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Abstract :

We investigate the approach to the critical point and the scaling limit
of a variety of models on a four-dimensional lattice, including g|$|2-theory
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provide strong evidence for the triviality of the scaling limit and for loga-
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1% Introduction

This paper is motivated by three different but physically related pro-

blems

1) We want to sharpen the theoretical and numerical evidence that the continuum
. .

(= scaling) limit of N =1, or 2 component lattice g|¢|&—theory, the

corresponding o-models and the self-avoiding random walk model (the N - O

limit of the N-component o-models) in four dimensions are trivial (i.e.

Gaussian), for arbitrary mass-, charge- and field strength renormalizations
compatible with the convergence of the two-point function (renormalized propa-
gator). This continues the work of Aizenman [1] and of Brydges et. al [2]

and extends subsequent results on four-dimensional theories in [3] ; see also

[4,5,6].

2) We want to supply non-perturbative and numerical tests for the logarithmic

violations of mean field theory in the models mentioned in (1) on a four-

dimensional, simple hypercubical lattice and discuss the relevance of such vio-
lations for the problem described in (1). (In short : Logarithmic violations of

any of the mean field scaling laws appear to imply triviality.)

3) We want to develop a high-precision Monte-Carlo method for the numerical

calculation of critical exponents and log exponents in the self-avoiding random
walk model - which is relevant in polymer physics [7,8] - and potentially in

+ 4 : . .
g|¢| -theory on three—, and four-dimensional lattices.

We feel that this paper reports on satisfactory progress in all three

problems. In most respects, this paper contains few original ideas or innovations.

It might show, however, that some progress can be achieved by systematic and

careful use of existing ideas and techniques.



We now briefly describe the contents of the varicus sections of our

paper.

In Section 2, we introduce several models of Euclidean lattice field

theory which are studied in subsequent sections.

In Section 3, the random walk representation of scalar Euclidean lattice

fields is reviewed. This representation is omne of the main tools of our analysis.

In Section 4, we reconsider the limit when the number, N , of components
of the lattice field tends to 0. It is well known that the self-avoiding
random walk model, one of the standard models in polymer physics,is the N0
limit of some lattice field theory, the N-component, mon-linear o¢-model.

The random walk representation described in Section 3 is a very convenient tool

in the study of the N > 0 limit.

In Section 5, we describe, in general terms, how to construct the con-
tinuum (= scaling) limit of lattice models exhibiting continuous transitions,
and we explain how the construction of the continuum limit can be reduced to

analyzing the approach to the critical point of the lattice model.

In Section 6, we use the tools prepared in previous sections to study
the continuum limit of four-dimensional lattice theories, in particular of
g|$|4—13ttice theories with N = 0,1, or 2 component fields and the correspond-
ing g-+« limits, the self-avoiding random walk, the Ising - and the classi-
cal rotor model, respectively. We describe results suggesting that all conti-
nuum limits of that class of lattice theoriés aré trivial (Gaussian), and we
explain in which way triviality of the continuum limit is related to logarith-
mic violations of scaling laws which are predicted by the renormalization
group equations in the perturbative regime. We prove partial results supporting

the claim that all continuum limits of our lattice field theories are trivial



unless mean field theory is exact.

The proofs of the main results in Section € are given in Section 7.

In Section 8, we report on a detailed, numerical analysis of the approach
to the critical point in the self-avoiding random walk model, using a Monte-
Carlo technique which is accurate enough to detect logarithmic violations of
scaling laws which, in view of the results of Section 6, are so important for
the sutdy of continuum limits. Our numerical data are in excellent agreement

with the predictions of the perturbative renormalization group.

We have briefly reviewed, in appendices, results that the reader will
find useful. In particular, Appendix A explains how to derive the analytic
continuation in the number N of components of the field. In Appendix B, we
recall relations among critical exponents and illustrate their comnection with
exponents of quantities like the entropy factor, the mean end-to-end distance,
the Hausdorff dimension of random walks, etc. more commonly used in the con-
text of polymer physics. Finally, in Appendix C, the fundamental correlation
inequalities for measures on random walks, on which the results in Section 6

are based are briefly rederived.

We should stress that much of the material in Sections 2 through 5 has
appeared already in the literature and is included here for reasons of a clear,
self-contained exposition. In particular, Section 3 recall results which have
been obtained in [2], Section 4 and Apﬁendix A contain ideas which have also
appeared in [9,10] and in Section 5 we draw on 2 very clear and pedagogical

discussion of the continuum limit that has appeared in [4].



2. Definition of models

As announced, we shall analyze g|$|4 theory, non-linear ¢-models
(the Ising- and classical rotor model) and the self-avoiding random walk on
the four-dimensional, simple hypercubical lattice 224 . On a lattice of arbi-
trary dimension d , d = 1,2,3,4,... , these models are defined as follows
With each site j € Zfi we associate a classical spin - or field var%able,
$(j) € RN . The a priori distribution of $(j) is given by a measure
dl(g(j)) , independent of j , which is invariant under rotations and reflec-

. >, . . : . . .
tions of ¢(j) . The Hamilton function, or Euclidean lattice action, of this

theory is given by

HE = - 1 3@-3GH
(3,3")
1
SRS "2_(3'-&&’;) B d(&:,;) ’ (2-1)
wherc {(j,j') denotes a nearest neighbor pair (]j—j'] =1) , o 1is the finite

difference Laplacian, and (.,.) 1is the scalar product on Ez(ZZd)

The equilibrium state, or Euclidean vacuum functional, of this lattice

theory is given by the measure

>
-1 -gH :
du () = z2LBHO) @Gy (2.2)
BsA B>\ F
the partition function, ZB \ is chosen such that
=

d )y =1 §

Jodug @ ’

the parameter B 1is interpreted as inverse temperature or field strength.

