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Abstract 
We sketch two rigorous proofs of the stability of the hydrogen molecule in quantum 

mechanics. The first one is based on an extrapolation of variational estimates of the 

groundstate energy of a positronium molecule to arbitrary mass ratios. The second one is 

an extension of Heitler-London theory to nuclei of finite mass. 
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1. Introduction 

The stability of the hydrogen molecule H2 = (ppe–e–) plays an important role in our 
understanding of chemical binding and thus deserves a mathematically precise analysis. It 
appears that, within the usual formalism of non-relativistic quantum mechanics, a rigorous 
proof of the fact that the system (ppe–e–) has bound states, i.e., that H2 is stable, is not 
available in the literature, at least to our knowledge. 

In this letter, we sketch two somewhat complementary proofs of the stability of H2. 
[Details will appear elsewhere [1], [2]]. The first proof starts from a four-body system 
consisting of two particles of charge + 1 and two particles of charge - 1, all of which have 
the same mass, i.e., from a system corresponding to a positronium molecule, the stability of 
which has been essentially established by Hylleraas and Ore (3), up to a subtlety concerning 
the threshold of the continuous spectrum. An elementary variational argument can then 
be used to extrapolate upper bounds on the groundstate energy of systems where the 
positively charged particles have mass M and the negatively charged ones have mass m to 
arbitrary ratios These bounds will prove binding, as long as < 0.6, including the 
case of H2. 

The second proof is inspired by the Heitler-London theory of binding in the Born-
Oppenheimer limit, corresponding to m/M → 0, and extends that theory to an interval 
0 < m/M < 0.144. For small values of m/M it yields better bounds than the first proof. 

Details of these results, including a study of stability as a function of the masses of 
the constituent particles will be presented in forthcoming papers by J.-M.R. [1] and M.S. 
[2], 

Throughout this paper, we shall employ units in which the groundstate energy of the 

actual hydrogen atom is —1, and we restrict our analysis to Coulomb systems, (except for 

a remark in the conclusions). 

2. The thresholds in the spectrum of H2 

To determine the nature of binding in the H2 molecule, one has to understand the 

ordering of the threshold energies that appear when the system (ppe–e–) or (dpe-e-), 

is decomposed into two or more non-interacting clusters. We only consider the system 

(ppe–e–), but the arguments for a system like (dpe–e–) are similar. 

The minimal energy of a decomposition of (ppe–e–) into four non-interacting clus-

ters is obviously E4 = 0, the one of a decomposition into three non-interacting clusters, 
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(pe– ) (p) (e– ), is E3 = Ε0 (pe– ), where E
0
 (pe– ) is the groundstate energy of the hydrogen 

molecule which, in our units, is E
0
 (pe-) = — 1. 

The third decomposition is into the clusters (pe-e-)(p). The minimal energy of the 
resulting system is E2 = E0 (pe-e-), where E

0
 (pe–e–) is the groundstate energy of the 

system (pe-€–). Hill [4] has shown that this system has exactly one bound state with 
the electrons in a spin-singlet, the groundstate of the H– ion. However, the groundstate 
energy E

0
 (pe–e–) of the H– ion is not known exactly. We shall need a somewhat accurate 

lower bound on E
0
 (pe–e–). The easiest such bound is obtained by neglecting the Coulomb 

interaction between the electrons and the kinetic energy of the proton. The lower bound 
is then twice the groundstate energy of the hydrogen atom where the reduced mass μ is 
replaced by the electron mass m > μ, i.e., E

0
 (pe–e–) > — 2 — const.10- 3, with const. ≈ 

This bound is very bad and is insufficient for our purposes. It must be improved by taking 
into account the electronic repulsion. This can be done by using the projection method 
[5]. By H

0
 we denote the Hamiltonian of the system (pe-e-), but where the mass M of 

the positively charged particle, the proton, is set to ∞ and without the Coulomb repulsion 
V, between the electrons. Let H' = H0 + V, and let Η(3) denote the true Hamiltonian of 
of system (pe-e-). Denoting the groundstate energy of a Hamiltonian H by E

0
(H), we 

then have 

(1) E
o

(H(3)) > E
0
(H')> E

0
(H

0
) + <ψ

ο
,ν-1ψ

ο
)–1 

where ψ0 is the groundstate of H
0

 . Evaluating the right hand side of this inequality yields 
the bound 

(2) 

in our units. Thus 

(3) 

and 

(4) E0(H(3)) > -1.2507 

if m is given its physical value. 

