,d} = 0; 

5) * is a unitary operator on H. such that 
i) * d = ζ d* * for some ζ   with \ζ\ = 1, 

ii) [ *, a ] = 0 for all a  A. 

Several remarks are in order. First of all, note that we can introduce the two operators 

D = d + d* , D = i (d - d* ) 

on H which satisfy the relations 

D2 =D2, {D,D} = 0, 

cf. Definition 12.6. Thus, our notion of N = (1,1) spectral data is an immediate gener-
alization of a classical N = (1,1) Dirac bundle - except for the boundedness conditions 
to be required on infinite-dimensional Hilbert spaces, and the existence of the additional 
operator * (see the comments below). 
As in the N = 1 case, the 2-grading γ may always be introduced if not given from the 
start, simply by “doubling” the Hilbert space - see the remarks following Definition 2.1. 
Moreover, if (A, H, d,γ) is a quadruple satisfying conditions 1-4 of Definition 2.20, we 
obtain a full set of N = (1,1) spectral data by setting 

H = H2 , A = A 12 , 

γ = γ  12 , * = 1H  τ1 

with the Pauli matrices гi as usual. Note that, in this example, ζ = — 1, and the *-operator 
additionally satisfies *2 = 1 as well as [γ, * ] = 0. 
The unitary operator * was not present in our algebraic formulation of classical Riemannian 
geometry. But for a compact oriented manifold, the usual Hodge *-operator acting on 
differential forms satisfies all the properties listed above, after appropriate rescaling in 
each degree. (Moreover, one can always achieve *2 = 1 or ζ = —1.) For a non-orientable 
manifold, we can apply the construction of the previous paragraph to obtain a description 
of the differential forms in terms of N = (1,1) spectral data including a Hodge operator. 
In our approach to the non-commutative case, we will make essential use of the existence 
of *, which we will also call Hodge operator, in analogy to the classical case. 
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2.2.2 Differential forms 

We first introduce an involution, h, called complex conjugation, on the algebra of universal 
forms: 

h : Ω·(A) → Ω·(A) 

is the unique -anti-linear anti-automorphism such that 

(2.31) 

for all a  A. Here we choose a sign convention that differs from the N = 1 case, eq. (2.1). 
If we write γ for the mod 2 reduction of the canonical -grading on Ω (A), we have 

δhγ = hδ . (2.32) 

We define a representation of Ω (A) on H, again denoted by π, by 

π(a) := a , π(δa) := [d,a] (2.33) 

for all a  A. The map π is a 2-graded representation in the sense that 

π (γwγ) = γπ(w)γ (2.34) 

for all ω  Ω (A). 
Although the abstract algebra of universal forms is the same as in the N = 1 setting, the 
interpretation of the universal differential δ has changed: In the N = (1,1) framework, it 
is represented on H by the nilpotent operator d, instead of the self-adjoint Dirac operator 
D, as before. In particular, we now have 

π(δω) = [d, π(ω) ]g (2.35) 

for all ω ε Ω*(Α), where [·, ·]g denotes the graded commutator (defined with the canonical 
2-grading on π(Ω*(A)), see (2.34)). The validity of eq. (2.35) is the main difference 
between the N = (1,1) and the N = 1 formalism. It ensures that there do not exist any 
forms ω  Ωp(A) with π(w) = 0 but π(dw) ≠ 0, in other words: 

Proposition 2.21 The graded vector space 

with π defined in (2.33) is a two-sided graded differential h-ideal of Ω*(A). 
PROOF: The first two properties are obvious, the third one is the content of eq. (2.35). 
Using (2.31) and the relations satisfied by the Hodge *-operator according to part 5) of 
Definition 2.20, we find that 

π((δa)h ) = π(δ(α* )) = [d, α* ] = [a, d* ]* = ζ [α, * d ]* 
= ζ * [a,d]* *_1 = — ζ * π(δα)* *- 1 , 
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which implies 
π(wh) = (-z)k * π(w)**-1(2.36) 

for all ω  Ωk(A). In particular, J = ker π is a h-ideal. ■ 

As a consequence of this proposition, the algebra of differential forms 

(2.37) 

is represented on the Hilbert space H via π. For later purposes, we will also need an 
involution on Ωd(A), and according to Proposition 2.21, this is given by the anti-linear 
map h of (2.31). Note that the ‘‘natural” involution ω → ω*, see eq. (2.1), which is inherited 
from H and was used in the N = 1 case, is no longer available here: The space π(Ωk:(A)) 
is not closed under taking adjoints, because d is not self-adjoint. 
In summary, the space Ωd (A) is a unital graded differential h-algebra and the representation 
π of Ω*(A) determines a representation of Ωd(Α) on H as a unital differential algebra. 

2.2.3 Integration 

The integration theory follows the same lines as in the N = 1 case: The state f is given 
as in Definition 2.3 with D2 written as Δ = dd* + d*d. Again, we make Assumption 2.4 
about the cyclicity of the integral. This yields a sesqui-linear form on Ωd(A) as before: 

(ω,η) =  ωη* (2.38) 

for all ω,η  Ωd(A), where we have dropped the representation symbols π under the 
integral. 
Because of the presence of the Hodge *-operator, the form (·, ·) has an additional feature 
in the N = (1,1) setting: 

Proposition 2.22 If the phase in part 5) of Definition 2.20 is ζ = ±1, then the inner 
product defined in eq. (2.38) behaves like a real functional with respect to the involution 
h, i.e., for ω,η  Ωd(A) we have 

(ωh, ηh ) = (ω,η) 

where the bar denotes ordinary complex conjugation. 
PROOF: First, observe that the Hodge operator commutes with the Laplacian, which is 
verified e.g. by taking the adjoint of the relation * d = ζ d* *. Then the claim follows 
immediately using eq. (2.36), unitarity of the Hodge operator, and cyclicity of the trace 
on H: Let ω  Ωpd(A), η  Ωqd(A), then 

(ωh,ηh) =  ωh(ηh)* = (-ζ)
ρ
(-ζ)q  * ω* *

-1

 *n*
-1

 = (-z)p-q w*h 

=(-z)p- q  hw* = (-z) p-q (w,) η 
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again, we have suppressed the representation symbol π. The claim follows since the 2-
grading implies (w, h) = 0 unless p — q ≡ 0 (mod2). ■ 
Note that, in examples, p- and q-forms for p ≠ q are often orthogonal with respect to the 
inner product (·, ·); then Proposition 2.22 holds independently of the value of ζ. 

Since Ωd(Α) is a and not a *-algebra, Proposition 2.5 is to be replaced by 

Proposition 2.23 The graded kernel K, see eq. (2.5), of the sesqui-linear form (·, ·) is a 
two-sided graded Mdeal of Ωd(A). 
PROOF: The proof that K is a two-sided graded ideal is identical to the one of Proposition 
2.5. That K is closed under h follows immediately from the proof of Proposition 2.22. ■ 

The remainder of section 2.1.3 carries over to the N = (1,1) case, with the only differences 
that Ω(Α) is a h-algebra and that the quotients Ωk(A)/(Kk + δKk-1)  Ωk(A)/δKk-1 

are denoted by Ωkd(A). 

While Ωd(Α) is a differential algebra (by construction), Ωβ(A) is not, in general, a differ-
ential algebra, because the ideal K may not be a differential ideal (i.e. there may exist 
ω  Kk-1 with δω  Kk ). However, K is trivial in many interesting examples. If K is 
trivial then the algebra Ω(A) of square-integrable forms is a differential algebra which is 
faithfully represented on H. 

2.2.4 Unitary connections and scalar curvature 

Except for the notions of unitary connections and scalar curvature, all definitions and 
results of sections 2.1.4-8 literally apply to the N = (1,1) case as well. The two exceptions 
explicitly involve the *-involution on the algebra of differential forms, which is no longer 
available now. Therefore, we have to modify the definitions for N = (1,1) non-commutative 
geometry as follows: 

Definition 2.24 A connection  on a Hermitian vector bundle (ε, á ·,· ñ) over an 
N = (1,1) non-commutative space is called unitary if 

d ás,tñ = ás,tñ + ás, tñ 

for all s,t  ε; the Hermitian structure on the rhs is extended to ε-valued differential 
forms by 

áω  s, tñ = ω ás, tñ , ás,η  tñ = ás, tñηh 

for all w, η  Ωd(A) and s, t  ε. 

Definition 2.25 The scalar curvature of a connection  on Ω1d(A) is defined by 

r() = (EBh)adR(Ric
B

)  H0 · 
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2.2.5 Remarks on the relation of N = 1 and N = (1,1) spectral data 

The definitions of N = 1 and N = (1,1) non-commutative spectral data provide two 
different generalizations of classical Riemannian differential geometry. In the latter context, 
one can always find an N = (1,1) description of a manifold originally given by an N = 1 
set of data (see part I), whereas a non-commutative set of N = (1,1) spectral data seems to 
require a different mathematical structure than a spectral triple, because of the additional 
generalized Dirac operator which must be given on the Hilbert space. Thus, it is a natural 
and important question under which conditions on an N = 1 spectral triple (A, H, D) there 
exists an associated N = (1,1) set of data (A, H, d, *) over the same non-commutative space 
A. 
We have not been able yet to answer the question of how to pass from N = 1 to N = (1,1) 
data in a general way. But in the following we present a procedure that might lead to a 
solution. Our guideline is the classical case, where the main step in passing from N = 1 to 
N — (1,1) data is to replace the Hilbert space H = L2(S) by H = L2(S) AL2(S) carrying 
two actions of the Clifford algebra and therefore two anti-commuting Dirac operators D 
and D - which yield a description equivalent to the one involving the nilpotent differential 
d, see the remark after Definition 2.20. 
It is plausible that there are other approaches to this question, in particular approaches of 
a more operator algebraic nature, e.g. using a “Kasparov product of spectral triples”, but 
we will not enter these matters here. 
The first problem one meets when trying to copy the classical step from N = 1 to N = (1 1) 
is that H should be an A-bi-module. To ensure this, we require that the set of N = 1 
(even) spectral data (A, H, D, γ) is endowed with a real structure [Co4], i.e. that there 
exists an anti-unitary operator J on H such that 

J2 =  1, Jγ = 'γJ, JD = DJ 

for some (independent) signs e, ' = ±1, and such that, in addition, 

JaJ* commutes with b and [D, b] for all a, b  A . 

This definition of a real structure was introduced by Connes in [Co4]; J is of course a 
variant of Tomita’s modular conjugation (cf. the next subsection). 
In the present context, J provides a canonical right A-module structure on H by defining 

ξ·α := Ja*J*ξ 

for all a  A, ξ  H, see [Co4]. We can extend this to a right action of Ω1D(A) on H if we 
set 

ξ·ω:=Jw*J*ξ 

for all ω  Ω1D(A) and ξ  ; for simplicity, the representation symbol π has been omitted. 
Note that by the assumptions on J, the right action commutes with the left action of A. 
Thus H is an A-bi-module, and we can form tensor products of bi-modules over the algebra 
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A just as in the classical case. If H carries a Hermitian structure, see Definition 2.8, then 
H  A can be endowed with a natural inner product. 
The real structure J in addition allows us to define the anti-linear “flip” operator 

It is straightforward to verify that Ψ is well-defined and that it satisfies 

Φ(a s) = ψ(s) a* 

for all a  A, s ε Ω1D(A)  H. 
From now on, we assume furthermore that H is a projective left A-module. Then it admits 
connections 

 : H →Ω1D, (A)  A H, 

i.e. -linear maps such that 
(aξ) = δα  ξ + ax 

for all a  A and x  H. We assume that  commutes with the grading γ on H, i.e. 
γx = (1  γ) x for all ξ  Ή. For each connection  on H, there is an “associated 

right-connection”  defined with the help of the flip Ψ: 

V is again -linear and satisfies 

(xa) = ξ  δa + (x)a . 

A connection  on H, together with its associated right connection , induces a -linear 
“tensor product connection”  on H  H of the form 

Because of the position of the factor Ω1D(A),  is not quite a connection in the usual sense. 
In the classical case, the last ingredient needed for the definition of the two Dirac operators 
of an N = (1,1) Dirac bundle are the two anti-commuting Clifford actions on H,. Their 
obvious generalizations to the non-commutative case are the -linear maps 
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and 

With these, we may introduce two operators D and D on in analogy to the classical 
case: 

D :=c o , Co . 

In order to obtain a set of N = (1,1) spectral data, one has to find a connection  on H 
which makes the operators D and D self-adjoint and ensures that the relations D2 = D2 

and { D,D } = 0 of Definition 2.20 are satisfied. The 2-grading on H  A H IS simply the 
tensor product grading, and the Hodge operator can be taken to be * = γ  1. 
In section 4 below, we will verify these conditions in the example of the non-commutative 
torus. In the general case, we have, up to now, not been able to prove the existence 
of a connection  on H which supplies D and D with the correct algebraic properties, 
but the naturality of the construction presented above as well as the similarity with the 
procedure of section 12.2.2 lead us to expect that this problem can be solved in many cases 
of interest. 
More precisely, we expect that the relation {D, D} = 0 can be satisfied under rather 
general assumptions, whereas it may often be appropriate to deal with a non-vanishing 
operator D2 — d2 that generates an S1-action. 

