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Abstract 

What is quantum geometry? This question is becoming a popular leitmotiv in theoretical 
physics and in mathematics. Conformal field theory may catch a glimpse of the right 
answer. We review global aspects of the geometry of conformal fields, such as duality and 
mirror symmetry, and interpret them within Connes’ non-commutative geometry. 

1. Introduction 
Geometry has been used as a tool in classical physics in more interesting ways than in quan-

tum physics. Analytic mechanics or Einstein’s general relativity are outstanding examples of 
classical theories unseparable from their geometric content. It may seem then that it is enough 
to look at the quantized versions of analytic mechanics and of general relativity in order to 
understand how the quantum fluctuations modify geometry. In quantum mechanics, Poisson 
brackets become commutators and one could think that quantum symplectic geometry is the 
theory of canonical commutation relations and of their representations. This would be, how-
ever, too naive as the examples of difficulties with understanding quantum counterparts of the 

1 extended version of lectures given by the 2nd author at the Mathematical Quantum Theory Conference 
held at the University of British Columbia, Vancouver, Canada, from August 4 to 8, 1993 
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classical phenomena of integrability and chaos show. With general relativity, the situation is 
even worse: Einstein’s gravity has resisted numerous attempts aimed at quantizing it. These 
unsuccessful efforts have convinced physicists that quantum Riemannian geometry should be 
rather different from the classical one, at least at very short distances. A possible picture of such 
a modified geometry emerges from string theory, the best available candidate for a consistent 
model of quantum gravity. The fundamental idea of string theory is to replace point-like objects 
by string-like (or loop-like) ones. This should deform the geometry based on the notion of a 
space of points. Quantum string theory is still rather poorly understood but may be studied, 
on the classical and perturbative level, by means of conformal (quantum, two-dimensional) field 
theory (CFT). Roughly speaking, models of CFT describe classical solutions of string theory. 
The perturbative expansion around the classical solutions is built by considering the CFT mod-
els on two-dimensional space-times of non-trivial topology. To understand the string geometry 
on the classical and perturbative level, one should then understand the (quantum) geometry 
of CFT’s. Although a fully quantum string geometry at arbitrarily small scales may not be 
accessible to classical or perturbative analysis, its behavior in the large should be captured by 
the classical approximation. Below we shall concentrate on phenomena which distinguish the 
geometry in the large of CFT’s from the conventional Riemann-Einstein geometry. 

How should a physicist think about Riemannian geometry? As in other cases, she or he 
should extract general concepts from observable quantities. The trajectories of small bodies 
(test particles) are observable and, in general relativity, they are the time-like geodesics. The 
latter, when parametrized by the proper time, encode the complete information about the 
pseudo-Riemannian metric. The Lorentzian signature of the relevant geometry is, of course, 
the basic physical fact but, below, we shall limit ourselves very early to the easier case of 
euclidean signature. Technically, we shall use the tools of non-commutative geometry which 
were developed in the euclidean context. Understanding why the signature of the effective 
space-time is indefinite remains one of the principal open problems of quantum gravity and 
we shall have little to add here besides pointing out that the development of a Lorentzian 
non-commutative geometry seems to be, from this perspective, a natural task. 

Let M be a (pseudo-)Riemannian manifold with metric 7 = gμvdxμdxv. One usually takes 
the length 

(1.1) 

of the trajectory r  x(τ) € M as the action functional for the test particle (with unit mass). 
The extrema of such an action are arbitrarily parametrized geodesics. It will be more convenient 
to use 

(1.2) 

as the action, with the stationary points given by the geodesics parametrized by a constant 
times the length. If, following Polyakov’s approach [44], we couple the latter action to the 
world-line metric h(r)dr22, replacing it by 

(1.3) 
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then we can recover the length of the trajectory by minimizing (1.3) over h(.) : classically, the 
two actions are equivalent. For h(r) = 1, the action (1.3) reduces to (1.2) which describes a 
mechanical system called the “geodesic flow” on Μ. Setting h(r) to 1 may be viewed as a 
gauge choice fixing the reparametrization invariance of the action (1.1). 

It is easy to quantize the geodesic motion of a test particle on a Riemannian manifold2. 
The Hilbert space of states H may be taken as the space L2(M,dvy) of functions on M 
square-integrable with respect to the Riemannian volume dυg . Physically, this is the space of 
functions on the configuration space of the particle. As the (positive) Hamiltonian Ή governing 
the quantum evolution, we may take — 1/2Δg, where Δg is the Laplace-Beltrami operator on 
M. In a first step towards understanding what quantum Riemannian geometry might be, one 
may try to reformulate standard Riemannian geometry using the fundamental notions of quan-
tum mechanics: those of a Hilbert space of states and of an algebra of observables. Somewhat 
surprisingly, the exercise has proven to be rich in consequences. It has led A. Connes to the de-
velopment of non-commutative geometry [13] providing an extension of geometry to situations 
very far from its original context. One such situation, which required an extension of Con-
nes’ geometry to an infinite-dimensional setup, was the analysis of models of two-dimensional 
massive quantum supersymmetric field theory [34] [35]. Those models, although not exactly 
solvable, could be controlled by the analytic methods of constructive field theory [27]. We 
shall argue below that non-commutative geometry (already in its finite-dimensional version) 
may provide tools to study the deformed geometry of the exactly solvable (massless) models of 
CFT. 

The abstract pair (Η, — 1/2Δg) does not, in general, determine the geometry of M [43]: one 
cannot hear the shape of the drum [36]. We need more structure. Such additional structure is 
provided by the algebra A of observables measuring the position of the test particle, realized 
as the algebra of multiplication operators by (say, smooth, bounded) functions on Μ. The 
manifold M may be reconstructed from A. The points of M may be identified with the char-
acters of (the norm closure of) A. The differentiable structure of M is then determined since 
we know the smooth functions on it. That the abstract triple (H, — 1/2Δg,Α) determines also 
the Riemannian metric is implied3 by a slight modification of A. Connes’ argument [15] which 
goes as follows: the geodesic distance between points x and y of M (which are multiplicative 
linear functionals on A) is given by 

dg(x,y) = sup|f(x)-f(y)| , (1.4) 

where the supremum is taken over smooth bounded functions / s.t. 

1/2(Δgf2 + f2Δg) - fΔgf , (1.5) 

which is the multiplication operator by <df, df>g = gμv(∂μf)(∂vf), has norm < 1. Similarly, 
much of classical Riemannian geometry may be rewritten in terms of the quantum mechanics of 
a particle moving on M in a way that uses little of the particular properties of (H, — 1/2Δg, A). 

2on pseudo-Riemannian manifolds a fully consistent quantization requires, however, a multi-particle approach 
3we thank J. Derezinski for this observation 
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Connes’ idea was then to use triples like (Η, Ή, A), where H is a self-adjoint operator on H 
and A a *-algebra of bounded operators on H (in general non-commutative) as the starting 
point for non-commutative geometry4. 

Let us now proceed from mechanics to 1+1-dimensional field theory, with the 1-dimensional 
space compactified to a circle. On the classical level, a large family of such theories is given by 
the so called “sigma models”. They are obtained by considering fields χ(σ, τ) with values in 
the Riemannian manifold Μ, with the action functional 

S(x(·,·)) = 1/4π J g
μv

(x)(∂
Τ

xμ ∂
T

xv — ∂
σ

xμ ∂
σ

xν)dσdτ . (1.6) 

We assume periodicity of x(·, ·) in the space variable σ with period 2π. The σ integration in 
(1.6) is restricted to the interval [0,2π[. It is sometimes useful to consider more general sigma 
models, with the action modified by the addition of the term 

S'(x(.,.)) = J β
μv

(x) ∂
σ
xµ ∂

T
xv dσ dr , (1.7) 

where βμv/dxμ Λ dxv = β is a 2-form on Μ. The classical solutions of the stationarity equations 
for the sigma model action are parametrized, at least for small times, by the Cauchy data χ(·, 0) 
and ∂

T
x(.,0), so that the space LM of (smooth) loops σ  χ(σ, 0) in M plays the role of the 

configuration space of the model. LM is, itself, a Riemannian manifold (in the Fréchet sense) 
with the metric induced from that of M : 

║δx║2
 = 1/2π f gµv(x(o)) δxμ(σ)δxv(σ)dσ . 

The replacement of M by LM may seem to be the essential step of string geometry. Notice, 
however, that the sigma model action (1.6) differs from the one for the geodesic motion on LM 
by a “potential” type term with spatial derivatives of xμ. Besides, it is not the classical 1+1-
dimensional field theory but the corresponding quantum theory which describes the classical 
(and perturbative) level of string theory and, consequently, we should describe the geometry of 
the quantum sigma models, not that of the classical ones. The latter is fairly directly related 
to geometry of the loop space LM. The quantum sigma models, however, require a renor-
malization of the target space geometry. If one attempts to construct them in a perturbation 
expansion in powers of the Planck constant h, each order introduces (infinite) counterterms 
modifying the initial Riemannian metric of M [19]. As a result of the renormalization, the 
direct relation between quantum theory and geometry of the target manifold M or of its loop 
space LM is blurred. This is a new phenomenon since, as we have seen, quantum mechanics 
of a particle on a Riemannian manifold fully encodes the geometry of the manifold. To the first 
order in h, there is no metric renormalization and a sigma model defines, in this approxima-
tion, a CFT if and only if the target metric is Ricci flat, i.e. if it solves the Einstein equations 
[19]. Clearly, we may view the Riemann-Einstein geometry as a limiting case of the stringy 
one. 

4 in fact, he uses the Dirac operator instead of the Laplacian, an important refinement which we shall discuss 
below 
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Renormalization renders a rigorous construction of generic sigma models very difficult. 
There exists, however, a big pool of exactly solvable 1+1-dimensional quantum field theory 
models. Among those, there is a rich family of CFT’s where we know exact expressions not 
only for the energy eigenvalues but also for Green’s functions encoding the operator product of 
field operators. With any model of quantum field theory, we may associate a triple (Η, H, A), 
where H is the Hilbert space of states, H is the Hamiltonian and A is the (non-commutative) 
algebra generated by the field operators. We may think of this triple as encoding the effective 
quantum geometry of the space of field configurations or of its cotangent bundle. For the sigma 
models, this effective geometry summarizes the deformation, due to the renormalization effects, 
of the infinite-dimensional geometry of the loop space LM. The presentation of a quantum 
model by the triple (Η, Ή, A), selecting the Hamiltonian, is more natural in mechanics than in 
field theory, where it requires a choice of the time direction on the world-sheet. There, it would 
be more appropriate to specify the energy-momentum vector (Ή,P) or, in CFT, the whole 
set of generators of the conformal algebra or of its extensions. In fact, the most convenient 
algebraic setup for describing non-commutative geometry of quantum fields still remains to be 
found. Below, we shall concentrate on geometry of the low energy modes of quantum field 
theory where quantum mechanical description is quite sufficient. 

