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1 . In troduction 

This paper is motivated by three different but physically related pro-

blems : 

1) We want to sharpen the theoretical and numerical evidence that the continuum 

« · · I | A (= scaling) limit of N = 1 , or 2 component lattice g [ φ | -theory, the 

corresponding σ-models and the self-avoiding random walk model (the N → O 

limit of the N-component σ-models) in four dimensions are trivial (i.e. 

Gaussian), for arbitrary mass-, charge- and field strength renormalizations 

compatible with the convergence of the two-point function (renormalized propa-

gator). This continues the work of Aizenman [l] and of Brydges et. al [2] 

and extends subsequent results on four-dimensional theories in [3] ; see also 

[4,5,6]. 

2) We want to supply non-perturbative and numerical tests for the logarithmic 

violations of mean field theory in the models mentioned in (1) on a four-

dimensional, simple hypercubical lattice and discuss the relevance of such vio-

lations for the problem described in (1). (In short : Logarithmic violations of 

any of the mean field scaling laws appear to imply triviality.) 

3) We want to develop a high-precision Monte-Carlo method for the numerical 

calculation of critical exponents and log exponents in the self-avoiding random 

walk model - which is relevant in polymer physics [7,8] - and potentially in 
| → I 4 

g IΦ[ -theory on three-, and four-dimensional lattices. 

We feel that this paper reports on satisfactory progress in all three 

problems. In most respects, this paper contains few original ideas or innovations. 

It might show, however, that some progress can be achieved by systematic and 

careful use of existing ideas and techniques. 
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We now briefly describe the contents of the various sections of our 

paper. 

In Section 2, we introduce several models of Euclidean lattice field 

theory which are studied in subsequent sections. 

In Section 3, the random walk representation of scalar Euclidean lattice 

fields is reviewed. This representation is one of the main tools of our analysis. 

In Section 4, we reconsider the limit when the number, N , of components 

of the lattice field tends to 0. It is well known that the self-avoiding 

random walk model, one of the standard models in polymer physics, is the N → O 

limit of some lattice field theory, the N-component, non-linear o-model. 

The random walk representation described in Section 3 is a very convenient tool 

in the study of the N → O limit. 

In Section 5, we describe, in general terms, how to construct the con-

tinuum (≡ scaling) limit of lattice models exhibiting continuous transitions, 

and we explain how the construction of the continuum limit can be reduced to 

analyzing the approach to the critical point of the lattice model. 

In Section 6, we use the tools prepared in previous sections to study 

the continuum limit of four-dimensional lattice theories, in particular of 
I → I 4 , 

gIΨ| -lattice theories with N = 0, 1, or 2 component fields and the correspond-

ing g →°° limits, the self-avoiding random walk, the Ising - and the classi-

cal rotor model, respectively. We describe results suggesting that all conti-

nuum limits of that class of lattice theories are trivial (Gaussian), and we 

explain in which way triviality of the continuum limit is related to logarith-

mic violations of scaling laws which are predicted by the renormalization 

group equations in the perturbative regime. We prove partial results supporting 

the claim that all continuum limits of our lattice field theories are trivial 
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unless mean field theory is exact. 

The proofs of the main results in Section 6 are given in Section 7. 

In Section 8, we report on a detailed, numerical analysis of the approach 

to the critical point in the self-avoiding random walk model, using a Monte-

Carlo technique which is accurate enough to detect logarithmic violations of 

scaling laws which, in view of the results of Section 6, are so important for 

the sutdy of continuum limits. Our numerical data are in excellent agreement 

with the predictions of the perturbative renormalization group. 

We have briefly reviewed, in appendices, results that the reader will 

find useful. In particular, Appendix A explains how to derive the analytic 

continuation in the number N of components of the field. In Appendix B, we 

recall relations among critical exponents and illustrate their connection with 

exponents of quantities like the entropy factor, the mean end-to-end distance, 

the Hausdorff dimension of random walks, etc. more commonly used in the con-

text of polymer physics. Finally, in Appendix C, the fundamental correlation 

inequalities for measures on random walks, on which the results in Section 6 

are based are briefly rederived. 

We should stress that much of the material in Sections 2 through 5 has 

appeared already in the literature and is included here for reasons of a clear, 

self-contained exposition. In particular., Section 3 recall results which have 

been obtained in [2], Section 4 and Appendix A contain ideas which have also 

appeared in [9, 10] and in Section 5 we draw on a. very clear and pedagogical 

discussion of the continuum limit that has appeared in [4] . 
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2 . Definition of models 

, →, 4 
As announced, we shall analyze g|φ( theory, non-linear σ-models 

(the Ising- and classical rotor model) and the self-avoiding random walk on 

4 the four-dimensional, simple hypercubical lattice ZZ . On a lattice of arbi-

trary dimension d , d = 1, 2,3,4,... , these models are defined as follows : 

With each site j  ZZd we associate a classical spin - or field variable, 
→ N .... . → φ(j )  R . The a priori distribution of → (j) is given by a measure 

dγ(<f>(j)) , independent of j , which is invariant under rotations and reflec-

tions of → (j) . The Hamilton function, or Euclidean lattice action, of this 

theory is given by 

(2.1) 

where (j, j') denotes a nearest neighbor pair ( | j—j' | = 1) , Δ is the finite 

difference Laplacian, and (. , .) is the scalar product on . 

The equilibrium state, or Euclidean vacuum functional, of this lattice 

theory is given by the measure 

(2.2) 

the partition function, Z , is chosen such that β, λ 

the parameter β is interpreted as inverse temperature or field strength. 

Mathematically, the measure dp (φ) must be defined as a limit of 
β , λ 
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measures dyf , , defined on configurations, {<(j)} , of spins in β, λ jΛ 

finite sublattices A Ì ZZd , as Λ increases to ZZd . Some limit can always 

be constructed by compactness. In the cases of interest to us (N = 0, 1, 2) the 

limit A Z7 ZZ is known to exist [11] . 

The objects of interest to us are the correlation (or Euclidean Green) 

functions which are defined as the moments of the measure dµ
 Λ

 , i.e. 
B, A 

(2.3) 

where φα is the α-th component of φ 

In this paper we shall, as announced, investigate the scaling limits = 

continuum limits of these correlation functions, or, equivalently, their beha-

viou for β in the vicinity of a critical point, in four dimensions. We study 

the approach to the critical point within the symmetric phase. 

We now mention two examples of such lattice field theories : 

I I 4 (1) the g 1φ I theory 

In this example we set 

(2.4) 

2 
where g > 0 , µ real and c is some constant ; d 

By a trivial rescaling, <f>(j) → const. <f>(j) , it is seen that the 

expectation <(.)> really only depends on two-parameters. β and g , say ; 
β, λ 

2 
(µ could be set = 1, for example). We change our notation to 
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<(.)> ≡<(.) > 
β, λ 

and we shall usually drop the subscript g . 