2.2.6 Riemannian and Spinc “manifolds” in non-commutative geometry 

In this section, we address the following question: What is the additional structure that 
makes an N = (1,1) non-commutative space into a non-commutative “manifold”, into 
a Spinc “manifold”, or into a quantized phase space? There is a definition of non-
commutative manifolds in terms of K-homology, see e.g. [Co1]. In our search for the 
characteristic features of non-commutative manifolds we will, as before, be guided by the 
classical case and by the principle that they should be natural from the point of view of 
quantum physics. 
Extrapolating from classical geometry, we are e.g. led to the following requirement an 
N = (1,1) space (A, H,d,y,*) should satisfy in order to describe a “manifold”: The data 
must extend to a set of N = 2 spectral data (A, H, d, T, *) where T is a self-adjoint operator 
on H such that 

i ) [ T, a] = 0 for all a  A ; 
ii) [T,d] = d; 

iii) T has integral spectrum, and γ is the mod 2 reduction of T, i.e. γ = ±1 on H±, 
where 

H± = span {ζ  H|Tx = η ξ for some n  , ( — l)n = ±1 } . 

Such N = 2 spectral data have been used in section 11.2 already, and have also been briefly 
discussed in section I3. 
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Before we can formulate further properties that we suppose to characterize non-commu-
tative manifolds, we recall some basic facts about Tomita-Takesaki theory. Let M be a 
von Neumann algebra acting on a separable Hilbert space H, and assume that xo  H is 
a cyclic and separating vector for M, i.e. 

and 
a x0 = 0 → a — 0 

for any a  M, respectively. Then we may define an anti-linear operator So on H by 
setting 

So α x0 = = α*ξ ο 

for all a  M. One can show that So is closable, and we denote its closure by S. The 
polar decomposition of S is written as 

S = J∆½ 

where J is an anti-unitary involutive operator, referred to as modular conjugation, and the 
so-called modular operator ∆ is a positive self-adjoint operator on H. The fundamental 
result of Tomita-Takesaki theory is the following theorem: 

JMJ = M' , ∆ it M∆-it = M 

for all t  ; here, M! denotes the commutant of M on H. Furthermore, the vector state 
ω0(·) := (xο, · ίο) is a KMS-state for the automorphism σ

t
 := Ad∆it of M, i.e. 

w0(σt(a)b) = w0(bσt-i(a)) 

for all a, b  M and all real t. 

Let (Α, H, d, T, *) be a set of N = 2 spectral data coming from an N = (1, 1) space as 
above. We define the analogue ClD(A) of the space of sections of the Clifford bundle, 

ClD)(A) = {ao[D,a1}.. .[D,ak]|k  +, ai  A} , 

where D = d + d*, and, corresponding to the second generalized Dirac operator D = 
i(d — d*), 

ClD(A) = {ao[D,a1].. .[D,ak]\k  +, ai  A } . 

In the classical setting, the sections ClD(A) and ClD(A) operate on H by the two actions 
c and c, respectively, see Definition I2.6. In the general case, we notice that, in contrast 
to the algebra Ωd(A) introduced before, ClD(A) and ClD(Α) form *-algebras of operators 
on H, but are neither -graded nor differential. 
We want to apply Tomita-Takesaki theory to the von Neumann algebra M := (ClD(A))" . 
Suppose there exists a vector ξο  H which is cyclic and separating for M, and let J be 
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the anti-unitary conjugation associated to M and ξ0· Suppose, moreover, that for all 
a  JA := JAJ the operator [D, a] uniquely extends to a bounded operator on H. Then 
we can form the algebra of bounded operators ClD(JA) on H as above. The properties 
JAJ Ì A' and {D, D} = 0 imply that ClD(A) and ClD(JA) commute in the graded 
sense; to arrive at truly commuting algebras, we first decompose ClD(JA) into a direct 
sum 

Clv(JA) = Cl±D(JA)  ClD(JA) 

with 
Cl±D(JA) = {w  ClD (JA) | yw = ±wγ} 

Then we define the “twisted algebra” ClD(JA) := Cl±(JA)  γ ClD(JA). This algebra 
commutes with ClD(A). 
We propose the following definitions: The N = 2 spectral data (A, H, d, T, *) describe a 
non-commutative manifold if 

ClD(JA) = JClD(A)J . 

Furthermore, inspired by classical geometry, we say that a non-commutative manifold 
(A, H, d, T, *, xo) is spinc if the Hilbert space factorizes as a ClD(A)  ClD(JA) module in 
the form 

H = HD z 

where Z denotes the center of M. 

Next, we introduce a notion of “quantized phase space”. We consider a set of = (1,1) 
spectral data (A, H, d, γ, *), where we now think of A as the algebra of phase space “func-
tions” (i.e. of pseudo-differential operators, in the Schrödinger picture of quantum mechan-
ics) rather than functions over configuration space. We are, therefore, not postulating the 
existence of a cyclic and separating vector for the algebra ClD)(A). Instead, we define for 
each β > 0 the temperature or KMS state 

with no limit β → 0 taken, in contrast to Definition 2.3. The b-integral clearly is a 
faithful state, and through the GNS-construction we obtain a faithful representation of 
ClD(A) on a Hilbert space Hβ with a cyclic and separating vector ζβ  Hβ for M. Each 
bounded operator A  Β(H) on H induces a bounded operator Αβ on Hβ; this is easily 
seen by computing matrix elements of Αβ, 
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for all x,y  M Ì Hb, and using the explicit form of the b-integral. We denote the 
modular conjugation and the modular operator οn Ηβ by and Δb, respectively, and we 
assume that for each a  M the commutator 

defines a bounded operator on Hβ. 
Then we can define an algebra of bounded operators A) οn Hβ, which is contained 
in the commutant of ClD (A), and we say that the N = (1,1) spectral data (A, H, d, γ, *) 
describe a quantized phase space if the following equation holds: 

JbClD(A)Jb = ClD(JbA) 

2.3 Hermitian and Kähler non-commutative geometry 

In this section, we introduce the spectral data describing complex non-commutative spaces, 
more specifically spaces that carry a Hermitian or a Kahler structure; the terminology is 
of course carried over from the classical case, see part I. Since these structures are more 
restrictive than the data of Riemannian non-commutative geometry, we will be able to 
derive some appealing properties of the space of differential forms. We also find a necessary 
condition for a set of N = (1, 1) spectral data to extend to Hermitian data. A different 
approach to complex non-commutative geometry has been proposed in [BC]. 

2.3.1 Hermitian and N = (2, 2) spectral data 

Definition 2.26 A set of data (A, H, ∂, ∂, T, T, γ, *) is called a set of Hermitian spectral 
data if 

1) the quintuple (A, H, ∂ + ∂, γ, *) forms a set of N = (1,1) spectral data; 
2) T and T are self-adjoint bounded operators on H, ∂ and d are densely defined, 

closed operators on H such that the following (anti-)commutation relations hold: 

∂2=∂2=0, {∂,∂} = 0, 

[T, ∂] = ∂, [T, ∂] =0 , 

[T, ∂] = o, [T, ∂] = ∂, 
[T, T}= 0; 

3) for any a  A, [T,a] = [T,a] = 0 and each of the operators [∂,a], [∂, a] and 
{∂, [∂, a] } extends uniquely to a bounded operator on 
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4) the 2-grading γ satisfies 

{γ, ∂} = {γ, ∂} = 0 , 

[γ, T]= [γ, T] = 0; 

5) the Hodge *-operator satisfies 

* ∂ = ζ ∂* * , * ∂ = ζ ∂* * 

for some phase ζ  . 

Some remarks on this definition may be useful: The Jacobi identity and the equation 
{ ∂, ∂ } = 0 show that condition 3 above is in fact symmetric in ∂ and ∂. 
As in section 2.2.1, a set (A, H, ∂, ∂, T, T) that satisfies the first three conditions but does 
not involve γ or *, can be made into a complete set of Hermitian spectral data. 
In classical Hermitian geometry, the *-operator can always be taken to be the usual Hodge 
*-operator - up to a multiplicative redefinition in each degree - since complex manifolds 
are orientable. 

Next, we describe conditions sufficient to equip a set of N = (1,1) spectral data with a 
Hermitian structure. In subsection 2.3.2, Corollary 2.34, a necessary criterion is given as 
well. 

Proposition 2.27 Let (A, H, d, γ, *) be a set of N = (1, 1) spectral data with [γ, *] = 0, 
and let T be a self-adjoint bounded operator on H such that 

a) the operator ∂ := [T, d] is nilpotent: ∂2 = 0; 
b) [Τ,∂] = ∂; 
c) [ T, a ] = 0 for all a  A; 
d) [Τ, ω]  π (Ω1(A)) for all ω  π (Ω1(A)); 
e) the operator ∂ := d — ∂ satisfies * ∂ = ζ ∂* * , where ζ is the phase appearing in the 

relations of * in the N = (1, 1) data; 
f) [T, γ] = 0 and [T, T] = 0, where T := — * T *- 1 . 

Then [A, H, ∂, ∂, T, T, γ, *) forms a set of Hermitian spectral data. 
Notice that the conditions a - d) are identical to those in Definition 12.20 of section I2.4.1. 
Requirement e) will turn out to correspond to part e) of that definition. The relations in 
f) ensure compatibility of the operators T, γ and * and were not needed in the classical 
setting. 
PROOF: We check each of the conditions in Definition 2.26: The first one is satisfied by 
assumption, since d = ∂ + ∂ is the differential of N = (1, 1) spectral data. 
The equalities ∂2 = ∂2 = {∂, ∂} = [T, ∂] = 0 follow from a) and b), as in the proof of 
Lemma I2.21. With this, we compute 

[T, ∂] = -[*T*-1, ∂] = -z * [T, ∂*]*-1 = ∂, 
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and since 
[T, d] = [*T*-1, d*] = z* [T, d]**-1 = ∂, 

we obtain [T, ∂] = 0. The relation [T,T] = 0 and self-adjointness of T were part of the 
assumptions, and T* = T is clear from the unitarity of the Hodge *-operator. 
That [ ∂, a ] and [ ∂, a ] are bounded for all a  A follows from the corresponding property 
of d and from the assumption that T is bounded. As in the proof of Proposition 12.22, 
one shows that {∂, [∂, a]}  π(Ω2d(A)), and therefore {∂, [∂, a]} is a bounded operator. 
T and * commute with all a  A by assumption, and thus the same is true for T. 
Using f) and the Jacobi identity, we get 

{γ∂ = { γ, [T d] } = [T, { d,γ } ] + { d, [γ, T] } = 0 

and 
{γ, ∂} = {γ ,d - ∂} = 0 . 

By assumption, γ commutes with T and *, therefore also with T. 
Finally, the relations of condition 5 in Definition 2.26 between the *-operator and ∂, ∂ 
follow directly from e) and * d = z d* * . ■ 

As in classical differential geometry, Kähler spaces arise as a special case of Hermitian 
geometry. In particular, Kähler spectral data provide a realization of the N = (2,2) 
supersymmetry algebra: 

Definition 2.28 Hermitian spectral data (A, H, ∂,∂, T, T, γ, *) are called N = (2, 2) or 
Kähler spectral data if 

{∂, ∂*} = {∂, ∂*} = 0, 

Note that the first line is a consequence of the second one in classical complex geometry, 
but has to be imposed as a separate condition in the non-commutative setting. 

One can also define Kähler spectral data, as in section I1.2, as containing a nilpotent 
differential d - together with its adjoint d* - and two commuting U(l) generators L3 

and Jo, say, which satisfy the relations (I1.49-51). This approach has the virtue that 
the complex structure familiar from classical differential geometry is already present in 
the algebraic formulation; see eq. (I1.54) for the precise relationship with Jo. Moreover, 
this way of introducing non-commutative complex geometry makes the role of Lie group 
symmetries of the spectral data explicit, which is somewhat hidden in the formulation 
of Definitions 2.26 and 2.28 and in Proposition 2.27: The presence of the U(l) x U(l) 
symmetry, acting in an appropriate way, ensures that a set of N = (1, 1) spectral data 
acquires an N = (2, 2) structure. 
Because of the advantages in the treatment of differential forms, we will stick to the 
setting using ∂ and ∂ for the time being, but the data with generators L3 and Jo will 
appear naturally in the context of symplectic geometry in section 2.5. 
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2.3.2 Differential forms 

In the context of Hermitian non-commutative geometry, we have two differential operators 
∂ and ∂ at our disposal. We begin this section with the definition of an abstract algebra 
of universal forms which is appropriate for this situation. 

Definition 2.29 A bi-differential algebra B is a unital algebra together with two anti-
commuting nilpotent derivations ∂, δ : B → B . 
A homomorphism of bi-differential algebras φ : B → B' is a unital algebra homomorphism 
which intertwines the derivations. 

Definition 2.30 The algebra of complex universal forms Ω·,·(A) over a unital algebra 
A is the (up to isomorphism) unique pair (I, Ω·’·(A)) consisting of a unital bi-differential 
algebra Ω·,·(Α) and an injective unital algebra homomorphism ι : A → Ω·,·(Α) such 
that the following universal property holds: For any bi-differential algebra B and any unital 
algebra homomorphism φ : A → B , there is a unique homomorphism φ : Ω·,·(A) → B 
of bi-differential algebras such that φ = φ o I. 