On the classical level, it is easy to recover the geodesic motion of the particle on M from 
the sigma model: it is enough to consider 1 + 1-dimensional fields which do not depend on 
the space variable σ. Notice that, for such fields, the action (1.6) reduces to (1.2) and (1.7) 
disappears. The space of σ-independent fields realizes an embedding of M into the subspace 
of elements of LM invariant under reparametrizations. Although it is difficult to construct 
sigma models by quantizing the classical theory which has M as the target, one may ask if 
it is possible to identify the effective target starting from a 1+1-dimensional quantum field 
model. Below, we shall show that, indeed, this can be done for the CFT models by using there 
infinite-dimensional symmetries like those given by the Virasoro algebra (essentially the algebra 
of infinitesimal reparametrizations of the circle), the current algebras or the supersymmetric 
extensions of those. With the use of such a symmetry algebra, one may associate to a CFT 
model a triple (Ho, Ήο,Ao) describing the effective quantum geometry of zero modes of the 
string. The latter dominate the low energy regime where the internal motion of the string 
may be neglected. Usually the algebra Ao will be non-commutative, the commutativity being 
restored only in a semiclassical limit. Sometimes several distinct families of triples (Ho, Ho, Ao) , 
yielding the effective low energy description in different limiting regimes, may be associated to 
a given family of conformal models. Consequently, one CFT may correspond to different (in 
general non commutative) effective targets. As we shall see, this is the essence of the duality [31] 
and mirror symmetry [30] [9] phenomena which are among the most interesting novel features 
of string geometry in the large. 

Certainly, string geometry is still in an early stage of development. What we have at 
our disposal are numerous examples of CFT models with rich infinite-dimensional symmetries. 
They may be thought of as symmetric spaces of string geometry. Their study is a stringy 
version of Klein’s “Erlanger Programm”. What is still largely missing is a stringy version of 
Riemann’s approach to geometry. Such an approach should probably pass through string field 
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theory which has common points with Connes’ non-commutative geometry, as Witten’s open 
string field theory [52] has shown. What is described below, is a more timid attempt to develop 
one limited aspect of string geometry: that of the effective metric geometry of low energy 
states. We point out that Connes’ theory provides useful tools also for this more limited and 
more phenomenological approach. There are other geometric aspects of the low energy string 
like those involving dilatonic and Yang-Mills geometry. They require studying more general 
sigma models whose examples we shall encounter examining coset conformal theories and their 
supersymmetric versions. The non-metric aspects of string geometry should be related to the 
non-commutative K-theory and certainly deserve to be studied. One of the shortcomings of 
our approach (present already in the treatment of the relativistic quantum mechanics) is that 
we work with the world-sheet (world-line) metric fixed ignoring the effects of fluctuations of 
the latter. In this way, what we study is more geometry of the conformal fields than that of 
the string. This is not necessarily a drawback since CFT geometry may be more appropriate 
for the classical description of non-topological phases of the string. Nevertheless, a deeper 
understanding of string geometry should take into account the fluctuations of the world-sheet 
backgrounds which, treated with BRST techniques, play an important role in string field theory. 

The following is the plan of the present exposé: 

In Section 2, we shall describe the sigma models with a circle as the target. They are essen-
tially versions of free 1+ 1-dimensional fields. These models illustrate the duality phenomenon 
responsible for the appearance of a fundamental length scale in string geometry. Their slight 
generalization with complex tori as the targets allows also to exhibit the simplest instance of 
the mirror symmetry [55]. 

Section 3 will be a guided tour through the factory of symmetric models of CFT. The basic 
raw material for the production of those models is the Wess-Zumino-Witten (WZW) 1+1-
dimensional field theory which, when processed by a gauging machine, gives a rich family of 
“coset models” of CFT. We shall briefly explain how the gauging machine works. 

Section 4 will be devoted to geometry of the supersymmetric CFT models. We shall present 
the supersymmetric version of the WZW theory and of the coset models. 

Finally, in Section 5, we shall sketch the relation between CFT models with N=2 super-
symmetry and Calabi-Yau geometry. This relation lies at the core of the mirror symmetry 
phenomenon for which non-commutative geometry provides a natural framework. 

Acknowledgements. We thank A. Connes for supporting us in our struggle to learn some 
non-commutative geometry and C. Voisin for teaching us basic complex geometry. In working 
on the program described in these notes we profited from numerous discussions with A. H. 
Chamseddine and G. Felder. J.F. thanks the I.H.E.S. and K.G. the Forschungsinstitut für 
Mathematik of E.T.H. for hospitality which made this collaboration possible. We are also 
greatful to J.Feldman, R. Froese and L. Rosen, the organizers of the Vancouver meeting, for 
the possibility to present our ideas to a mathematical physics audience. 
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2. Toroidal geometry 

2.1. S1 target and duality 

The simplest sigma model is obtained by taking the circle R/2πZ = S1 as the target. We 
shall use the angle variable x as the coordinate of the circle. It may be assumed that the 
Riemannian metric of S1 takes the form g = r2dx2, since the radius r is the only metric 
invariant. In other words, r > 0 parametrizes the half line of Riemannian circles. Encoding 
the geometry of the circle in quantum mechanics of a particle moving on it gives rise to the 
triple 

(2.1) 

Functions x einx are the eigenfunctions of the Laplacian corresponding to the eigenvalues 
r-2n2. The action of a sigma model with the Sl target is 

(2.2) 

Its stationary points satisfy the wave equation 

(2.3) 

with the general solution 

(2.4) 

w  Z is the winding number, a homotopy invariant of the solution. It labels the connected 
components of the space of solutions. The canonical Poisson brackets 

{x(σ, 0), ∂
τ
x(σ', 0)} = 2πr 2 δ(σ — σ') (2.5) 

translate to 

(2.6) 

with all the other Poisson brackets vanishing. Classically, the model posseses the conformal 
symmetry acting by reparametrizations of τ ± σ and the symmetry 

x(σ,τ)  χ(σ, r) ± δ±x(τ ± σ) , (2.7) 

where δ±x(·) are arbitrary (periodic) functions. 

Since we are essentially in the free field case, quantization of the model, replacing Poisson 
brackets by i times commutators, is standard. The Hilbert space of states of the quantized 
system is 

(2.8) 
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Above, the exponent Z indicates the infinite direct sum of L2 spaces with the components 
labeled by the winding numbers w € Z. Periodic functions of x° act by multiplication and 
p as in each L2 component. We may span L2(Sl ,dx/↓↑↔↨∂←√2π)Z by the eigenvectors |p

w
,w) = 

e-ipwx,  Z, of in each component of the direct sum. We shall also label states |pwiw) 
as |p+; p-), where the left-right momenta 

(2.9) 

The set {(p+,p-)} provided with the quadratic form (p+)2 — (p~)2 = 2p
w

w forms an even self-
dual Lorentzian lattice. are two copies of the bosonic Fock space built on the vacuum state 
|0) annihilated by a

n
, η > 0, via the action of operators α

η
, η < 0. [a

n
,a

m
] = nS

n
+

m,
o and 

a* = a-
n

. We shall consider L2(S1)z as embedded into H by |p+;p-)  |p+;p->|0>+|0>- . 

Let us introduce chiral (multivalued) quantum fields X±, 

(2.10) 

where X0± — acts in the extended space with arbitrary momenta. On the quantum level, 
symmetry (2.7) is generated by a commuting pair of u(l) current algebras with the currents 

(2.11) 

[jn, jm] = nδn+m,0 (2.12) 

(j±0= ±p±, j±n = ±p± , = ±a±n for η ≠ 0 ). The Hilbert space H is a direct sum of the irreducible 
(highest weight) representations of j± acting in |p+;p->F+ F-, labeled by u(1) charges 
±p±. The classical conformal symmetry also carries over to the quantum level. It is represented 
there by a commuting pair of Virasoro algebras given by the Sugawara construction [47]: 

(2.13) 

where the Wick ordering puts operators with η < 0 to the left of the ones with η > 0. 

(2.14) 

with the Virasoro central charge c = 1. The Hamiltonian of the model is Ή — L+0 + L-
0
 — 1/12 

and the momentum operator generating the space translations is V = L+0 — L-0 . 

(2.15) 

and |vac> = |0; 0) is its unique eigenstate (with eigenvalue — 1/2 ) at the bottom of the spectrum 
(the vacuum). 
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The basic quantum fields of our model are given by ordered exponentials of fields X± 

(2.16) 

where z± = e-1 (τ±σ) and the Wick ordering puts also the operators X0± to the left of p±. 
When 

(2.17) 

for n, m  Z, then the above operators5 map (a dense subset of) our Hilbert space into itself. 
Corrected by the cocycles c

q
+

q
-(p+ ,p~) = (-1)(q++q- )(p+-p-) )/2 = (-1)nw they give mutually 

local vertex operators 

(2.18) 

Vq+q- are primary fields of charges ±q± for the u( 1) currents j± , i.e. they satisfy the following 
commutation relations: 

(2.19) 

which say that Vq+q- transform as local fields of u(1) charges under the local gauge 
transformations induced by j± . Fields Vq+q- are also primary fields of the Virasoro algebras: 

(2.20) 

i.e. they transform under the conformal transformations as tensors with weights Δ±q± =1/2(q±)2. 
As usual in CFT, the primary fields may be labeled by specific vectors 

(2.21) 

in the Hilbert space (above, the values of z± are extended to the complex domain by analytic 
continuation). 

Defining the (non-commutative) algebra A to be generated by the vertex operators, we 
obtain a triple 

(H ,n,A)r (2.22) 

associated to the sigma model with the circle of radius r as the target. It may be viewed as 
encoding geometry of the sigma model. 

The following simple observation has deep consequences, j± =± i± is an equally good 
commuting pair of u(1) currents in the sigma model with the S1 target as j±. Now, the 
representation content of the radius r model with respect to j± is the same as of the radius 
r-1 model with respect to j±. The Hilbert spaces of states for radii r and r-1 may then be 

5 or rather their smeared versions 
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identified by the duality transformation sending |p+,p-) to (—l)pww|p+, —p-) (i.e., modulo 
signs, interchanging the roles of the momentum and of the winding number) and a±n to ±α±. 
Under this identification, the Hamiltonians and the algebras A (as well as the entire CFT’s) 
coincide: 

(H,H,A)r = (H,W, A)r-1 . (2.23) 
This phenomenon distinguishes the stringy geometry of circles from their point-set Riemannian 
geometry. While the space of Riemannian circles was the half line parametrized by the radius 
r, that of the sigma models with circle targets is an orbifold of the latter obtained by the 
identification of r with r-1. 