(2) non-linear σ-models on the lattice 

If in formula (2.4) we set 

2 N µ = g.N 

let the constant c depend on g and N in a suitable way and then take 

9 → °° we obtain 

(2.5) 

If we replace dγ by dγ in the preceeding formulas we obtain the vacuum 

functional and the Green functions of the non-linear σ-model on the lattice, 

also called N-vector model. This model has only one free parameter, β 

We use the notation 

Next we introduce the self-avoiding random walk model. 

This model arises from example (2) by analytic continuation in N to N = 0 . 

A random walk ω on the lattice ZZd is specified by an ordered 

sequence of nearest-neighbor jumps, (m(s),m(s+l)) , s = 1,...,|ω| , where 

|ω| denotes the total number of such jumps. To each random walk ω we assign 

a statistical weight, ζ°(ω) , given by 

(2.6) 

A random walk ω is said to be self-avoiding if no site of the lattice is 
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visited by ω more than once. The notation 

ω : x y y 

indicates that the walk ω starts at the site x and ends at y . The 

sites visited by a random walk ω really form an ordered set, ordered by the 

parameter s introduced above. 

Next, we introduce Green functions for the self-avoiding random walk 

model : We choose n pairs of sites, x1, y1,...,χn,γn , and define 

(2.7) 

where Σ' ranges over all self-avoiding random walks, ω
ΐ»·**

,ω

η » which 

avoid each other, i.e. 

ωl
 Π ωk ~ 0 

for l ≠ k . We now define Green functions 

(2.8) 

where Σ ranges over all pairings of {xn,..., x } into pairs x /01 . 
p 1 2n p(2k-l) 

Xp(2k) ’ Note that the functions G
ξ

 (x
1

, . . . , x
2n

) are symmetric in their 

arguments, just like the correlation functions 

< φα(x1) , . . . , φα(x
n

) > , α € { 1, ,Ν} (2.9) 

As is known, the functions Gξ(x1,...,x2n) are actually equal to the limits 

of the correlation functions (2.9) of the non-linear σ-model as N → 0 if 

we set 
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ζ = β (2.10) 

This is further discussed in § 4, and the proof is outlined in Appendix 1. 
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3· The random walk representation 

In this section we briefly recall a random walk represenation of clas-

sical spin systems, originally introduced in [10,12, 2] . It exhibits a basic 

mathematical relationship between lattice field theory and random walk models 

The following calculations are formal ; the rigorous justification has been 

given in [2] . We assume that 

dλ(ψ) = f ( |ψ 12)(ΐΝφ (3.1) 

where f is a smooth function on the real line decreasing stronger than 

exponentially at infinity. A general class of single spin distributions can 

be obtained from distributions satisfying (3.1) by limiting arguments. Let 

f ( | Φ i 2 ) = / f(a)e “1*1 da (3.2) 

be the Fourier decomposition of f . 

Let F(φ) be a function depending smoothly on a finite number of 

• · . spin variables, 4>(j) . We consider the correlation function 

< φ 1 ( x) F ( φ ) > 
β , γ 

Inserting (3.2) into (2.2),(2.3) and interchanging integration over the ψ-

and over the a-variables we obtain 

< Φ1(x)F(φ) > = 
β , γ 

(3.3) 

where 

(Ph)(j) = - Σ h(i') 
j' : j' : j-j ' 1 = 1 
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and a denotes the function which takes the value a(j) at site j . The 

φ-integral on the r.s. of (3.3) is Gaussian and can be evaluated explicitly. 

This yields 

< φ1(x)F(φ) > = 
β, A 

(3.4) 

Following [12,2] we expand ( βP+2ia)^ in a Neumann series in βΡ . [Under 

our assumptions on f , f (a) is an entire function of a . We may therefore 

shift the contours of the a(j) -integrals in (3.4) in such a way that on the 

shifted integration contours the Neumann expansion of ( βP+2ia) 1 in βΡ 

converges. ] Each term in that series is labelled by a random walk, ω , 

starting at x and ending at y . Let n
j

(ω) denote the number of visits of 

the walk ω at the site j . Then 

(3.5) 

as one easily verifies ; see also [ 2 ]. We define 

(3.6) 

where Γ(n) = (n-1)! , and θ is the Heaviside step function. Inserting 

(3.5) and the identity 

(2ia) n = J e^atdv(t) 
J n 

(3.7) 
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into (3.A) and carrying out the a(j) -integrals, we obtain 

< φ1(x) F(φ) > 
β , A 

(3.8) 

The variables t (j) have the interpretation of local times : t (j) is the 

total time the walk ω spends at site j . By (3.6), these local times have 

a Poissonian a priori distribution. 

Identity (3.8) is the basic formula relating lattice field theories 

to random walks. It can be iterated by writing 

for some y'  ZZ d , a = 1,..., N , and some new function F' . We now define 

(3.9) 

and 

(3.10) 

Finally, we define 



- 13 -

(3.11) 

Then 

, (3.12) 

and 

, (3.12’) 

for α ≠ α’ ; etc. 

We want to note the following identity : Let ω
1

, ..., ωm be m given 

random walks. Then ω, · ... · ω denotes the union of the m ordered sequences 
I m 

corresponding to ω1, ..., ωm , respectively, so that 

(3.13) 

By (3.6) 

where * indicates convolution, so that 

(3.14) 

It then follows from (3.10) that 
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(3.15) 

In order to familiarize ourselves with these notions we consider a 

simple example : 

(3.16) 

In this case 

hence 

Note that this quantity is N-independent. Thus, 

(3.17) 

is the usual lattice approximation to the Wiener measure, expressed in terms 

of local times { t( j ) } d . In this simple case, the t ( j ) -integrals can be 

computed easily, and we obtain 

(3.18) 

By (3.13), (3.15) and (3.18) 
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(3. 19) 

Now note that by (3. 11), (3. 12) and (3. 18) 

(3. 20) 

and, using also (3. 19), 

(3. 21) 

Thus, this example is nothing but the well known Brownian motion (proper 

time) representation of the free (Gaussian) lattice field of mass m 
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4 . The limit N → O 

In this section we review the well known results [7,8] that 

→ 4 
(a) the N = O limit of g [ φ | theory is the Edwards model [13] of self-

suppressing random walks ; 

(b) the N = O limit of the non-linear σ-model is the self-avoiding random 

walk model. Our arguments are based on the results of Section 3. See also [9], 

By (3. 11), (3. 12) and (3. 15), it is enough to identify the N = 0 

. . N 
limit of the weights z

n
 (Ω) , where ()su ω , for some random walks 
p » A 1 n 

ω,,..·, ω · We recall that 
1 n 

(4. 1) 

In Appendix 1 we sketch the proofs of the following facts : 

If 

dX(i)
 E

 dXN(|) = fN(|î|2)dN<t> 

→ 4 is chosen appropriately, e. g. as in g|<j,| theory or in the non-linear o-

N model with N-component fields - see (2.4) and (2.5) - z (Ω) extends to a 
β > λ 

function of N which is analytic in a neighborhood of N = 0 , (provided we 

work in a finite volume, or keep β sufficiently small ; see e. g. [9].) 