Mathematically, the measure duB J\(Eﬂ) must be defined as a limit of

k]



A . . . oo S, .
measures dug , , defined on configurations, {¢(3)]iEA , of spins in

] -
finite sublattices A c Ed , as ) increases to ZZd . Some limit can always
be constructed by compactness. In the cases of interest to us (N = 0,1,2) the

limit A/”Zd is known to exist [11] .

The objects of interest to us are the correlation (or Euclidean Green)

functions which are defined as the moments of the measure du8 N i.e.
n a. n o, .
< 1 ¢ x> = 1 ¢ 3(x.)du8 NE) , (2.3)
j=1 LT j=1 3 TR

. -+
where ¢u is the o-th component of ¢ .

In this paper we shall, as announced, investigate the scaling limits =
continuum limits of these correlation functions, or, equivalently, their beha-
viou: for B in the vicinity of a critical point, in four dimensions. We study

the apnroach to the critical point within the symmetric phase.
We now mention two examples of such lattice field theories

(1) the g!;ﬂ4 theory

In this example we set

a@d = £([3Hd% . witn

2
£(13]7) = expl- B3] + 5 13]° + 1, (2.4)
2 N o a
where g >0, 1y~ real and ¢ 1is some constant ; d ¢ = n  dé

By a trivial rescaling, &:(j) —_— const.{f(j) , 1t is seen that the

expectation <(.)§ 3 really only depends on two-parameters, @8 and g , say ;

2 .
(y~ could be set = 1, for examplc). We change our notation to



< . > EC (e -
Gl :
and we shall usually drop the subscript g .

(2) non-linear o-models on the lattice

If in formula (2.4) we set

let the constant ¢ depend on g and N in a suitable way and then take

g + we obtain
(D) = s(|312maVy : (2.5)

If we replace dx by dx_ in the preceeding formulas we obtain the vacuum
functional and the Green functions of the non—linear o-model on the lattice,
also called N-vector model. This model has only one free parameter, g

We use the notatiom

< () )B‘=‘< (.) )[‘7:.3\ .

un

Next we introduce the self-avoiding random walk model.

This model arises from example (2) by analytic continuation in N to N =0

A random walk w on the lattice Zd is specified by an ordered

sequence of nearest-neighbor jumps, (w(s),w(s+1l)) , s = 1,---,[m| , where
lw| denotes the total number of such jumps. To each random walk  we assign
a statistical weight, zz(w) , given by

o

z, (0) = g'“' A (2.6)

A random walk u 1s said to be self-avoiding if no site of the lattice is



visited by w more than once. The notation

Wi X ——y

indicates that the walk w starts at the site x and ends at y . The
sites visited by a random walk w really form an ordered set, ordered by the

parameter s introduced above.

Next, we introduce Green functions for the self-avoiding random walk

model : We choose n pairs of sites, XY s s XY s and define

n
o _ . o
Pg(xlsyls°“txn1yn) = . _x2+y 121 zg(ml) ) (2‘?)
377373
j=1,..,n
where ! ranges over all self-avoiding random walks, Wy v sy o which

avoid each other, i.e.
wy n w = [ >

for 2 # k . We now define Green functions

G_(x,. ), (2.8)

£ ) = ¢ Fz(x

. p(1)>*p(2)* > *p(2n-1)"*p(2n)

. ,in

where E ranges over all pairings of {x1’°"'x2n} into pairs Xp(Zk-l)'
Xp(Zk) . Note that the functions Gg(xl""’XZn) are symmetric in their

arguments, just like the correlation functions

o o
<%t (x) 5. s a€{l,. N (2.9)

As 1s known, the functions Gg(xl""’XZn) are actually equal to the limits
of the correlation functions (2.9) of the non-linear o-model as N »> O if

we set



E'=8B . (2.10)

This is further discussed in § 4, and the proof is outlined in Appendix 1.
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3. The random walk representation

In this section we briefly recall a random walk represenation of clas-
sical spin systems, originally introducéd in [10,12,2] . It exhibits a basic
mathematical relationship between lattice field theory and random walk models.
The following calculations are formal ; the rigorous justification has been

given in [2] . We assume that
a@ = £(31Hd% (3.1)

where f 1is a smooth function on the real line decreasing stronger than
exponentially at infinity. A general class of single spin distributions can

be obtained from distributions satisfying (3.1) by limiting arguments. Let
2
e O L e (3.2)

be the Fourier decomposition of £

Let F(;) be a function depending smoothly on a finite number of

: : > . . : ;
spln variables, ¢(j) . We consider the correlation function

1 -
' F@) 5,

Inserting (3.2) into (2.2),(2.3) and interchanging integration over the E—

and over the a-variables we obtain

1 +
<¢ (x)F(¢) >B,)\ =
R ) (3.3)
S L 3@, err2iad)
Zg 3 AT £(a(i))da3)-f ¢ (0F(d)e T dui,
o j

where

(Ph)(j) = - T h(ji') :
i':li-it]=1 -
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and a denotes the function which takes the value a(i) at site j . The
g—integral on the r.s. of (3.3) is Gaussian and can be evaluated explicitly.

