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1. Introduction

This paper is motivated by three different but physically related pro-

blems :

1) We want to sharpen the theoretical and numerical evidence that the continuum
(8 gscaling) limit of N =1 , or 2 component lattice glslh—thenrj. the
corresponding o-models and the self-avoiding random walk model (the ¥ -+ 0

limit of the N-component o-models) in four dimensions are trivial (i.e.

Caussian), for arbitrary mass—, charge- and field strength renormalizations
compatible with the convergence of the two-point function (renormalized propa-
gator). This continues the work of Aizenman [1] and of Brydges et. al [2]

and extends subsequent results on four-dimensional theories in [3] ; see also

[4,5,6].

2} We want to supply non-perturbative and numerical tests for the logarithmic

violations of mean field theory in the models mentionmed in (1) on a four-

dimensional, simple hypercubical lattice and discuss the relevance of such vie-
lations for the problem deseribed in (1). (In short : Logarithmic violations of

any of the mean field scaling laws appear to imply triviality.)

3} We want to develop a high-precision Monte-Carlo method [or the numerical

valeulation of critical exponents and log exponents in the self=aveiding random
walk model - which is relevant in polymer physics [7,8] = and potentially in

' B F " %
g/¢| '-theory on three-, and four-dimensional lattices.

We feel that this paper reports on satisfactory progress in all three

problems. In most respects, this paper contaims few original ideas or innovations.

It might show, however, that some progress can be achieved by systematic and

careful use of existing ideas and techniques.



We now briefly describe the contents of the varicus sections of our

PApET.

In Section 2, we introduce several models of Euclidean lattice field

theory which are studied in subsequent sections.

In Section 3, the random walk representation of scalar Euclidean lattice

fields is reviewed. This representation is one of the pain tools of our analysis.

In Section 4, we reconsider the limit when the number, N , of componants
of the lattice field tends to 0. It is well known that the self-avoiding
random walk model, one of the standard models in polymer physies,is the N0
limit of some lattice field theory, the HN-component, non-linear c-model.

The random walk representation described in Section 3 is a very convenient toal

in the study of the N+ 0 limit.

In Section 5, we describe, in general terms, how teo construct the con-
tinuum (¥ scaling) limit of lattice models exhibiting continuous transitions,
and we explain how the comstruction of the continuum limit can be reduced to

analyzing the approach to the critical point of the lattice model.

In Section b, we us¢ the tools prepared in previous sections to study
the continuum limit of four-dimensional lattice theories, in particular of
gl¢]%-1attice theories with N = 0,1, or 2 compenent fields and the correspond-
ing g-+= limits, the self-avoiding random walk, the Ising - and the classi-
cal rotor model, respectively. We describe results suggesting that all conti-
nuum limits of that class of lattice theories are trivial (Caussian), and we
explain in vhich way triviality of the continuum limit is related to legarith-
mic violations of scaling laws which are predicted by the renormalization
group equations in the perturbative rogime. We prove partial results supporting

the claim that all continuum limits of our lattice field theories are trivial



unless mean field theory is exact.

The proofe of the main results in Section & are given inm Section 7.

In Section B, we report on & deéetailed, numerical analysis of the approach
to the eritical point in the self-avoiding random walk model, using a Monte-
Carlo technique which is accurate enough to detect logarithmic violations of
scaling laws which, in view of the results of Section b, are so important for
the sutdy of continuum limits. Our pumerical datas are in excellent agreement

with the predictions of the perturbative renormalization group.

We have briefly reviewed, in appendices, results that the reader will
find useful. Im particular, Appendix A explains how to derive the analytic
continuation in the number N of components of the field. In Appendix B, we
recall relations among critical exponents and illustrate their connection with
exponents of quantities like the entropy factor, the mean end-to-end distance,
the Hausdorff dimension of random walks, etc. more commonly used in the con-
text of polymer physics. Finally, in Appendix C, the fundamental correlation
incqualities for measures on random walks, onm which the results in Section &

are based are brieflv rederived.

Wo should stress that much of the material in Sections 2 throuyh 5 has
appeared already in the literature and is included here for reasons of a clear,
s¢lf-contained exposition. In particular, Section 3 recall results which have
been obtained in [2), Section 4 and Appendix A contain ideas which have a'so
appeared in [9,10] and in Seetion 5 we drav on 2 very clear and pedagogical

discussion of the continuum limit that has appeared in [4].



2. Definition of models

As anmounced, we shall analyze g|;|# theory, non-linear g-models
(the Ising- and classical rotor model) and the self-avoiding random walk on
the four=dimensiomal, simple hypercubical lactice Eﬁ » On a8 lattice of arbi-
trary dimension d , d = 1,2,3,4,,... , these models arve defined as follows :
With each site j E Ed we associate 8 classical spin = or field varill'n]r:,
;Ij} £ EH . The a priori distribution of I{j} is given by a measure
dA{eCi)) . independent of j , which is invariant under rotations and reflec-
tions of ;{j} . The Hamilton functiom, or Euclidean lattice action, of this
theory 15 given by

H(3) = - & dtid-3in
(3,i")

- - 3@0h - 4@H (2.1)

wherc ({j.j') denotes a nearest neighbor pair {lj-j'[ = 1) , A is the finite

difference Laplacian, and (.,.) is the scalar product on tliﬂd}

The equilibriue state, or Euclidean wvacuum functional, of this lattice

theory is given by the measure

+ =1 =gH(3) oy ‘
du, (8] =2, .0 1J1 di (¢ (j)) : (2.2)
the partition functiom, EE 4 is chosen such that
Y
Y = x
[ dnﬂ;.’.{*' 1 *

the parameter B is interpreted as inverse temperature or field strength.

Mathematically, the measure duﬁ 1{(1:3 must be defined as a limit of



EBCaAEUTes du: N defined on configurations, f;{j}};u , of spins in
L -

finite sublattices § Ed . 8% A increases to E"

. Some limit can alwavs
be constructed by compactness. In the cases of interest to us (N = 0,1,2) the

limit h.-:"'Ed is known to exist [11] .

The objects of interest to us are the correlation {(or Euclidean CGrecn)

functions which are defined as the moments of the méasure ﬂ“ﬁ 3t i.e.
L]
fi a, f u.j
e M ¢ (x> s [0 ¢ {;-:.}d.,.ﬂ A{I} f {2.3)
j-'l .1' Bljl J'-] ] k]

wvhere -ﬁu is the o-th component of 3 .

In this paper we shall, as announced, investigate the scaling limits =
continuum limits of these correlation functionms, or, eguivalently, their beha-
view for B in the vicinity of a eritical point, in four dimensions. We study

the asproach to the eritical point within the symmetric phase.
¥e now mention two examples of such lattice field theories :

(1) the g|}F|£' theory

In this example we set

and = (3, wim
+, 2 & III 2
£ = expl- §131" + 51317+ ), (2.4)
2 3 N o o
where g >0, yu real and ¢ is some constamt §; d ¢ = [ d¢ :
a=1

By a trivial rescaling, eli) —— const.#(j) , it is seen that the
expectation -:II.}E i really only depends on two-parameters, £ and g , say :

qu could be set = 1, for example). We chanpe our notation Lo



-ﬂ{i]?ﬂig-i{-} :Ell =
and we shall wsually drop the subscript g .

(2} non-linear o-models on the lattice

If in formula (2.4} we set

luI - g-R v
let the constant ¢ depend on q amd B in a suitable wav and then take
g+ m we obtain

d (3 = 8|3 -ma"s : (2.5)
If we replace di by di_ in the preceeding formulas we obtain the vacuum

funetional and the Green funcetions of the non=linaar o-model on the lattice,
also called N-vactor model. This model has only one free parameter, @ .

We use the notation

e (.} = me -lt.'_!:i:__l

B %

Next we introduce the ﬂ:olf—a‘vuidinp_‘r_@ﬁn‘ walk model.