Moreover 

(4. 2) 

whe re 
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(A.3) 

and 

dv
x
(t) ≡ r(x)

 ltX 10(t)dt , (4.4) 

for x ≠ 0, -1,-2,... . 

/ V| O O 

In g|J| -theory we choose f (|φ| ) = ί(|φ| )
 as (2·4) , indepen-

dently of N with 

(4. 5) 

and obtain 

(4.6) 

n = 1, 2, 3,... . 

Note that, in this case, z° (Ω) converges to the statistical weight 
β 5 λ 

of ordinary random walks, defined in (3. 18), (3. 19), as g \ 0 . 

In the σ-model, we choose dγN(^) as in (2. 5) and obtain 

p (n) = δ + δ 
n l no (4. 7) 

We conclude that, in this case, 

(4.8) 

N 
where <(.)> = <(.)> is the expectation of the N-component σ-model 

β 3 

defined in Section 2, and is the Green function of the self-avoiding 

random walk model introduced in (2. 8). There are further relations, similar 
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to (4. 8), which follow from (4. 2), (4. 6), (4. 7) and the results in Sections 

2 and 3 and which we refrain from writing out explicitly. For details see 

Appendix A . 
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§ 5. Scaling limit and critical exponents . 

In order to simplify our notations we only consider N = 1 component 

fields and the self-avoiding random walk model throughout this section. Moreover, 

we first imagine that the |φ|4-coupling constant, g , is fixed, (e.g. at 

g = +°° , corresponding to the Ising model limit)., 

By G
rt
(x.,..., x ) we denote the correlation functions, 

J 6 1 n 

< φ(χ.) ... φ(χ ) > . , of the lattice field theories defined in section 2, 
1 n β, γ 

and the Green functions of the self-avoiding random walk model, respectively. 

We want to study the behavior of the functions Gβ (x1...,xn) at large distances, 

or, equivalently, in the continuum limit. 

In d > 3 dimensions, all models studied in our paper are known to 

have a phase transition, from a high temperature (small β) disordered phase 

with exponentially decaying connected correlations to a large (3 phase with 

long range order. Thus, for 3 small enough, 

G (x, y) < const, e m(^lx ^1 
P — 

(5.1) 

for some positive constant m(3) , (the inverse correlation length), and the 

susceptibility 

X(β) = Σ , Gβ (x, y) 
y ZZ 

(5. 2) 

is finite, while for sufficiently large β , X(β) diverges. See [14] and refs, 

given there. 
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In the N = 1, 2 (3, 4) component field theory models it is known that 

·· · / « →4 
there exists a critical point βc (which in the g|φ| -theory depends, of 

course, on the coupling constant g) with the property that m (β) and x(8) 1 

are positive, continuous functions of β, for β < β , and 

(5. 3) 

This result can be found in [14] and is conjectured to hold for all N 

with 

-2 < N < °° , 

in particular for N = 0 . 

In view of result (5. 3) one must ask how m (β) tends to 0 and how 

χ(8) diverges, as 8^ β
c

 . In the class of models studied in this paper it 

is expected that, for d ≠ 4 , a scaling law holds, ie. 

m(β) ~ τV 

Χ (β) ~ τ γ (5. 4) 

where . It is known that the critical exponents ν and γ satisfy 

the inequalities 

ν ≥ 1/2 and γ > 1 (5. 5) 

sec [14]. Moreover, for d 5 and (N = 1 , or 2)-component fields, 
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γ = 1 , (5. 6) 

see [1, 3], which is the value predicted by mean field theory. It has also 

been shown [15] that the critical exponent, a , of the specific heat vanishes 

in d > 5 . There are strong indications that in five or more dimensions and 

for an arbitrary number N = 0,1, 2, 3, ... of components mean field theory 

provides an exact description of the approach to the critical point; in parti 

cular 

ν = 1/2 , γ = 1 , a = 0 . 

In four dimensions, one expects that there are logarithmic violations of the 

meanfield theory scaling laws. Such violations are predicted by the renormali 

zation group. See [16, 17]. For example 

m (β) ~ τ½|lnτ| 

/ ~ 1 I |G 
X(3) ~ τ lnτ| (5. 7) 

Next, we introduce scaled correlations. Let θ be a parameter varying 

between 1 and 00 . We define 

(x
1
 , . . . , x

n
) = α(θ)

Π
 Gβ(θ) (θX

1
, . . . ,θx

n
) , (5. 8) 

where 
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and ZZd is the lattice with lattice spacing a , 
a 

α (θ) > 0 and β (θ) < β — c 

are functions which one tries to choose in such a way that the two-point 
/ Λ \ 

correlation function, ' (x, y) , has a non-trivial limit, as θ 00 , i. e. 

for 0 < | x-y | < 00 , 

(5. 9) 

From (5. 1) and (5. 3) it follows that 

β (θ) → βc , as θ °° (5. 10) 

more precisely, one may choose β (θ) such that the physical mass, i. e. the 

inverse correlation length measured in physical units, 

m* ≡ θm (β(Θ)) 

is kept fixed. By (5. 3) this is guaranteed if 

(5.11) 

β(θ) = m 1 (~) 
θ 

(5.12) 

• . — 1 m* and the inverse function, m , of m exists for sufficiently small, 
θ 

[14]. 

Next, we try to choose α(θ) in such a way that our renormalization 

condition (5. 9) is fulfilled. Not much is known about whether this is actually 
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possible. (The only examples where rigorous results are known are the two-

• . . . I → , 4 , 
dimensional Ising model and super-renormalizable λ|φ| models in two and 

three dimensions.) By scaling at large distances we mean the property that 

/
n
v2 d-2+η 

α(θ) ~ θ , (5. 13) 

where η is a critical exponent. It is expected that in d ≠ 4 dimensions 

condition (5. 9) can be fulfilled with functions β (θ) and α (θ) satisfying 

(5. 12) and (5. 13), respectively. From this it would follow that 

γ = ν(2-η) , (5. 14) 

a well-known scaling relation due to Fisher. 

In four dimensions, there might be logarithmic violations of (5. 13), 

i . e. 

α (θ)2 ~ e2|lnθ|E . (5.15) 

If (5. 9) can be imposed, the relation 

G = 2N - E (5. 16) 

(corresponding to (5. 14)) holds. These matters and further relations between 

critical exponents are reviewed in Appendix B. Here, we draw the reader's 

attention to the fact that, for all N = 1, 2, 3,..., 

η > 0 , i > 0 , (5.1/) 
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a consequence of the infrared bound 

0 1 Gβ(x, y) 1 β l
Cd
 U-yl2 d , (5. 18) 

where cd is a geometrical constant; see [18, 4] . 