This yields

1 > _
< ¢ (X)F(4) >Bl.l =

_ 2;11 £ [ %(a(j))da(j)(8P+Zia)_ly. o
» y j
1,4 o
> =5(¢,(BP+2ia)¢)
I BF{Q) i I
3¢~ (¥) ;

Following [12,2] we expand (BP+2ia);; in a Neumann series in QP . [Under
our assumptions on f , f(a) is an entire function of a . We may therefore
shift the contours of the a(j)-integrals in (3.4) in such a way that on the
shifted integration contours the Neumann expansion of (£3P+2:ia)_1 in gP
converges. ] Each term in that series is labelled by a random walk, w ,
starting at x and ending at y . Lét nj(w) denote the number of visits of

the walk  at the site j . Then

. \=1 | A0
(BP+213)xy - I B n (2ia(j)) s (3.5)
W= Xy ]
as one easily verifies ; see also [ 2 ]. We define
§(t)dt . ifn=20
dvn(t) = (3.6)

rm) 1" lo(e)de , o =1,2,3,... ,

where r(n) = (n-1)! , and ¢ 1is the Heaviside step function. Inserting
(3.5) and the identity

(2ia) ™ = [ o 2iat dv_(t) (3.7)
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into (3.4) and carrying out the a(j)-integrals, we obtain

1 > -
< ¢ (X)F(9) >a =

’k
= Blwlz-lk‘[n dv (3 (€D
Yy wiXsy B> J i
. f e—BH($) 9F (¢) . f(|$(j)|2+gt(j))dN¢(j) . (3.8)

367G

The variables t(j) have the interpretation of local times : t(j) 1is the
total time the walk  spends at site j . By (3.6), these local times have

a Poissonian a priori distribution.

Identity (3.8) is the basic formula relating lattice field theories

to random walks. It can be iterated by writing

const., or

2 (y") F'(§) !

for some v'€Z , o=1,...,N, and some new function F' . We now define

dv (t) =11 dv (t(3))
w j l‘lj(w) (3-9)

2 (0 =20 e PO g e3a) Be2e ) d% ()

s A .
B B-X i
and
N l 1wk! N
20y (Wyseeeiw ) = f o6 d“wk(tk)zﬁ,A(L1+"'+tn) (3.10)

k=

Finally, we define
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N N
Fﬁk(xl’y1’°"xn'yn) E 'Z N zB,A(ml""wn) . (3.11)
s
k=1,.,n
Then
2n » N
e ¢ (x5) % 5 B Fo.2 (1) **p(2071)*%p(2n)? »3-12)
and
2n a 2m o
< ¢ (x.) 1 ¢ ((v,.)>
el 2 [ k™ By
=3I I F (x X ), (3.12")
T e TE M (C O MO R N

for a # o' ; etc.

We want to note the following identity : Let Wyse et be m given

random walks. Then Wyt et denotes the union of the m ordered sequences

corresponding to WyseeesW s respectively, so that

m
nj (U.'!l L P {.l.]m) = kil nj (wk) . (3-13)
By (3.6)
d(vn Kook v Y(t) = dun - (t) s
1 m 1 m
where x 1indicates convolution, so that
d(\.:m * ... v )(t) =dy . (t) . (3.14)
1 On Wyt et

It then follows from (3.10) that



_la-

N N
ZB,A(NI""’wn) = zs,l(w1 Aoc wn)
(3.15)
= [dv ()2 (t)
Wy *ese 79
In order to familiarize ourselves with these notions we consider a
simple example :
1 2 2..N
dr () = exp[- 7(2dg+n)) [§]1d9 . (3.16)
In this case
3,2 2 (2d +n2)t
-+ i I
£(]3]7+2t) = £(|3|%)e” 2BT0 ,
hence
N —(2d8+m2)t.
z (t) =11 e ° ]
BsA .
o ]
Note that this quantity is N-independent. Thus,
lo| N s
dP(w,t) = B z (t)dy (t) . (3.17)
£ w

o

is the usual lattice approximation to the Wiener measure, expressed in terms

of local times {t(j)}jEZEd . In this simple case, the t(j)-integrals can be

computed easily, and we obtain

-n. (y)

N :
Z (w) = Blwl | (2ds+m2) J g (3.18)
8!1 L3 0]
0 J
By (3.13), (3.15) and (3.18)
N _ N
ZB’Ao(wls"‘gwn) e ZB,} (ml " L. ® wn)

o



._15_

|
L=~

zg Y (mk) . (3.19)
*"o

k=1

Now note that by (3.11), (3.12) and (3.18)

<"06% > , = Fp y (L)
) )

= z ZB,X (w)
w: x>y o
= (-Ba+m?) "} , (3.20)
o’ xy
and, using also (3.19),
N n 2. -1
F (X7 3Y.5-225%X .y ) = T (-BA+m ) . (3.21)
8,10 1’71 n’’n k=1 o x, vy

Thus, this example is nothing but the well known Brownian motion (proper

time) representation of the free (Gaussian) lattice field of mass m
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4, The limit N =+ O
In this section we review the well known results [7,8] that
(a) the N =0 1limit of g|$|& theory is the Edwards model [13] of self-

suppressing random walks ;

(b) the N =0 1limit of the non-linear o-model is the self-avoiding random

walk model. Our arguments are based on the results of Section 3. See also [9].

By (3.11), (3.12) and (3.15), it is enough to identify the N =0
limit of the weights z: A(Q) , where QE{ul TR I for some random walks

CAEREREY We recall that

o - gl d t.)zY 4.1
zB,A(Q) B Jjgﬁd vnj(m( j)zs,l(t) . (4.1)

In Appendix 1 we sketch the proofs of the following facts :

1f

a@d = V@) = 31>

g . . + 4 . .
1s chosen appropriately, e.g. as in g|¢| theory or in the non-linear o-

N
z
BsX

function of N which is analytic in a neighborhood of N = O , (provided we

model with N-component fields - see (2.4) and (2.5) - (n) extends to a

work in a finite volume, or keep R sufficiently small ; see e.g. [9].)