This wmodel arises from examnle (2) by analvtic contipuation in N to N =0 ,

A random walk w on the lattice Ed is specified by an ordered
sequence of nearest-neighbor jumps, (w(s).w(s+1}) , = =1,...,]u| + where
™ denotes the tatal number of such jumps. To each random walk  we assign

a sgtatisrical weight, ::{u} « Biven by
::m w gl ; (2.6)

A random walk i said to be self-avoiding if no site of the lattiee is



visited by w more than once. The notation

a i K ——y

indicates that the walk w starts at the site x &nd ends at v . The
gites visited by & random walk w really form anm ordered set, ordered by the

parameter s introduced above.

Mext, wé introduce Green functions for the self-avoidinmg random walk
model : We choose n pairs of sites, I]'Fl"+‘*in‘?n . and defline
y o

i
FL{xlrylv+l+r:“1¥ﬂ} - :. || 4

() * (2.7}
H oy I mi E 3
uj.ﬂj yj i=]

j=l,..,n

where ' ranges over all self-avoiding random walks, T ERERET which

aveid each other, i.e.
w, n wy = ] .
for &t #k . We now define Green functions

o
EE{kI'L-leﬂ} - : FE‘“F(I’.”F:E}'+-}“P{EH-I:.;P{EH}}‘ {zlaj

whore : ranges over all pairings of [11*...,x2n] inte pairs xpf!k—l}'
IP{IH} . Hote that the functions EEEHI..-+.x2n] are symmetric in their

arguments, just like the correlation functions

SR CIPRRTRR 0 ISR Y 3  POR . B (2.9

Az ig known, the functions chxll....nzni are actually equal to the limits
of the correlation functions (2.9) of the nom=linear o=-model as N -+ 0O il

we sel



£=8 . {2.10)

This is further discussed in § 4, and the proof is outlined in Appendix 1.
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3. The random walk representation

In this section wa briefly recall a random walk represenation of clas-
gical spin systems, orifinally introduced in [10,12,2] . 1t exhibits a basic
mathematical relationship between lacttice field theory and random walk models.
The fellowing calculations are formal ; the rigorous justification has been

given in [2] . We assume that
an(d) = £0131 e \ (3.1)

where f is a smooth function on the real line decreasing stronger than
exponentially at infinity. A peneral class of single spin distributions can

be obtained from distributions satisfying (3.1) by limiting arpuments. Let
2 . a .;l_E
£(31%) = [ Tare7ial da (3.2)

be the Fourier decomposition of f .

Let F($) be a function depending smoothly om a finite number of

spin wariables, Eij} + We consider the correlation funmction

1 +
<6 F@ >, |

Inserting (3.2) into (2.2),(2.3) and interchanging integration over the &-

and ovwer the a=variables we obtain

<¢'F@) >, -

1.+ ’ (3.3)

=7 - . 1 2 —ifﬂpiﬁpiiiaﬁij

z."y In £lalid)yda(id - ¢ (x)F(d)e LTETE
L] ] j

whare

(Ph) (i) » - K hij') .
i'sli-it =
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and a denotes the function which takes the value a{’) at site j . The
I—integrll on the r.s. of (3.3) is Gaussian and can be evaluated explicitly.

This yields

1 *
< ¢ (x)F($) gy

-1

= 22l b [ Fal3)dati) (gpezia) ] - (3.4)

¥ ]

Eﬁl :%{I.{al’ﬂin};} o ‘
3 (y) i

Following [12,2] we expand [3F+Eia};; in & Neumann series inmn gP . [Under

our assumptions on § | f(a) is an entire function of a . We may therefore

shift the contours of the a(jl-integrals in {(3.4) in such a way that on the

shifted integration contours the Neumann expansion of {a.P-*Iil}_l in gP

converges. | Each term im that series is labelled by a random walk, w .,

starting at x and ending at ¥y . Let nj{u} denote the number of visits of

the walk @ at the site j . Then

_1 I [ ““‘fuj
(gp+2ia) - = ¢ @'¥l p (2aGG)) 1, (3.5)
T winey i
as one easily verifies ; see also [ 2?2 ]. We define
Glelde v ifn=0
dvn{:} - (3.6)
riniul:"_lﬁ{t}dt o mom Lol 3
where Tri(n) = (n=1)! , and @ 1is the Heaviside step function. Insertinmg

{3.5) and the identity

s =2iat
(2ia) "= [ o dv (1) (3.7)
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inte (3.4) and carryinmg out the a{j)-integrale, we chrain

< $HNED e

3 E ﬂ-lulzzlf[l dun;m{t{jﬂ'

Y widey i ]
r;.;ﬁ“m!i% 1O B en®d . 6.
a¢ i

Thz wariables €(j) have the interpretation of local times : E(}) is the

total time the walk o spends at site j . By (3.6), these local times have

a Poissonian a priori distribution.

Identity (3.8) is the basic formula relating lartice field theories

to random walks. 1t coan be iterated by writing

copst., or

¢"(y") F'(§) :

d " s
for some v' €2 , a=1,...,N , and some new funcrion F' . We now define

dv (t) = dy (eid)
S gl (3.9)
2y (0 w22t [ e p ez | Fezend i)
L] - j
and
b . T N
By Gy ) ;hfl # d"ukt'h}hﬂ.a{ll""+tn} (3.10)

Finally, we define
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M |
ﬂiltxl'rl""ln'rn} n 'I lﬁ.ltu1+"'mh: . (3.11)
b S
k=1,.,n
Then
in . N
{jﬂl ] tlj:: '.‘Ilsll = FI Fﬂllf!F{]ji--.Iptzn_ijllpfzﬁj} 1-{.-"'-]2}
and
in a 2m a’
<0 ¢ix:) N & (v)>
j=1 37 ke kB2
= 1
5 i‘ F:;A{:P{lj“‘l"npiznjlljpltlj‘.l....:rlpit?u‘.'j‘ (_.3.12 :.

for a+tan' ; etc.

We want to note the following identity : Let Wb e s e sly be m given
random walks. Then Wyt ety denotes the union of the m ordered sequences

corresponding te Wqwres bl respectively, so that

m
nj{ul 5 osas -uhg - kil "j{”k} . (3.13)
By (3.6)
di{v_ #...% w_ }t) = dy ey
nl ﬂm n1*.1+n
where =« indicates convolution, so that
div ® ... sy J{E) = dy () % (3.14)
Wy o Byt ety

It then follows from (3.10) that



= Yk -

] K
EE,H{N1""'UE} - =B.ltul * s ® uh}
{3.15)

'Iduu.

]
1 - 'mn{t]lﬂlﬁt}

In order to familiarize ourselves with thege notions we consider a

sigple example :
dai (D) = exp[- 5(2dg+n) |§]7 18" (3.16)
L *»[- 5 % ) . .

In this case

2
£([§]%20) = (g he 2o

hence
2
" (2 -:Iﬂﬂ-n b tj

EE-A (E) = q [

o i |
Note that this quantity is N-independent. Thus,

dP(w,t) = Bl”lzﬁ (c)dy () . (3.17)
EI-J' %]

is che usual lattice approximation to the Wiener measure, expressed in terms

of local times ““”jE?ﬂd . In this simple case, the t{j)=integrals can be

conputed easily, and we obrain

" =n. w)
N - glul 2, "
Eﬁslp{m: B 2 {demﬂj . (3.18)

By (3.13), (3.15%) and (3.18)

" N
z]3.:«“‘“"1""""n:' =2

8.3 iul T m“}

o
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Sy
- T oz, (w) . (3.19)
k=1 E‘Ju K

Now note that by (3.11), (3.12) and (3.18)
< ' 0e%mr, , =T, (5
o o

= z Cw)
WXy E‘ln
2,~1
= { Eﬁ*Iulxj » (3.20)
and, using alse (3.19),
I-'MI (%7 X L,y )= E {~a¢+m;}'1 {3.21)
L] LA S ] L] o ®

E,lu 1*1 n''n k=1 o' X Y,

Thus, this example is nothing but the well known Brownian motion (proper

time) representation of the free (Caussian) lattice field of mass m,
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4, The limit W = O
In this section we review the well known results [7.8] that

(a) the ¥ =0 limic of g,|n!'I theory is the Edvards model [13] of self-

suppressing random walks ;

(b) the W =0 limit of the non=limear o-model is the self-avoiding random

walk model. Our arguments are based on the results of Sectien 3. Sec also [9].