The description of Ω·’·(Α) in terms of generators and relations is analogous to the case of 
Ω(A), and it shows that Ω·’·(A) is a bi-graded bi-differential algebra 

(2.39) 

by declaring the generators α, δα, δα and δδα, a  A, to have bi-degrees (0, 0), (1, 0), (0, 1) 
and (1, 1), respectively. 
As in the N = (1, 1) framework, we introduce an involution h, called complex conjugation, 
on the algebra of complex universal forms, provided A is a*- algebra: 

h : Ω·’·(A) → Ω·’·(A) 

is the unique anti-linear anti-automorphism acting on generators by 

h(a) ≡ ah := a* , 
hh(δα) =(δα)h :=δ(α*) , 
h(δδα) ≡ (δδα)h := δδ(α* ) 

h\(δα) ≡ (δα)h := δ(α* ) , (2.40) 

Let γ be the 2-reduction of the total grading on Ω·’·(A), i.e., γ = ( —l)r+s on Ωr,s(A). 
Then it is easy to verify that 

∂hγ = hδ · (2.41) 

This makes Ω·’·(A) into a unital bi-graded bi-differential h-algebra. 

Let (A, H, ∂, ∂, T, T, γ, *) be a set of Hermitian spectral data. Then we define a 2-graded 
representation π of Ω·,·(A) as a unital bi-differential algebra on H by setting 

π (a) = a , 
π(δα) = [∂,a] , 
π(δδα) = { ∂, [∂, a] } . 

π (δα) = [∂, a] , (2.42) 
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Note that, by the Jacobi identity, the last equation is compatible with the anti-commutati-
vity of δ and δ. 
As in the case of N = (1, 1) geometry, we have that 

π(δω) = [∂, π(ω)]g , π(δω) = [∂,π(ω)]9 , (2.43) 

for any ω  Ω·’·(A), and therefore the graded kernel of the representation π has good 
properties: We define 

(2.44) 

and we prove the following statement in the same way as Proposition 2.21: 

Proposition 2.31 The set J is a two-sided, bi-graded, bi-differential h-ideal of Ω·’·(A). 

We introduce the space of complex differential forms as 

(2.45) 

The algebra is a unital bi-graded bi-differential h-algebra, too, and the represen-
tation π determines a representation, still denoted π, of this algebra on H. 

Due to the presence of the operators T and T among the Hermitian spectral data, the 
image of Ω·’·(A) under π enjoys a property not present in the N = (1, 1) case: 

Proposition 2.32 The representation of the algebra of complex differential forms satis-
fies 

(2.46) 

In particular, π is a representation of Ω·’·(A) as a unital, bi-graded, bi-differential h-
algebra. The h-operation is implemented on π(Ω∂’∂(A)) with the help of the Hodge *-
operator and the *-operation on Β(H): 

PROOF: Let ω  π(Ωr,s(A)). Then part 2) of Definition 2.26 implies that 

[T, w] = rω , [Τ, ω] = sω , 
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which gives the direct sum decomposition (2.46). It remains to show that the h-operation 
is implemented on the space π(Ω·’·(A)): For a  A, we have that 

π((δα)h) = πτ(δ(α*)) = [∂,α*] = -[∂*, a]* = -[(z * ∂*-1, a]* = - ζ * [∂, α]**-1 

= - ζ * π (δ a)* *_1 , 

and, similarly, using (2.40) and the properties of the Hodge *-operator, 

π((∂α)h) = — ζ * π(δα)* *- 1 , π((∂∂α)h) = ζ2 * π(∂∂α)* *_ 1 . 

This proves that π(ωh) = π(ωh. ■ 
As an aside, we mention that the implementation of h on π(Ω∂’∂(A)) via the Hodge *-
operator shows that the conditions e) of the “classical” Definition 12.20 and of Proposition 
2.27 are related; more precisely, the former is a consequence of the latter. 

Hermitian spectral data carry, in particular, an N = (1,1) structure, and thus we have two 
notions of differential forms available. Their relation is described in our next proposition. 

Proposition 2.33 The space of N = (1, 1) differential forms is included in the space of 
Hermitian forms, i.e., 

(2.47) 

and the spaces coincide if and only if 

[Τ, ω]  π(Ω1d(A)) for all ω  Q1d( A) . (2.48) 

PROOF: The inclusion (2.47) follows simply from d = ∂ + ∂ . If the spaces are equal then 
the equation 

[Τ, ω] =rω , 

for all ω  π(Ωr∂’∂(A)) , implies (2.48). The converse is shown as in the proof of Proposition 
12.22 in section 2.4.1 of part I, concerning classical Hermitian geometry. ■ 

Note that even if the spaces of differential forms do not coincide, the algebra of complex 
forms contains a graded differential algebra (Ω∂,∂ (A), d) with d = ∂ + ∂ and 

(2.49) 

By Proposition 2.32, we know that 

and hence we obtain a necessary condition for N = (1, 1) spectral data to extend to 
Hermitian spectral data: 
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Corollary 2.34 If a set of N = (1, 1) spectral data extends to a set of Hermitian spectral 
data then 

This condition is clearly not sufficient since it is always satisfied in classical differential 
geometry. 

Beyond the complexes (2.45) and (2.49), one can of course also consider the analogue of 
the Dolbeault complex using only the differential ∂ acting on Ω∂’∂(A). The details are 
straightforward. 

We conclude this subsection with some remarks concerning possible variations of our Defi-
nition 2.26 of Hermitian spectral data. For example, one may wish to drop the boundedness 
condition on the operators T and T, in order to include infinite-dimensional spaces into 
the theory. This is possible, but then one has to make some stronger assumptions in 
Proposition 2.27. 
Another relaxation of the requirements in Hermitian spectral data is to avoid introducing 
T and T altogether, and to replace them by a decomposition of the 2-grading 

γ = γ∂ + γ∂ 

such that 
{γ∂, ∂} = 0 , [γ∂, ∂] = 0 , 

{γ∂, ∂} =0, [γ∂, ∂] = 0. 

Then the space of differential forms may be defined as above, but Propositions 2.32 and 
2.33, as well as the good properties of the integral established in the next subsection, will 
not hold in general. 

2.3.3 Integration in complex non-commutative geometry 

The definition of the integral is completely analogous to the N = (1, 1) setting: Again we 
use the operator Δ = d d* + d* d, where now d = ∂ + ∂. Due to the larger set of data, 
the space of square-integrable, complex differential forms, now obtained after quotienting 
by the two-sided bi-graded -ideal K, has better properties than the corresponding space 
of forms in Riemannian non-commutative geometry. There, two elements ω ε Ωpd(A) and 
η  Ωqd(A) with p ≠ q were not necessarily orthogonal with respect to the sesqui-linear 
form (·, · ) induced by the integral. For Hermitian and Kahler non-commutative geometry, 
however, we can prove the following orthogonality statements: 

Proposition 2.35 Let wi  π(Ωri,Si ∂, ∂ (A)), i = 1, 2. Then 

[ω1, ω2) = 0 (2.50) 
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if if r1 + s1 ≠ r2 in the Hermitian case; if the spectral data also carry an N = (2,2) 
structure, then eq. (2.50) holds as soon as r1 ≠ r2 or s1 ≠ S2· 
PROOF: In the case of Hermitian spectral data, the assertion follows immediately from 
cyclicity of the trace, from the commutation relations 

[T, wi ) = ri wi , [Τ,ωi] = Swi , 

which means that T+T counts the total degree of a differential form, and from the equation 

[Γ + Τ, Δ] = 0 . 

In the Kähler case, Definition 2.28 implies the stronger relations 

[Τ, Δ] = [Τ, Δ] = 0. ■ 

2.3.4 Generalized metric on Ω∂,∂ (A) 

The notions of vector bundles, Hermitian structure, torsion, etc. are defined just as for 
N = (1, 1) spectral data in section 2.2. The definitions of holomorphic vector bundles 
and connections can be carried over from the classical case; see section I2.4.4. Again, we 
pass from Ω1∂, ∂, see eq. (2.49), to the space of all square-integrable 1-forms Ω1∂, ∂ which is 
equipped with a generalized Hermitian structure á·,·ñ∂,∂ according to the construction in 
Theorem 2.9. Starting from here, we can define an analogue 

of the -bi-linear metric in classical complex geometry by 

ááv, ηññ : áv, ηhñ∂,∂. 

Proposition 2.36 The generalized metric áá·,·ññ on Ω1∂, ∂0 (A) has the following properties: 
1) ááaω, hbññ = a ááω, ηññ b ; 
2) ááωαηññ = ááω, α ηññ ; 
3) ááω, ωhññ ≥ 0 ; 

here ω, η Ω1∂,∂(A) and a, b  A. If the underlying spectral data are Kählerian, one has 
that 

ááω, ηññ = 0 

if ω, η  Ω0’1∂,∂ (A) or ω, η  Ω1,0 ∂,∂(A). 
PROOF: The first three statements follow directly from the definition of áá··ññ and the 
corresponding properties of á·,·ñ∂,∂ listed in Theorem 2.9. The last assertion is a consequence 

38 



of Proposition 2.35, using the fact that the spaces Ωr,s ∂,∂ (A) are A-bi-modules. Note that 
this property of the metric áá·,·ññ corresponds to the property gµvμν = gμ„ = 0 (in complex 
coordinates) in the classical case. ■ 

2.4 The N = (4, 4) spectral data 

We just present the definition of spectral data describing non-commutative Hyperkähler 
spaces. Obviously, it is chosen in analogy to the discussion of the classical case in section 
2.5 of part I. 

Definition 2.37 A set of data (A, H, Ga±, Ga±, Ti Ti, γ, *) with a = 1, 2, i = 1, 2, 3, is 
called a set of N = (4,4) or Hyperkähler spectral data if 

1) the subset (A, H, G1 + , (G1+, T3, T3, γ, *) forms a set of N = (2, 2) spectral data; 
2) Ga±, a = 1, 2 are closed, densely defined operators on H, and Ti, i = 1, 2, 3, 

are bounded operators on H. which satisfy (Ga±)* = Ga± , (Ti)* = Ti and the 
following (anti-)commutation relations (a, 6 = 1, 2, i, j = 1, 2, 3, and τi are the 
Pauli matrices): 

{Ga+,Gb+} = 0, {Ga-, Gb+} = ∂ab □, , 
[□, Ga+ ] = 0, [□, Ti] = 0, 

[Ti, Ti ] = ieijk Tk , [Τi, Ga+ ] = ½ab Gb+, 

for some self-adjoint operator □ on H, which, in the classical case, is the holomor-
phic part of the Laplace operator; 

3) the operators Ga±, a = 1, 2, and Ti, i = 1, 2, 3, also satisfy the conditions in 2) and 
(anti-)commute with Ga± and Ti 

The construction of non-commutative differential forms and the integration theory is pre-
cisely the same as for N = (2, 2) spectral data. We therefore refrain from giving more 
details. It might, however, be interesting to see whether the additional information en-
coded in N = (4, 4) spectral data gives rise to special properties, beyond the ones found 
for Kähler data in subsection 2.3.3. 

2.5 Symplectic non-commutative geometry 

Once more, our description in the non-commutative context follows the algebraic charac-
terization of classical symplectic manifolds given in section 2.6 of part I. The difference 
between our approaches to the classical and to the non-commutative case is that, in the 
former, we could derive most of the algebraic relations - including the SU(2) structure 
showing up on symplectic manifolds - from the specific properties of the symplectic 2-
form, whereas now we will instead include those relations into the defining data, as a 
“substitute” for the symplectic form. 
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Definition 2.38 The set of data (A,H,d,L3, L+,L -,7,*) is called a set of symplectic 
spectral data if 

1) (A, H, d, γ, *) is a set of N = (1, 1) spectral data; 
2) JL3, and L- are bounded operators on H which commute with all a  A and 

satisfy the sl2 commutation relations 

[L3,L±] = ±2L± , [L+, L-] = L3 

as well as the Hermiticity properties (L3)* = L3 (L±)* = furthermore, they 
commute with the grading γ on H; 

3) the operator d* := [L-, d] is densely defined and closed, and together with d it 
forms an SU(2) doublet, i.e., the following commutation relations hold: 

[L3 d] = d, [L3,d*] = -d*, 

[L+, d] = 0, [L+, d*] = d, 

[L-, d]=d*, [L, d*] = 0. 

As in the classical case, there is a second SU(2) doublet spanned by the adjoints d* and 
d. The Jacobi identity shows that d* is nilpotent and that it anti-commutes with d. 
Differential forms and integration theory are formulated just as for N = (1, 1) spectral 
data, but the presence of SU(2) generators among the symplectic spectral data leads to 
additional interesting features, such as the following: Let ω  Ωkd(A) and η  Ωιd(Α) be 
two differential forms. Then their scalar product, see eq. (2.38), vanishes unless k = l: 

(ω, η) = 0 if k≠l. (2.51) 

This is true because, by the SU(2) commutation relations listed above, the operator L3 

induces a -grading on differential forms, and because L3 commutes with the Laplacian 
Δ = d*d + dd*. One consequence of (2.51) is that the reality property of (·, ·) stated in 
Proposition 2.22 is valid independently of the phase occurring in the Hodge relations. 