Next, we define the connected four-point (Ursell) function, μ4 β 

μ4,β(χ1,χ2,χ3,χ4) " G
B

(X
1
»X
2
»X3»X4^ 

p
 GB(xp(l)Xp(2)) G8(xp(3),Xp(4)) * (5. 19) 

The scaled Ursell function is defined by 

(x1, X2, X3, X4) α(θ) β(θ) (θx1, θx2, θx3, θx4) , 
(5. 20) 

and 

For β < β
c

 , m(β) > O , and one can evaluate the Fourier transform of 

µ » Q at 0 momentum : 
4, β 

(5. 21) 

It is believed that in d ≠ 4 dimension 

- - (γ+2Δ) 
~ τ 

(5. 22) 
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for some critical exponent Δ > 0 , (and τ ≡ β 1(β -B) small). 
c c 

Let 

(5. 23) 

(5.24) 

(5. 25) 

(θ) We now define a dimensionless coupling constant ) as follows : 

(5. 26) 

By a trivial change of variables, one sees that 

s<8) = g
r
(β(θ)) , (5. 27) 

where 

g
r
 (β) = χ (β)

 2 m (3)d . (5.28) 

By (5. 22), the critical exponent of g(β) is 

dν + γ- 2Δ . (5. 29) 
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For small values of the critical exponent η and positive physical mass, 

) ≡ lira g(θ) = lim g (β) (5. 30) 
θ-χ» β^C 

measures the deviation of the theory in the scaling (= continuum) limit from 

a free, i. e. Gaussian theory, for which µ4 = 0 . Indeed, under our assumption 

on η and m* , 

) a - Jd
d
xd

d
yd

d
zy^°°'

)
 (0,x,y,z) . 

For N = 0,1, 2, 

(°°) µ4 (x1, x2, x3, x4) ≤ 0 , for all θ , (5. 31) 

the Lebowitz inequality [19] . Hence, 

= lim g ( β) = 0 µ
4

 0 . 
Β/\ Γ 4 

(5. 32) 

For N = 1, 2 , Newman has shown that the theory is trivial, i. e. Gaussian 

if and only if 

μ^0

-
1 = 0 ; [20] 

An earlier result of this sort was proven, in the context of axiomatic field 

theory by Borchers [21], 

(oo) (oo) ... 
If Μ

4
 ≡ 0 then g

r
 ≠ 0 which implies 

dν + γ - 2Δ = 0 (hyperscaling) (5. 33) 
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if scaling holds. 

r> i 4 
Finally, we wish to emphasize that the g !φ| lattice theories have 

really two independent coupling constants, g and β . In the construction 

of the scaling limit, not only β but also g may be chosen to depend 

on the scale parameter θ in such a way that (β)(θ) , g(θ)) converge to 

a critical point (β
c

, g(β
c
)) , as θ . The critical points of this theory 

are expected to form a curve of the type shown in Fig. 1 . 

If one passes to the scaling limit without (infinite) field strength - and 

charge renormalization - the procedure adopted in constructive quantum field 

theory in two and three dimensions - one chooses (for d < 4) 

(5. 34) 

Such theories lie in the vicinity of the Gaussian fixed point and have cano-

nical (free field) ultraviolet behaviour. 

It is one of the basic problems of two - and three dimensional stastistical 

mechanics to construct scaling limits associated with nontrivial critical 

points (3 , g(β )) , where β > β and g (β ) > 0 , in particular with C C— C O c 

β
C
 = β

C
 (Ising) , g = + 00 . 

The scaling limit of the two-dimensional Ising model has been constructed 

by means of an explicit solution; see [22] . Aizenman has recently found a 

very simple and elegant proof of hyperscaling in a class of two-dimensional 

Ising models [1]. The only general result valid in arbitrary dimension is an 

absolute upperbound on g (β) , due to Glimm and Jaffe [14]. See also [4] 

for a general discussion of these matters. 
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In the following we study "all possible" scaling limits in four dimensions, 

a problem which should be easier than its lower-dimensional analogue. Our 

results, partly theoretical, partly numerical, suggest logarithmic violations 

of hyperscaling and triviality of "all" scaling limits. 
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• ( 00 ) I 
§6. Estimates on |μ

4
 | and g

r
(BK 

The purpose of this section is to review inequalities on the four-point 

Ursell function, μ. (x
1

, x
2
,x~,x,) , and the dimensionless coupling constant, 

4, β l 2 3 4 

• · · * ι → 4 
which permit us to analyze the scaling limit of g J φ | theory, 0 g < °° , 

and the self-avoiding random walk model (N = 0, 1, 2) in four or more dimensions. 

Proofs are given in section 7. In four dimensions, we obtain results which 

sharpen earlier results in [3, 6]. Our methods are based on the random walk repre-

sentation of [2] which we have reviewed in sections 3 and 4. 

Let 

z
β
 (ω) = χ(ω) , N = 0, 1 , or 2 . (6.1) 

For N = 0 this is the statistical weight of a self-suppressing (g < °°) 

or self-avoiding random walk; see section 4. For g = 0 , it is the weight of 

the standard (non-interacting) random walk, and for N = 1, 2 , the weight which 

* . 4 » 
appears in the random walk representation of g|φ| theory, or the non-linear 

σ-models ; see section 3. 

We now introduce a quantity which plays a basic role in our approach : 

(6.2) 

where j is some fixed nearest neighbor of 0 , and 

Χφ(ω1>“2
) 

1 if ω1 and ω
2
 do not intersect, (ω1 Πω2 = Ø). 

0 , otherwise. 
(6. 3) 
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By definition (5.2) of χ(B) and the random walk representation (3. 9) - (3.12) 

of Gβ(x, y) , we have 
β 

(6.4) 

for arbitrary x . 

Therefore Q (β) is the probability (with respect ot the statistical 

weight z
β
 (ω

1
) zβ (ω2)) that two random walks, ω1 and , starting at 

neighboring lattice sites and ending at arbitrary sites do nowhere intersect. 

I I 4 . . 
Triviality of the continuum limit of g|φ| -theory or the self-avoiding 

random walk in four dimensions is intimately connected with the behaviour of 

Q(β) , as β
C

. We shall see that, for the N = 1 , or 2 component lattice 

theories, 

(6. 5) 

implies triviality of the continuum limit. 

Next, we summarize our main inequalities on the four-point function. 

It has been shown in [3] (following a very similar result in [1]) that 

in N = 0, 1, 2 component theories, and for x
i
 ≠ x

j
 , i ≠ j , 

(6.6) 

up to a term which vanishes in the continuum limit in d > 2 dimensions. 
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Σ extends over all z
1
  ZZ

d
 , and points z2 , , z

4 with 

z1 ; z2, z3, z
4 

IZj - Zj| = 0 , or 1 , j = 2, 3, 4 . 