By (3.11), (3.12) and (3.15), it is enough to identify the N =0

M
Iﬂdiiﬂ , where L for some random walks

Wyaeeeally We recall that

limit of the weights

N Ia] v N
0} = d t - L |
13.1': ) =B | le‘ a “njmil{ 5}15 ,:l.“] . (4.1}

In Appendix 1 we sketch the proofs of the following facts @

1E
a@d) = V@ = Fl31Hd%

is chosen appropriately, e.g. as in giI|# theory or in the non-linear o=
modie]l with N-componont fields = see (2.4) and (2.5) - ::llﬂn} extends to a
function of N which is analytic in a neighborhood of K = 0 , (provided we
work in a finite volume, or keep g sufficiently small ; see e.g. [9].)

Moreover

im o la|
() « limz () = B n pin.{q)) ., {4.2)
) Neg Brd jEE.d ]

o
i
i

whie ree
n

la] = % g |+

'hu
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N
[ du (Y E (2c)
pin) = lim whif;3) = - {4.3)
Bs0 [ duy () E7(20)
and
=] x=1
ﬂuxtt} e F{x) "t° “a(c)de 5 (4.4)

for x ¢ 0,-1,-2,... .

In 1|;|A-thtnry we choose fni|$[z} 5 ftiilz} as in (2.4) , indepen-

dently of N with
W B ageal (4.5)
and obtain
-{gtiﬂugm:} (3]
pin} = [ dy_(ct)e ' (4.6)
o= 1,2,2,+«:

Mote that, in this case, () converpges te the statistical weight

22
Bk
of ordinary random walks, defined in (3.18), (3.19), as g™~0 .

In the pg-model, we choose dlﬂi;} as in {2.5) and obtain

plm) =™ % Seibd

We conclude that, in this case,

' a L
;i: < f%u1}1.,¢ {:"} pE Gg_ﬂ(xl....*xn} F {4.8)
wvhere < (.) }: m < (.) i is the expectation of the N-component o-model

defined in Section 2, and EF. is the Green function of the self-avaiding

random walk model inmtroduced im (2.B). There are further relations, similar
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to (4.B), vhich follow from (&4.2), (&.6), (4.7) and the results in Sections
2 and 3 and which we refrain from writing out explicitly. For details see

Appendix A .
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§5. 5cnlin§ limit and :riti;jl exponents.,

In order to simplify our notations we only consider N = | component
fields and the self-avoiding random walk model throughout this section. Morcover,
we first imagine that the |I|q-:nup1ing constant, g , is fixed, (e.g. at

g = += _ corresponding to the Ising model limit).

By GEEII,...,:“} we denote the correlation functions,
< ﬁ{:lj *..iﬂxnj ?E.l s 0F the lattice field theories defined in sectiom 2,
and the Green functions of the self-avoiding random walk model, respectively.
We want to study the behavior of the functions Gﬁirl...,x“} at large distances,

or, equivalently, in the continuum limic.

In d > 3 dimensions, all models studied in our paper are known to
have a phase transition, from a high temperature (small B) disordered phase
with exponentially decaying connected correlations to a large B phase with

long range order. Thus, for E small enough,

Gg(x,y) £ const. vl (5.1)

for some positive constant m{g) , (the inverse correlation length), and the
susceptibility
x(B) = L d ﬂﬁfH.F} (5.2)
¥ EX

is finite, while for sufficiently large B8 , y(8) diverges. See [14] and refs.

Eiven there.
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In the H = 1,2 (3,4%4) component field theory models it is known that
there exists a critical point EE (which in the n|1|‘-the¢ry depends, of
course, on the coupling constant g) with the property that m(f) and xiﬁj-l

are positive, continuous functionsef 8, for B < Ec , and

lim m(A) = 1im  x(8)" =0 (5.3)
8RB g8 _

This result can be found in [14] and iz conjectured te hold for all N

with

I~

in particular for N =0 .

In view of result (5.3) one must ask how m{E) tends to 0 and how
¥(B) diverges, ag B~ H': . In the class of models studied in this paper it

is expected that, for d ¥ & |, a scaling law holds, i.e.

m(g) ~ 1"
x(B) ~ 1 ' (5.4)
Eﬂ—ﬂ
where 1t E 5 . It ig known that the critical exponents v and ¥ satisfy
(=

the inequalities

v>1f2 and vy > ) {5.5)

see [14]). Morcover, for & =5 and (N =1 , or I)-component lields,
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yel . (5.6)

see [1,3], which is the value predicted by mean field theory. It has also

been shown [15] that the critical exponent, a , of the specific heat vanishes
in d > 5 , There are strong indications that in five or sore dimensiens and
for an arbitrary number N = 0,1,2,3, ... of components mean field theory
provides an exact description of the approach to the eritical point; in parci-

cular

y= Jj2 oy= ] a=0,

In four dimensions, one expects that there are logarithmie violations of the

meanfield theory scaling laws. Such violations are predicted by the renormali-

zation group. See [16,17]. For example

m(g) =-1|f211n1|-”

x(B) ~ 1_|]1n1|ﬁ (5.7)

Next, we introduce scaled correlations, Let © be 8 parameter varying

hetwaen | and = . We define

() - n
G |:'-"r||-a+:!n} - I::{El} [ {H“I:-ii'ﬂ-:-n} & {5731

B(a)
where

%, € B el W €O .
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and E': is the lattice with lattice spacing a ,

a(8) > 0 and B(6) < 8_

are functions which one tries to choose in such a way that the two-point
correlation functienm, GEB}{x,y} y has a non-trivial limit, as & = = _ i.e,

for 0 < |x-y| <=,
0 = E"l_j {x,¥) £ lim GHJ{::,T} < = (5.9}
[
From (5.1) and (5.3) it follows that

B(e) + 8, , as @+ = {5.10)

moTe precisely, one may choose B(6) such that the physical mass, i.e. the

inverse correlation length measured in physical units,

%

em{B(e)) (5.11)

%

i kept fixed. By (5.3) this is guaranteed if

B(e) = m ) r%

(5.12)

i 5 I . L
and the inverse fumction, m  , of m exists for %; sufficiently small,

[14].

Next, we try to choose a(f) in such a way that our renormalization

condition (5.9) is fulfilled. Not much is known about whether this is actually
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poesible. (The only examples where rigorous results are known are the two-
dimensional Ising model and super-renormalizable :l[;lIII models in two and

three dimensions.) By scalimg at large distances we mean the property that

Bd—2+n

a(8)* ~ , (5.13)

where n is a critical exponent. It is expected that in d ¥ &4 dimensions
condition (5.9) can be fulfilled with functions E£(8) and a{0) sacisfving

(5.12) and (5.13), respectively. From this it would follow thac

Yy = w(2-n) , (5.14)
a well-known scaling relation due to Fisher,

In four dimensions, there might be logarithmic violations of (5.13),

a(0)~ ~ 02 |wme|® . (5.15)

If (5.9) can be imposed, the relation

G=32N-E (5.16)

(corresponding to (5.14)) holds. These matters and further relations between
critical exponents are reviewed in Appendix B. Here, we drav the reader's

attention to the fact that, for all K = 1,2.3,....,

nE*o, =0 , (%.07)
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a consequence of the infrared bound

e

0 < Glx,y) < B ey |x-y : (5.18)

where 4 is a geometrical constant; see [18,4] .