Moreover

J
(@ = lim 2\ @ = glol o

ZO
B 3 N“'O B 3 jez{.

g PO@) )

where

|a| =

=
nes 3

|| >
et
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N
: dv (e)f (2t)
p(n) = lim I n+(N/2) . : (4.3)
N+O [ duy o (£)E(28)
and
-1 x-1
d\;x(t) = r(x) "t7 Tp(t)dt , (4.4)

for =y 0=l =2 rnot

In g|$[4—theory we choose fN(|${2) f(1$|2) as in (2.4) , indepen-

m

dently of N with
WS %28 2dg 4wl (4.5)
and obtain
- (gt*+ (2dg+m) ©)
p(m) = [ dy_(t)e , (4.6)

nn=R1 2 e

. . o . - .
Note that, in this case, zB K(Q) converges to the statistical welght
)

of ordinary random walks, defined in (3.18), (3.19), as g O .
In the g-model, we choose de(z) as in (2.5) and obtain

p(n) =6 ) + 6 (4.7)

We conclude that, in this case,

. N
lim < M%) e g® (X)) > =G (Xyyeee X)) , (4.8)
N+O | ¢ ¥q g g=p 1 n
where < (.) >E = < (.) % is the expectation of the N-component g¢-model

defined in Section 2, and GE is the Green function of the self-avoiding

random walk model introduced in (2.8). There are further relations, similar
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to (4.8), which follow from (4.2), (4.6), (4.7) and the results in Sections
2 and 3 and which we refrain from writing out explicitly. For details see

Appendix A .



§5. Scaling limit and critical exponents.

In order to simplify our notations we only consider N =1 component
fields and the self-avoiding random walk model throughout this section. Moreover,
. . . +> 4 . . .
we first imagine that the |¢| -coupling constant, g , is fixed, (e.g. at

g = +o , corresponding to the Ising model limit).

By GB(xl,...,xn) we denote the correlation functions,
< ¢(x]) ...¢(xn) >B’A , of the lattice field theories defined in section 2,
and the Green functions of the self-avoiding random walk model, respectively.
We want to study the behavior of the functions Gﬁ(xl""xn) at large distances,

or, equivalently, in the continuum limit.

In d > 3 dimensions, all models studied in our paper are known to
have a phase transition, from a high temperature (small B) disordered phase
with exponentially decaying connected correlations to a large B phase with
long range order. Thus, for £ small enough,

-m(R) | x-y|

GB(x,y) < const. e (5.1)

for some positive constant m(B) , (the inverse correlation length), and the

susceptibility

x(B) = & G (x,y) (5.2)
yEZd B

is finite, while for sufficiently large B , x(B) diverges. See [l4] and refs.

given there.
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In the N = 1,2 (3,4) component field theory models it is known that
there exists a critical point Bc (which in the g|${4-theory depends, of
course, on the coupling constant g) with the property that m(B) and )((B)-l

are positive, continuous functionsof 8, for B < B and

1in m(g) = lin x(8) ! =0 (5.3)

878, 878

This result can be found in [l4] and is conjectured to hold for all N

with

-2 < N<w ,

in particular for N = 0 .

In view of result (5.3) one must ask how m(B) tends to O and how
x(B) diverges, as B.”7 Bc . In the class of models studied in this paper it

is expected that, for d # 4 , a scaling law holds, i.e.

m(B) ~ T
x(8) ~ 1Y (5.4)
BC“B
where 1 = 8 . It is known that the critical exponents v and Yy satisfy
c .

the inequalities

v>1/2 and y > 1 (5515)

sec [l14]. Morcover, for d > 5 and (N =1, or 2)-component fields,



_2]_

y=1, (5.6)

see [1,3], which is the value predicted by mean field theory. It has also
been shown [15] that the critical exponent, o , of the specific heat vanishes
in d > 5 . There are strong indications that in five or more dimensions and
for an arbitrary number N = 0,1,2,3, ... of components mean field theory

provides an exact description of the approach to the critical point; in parti-

cular

v=1/2,y=1,a=0.

In four dimensions, one expects that there are logarithmic violations of the

meanfield theory scaling laws. Such violations are predicted by the renormali-

zation group. See [16,17]. For example

m(R) ~ 11/2|£nT]—N

e (5.7)

Next, we introduce scaled correlations. Let 6 be a parameter varying
between 1 and « . We define
G(e)(x

.,xn) = a(G)n G (Hxl,...,exn) s (5.8)

B(6)

where

X, € ', ie. x. € ,
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d . . 7 . .
and zza 1s the lattice with lattice spacing a ,

a(8) > 0 and B(8) :-Bc

are functions which one tries to choose in such a way that the two-point
p . 6 e _ :
correlation function, G( )(x,y) , has a non-trivial limit, as 6 -+ « , i.e.

for 0 < |x-y| < =,
0 < 6™ (x,y) = 1im ¢ (x,y) < = (5.9)

6 40

From (5.1) and (5.3) it follows that
R(8) - Be » as B > (5.10)

more precisely, one may choose Rg(8) such that the physical mass, i.e. the

inverse correlation length measured in physical units,

=]
*
"

= em(B(0)) (5.11)

Y

is kept fixed. By (5.3) this is guaranteed if

B(6) =m (i“g) (5.12)

. . -1 . m* . .
and the inverse function, m , of m exists for ¥ sufficiently small,

[14].