The above is an example of a more general duality phenomenon responsible for the appear-
ance of a fundamental length scale in string theory. This is certainly one of the most promising 
features of the latter. In order to understand how such a length scale arises, let us think of 
how one probes the effective space(-time) geometry in string theory. As mentioned before, this 
should be done by looking at the low energy states6 of the string in which the stringy internal 
modes are not excited and one effectively sees quantum mechanics of point-like objects. Let 
us suppose that the string vacuum is described by a sigma model with the S1 target. The 
oscillatory modes of the string created by operators a±n, n < 0 have energies quantized to 
integer values, so we should look at the states with energies 1. If the radius r of the circle 
is much bigger than 1 (or than the Planck length in dimensional units) then the low-energy 
spectrum of the sigma model is given by the states |p0,0>, po € Z, describing the baricentric 
degree of freedom r°. We effectively obtain the quantum mechanics of a particle moving on 
the circle of radius r. If r is much smaller than 1 then the low-energy spectrum of the sigma 
model is given by the states |0, w) corresponding to the winding modes of the string. But this 
is exactly like the spectrum in the quantum mechanics of a particle moving on the circle of 
radius r- 1. As a result, we never see circles of small radii as effective geometries! Notice that 
this is a quantum phenomenon as is signaled by the presence of h in the expression for the 
Planck length. 

We may formalize this observation in the following way. Notice that the classical states 
invariant under (2.7) with / δ±x — 0 depend only on the zero mode variables x0,p and w. 
On the quantum level, we may then define the zero mode states as those annihilated by the 
positive frequency part of the u(1) currents 

(2.24) 

H0 is the subspace of the highest weight vectors for the u(1) x u(1) current algebra. It is 
spanned by vectors |p+;p-> with p± as in (2.9). The Hamiltonian H leaves H0 invariant: 

(2.25) 

Notice that not all states in Ho have energy  1. In the semiclassical regime when r  1 
this is possible only for states with winding number w = 0. We shall then define a subspace 

(2.26) 
6 with the energy measured from the bottom of the spectrum 
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This corresponds to taking only the highest weight vectors belonging to the complex conjugate 
pairs of left-right representations of the u(1) current algebra. H'

0
 is spanned by vectors |p+;p-> 

with p+ = p~. Let E0
 and E'

0
 denote the orthogonal projections of H on H

0
 and H'

0
, 

respectively. Notice that 

E
0

V
q+q

-(1)|ρ+; ρ-> = (-l)(q++q-)(p+-p-)/2|q+ +p+;q- + p-> . (2.27) 

Let us consider the (commutative) algebra A'
0
 generated by operators E'

0
V

qq
(1) |

H'0
 . We obtain 

this way the effective target geometry 

(2.28) 

describing the low energy regime of the sigma model when r 1. H'0 is naturally isomorphic 
to L2(Sl ,dx/√2π) by identifying the vector |p0,0) = |p0;Po) with the function e-ipox. With this 
identification, 

(2.29) 

so that the effective target (2.28) is just a circle of radius r. Notice that we have used only the 
pair of u(1) current algebras (j±n) in order to define the effective target geometry. 

What is the meaning of duality in this language? Replacing the pair j± of currents by 
j± = ±j± and repeating the whole construction of the target geometry, we obtain a different 
triple 

(2.30) 

where 

(2.31) 

and A"0 is generated by E"
0 V

q
(-q)(1)|H"

0
. H"

0
 is spanned by vectors |0,w> and is naturally 

isomorphic to L2(S1,dx/√2π) by identifying |0, w) with the function e iwx. Now 

(2.32) 

and the second effective target is the circle of radius r- 1. It describes the low energy regime 
of the sigma model when r< 1. As we see, duality results in the possibility to assign to the 
sigma model two different effective targets. 

Above, we have described the procedure to define an effective target of a sigma model based 
on the u(1) current algebra symmetry. On the classical level, we could try to select the constant 
modes of the string by imposing the reparametrization invariance. In the quantum theory, 
we could proceed using the Virasoro algebra. This would lead to the zero mode geometry 
(H0,H|H

0
, A0), where now H

0
 is composed of states annihilated by L±n for η > 0 and by 
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L+0 — L-0 , and Ao is generated by the Virasoro primary fields at z± = 1 projected to H0. The 
resulting “small space” H0 is bigger than HJ, and H"0 constructed above: L±n|p+,p-) = 0 for 
η > 0 and the condition (LQ — L-0)|p+,p-> — 0 requires that pw or w be zero. Thus, the 
both dual current algebra targets end up in the Virasoro target. Note that the Virasoro-based 
construction of the zero mode geometry may be carried out in any CFT model. 

2.2. T2 target and mirror symmetry 

It will be instructive to consider a slightly more involved example of a sigma model with a 
flat complex one-dimensional torus as the target. Let T2 = S1 x S1. The complex structure 
on T2 may be defined by the complex coordinate z = x1 + Tx2, where xμ are the angle 
coordinates on S1 x S1 and T = T\ + iT2 is a complex number with imaginary part T2 > 0. 
We shall also equip T2 with the flat Kähler metric K = R2/T2 dzdz, where R2> 0, and a closed 
2-form iR1/T2 dz Adz = β

μv/
 dxμ Λdxv = β, where R1 is a real number. The Kähler metric induces 

a Riemannian one ημν dxμdxν = g. 

(2.33) 

For later convenience, we shall combine R1 and R2 into the complex number R = R1 + iR2 

and shall introduce matrices (d±uv) = (gμν ± βμν) · Notice that, if ω = dz Λ dz denotes the 
Kâhler form, then ʃT2(β + ω) = 2R. As the action of the sigma model, we shall take the sum 
of (1.6) and (1.7) with gμv and βμν as above. 

The model with the T2 target may be treated in full analogy to the one with the 51 target. 
Let us just collect the relevant formulae: 

The classical solutions: 

(2.34) 

The Poisson brackets: 

(2.35) 

The Hilbert space of states: 

(2.36) 

with ρμ acting as id/dxu and the Fock space operators αμ± satisfying [aun±, avm±] = ngμv δn+
m,0, 

(aun±)* = au±_n. 
The chiral fields: 

(2.37) 
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where and the left-right momenta 

(2.38) 

Note that the set of momenta {(p+,p )}, together with the quadratic form ρ+ugμνρ+v — 
ρ-μgμvρ-v = 2ρ

μ
wμ forms an even self-dual Lorentzian lattice. 

The vertex operators: 

(2.39) 

where = 1/√2(ημ ± d±uvm
v) with ηu, mv € Z and the cocycles 

cq+q-(p+,p-) = (-1)nuwu . (2.40) 

Vq+q+ are mutually local fields and their smeared versions generate a non-commutative algebra 
A. 
The current and Virasoro algebras: 

(2.41) 

The Hamiltonian: 

(2.42) 

All that was essentially a repetition of the story for the S1 target. As the result of the 
above constructions, one obtains a triple 

(H^M)T,R · (2.43) 

What are the symmetries of (Η, Ή, A)T,R or, more generally, of the conformal sigma models 
parametrized by (T, R) ? 

(i) The duality transformation relates the Hilbert spaces of the (T, R) and (—T-1, -R-1) 
models corresponding to mutually inverse matrices d± . It interchanges the momenta and the 
winding numbers mapping |p+;p-) to (-1)pμwu|(d+)-1p+;-(d-)-1p-> and it transforms αμ±n 
to ±(d±)-1 avn±. It results in the equivalence 

(H,H,A)
T,R

 = (H,H,A)-T-1, . (2.44) 

(ii) Further symmetries are due to the fact that complex tori with T replaced by T + 1 or 
—T-1 are conformally equivalent to the original ones (with the same value of R): 

(H,H,A)T,R = (H,H,A)T+1,R = (H,Η,Α)
-T-1

,R . (2.45) 
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(iii) The change R  R + 1 may be absorbed in a shift of the momenta p
v
  p

v
 — 

v
λwλ 

so that 

(Η, Η, A)T,R = (H,H, A)T,R+1 · (2.46) 

The above symmetries imply that 

(2.47) 

where 

(2.48) 

for  SL(2,Z). 

(iv) Explicit calculation shows that 

(2.49) 

It is easy to verify that the transformation relating the spaces of states for (T, R) and (R, T) by 
interchanging p1 and w1 in the vectors |p+;p-) (accompanied by multiplication by (—1)p1w1 ) 
and mapping a1± to ±T2R-1

2a1n± (T1R2 ± T2R1)R-1
2a2±

n establishes the equivalence 

(H,H,A)
T,R

 = (H,H,A)R,T · (2.50) 

This is the simplest instance of the “mirror symmetry” [30] [55] which claims the equivalence of 
conformal field theories for complex targets with roles of the complex and the Kähler structures 
interchanged. We shall return to this topic in Sect. 5.2. 

Notice that the space of complex 2-dimenstional tori with flat Kähler metric and covariantly 
constant closed 2-forms is (H+ x H+)/SL(2,Z), where H+ is the upper half-plane of T and 
R. and SL(2, Z) acts on H+ x H+ by (T, R)  (aT+b/cT+d, R). In contrast, the space of the 
sigma models with such targets is (H+ x H+)/(SL(2,Z) x SL(2,Z))/Z2, where Z2 acts by 
interchanging T and R. 

Using the u(1) currents we could again define the zero-mode restriction of the theory by 
imposing the conditions jun±|φ) = 0. Different effective toroidal target geometries with different 
Riemannian metrics may then be obtained by restricting, additionally, the zero modes. It will 
be convenient to introduce the following combinations of currents: 

(2.51) 

Then the zero mode conditions: 

1. give the metric gμνdxμdxν on the T2 target, 
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2. give the dual metric g
μν

dxμdxν, where g
μν

 = (d+) 1µλ g
λp

(d- ) 1pv, 

3. give the mirror metric λ
μν

dxμdxν with (guv) as in (2.33), but with 
T and R interchanged. 

The quantum mechanics of a particle on the torus with the above metrics describes then the 
low energy spectrum of the sigma model in the regimes gμν 1, gμν  1 and  1, 
respectively. Notice, that the passage from the first target to the dual one is obtain by the 
interchange of and and to the mirror one by the interchange of j- and j”. 

The discussion of the last two sections may be generalized to the case of general toroidal 
sigma models leading to more general even self-dual Lorentzian lattices of left-right momenta. 
An interesting exercise, which remains to be done, is the calculation of the effective targets for 
the sigma models with fields taking values in toroidal orbifolds. 