The following proposition shows that we can introduce an N = (2, 2) structure on a set of 
symplectic spectral data if certain additional properties are satisfied. As was the case for 
Definition 2.38, the extra requirements are slightly stronger than in the classical situation, 
where some structural elements like the almost-complex structure are given automatically. 
In the Kähler case, the latter allows for a separate counting of holomorphic resp. anti-
holomorphic degrees of differential forms, which in turn ensures that the symmetry group 
of the symplectic data associated to a classical Kähler manifold is in fact SU(2) xU(l) 
- see also section 3 of part I. Without this enlarged symmetry group, it is impossible to 
re-interpret the N = 4 as an N = (2,2) supersymmetry algebra. Therefore, we explicitly 
postulate the existence of an additional U(l) generator in the non-commutative context -
which coincides with the U(l) generator Jo in eq. (11.49) of section 11.2 and is intimately 
related to the complex structure. 
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Proposition 2.39 Suppose that the SU(2) generators of a set of sympiectic spectral 
data satisfy the following relations with the Hodge operator: 

* L3 = -L3 * , *L+ = -ζ2 L- * , 

where ζ is the phase appearing in the Hodge relations of the N = (1, 1) subset of the 
sympiectic data. Assume, furthermore, that there exists a bounded self-adjoint operator 
Jo on H which commutes with all a  A, with the grading γ, and with L3, whereas it acts 
like 

[J0, d] = -id, [ Jo, d] = id 

between the SU(2) doublets. Then the set of sympiectic data carries an N = (2, 2) Kähler 
structure with 1 1 

PROOF: All the conditions listed in Definition 2.26 of Hermitian spectral data can be 
verified easily: Nilpotency of d and ∂ follows from d2 = d2 = 0 and 

{ d, d } = 0 , (2.52) 

and the action of the Hodge operator on the SU(2) generators ensures that * intertwines 
∂ and ∂ in the right way. As for the extra conditions in Definition 2.28 of Kähler spectral 
data, one sees that the first one is always true for sympiectic spectral data, whereas the 
second one, namely the equality of the “holomorphic” and “anti-holomorphic” Laplacians, 
is again a consequence of relation (2.52). ■ 
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3. The non-commutative 3-sphere 

Here and in the next section, we present two examples of non-commutative spaces and show 
how the general methods developed above can be applied. We first discuss the “quantized” 
or “fuzzy” 3-sphere. We draw seme inspiration from the conformal field theory associated 
to a non-linear σ-model with target being a 3-sphere, the so-called SU(2)-WZW model, see 
[Wi3] and also [FGK, PS]. But while the ideas on a non-commutative interpretation of 
conformal field theory models proposed in [FG] are essential for placing non-commutative 
geometry into a string theory context, the following calculations are self-contained; the 
results of subsections 3.2 and 3.3 are taken from [Gr]. Although there is no doubt that 
the methods used in [Gr ] and below can be extended to arbitrary compact, connected and 
simply connected Lie groups, we will, for simplicity, restrict ourselves to the case of SU(2). 
We first introduce a set of N = 1 spectral data describing the non-commutative 3-sphere, 
then discuss the de Rham complex and its cohomology, and finally turn towards geometrical 
aspects of this non-commutative space. Subsection 3.4 briefly describes the N = (1, 1) 
formalism. 

3.1 The N = 1 data associated to the 3-sphere 

In this subsection, we introduce N = 1 data describing the non-commutative 3-sphere. 
Since the 3-sphere is diffeomorphic to the Lie group G = SU(2), we are looking for data 
describing a Lie group G. Let {TA} be a basis of g = T

e
G, the Lie algebra of G. By ϑA 

and ϑA we denote the left- and right-invariant vector fields associated to the basis elements 
TA , and by θΑ and θΑ the corresponding dual basis of 1-forms. The structure constants 
fCAB are defined, as usual, by 

[ϑAi ϑB] = CABϑC . (3.1) 

The Killing form on g induces a canonical Riemannian metric on TG given by 

9AB = g(ϑA, ϑB) = -Tr(adT
A

 o adTB) = -DACCBD , (3.2) 

and the Levi-Civita connection reads 

(3.3) 

The left-invariant vector fields ϑA define a trivialization of the (co-)tangent bundle. We 
denote by L the flat connection associated to that trivialization, 

LθA = 0 

for all A. We introduce the operators 

aA* = θA Λ, aA = gA, B ϑB 
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on the space of differential forms, as well as the usual gamma matrices 

γΑ = aA * — aA , γ-A = i ( aA * + aA ) . (3.4) 

It is easy to verify that γA and γA generate two anti-commuting copies of the Clifford 
algebra, 

{γA, γB} = {γA,γB} = -2gAB , {γA, γB} = 0. (3.5) 

Following the notations of section 12.2, we shall denote by S the bundle of differential 
forms endowed with the above structures. 
We define two connections S and s on S by setting 

where f ABC = ABGDC , and we put 

(3.6) 

(3.7) 

These objects satisfy the commutation relations 

(3.8) 

with analogous relations for JA and ψΑ; barred and unbarred operators (anti-)commute. 
The two anti-commuting Dirac operators D and D on S read [FG] 

(3.9) 

where C and C are the Clifford actions defined by the gamma matrices of eq. (3.4). The 
2-grading operator γ on S, anti-commuting with D and D, is given by 

(3.10) 

where g = detGAB · By L2(S)  L2(G)  W, where W is the irreducible representation 
of the Clifford algebra of eqs. (3.4,5), we denote the Hilbert space of square integrable 
sections of the bundle S, with respect to the normalized Haar measure on G. In the 
language of Connes’ spectral triples, the classical 3-sphere is described by the N = 1 data 
(L2(S), C∞(G), D, γ), with D ≡ D. 
The Hilbert space L2(S) carries a unitary representation π of G x G given by 

(π(g1, g2) ) = (g1-1 hg2), (3.11) 
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for all gi, h  G and   L2(G). For each j  ½ + we denote by (πj, Vj) the irreducible 
unitary (2j + 1)-dimensional (spin j) representation of G , and to each vector x*  η  Vj  Vj 
we associate a smooth function  C∞(G) by setting 

(3.12) 

This defines a linear isometry 

(3.13) 

and the Peter-Weyl theorem states that the image of φ is dense in L2(G) and also in C(G) 
in the supremum norm topology. It is easy to verify that the operators J A and J A act on 

½+
 Vj*  Vj as dπ(TA, 1) and dπ (1, ΤΑ) , respectively. For each positive integer k, 

we denote by P(k) the orthogonal projection 

(3.14) 

The Dirac operator D and the 2-grading γ clearly leave the finite-dimensional Hilbert 
space H0  W invariant. We define Ao to be the unital subalgebra of End(Ho) generated 
by operators of the form P(k)fx*  η , where ξ*  η  o . The following theorem is proven 
in [Gr]: 
Theorem 3.1 The algebra Ao coincides with the algebra of endomorphisms of Hο , i.e., 

A0 = End(Ho) · 

The proof in [Gr] shows that A0 is a full matrix algebra for any compact, connected and 
simply connected group. That A0 equals the endomorphism ring of H0 was only proved 
for SU(2), but a slight generalization of the proof for SU(2) should yield the result for all 
groups of the above type. 

We define the non-commutative 3-sphere by the N = 1 data (Ao, Hο  W, D, γ). Notice 
that this definition of the non-commutative 3-sphere is very close to that of the non-
commutative 2-sphere [Her, Ho, Ma, GKP]. For an alternative derivation of this definition, 
the reader is referred to [FG] where it is shown how this space arises as the quantum target 
of the WZW model based on SU(2). 
We note that l/k plays the role of Planck’s constant h in the quantization of symplectic 
manifolds, i.e., it is a deformation parameter. Formally, the classical 3-sphere emerges as 
the limit of non-commutative 3-spheres as the deformation parameter 1/k tends to zero. 

44 



3.2 The topology of the non-commutative 3-sphere 

In this subsection, we shall apply the tools of subsection 2.1 to the non-commutative space 
(A0, Hο  W, D, γ) describing the non-commutative 3-sphere; we follow the presentation 
in [Gr]. For convenience, we shall choose the basis {TA} of T

e
G in such a way that GAB = 

2δAB · The structure constants are then given by the Levi-Civita tensoi, fCAB = εABC · 

3.2.1 The de Rham complex 

First, we determine the structure of the spaces of differential forms ΩnD)(Aο) and the action 
of the exterior differentiation δ : ΩD(Aο) → ΩD (A0) · We use the same notations as in 
subsection 2.1.2. 
The space of 1-forms is 

(3.15) 

Since Ao is a full matrix algebra, see Theorem 3.1, it follows that 

Ω1D(A0))  {AA  ΨΑ | aA
  A0) } · (3.16) 

Using the fact that any element of π(Ω
2

(A0)) can be written as a linear combination of 
products of pairs of elements in π(Ω1(Aο)), we get 

π(Ω2(A0)) = { CLAB  ΨΑΨΒ | aAB  Ao } . (3-17) 

Our next task is to determine the space n(δJ1) of so-called “auxiliary 2-forms”, see 
eq. (2.2). To this end, let ω = ∑iaiδ Ω1(Aο) be such that 

(3.18) 

Using eqs. (3.8) and (3.18), we see that the coefficient of [ψΑ, ψΒ ] in π(δω) is proportiona] 
to 

where εAB denotes the Levi-Civita antisymmetric tensor. This shows that π(δJ1) is in-
cluded in Ao , and since Ao is a full matrix algebra, this implies that π(δJ1) is either 0 
or equal to Ao . We construct a non-vanishing element of π(SJ1) explicitly. Let Pj be the 
orthogonal projection onto V*j  Vj. We define a, b  Ao by 

a = P0 aP1/2 , b = P½ b Po 
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and 

It is straightforward to verify that ω : = aδb satisfies π(ω) = 0 and π(δω) ≠ 0 . 
This proves that π(δJ1) = A0, and we get 

Ω2D(Αο)  {a
AB  ψA ψB| = -aBA  A0

 } . (3.19) 

In order to determine the space of 3-forms, we first notice that 

π(Ω3(Αα)) = {αΑΒC  ψΑ·ψΒψc} , (3.20) 

and we compute the space n(δJ2). Let ai, bi, ci  A0 he such that ω = ∑i ai δbi δci satisfies 

(3.21) 

The coefficient of ψ1ψ2ψ3 in π (δω) is proportional to 

where we have used eq. (3.21) and the Jacobi identity. Thus, π(δJ2) is included in 
π(Ω1(A0)), and since A0 is a full matrix algebra, it is either 0 or equal to π(Ω1(A0))· 
Let ω, η  Ω1 (Aο) be such that π(ω) = —1  ψΑ , π (η) = 0 and π(δη) = 1  1. The 
existence of ω and η is ensured by eqs. (3.16) and the fact that π(δJ1) = A0 . We have 
ωη  Ω2(Α0), π(ωη) = 0 and π(δ(ωη)) = 1  ψΑ as π(δω) = 0. This proves that 
π(δJ2) = π(Ω1(Aο)), and we get 

Ω3D(A0)  {a  ψ 1ψ2ψ3 | a  Ao } . (3.22) 

We proceed with the space of 4-forms. First, we notice that due to the Clifford algebra 
relations, eqs. (3.4,5,8), we have 

π(Ω4(A0)) = {a AB  ψΑψΒ | aAB  A
0
 } . (3.23) 

Let ω  Ω1(A0) and η  Ω2(A0) be such that π(ω) = 0, π(δω) = 1  1, and π(η) = 
1  ψΑψΒ . The existence of ω and η is ensured by the fact that n(δJ1) = A0 and by 
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eq. (3.17). We have ωη  Ω3(Αο), π(ωη) = Ο and π(δ(ωη)) = 1  ψΑψΒ as π(ω) = 0 . Since 
Aο is a full matrix algebra, this proves that π(Ω4(Αο)) = π (δ J3), and we get Ω4D(Α0) = 0 . 
Using the fact that the product of differential forms induces a surjective map 

ΩnD (A0)  ΩmD(A0) → Ωn

D
+m(Ao) 

we obtain 
ΩnD(Α0) = 0 n > 3. (3.24) 

Collecting eqs. (3.16), (3.22) and (3.24), we arrive at the following theorem on the structure 
of differential forms over the non-commutative space (Αο, Hο  W, D, γ): 

Theorem 3.2 The left Ao-modules ΩnD(Αο) are all free and given as follows: 
0) Ω0D(Αο) = Ao is one-dimensional with basis {1} ; 
1) Ω1D(Αο) is three-dimensional with basis {1  ψΑ} ; 
2) Ω2D(Αο) is three-dimensional with basis {1  ψΑψΑ+1} (where addition is taken 

modulo 3); 
3) Ω3D (Αο) is one-dimensional with basis {1  ψ1ψ2ψ3} ; 
4) ΩnD(Αο) = 0 for all n > 3. 

Notice that the structure of the modules ΩnD(Α0) is the same as that of the spaces of 
differential forms on SU(2)  S3 . 