Next, we try to choose «(8) 1in such a way that our renormalization

condition (5.9) is fulfilled. Not much is known about whether this is actually
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possible. (The only examples where rigorous results are known are the two-
dimensional Ising model and super-renormalizable k]m4 models in two and

three dimensions.) By scaling at large distances we mean the property that

alB) g o (5.13)

where n 1is a critical exponent. It is expected that in d # 4 dimensions
condition (5.9) can be fulfilled with functions B8(6) and «a(8) satisfying

(5.12) and (5.13), respectively. From this it would follow that

y = v(2-n) , (52)
a well-known scaling relation due to Fisher.

In four dimensions, there might be logarithmic violations of (5.13),

a(8)? ~92[£ne[E . (5.15)

If (5.9) can be imposed, the relation

G=2N-E (5.16)

(corresponding to (5.14)) holds. These matters and further relations between
critical exponents are reviewed in Appendix B. Here, we draw the reader's

attention to the fact that, for all N = 1,2,3,...,
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a consequence of the infrared bound
0 < Gglx,y) < 870, Iy P0 (5.18)

where ¢, is a geometrical constant; see [18,4] .

Next, we define the connected four-point (Ursell) function,

Mg
by, (X1 %s¥30%,) = Gplx)sXp,%3,%,) -
I R TR TC R TR TO LI
The scaled Ursell function is defined by
(8) ' 4
My (Xp5%y,%q,%,) = a(6) UA,B(B)(BXI,8x2,8x3,Bx4) : (5.20)

and

m . (0
“i )(xl’x2’x3’x4) =D “2 ‘ (%) %5, %4,%,)

For B < Bc , m(B) > 0 , and one can evaluate the Fourier transform of

u at 0 momentum :
4,8

u = I Y (0,x,,%X,,%X,) (5.21)
4,8 ijZd 4,8 2°73° %4

i=2,3,4
It is believed that in d # 4 dimension

=~ (t28)

Y4,8 (3:22)



ol . -]
for some critical exponent A > 0, (and T = Bc (BC-B) small).

Let
30 - o o (5.23)
4 d 4 227374
x.€E7Z
I 47l
3_23394
MO I, , e ¢® (0,%) (5.24)
xEZE_l
6
(8) _ _
m = 6m(B(0)) = m* = const. (5.25)
We now define a dimensionless coupling constant gie) as follows :

6P = ) ()2 (08

(5.26)
By a trivial change of variables, one sees that
(®) _
g. = 8.(B(8)) , (5.27)
where
(8) = -u OREION (5.28)
g]’.' - lJZl,B X ) m L. b

By (5.22), the critical exponent of g(g) is

dv +y- 2A . (5.29)
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For small values of the critical exponent n and positive physical mass,

gl = 1im g(® = 1in g_(8) (5.30)
Brreo 878,

measures the deviation of the theory in the scaling (= continuum) limit from

a free, i.e. Gaussian theory, for which u, =0 . Indeed, under our assumption

on n and m* ,

gim) o - jddxddyddzuim)(o,x,y,z) =
For N =0,1,2,
(=) 1
My (xl,xz,x3,x4) <0, for all 6, (5.31)

the Lebowitz inequality [19] . Hence,

(=) : () _
g = limg (B) =0y, "=20. (5.32)
Toemg T *

For N = 1,2 , Newman has shown that the theory is trivial, i.e. Gaussian

if and only if
(=) _ .
v, o= 0 ; [20]

An earlier result of this sort was proven, in the context of axiomatic field

theory by Borchers [21].

1f uém) £ 0 then giw) # 0 which implies

dv + y=2A = 0 (hyperscaling) (5.33)
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if scaling holds.

|4 lattice theories have

Finally, we wish to emphasize that the glg

really two independent coupling constants, g and B . In the construction

of the scaling limit, not only B but also g may be chosen to depend

on the scale parameter © in such a way that (B(8) , g(8)) converge to

a critical point (Bc,g(Bc)) , as 0 > o | Thé critical points of this theory
are expected to form a curve of the type shown in Fig. 1 .

If one passes to the scaling limit without (infinite) field strength - and
charge renormalization - the procedure adopted in constructive quantum field
theory in two and three dimensions - one chooses (for d < 4)

B — 8, , a(®)’ ~ 6977, g(o) ~ 697"

B-3co

(5.34)

Such theories lie in the vicinity of the Gaussian fixed point and have cano-

nical (free field) ultraviolet behaviour.

It is one of the basic problems of two - and three dimensional stastistical
mechanics to construct scaling limits associated with nontrivial critical
points (ﬁc,g(ﬁc)) » where 8 > B, and g(BC) > 0 , in particular with

B, = B, (Ising) , g = + «

The scaling limit of the two-dimensional Ising model has been constructed
by means of an explicit solution; see [22] . Aizenman has recently found a
very simple and elegant proof of hyperscaling in a class of two-dimensional
Ising models [1]. The only general result valid in arbitrary dimension is an
absolute upperbound on g (8) , due to Glimm and Jaffe [14]. See also [4]

for a general discussion of these matters.
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In the following we study "all possible" scaling limits in four dimensions,
a problem which should be easier than its lower-dimensional analogue. Our
results, partly theoretical, partly numerical, suggest logarithmic violations

of hyperscaling and triviality of "all" scaling limits.
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§6. Estimates on |u§ and lim gr(B).

BIBC

The purpose of this section is to review inequalities on the four-point
Ursell function, pﬁ's(x],xz,x3,x4) , and the dimensionless coupling constant,
which permit us to analyze the scaling limit of g[iﬂ‘!l theory, 0 < g <= ,
and the self-avoiding random walk model (N = 0,1,2) in four or more dimensions.
Proofs are given in section 7. In four dimensions, we oBtain results which
sharpen earlier results in [3,6]. Our methods are based on the random walk repre-

sentation of [2] which we have reviewed in sections 3 and 4.