Hext, we define the connected four-point (Ursell) functiom, My i H
L]

un,ﬂ“]":"]’xﬁ} = Gﬂixlllzlljilﬁj o
=L G (x
p B

p(1)%p(2)? Cepay ¥peay? - G-I

The scaled Ursell function is defined by

n}la}{‘t-’z"a'“&j - u{ﬂ}ﬂ'pnistﬁ}{ﬂxl,sz,ﬁx],ﬂ:uﬁ} s (5.20)

and

uEE}ixI.Hz.IJ.Hﬁl - %i:_uin: itl.:z,x].:kl :

For B < B= , m{B) * 0 , and one can evaluate the Fourier transform of

“ﬁpﬂ at 0 momentum :

TR S 0 s
Y4 8 :jEﬂd "'E...a{ SPTLITE (5.21)
j=2,3,4

It 15 believed that in d ¢ & dimension

~(v428)

g 8~ (5.22)
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for some eritical exponent & > 0 , (and 71 = a;'{ﬁc-ﬁl small).

Let
—(B o
MSCIRE S e L O g (5.23)
& d & 234
x.EH
37 g1
1=2,3,4
%= 2 . #706" 00 (5.24)
’Eﬂ_q
&
2?5 gm(8(6)) = u* = const. (5.25)
We now define a dimensionless coupling constant EEH} as follows :

g = {0 ((8))72 (8¢ (5.26)
By a trivial change of variables, one sees that
[
gl - g (8(8)) | (5.27)
where
. - -2 d
srtH} = U8 x{g) © m{B)" . {5.28)

By (5.22), the critical exponent of g(g) is

dv + y= 28 . (%.29)



For small values of the critical exponent n and pesitive phyvsical mass,

s{-} £ lim g{a} = lim By {B) {5.30)
T s 876,

measures the deviation of the theory in the scaling (= continuum) limit from

a8 free, i.e. Gaussian theory, for which g F 0 . Indeed, under our assumption

on n and m* ,

g:-} jd :d vd zut }{D Ke¥iZ) &

For W= 0,1,2,

(=)

Mg {1I'12'13’=ﬁ} <0, for all & , [{5.31)

the Lebowitz inequality [19] . Hence,

(=) (=) _
= limg (B) = 0wy, 20 . (5.32)
Er 878, 4

For N = [, , Newman has shown that the theory is trivial, i.e. Gaussian

if and only if

uéul =0 ; [20]

An carlier result of this sort was proven, im the context of axiomatic field

theory by Borchers [21].

1if 1 70 then g™ #0 uhich implies

dv + y=24 = 0 (hyperscaling) {5.33)
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if scaling holds.

. w x
Finally, we wish to emphasize that the g|=| lattice theories have

really two independent coupling constants, g and B. In the construction

of the scaling limit, not only B but also g may be chosen to depend

on the scale parameter @ in such a vay thar (g(8) , g(8)) converge to

a critical point {ac,g[ﬂ:]j , 88 0 + = _ The critical points of this theory
are expected to form a curve of the type shownm in Fig. |

If one passes to the scaling limit without (infinite) field strength - and
charge renormalization - the procedure adopted in constructive quantum field
theory in two and three dimensions - one chooses (for d < &)

B(O) — B, , a(e)® ~ 6%, geo)y ~ ", (5.34)

]
Such theories lie in the vicinity of the Gaussian fixed point and have cano-

nical (free field) ultraviolet behaviour.

It is one of the basic problems of two - and three dimensional stastistical
mochanics to construct scaling limits associated with nontrivial critical
points th.g{ﬂE}} » Where B_ > B and E{EE} * 0 , in particular with

B = ﬂ: (Ising) , g = + = ,

The scaling limit of the two-dimensional 1sing model has been constructed
by seans of an explicit solution; see [22] . Aizenman has recently found a
very simple and elegant proof of hyperscaling in a class of two-dimensional
Ising wodels [1). The only general result valid in arbitrary dimension is an
absolute upperbound on grfﬁ} » due to Glimm and Jaffe [14]. See also [&)

for a general discussion of these matters.
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In the following we study "all poesible" gealing limits in four dimensions,
a problem vhich should be easier than its lower-dimensienal analogue. Our
results, partly theoretical, partly numerical, suggest logarithmic violations

of hyperscaling and triviality of "all" scaling limi:s.



- g =

§6. Estimates on Iu:“:'j and lim gr[B}-

— H,-Ec

The purpose of this section is to review inequalities on the four-point
Ursell function, u#,ﬂ‘“l'“l"!':ﬁ} , and the dimensionless coupling constant,
which permit us to analyze the scaling limit of gl-i-h|l‘:| theory, 0 < g < =
and the self-avoiding random walk model (N = 0,1,2) in four or more dimensions.
Fruoofs are given in section 7. In four dimensions, we obtainm results which
sharpen earlier results in [3,6]. Our methods are based on the random walk repre-

suutation of [2] which we have reviewed in sections 3 and 4.

Let

:nl:u}-::d[m} . HN=oO,l, or 2 . (6.1

For K= 0 this is the statistical weight of a self-suppressing (g < =)

or self-avoiding random walk; see section 4. For g = 0 , it ie the weight of
the standard (non-interacting) random walk, and for N = 1,2 , the weight which
appears in the random walk representation of 3.|-=if|III theory, or the non-linear

O-models: see section 3.

We pow introduce a quantity which plays a basic rele in our approach :

=3
QL{E) = x(B) E E . Qg i) 2, (w e, (w,) (6.2
¥s¥sy I'mE'.I=I w $00y, i Dl A S sy

waiitiy
where j is some fixed nearest neighbor of 0 , and

1 if oy and Wy do not intersect, {“"ln""z'”'
Cu ) =
" R

0 , otherwise,

(6.3)



By definition (5.2) of x(B) and the random walk representation (3.9) - (3.12)

of cutu,r] s we have

x(B) = L £ :E{mﬂ - (6.4)
¥ WIxsy

for arbitrary ¥ .

Therefore Q(E) is the probability (with respect ot the statistical

welght iﬁiulﬁ :Etubjj that two random walks, o and Wy » starting at

neighboring lattice sites and ending at arbitrary sites do nowhere intersect.

Triviality of the continuum limit of glzii—theury or the self-avoiding
random walk in four dimensions is intimately connected with the behaviour of
Q{&) , as BT E . We shall see that, for the N =1 , or 2 component lattice

theories,

lim Q(g) = 0 (6.5)
BAB,

implies Eriviality of the continuum limit.

Hext, we sumsarize our main inegualities on the four-point fumction.

It has been shown in [3] (following a very similar result in [1]) that

in X = 0,1,2 component theories, and for % 4 % i3,
2 ¥
0> "ﬁ.ﬂ‘xl"z'“s‘“al >»=18 L n “E (xj.zj} " (6.6)

21325,2402, ju=l

up to a term which vanishes in the continuum limit in d > 2 dimensions.
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L extends over all z, £ Ed , and points Ty s g0 with

By iZgiEq0Ey
|zj -ztl =0, orl ,j=23.4.
By scaling distances, see (5.8) and (5.20), we obtain from (6.6)

o> uiE}{:t,:z,:a,:h} > -3B{HTEBIE}-4 Ed

4
= g o4 g ™ (x7,25)) (6.7)
T Egaq.t, j=1

where now z, ranges over :Eﬁul, and |zj—:1| i_ﬁ'l v j = 2,3,4 . At non-
[

coinciding arguments, i.e. X ¥ :j  for 1 ¢ j , and under mild uniformity
cte)

assumptions on {x,¥) which were discussed in [3] (in particular if

m* > 0)

&

ﬂtﬂ)ztﬂd'za’n{ﬁhii {z o9 0 ::':”-::j,.:j} (6.8)
i=1
isg bounded uniformly im © . Thus
(el G=d . d=2 2
lug * (g a%p0xq,x, )| < k87 T (87 “fal8)T) (6.9)

where k_is a constant which is finite provided Ixi-uj > g, 193,

for arbitrarily small, pesitive values of ¢ .