In the following, we compute the action of the exterior differential 

δ : Qn
D(Ao) → Ωn+1D(A0) · 

We introduce the following bases of Ω1D(Α0) and Ω2D(Α0) 

eA = 1  ψΑ  Ω1D(A0), (3.25) 
fA = εΑΒd  ψΒψC  Ω2D (A0) , (3.26) 

which allows us to identify Ωβ(A0) and Ω2D(A0) with the standard free module A30 , and 
we decompose their elements with respect to these bases, 

ω = ωΑeΑ for ω  Ω1D(Α0) , (3.27) 
u = wAfA for ω  Ω2D (Α0) . (3.28) 

It is easily verified that the product of 1-forms ω, η  Ω1D (Α0) is given by 

ω . η = εABC
 ωΒ ηB ηC f

A . (3.29) 

By the Leibniz rule for the exterior differential δ, knowledge of the action of δ on the 
elements a  A0 , eA and fA fully determines the action of the differential on ΩD(Α0). 
By definition, we have 

δα = [ JA, a] eA . (3.30) 
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Using eq. (3.30) and the nilpotency of δ we get 

0 = δ2JA = ieABC δ(JC eB) = -εBACεDCF JFeDeB + ieBAC JcδeB 

from which we can successively conclude that 

εBAEεDEC
 = iεBACδεB, 

eAeC = iεBACδeB . 

With eq. (3.29), we finally get 
δeA = -ifA . (3.31) 

This equation, together with the nilpotency of δ, furthermore implies that 

δfA = 0 . (3.32) 

We summarize these results in the following 

Theorem 3.3 Let g = 1/3! εABCψΑψΒψc be the basis element of Ω3D(Α0), and eA and 
fA as in eqs. (3.25,26). Then the algebra structure of ΩD(Α0) is given as follows: 

al) [a,eA] = [a, fA] = [a, g] = 0 for all a  A0 (3.33) 
a2) eAeB = ε ABC c eA eB eC = eABCg, (3.34) 

eAfB = δABg. (3.35) 

The differential structure on ΩD(A0) is given by 

b1) δα = [ JA, a]eA , (3.36) 
b2) δεΑ = -ifA , δ/Α = 0 . (3.37) 

3.2.2 Cohomology of the de Rham complex 

Let us now compute the cohomology groups of the de Rham complex (ΩD(Α0), δ) of 
Theorems 3.2 and 3.3. 
The zeroth cohomology group H0 consists of those elements a  A0 that are closed, i.e., 
satisfy δα = 0 . We have 

a  H0  δα = [JA, a]eA = 0 

[JA, a]=0 for all A 

and it follows that 

(3.38) 
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and 

(3.39) 

In order to compute the first cohomology group, we first determine the closed 1-forms. For 
any 1-form ω = ωAeA  Ω1D(A0), relation (3.37) implies that 

δω = ([ JA, ωΒ ]εABC - iωc) fC , 

and thus δω = 0 is equivalent to 

[JA
,ωB ]εABC = ιωc . (3.40) 

We show that all closed 1-forms are exact. First, notice that if we view Ao as a repre-
sentation space of su(2), then, for a closed 1-form, eq. (3.40) must hold in all isotypic 
components. Therefore, there is no loss of generality in assuming that all coefficients ωA 
transform under the spin j representation, i.e., 

[JA, [JA,ωB]] = j(j + 1)ωβ · (3.41) 

Furthermore, we can assume that j ≠ 0 since otherwise ω = 0, as follows from eq. (3.40). 
We define α(ω)  A0 by 

and we compute δα. Using eqs. (3.40,41) and the Jacobi identity, we get 

This proves that 
Η1 = 0 . (3.42) 

We proceed towards the second cohomology group. The condition for a 2-form ω = ωA
A 

to be closed reads 
δω = 0  [J

A
, A]= 0. (3.43) 

Again, we assume that the components ωA belong to a spin j representation of su(2). If 
j = 0, then setting η A = ίωΑ we get 

δ(ηΑe
Α) = ωΑ

Α , 
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proving that ω is exact. If j ≠ 0, we set 

and one easily verifies that δ(ηΑeΑ) = ωAfA. This proves that 

Η2 = 0 . (3.44) 

Finally, we compute the third cohomology group. Since all 3-forms are closed, we just have 
to compute the image of the exterior differential in Ω3d(A0) · For any 2-form ω we have 

δω = [JA
,ωA]g 

with g being the basis element of Ω3D(A0) as in Theorem 3.3. This means that the image 
of δ in Ω3D(A0) is given by 

and this space consists of linear combinations of elements of A0 transforming under a spin 
j representation for j ≠ 0, multiplied by g. Thus, the quotient Ω3D(A0)/im δ is given by 

(3.45) 

Collecting our results of eqs. (3.38, 39, 42, 44) and (3.45), we get the following 

Theorem 3.4 The cohomology groups of the de Rham complex of Theorem 3.3 are 

H0  H3  AR , H1 = H2 = 0 

with dimensions 
1 

This theorem shows that the cohomology groups of the fuzzy 3-sphere - which is the 
quantum target of the WZW model based on SU(2) [FG, Gr] - look very much like those 
of the classical SU(2) group manifold, except for the unexpected dimensions of the spaces 
H0 and H3. 
We observe that in the classical setting, the cohomology groups are modules over the ring 
H0 and that, for a connected space, the Betti numbers coincide with the dimensions of 
these modules. We are thus led to the idea that the dimensions of the cohomology groups 
over  may be less relevant than their dimensions as modules over H0 . Of course, it may 
happen in general that some H0-module is not free, and we would, in that case, lose the 
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notion of dimension. For the cohomology groups of the de Rham complex (ΩD(Α0), δ) we 
get 

dimH0 H0 = dimH0 H3 = 1 , 
dimH0 H1 = dimH0 H2 = 0 , 

which fits perfectly with the classical result. The above proposal is obviously tailored to 
make sense of the cohomology groups of Theorem 3.4 and its general relevance remains to 
be decided by the study of other examples of non-commutative spaces. 

3.3 The geometry of the non-commutative 3-sphere 

The N = 1 spectral data (Α0, H0  W, D, γ) permit us to investigate not only topological 
but also geometrical aspects of the quantized 3-sphere, namely integration of differential 
forms and Hermitian structures, as well as connections and the associated Riemann, Ricci 
and scalar curvatures. For a more detailed account of the results of this section, the reader 
is referred to [Gr]. 

3.3.1 Integration and Hermitian structures 

We start with the canonical scalar product and the Hermitian structures on the spaces of 
differential forms. We use the same notations as in subsections 2.1.3 - 2.1.5. 
Any element ω  π(Ω(A0)) can be written uniquely as 

ω = ω0 + ω
1A

eA + ω2AfA + ω3g (3.46) 

where ωi,ωiΑ  A0 . The integral f , as given in Definition 2.3, is just the normalized 
trace on H0  W, denoted by Tr. Thus, for any element ω as above, we have 

f ω = Tr ω0 (3.47) 

It is easy to show that the sesqui-linear form (·, ·) associated to the integral is given by 

(3.48) 

This proves that the kernels Ki of the sesqui-linear form (·, ·) equal the kernels Ji of the 
representation π . Thus, in this example we also have the equality 

Furthermore, since π(δJ1) = A0 and π(δJ2) = π(Ω1D(A0)), we see that the decomposition 
(3.46) gives the canonical representative ω of an arbitrary differential form ω  ΩD(Α0). 
The Hermitian structure on ΩpD(Α0) is readily seen to be 

áω, ηñ = ωΑ(ηΑ)* , ω, η  ΩpD(Α0) . (3.49) 
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Notice that, in this example, we get a true Hermitian structure on Qp
D(A0) and not only 

a generalized Hermitian structure on Ωp(A0), cf. subsection 2.1.5. 

3.3.2 Connections on Ω1D(A0) 

This last property makes it possible to regard Ω1D(A0) as the cotangent bundle of the 
non-commutative 3-sphere and to study connections on Ω1D(A0) · 
Since the space of 1-forms Ω1D(A0) is a trivial left A0-module, a connection  on Ω1D(Α0) 
is uniquely determined by the images of the basis elements, i.e., 

(3.50) 

where ωABC are arbitrary elements of A0 . 

Proposition 3.5 A connection  is unitary if and only if its coefficients satisfy the 
Hermiticity condition 

(3.51) 

PROOF: It follows from (3.49) that áeA, eBñ = δAB . Then we have for a unitary connection 
(see Definition 2.12) 

Proposition 3.6 The torsion of a connection is given by 

PROOF: Using Definition 2.14 and eqs. (2.20), (3.34,37), we get 

Proposition 3.7 A connection is torsionless and unitary if and only if its coefficients 
satisfy the following conditions 

i) (3.52) 
ii) (3.53) 
iii) (3.54) 

In particular, such a connection is uniquely determined by the nine self-adjoint elements 
ωAΑΒ  Λ) and the self-adjoint part of . 
PROOF: The condition of vanishing torsion, 
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can equivalently be written as 

(3.55) 

Using alternatively eqs. (3.55) and the unitarity condition eq. (3.51) we get 

which proves the result. ■ 

This proposition shows that, as in the classical case, there are many unitary and torsionless 
connections. There are two possibilities to reduce the space of “natural” connections 
further. First, we can consider real connections, i.e., connections whose associated parallel 
transport maps real forms to real forms. In the classical setting, a 1-form ω is real if 
ω* = -ω (the sign comes from the fact that the Clifford matrices are anti-Hermitian). 
Thus, we see that our basis of 1-forms consists of imaginary 1-forms, i.e., eA* = eA . If 
the covariant derivative of an imaginary 1-form is to be imaginary, then the connection 
coefficients ωABC must be anti-Hermitian. We call such a connection a real connection. 

Corollary 3.8 There is a unique real unitary and torsionless connection on the cotangent 
bundle Ω1D(A0), and its coefficients are given by 

There is another way of reducing the number of “natural” connections. If we look at 
a general unitary and torsionless connection, we see that it does not have any isotropy 
property. For example, the coefficients ωAAA are all independent of one another. We hope 
that if we require the connection to be invariant under all 1-parameter group of isometries 
(see [CFG, Gr]) we shall get relations among these coefficients. We shall not pursue this 
route here, but we refer the reader to [Gr] for a detailed analysis. 

We proceed with the computation of the scalar curvature of the real connection  of 
Corollary 3.8. 
For any connection  with coefficients ωABC as defined in eq. (3.50), the curvature tensor 
is given by (see Definition 2.11) 

R() eA = -2eA 

(3.56) 

In particular, for the real connection  of Corollary 3.8, the curvature tensor reads 

(3.57) 
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In order to compute the Ricci curvature, we use a dual basis to the generators eA , as in 
subsection 2.1.7, before eq. (2.15). It is clear that the elements εΑ  Ω1D (A0)* defined by 

εΑ(ω) = εΑ(ωΒ
eΒ) := ωΑ (3.58) 

for all ω  Ω1D (A0), form a dual basis to eA . Using eq. (3.49) it is then easy to verify that 
the dual 1-forms eA and their dual maps eadA , eq. (2.16), are given by 

3.59 

For the real connection , we get from eq. (3.57) 

(3.60) 

We proceed with the computation of the scalar curvature. The right dual maps (eAR)ad to 
the basis 1-forms eA , eq. (2.17), act as 

(3.61) 

The scalar curvature of the real connection  follows from eq. (3.60) and is given by 

(3.62) 

It is the same as the scalar curvature of the unique real unitary and torsionless connection 
for the classical SU(2) - recall that the definition of the scalar curvature in the non-
commutative setting differs from the classical one by a sign, see the remark in Definition 
2.16. 
This completes our study of the non-commutative 3-sphere in terms of N = 1 spectral 
data. Our results show that the non-commutative 3-sphere has striking similarities with 
its classical counterpart. As we saw in subsections 3.2.1 and 3.2.2, the spaces of differ-
ential forms have the same structure as left-modules over the algebra of functions, and 
the cohomology groups have the same dimensions as modules over the zeroth cohomology 
group, H0 . Furthermore, geometric invariants like the scalar curvature, too, coincide for 
the classical and the quantized 3-sphere. 