Let

zB(M) = zN

BA(LU) , N=0,1, or 2 . (6.1)

For N = 0 this is the statistical weight of a self-suppressing (g < =)

or self-avoiding random walk; see section 4. For g = 0 , it is the weight of
the standard (non-interacting) random walk, and for N = 1,2 , the weight which
appears in the random walk representation of g|$|4 theory, or the non-linear

0-models; see section 3.

We now introduce a quantity which plays a basic role in our approach :

-2
Q(B) = x(B) z z X, (w,0,)) z, (w)z,(w,) (6.2)
y],yzinzd wl:G*y] A e B St

wyiiiy
where j is some fixed nearest neighbor of 0 , and

1 if o and w, do not intersect, (mlfTub =@).

X, (wy,0,) =
L 0 , otherwise.

(6.3)
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By definition (5.2) of Xx(B) and the random walk representation (3.9) - (3.12)

of GB(x,y) , we have

x(B) =L ) zg(w) (6.4)
Yy Wixy

for arbitrary x .

Therefore Q(B) is the probability (with respect ot the statistical

welght zB(wl) 28(m2)) that two random walks, ) and Wy starting at

neighboring lattice sites and ending at arbitrary sites do nowhere intersect.

- - - 3 - - -+ . -
Triviality of the continuum limit of g|¢|4—the0ry or the self-avoiding
random walk in four dimensions is intimately connected with the behaviour of
Q(R) , as B B.. We shall see that, for the N =1, or 2 component lattice

theories,

lim Q(B) = 0 (6.5)
878,

implies triviality of the continuum limit.

Next, we summarize our main inequalities on the four-point function.

It has been shown in [3] (following a very similar result in [1]) that

in N = 0,1,2 component theories, and for X, # xj , 1 #3,
2 4
0 = ]—’A,B(x])xzstaxz’) = -3 B z 2 [’B (xjszj) ’ (6.6)

2132952352, ] |

up to a term which vanishes in the continuum limit in d > 2 dimensions.
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z extends over all =z € zad , and points z with

] S
Z32952352,

2 3°* %

|zj —z]| =0, orl, j=2,3,4.

By scaling distances, see (5.8) and (5.20), we obtain from (6.6)

od
0>y )(xl,xz,x3,x4) > —38(8) a(B) .
4
- \
c{x o4 1 ¢(® (x,25)) 6.7)
2132952352, j=1

where now z, Tranges over EZd_], and |zj-z]i < 6-1 , J = 2,3,4 . At non-
6

coinciding arguments, i.e. X # X5 for i # 3j , and under mild uniformity
assumptions on G(e) (%x,y) which were discussed in [3] (in particular if

m* > 0)

4
824 270 {z 691 ¢®(x,,z2.) (6.8)
j=1 J .]
is bounded uniformly in 6 . Thus
05 (e xyoxgox) | < k0474604 P a(@)?) (6.9)

where k_ is a constant which is finite provided |xi-xj1 BE T

for arbitrarily small, positive values of ¢ .

For N = 1,2,

Bd_zfa(s)2 is bounded , (6.10)



as 6 + » , See (5.17).

We conclude that, in four dimensions,

i ua(e) (x ) =0 6.11)

1°%20 %30 %,

unless

a(6) ~6, hence n=E=0, (6.12)

i.e. the short distance behavior of the theory is canonical.

In order to complete a proof of triviality of the continuum limit of
the four-dimensional N =1, or 2 component lattice field theories, we may
henceforth assume that (6.12) holds and try to sharpen inequality (6.6). As
recalled in section 5, it suffices, in this case, to analyze the behaviour of

the dimensionless coupling constant,

— -2 d
g, (8) = [1, ol x(8) " m®)" ,
as B .7 Bc . More precisely, if n 1is small the continuum limit is trivial if

lim g (8) = 0 . (6.13)
878,

Our new inequality for gr(B) is

0 < g (8) < const. x(&)° m(®)® o) , (6.14)

(up to a term vanishing as B/”BC . This inequality sharpens onc in [3]). Now



x(8)% m(py”

is bounded uniformly in B f-Bc ; (for N = 1,2) . Assuming a scaling law,

or a behaviour as in (5.7) and (5.15),

2v
29N

2 4
x(B) m(B)  ~ |£nr|—2E (6.15)

Thus if n=E =0 (6.13) follows if
lim Q(B) =0 (6.16)
87%8

Our results for the behaviour of Q(B) near the critical point are as

follows :

(1) If 2z (w) 1is the statistical weight of standard (non-interacting)

random walk

Q(B) ~ |ent|™* (6.17)

where

Ve TN : (6.17)

This is an immediate consequence of recent results by Lawler [23] who conjec-
tures that « = 1/2 . This is in agreement with "renormalization group" calcu-
lations which we have performed (which are non-rigorous). It follows easily
from (6.17) that, in the continuum limit, two Brownian paths starting at

different points do not intersect. This is a well known result [24].
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The advantate of the proof based on (6.17) is that it shows in which way
intersection probabilities vanish, as the continuum limit is approached.

See section 7.