3. WZW and coset theories 

3.1. Geodesic motion on a group 

The geodesic motion on S1 or S1 x S1 was essentially free and, consequently, easily solvable 
both classically and in quantum mechanics. S1 is the simplest compact Lie group. For other 
compact Lie groups G, the geodesic motion w.r.t. the invariant metric, although not free, 
may be also easily solved using its symmetries. The relevant action functional of the particle 
trajectory r g(r)  G is 

S(g(.)) = -k/4∫tr(g- 1∂
r

g)2dr , (3.1) 

where the coupling constant k > 0. The classical equations 

∂
r
 (g∂

r
g-1) = 0 (3.2) 

give the geodesics on G. The quantized system has L2(G,dg) as the space of states, where dg 
stands for the normalized Haar measure. It carries two (left-right) commuting (regular) unitary 
representations of G acting by 

Lg1Rg2f(g) = f(g-1 1 gg2) ■ (3-3) 

The decomposition of the regular representation into the irreducible components results in the 
isomorphism 

(3.4) 

where R runs through all unitary irreducible representations of G in (finite-dimensional) 
Hilbert spaces VR and R denotes the representation complex conjugate to R. VR  VR is 
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spanned by matrix elements of the representation R. The left (right) representation of G 
acts on the left (right) factor. For G = SU(2), we shall label representations R by spins 
j = 0,1/2,1,.... 

Let (tA) be a basis of the Lie algebra g of G s.t. tr tAtB = 1/2δΑΒ. Let JA+ = 1/i dL(tA) 
and JA- = 1//i dR(tA) be the (selfadjoint) operators expressing the infinitesimal actions of tA in 
L2(G). The quantum Hamiltonian of the model is given by 

(3.5) 

i.e. it is proportional to the Laplacian on G which acts as multiplication by minus the quadratic 
Casimir CR = cR in the VRVR subspace of (3.4). The triple 

(3.6) 

encodes the invariant Riemannian geometry on G. 

3.2. WZW model 

What about a sigma model with the group G target? If we take 

(3.7) 

as the action functional then the model requires an infinite renormalization of the coupling 
constant k and is believed to result in a massive two-dimensional field theory. One may, 
however, add to the action the term (1.7) with a 2-form β = βμvdxμ Λ dxv satisfying 

(3.8) 

Such 2-forms on G exist only locally. The freedom of their choice results in the 2πkZ-valued 
ambiguity in the definition of the action which is irrelevant at the classical level but restricts 
the values of the coupling constant k to (positive) integers in the quantum theory. For such 
values, the modified sigma model with the group target does not require renormalization of k 
and gives rise to the WZW model of CFT (of “level” k) [51]. 

The Hilbert space H of the WZW model is built from the representations of two commuting 
copies of the Kac-Moody algebra g generated by elements JA± satisfying the commutation 
relations 

(3.9) 

where fABC are the structure constants: [tA, tB] = i fABCtc. g is the central extension of the 
loop algebra Lg and k is its central charge (level). The unitary ((JAn)* = JA-n) irreducible 
highest weight representations of g are labeled by k (a non-negative integer) and an irreducible 
representation R of G from a restricted class (for G = SU(2), with spin j < k/2) whose 
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elements we shall call integrable (at level k) [37]. They act in infinite-dimensional (if k > 0) 
spaces VkR. For G connected and simply connected 

(3.10) 

where {.···} denotes the Hilbert space completion. The current modes JA±n’s generate, by 
the Sugawara construction, two commuting representations of the Virasoro algebra 

(3.11) 

with central charge cGk = kdim(G)/k+gv (gv denotes the quadratic Casimir of the adjoint representa-
tion). The Hamiltonian of the model is 

(3.12) 

whereas 

(3.13) 

generates the space translations. 

Let us define a small space of states H0 as composed of vectors \φ)  H satisfying the 
highest weight condition JAn± \φ) = 0 for η > 0. H0 carries the representation of g 0 g (and 
of G x G) given by the action of JA±

0
’S. With respect to this representation, 

(3.14) 

which may be naturally identified (see (3.4) ) with a subspace of L2(G) which we shall denote 
L2k(G). The Hamiltonian Ή preserves H0 and reduces there to To each 
vector |)  H0 there corresponds a unique primary field V\)(z±) from a local family such 
that 

(3.15) 

and 

(3.16) 

V|)(z±) is also a primary field of the Sugawara Virasoro algebras (see (2.20)). Taking the 
algebra A generated by the primary fields, we obtain a triple (Η, H, A) encoding the geometry 
of the WZW CFT. 

We have presented the WZW theory as a sigma model with a group target, but its con-
struction on the quantum level has proceeded directly through the representation theory of the 
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Kac-Moody algebra. Again the question arises how to see the target manifold geometry in the 
resulting quantum theory. It seems reasonable to proceed via the restriction to the “zero mode” 
subspace H0 of primary states with the Hamiltonian Ho = (H +1/12cGk)|H0 . Such a restriction 
cuts out the descendent states created by operators JA±n, with η < 0, which increase the 
energy by |n|. Since, for G simple and simply connected, the left-right representations of the 
current algebra g appear only in complex conjugate pairs (unlike for the 51 sigma model), we 
shall not impose any further zero mode conditions on the small space of states. In fact, Ho 
contains all states with low energy (  1 ) for k 1. To encode the effective target geometry, 
we still need an algebra Ao of “functions” on the target. Let Eo denote the orthogonal pro-
jection of H onto Ho. We shall take as Ao the algebra generated by operators EoV|>(1)|H0. 
This way we obtain a triple 

(Ηο,Ήο,Α). (3.17) 

What is its relation to the triple (3.6) representing the Riemannian geometry of the group G ? 
As we have already noticed, Ho is a subspace of L2(G) and Ho coincides on it with — 
Thus we only need to understand the relation of Ao to the algebra of functions on G, 

Let f1, l = 1,2,3, be three functions on G lying, in the decomposition (3.4), inside 
VR1  VR1, respectively, where R1 are representations integrable at level k. f1 define vectors 
|f1>  Ho. Let Ιην(R1) denote the subspace of invariant with respect to the diagonal 
action of G. The matrix elements of the primary fields V|>(l) between the states in Ho have 
the following form 

(3.18) 

where Ck(R1)  Ιην(R1)  Inv(R1) = End(Inv(R1) is a positive element. For G = SU(2), 
Inv(ji)  Inv(ji), if non-vanishing, is canonically isomorphic to C and formula (3.18) takes the 
simpler form 

(3.19) 

where Ck(ji) are (up to normalization) the operator product coefficients [4] for the WZW theory. 
They have been computed in [58]: 

(3.20) 

where J = ji + j2 + j3, ji = J - 2ji and 

(3.21) 

In (3.20), it is assumed that ji < |. 
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As we see from the relation (3.19), for G = SU(2), Ao is a deformed version of the algebra 
of multiplication by functions from Ho. It is, however, non-commutative (in general). The 
commutativity is restored in the classical limit k → ∞, where Ho → L2(G) and Ck

(ji,j2,js)

 → 1. 
Also for general G, 

(3.22) 

so that 

and one recovers, in the k → ∞ limit, the triple (3.6) encoding the commutative geometry of 
the group manifold. For finite k, (Ho, Ho, Ao) represents a finite (Ho is finite-dimensional) 
non-commutative geometry of the effective target of the WZW model. 

We should stress once more that the infinite symmetry of the conformal model is an im-
portant input in our definition of the effective target. If, for example, in the case of the WZW 
model with G = SU(2) we have used only the u(1) x u(1) current algebra, we should have 
obtained a different effective target. In particular, the u(1) target would coincide for the level 
k — 1 with that of the sigma model with field values in S1 of radius r = 1. 

3.3. Coset quantum mechanics 

There is a simple way, called the coset construction [28], to generate new CFT’s from the 
group G-valued WZW model. Let us start by describing the quantum mechanical counterpart 
of the coset construction. As we have seen, L2(G) carries a unitary representation of G x G. 
For any subgroup H C G x G, we may consider the subspace L2(G)H C L2(G) of functions 
invariant under H. If H is a subgroup of Gleft or a subgroup of Gright or a product of such 
subgroups, we end up with the space of square-integrable functions on the (left, right or left-
right) coset space. There is another possibility which has attracted less attention by harmonic 
analysts. One may take H C Gdiag C G x G. This leads to functions on G/Ad(H). Let us 
decompose the irreducible representations of G with respect to H : 

(3.23) 

where R refers to irreducible representations of G and r to those of H. The multiplicity 
spaces are MRr = HomH(Vr, VR) · Since the space Ιηνr,r' of vectors in V

r
Vr' invariant under 

the diagonal action of H is canonically isomorphic to δr,r'C, the decomposition (3.4) reduces 
to 

(3.24) 

Let h1 be the orthogonal complement of h in g. We shall choose the basis (tA) = ((ta), (ta)) 
of g so that ta (ta) span h (h1). Both — ΔG = JA±JA± and —= Ja±Ja± commute 
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with the generators Jb± of the left and right h symmetry, so that we may take — 2/k(ΔG — 
Δ±Η) = 2/k Ja±Ja± as the Hamiltonian of the reduced system (both signs give the same operator 
on L2

(G)H )· Finally, we may take the algebra C∞(G)H of multiplication by the functions 
invariant under the adjoint action of H and consider the triple 

(3.25) 

representing what we shall, somewhat abusively, call the coset geometry. 

Is the coset geometry a standard Riemannian one? This is not so and there are two reasons 
for it. First, since the adjoint action is not free, G/Ad(H) might not be a smooth manifold. In 
particular, for H = G, L2

(G)G is the space of class functions on G spanned by the characters 
of irreducible representations. G/Ad(G) may be identified with the orbifold T/W, where T 
is the Cartan subgroup of G and W is the Weyl group. Second, — 2/k(ΔG — Δ#H) differs from 
( -1/2 times) the Laplace-Beltrami operator for the (in general singular) metric 7 on G/Ad(H) 
which may be extracted from the triple (3.25) by the procedure described in Introduction. The 
two operators are, essentially, different quantizations of the same classical energy of a geodesic 
motion on G/Ad(H). Let us explain the last point in more details. A similar situation in the 
context of gauge theories has been analyzed in [21]. 