3.4 Remarks on N = (1,1) 

In the following, we consider N = (1, 1) data for the algebra A0. The construction of the 
first subsection starts from the BRST operator of the group G and leads to a deformation 
of the de Rham complex for the classical 3-sphere in the form of N = (1, 1) data for the 
non-commutative 3-sphere. In the second subsection, we return to the two generalized 
Dirac operators provided by superconformai field theory [FG], which lead to a different 
formulation of N = (1, 1) data, displaying “spontaneously broken supersymmetry”. 
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3.4.1 N = (1, 1) data from BRST 

One way to arrive at N = (1, 1) data for the algebra A0 and at the associated (non-
commutative) de Rham complex for the quantized 3-sphere is to use the action of the 
group G on the Hilbert space H0 for introducing a BRST operator (see also section 12.3). 
Let { JA } be the basis of the complexified Lie algebra g of G introduced in eq. (3.7). 
The BRST operator Q for the group G is defined as usual: We introduce ghosts cA and 
anti-ghosts bA satisfying the ghost algebra 

Î3.63Ï 

Then the BRST operator is given by 

(3.64) 

and the ghost number operator is 
(3.65) 

The Hilbert space of the N = (1, 1) data will be of the form H0  W where W is a 
representation space for the ghost algebra. 
In order to obtain N = (1, 1) data, we require that the ghost algebra acts unitarily on W 
with respect to the natural *-operation, namely 

(3.66) 

This choice is compatible with positive definiteness of the scalar product on W, and it 
renders the ghost number operator T self-adjoint.1 Furthermore, this choice of *-operation 
leads to identifying the ghost algebra with the CAR 

{ cA,cB } = 0 , {cA, cB*} = gAB , (3.67) 

and the BRST operator can be written 

(3.68) 

where indices are raised and lowered with the metric GAB as usual. Under the identifications 

cA  aA* := -ίθΑΛ 

1 In the context of gauge theories, one considers representations such that cA*=cA , b*A=bA . 
These Hermiticity conditions together with the defining relations (3.63) imply that the inner 
product of the representation space is not positive definite - which is why cA and bA are called 
ghosts. 
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where { θΑ } is a basis of 1-forms dual to { ϑA} , eq. (3.68) for the BRST operator formally 
coincides with the exterior derivative on G. This fact was already mentioned in section 
12.3. 
In order to complete our construction of N = (1, 1) data, we introduce the Hodge *-
operator 

(3.69) 

where η = dim G. This operator clearly commutes with the algebra A0 of Theorem 3.1. 
Moreover, it is easy to verify that * is unitary and satisfies 

(3.70) 

as well as 
*Q = (-1)n-1Q* . (3.71) 

It follows that (A, H, d, γ, *) with A = A0, H = H0  W, d = Q and where γ is the modulo 
2 reduction of the -grading T, form a set of N = (1, 1) data in the sense of Definition 
2.20. 

We refrain from presenting the details of the construction of differential forms and of 
the other geometrical quantities, since the computations are fairly straightforward. For 
example, the space of k-forms is given by 

(3.72) 

For G =SU(2), we see that these spaces are isomorphic to ΩkD(A0) as left A0-modules. 
Furthermore, it is easy to see that Ωd( A0) and ΩD( A0) are isomorphic as complexes, which 
proves that, in particular, their cohomologies coincide. 
Of course, the same constructions and results apply to the BRST operator associated with 
the right-action of G on H0 given by the generators JA of eq. (3.7). 

The Hilbert space H = H0  W can be decomposed into a direct sum of eigenspaces of the 
-grading operator T, 

n 

where H(0) = H0, n = dim G(= 3 for G = SU(2)). The subspaces H(k) are left-modules 
for A0- Furthermore, it follows from eqs. (3.65) and (3.68) that d Q maps H(k) into 
H(k+1 for k=0,... , n (with H(n+1) := {0}). Since d

2
 = 0, H is a complex. Viewed as 

linear spaces, the cohomology groups of Ωd(A0) and (H, Q) are isomorphic, although the 
latter do not carry a ring structure. 
As a side remark, consider an odd operator H on H. Then d := d + H is nilpotent if and 
only if { d, Η } + H2 =0. If H commutes with A0, then Ωd(Α0) and Ωd(A0) are identical 
complexes. In the next subsection, we will meet a conformal field theory motivated example 
for d = d + H which is nilpotent but for which H does not commute with A0. 
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3.4.2 Spontaneously broken supersymmetry 

In section 3.1 we introduced two connections S and s and their associated Dirac op-
erators D and D, see eqs. (3.6-9). Since these two Dirac operators correspond to different 
connections, they are not Dirac operators on an N = (1, 1) Dirac buncle in the sense of 
Definition 12.6. It is interesting to notice that D and D nevertheless satisfy the N = (1, 1) 
algebra [FG] 

D2 = D2 , {D, D} = 0. (3.73) 

The easiest way to prove (3.73) is to verify that the generalized exterior derivative 

(3.74) 

is nilpotent. Let {ϑA} and {θΑ } denote a basis of the Lie algebra and the dual basis of 
1-forms, respectively, as before. We define the operators 

aA * = θΑ Λ , a A = ϑ A L-

as usual, and we can express the fermionic operators ψΑ and φΑ as 

ψΑ = -i(
a

A * - aA) ,ψΑ = - (aA * + aA) , (3.75) 

where indices are raised and lowered with the metric gAB. Using eqs. (3.9) and (3.74), we 
can rewrite the operator d as a sum of terms of degree 1, -1 and —3, 

d = d1 + d—1 + d—3 (3.76) 

where 
dj =aA*J+A- 1/4 fABcaA*aB*ac 

d-1 = -αΑ
J-Α

 (3.77) 

with 
(3.78) 

It is then straightforward to show that d given by eqs. (3.76, 77) satisfies d2 = 0 and that 
the associated Laplacian Δ = { d, d* } is given by 

(3.79) 

Thus, Δ is a strictly positive operator - corresponding to what one calls spontaneously 
broken supersymmetry in the context of field theory. This implies that the cohomology 
of the complex (H, d) is trivial. However, the cohomology of the complex Ωd(A0), as 
introduced in Sect. 2.2, is not trivial. Notice that d1 is the BRST operator associated to 
the generators j+A and hence nilpotent. This implies that the BRST cohomology of the 
fuzzy 3-sphere can be extracted from Ωd(A0). 
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4. The non-commutative torus 

As a second, “classic” example of non-commutative spaces, we discuss the geometry of 
the non-commutative 2-torus [Ri, Co1, Co5]. After a short review of the classical torus 
in subsection 4.1, we analyze the spin geometry (N = 1) of the non-commutative torus 
in subsection 4.2 along the lines of [FGR2, Gr]. In subsections 4.3 and 4.4, we succes-
sively extend the N = 1 data to N = (1, 1) and N = (2, 2) data - according to the 
general procedure proposed in subsection 2.2.5 above. In these two last subsections, we 
do not give detailed proofs, but merely state the results since the computations, although 
straightforward, are tedious and not very illuminating. 

4.1 The classical torus 

To begin with, we describe the N = 1 data associated to the classical 2-torus TQ20. By Fourier 
transformation, the algebra of smooth functions over T20 is isomorphic to the Schwarz space 
A0 := S(Z2) over 2, endowed with the (commutative) convolution product: 

(4.1) 

where a, b  A0 and p  2. Complex conjugation of functions translates into a *-
operation: 

a  A0 . (4.2) 

If we choose a spin structure over T20 in such a way that the spinors are periodic along the 
elements of a homology basis, then the associated spinor bundle is a trivial rank 2 vector 
bundle. With this choice, the space of square integrable spinors is given by the direct sum 

H = l2(2)  l2(2) (4.3) 

where l2(2) denotes the space of square summable functions over 2. The algebra A0 
acts diagonally on H by the convolution product. We choose a flat metric (gμv) on T20 and 
we introduce the corresponding 2-dimensional gamma matrices 

{γµ, γv} = -29
μν , γµ* = -γµ . (4.4) 

Then, the Dirac operator D on H is given by 

(Dξ)(p) = ipμγµξ(p), ξ  H. (4.5) 

Finally, the 2-grading on H, denoted by σ, can be written as 

(4.6) 
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where εμv is the Levi-Civita tensor. The data (Α0, H, D, σ) are the canonical N = 1 data 
associated to the compact spin manifold T20, and it is thus clear that they satisfy all the 
properties of Definition 2.1. 

4.2 Spin geometry (N = 1) 

The non-commutative torus is obtained by deforming the product of the algebra A0. For 
each α  , we define the algebra Aα := S(2) with the product 

(4.7) 

where ω is the integer-valued anti-symmetric bilinear form on 2 x 2 

ω(p, q = p1q2 - p2q1 , q  2. (4.8) 

The *-operation is defined as before. Alternatively, we could introduce the algebra Aα as 
the unital *-algebra generated by the elements U and V subject to the relations 

UU* = U*U = VV* = V*V = 1, UV = e-2πiαVU . (4.9) 

Having chosen an appropriate closure, the equivalence of the two descriptions is easily seen 
if one makes the following identifications: 

U(p) = δP1,1 δp2, 0 V(p)= δ
p1,

 0 δ
p2

, 1 . (4.10) 

If α is a rational number, α = where M and N are co-prime integers, then the centre 
Z(Aα) of Aα is infinite-dimensional: 

Z(Aα) = span{UmNVnN \ m,n  } . (4.11) 

Let Iα denote the ideal of Aα generated by Z{Aα) — 1. Then it is easy to see that the 
quotient Aα/Ια is isomorphic, as a unital *-algebra, to the full matrix algebra MN(). 
If α is irrational, then the centre of Aα is trivial and Aα is of type II1, the trace being 
given by the evaluation at p = 0. Unless stated differently, we shall only study the case of 
irrational α. 
We define the non-commutative 2-torus T2 by its N = 1 data (Α

α
, H, D, σ) where H, D 

and σ are as in eqs. (4.3), (4.5) and (4.6), and Aα acts diagonally on H. by the deformed 
product, eq. (4.7). 
When a = M/N is rational, one may work with the data (Aα/Ια, MN()  2, Dα, α), where 
the Dirac operator Dα is given by 

(4.12) 
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4.2.1 Differential forms 

Recall that there is a representation π of the algebra of universal forms Ω (Aα) on H (see 
subsection 2.1.2). The images of the homogeneous subspaces of Ω(Aα) under π are given 
by 

π (Ω0 (Aα)) = Aα (by definition) (4-13) 

π (Ω2k- 1 (Aα)) = {α
μ
 γµ | α

μ  Aα} (4.14) 

π (02k (Aα)) = {a + bσ | a, b  Aα} (4.15) 

for all k  +. In principle, one should then compute the kernels Jn of π (see eq. (2.2)), 
but these are generally huge and difficult to describe explicitly. To determine the space of 
n-forms, it is simpler to use the isomorphism 

ΩnD(Aα) = Ωη(A
α
)/ (Jn + δJn-l)  π(Ωη(Aα))/π(δJn-1) . (4.16) 

First, we have to compute the spaces of “auxiliary forms” π(δJn-1). 

Lemma 4.1 The spaces n(δJn-1) of auxiliary forms are given by 

π(δJ1)=Aα (4.17) 

π (δJ2k) = π(Ω2k+1 (Aα)) (4.18) 

π (δJ2k+1) = π (Ω2k+2 (Aα)) (4.19) 

for all k ≥ 1. 
PROOF: Let ai, bi  Aα be such that the universal 1-form η = ∑i aiδbi  Ω1(A

α
) satisfies 

π(η) = 0. This means that 

(4.20) 

for all p  2. Using eq. (4.20), we have 

(4.21) 

This proves that π(δJ] ) Ì Aa. Then, we construct an explicit non-vanishing element of 
π(δJ1). We set 

a1(p) = b2(p) = δp1, - δp2,0, 
a2(p) = b2(p) = δp1, 1δp2, 0, 
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and an easy computation shows that the element η = ∑2i
=1

 aiδbi satisfies 

π(η) = 0 , π(δη) = -g11 . 

Since π(δJ1) is an Aα-bimodule, eq. (4.17) follows. 
Let k ≥ 3 and η  Ωk (Aα)· Then, using eqs. (4.14) and (4.15), we see that there exists an 
element ψ  Ωk-2 (Aα) with π(η) = π(ψ). The first part of the proof ensures the existence 
of an element ψ  Ω1(Aα) with π(Φ) = 0 and π(δΦ) = 1. Then we have Φψ  Jk-1, and 
π(δ(φψ)) = π(ψ) = π(h), proving that η  dJk-1, and therefore eqs. (4.18) and (4.19). ■ 

As a corollary to this lemma, we obtain the following 
Proposition 4.2 Up to isomorphism, the spaces of differential forms are given by 

Ω0D (Αα) = Aα, (4.22) 
Ω1D(Aα)  {αµ γµ| αμ  Aα} , (4.23) 

Ω2D(Αα)  {ασ | a G Α
α

} , (4.24) 

ΩnD(Aα) = 0 for n ≥ 3 , (4.25) 

where we have chosen special representatives on the right hand side. 

Notice that Ω1D(Aα) and Ω2D(Aα) are free left Aα-modules of rank 2 and 1, respectively. 
This reflects the fact the bundles of 1- and 2-forms over the 2-torus are trivial and of rank 
2 and 1, respectively. 

4.2.2 Integration and Hermitian structure over Ω1D(Aα) 

It follows from eqs. (4.13-15) that there is an isomorphism π(Ω(Aα))  Aα  M2(). Ap-
plying the general definition of the integral - see subsection 2.1.3 - to the non-commutative 
torus, one finds for an arbitrary element ω  π(Ω*(Aα)), 

ω = Τr2(ω(0)) (4.26) 

where Tr2 denotes the normalized trace on 2. The cyclicity property, Assumption 2.4 in 
subsection 2.1.3, follows directly from the definition of the product in Aα and the cyclicity 
of the trace on M2(). The kernels Kn of the canonical sesqui-linear form on π(Ω*(Aα)) 
- see eq. (2.5) - coincide with the kernels Jn of π, and we get for all n  n: 

Ωn(Aα) = Ωn(Aα) , ΩnD(Aα) = ΩnD (Aα) . (4.27) 

Note that the equality Kn = Jn holds in all explicit examples of non-commutative N = 1 
spaces studied so far. It is easy to see that the canonical representatives ω on of 
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differential forms [ω]  Ωnp(Α
α

), see eq. (2.10), coincide with the choices already made in 
eqs. (4.22-25). The canonical Hermitian structure on Ω1D(Aα) is simply given by 

áω, ηñD = ω
μ

gμνη*v  Α
α
 (4.28) 

for all ω,η  Ω1D(A
α

). Note that this is a true Hermitian metric, i.e., it takes values in Aα 
and not in the weak closure A"Again, this is also the typical situation in other examples. 