(2) 1f zB(w) = z (w) 1is the statistical weight of the self-avoiding

o]
By

random walk - or the Edwards model then

) < - Zx7e (6.18)

with equality in the case of the self-avoiding random walk model. Now note

that for d = 4 ,

(6.18) 1implies 1lim Q(B) = 0 , (6.19)
g8

c

unless mean field theory provides an exact description of the behaviour of

x(B) near B, -

For the self-avoiding random walk model, the equation

PPN B T
Q(B) = —(24d) 38 X (BR)

provides us with the possibility of determining the critical exponent of the
susceptibility x wvia measuring the exponent of Q(f) .For d = 4 , our

numerical data indicate

Q(B) ~ 1x(B) ~ |2.nr|-G with G = «24 + 02 (6.20)

see section 8.
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(3) Consider the N = 2 1lattice field theory. In (2.1) we have defined

the lattice action of this theory as

e R
HG) = - & $(@) -9G" .
(3,3")
One can introduce an additional coupling term yielding an anisotropic iterac-

tion :

B 1 (oeD) =H@) - e = ¢'Gre'Gn
(553"

We define

x(Bse) = T < ¢ 4]
X

a8 >B’C (6.21)

where < () >B . is the equilibrium expectation corresponding to the action
3

H
3

By arguments similar to the one given in section 7 for the self-avoiding

random walk model and correlation inequalities one can show that

Qe) < a7} 3x(8,0) %! 33(—;‘;-51 | o (6.22)
Heuristically,
-1 3x(B,e) -~ ox(®8)
B -—gg*h—* c=0 38 , for d > 4 ,

But the proof is incomplete in d = 4 .
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Results (1) through (3) lead us to the following conjectures :

(4) In N=1, or 2 component field theories, for all 0 < g < =

and d > 4,

Q(8) < —const. & X' (8) (6.23)
lim Q(B) =0, when d = 4 (6.24)
BAE,

Inequality (6.23) would imply that, in four dimensions,

lim Q(B) = O , unless . X_I(B) > const > 0 , (6.25)
ap =
B/ B,
for R near Bc . Since by [19]
-2 ) < 4d
BB X — ]
(6.25) would give
-1
x(B) ~ 1 : (6.26)

Combining (6.12), (6.13), (6.16) and (6.26), we conclude, using Fisher's

relations (5.14) and (5.16) that, in four dimensions,

pie)(xl,xz,x3,x4) =0, (for m fx it

i.e. the continuum limit of the N =1 , or 2 component field theories is

trivial (Gaussian), unless
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(a) mean field theory is an exact description of the approach to the
critical point, i.e. n =0, v=1/2 ,n=1, E=N=G =0 ; and (b)
the probability that two (field-theoretic) random walks starting at neigh-
boring points do not intersect is positive. Statement (a) would, of course,

violate the predictions of the renormalization group, [16,17].
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§7. Proofs of inequalities (6.6), (6.14) and (6.18).

Our proofs rely on the random walk representation reviewed in section 3.
By the definition of W, g v Bee (5.19), definition (3.11) and the random walk
»

formula (3.12), we have

_ C
pa’S(XIszsXB:xa) _;‘L‘; FB(xp(l)'xp(Z)’xp(B) :xp(z‘)) E] (?-])
where
c _ N N N
FB(XI)YI’xzi)’2) —m 'Z " [zB ], 2) ,k(wl)zﬁ,k(w2)] (7'2)
1717
I.IJ2:X2—>Y2

For the standard, non-interacting random walk on the lattice, we set

N N N
l(“]’ 2) zB,A(wl)zB,l(ub)x¢(uH’ 2) s (7.3)

where X¢ has been defined in (6.3), and
(m) = z (m) R

with ZE l (w) given by (3.18).Thus, in the standard random walk model,
*“o

F;(xl,yl,xz,yz) is proportional to the probability that a random walk going

from X, to Y and a walk from x, to y, do not intersect, just as in

the self-avoiding random walk model. In all cases we simplify our notation to

zB(w) > ZB(“’I"”z)
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Our results in section 6 are consequences of the following inequalities for
the weights, Zg

(o) If @ n w, = @ (i.e. Wy and mb do not intersect) then

""B(“’l’“"z) > ZB(ml)ZB(LUZ) ; (7.4)
see [3].
(B) L zB(m],wz) < zB(wl) b zB(wz) s (7.5)
w w
2 2
see [2,3].

For the standard and the self-avoiding random walk models, the proofs
of (7.4) and (7.5) are trivial, For N =1 , or 2 component field theories,

the proofs are sketched in Appendix C. Note that the Lebowitz inequality,

Mg, 20>

follows directly from (7.1), (7.2) and (B). By (A),

Cc
W, IX . FY
1771 71
Wy iXy?Yy
mlﬂw2¥¢

| v
|

z z,(w)z,(w,)

Wy $X,+y HE AT ,
1°71 71

Wy iXyrY,

miﬂm2#¢
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(and we have used that zB(w1,w2) >0, for all w, and w, .) Given W,
and wy let z(m1,m2) be the last site on wy with respect to the natural
ordering of the jumps made by-m]and thus of the sites visited by w , where

w, intersects @, . By making an error, E, , which vanishes in the continum

1

limit, for d > 2 , we can ignore walks W, and W, for which

i

z(w1,w2) € {xi,y1,x2,y2} . Thus

c
+E
|F8(x1,y,x2,y2)| - z;:’{x x } m§x > zB(m1)zB(w2) l
S R RE IO R R Rl
w ki Re
z(w1,w2)=z
< L B I ZB(m; ‘m?)zﬁ(mz)x¢(w?,w2)*'fl (7.6)
zi{xi,y1,x2,y2} w;:x1+z
",,,t
|z'-z| =1 Witz Yy
Wy X3y,
Wy Jdz
where
|E1| < const. B {GB(X1,x2)GB(xi,y1)GB(x2,y2) +e0s ) (7.7)
with lxz—xz | = 1.
We denote by wE a part of woy from z to Y, and by mé a part of

w,  from X, to z" , where z" 1is a nearest neighbor of 2z , in such a

2
way that

1 " n =
w) (z",z) o wy = wy s



o

where LA w, denotes the composition of the sequence of jumps corresponding

to w1 with the sequence of jumps corresponding to Wo s (providing the end-

point of @ , agrees with the starting point of w2 .) Clearly

x¢(UJEI‘,UJ2) -E x¢(m'1',w'2') » (?08)