By scaling distances, see (5. 8) and (5. 20), we obtain from (6. 6) 

0 > (z
1
, x

2
, x
3

, x
4

) > -3β (θ)
2
α(θ) 4 0d · 

(6.7) 

where now z^ ranges over ZZ
d

 , and |z. -Zj j <_ Θ ^ , j = 2, 3, 4 . At non-
θ 

coinciding arguments, i. e. x
i
 ≠ x

j
 , for i j , and under mild uniformity 

(θ) 
assumptions on G

 (θ) (x, y) which were discussed in [3] (in particular if 

m* > 0) 

(6. 8) 

is bounded uniformly in θ . Thus 

(6. 9) 

where k is a constant which is finite provided |x
i

 -x
i

| ε , i ≠ j , 
ε i j 

for arbitrarily small, positive values of ε . 

For N = 1, 2, 

d n r\ 

6 /α(θ) is bounded , (6.10) 
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as θ → 00 . See (5. 17). 

We conclude that, in four dimensions, 

(θ ) 
lim (x1, x2, x3, x,) = 0 (6. 11) 

unless 

α (θ) ~ θ, hence η = E = 0 , (6.12) 

i.e. the short distance behavior of the theory is canonical. 

In order to complete a proof of triviality of the continuum limit of 

the four-dimensional N = 1, or 2 component lattice field theories, we may 

henceforth assume that (6.12) holds and try to sharpen inequality (6.6). As 

recalled in section 5, it suffices, in this case, to analyze the behaviour of 

the dimensionless coupling constant, 

g
r
(β) = |ū

4,β
| χ(β)

-2

 m(β)
d
, 

as β  βc. More precisely, if η is small the continuum limit is trivial if 

(6.13) 

Our new inequality for gr(B) is 

0 ≤ gr(β) ≤ const, χ(β)
2 m(β)d Q(β) , (6.14) 

up to a term vanishing as ββc . This inequality sharpens one in [3]). Now 
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χ(β)2 m(B)4 

is bounded uniformly in β ≤ β
c

 ; (for N = 1,2) . Assuming a scaling law, 

or a behaviour as in (5.7) and (5.15), 

χ(β)2m(β)4 -
τ2νη 

|lnτ|-2E (6.15) 

Thus if η= E = 0 (6.13) follows if 

(6.16) 

Our results for the behaviour of Q(β) near the critical point are as 

follows : 

(1) If z (ω) is the statistical weight of standard (non-interacting) 

random walk 

Q(β) ~ | ℓητ | –K , (6.17) 

where 

½ ≤ K ≤ 1 · (6.17) 

This is an immediate consequence of recent results by Lawler [23] who conjec-

tures that κ = ½ . This is in agreement with "renormalization group" calcu-

lations which we have performed (which are non-rigorous). It follows easily 

from (6.17) that, in the continuum limit, two Brownian paths starting at 

different points do not intersect. This is a well known result [24]. 
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The advantate of the proof based on (6.17) is that it shows in which way 

intersection probabilities vanish, as the continuum limit is approached. 

See section 7. 

(2) If z
β
 (ω) = z°

 β, λ
(ω) is the statistical weight of the self-avoiding 

random walk – or the Edwards model then 

Q(β) ≤ – (2d)– 1 ∂/∂β χ– 1(β) ; (6.18) 

with equality in the case of the self-avoiding random walk model. Now note 

that for d = 4 , 

(6.19) 

unless mean field theory provides an exact description of the behaviour of 

χ(β) near βc. 

For the self-avoiding random walk model, the equation 

Q(β) = – (2d) –1 χ–1(β) 

provides us with the possibility of determining the critical exponent of the 

susceptibility χ via measuring the exponent of Q(β) . For d = 4 , our 

numerical data indicate 

Q(β) ~ τχ(β) ~ | ℓητ –G with G = . 24 ± . 02 (6.20) 

see section 8. 



- 35 -

(3) Consider the N = 2 lattice field theory. In (2.1) we have defined 

the lattice action of this theory as 

One can introduce an additional coupling term yielding an anisotropic iterac-

tion : 

We define 

(6.21) 

where < (·) > is the equilibrium expectation corresponding to the action 

Η . 

By arguments similar to the one given in section 7 for the self-avoiding 

random walk model and correlation inequalities one can show that 

Q(β) ≤ (2d)– 1 3χ(β,0) –2β– 1 ∂χ(χ, ε)/∂ε |
ε=0 

(6.22) 

Heuristically, 

for d > 4, 

But the proof is incomplete in d = 4 
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Results (1) through (3) lead us to the following conjectures : 

(4) In N = 1 , or 2 component field theories, for all 0 ≤ g ≤ ∞ 

and d > 4 , 

Q(β) ≤ -const. ∂/∂β χ
– 1

(β) (6.23) 

lim Q(β) = 0 , when d = 4 (6.24) 

Inequality (6.23) would imply that, in four dimensions, 

lim Q(β) = 0 , unless χ (β) > const > 0 , (6.25) 

for β near βc . Since by [19] 

–∂/∂β χ
–1

(β) ≤ 4d, 

(6.25) would give 

χ(β) ~ τ (6.26) 

Combining (6,12), (6.13), (6.16) and (6.26), we conclude, using Fisher's 

relations (5.14) and (5.16) that, in four dimensions, 

μ(θ)4 (x1, x2, x3, x4) = 0 , (for x
i
 ≠ x ., i ≠ j) , 

i.e. the continuum limit of the N = 1 , or 2 component field theories is 

trivial (Gaussian), unless 



- 37 -

(a) mean field theory is an exact description of the approach to the 

critical point, i.e. η = 0 , ν = ½ , η = 1 , E = N = G = 0 ; and (b) 

the probability that two (field-theoretic) random walks starting at neigh-

boring points do not intersect is positive. Statement (a) would, of course, 

violate the predictions of the renormalization group, [16,17]. 
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§ 7. Proofs of inequalities (6.6), (6.14) and (6.18). 

Our proofs rely on the random walk representation reviewed in section 3. 

By the definition of y, , see (5.19), definition (3.11) and the random walk 

formula (3.12), we have 

(7.1) 

where 

For the standard, non-interacting random walk on the lattice, we set 

(7.3) 

where Χ
ϕ
 has been defined in (6.3), and 

with zn
β, λ0

 (ω) given by (3.18). Thus, in the standard random walk model, 

Fcβ (x1, y1, x2, y2) is proportional to the probability that a random walk going 

from X1 to y1 and a walk from x2 to y2 do not intersect, just as in 

the self-avoiding random walk model. In all cases we simplify our notation to 

zβ(ω), zβ(ω1, ω2). 
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Our results in section 6 are consequences of the following inequalities for 

the weights, z : 

(A) If ω1 ∩ ω2 = θ (i.e. ω1 and ω2 do not intersect) then 

Zβ(ω1, ω2) ≥ Z
β

 (ω1)z
β

(ω
2

) ; (7.4) 

see [3]. 