4.2.3 Connections on Ω1D(Aα) , and cohomology 

Since Ω1D(Aα) is a free left Aα-module, it admits a basis which we can choose to be 
Εμ := γμ. A connection  on Ω1D(Aα) is uniquely specified by its coefficients  Αα, 

(4.29) 

and these coefficients can be chosen arbitrarily. Note that in the classical case (α = 0) the 
basis Εμ consists of real· 1-forms. Accordingly, we say that the connection  is real if its 
coefficients in the basis Εμ are self-adjoint elements of Aα· A simple computation shows 
that there is a unique real, unitary, torsionless connection L.C.' on Ω1D(Aα) given by 

L.C.EΜ =
 0 (4.30) 

In the remainder of this subsection, we determine the de Rham complex and its cohomology. 
Let U and V be the elements of Aα defined in eq. (4.10), then it is easy to verify that the 
elements Εμ of Ω1D(Aα) given by 

E1 = U*δU , E2 = V*δV , (4.31) 

form a basis of Ω1D(Aα) and that they are closed, 

δE1 = δE2 = 0 . (4.32) 

A word of caution is in order here: Eq. (4.32) does not mean that δΕμ is zero as an element 
of Ω2(Aα), but that δΕμ  δJ1 which is zero in the quotient space Ω2

D(Aα). As a basis of 
Ω2D(Α

α
) we choose 

F = ½εµvγµγv (4.33) 

and we get for the product of basis 1-forms, 

ΕμΕν = εμν F . (4.34) 

This completely specifies the de Rham complex, and we can now compute of the cohomol-
ogy groups Hp. For a  Aα, we have the equivalences 

[D, a] =  ipμ γµ a(p) = 0 p 
 a(p) = δP,0 ã (4.35) 
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for some ã  , This shows that H0  . Let αμΕμ be a 1-form, then we obtain with 
eqs. (4.32) and (4.34) that 

δ(αμΕμ)= 0  ipμ
 a

v
 εμνF = 0 (4.36) 

where pμ denotes the multiplication operator by ρμ, i.e., (pμα)(q) = qμα(q). Suppose that 
the 1-form αμΕμ is closed and satisfies αμ(0) = 0, and define the algebra element b by 
b = (2ip

μ
)- 1α

μ
. Using eq. (4.36), we see that 

δb = αμΕμ . (4.37) 

This proves that any closed 1-form is cohomologous to a “constant” 1-form cμΕμ with 
cμ  . On the other hand, a non-vanishing constant 1-form cμΕμ cannot be exact since 
the equation 

(δα)(ρ) = ipμ Εμ a(p) = δp, 0 cμ Εμ (4.38) 

has no solution. Thus, we have H1  2. The same argument shows that a constant 
2-form cF, with c  , is not exact. If a 2-form aF satisfies α(0) = 0, then it is the 
coboundary of the 1-form iε

µv
(pv) -1 αΕμ and this proves the following 

Proposition 4.3 In the basis {1, Εμ = γμ, F = ½εμνγ μγ ν } of ΩD(Aα), the de Rham 
differential algebra is specified by the following relations: 

ΕμΕν = εμνΕ , 
δΕμ = δF = 0 , δα = ίpμΕμ a  Aα · 

Furthermore, the cohomology of the de Rham complex is given by 

H0  H2   , H1  2 . (4.39) 

This completes our study of the N = 1 data describing the non-commutative 2-torus at 
irrational deformation parameter. 

4.3 Riemannian geometry (N = (1, 1)) 

At the end of our discussion of the non-commutative 3-sphere, in subsection 3.4, we have 
briefly outlined a description in terms of “Riemannian” N = (1, 1) data - with the two 
generalized Dirac operators borrowed from conformal field theory, see [FG]. In the fol-
lowing, we will treat the non-commutative torus (at irrational deformation parameter) as 
a Riemannian space. Here we can, moreover, construct a set of N = (1, 1) data from the 
Connes spectral triple along the general lines of subsection 2.2.5. 
Our first task is to find a real structure J on the N = 1 data (Aα, H, D, σ). To this end, 
we introduce the complex conjugation κ : H → Η, (κx)(p) := x(p) := : x(p), as well as the 
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charge conjugation matrix C : H → H as the unique (up to a sign) constant matrix such 
that 

C γµ = -yµ C (4.40) 
C = C* = C- 1 . (4.41) 

Then it is easy to verify that J = CK, is a real structure. 
The right actions of Aα and Ω1D(Aα) on H (see subsection 2.2.5) are given as follows 

ξ .a ≡ Ja* J*x = ξ ·
α

 aV (4.42) 

ξ · ω = Jω* J*ξ = γµξ · αωµv(4.43) 

where ξ  H, a  Aα,
 ω  Ω1D (Aα), ξ ·α α denotes the diagonal right action of a on ξ by 

the deformed product, and 
αv(p) := a(-p) . 

Notice that (a·
α
 b)v = aν·

α

 bv. We denote by H the dense subspace S(2)  S(2) Ì H H 
of smooth spinors. The space H is a two-dimensional free left Aα-module with canonical 
basis {e1, e2}. Then, any connection  on H is uniquely determined by its coefficients 
ωji  Ω1D(Aα): 

ei = ωij ej = ω
μij γ

μ  ej  Ω1D(Aα)  Aα H . (4.44) 

The “associated right connection”  is then given by 

 ei = ej  ωij  H Aα Ω1D(Aα) (4.45) 

where 
ωji = -Cik (ωlk)*Clj = Cik(ωµlk)* Cljγµ (4.46) 

An arbitrary element in H  Aα H can be written as ei ® aijej where aij  Aα. As in 
subsection 2.2.5, the “Dirac operators” D and D on H  A

a
 H associated to the connection 

 are given by 

D ((ei  aij ej) = ei  (δaij + ωki akj + aik ωkj) · ej (4.47) 
D (ei  aij ej) = ei · (δaij + ωkiakj + aikω) σ ej . (4.48) 

In order to be able to define a scalar product on H Aa H, we need a Hermitian structure 
on the right module H, denoted by á ·,· ñ, with values in Aα. It is defined by 

áx, zña = (ξ, ζa)  a  Aα. (4.49) 

This Hermitian structure can be written explicitly as 

(4.50) 
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and it satisfies 
áxa, zbñ = a*áx, zñb (4.51) 

for all ξ,  H and a, b  Aα Then we define the scalar product on H.  Aα H as (see 

[Co1]) 
(x1  x2, z1  z2) = (x2, áx1, z1ñ z2). (4.52) 

This expression can be written in a more suggestive way if one introduces a Hermitian 
structure, denoted á·,·ñL, on the left module H: 

á x, z ñL := á Jx, Jz ñ· 

This Hermitian structure satisfies 

áax, bzñL = 

for all a, b  Aa and ξ, ζ  H, and the scalar product on   Aa H can be written as 
follows 

(x1  x2, z1  z2) =  á x1, z1 ñ áz2, x2ñL. 

A tedious computation shows that the relations 

D* = D, D*=D, {D, D} = 0, D2=D2 (4.53) 

are equivalent to 
 ei  ej = 0 i, j. (4.54) 

In particular, we see that the original N = 1 data uniquely determine the operators D and 
D satisfying the N = (1, 1) algebra - cf. Definition 2.20 -

D2 = D2 , {D, D}=0. 

One can prove that there are unique -grading operators 

γ = 1  σ , γ = σ  1 (4.55) 

commuting with Aa
 and such that 

{D, γ} = {D, γ} = 0 
[P, γ] = [D, γ] = 0 . 

The combined 2-grading 
Γ = γγ 

together with the Hodge operator 
* = γ 
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complete our data to a set of N = 1 data (Aα, H  Aα H, D, D, Γ, *). Furthermore, these 
data admit a unique -grading 

commuting with Aα, whose mod 2 reduction equals Γ, and such that 

[T, d] = d. 

4.4 Kähler geometry (N = (2, 2)) 

The classical torus can be regarded as a complex Kähler manifold, and thus it is natural 
to ask whether we can extend the N = (1, 1) spectral data to N = (2, 2) data in the 
non-commutative case, too. The simplest way to determine such an extension is to look 
for an anti-selfadjoint operator I commuting with Aα, Γ, *, and T, and then to define a 
new differential by 

dI = [I, d]. (4.56) 

The nilpotency of dI implies further constraints on the operator I. The idea behind this 
construction is to identify I with i(T — T), where T and T are as in Definition 2.26. In 
the classical setting, this operator has clearly the above properties. 
The most general operator I on H  Aα H that commutes with all elements of Aα is of the 
form 

(4.57) 

where IRµv are elements of Aα acting on H  Αα
 H from the right, and where we have set 

γ0 = 1, γ3 = σ . (4.58) 

The vanishing of the commutators of I with Γ and * implies that IRµv = 0 unless μ, v  
{0, 3}. The equation [I, T] = 0 requires IR03 = IR30 and leaves the coefficients and IR33 
undetermined. Since the operator I appears only through commutators, its trace part is 
irrelevant and we can set ΙR00 = 0. All constraints together give 

(4.59) 

where IR03 and IR33 are anti-selfadjoint elements of Aα· We decompose I into two parts 

(4.60) 
4.61 
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and we introduce the new differentials according to eq. (4.56) 

(4.62) 

d2 = [I1, d] (4.63) 
d3 = [I2, d]. (4.64) 

The nilpotency of d2 and implies that I03 and I33 are multiples of the identity, and we 
normalize them as follows 

(4.65) 

I2 = i (σ  σ) . 

(4.65) 

(4.66) 

Comparing eqs. (4.66) and (4.55), we see that 

I2 = iγγ (4.67) 

and it follows, using eqs. (4.62) and (4.64), that 

d3 = [I2, d] = 2 i dγγ. (4.68) 

Thus, the differential d3 is a trivial modification of d, and we discard it. It is then easy to 
verify that (Αα, H.  Αα

 H, d1, d2, Γ, *, T) form a set of N = (2, 2) spectral data together 
with a -grading. Furthermore, they are, as we have shown, canonically determined by the 
original N = (1, 1) data. Therefore, a Riemannian non-commutative torus (at irrational 
deformation parameter α) admits a canonical Kähler structure. Notice that if we choose 
the metric gμv = δμν in eq. (4.4), then d = -½(d1 + id2) coincides with the holomor-
phic differential obtained in [Co1 ] from cyclic cohomology and using the equivalence of 
conformal and complex structures in two dimensions. 

We have only given the definitions of the spectral data in the N = (1, 1) and the N = (2, 2) 
setting. As a straightforward application of the general methods described in section 
2, we could compute the associated de Rham resp. Dolbeault complexes, or geometrical 
quantities like curvature. We do not carry out these calculations. 
Instead, let us emphasize the following feature: In section 3, we already say that the 
topology of “the” non-commutative 3-sphere depends on the spectral data other than the 
algebra. Now, we learn once again that, for rational deformation parameter α = the 
algebra Aα does not specify the geometry of the underlying non-commutative space. It is 
only the selection of a specific K-cycle (H, D) that allows us to identify this space as a 
deformed torus. By choosing different K-cycles (H, D) for the same algebra A = MN() 
(with N =∑ =1 j2) we are able to describe either a fuzzy three-sphere, as discussed in 
Sect. 3, or a non-commutative torus. In other words, choosing different spectral data, but 
keeping the algebra A fixed, may lead to different non-commutative geometries. 
Yet, it is plausible that the sequence AN := MN(), N = 1, 2, 3,..., of algebras may 
be associated uniquely with non-commutative tori, while the sequence AN ·= MN(C), 
N = ∑lj

=1
 j2, l = 1, 2, 3,..., may be associated uniquely with fuzzy three-spheres. 
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5. Directions for future work 

In this work and in part I, we have presented an approach to (non-commutative) geometry 
rooted in supersymmetric quantum theory. We have classified the various types of classical 
and of non-commutative geometries according to the symmetries, or to the “supersymme-
try content”, of their associated spectral data. Obviously, many natural and important 
questions remain to be studied. In this concluding section, we describe a few of these open 
problems and sketch, once more, some of the physical motivations underlying our work. 