For N = ],2,

6 210 83% is bounded (6.10)



ag & -+ = . Sge (5.17).

We conclude that, in four dimemsions,

lim uﬁ‘:“ (%) 1%y y%30%,) = O (6.11)

unless

alf) ~8, hence m=F =0 , (6.12)

i.e. the short distance behavior of the theory is canonical.

In order to complete a preof of triviality of the continuum limit of
the four-dimensional N = |, or 2 cowmponent lattice field theories, we may
henceforth assume that (6.12) holds and try to sharpen inequality (6.6). As
recalled in section 5, it suffices, in this case, to analyze the behaviour of

the dimensionless coupling constant,
T e -2 d
g, (E) I”i.ﬂl x(8) © m{B)" ,
ag BT Ec « More precisely;, if n is small the continuum limit is trivial if

lim g (8) =0 . {6.13)
ERB,

Our new inequalicty for grtE} is

0 < g _(B) < const. x(ey? meer? aee) (6.14)

{up to a term vanishing as Eaﬂﬂc . Thig inequality sharpens one in [3]). Row
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x(8)% m(g)"

ig bounded uniformly in g < Ee : (for H = 1,2} . Assuming a scaling law,

or a behaviour as in (5.7) and (5.15),

'iun
x(8) 2me)® ~ - (6.15)
|In:|
Thug if n=E =0 (6.13) follows if
lim Q(8) = O (6.16)

ﬂ’“c
Our results for the behaviour of Q{(8) mnear the critical point are as

follows @

{1y If £ {w) is the statistical weight of standard (mon-interacting)

random walk

Q(e) ~ [ene|™ (6.17)
vhere

1f2 =<1 ., (6.17)

This is an immediate consequence of rocent results by Lawler [23] who conjec=
tures that « = 1/2 . This is in agreement with "renormalization group" calcu-
lations which we have performed (vhich are non-rigorous). It follows easily
from (6.17) that, in the continuum limit, two Brownian paths starting at

different points do not intersect. This is a well known resulet [24]).
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The advantate of the proof based on (6.17) is that it ghows in which way
intersection probabilitiecs wvanish, as the continuum limit is approached.

See gection 7.

(2} 1If :E{u} = :: lim& is the statistical weight of the self-avoiding
Ll

random walk = or the Edwarde model then

Q(e) < -(2a)”" = e (6.18)

with equality in the case of the self-avoiding randos walk model. Now note

that for d= & ,

(6.18) implies lim Q(8) = O , (6.19)
Bof_

Eplens mean field theory provides an exact description of the behaviour of

¥(E) mnear Ec 2

For the self-avoiding random walk model, the equation

= -1 8 -1
ae) = =27 = 7 (@)

provides us with the possibility of determining the critical exponent of the
susceptibility ¥ wvia measuring the exponent of Q(F) .For d = & , our

numerical data indicate

Q(e) ~ 1x(B) ~ |1m|'G with G = «24 % 02 (6.20)

see section B.
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{3) Consider the N = 2 lattice field theory. In (2.1) we have defined

the lattice action of this theory as

HE) = - 1 WD -GN -
(5.3")
One can introduce an additional coupling term yielding an anisotropic iterac-

tion

MG+ 8 heh) = - dae'GY .
(5:3"

We define

X 1.1
x(Byc) = i 2 *n X B

(6.21)

where <(+) P e ig the equilibrium expectation corresponding toe the action
L1

H .

E

By arguments gimilar to the one given in section 7 for the self-avoiding

random walk model and correlation inequalities one can show that

Q{B) < (2d4)

Ix(8,0) 267! 2fae) | (6.22)

c={

Heuristically,

=1 ax(B,c) o ax(B) 4
Ry (" 3f oA N3

But the proof is incomplete in d = &4 .
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Results (1) through (3) lead us to the following conjectures :

(4) In K=1, or 2 component field theories, for all 0 < g <=

and d > & ,

Q(8) < ~const. s% x ' (8) (6.23)
lim Q(8) = 0 , when d = & (6.24)
ﬂ-i‘"&

Inequality (6.23) would imply that, in four dimensions,

lim Q{B) = 0 , unless -é% x-IiEI > const > 0 , {6.25)
7 &

for B near E: . Since by [19]

- e |
~ag X (B) <4,
(6,25) would give

GG T, (6.26)

Combining (6.12), (6.13), (6.16) and (6.26), we conclude, using Fisher's

relations (5.14) and (5.16) that, in four dimensions,

pEE}ExI.HE.:E,xﬁ} =0, (for x ¢ tj Ay 5

i.e. the continuum limit of the N =1 , or 2 component field theories is

trivial (Gaussian), unless
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{(a) mean field theory is an exact description of the approach to the
critical point, i.6. n=0 ,ve1/2 ,n=l, E=N=G =0 ; and (b)
the probability that twoe (field-theoretic) random walks starting at neigh-
boring points do not intersect is positive. Statement (a) would, of course,

violate the predictions of the renormalization group, [16,17].
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§7. Proofs of ineguuliti:s {6.6), (B6.J5) and (6.18).

Our preofs rely on the random walk representation reviewed inm sectiom 3.

By the definition of My gt gee (5.19), definicien (3.11) and the random walk
Ll

formula (3.12), we have

c
“II,E{EI'“E'“J':‘-&} -; FE{HP{I}IEPtEI’:P:EIIIF{I‘J} ¥ (F. 1)
where
[ = N
FE{:I"T]':I'YE} - H [:E

= "
HI .II'I‘}'I
"2“2"}':!

N N
2 (Bppg) =z (02, (@0 (7.2)

For the standard, non-interacting random walk on the lattice, wo set

2y 5 (o) z o (9)zp ()X (0,8) ,  (7.3)

where I:#. has been defined in (6.3}, and

N N
o W) =z W),

with :: 3 (w) given by (3.18).Thus, in the standard random walk model,
L]
o
F:{:I,yl,xz_,yz} is proportional to the probability that a random walk going
from x, to ¥y, and a walk from X, to y, do not intersect, just as in

the self-aveiding random valk model. Tn all cases we simplify our notation to

E-B':“J * EBIWI:H‘:} -
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Our results in section 6 are consequences of the following inequalities for
the weights, Zg '

Ay IE " n i f (i.e. oy and “ do mot intersect) then

2g (0,0, 2 g e )z (0] 3 (7.4)
see [3].
(E) E zglug,m,) < 2o00) I zglwy) , (7.5)
L& L
2 2
see [2,3].

For the standard and the self-avoiding random walk models, the proofs
of (7.4) and (7.5) are trivial. For K = | , or Z component field theories,

the proofs are sketched in Appendix C. RNote that the Lebowitz inequality,
<

u'ﬁlﬂ_ 3

follows directly from (7.1}, (7.2} amd (B). By (A},

=
Fﬂ':xl'l?ll-‘ilfz}

|

F [:Eiwt.m:}-:aﬁullzﬂfmzil
i R
o R RS
w Il'lmz'l'd-

f £ g (w2 () ,
wixpyy B b2
O Sracs]
Hlnmz'lld-
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{and we have used that lﬁ{ui 'HE} >0, for all u, and wy .) Given iy
and Wy let af,m‘.uz:l be the last site om y o with respect to the natural
ordéering of the jumps made by iy and thus of the sites wisited by w , vhere

@, ~intersects ®, . By making an error, E, , vhieh vanishes in the continum

limic, for 4d > 2 , we can ignore walks w ard “g for which

1
={|:IJ1.||I|FE} E ‘h:-t:!l'.l plzpyg} * Th“‘

C
lFE{tl |f:125??1| = E E IE{M.I}IE{”E} +[|
AL PR P PA L R
hi%g*da

:IIH1,H2]'-=

< K B I z {o! " wMz (w,)y (o w.d+E (7.6}
- L o R b o i i e |
tiiul,y‘,nz,yzl m{.xt z
L] -t
|z'-z| =1 ol Tl 4
iy $Xy+¥,
mz'.‘!:
vhirTe
|E|[ < const. B{GEHI .::E}Gaixi*jr‘}ﬂﬁixz,}rzl+... j (7.7

. ey -
wikth ixi Xg 1 .