(B) (7.5) 

see [2, 3]. 

For the standard and the self-avoiding random walk models, the proofs 

of (7.4) and (7.5) are trivial. For N = 1 , or 2 component field theories, 

the proofs are sketched in Appendix C. Note that the Lebowitz inequality, 

μ
4, β

≤ 0 ’ 

follows directly from (7.1), (7.2) and (B). By (A), 
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(and we have used that z
β
(ω1,ω

2
) ≥ 0 , for all ω1 and ω2.)

 Given ω1 

and ω2 , let z(ω1,ω2) be the last site on , with respect to the natural 

ordering of the jumps made by ω1 and thus of the sites visited by ω , where 

ω1 intersects ω2 . By making an error, , which vanishes in the continum 

limit, for d ≥ 2 , we can ignore walks and ω22 for which 

z(ω
1
, ω2)  {x1, y1, x2, y2} . Thus 

where 

|E1| ≤ const. β { Gβ(x1
 , X

2
)Gβ(x'2 , y1

 )G β(x
2
 , y

2
) + . . . } (7.7) 

with | x2–x'2 | = 1 · 

We denote by ω"2 a part of ω2 from z to y2 and by ω'
2
 a part of 

ω
2
 from x2 to z" , where z" is a nearest neighbor of z , in such a 

way that 
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where Ω denotes the composition of the sequence of jumps corresponding 

to with the sequence of jumps corresponding to , (providing the end-

point of ω , agrees with the starting point of ω2 .) Clearly 

(7. 8) 

By summing independently over and ω
2
" and using (7. 7) and (7. 8), we 

obtain 

(7. 9) 

where E ≡ Eβ (x1 , y1,x2 satisfies 

I Εβ
 (x

1
 ,y

1 ,x2, y2) I 1
 K

β . β{Gβ
(x

1
 ,x

2
) Gβ (x

2
', y

1
) Gβ (x

2
, y
2

) 

+ (x2 → y
2

) + (x → X1) + (x2 → y1 )} , (7. 10) 

where is a finite constant, and | x2-x2 I
 =

 1 · The error E β vanishes 

in the continuum limit for d ≥ 2 ; (to see this, one just applies the scale 

transformations of section 5). 

For standard random walks, 
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z (ω · ω ) = z (ω ) zβ (ω
2

) z , β 1 2 β 1 β 2 , 
(7. 11) 

see (3. 19), while for the lattice field theories and the self-avoiding random 

walk 

z ω · ω ) = z (m ω zβ (ω 1 2) V 1» i » 

by (3.15). Thus, applying (7.11), inequality (7.5) - see (B) - respectively, 

we obtain from (7. 9) 

• { Σ z (ω) z (ω’) χφ(ω, ω’)} + E , (7.12) 
ω : z'→ y1 

ω' : z→y2 

and we have resummed over ω
1
' , , using 

The error E = Eβ(x1, y^,x^,y2) is given by (7. 10). From that estimate it 

follows immediately that 

(7. 13) 
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as , in dimension d > 3 ; see also [3, 5]. We shall therefore omit 

the error term henceforth. If, on the r. s. of (7.12), we insert the trivial 

inequality 

χ (ω, ω') < 1 
Φ 

and resume over ω and ω' we obtain inequality (6.6). 

Next, we sum both sides of (7.12) over
 ,

 keeping x1 fixed. 

Using the definition (6. 2) of Q (β) and (6. 4) , we obtain 

< β2 m(β)dχ(B)2 Q(β) , (7.14) 

up to a term which, by (7.13), tends to 0 as β/* β
c
 , in d 3 . 

Applying (7.14) to all three terms in equation (7.1) for μ, , we obtain 
^ , β 

g
r
(β) Ξ I μ

4>Β

|χ(β)
 2

 m(B)
d 

£
 3β2 m(B)d

 χ
(β)2 Q(B) (7.15) 

where 

(up to a term vanishing, as 6 ̂  , in three or more dimensions.) We note 

that (7.15) is the desired inequality (6.14). 
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Finally, we turn to our proof of (6.18), i. e. for N = 0 , 

Q(β) 1 (2d) 1 χ 1(B) . (7.16) 

By (4.1), (4.2) and (4.3), we have 

where p(n) is independent of β . Thus, for β < βC 

If ω η
 ω

2
 =

 ^ 

ρ(ηΛω^ · ω^) ) = p(n
j
 ( ω

1
 ))p(n^ (ω2) ) . 

Thus, 
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Ιω,Ι 
• β π , ρ(n. (ω ))χ (ω ω ) 

jEZZ 3 9 

But 

hence, using the definition (6.2) of Q(β) , we obtain 

χ(8) ≥ (2d) χ(β)2 Q(6) , 

whence (7.16) . 
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§ 8 . The numerical data. 

Our numerical results were obtained by means of a Monte-Carlo simulation 

which used the Metropolis algorithm [25]. We generated a sequence of self-

avoiding random walks by repeatedly applying a set of elementary local deforma-

tions (an idea originating in our study of lattice string theories) and checking, 

at every step, that the nonlocal constraint that the walk be self-avoiding was 

respected. The transition probability T between consecutive members ω , ω' 

of the sequence was taken to be : 

T (ω → ω’) = — ρ(Δ|ω|)χ
εΛν

(ω') 

I ω| 
(8.1) 

where Δ|ω| = |ω’| - |ω| and
 XgAw^'^ unity if ω' is self-avoiding, 

and zero otherwise. The probability P(Δ|ω|) of each deformation was taken to 

depend only on the change of length of the walks and assigned as in ref [26], 

where such a procedure was first tested numerically. Thus (see Figure 2) 

(8.2) 

The factor in (8.1) corresponds to the arbitrary choice of the link where 

the deformation should act. 

In more conventional approaches to lattice field theories, one assigns 
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the degrees of freedon of the field in question to every lattice point (link). 

Each configuration of the system is specified by a number of variables propor-

tional to the size of the lattice. Computer memory limits one to lattices of 

4 
the order of 10 points. On the other hand, the method we used only stores 

points along the walk. We could thus code the four components of each point 

into a single-precision word (32 binary digits), which allows each component 

8 
to be as large as 2 . The length of the walks is then limited by the number 

of (single-precision) words in the available memory, which means that we may 

have lengths of thousands of steps. Even in regions which were sufficiently 

close to the critical point for scaling behavior to be observed, typical walks 

(a few hundred steps) never touched the boundaries of our lattice. As we plunged 

deeper and deeper into the critical region, the only consideration that we had 

to keep in mind was the time of approach to equilibrium. Within very reasonable 

computer times we were able to achieve very high precision, an essential require-

ment, as our aim consisted of measuring logarithmic deviations from mean field 

behavior. It is clear that the N = 0 case introduces an enormous simplification 

in the calculation. Had we treated the field theory case using a random walk 

description, the calculation of the weights carried by each point of the curve 

(which here is just a constant) would have to involve a determinant viewed as 

an expansion in terms of closed walks (see Appendix A). 