The quantum mechanical system (3.25) may be obtained by quantization of a classical one 
which couples the geodesic motion of the particle on the group G to h-valued gauge fields 
r  A±(r). The action functional for the coupled system is 

S(g(·),A±(·)) = -k/4∫tr(g- 1∂rg)2dr 

and is invariant under the gauge transformations g hgh-l, A±  hA±h~1 + h∂rh-1 for 
arbitrary H-valued h(r). Note that the gauge field enters quadratically and may be easily 
eliminated in the functional integral leading to the effective action [24] 

(3.27) 

where E is the orthogonal projection in g onto h and E1 = 1 — E. The effective action is 
invariant under the transformations g  hgh-1, again with h(r) taking values in Η, so that 
it defines the geodesic flow on G/Ad(H) with respect to a (in general singular) metric which 
may be easily read off (3.27). Viewing 1/ig-1∂rg = X modulo Adg-1(Y) - Y with Y  h as 
representing vectors tangent to G/Ad(H) at point [g], we obtain for their length squared 

||A||2 = k/2tr[X2 + 2X(1-EAd
g

E)-1EAd
g
X). (3.28) 

The dual metric on the cotangent bundle of G/Ad(H) is given by a simpler expression. If 
X'  g s.t. E(Ad

g
(X') — X’) = 0 represents a covector 1/i trX'g-1dg tangent to G/Ad(H) at 
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[g] then 

(3.29) 

which is the classical version of the quantum expression — |(ΔG — ΔH) for the coset Hamil-
tonian. In fact, classically, the coset mechanics is the Hamiltonian reduction [29] of the par-
ticle on G with Hamiltonian (3.29) by the adjoint action of H. Notice that vanishing of 
E(Adg(X') — X') implies that 

EX' = (1 - EAdgE)-lEAdgE1X' (3.30) 

so that we may parametrize the covectors tangent to G/Ad(H) by elements ELX' € h1. In 
particular, the (imaginary) covectors φα- corresponding to ELX' = 2i√k/2 ta span the space 
cotangent vectors to G/Ad(H) at point [g]. Explicitly, 

(3.31) 

Changing g  g 1 we obtain another basis 

(3.32) 

The h1-valued 1-forms (3.31) and (3.32) transform covariantly under the adjoint action of H 
on G and vanish on vectors tangent to the orbits of that action. As we shall see below in Sect. 
4.5, they appear naturally in the supersymmetric version of the coset mechanics. Due to the 
simple form (3.29) of the dual metric, also the tangent spaces to G/Ad(H) may be identified 
with h1. 

Let d[g] denote the volume element on G/Ad(H) determined by the metric (3.28). There 
exists a (possibly singular) function σ on G/Ad(H) such that for f  L2(G)H , 

(3.33) 

(eσ measures, in a sense, a volume of orbits of the adjoint action of H ). Now 

(3.34) 

where ||df([g])||2 is given by eq. (3.29). As we see, —|(ΔG — ΔH) differs from (-1/2 times) the 
Laplace-Beltrami operator on G/Ad(H) for metric (3.28) by the replacement of the Riemannian 
volume dυr by e°dvr, both in the definition of the L2 scalar product and in the Dirichlet form. 
This has been noticed in [54], see also [16], for a specific non-compact coset. The function σ is 
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often called a “dilaton” in the physical literature. It is a quantum-mechanical effect: it adds a 
correcting potential of order 1/k2 to the Laplace-Beltrami operator [21]. 

3.3. Coset CFT models 

The coset construction is the field theory version of the quantum-mechanical reduction by 
H C Gdiag C G x G. The original idea of [28] was to decompose a representation of the affine 
Kac-Moody algebra g with respect to a subalgebra h and to look at the multiplicity spaces. 
If VkR carries the irreducible unitary representation of g then 

(3.35) 

where V* are the spaces of irreducible unitary representations of h. The key point is that 
the multiplicity spaces Μk,R r carry unitary representations of the Virasoro algebra obtained by 
taking the difference of the two Sugawara constructions, relative to g and relative to h : 

(3.36) 

The operators L
cs

n
± commute with the currents Jb±n so that, indeed, they act in Μk,Rr. They 

form a representation of the Virasoro algebra with central charge cG/H = cG
k — cH

k
 the difference 

of the two Sugawara central charges. 

The Hilbert space of the coset theory is the (norm completed) left-right combination of the 
multiplicity spaces Μk,R

r : 

(3.37) 

Equivalently, we may set 

(3.38) 

where denotes the space of states of the group G level k WZW model. Ή = Lcs 0 + + 
LCS0- — 1/12cG/H defines the Hamiltonian on H. 

To each element \φ)  H annihilated by Lcs±
n for η > 0 there corresponds a primary field 

(out of a local family) Vcs |>(z±) of the Virasoro algebras (Lcs±n) with the property that 

(3.39) 

Taking the algebra Λ generated by these primary fields, we obtain the triple (Η, Ή, .4) char-
acterizing the geometry of the coset CFT. 

On the Lagrangian level, the coset construction corresponds to gauging of a subgroup H of 
the global G x G symmetry in the WZW theory [3] [23] [24] [39]. Most of the subgroups would 
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lead to gauge anomalies, but H C Gdiag do not. In the diagonal case, the gauged WZW action 
is given by the formula 

(3.40) 

where d± = ∂
r
 ±∂

σ
 and Α±(σ,τ) are the components of an h-valued gauge field which, again, 

enters quadratically and may be eliminated from the functional integral. 

The above presentation of the coset models suggests a natural way to associate to it an 
effective target geometry. As the small space of states we may take 

which is defined using the current algebra. Notice that Ho = L2K(G)H which is the subspace 
of L2(G)H obtained by summing in (3.24) only over the representations integrable at level k. 
The restricted Hamiltonian 

Let Eo denote, as usual, the orthogonal projection onto Ho . We may generate the small algebra 
AQ by operators Eo Vcs |>(l)|H0 for |Φ> € Ho. Their action may be explicitly described in the 
following way. Let f1, l = 1,2,3, be three functions in ® MRi ri C L2k(G)H see (3.24). 
Recall that MR

r = HomH(Vr,VR) C Hom(Vr,VR). Let be the vector of the operator 
product coefficients in Inv(R1)  Inv(R1) giving the matrix elements of the group G primary 
fields, see (3.18), and € Inv(ri))Inv(ri) the one for the group H. Let € Inv(

ri
)Inv(ri) 

be the element obtained by inverting viewed as an element of End(Inv(
ri

)) on its image. 
ck(ri) is set to zero on the kernel of which is orthogonal to its image. Matrix elements of 
the fields Vcs|> (1 ) between states in H0 are given by 

(3.41) 

where is viewed as an element of Hom((lV
r1

)  (lVri,), (lVR
1
,)  (1VR1)). Eq. (3.22) 

implies then that 

(3.42) 

Hence (Ηο,Ήο,Aο) encodes a finite non-commutative geometry deforming the coset geometry 
given by the triple (3.25). Again the deformation disappears in the classical limit k → ∞. 

In the special case when H = G, L2(G)G is the space of class functions on G. We may 
take ft to be the characters χι of integrable representations Ri. It is easy to see then from 
(3.41) that 

(3.43) 
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where Ck
(R1)

 is viewed as an element of End(Inv(R1)). These are the so called Verlinde dimen-
sions [48] which in the limit k → ∞ tend to the dimensions of Inv(R1). 

One may envisage an alternative procedure, based on the coset Virasoro algebra rather than 
on the current algebra, for extracting the effective target geometry from the coset theory. It 
would be based on the following small Hilbert space : 

(3.44) 

with the small Hamiltonian Ή'0 = (Ή+1/12cG/Η)|H'0 . The small algebra A'0 will then be generated 
by operators E'0VCS|>(1)|H'0 with |0) € HJ,. Notice that Ho C H'0. 

The classical example of a coset theory [28] is obtained by choosing G = SU(2) x SU(2) 
with H equal to the diagonal SU(2). Since G is not simple, the coupling constants for the 
WZW theory may be chosen independently for both SU(2) factors and one sets them to k and 
to 1, respectively. The coset models obtained this way give the unitary theories in the series 
of minimal models of [4]. The Hilbert space of these theories is the diagonal combination 
of the irreducible unitary representations [20] of the Virasoro algebras (L^±) with central 
charge = 1 - 6/(k+2)(k+3)· SU(2) x SU(2)  (<71,(72) trg1 defines a simple function 
/ on SU(2) x SU(2) invariant under the adjoint action of the diagonal SU(2) subgroup. 
The corresponding primary coset field Vsc|f>(z±), labeled 22(z±) in [4], has conformal weights 
Δ+22 = 3/4(k+2)(k+3). An interesting question is what is the limit of the effective target geometries 
(HJ,, H'0 , A'0 ) for the minimal models when k → ∞ ? 

Arguments have been advanced [56] [57] in support of the conjecture that Green’s functions 
of 22 , for which exact expressions in terms of finite-dimensional integrals are known7, coincide 
with the scaling limit of Green’s functions of the field φ in critical Ρ(φ)2 models, with P 
of degree 2k + 2. For k=l, one obtains this way the scaling limit of Green’s functions of the 
two-dimensional critical Ising model with critical exponent η = 4Δ±22 = 1/4 · The model with 
k = 2 should correspond to the tricritical Ising model for which one obtains η = 4Δ±22 = 3/20. It 
is remarkable that, although detailed rigorous control of these scaling limits has long eluded the 
attempts of constructive field theory, we apparently have at our disposal the exact expressions 
for the critical exponents and even for limiting Green’s functions. It may be worthwhile to 
produce a clean proof that one obtains this way an example of a theory satisfying all (massless) 
quantum field theory axioms. 

4. Supersymmetric CFT 

4.1. Geodesic motion of a superparticle 

In Sects. 1, 3.1 and 3.3, we have sketched how the Riemannian geometry of a manifold M 
is reflected in the Laplace-Beltrami operator acting in L2(M). For many purposes, however, 

7 the 4-point function, for example, is a bilinear combination of the hypergeometric functions 
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especially for constructing characteristic classes of the manifold and for analyzing geometry 
with torsion, it is more convenient to work with the Dirac operator ∂ acting in the space of 
sections of the spinor bundle over M. A suitable framework may be obtained by quantizing 
a supersymmetric (SUSY) version of the geodesic motion on M. Instead of trajectories r 
χ(τ), one considers 

xμ(τ, q±) = xμ(τ) + θ+ψμ+(τ) + θ ψμ- (τ) + q+q- Fµ(r) , (4.1) 

where xμ(·), Fμ(·) are functions and φμ±(τ) as well as θ± are anticommuting Grassmann 
generators. We could also consider a system with only one Θ parameter. The pair θ± is 
inherited from the left-right moving sectors of the 1+1-dimensional SUSY sigma model if we 
restrict it to fields constant in space, as explained below. With the use of operators 

D± = ∂q± + iq±∂
t
 , (4.2) 

the action functional for the geodesic motion of a superparticle on M may be written as 

S(x(·)) = 1/2 ∫gµv(x)(D+xµ)(D-xv)dr dq+dq- , (4.3) 

where the Berezin integration over θ± is defined by the standard rule ∫ dθ± = 0, /θ±dθ± = 1. 
It will be convenient to add to the action(4.3) the term 

S'(x(·)) = 1/2 ∫ β
μv
(χ) (D+xμ)(D-xv) dr dq+dqq- (4.4) 

with βμvdxμ Λ dxv = β a 2-form on Μ. Performing the θ± integration (compare Sect. 23.1b 
of [49]), one obtains the component expression for Stot = 5 + 5": 

(4.5) 

where 

(4.6) 

are the covariant derivatives with respect to connections with torsion, 

Γ±μ
Kλ

 = Γµ
κλ

 ± 1/2 gµv Hvkλ, (4.7) 
where 

Γμ
Kλ

 = 1/2gμν(∂κgvλ + ∂λgνκ - ∂vgKλ) , Η
νκλ

 = ∂
ν

β
κ

λ + ∂
κ
β

λv

 + ∂
λ
β

νκ
 . (4.8) 

(Γμ
kλ

) define the Levi-Civita connection, while Γ±μ
κλ

 is modified by a torsion term coming 
from the 2-form β. Note that β enters the above formulae only through the torsion form 
dβ = 1/3Η

νκλ dxv Λ dxK Λ dxλ. 