The fourth decomposition of the system (ppe–e–) into non-interacting clusters is 

(ppe–) (e_). Its lowest energy is given by E'2 = E
0
 (pe–e– ), the groundstate energy of the 
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hydrogen ion H+
2 . Again, the stability of the H+

2 ion has been established by Hill [4], but 
the exact value of E

0
 (ppe–) is not known. Thus we must prove a suitable lower bound 

on E0 (ppe–). This can be accomplished by using the Born-Oppenheimer approximation 
and the so-called criterion of local energy [5]. Setting the proton mass M to ∞ we obtain 
a two-center problem, with the protons separated by a distance R, for a single quantum 
mechanical electron. Let HR denote the Hamiltonian of this system. The Perron-Frobenius 
theorem guarantees that HR has a unique groundstate φR(X) which is a positive function 

of the electron position x . The corresponding groundstate energy is denoted by E
R

. Let 

φ(x) be a positive function of x , and define ER{X ) := φ(x)–1 (H
R
φ) (x). Then 

(5) 

as one easily shows. Thus 

(6) 

Choosing φ(x) to be proportional to exp(—αμ) cosh(βv), with and 

, where r
i

 is the distance between the electron and the ith proton, one obtains, 

after a tedious calculation (using elliptic coordinates) and for an optimal choice of the 

constants α and β, that 

(7) 

and 

(8) E
0 (ppe– ) > —1.623 

if m is given its physical value. Details of the proof will appear in [2]. Our bounds suggest 

that E2 = E0 (pe–e– ) > E'2 = E0 (ppe– ), and this can presumably be proven by refining 

the estimates in [2]. 

Finally, we consider the decompositon of the system (ppe–e–) into two non-interacting 

hydrogen atoms (pe–) (pe–). The lowest energy, E""
2

, of the resulting system is, of course, 

(9) E
2

" = 2E0 (pe–) = -2 

We define 

(10) E
c
 = min { E

4
, E

3
, E2, E'

2
, E2" } 
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Since Ο = E4 > E3 > E2, E'2 > E"2 = —2, we have that E
c
 = —2. The HVZ theorem 

[6] now tells us that the continuous spectrum of the Hamiltonian H(4) of the four-body 
system (ppe–e–) is the interval [Ec,∞), with E

c
 = 2E0 (pe_), for < 0.6. In particular, 

when m is given its physical value then 

(H) 
σ

continuous (H
(4)

 ) = [– 2, ∞). 

Thus, to prove that the system (ppe– e– ) has bound states, it suffices to construct a 

variational wave function, ψ, whith the property that 

(12) (ψ,Η(4)ψ) < -2. 

We shall sketch two somewhat complementary methods to construct a ψ such that (12) 

holds. 

3. Variational upper bounds on the groundstate energy of H2. 

The first method to prove (12) starts from a beautiful argument of Hylleraas and Ore 

[3] suggesting that the positronium molecule (e+e+e-e-) is bound. We make use of their 

results in a way that has been outlined briefly in [7], They use the simple variational wave 

function ψ((λxi)), where 

with rij = x
i

 — xj . The scale parmeter λ is determined by the virial theorem (which 

holds for variational bounds [8]), and the variational energy Ε0(β) can be calculated ex-

plicitly [1], [3]. As a result one finds that 

(14) E0
 (e+e+e– e– ) <min Ε0(β) ~ — 2.0168E0

 (e+e– ) , 

and the minimum is reached near β2 = 0.50. The threshold of the continuous spectrum in 

(e+e+e–e–) is expected to be twice the groundstate energy of positronium, i.e., 

(15) E
c
 = 2E0 (e

+e–) 

but the equality between E
c
 and 2E0 (e

+e–) has not been rigorously established for the 

positronium molecule, yet. However, we neither need this equality in the following argu-

ments, nor is it needed to prove binding for (e+e+e–e_). 
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Next, we rewrite the Hamiltonian H(4) of the hydrogen molecule as 

(16) H(4) = Hs + HA, 

where 

(17) 

where Hs is even under charge conjugation and HA is odd ; see [7]. We now notice that 
the minimal energies in the spectra of H(4) and of Hs for two infinitely separated hydrogen 
atoms are identical. When m < 0.6 we know from Sect. 2 that this is the lowest threshold. 
It then follows immediately from (14) that the lowest energy in the spectrum of Hs satisfies 

(IS) E0(HS) < 2.0168E0 (pe–) 

which is strictly smaller than —2 if m is given its physical value. Next, we note that 

(19) E
0

(H(4)) <(ψ
0

S,Η
5
 + Η

Α
)ψS

0
>, 

where is a normalized wave function symmetric under charge conjugation, like the one 
used by Hylleraas and Ore, and such that (ψ

S
0, Hsψ

S
0) < E0(Hs) + €, for some € > 0 which 

can be chosen arbitrarily small. Since HA is odd under charge conjugation, (ψS0 , ΗΑψS
0) = 

0. Hence it follows that 

(20) E
0
 (H(4)) < E

0
(H

s
) < 2.0168E0

 (pe
–

) 

which, by (12), proves that (ppe– e– ) is bound, provided m < 0.6, in particular when m 
is given its physical value. 