(1) An obvious question is whether one can give a complete classification of the possible 
types of spectral data in terms of graded Lie algebras (and, perhaps, q-deformed graded 
Lie algebras). As an example, we recall the structure of N = 4+ spectral data , describing 
an extension of Kähler geometry (see sections 1.2 and 3 of part I). The spectral data 
involve the operators d, d*, d, d*, L3, L+, L-, J0 and Δ, which close under taking 
(anti-)commutators: They generate a graded Lie algebra defined by 

[L3, L±] = ±2L± , [L+, L-] = L3, [J0, L3] = [J0, L+] = 0, 
[L3, d] = d, [L+, d]=0, [L-, d] = d* , [J0, d] = -id , 
[L3, d] = d, [L+, d] = 0, [L-, d] = -d*, [J0, d] = id, 
{d, d} = {d, d} = {d, d} = {d, d*} = 0 , 

{ d, d* } = { d, d* } = Δ , 

where Δ, the Laplacian, is a central element. The remaining (anti-)commutation relations 
follow by taking adjoints, with the rules that Δ, J0 and L3 are self-adjoint, and (L-)* = 
L+. 
It would be interesting to determine all graded Lie algebras (and their representations) 
occurring in spectral data of a (non-commutative) space. In the case of classical geometry, 
we have given a classification up to N = (4, 4) spectral data, and there appears to be enough 
information in the literature to settle the problem completely; see [Bes, HKLR, Joy]. In 
the non-commutative setting, however, further algebraic structures might occur, including 
q-deformations of graded Lie algebras. 
To give a list of all graded Lie algebras that are, in principle, admissible, appears possible; 
see [FGR2] for additional discussion. However, in view of the classical case, where we only 
found the groups U(l), SU(2), Sp(4) and direct products thereof (see part I, section 3) we 
expect that not all Lie group symmetries that may arise in principle are actually realized 
in (non-commutative) geometry. 
Determining the graded Lie algebras that actually occur in the spectral data of geometric 
spaces is clearly just the first step towards a classification of non-commutative spaces. A 
more difficult problem will be to characterize the class of all *-algebras A that admit a 
given type of spectral data, i.e. the class of algebras that possess a K-cycle (H, di) with a 
collection of differentials di generating a certain graded Lie algebra such that the ordinary 
Lie group generators Xj contained in the graded Lie algebra commute with the elements 
of A. 
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(2) Given some non-commutative geometry defined in terms of spectral data, it is natural 
to investigate its symmetries, i.e. to introduce a notion of diffeomorphisms. For definite-
ness, we start from a set of data (A, H, d, d *, T, *) with an N = 2 structure, cf. section 2.2.6. 
To study notions of diffeomorphisms, it is useful to introduce an algebra Φd(A) defined as 
the smallest *-algebra of (unbounded) operators containing B := π(Ω*(Α)) V π(Ω(A))* 
and arbitrary graded commutators of d and d* with elements of B. Due to the existence 
of the -grading T, Φd(A) decomposes into a direct sum 

Note that both positive and negative degrees occur. Thus, Φ^(.4) is a graded *-algebra. 
This algebra is quite a natural object to introduce when dealing with N = 2 spectral data, 
as the algebra Ωd(A) of differential forms does not have a *-representation on H, because 
d is not self-adjoint. 
Ignoring operator domain problems arising because the (anti-)commutator of d with the 
adjoint of a differential form is unbounded, in general, we observe that Φd(A) has the 
interesting property that it forms a complex with respect to the action of d by graded 
commutation, and, in view of examples from quantum field theory, we call it the field 
complex in the following. 
For N = (2, 2) non-commutative Kähler data with holomorphic and anti-holomorphic 
gradings T and T, see Definition 2.26, one may introduce a bi-graded complex Φ·’·(A) 
in a similar way. A slight generalization of such bi-graded field complexes containing 
operators φ of degree (n, m) with n and m real, but n + m  , naturally occurs in 
N = (2, 2) superconformai field theory, see e.g. [FG, FGR2] and references given there. 
Next, we show how the field complex appears when we attempt to introduce a notion 
of diffeomorphisms of a (non-commutative) geometric space described in terms of N = 
2 spectral data: One possible generalization of the notion of diffeomorphisms to non-
commutative geometry is to identify them with *-automorphisms of the algebra A of 
“smooth functions”. It may be advantageous, though, to follow concepts from classical 
geometry more closely: An infinitesimal diffeomorphism is then given by a derivation 
δ(·) := [L, ·] of A where L is an element of Φ0d such that δ commutes with d, i.e. 

[d, L]=0 . 

The derivation δ can then be extended to all of π(Ωd(A)), and δ preserves the degree of 
differential forms iff L commutes with T, i.e. iff L  Φ0d.. 
For a classical manifold M, it turns out that each L with the above properties can be 
written as 

L = {d, X} 

for some vector field X  Φ-1d, i.e. L is the Lie derivative in the direction of this vector field. 
In the non-commutative situation, however, it might happen that the cohomology of the 
field complex at the zeroth position is non-trivial. In this case, the study of diffeomorphisms 
of the non-commutative space necessitates studying the cohomology of the field complex 
Φd(A) in degree zero. 
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As in classical differential geometry, it is interesting to investigate special diffeomorphisms, 
i.e. ones that preserve additional structure in the spectral data. As an example, consider 
derivations δ(·) = [L,·] such that L commutes with d and d* : They generate isometries 
of the non-commutative space. For complex spectral data, we may consider derivation 
not only commuting with d but also with δ: They generate one-parameter groups of 
holomorphic diffeomorphisms. In the example of symplectic spectral data, we tire interested 
in diffeomorphisms preserving the symplectic forms, i.e., in symplectomorphisms. One-
parameter groups of symplectomorphisms are generated by derivations commuting with d 
and d*. 

(3) Another important topic in non-commutative geometry is deformation theory. Given 
spectral data specified in terms of generators { Xj, d, dα, Δ } of a graded Lie algebra as in 
remark (1), we may study one-parameter families { X(t)j d, d(t)α, ∆(t)t   of deformations. 
Here, we choose to keep one generator, d, fixed, and we require that the graded Lie algebras 
are isomorphic to one another for all t. This means that we study deformations of the 
(non-commutative) complex or symplectic structure of a given space A while preserving 
the differential and the de Rham complex. Only those deformations of spectral data 
are of interest which cannot be obtained from the original ones by *-automorphisms of 
the algebra A commuting with d (i.e. by “diffeomorphisms”). In classical geometry, the 
deformation theory of complex structures is well-developed (Kodaira-Spencer theory), and 
there are non-trivial results in the deformation theory of symplectic structures (e.g. Moser’s 
theorem); but this last topic is still a subject of active research. 
Next, we consider deformations d' of the differential d of a given set of N = 2 spectral 
data (A, H, d, d*, T, *) which are of the form 

d := d + ω, 

for some operator ω  Φd|(Α) of odd degree. We require that d' again squares to zero, 
which implies that ω has to satisfy a zero curvature condition 

ω2 + { d, ω} = 0 . (5.1) 

We distinguish between several possibilities: First, we require that the deformed data still 
carry an N = 2 structure with the same -grading T as before. Then ω must be an 
element of Φ1d(A) satisfying (5.1), and we can identify it with the connection 1-form of a 
flat connection on some vector bundle; for an example, see the discussion of the structure 
of classical N = (1, 1) Dirac bundles in section 2.2.3 of part I. 
More generally, we only require the deformed data to be of N = (1, 1) type, with a 2-
grading γ given by the mod 2 reduction of T. As a simple example, consider an operator 
ω in Φd(A) of degree 2n + 1, with η ≠ 0. Then condition (5.1) implies that 

ω2 = 0 and { d, ω} = 0 . 

If ω = [ d, β] and [β, ω] = 0 then 

d' = e-β d eβ. 
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We then say that d and d' are equivalent. If ω represents a non-trivial cohomology class 
of the field complex Φd(A) then d and d' are inequivalent. 

(4) In the introduction to paper I and in [FGR2] we have remarked that, from the point 
of view of physics, it is quite unnatural to attribute special importance to the algebra of 
functions over configuration space. The natural algebra in Hamiltonian mechanics is the 
algebra of functions over phase space, and, in quantum mechanics, it is a non-commutative 
deformation thereof, denoted Fh (where h is Planck’s constant), which is the natural al-
gebra to study. In examples where phase space is given as the cotangent bundle T*M of 
a smooth manifold M, the configuration space, one may ask whether there are natural 
mathematical relations between spectral data involving the algebra A = C∞(M) and ones 
involving the algebra Fh. For example, it may be possible to represent A and Fh on the 
same Hilbert space H and consider spectral data (A, H, d, T, *) and (Fh, H, d, T, *) with 
the same choice of operators d, T and * on H. It is well known that from (A, H, d, T, *) con-
figuration space M can be reconstructed (Gelfand’s theorem and extensions thereof). This 
leads to the natural question whether M can also be reconstructed from (Fh, H, d, T, *), 
or whether at least some of the topological properties of M, e.g. its Betti numbers, can be 
determined from these data. 
It is known that, in string theory, spectral data generalizing (Fh, H, d, T, *) do not de-
termine configuration space uniquely; this is related to the subject of stringy dualities 
and symmetries, more precisely to T dualities, see e.g. [GPR] and also [KS, FG]. The 
distinction between “algebras of functions on configuration space” A and “algebras of 
functions on phase space” F remains meaningful in many examples of non-commutative 
spaces. Typically, F arises as a crossed product of A by some group G of “diffeomor-
phisms”. Under what conditions properties of the algebra A can be inferred from spectral 
data (Fh, H, d, T, *) without knowing explicitly how the group G acts on F represents a 
problem of considerable interest in quantum theory. 
For another perspective concerning the distinction between “algebras of functions on con-
figuration space” and “algebras of functions on phase space” see section 2.2.6. 
It is worth emphasizing that in quantum field theory and string theory, where M is an 
infinite-dimensional space, the analogue of the “algebra of functions on M”, i.e. of A, does 
not exist, while the analogue of the “algebra of functions on phase space T*M”, i.e. of T, 
still makes sense. For additional discussion of these matters see also [FGR2 ]. 

(5) A topic in the theory of complex manifold that has attracted a lot of interest, recently, 
is mirror symmetry. For a definition of mirrors of classical Calabi-Yau manifolds, see e.g. 
[Y] and references given there, and cf. the remarks at the end of section 12.4.3. It is 
natural to ask whether one can define mirrors of non-commutative spaces, and whether 
some classical manifolds may have non-commutative mirrors. Superconformai field theory 
with N = (2, 2) supersymmetry suggests how one might define a mirror map in the context 
of non-commutative geometry (see [FG,FGR2]): Assume that two sets of N = (2, 2) 
spectral data (Ai, H, ∂i, ∂i,Ti,Ti,*i), i = 1, 2, are given, where the algebras Ai act on the 
Hilbert spaces Hi which are subspaces of a single Hilbert space H on which the operators 
∂i, ∂i, Ti ,Ti and are defined. We say that the space A2 is the mirror of A1 if 

= ∂1 , ∂2 = ∂*1 , T2 = T1 , T2 = —T1 , 
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and if the dimensions bp,qi of the cohomology of the Dolbeault complexes (2.45) satisfy 
bp,q2 = = bn-p,q 1, where n is the top dimension of differential forms (recall that in Definition 
2.26 we required T and T to be bounded operators). 
Let A be a non-commutative Kähler space with mirror A. Within superconformai field 
theory, there is the following additional relation between the two algebras: Viewing as 
the algebra of functions over a (non-commutative) target M, and analogously for A and 
M, the phase spaces over the loop spaces over M and M coincide. 

(6) The success of the theory presented in this paper will ultimately be measured in terms 
of the applications it has to concrete problems of geometry and physics. In particular, 
one should try to apply the notions developed here to further examples of truly non-
commutative spaces such as quantum groups, or the non-commutative complex projective 
spaces (see e.g. [Ber, Ho, Ma, GKP]), non-commutative Riemann surfaces [KL], and non-
commutative symmetric spaces [BLU, BLR, GP, BBEW]. In most of these cases, it is 
natural to ask whether the “deformed” spaces carry a complex or Kahler structure in the 
sense of section 2.3 above. 
From our point of view, however, the most interesting examples for the general theory 
and the strongest motivation to study spectral data with supersymmetry come from string 
theory: The “ground states” of string theory are described by certain N = (2, 2) super-
conformal field theories. They provide the spectral data of the loop space over a target 
which is a “quantization” of classical space - or rather of an internal compact manifold. 
It may happen that the conformal field theory is the quantization of a σ-model of maps 
from a parameter space into a classical target manifold. In general, the target space re-
constructed from the spectral data of the conformal field theory then turns out to be a 
(non-commutative) deformation of the target space of the classical σ-model. The example 
of the superconformai SU(2) Wess-Zumino-Witten model, which is the quantization of a 
σ-model with target SU(2), has been studied in some detail in [FG, Gr,FGR2] and has 
motivated the results presented in section 3. A more interesting class of examples would 
consist of N = (2, 2) superconformai field theories which are quantizations of σ-models 
whose target spaces are given by three-dimensional Calabi-Yau manifolds. But one may 
also apply the methods developed in this paper to superconformai field theories which, 
at the outset, are not quantizations of some classical σ-models. They may enable us to 
reconstruct (typically non-commutative) geometric spaces from the supersymmetric spec-
tral data of such conformal field theories. This leads to the idea that, quite generally, 
superconformai field theories are (quantum) σ-models, but with target spaces that tend 
to be non-commutative spaces. An interesting family of examples of this kind consists of 
the Gepner models, which are expected to give rise to non-commutative deformations of 
certain Calabi-Yau three-folds. For further discussion of these ideas see also [FG, FGR2], 
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