R± κμλν = ∂kΓ±λµv - ∂µΓ±λkv - Γ±pkλ Γ±ρµv + Γ±pµλ Γ±ρkv (4.9) 
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are the corresponding curvature tensors of the connections with torsion8. In particular, for 
βμν = 0, they reduce to the curvature of the Levi-Civita connection. Notice that Fμ(τ) are 
not dynamical variables. They may be eliminated from their classical equations. The classical 
supersymmetry is generated by the constants of motion 

(4.10) 

It is not difficult to quantize the system. As the Hilbert space H of states, we shall take 
L2(S  S) for even dimensional M, or L2(S  S  C2) for odd dimensional Μ, where S is 
the bundle of spinors (containing both chiralities in the even-dimensional case). The fibers of 
S  S ( S'  S  C2 ) support the double Dirac algebra: 

{ΓΑ±, ΓB±} = -2δAB , {ΓΑ±, ΓB±} = 0 , (ΓA±)* = -ΓA± (4.11) 

related to a local vielbein9 (eµA), eµA evA = gμν, gμveµA evB=δAB· 

(4.12) 

will quantize the classical Grassmann generators ψμ±(0). 

{yµ±, ψv±} = gµv, {yμ±, yv±} = 0, (yμ±)* = ψμ±. (4.13) 

Introducing the spin connections with torsion by 

(4.14) 

we shall define the left-right covariant derivative of the double index spinors χ (sections of 
S 0 S or of S  S  C2 ) by 

(4.15) 

The classical supersymmetry generators Q± of (4.10) give rise, on the quantum level, to two 
Dirac operators 

(4.16) 

with the following simple (although tedious to verify) algebra: 

(4.17) 

8 indices are raised and lowered with the metric 7 
9 more exactly, to its lift to the spin bundle covering twice the bundle of vielbeine 
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where R is the scalar curvature of the Levi-Civita connection (Γk
μv). 

4.2. Superparticle on a group 

Among the simplest examples of superparticle motions is that on the group manifold G, 
with the action 

(4.18) 

where ψ±(τ) = tΑψΑ±(τ) are the Lie algebra g-valued Grassmann variables. Let e±A denote 
the right- (left-)invariant vector fields on G generated by 2√ktA € g. They yield two global 
vielbeine for a left-right invariant Riemannian metric on G. Setting eµ±

A yA± = ψμ± relates 
the variables ψΑ± to ψμ± used above. The connections with torsion V± preserve the vector 
fields e±, respectively, and, consequently, have no curvature. This explains the simplicity of 
eq. (4.18) as compared to (4.5). The torsion coefficients are given by 

(4.19) 

(both signs in e± give the same expression) and the torsion form 1/3Η
κμv

dxκ Λ dxμ Λ dxv = 
ik/3tr(g-1dg)A3 and is only locally exact. Using the global vielbeine (e±A) to trivialize the spinor 
bundles over G, we may identify the Hilbert space of states with 

H = L2(G)  W , (4.20) 

where W carries an irreducible representation of the double Dirac algebra (4.11), with φΑ± = 
1/i√2ΓA±. By setting 

(4.21) 

we obtain four commuting representations of the Lie algebra g acting in H: 

[jA±, jB±] = i fABCjC± , [JA±, JB±] = i fABC Jc± . (4.22) 

The Dirac operators are 

(4.23) 

and for the Hamiltonian one obtains 

(4.24) 

Notice that f± is a strictly positive operator: 

(4.25) 
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4.3. Elements of the non-commutative de Rham calculus 

Suppose, for simplicity, that M is compact. Given the algebra A = C∞(M) and a Dirac 
operator ∂ = ∂±, one may rewrite the de Rham differential form calculus, following Connes 
et al. [12][15][13], in terms of that of operators acting in the Hilbert space H = L2(S  S) 
(or L2(S  «S'  C2), for M odd-dimensional). This reformulation carries over to the non-
commutative setting where ∂ is a selfadjoint operator on a Hilbert space H and A is a 
*-algebra of operators in B(H) satisfying certain regularity assumptions [12][15][13]. A brief 
exposition of these ideas10 is contained in Sect. 6 of [14], see also [11]. Consider operators ω 
acting in H and given by the expressions 

(4.26) 

where ajm £ A. The space Ω'η(A) of such operators clearly forms a left A-module. Since for 
a, b  A 

[∂,a]b= [∂,ab] - a[∂,b] , 

Ω'η(A) is also a right A-module and Ω'(A) = ηΩ'η(A) becomes a Z-graded algebra. Let 
Nn(A) be composed of operators 

such that ∑jajo[∂, aj1] · · · [∂,ajn-1] = 0. It is not difficult to see that N(A) = nNn(A) is a 
left-right Z-graded ideal in Ω'(A). Define the Z-graded algebra Ω(A) = Ω'(A)/N(A). Notice 
that Ω°(A) = Ω'°(A) = A and Ωι(A) = Ω#1(A) = { ∑j ajo[∂, aj1] | ajo, aj1 € A }. Each 
Ωη(Α) is a left-right A-module. On Ω(A), one may define the graded differential d acting on 
representatives by 

(4.27) 

We have 

d(ωρ) = (dw)p + (-1 )deg(w)wdp . (4.28) 

In the general setup, Ωη(A) plays the role of the space of smooth n-forms. 

We shall be interested in the situations where the trace of non-zero operators in Ω'η(A) 
diverges, but one may define its regularized version (which we shall denote by the integral sign) 
for example by 

(4.29) 

10 a different approach to non-commutative de Rham calculus may be found in [17] 
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or using the more sophisticated Dixmier trace [13], so that 

(w, p) = ∫ ω* P (4.30) 

defines a scalar product on Ω'η(A). We may then complete Ω'η(A) to a Hilbert space and 
embed Ωη(A) into the subspace An(A) of this completion perpendicular to N(A). An(A) 
plays the role of the space of square integrable n-forms. 

In the commutative example, with Η = L2(S  5) (L2(S  S  C2)), ∂ = ∂± and 
A = C∞(M), 

ω = (±i)najo(∂µ1aj1) · · · (∂μη ajη)φμ1± · · · ψμη± 

(± depending on whether or ∂ = ). The class of w, represented by ω1 € An(A), 
may be identified with the de Rham n-form 

ω = ajo(∂µ1aj1) · · · (∂μη a
jη

)dxμ1 · · ·A· · · A dxμη. 

The scalar product (ω1,p1) is then proportional to ∫
M *ω Λ where *ω is the Hodge star of 

ω. 

In the general setup, one defines a vector bundle E over A as a finitely generated, projec-
tive11 left A-module. A connection on E is defined as a linear mapping V : E → Ω1(A)A E 
such that, for a  A and s  E, 

V(as) = da  s + a Vs . (4.31) 

V may be uniquely extended to an endomorphism of the graded left Ω(A)-module Ω(A) A E 
satisfying 

ν(ωφ) = (dω)φ + (-1)deg(ω)ω Vφ . (4.32) 

One may then define the curvature R(V) by 

R(Δ) = -Δ2|
E

 . (4.33) 

R(V) : E → Ω2(A) A E and obeys R(V)(as) = aR(V)s for a  A and s  E, i.e. it is an 
A-tensor [11]. 

If the left .4-module Ω1(A) is finitely generated and projective, we may view it as the 
cotangent bundle. For a connection V : Ω1(A) → Ω1(A) A Ω1(A) one may define non-
commutative torsion [11] as the map T(V) : Ω1(A) → Ω2(A) given by 

T(V) = d- mV , (4.34) 

where m : Ω'(A) A Ωι(A) → Ω2(A) is the multiplication map. It follows that T(V)(aw) = 
aT(V)w: T(V) is an .4-tensor. Also the notions of Levi-Civita connection, Ricci curvature 
and scalar curvature may be introduced in the non-commutative setup [11]. 

11 i.e. the image of an idempotent in a finite free module 
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In the commutative case, the above definition of (finite-dimensional) vector bundles coin-
cides with the standard one if we represent a vector bundle by the module of its smooth sections. 
In particular, commutative Ω1(A) is a projective, finitely generated left(-right) .4-module rep-
resenting the cotangent bundle and the covariant derivative Vµ given by (4.15) allows to define 
a linear map V : Ω1(A) → Ω1 A Ω1(A) by 

(4.35) 

where (aj) is a partition of unity subordinate to a covering of M by coordinate charts. φμ = 
yμ+ or φμ-. The commutator is that of the operators acting on sections of S  S (or of 
S  S  C2 ). Clearly, V satisfies (4.31) and represents the connections with torsion given 
locally by (4.7). Its curvature, defined by eq. (4.33), may easily be seen to correspond to 
the standard curvature 2-form. In particular, if M = G, as in Sect. 4.2, then Ω1(A) is a 
free A-module with a basis (ψΑ±). Setting φ± = tΑφΑ±, we may identify with the 

Maurer-Cartan 1-form (dg)g-1 and √2/kΦ- with g-1dg. Eq.(4.35) reduces to 

(4.36) 

(recall that the sign depends on whether ∂ = or ∂-). Consequently, φΑ± are parallel 
i.e. annihilated by V The corresponding curvature tensor vanishes. We leave as an exercise 
verification that the torsion T(V), as defined by eq. (4.34) is given by the formula 

(4.37) 

Summarizing: the Riemannian geometry may be encoded in the SUSY triple (L2(S  
S(C2)), , C∞(M) ) from which one can recover not only the metric g but also the de Rham 
calculus of differential forms which, more conveniently, may be rewritten in Connes’ operator 
language; we have seen how the connections with the torsion 3-forms ± 1/3 Η

Κµv
 dxK A dxμ A dxv 

may be incorporated into the operator formalism of [12] [15] [14] whose main virtue is that it 
extends to non-commutative spaces characterized by general unital *-algebra A. 