In four dimensions, the upper critical dimensionality for the ferromagnetic 

vector model, logarithmic corrections to scaling are expected from the pertur-

bative solutions of the Callan-Symanzik renormalization group equations [16, 17]. 

However, they were not yet tested in a nonperturbative context; we are able to 

provide such a test with the help of our numerical simulations. Thus, we measured, 

for a different values of the parameter ξ (see §2), the mean length of curves 

with fixed end points : 
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where m is the inverse correlation length, see (5.1), and the last equality 

follows from the identification : 

(8.4) 

Letting ξ = β = e b and τ, ≡ (b/b )-l , an ansatz of the form : 
be 

( \ 1/2 | I-N 
m(Tb)~Tb |tat

b
[ (8.5) 

together with (8.3) allowed us to determine from the data listed in Table I 

that N = · 14 ± ·03 . This value is to be compared with the renormalization 

group prediction of (1/8). Figures 3 and 4 show a linear and a logarithmic 

1/2 
plot of the data and best fits obtained from mean field theory (m (τb)~ τb ) 

and from (8.5). 

Encouraged by these results, we set out to gather numerical data on the 

behavior of Q(β) , defined in (6.2), as β yr . In fact, we actually mea-

sured a related quantity Q ; defined as : 

(8.6) 
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To compute Q numerically, we generated sequences of two self-avoiding 

walks that started from the origin and ended at two distinct points, 

and y2 . We then recorded the fraction of the total number of iterations 

corresponding to configurations in which the two curves did not intersect. 

The results of our measurements, for two different choices of the endpoints, 

are shown on Table II. Assuming a scaling law for Q(β; y 1 , y2) of the type : 

(8.7) 

where G is independent of the endpoints, and using the relation : 

(8.8) 

which follows from (8.6), we can easily obtain : 

(8.9) 

The expression in the curly brackets tends to some constant as β ̂  β
c
 , which 

permits us to identify, using (6.20) : 

G=V . (8.10) 

For the case of the self-avoiding random walk we may, as shown in sections 6, 7, 

relate Q(β) to the susceptibility χ(β) via (6.18), where the equality holds. 

Thus for Q , in view of (8.9) ; we have : 
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Q (β) ~ Q (β) = -(2d) 1 χ '(B) . (8.11) 

Resorting again to the renormalization group equations one can try to fit the 

data with an expression such as : 

Q (τ ; y
1
, y

2
) = C(y

1
 ; y

2
) { | ί,ητ | - Gin | fcnx | } G , (8.12) 

^ ^ 1 “ G 
which results from the relation ~ | £ηχ | , whose solution yields 

— 1 —G 
χ ~ τ|£ητ| (perturbatively one finds E = 0 , thus G = 2N) . From the 

data in Table II, we obtain (instead of β and τ , our fits were made for 

b and , as in (8.5)) : 

C(y1, y2) = .89 ± .02 G = .24 ± ·02 

y 1 = (5, 5, 0, 0) 

y2
 = (5,-5,0,0) 

(8.13) 

The perturbative prediction of the renormalization group in G = 1/4 . 

-
The dependence of Q on the choice of endpoints helps considerably. 

A mere inspection of the data could not rule out the possiblity that Q 

could tend to some constant C’  (0,1] . One could try a fit of the form : 

Q (τ ; y 1 , y
2

) = C(y1
, y
2

) { | ℓητ |-Gℓn | ℓητ | } G + C (8.14) 

If G is not too large, this would be numerically indistinguishable from : 

Ç en (C+C ' ) - (GC) ℓn{ | ℓητ | - ( ’ℓn | ℓητ | } (C+C' ) - (GC) £n | ℓm | (8.15) 
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The best one can make is to determine the combinations (C+C’) and (GC) , 

which leaves us with one free parameter, and allows for a number of equally 

good fits. To cope with this problem, one can then use the dependence of Q 

on the choice of endpoints. In (8.14) we have assumed the scaling law (8.7), 

and the independence of C' on the endpoints. Should Q tend to a nonzero 

value as τ 0 , such a value would be connected to the behavior at the critical 

point, where curves are infinitely long and thus, insensitive to the endpoints. 

Taking the ratio : 

(8.16) 

a value of C’ φ 0 would imply that R should depend on τ . Our data, however, 

show this ratio to be independent of τ , to a very good accuracy as τ → 0 . 

Using yj = (10,1,0,0), y2' = (10,-1,0,0) as endpoints, we computed (8.16) 

for three different values of τ and found it to be 1.57 ±·03 . This tends 

to support our contention that Q → 0 , thus Q 0 , as τ → 0 [27] . 
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TABLE I 

(Values of | < ω > | versus b) . 

6 < |ω | >(,) M >(2) 

2.100 19.99 19.78 

2.060 21.81 2 1.66 

2.021 24.19 24 . 38 

2.002 26.01 26.27 

1 . 984 28.23 28.65 

1.966 32.61 32.00 

1 .948 37.61 37.23 

1.931 46.21 46 . 35 

(1) Values obtained from the Monte-Carlo similation. 

(2) Best fit to the data assuming 

i) 

ii) 

C = 12.69 J -13 ; b 1.904 J -002 ; N - -14.» -03 
c 



- 53 -

TABLE II 

Values of
 Q(

T

k*
y
l
,y

2^
 versus b . 

b Q
(2) 

2.021 -681 •68 1 

2.002 •67 1 •67 1 

1 .984 •663 •66 1 

1 .966 •645 •648 

1.948 •635 •634 

(1) Values obtained from the Monte-Carlo simulation. 

(2) Best fit to the data assuming b
c
 = 1.904 and 

Λν> _ 
Q(Tb;yj,y2) = C(y1

, y
2
) { | £ni

b
 | -Gen|£nt|} 

C(y ,y2) = o89 ± -02 G = 24 ± ·02 . 
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Appendix A : The N → 0 limit . 

Let us consider the random walk representation of paragraph 3. The 

. N 
expressions (3.9) and (3.10) for z

Ω
 . may be rewritten as : 
β , A 

z
f

N

 x
(t) = Z

g

|
x
/n da(j) f(a(j))e

 2la(j)t(j) 

(A. 1 ) 

(A.2) 

In (A.l), we have just reintroduced the Fourier decomposition of f , whereas 

in (A.2), we have made use of (3.7) and identified the Gaussian integral of 

(A.l) with the determinant. We can once more appeal to the random walk represen-

tation to express this determinant as [2] : 

(A.3) 

We may then insert (A.3) into (A.2) . The resulting expression displays 

N 
N as a parameter, and it is not hard to show that z^ χ(

ω
) is analytic around 

N = 0 , (provided we work in finite volume, or keep (3 small; see e.g. [9]). 