We denote by ”.El a part of wg from 2z to y, and by Ui', a part of

-h? from X, to z" , where z" is a nearest neighbor of 2 , in such &

way that

o) sy

{ﬂz'h}l-hz .
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vhere NI ., denotes the composition of the sequence of jumps corresponding
to o vith the sequence of jumps corresponding teo U, , {providing the end-

point of % | aprees with the starting point of '-*2 .} Clearly
W . I?.B}

}:.I*‘{N"...IJE} l.' x*[uqr z

By summing independently over 4..1"2 and w; and using (7.7) and (7.8), we

obtain
[FS(x, s a0 ¥,)| < B° E £ I o (w? s @") .
B 17 Y722 = :.Eﬂd T B* 1 1
y Jesi | - R
|z'-z]=1 U1:I'+j'l wll;::.n}*
| 24—z | =1
. zﬁ{mi . w;}x“iu;.m;) + E (7.9)
where £ = EE [:t1,3‘|.!l2.3f1} satisfies

|EE{II'II'“?'FE} | = HE . Hﬂﬁh1'EEJGE{Hi‘TijGB{“Z'FE}
- {::2 - '-"'E} . {xz-:lll . E:r.z-r:rlll} . (7.10)

vhere “El. ig a finite constant, and I:z—xi] = 1 , The error Eﬂ vanishes
in the continuum limit for d > 2 ; (to see this, one just applies the scale

transformations of section 5).

For standard random walks,
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:ﬂfuf . wi} = EH{MTIEE{HE} . (7.11)

see {3.19), while for the lattice field theories and the self-avoiding random

walk
IE{MI = ME} - =awt‘”2} '

by (3.15). Thus, applying (7.11), inequality (7.5) - see (B) - respectively,

wve obtain from (7.9)

S 3y 03039l < 8% E 6 (x,,2)G (x,,2)

:EEEd B
|z'=z| =1
|z"=z| =1
e i (w2, (u)x, (u,u')} +E (7.12)
wizey L 8 G '
1
m':a+yz
and we have resummed over H; . HE s USINE

Eﬂ{:,y] - I :EIH} ‘
W Ny

The error E = EE{II’?1’1E’FE} is given by (7.10). From that estimate it

follows immediately that

m(g) ()% 1 E g (x, 17y 3%g07,) == 0, (7.13)
y11“2|‘}.2
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a8 £ B, » in dimension d > 3 ; see also [3,5]. We shall therefore omit
the error term henceforth. 1f, on the r.s. of (7.12), we insert the trivial

inequality
y, (w,u') < 1
and resume over & and ®©' we obtain inequalicty (6.6).

Next, we sum both sides of (7.12) over ¥yrXga¥s o keeping %, fixed.

Using the definition (6.2) of Q(g) aud (6.4) , we obtain

a@)% @) L [FSx,,0%py,)]
Ftl“zlfz

< 8° m@) (e ae) , (7.14)

up to a term which, by (7.13), tends to 0 as E*‘"“Ec s in 4 >3 .

Applying (7.14) to all three terms in equation (7.1) for ¥4 8 , we obtain
L
S =a d
(g} = (g) )
Bel8) = [y glx(8) " mis
< 387 m(e)? y(a)? alg) (7.15)
vhere n z L u (0%, %%, ) ,
4,B Hj Eﬂd 4B 27T
j=2,3,4

(up te a term vanishing, as B2 8 , in three or more dimensions.) We note

that (7.15) is the desired inequality (6.14).
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Finally, we turn to our proof of (6.1B), i.e. for N =0 ,
=1 a3 =1
Q(8) < (24) 3E X (B) . {7.16)
E? t#-lI]. {'ﬁiz} -H'I:'I,d :ﬁ.ﬂ}. we hﬂ“ﬂ

¥(B)Y = I G, (0,x)
®E E:d B

d

- I e on . pte.t))
x EZY wiowm  jER ]

where pin) is independent of 6 . Thus, for @ < @,

lo, |+ w,]|
2oxe)= £ 4 ko, L g v R
xER zEX m-tllnl[z,n'}umz
z':]z'-z|=1 1052
aa
Waiz

® jEEd P{I'Ij{nrl * NE:'] =

1f ulnu'i-ﬂl

P{nil'.m‘ ")) . pinjiﬂllptnj[lﬂz}} ;
Thus,

fu, |
SEX(E) 2 I £ g ' n ptn,w)) -
X,E w 10~z JjEZE :

z':]|z'=z|=1 uz:x'*u



e

o |
jE“Eﬂ pfnj () )y, () 1)

But
alel g Pni(w) = 28 (o)
jEE J N

hence, using the definition (6.2) of Q(g) , we obtain
i 2
2 x® > o x®® e ,

whenee (7.16) .



- 4 -

§8. The numerical data.

Our numerical results were obtained by means of a Monte-Carle simulation
which used the Metropolis algorithm [25). We generated a sequence of self-
avoiding random walks by repeatedly applying a set of elementary local deforma-

tions (an idea originating in our study of lattice string theories) and checking,

at every step, that the nonlocal constraint that the walk be self-avoiding was

respected., The transition probability T between consecutive members o , w'

of the sequence was taken to be

Tiw + a') = = Peauldx,,, " (8.1)

L

where Afw| = |e'| = |u| and x , (u') is uniey if w' is self-avoiding,

SAW

and zero otherwise. The probabilicy P{ﬁlu|} of each deformation was takem Eto
depend only on the change of length of the walks and assigned as in ref [28],

where such a procedure was first tested numerically. Thus (see Figure 2)

2

P(s2) = ——s

[1+{2d=-3)c"]

2
o T ¢ 1 i R {(8.2)

2[14(2d-3)¢ %)

1

P(~2) & sy
[1+(2d-3)£"]

The factor TéT in (B.1) corresponds to the arbitrary choice of the link where

the deformation should aet,

In more conventienal approaches to lattice field theories, one assigns
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the degrees of freedon of the field in question to every lattice point (limk).
Each configuration of the system is specified by a number of variables propor-
tional to the size of the lattice. Computer memory limits one to lattices of

the order of Ii.‘i'!I points. On the other hand, the method we uwsed only stores

points along the walk, We could thue code the four components of each point

into a single-precision word (32 binary digits), which allows ecach component

to be as large as IB . The length of the walks is then limited by the number

of (single-precision) words im the available memory, which means that we may

have lengths of thousands of steps. Even in regions which were sufficiently

close to the critical point for scaling behavior to be observed, typical walks

(2 foew hundred steps) never touched the boundaries of our lattice. As we plunged
deeper and deeper into the critical region, the only consideration that we had

to keep in mind was the time of approach to equilibrium. Within very reasonable
computer times we were able to achieve wery high precision, an essential require-
ment, 45 our alm consisted of measuring logarithmic deviations from mean field
behavior. It is clear that the N = 0 casc introduces an enormous simplification
in the calculation. Had we treated the fleld theory case using a random walk
description, the calculation of the weights carried by each point of the curve
(which here is just a constant) would have to invelve a determinant viewed as

an expansion in terms of closed walks (see Appendix A).

In four dimensions, the upper critical dimensionality for the ferromagnetic
vector model, logarithmic corrections to scaling are expected from the pertur-
bative solutions of the Callan-Symanzik renormalization group equations [16, 17].
However, they were not yet tested in a nonperturbative context; we are able to
provide such a test with the help of our numerical simulations. Thus, we measured,
for a different values of the parameter £ (see §2), the mean length of curves

with fixed end points :
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 Jefelt o]
w0 d O d w dem
< |w| = = in{ I L ¥} = -conBb, ——
el U wom T x]ee s
THIES

vhere = is the inverse correlation length, see (5.1), and the last equalicy

follows from the identification :

c(o,x) = ¢ gl | (8.4)
& iz O

e_b and 1, = Ehfbc}-] » an ansatz of the form :

Letting £ = B

m(1,) ~ 1éf1 Iintb["H (B.5)

together with (8.3) allowed us to determine from the data listed in Table I
that N = +14++03 . This value is to be compared with the renormalization

group prediction of (1/8). Figures 3 and &4 show a linear and a logarithmic

1/2

plot of the data and best fits obtained from mean field theory {m[Thj-uTb )

and from (B.5).