The inequality E0 (H
(4)) < E0(Hs) is reflected nicely in actual binding energies which 

grow from 3 % for the positronium molecule to 17 % for the hydrogen molecule, according 
to the estimates reported in [9]. 

Previously, Abdel-Raouf and Rebane [10] stressed the regularity of the binding energy 
as a function of but missed the fact that the bound (14) for m = M implies binding 
for small enough. 

Let us finally sketch how the results in Sect. 2 can be combined with an improved 
version of Heitler-London theory to prove binding for the hydrogen molecule. In nuclear 

center-of-mass coordinates, the Hamiltonian for the hydrogen molecule is given (in suitable 

units) by 
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(21) 

~ 2 M m 
with μ = 2Μ + m Within the Born-Oppenheimer approximation, suitable ansatz wave 
functions are the ones of Heitler and London given by 

(22) 

with “+” corresponding to spin singlet and ” corresponding to spin triplet for the 
electrons, and f(r) = const e– 2 μ r. The orbital groundstate wave function of the hydrogen 
molecule is symmetric in the electron positions. This motivates us to use the following 
variational wave function : 

(23) ψ (Y,~y 1,y
2
) = C(β)|Y|e– β|Υ|φ+ (y,y

1
,y

2
) , 

where C(β) is a constant chosen such that (ψ,ψ) = 1. 

After very tedious calculations and lengthy estimates carried out in [2], one finds that, 
for an optimal choice of β, 

(ψ,H(4)ψ) < -2.082 

which proves (12) and hence establishes the result that (ppe–e– ) is bound. 

4. Conclusions and outlook. 

We have sketched two variational proofs of the stability of the hydrogen molecule. 
Both proofs are based on the analysis of thresholds in the spectrum of (ppe–e–) sketched 
in Sect. 2 and worked out in detail in [2]. The first proof is based on the variational 
wave function of Hylleraas and Ore for the positronium molecule (m = M) and extrap-
olation in m, while the second proof is inspired by the Heitler-London theory in the 

Born-Oppenheimer approximation = 0). 
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Details of these proofs and extensions of our results to more general three- and four-
body systems will appear in forthcoming papers by J.-M.R. [1] and M.S. [2]. 

We also remark that there is a variant of our methods which yields a very simple 
proof of binding (ppe–e–), for arbitrary values of but does not provide quantitative 
estimates on binding energies. 

Our methods can be extended, in principle, to systems of three and four particles inter-
acting through “universal” (mass- and flavour-independent) two-body potentials. Binding 
will be strongest in systems of four particles with masses (Μ, M, m, m) in the limiting 
regime when M m. Simple quark models have flavour-indepen dent potentials [11], and 
one thus is led to predict stability of exotic mesons (Q,Q,q,q) with two units of heavy 
flavour [7]. 

Acknowledgements. 

J.-M.R. would like to thank A. Martin and T.T. Wu for their continuous interest, and 
F. Levin for a fruitful discussion at Brown University. J.F., G.-M. Graf and M.S. thank 
W. Hunziker for useful remarks and encouragement. J.F. and J.-M.R. thank the Institut 
des Hautes Etudes Scientifiques, where this work was written, for hospitality. 

References 

[1] J.M. Richard, Stability of Four Unit-Charge Systems, in preparation. 

[2] M. Seifert, Diploma thesis, ETH winter 1992/93, and paper in preparation. 

[3] E.A. Hylleraas and A. Ore, Phys. Rev. 71 (1947) 493. 

[4] R.N. Hill, J. Math. Phys. 18 (1977) 2316. 

[5] W. Thirring, A Course in Mathematical Physics, Vol. 3 : Quantum Mechanics of 

Atoms and Molecules, (Springer-Verlag, New York, Wien, 1979). 

[6] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, (Academic 

Pres, New York 1978). 

[7] J.-M. Richard, Proc. Workshop on quark Cluster Dynamics, Bad Honnef, Germany, 

1992, ed. K. Goeke, P. Kroll and H.R. Petry (Springer-Verlag, Berlin, 1993). 

[8] T.K. Rebane, Sov. J. Nucl. Phys. 50 (1989) 466. 

[9] V. Fock, Zeit. Phys. 63 (1930) 855. 

[10] M.A. Abdel-Raouf, Few-Body Systems, Suppl. 2 (1987) 498. 

[11] See, e.g., the recent review by E.A.G. Armow and W. Byers Brown 

8 