. . . N 
We shall examine the N 0 limit of z and for that purpose we expand 

β , γ 

the exponential to obtain : 
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(A.4) 

where Σ' ≡ Σ Σ . Each term in the expansion corresponds to a sum over 

ω zZZ ω : z →z 
k closed random walks, i. e., a polymer gas. However, in the N → 0 limit 

only the k = 0 term will contribute, yielding : 

(A.5) 

where the last equality follows from (3.7). The expression for the two-point 

correlation in the N → 0 limit becomes : 

(A.6) 

Using the notation introduced in (4.2), 

(A.7) 

I ·4· | 4 , 
we shall now compute p(n) for g|φ| -theory and the nonlinear σ-model. 



- 56 -

4 
a) g IφI-theory. 

f (|φ|
2

) = exp[-f IÎI
4 + S&ëg&L |φ|2 +C] 

(A.8) 

Recalling from (3.6) that dv
o
(t) = δ(t)dt we immediately obtain : 

(A.9) 

Inserting this into (A.6) , (A.7), we obtain the propagator for the Edwards 

model of self-suppressing random walks. Letting g = 0 and using (3.7) we 

obtain, for the simple random walk : 

(A.10) 

b) The nonlinear σ-model. 

(A.11) 

Using (3.6), we integrate numerator and denominator by means of : 
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(A.12) 

after cancellations we arrive at : 

(A.13) 

This vanishes unless n = 0,l , in which case we may use the identity 

xf(x) = f(x+l) to establish : 

p(n) = δ ,+ δ 
η 1 no 

Therefore in (A.7), (A.8), we have the restriction that each site of the walk 

ω cannot be visited more than once. This corresponds to the self-avoiding 

random walk. 
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Appendix B : relations among critical exponents. 

Let us first consider the susceptibility of the continuum theory. By 

definition : 

(B. 1 ) 

where Σ , G . .(Ο, x) = χ(β) is the susceptibility of the lattice theory 
x€2Zd β(θ) 

at inverse temperature β(θ) . 

The expected behavior of such a quantity near the critical temperature 

is the power law (5.4) for d ≠ 4 . However, for d = 4 one might have expres-

sion (5.7), which admits a logarithmic deviation in the form : 

χ(β) ~ τ Ύ|£ητ|G (B. 2) 

analogously we may write the solution of eq. (5.12) near the critical point as 

τ(θ) ~ θ’1/γ [ ℓ.ηθ |N/ν (B. 3) 

with Μ ≠ 0 only for d = 4 , where ν = 1/2 . In this way, requiring that 

the limit in (B.l) exist 

(°°) 2
/flu"

d | I G-yN/v X ~ a (0)0 0 I £n0| 
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~ θ~
2+η+γ/ν

 |tne|
E+G

‘
YW/v 

implies, at the same time, the relations 

γ = ν(2-η) (B. A) 

and its extension for the logarithmic deviations in d = 4 

G = 2N - E (B.5) 

Furthemore, one can relate the exponents of the susceptibility for the S.A.W. 

to the exponents which appear in the counting problem for chains with L steps : 

if N(L) is the number of such chains, asymptotically for L large 

N (L) ~ µL Lρ | ℓnL |R . (B.6) 

Then 

From this identity, we obtain the asymptotic relations 

(B. 7) 

ρ+1 = γ (B. 8) 

R = G (B. 9) 
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A quantity often studied in polymer physics is the so called mean end-

to-end distance, which is the square root of the mean square distance for paths 

of length L . Once again, let us introduce indices for the asymptotic behavior 

of this quantity, which is expected to diverge as L |ℓnLj , where δ is in 

fact the Hausdorff dimension of these chains, and V- measures violations to 

the self-similar behavior on different scales of the chain. 

Let us also consider another quantity. If 

(B.10) 

On the other hand 

~m(g)ri ^ | £n m(B)| ~ [τ ν | tor | ^]
η
 ^ | £ητ | ^ (B.11) 

so that, by comparing (B.10) and (B.ll), we obtain 

p+l+2/δ = ν(4-η) (B.12) 



- 61 -

and for d = 4 

R + 2D = 4 N-E (B.13) 

which by (B.4), (B.8) and (B.5) , (B.9) reduce to 

δ = 1 / γ (B.14) 

D = N . (B.15) 

It is worthwhile noting that the exponents of the mean end-to-end distance are 

functions only of the exponents of the correlation length. 
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Appendix C : Inequalities for the z ' s 

We shall rederive here [3] the inequalities (7.4) and (7.5) which are 

the fundamental ingredients for the estimates contained in section 7. 

Let us first consider the case (A), in which the two walks ω, and 

ω
2

 do not intersect. We shall show 

z(ω1 ,ω2) > z (ω
1
) z(ω ) (C.l) 

(In this appendix, we shall omit the super (sub)-scripts for the z's) . 

By (3.10) this follows from 

Z(t1 +t2> - z(tpz^t2^) * (C. 2) 

If we define 

(C. 3) 

and F(x, y) = ℓη z (xt+ys) (C. 4 ) 

then 

(C. 5) 

Thus we have 
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(C.6) 

with < , denoting an average value in the measure 

(C. 7) 

where Z(t) is, as usual, a normalization factor. However, 

(C.8) 

for all values of y , as 

(C. 9) 

i 
is one of the Griffiths inequalities. So, we arrive at a lower bound if we set 

s = 0 in (C.6). Thus, using (C. 5), we obtain 

ℓn z(t+s) > ℓn z (t) + ℓn z(s) (C.10) 

O 
which through exponentiation and the definition of z implies 

(C.ll) 

when the two curves do not intersect Σ t(j) s (j) = 0 and (C.l) follows· 

j 
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For the inequality (B) let us first observe that the expectation 

< ψ\χ)φ*(γ) has a random walk representation : 

< φ
1
 (x) φ

1
 (y) > *

 =

 7?W
 1

 /
άν
ω

(ε

)
 z(t+s

) · (C.12) 
^ ^ ^ ω : x→y 

So that 

Σ z (ω 1 , ω2) = Σ /
 dv

w
 (t

2
) z (t1+t2) = 

: x→y : x→y 1 2 

= /άν
ω
 (t j) z(t

1
) < φ 1(x)Ψ 1(y) >(t

1
 ^ (C·13) 

but < φ^χ^
1
^) 1 < φ

1
(χ)φ

1
(γ) > (C. 14) 

by Ginibre’s inequality and as 

z ( ω
1
) = Jdv

w
 (t1) z (t1) 

inequality (B) follows, that is 

(C.15) 
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FIGURE CAPTIONS 

Figure 1 - Critical line for g | "φ | 4 theories. 

Figure 2 - Elementary deformations used in the Monte-Carlo procedure. 

Figure 3 - Linear plot of < |ω| > vs b . The full curve is our best-fit, whereas 

the dotted one corresponds to a mean field fit (no log corrections) with b = 1.904 

Figure 4 - Log plot of < |ω| > vs b . 
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