4.4. SUSY WZW model 

As we have seen above, the natural generalizations of the geodesic motion of a particle on 
a Riemannian manifold M to the case of 1+1-dimensional field theory is given by the sigma 
model with M as the target. Similarly, the geodesic motion of a superparticle generalizes to 
an (N=l) SUSY sigma model with fields χ(o,τ,q±) and an action [49] 

(4.38) 

where now 

D± = ∂q± + iq±∂± . (4.39) 
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with the light-cone derivatives d± = ∂
r
 ± ∂

o
. In components, 

(4.40) 

where 

and the supersymmetry generators 

(4.41) 

satisfy ∂±Q± = 0 . 

On the quantum level, the SUSY sigma model still requires renormalizations, although 
somewhat less severe ones than the purely bosonic model. As in the bosonic case, instead of 
attempting a direct construction of the models, one can use symmetry principles to obtain a 
rich family of exactly solvable SUSY CFT’s. The simplest of them is the SUSY WZW model. 
It corresponds to the action 

(4.42) 

where S
bos

(g) is the action of the bosonic WZW model with group G and level k — gv. The 
space of states H of the SUSY WZW model is the tensor product of of the space of states 
of the bosonic model, discussed before, (with the shifted k) and of the Fock space F of free 
Majorana-Fermi field φ±(z±) = tΑφΑ±(z±) with values in the Lie algebra g. 

(4.43) 

where the sum runs over η  Z+ 1/2 in the Neveu-Schwarz sector and over n  Z in the Ramond 
sector (corresponding to two choices of the spin structure on S1 ). 

(4.44) 

The Neveu-Schwarz sector Fock space FNS is obtained by applying to the vacuum state Jvac) 
annihilated by φΑ±

n, η > 0, polynomials in φΑ±
n, n <0 (n half-integer). The Ramond sector 

Fock space FR arises by applying polynomials in φΑ±
n, η < 0, to the vector space W carrying 

the irreducible representation of the φΑ±
0 Clifford algebra and annihilated by φΑ±

n
, η > 0 ( n 

integer). The total fermionic Fock space of the model is 

F = FNS  FR. (4.45) 
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It carries a representation of two commuting g current algebras given by 

(4.46) 

and of the Virasoro algebras 

(4.47) 

(the constant should be added in the Ramond sector). The complete space of states 

Η Ξ HNS  HR = (Hbos  FNS)  (Hbos  FR) (4.48) 

carries the representation of the left-right Virasoro algebras with generators 

(4.49) 

where L±bos n are the Sugawara generators in Hbos constructed from the bosonic currents JA±n. 

The total Virasoro algebras (L±n ), which have central charge cG
SUSY k = (k-gv)dim(G)/k + dim(G)/2 , 

may be extended to the super-Virasoro ones with additional generators 

(4.50) 

satisfying 

(4.51) 

where the operators Q±n commute with and anticommute with Q. In particular, 

(4.52) 

in the Ramond sector. Notice that the commutation relations (4.52) may be rewritten as the 
global SUSY algebra 

{Qa, Qb] = (gμC)αβ Ρμ, (4.53) 

where g°= C = are two-dimensional Dirac matrices and Q1 = Q+ 0, 

Q
2
 = Q0 , P0 = H = L+0 + L-0 — 1/12c

G
SUSY k, P1= P = L+0 — L-0 . The bottom of the spectrum 

of the operators Q2
a
 is attained on states |vac>

bos
  w € HR, where |vac>bos is the bosonic 

vacuum in Hbos and w € W C FR· It is equal to gVdim(G)/24k > 0 (compare to (4.25)). It follows 
that there are no Ramond ground states (states annihilated by Q±0 ) in the SUSY WZW model. 
Hence the global supersymmetry (4.53) is broken [50] and the Witten index Tr (-1)F, to which 
only the Ramond ground states contribute, vanishes. 
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The geometry of the SUSY WZW CFT may be encoded in the triple 

(4.54) 

where A is the bosonic algebra generated by the primary fields of the bosonic WZW model 
(acting trivially on the fermionic Fock space F). The more general field algebra (of bosonic 
and fermionic operators) may be obtained by considering non-commutative differential forms 

(4.55) 

where ajm  A, compare with eq. (4.26). In particular, operators √2/k ∑j ajο ∑n[JA±-n » aj1] ΨA±η 
are 1-forms. 

The non-commutative geometry of the triple (4.54) is clearly infinite-dimensional and its 
treatment would require serious analysis. This may be avoided by restriction to the effective 
target geometry of the SUSY WZW model which one may define as follows. Let 

(4.56) 

be the small spaces of states. Notice that 

(4.57) 

where Hbos0 = L2k-gy(G) is the small space of the bosonic model obtained by restricting the 
sum in (3.4) to the representations integrable at level k — gv. Operators Q±o preserve HR

0 and 
reduce on it to the Dirac operators of (4.23). As for the algebra Ao, we shall choose it to 
be the small bosonic algebra acting trivially on the W factor of Ho . It is generated by the 
primary fields corresponding to states |φ)  HNS

0 sandwiched between the projectors on HR
0 · 

Clearly, the finite non-commutative geometry encoded by (HR
0

 , Qo |HR
0 , A0) is a deformation 

of the geodesic motion of the superparticle on G to which it reduces in the limit k → ∞. 

For (Ho, Q±o|H0 , A)), (non-commutative) 1-forms are √2/k ∑j aj0 [JA0±, aji] yA±0 » with aj0, 
aji  A0, and the question arises whether any operator aΑψΑ±

0, aA  A0, may be cast in 
such a form. In other words, is the A0-module Ω1(Α0) free, with a basis given by (yA±0) ? 
This appears to be a technically rather difficult question. The answer is yes for G = SU(2) 
and k — gv = k — 2 < 2. If it is positive in general then one may define a connection V 
on Ω1(Aο) essentially by the same formula (4.35) as used in the commutative case of SUSY 
quantum mechanics on G : 

(4.58) 

Just as there, ψΑ±
0 would provide a parallel basis of Ω1(Α0) and V would have vanishing 

curvature: it appears that the effective target of the SUSY WZW model is a non-commutative 
space supplied with flat connections of non-zero torsion. Although this has been proven only 
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in the limit k = ∞ and for G = SU(2) at k — 2 = 1,2, it is reasonable to expect that it is 
true more generally. 

4.5. SUSY coset mechanics 

Let us return to the motion of a superparticle on a group G, with L2(G)  W giving 
the space of quantum states. Let H be a connected subgroup of G. We shall extend the 
construction of the coset quantum mechanics to the SUSY case. The generators Ja± of left-
right regular actions of h C g on L2(G) define two commuting representations12 of h in 
L2(G)  W. By taking 

(4.59) 

one obtains another such pair of representations. As the space of states of the coset quantum 
mechanics, we shall take 

(L2(G)  W)H = { |φ) € L2(G)  W | (ya+ + ya-)|> = 0 = ( Ja+ + Ja-)|> } . (4.60) 

Let 

(4.61) 

Then 

(4.62) 

commutes with φa± and with Ja± and defines the coset Dirac operators acting on (L2(G)  
W)H . Finally, the natural action of C∞(G)H on L2(G)  W descends to (L2(G)  W)H, so 
that we may regard 

(4.63) 

as the triple encoding the geometry of the SUSY coset quantum mechanics. 

Let 

WL = { \φ)  W I (ψa++ Ψa-)|Φ> = 0 } . (4.64) 

W1 carries the (irreducible) representation of the algebra generated by ψα± · Note that the 
generators Ja± of h may be restricted to L2(G)  WL. (L2(G)  W)H is the subspace of 
L2(G)  W1 invariant under the diagonal action of H defined by (Ja+ + Ja-). This picture 
of SUSY coset quantum mechanics may be easily obtained by a quantization of the classical 
system given by the action functional 

12 recall that a, b,... label the generators of h C g and α, β,... the ones in the perpendicular subspace h1 
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(4.65) 

with the Grassmann variables ψα±(τ) solely in the hL directions and gauge fields A± = taAa± 
with values in h. Elimination of A± from the action leads to the action for a superparticle 
moving on G/Ad(G) with the metric given by eqs. (3.28) or (3.29). Recall that the (co-)vectors 
tangent to G/Ad(H) could be parametrized by elements of h1 by formulae (3.32) or (3.32). 
These are the parametrizations which allow to view tαψα±(τ) as taking values in the spaces 
tangent to G/Ad(H). It is possible then to recover the torsion form from the effective action 
obtained by eliminating the gauge fields. It is given by the expression 

(4.66) 

which defines a, possibly singular, closed 3-form on G/Ad(H). 

Because of the presence of dilaton, the coset quantum mechanics as defined by the triple 
(4.63) does not, however, coincide with the one obtained by quantization of the superparticle on 
G/Ad(H) with the metric and torsion form described above. It differs from those by ordering 
effects. They are rather complicated but the non-commutative formalism offers a possibility to 
study the coset geometry directly, using data (4.63). It is not hard to see, for example, that 
1-forms ω =∑j ajo[∂±,aji] are arbitrary operators on (L2(G)  W)H of the form ααφα±, 
where aa are functions on G such that 

[Ja+ + Ja-, aa] = i faabab . (4.67) 

We may identify ψα± with the standard 1-forms on G given by eqs. (3.31) and (3.32). Formula 

(4.68) 

defines again a connection on the cotangent bundle Ω1(A) which, however, has non-trivial 
curvature (also the Ricci and the scalar ones) and torsion. 

4.6. SUSY coset CFT 

The SUSY coset construction generalizes to the supersymmetric case [28] [38]. Introducing 
in the Hilbert space of the SUSY WZW model based on the group G the modified h C g 
currents 

(4.69) 

with central charge k — hv, we may define the Hilbert space of the coset theory as 

H = HNSHR = { (4.70) 
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where H
WZW

 now denotes the space of states of the SUSY WZW model with group G. The 
operators 

(4.71) 

where 

(4.72) 

preserve H and define on it an action of a commuting pair of Virasoro algebras with central 
charge Let 

(4.73) 

Then 

(4.74) 

preserve H and extend the Virasoro algebras (Lcs±
n) to the super-Virasoro ones. 

On the Lagrangian level, the SUSY coset models correspond to the action 

(4.75) 

where S
bos

(g, A±) is as in (3.40), but with k k — gv ψ± take values in h1 and A± in h. 