Encouraged by these results, we set out to pather numerical data on the
behavior of Q(B) , defined in (6.2}, as E A HE « In fact, wa actually mea-

sured a relaced quantity ﬁ'; defined as :

I L w . Cw, gwa VB Lw, YE, [w,)
; - L et R - et - Tl
|j]=1 u].d+yl
& 2y
Qlgiy,-¥,) = e s (8.6)
I E z {mljaE{uE)

|jl'l ”I:ﬂ*?l B
g i §+Yy



e

To compute ﬁl‘ numerically, we penerated sequences of two scelf-avoiding
walks that started from the origin and ended at two distinct peints, ¥
and ¥y = We then recorded the fraction of the total nusber of iterations
corresponding to configurations im which the two curves did not intersect.
The results of our measurements, for two different choices of the endpointe,
are shown on Table I1. Assuming a scaling law for E{E;yl,}rz} of the type :

i BB g
WBiy,y,)  ~ © Clypayg) [emr]7C (8.7)

where [ is independent of the endpoints, and using the relation :

FEAE = T 1 WEiy,ayy) Gg(0.y))6,(y,) (8.8)
TI!I:I‘-E j-l

which follows from (B.6), we can casily obtain :

BB

T ~ Sty *

(g) I £ u{yprzmﬁwalmﬁu,h}HtmI'E. (8.9)
3'.1-}'1 EJI'I ) B

The expression in the curly brackets tends to some constant as § . ﬂt s which
permits us to identify, using (6.20) :

¢ e (8.10)

For the case of the self-aveiding random walk we may, as shown in sections 6, 7,
relate QCB) to the susceptibility x(B) wvia (6.18), where the equality holds.

Thus for Ei' o im wiew of (8.9);: we have :



= Ly =

qe) ~Q(B) = -2 % X8 . (8.11)

Resorting again to the remormalization group equations ome can try te fit the

data with an expression such as &

T}'{t:}r!,yz} = Cly,;y,) {|tat] ~Gl‘.nfln1|]'_5 . {8.12)

=]
which results from the relation -%.El ~ |1n:¢'|’|_5 » whose selution yields

X -'rlintl_G (perturbatively one finds E » O , thus G = 2N) . From the
data in Table II, we obtain (instead of £ and 1 , our fits were made for

b and T, s+ &8 in (B.5)) :

'.'I"l = (5,5,0,0)
E\'yl,}fil = 89 402 G = 2§ £.02 x (B.13)
]’2 = (5,-5,0,0)

The perturbative prediction of the renormalization group ian 6 = 1/4

The dependence of § on the cheice of endpoints helps considerably.
A Bere inspection of the data could not rule out the possiblity that E
could tend to some constant C' € (0,1] . One could try a fit of the form :
~ -G :
Qltsy aws) = Cly,,y,) (limr|=Gin[ine[) + ¢ . (8.14)

If G is not too large, this would be numerically indistinguishable from :

Yee (C+C") = (GCYEn{ |inr| = ko[ tur ] ) = (C4C") - (L) En]ena | (8.1%)
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The best one can make is to determine the combinatioms (C+C') and (GC) ,
which leaves us with one free parameter, and allows for a number of equally

good fits. To cope with thie problem, one can then use the dependence of 0O

on the choice of endpoints. In (B.14) we have assumed the scaling law (8.7),

and the independence of C' on the emdpoints. Should 'ﬁ tend to &8 NONZEro
value as 1 + 0 , such & value would be connected to the behavioer at the eritical
point, where curves are infinitely long and thus, insensitive to the endpoints.

Taking the ratio :

E{';]flﬂlrz}
H{t; endpoints) ¥ ————— {B.16)
Qlr:y}.y5)
a value of C' ¢ 0 would imply that R should depend on 1. Our data, however,
show this ratio to be independent of 1, to a very good accuracy as Tt = 0 .
Using Ti = (10,1,0,0), 3& = (10,-1,0,0) as cndpoints, we computed (B8.16)
for three different values of t and found it to be 1.57 2+03 . Thie tends

Lo support our contentiom that E + 0 , thug Q+0 , as 7T-+0 [27] .

ﬁ:knnulrdiunenta.
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TaBLE |

(Values of |<% >| wersus b}.

b ¢ |u| »¢1? e Ju] >3
2,100 19.99 19.78
2.060 21.8] 21.66
2.021 24.19  24.38
2.002 26.01 26.27
1.984 78.23 26.65
1.966 32.61 iz.00
1,948 317.61 37.23
1.931 46,21 56,35

(1) Values cbtained from the Monte-Carle similation.

{2} Best fit to the data assuming

i) n{rh] = C TL”““Thl-N

C= 12.69 )+]3 ; bc = 1,904 ! D07 ; N= =}k 0]
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TasLE 11

Values of 3{1.:':3'.?2} versus b .

b E{!} af!)
2.021 681 *b8 |
2.002 671 671
1.9B4 «663 *661
| . 966 oL T *b4B
1.948 635 B34

{1} Values obtained from the Monte-Carleo simulation.

(2} Best fit to the data assuming hc = |.904 and

Ly =
Qlry sy ayp)l = Cly eyl Ilnthi -Gin|tnt|]

l.'!{.:.rl,yz} = o H9 & .02 G = 24 %+ =02
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ﬁggendix A : The H =+ 0 limit.
o e T——

Let us consider the random walk representation of paragraph 3. The

expressions {(3.9) and (3.10} for :: y may be rewritten as :
L]

‘:_Jtl - 1511 IE da(j) E{a{j}}e-li]{j}:(j}

[ 20, (Er2iadd) N

i |

(A1)

- & - i l:m} -
:: RO el 11 qacpfaG) @iaty 3 dee~™2arezia)

(A.2)

In (A.1), we have just reintroduced the Fourier decomposition of f , whereas
in (A.2), we have made use of (3.7) and identified the Gaussian intepral of

(A.1) with the determinant. We can once more appeal to the random walk represen—

tation to express this determinant as [2] :

; ) ‘ =n,')
det™2(gpeia) = (n2iaGN Moempl z , TN mia(e) 1
j 2EE w'izez Tl ﬂ i

(A.3)

We may then insert [A.3) into (A.2) . The resulting expression displays
N as a parameter, and it is nmot hard te show that zt 4 (=) is analytic around

H=0, (provided we work in finite volume, or keap E small; see e.g. [9])).