Let HNS0 ( HR0 ) denote the subspace in the Neveu-Schwarz (Ramond) sector of the coset 
theory annihilated by and JA±, for η > 0. Notice that HNS0 may be naturally identified 
with L2k-gv(G)H , the subspace of states of the bosonic coset quantum mechanics corresponding 
to the integrable representations. Similarly HR0 is naturally isomorphic to (L2k-gv(G)W)H i.e. 
to a subspace of the space of states of the SUSY coset quantum mechanics. The action of 
on HR0 reduces to that of The (super-Virasoro) primary fields Vcs |>(z±) of the coset theory 
corresponding to vectors |> € HNS annihilated by Qcs±

n and Lcs±
n for η > 0 may be used 

to generate the bosonic field algebra A. Similarly, operators Vcs|>(l) |HR0 with |φ> € HNS

0
 , 

where ER
0

 is the orthogonal projection on HR0 , generate a small algebra Ao. The triple 
(ΗR, Qcs±

0 , A) represents the geometry of the SUSY coset CFT, whereas (HR0, Qcs±0|HR0 , Ao) 
encodes that of its effective target. The latter is a finite non-commutative deformation of the 
geometry of the SUSY coset quantum mechanics discussed above. 

As in the bosonic case, one may alternatively define an effective target geometry of the 
SUSY coset models using the SUSY extension of the Virasoro algebra. This would give the 
triple where 

(4.76) 
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and is generated by sandwiching the primary fields Vcs|>(l) corresponding to vectors |^)  
H'NS0 between orthogonal projections onto H'R0 . The above construction of the effective target 
is consistent for any N=1 super-CFT. 

An interesting open problem is to find natural connections associated with the coset targets 
and to study their flatness properties. In the quantum mechanical case the coset geometry 
corresponds to a dilatonic deformation of Riemannian geometry. The presence of the dilaton 
changes the perturbative conditions for the conformality of the sigma models [7] so that the 
presence of non-trivial Ricci curvature in the coset target should not be surprising. One may 
expect a similar deformation to occur for the non-commutative effective targets of the coset 
models of field theory defined above. 

5. N=2 CFT and mirror symmetry 

5.1. N=2 SUSY coset models 

In [40][41], Kazama and Suzuki pointed out that there is a class of SUSY G/H coset 
models which possess extended N=2 superconformai symmetry. The latter requires two series 
of operators G±n and G±n extending the Virasoro algebras (L±n) and a commuting pair of u(1) 
current algebras (j±n) with the commutation relations 

(5.1) 

The operators G±n commute with LJ; and and anticommute with G±n and G±m. The N=2 
superconformai symmetry implies the N=1 one: we may set Q±n =(G±n + G±n). One may 
realize the N=2 algebra in SUSY coset models if G/H is a homogeneous Kähler manifold, in 
particular, if G/H is a hermitian symmetric space. In the latter situation, one may decompose 

(hL)c = t®t , (5.2) 

where t and t are complex conjugate abelian Lie subalgebras of g, preserved ( mod hc ) by 
the adjoint action of h, isotropic for tr and s.t. [t,t] C h. We shall choose a basis of 
(hL)c with the property that t& = ta and that tr tatb = 1/2δab. Then 
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(5.3) 

The simplest hermitian symmetric space is PC1 = SU(2)/U(l). It gives the minimal 
N=2 series of the SUSY coset theories with central charges The space of states of 
these models is a finite sesquilinear combination of irreducible unitary representations of the 
N=2 superconformai algebra (with c < 3 ) [6]. Another example of a hermitian symmetric space 
is provided by the Grassmannian SU(n + m)/SU(n) x SU(m) x U( 1). It leads to a series of 
N=2 coset models with central charges 3nm(k-n-m)/k . The complete list of (compact) hermitian 
symmetric spaces is short [32] and contains, besides the above examples, still SO(2n)/SO(n) x 
50(2), S0(2n)/SU(n) x U(1), SP(n)/SU(n) xU( 1), E6/S0( 10) x U(1) and E

7
/E

6
xU( 1). 

We may identify the effective target geometry, (HRo, Qcs±
0|H

R

0, A0), of N=2 SUSY coset 
models in the same way as for the N=1 ones. Alternatively, we may pose 

(5.4) 

and define the small algebra A'Q to be the one generated by the primary fields V|>(l), \φ)  
H/Ns0, multiplied by the orthogonal projection onto H'R

0
 from both sides13. The latter construc-

tion may be done for any N=2 conformal model. Notice that ΗR0 (Η'R0) is preserved by the 
operators G± 0 , GQ and which, when restricted to HR0 (H'R0), satisfy the algebra: 

(5.5) 

The operators with superscript + (anti)commute with the ones with superscript —. This 
is the same algebra as the one satisfied by operators G± = Γα±V

α
 , G± = Γa±Va and 

= 1/4g
αb [Γβ±, Γα±] acting on sections of the bundle 5  S (or 5  5  C2 ) over a Kahler 

manifold M with the Kahler metric g
αΒ

 dzadzb and the metric connection V. Equivalently, 
we may consider the operators ∂, ∂*, ∂*, ∂ on L2(ΛM) and interpret ±j± as counting the 
degrees in /\p,q Μ. Since (GQ)2 = 0 = (GQ )2, we may consider the cohomology of any of those 
operators. In fact, all these cohomologies coincide and may be identified with the subspace 
of HR annihilated by G±0 and G±0 . By analogy to the situation in the Kahler geometry, we 
shall call this subspace “harmonic” and we shall denote it by Ηharm. It is easy to see that 

Hharm C H'R0. coincides with the space of Ramond sector ground states corresponding to 
the eigenvalue of LQ. 

In the classical case, the space of harmonic forms on a Kahler manifold M may be identified 
with the de Rham cohomology ring of M. Does the ring structure have a counterpart in Hharm ? 
In N=2 theory (with integral j0 + j0 charges), there exists a unitary transformation U from 
HR to HNS (the spectral flow [46]) s.t. 

13 it is also natural to require here that j+|> = j0 |> = 0 
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(5.6) 

U maps Hharm onto the so called chiral-chiral primary subspace H(c,c) of HNS annihilated by 
G± ±1/2

2
 and G± ±1/2. The primary fields V|>(z±) corresponding to |) G H(C,C) have non-singular 

operator product, i.e. they may be multiplied point-wise. Moreover, their product is the vertex 
operator of another (possibly vanishing) state in H(c,c). This way H(c,c) becomes a graded-
commutative “chiral-chiral” ring [42]. By the action of U, the ring structure may be carried 
over to . We may then think about the data 

(5.7) 

as representing the effective target geometry and cohomology of the N=2 CFT, a deformation 
of the Kahler geometry (L2(/\M), d, d, j±, C∞(M)) and of its de Rham cohomology. 

It has been shown in [25] [26] that for certain orbifolds of the tensor products of minimal 
N=2 models which have integral j±0 charges, the rings H(C,C) are deformations of the de Rham 
cohomology rings of certain Calabi-Yau manifolds14. In particular, the dimensions of the spaces 
of harmonic states with charges p — c/6, c/6 — q are equal to the Hodge numbers15 hp,q M of 
a Calabi-Yau space M of complex dimension d = | ). One may also argue directly (see E. 
Witten’s contribution to [55]) that, for sigma models with Calabi-Yau targets, the chiral-chiral 
ring is the cohomology ring of the manifold deformed by instanton effects16. The deformation 
disappears in the semi-classical limit sending the radius of the target space to infinity. One 
should expect that, in an appropriate classical limit, also the effective target geometry of the 
N=2 models, not only their cohomology, becomes that of Calabi-Yau manifolds or of their 
torsion or/and dilatonic versions, see M. Rocek’s contribution to [55]. This issue deserves 
further study. It should be remarked, that a complex version of non-commutative geometry, 
appropriate for study of data (5.7), still remains to be developed. 

5.2. Mirror targets 

The N=2 super-conformal algebra does not change if we reverse the sign of the u(l) current 
j

n
 interchanging at the same time G

n
 and G

n
. Constructing the effective target geometry 

and cohomology in a given N=2 model with integral j±0 charges after a replacement j-n 
—j-n , G-n  G-n , one obtains different objects: mirror effective target and the chiral-antichiral 
ring: 

or and H(c,a). (5.8) 

It has been checked that in some cases H(c,a) is a deformed cohomology ring of a different 
Calabi-Yau manifold M with the Hodge numbers 

14 i.e. Kähler manifolds with SU(3) holonomy and, consequently, Ricci flat 
15 i.e. to the dimensions of the spaces of harmonic (p, q)-forms 
16 instantons of the sigma model with Kahler target M are complex curves in M 
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Besides, the chiral-chiral ring H(c,c) should then coincide with the undeformed Dolbeault co-
homology ring with values in the exterior algebra of the holomorphic tangent bundle of Μ. 
The latter is usually easier to compute. This way, one may extract non-trivial information 
about instanton numbers for a Calabi-Yau manifold Μ, usually hard to obtain directly, from 
an easy calculation of the Dolbeault cohomology on the mirror image M of M [2] [5]. The 
mirror symmetry Μ <—► M should extend from special pairs, where it was directly verified, to 
the moduli space of Calabi-Yau spaces, with the interchange of the role of moduli of complex 
structures (counted by h= h1,d-1 ) and of Kähler structures (corresponding to h1,1). 

The N=2 conformal models are difficult to control out of special points but the cohomologi-
cal information given by the chiral-chiral or chiral-antichiral rings is contained in the topological 
field theories, easier to solve, obtained by coupling the u(1) currents of the conformal models to 
the spin connection [53] [18]. The chiral-chiral andchiral-antichiral rings reduce to the de Rham 
cohomology rings of Calabi-Yau spaces M and M in different semi-classical limits. Although 
the geometry of the complete CFT is more difficult to control then its cohomology, the con-
struction which associates to a given N=2 theory a mirror pair of effective (non-commutative) 
targets 

and (5.9) 

is essentially tautological: non-commutative geometry in its complex version should provide a 
natural setup for the mirror symmetry. 

The simplest example of a mirror pair of Calabi-Yau spaces is obtained by taking the 
complex three-dimensional smooth projective variety M defined by the equation 

(5.10) 

in PC4 [30]. Its canonical bundle has vanishing first Chern class and, by the theorem of Yau 
proving Calabi’s conjecture, it admits a metric with SU(3) holonomy (unique up to normal-
ization). The corresponding CFT is a projected version of the product of five copies of the 
minimal k = 5 N=2 models. The mirror image M of M is the orbifold17 of M under the 
action of the Z35 group generated by 

(z1, z2, z3, z4, z5)  (z1, pz2, p2z3, p3z4, p4z5), 
(z1, z2, z3, z4, z5)  (z1, pz2, pz3, p4z4, p4z5), 
(z1, z2, z3, z4, z5)  (z1, z2, z3, pz4, p4z5), (5.11) 

where p is a fifth root of 1. The relevant Hodge numbers are h1,1 M = h,2,1 = 1, h2,1 M = h1,1 = 
101. Many other examples of mirror pairs of Calabi-Yau spaces were explicitly identified, see 
[30] [9] [55], and the subject is under intensive study [45] [8] [10] [33] [5] [1]. 

17 more exactly, after the resolution of its singularities 
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