We shall examine the H + 0 limit of :: ) and for that purpose we expand

the exponential to obtain :

|ul-l i =T) {m: "I'”II
80 [ datidf(atid) (2ia(j)) .
1

N .
g gl =2, g



- =[n (uw }+...+n (& )]
. T E%{%*“ ! ) noosagyy ! E R

s
k-ﬂ ﬂﬂlll---l.l-l-k | ‘.t

(A.4&)

where [' 2 I I . Each term in the expansion corresponds to a Sum over
w sER- wimer
k closed random walks, i.e., a polymer gas. However, in the N + 0 limit

only the k = 0 term will contribute, yielding :

- _n-tW}—HIE
2 oy =1im 2 ) =8lYlp 1ip LEGG)) ia(i)) ] ; da(j) .
B g ¥ J fac)) iay) M 2aacs)

Jdvy, (upamyge (®) £020)
(A.5)

- alml 1 lim
N0 fduy (8D £(20)

where the last equality follows from (3.7). The expression for the two-point

correlation in the N - 0 limit becomes :

lim< o' (elty) > = I SN (A.6)

N0 XY

Using the notation introduced in (4.2},

‘;.x‘”} - glvl g p(n; (w) (A7)

jEu

we shall now compute piln) for 3|3|‘-Lhi¢ry and the nonlinear o-podel,



a) t!if—:hw ¥
£(141%) = expl-E 3| l‘“ﬂ' 12dgsm0) 1212 4 c)

E~{5tz+[zdg+m§]t:

du (t)
Y u_j_mm'z ” s (A.8)
N+0 J-MH”&} o et +[2dgemg]E)
Recalling from (3.6) that ﬂuu(t}l = f{t)dt we immediately obtain :
= 1:2+[1'!d +nE]t]|
pn) = [du (e) e & e (A.9)

Inserting this into (A.6) , (A.7), we obtain the propagator for the Edwards
model of self-suppressing random walks. Letting g = 0 and using (3.7) we

obtain, for the .simple random walk :

pin) = R (A.10)
(2dgsm )"

b)Y The nonlinear o-model.

e(]il®y = s()E1Pn

dv . ..0c) &(2¢-K)
pin) = lm‘l L . (A 11)
H-+0 f:h.' (e} &(2c-N)

Using (3.6), we integrate numerator and denominator by means of :
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k-1
fdv, (t) (2e-%) = (¥ T (A.12)

r{k)

after cancellations we arrive at :

(2" ring2)
T{n+N]2) '

pin) = lim {A.13)

K-+
This vanishes unless n=0,]1, in vhich case ve may use the identity
«l(x) = F(x+l) to establish :

pin) = & ,+ b

Therefore in (A.7), (A.B), we have the restriction that each site of the walk
w cannot be visited more than once. This corresponds to the self-avoiding

random walk.



Aggendi: B : relations amongp critical emguntntn.

Let us first consider the susceptibility of the continuum theory. By

definition :
' lim o 5 e g 3 696! (0,x) =
o g €2
i}
" -d 2
= lim 0" a"(8) I , nﬂtﬂ] (0,x) (B.1)
F xE 2
where ;ézﬂ’ Eﬂ{ﬂ}{ﬂ,xl = x(B) is the susceptibility of the lattice theory

at inverse temperature B(8) .

The expected behavior of such a quantity near the critical temperature
is the power law (5.4) for d 4 4 . However, for d = & one might have expres-

sion (5.7), which admits a logarithmic deviation in the form :
x(8) ~ 17| tnr|© (8.2)
analogously we may write the solution of eq. (5.12) near the critical point as
(683 ~ 0~ 'Y |gna ¥ (B.3)

with N# 0 only for d =& , where v = 12 . In this way, requiring that

the limit in (B.1) exist

xiﬂﬁ n-uz[ﬂ}ﬂ-d 131|"|||""[I'ui.||I:ﬂ;“”""'h'I
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" ﬂ—I*ni$Iu E+G=-yN/v

| tne|

implies, at the same time, the relations

¥ = vw(2-n) (B.4)

and its extension for the logarithmic deviations in d = &

G =28 =-E (B.5)

Furthemore, one can relate the exponents of the susceptibility for the S.A.W.
to the exponents which appear in the counting problem for chaims with L  steps :

if HN(L) is the pumber of such chains, asymptotically for L large

H(L) ~ ot 1P L |® . (B.6)
Then
el T L
x() = £ . I el e £ oRQLY £" .
¥ wilex Le={})

From this identity, we obtain the asymptotic relatioms

[ s IB+?,}

=L

abl =y (B.8)

R=0 (B.9)
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A quantity often studied in polymer physics is the so called mean end=

to-end distance, which is the square root of the mean square distance for paths

of length L . Once again, let us introduce ind.ces for the asymptotic behavior

of this quantity, which is expected to diverge as L”'thnT..IEI , where & is in

fact the Hausdorff dimension of these chains, and U measures violations to

the self-gimilar behavior on different scales of the chain,

d
Let us also consider another quanticty. If rz = E ::
i=]
E 4 TEEEED,H] - % 4 E T fzfiL"*
REXE & L=0 w:d x
Juf=1
~ a8 ¥ .
L
. 1F+EIE!1“LIE+EFtL
L
On the other hand
2 a-1 2 o mE)T
I ,v° G {0,x) ~E r . ———
.'HEEE B r r‘HI‘ Tlnr |E

e m(8)" 0 me) | ~1x"

hIfl_H]“-b [ln1[_£
g0 that, by comparing (B.I0) and (B.11), we obtain

p+l42/8 = y(b-n)

(B.10)

(B.11)

(B.12Z)
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and for d = &

R+ 20= & N-E (B.13)

which by (B.4), (B.8) and (B.5) , (B.9) reduce to

&= 1/y (B.14)

P=N . (B.15)

1t is worthwhile noting that the exponents of the mean end-to-end distance are

functions only of the exponents of the correlation length.



Appendix € : Inequalities for the =z's

We shall rederive here [3] the inequalities (7.4) and (7.5} which are

the fundamental ingredients for the estimates contained in sectien 7.

Let us first consider the case (A), in which the two walks

wy do not intersect. We shall show

(In this appendix, we shall omit the super (sub)-seripts for the

=th.w=} > Hiwlitiwzﬁ .

By (3.10) this follows from

If we define

and

then

Thus we have

2(c +t,) > z(t Jz(t,) .

i - P T
z(t) = z(t) | _‘Et {J}_lr' t{]}
]

Flx,¥) = &n z (xt+ys)
L 3

F(1,1) = | dx o Fx,1) + F(0,1) =
i

. [l o RN D

Q ;{xt+a} X

{C.1)

{C.2)

(C.1)

(C.4)

{C.5)



i X Ry

1 & - 9
TixEes) g% z(xt+s) = -g ; tzfjl < |3 | ¥ reita) (C.6)

with <« ") denoting an average value in the measure

; " a1t
s < 'O 1 23 He#ED D Mgy (€.
J

where 2Z{(t) 3is, as wsual, & normalization factor. However,

I IR T +..012 1t
[ i k & :
iy < o] "lxtiys) " 8 : s(k) < [3)]° 5 | 8w P 1:L+FE] <0
(C.8)
for all values of ¥y , &s
< 3 1? s [Ba]? s 20 (c.9)

is one of the Griffiths inequalities. So, we arrive at a lower bound if we set

& = 0 in (C.6). Thus, using (C.5), we obtain
in 2(t+s) > in & (&) + inz(s) (.10}
which through exponentiation and the definition of 2 implies
-2gk t(i)s(])

z{t+s)e J = z(t)z(s) {c.11)

vhen the two curves do not inmtersect £ t{j)s{j) = 0 and (C.l} follows-
j
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For the inequality (B) let us first observe that the expectation

< +I{1}tl{yj ’[tl has a random walk representation :

<¢'e ¢ sy "3y E Jav () z(tes) (€.12)

WIN+Y

50 that

E 2l:m||i!2} = E Id""m “1”“ {Iz:ltl:tl-'lz]l -
w1= !—I-}I' nl..l2 :}I-*}' I u&

1 1
" Idvmlinla (b)) < ¢ (4 (y) ’(t,) (C.13)

but G L PR S P 9 (C.14)
by Ginibre's inequality and as

l{wl} = Idvui[tl} :(tI}

I ozlw) = < ¢ ()¢ (n) >
Wy Xy

incquality (B) followsa, that is

I :{wl,wzl L3 :{h]} EIHEJ : (C.13)

HE ulz
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FIGURE CAPTIONS

: _ : 4 ’
Figure | - Critical line for g|¥|" theories.
Figure 2 - Elementary deformations used in the Monte-Carle procedure.

Figure 3 = Linear plot of < |@| > va b . The full curve is our best-fit, whereas

the dotted one corresponds to a8 mean field fit (nmo log corrections) with hc-l.ﬂﬂh

Figure 4 = Log plot of < |w| » ws b,
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