By summing independently over wé and m; and using (7.7) and (7.8), we

obtain

c 2 :
IFB(X1 24 ’x23Y2)1 <8 L d . ; v 2 " ZB(‘”.I
z€2° X2 0 IXys2

|z'-z|=1 w, :z'-yy1 w‘2':2+y

. w'{) .
|z"=z|=1
. ZB(wé . wg)x¢(w?,wg) +E (7.9)

where E = EB (x1,y1,x2,y2) satisfies

|EB(XI,Y1,X2:}12) 1 = KB . B{GB(X1,Xz)(:B(X;_;,y1)GB(X2,y2)
+ (x2 > y2) + (x2+x1) + (x2+y1)} , (7.10)

where KB is a finite constant, and [xz—xi| = 1 . The error EB vanishes

in the continuum limit for d > 2 ; (to see this, one just applies the scale

transformations of section 5).

For standard random walks,
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z (W, « W

81 ) = zB(U-‘1)zB(“J2) " (7.11)

see (3.19), while for the lattice field theories and the self-avoiding random

walk
ZB(w.I . mz) = ZB(w1 !mz) 3

by (3.15). Thus, applying (7.11), inequality (7.5) - see (B) - respectively,

we obtain from (7.9)

c 2
IFé(XT,yt,xz,y2)| <B ) d Gs(x1,z)q3(x2,z)

z€Z
|z'-z| =1
|z"-z| =1
« { z z, (wz, (u")yx, (w,w")} +E , (7.12)
et B B ¢
wiz'>y,
Lu':z+y2

and we have resummed over w; , mi , using

GB(x,y) = T zB(w) .
WiX>y

The error E = EB(x1,y1,x2,y2) is given by (7.10). From that estimate it

follows immediately that

a®N® 5 E Gy, x,.y,) — 0, (7.13)
Yqs%95Y,
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as g B, » in dimension d > 3 ; see also [3,5]. We shall therefore omit
the error term henceforth. If, on the r.s. of (7.12), we insert the trivial

inequality
(wy,w") < 1
X¢ =
and resume over w and w' we obtain inequality (6.6).

Next, we sum both sides of (7.12) over Yis%9s¥y » keeping X, fixed.

Using the definition (6.2) of Q(B) aud (6.4) , we obtain

d =2 c
m(B) X(B) L |F (xl !Y1 ,xzayZ)‘
y1 ’xz ’Y2

< 82 m®%@)? a®) , (7.14)

up to a term which, by (7.13), tends to 0 as g7 B. » in d>3.

Applying (7.14) to all three terms in equation (7.1) for My g > e obtain

- -2 d
gr(8) = |y olx(8) © m(p)
< 387 m(®? x (87 Q) (7.15)
where u = ) u (20 SR 25
3=2,3,4

(up to a term vanishing, as B .2 Bc , in three or more dimensions.) We note

that (7.15) is the desired inequality (6.14).
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Finally, we turn to our proof of (6.18), i.e. for

a®) < @' x® .
By (4.1), (4.2) and (4.3), we have
x(B) = % G,(0,x)
x € ﬂﬁ B

= z d L g I d p(nj(w)) ’

Xx€EZ w:0x jeEZ

where p(n) is independent of g . Thus, for B8 < B,

N=0,

lw, [+]w, |
g% x(B= L . I ¥ L )
x€EZ z€Z w=w o (z,z2') ow
z':|z'-z|=1 e
w,:z"»x

p(n; (b * ) = p(n; (8 ))pn; () .

Thus,

3¢ X(B) > I 5 B 1

X2 w, 10>z jEZ

P @) -

(7.16)
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o |
1
* B n,p(n,(w))x, (v ,0,)
sezd 4 2712
But
ol ol g P(W) =20 (0
j€EzZ J Bs

hence, using the definition (6.2) of Q(B) , we obtain
9 2
38 x(B) > (2d) x(B)" Q(B) ,

whence (7.16)
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§8. The numerical data.

Our numerical results weré obtained by means of a Monte-Carlo simulation
which used the Metropolis algorithm [25]. We generated a sequence of self-
avoiding random walks by repeatedly applying a set of elementary local deforma-
tions (an idea originating in our study of lattice string theoriés) and checking,
at every step, that the nonlocal constraint that the walk be self-avoiding was
'

respected. The transition probability T between consecutive members w , w

of the sequence was taken to be :

Tw +o0') = aiE P(&lwl)stw(w') (8.1)

w

where Alw| = |u'| - |w| and Xgpp@') 1s unity if o'

is self-avoiding,
and zero otherwise. The probability P(a|w|) of each deformation was taken to

depend only on the change of length of the walks and assigned as in ref [26],

where such a procedure was first tested numerically. Thus (see Figure 2)

2
P(+2) = ——
[1+(2d-3)£"]
2
P(0) = Ceec) 5 (8.2)
2[1+(2d-3)£7]
1
B s
[1+(2d-3)£7]
The factor =l in (8.1) corresponds to the arbitrary choice of the link where

ol

the deformation should act.

In more conventional approaches to lattice field theories, one assigns
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the degrees of freedon of the field in question to every lattice point (link).
Each configuration of the system is specified by a number of variables propor-
tional to the size of the lattice. Computer memory limits one to lattices of

the order of lO4 points. On the other hand, the method we used only stores

points along the walk. We could thus code the four components of éach point

into a single-precision word (32 binary digits), which allows each component

to be as large as 28 . The length of thewalks is then limited Ey the number

of (single-precision) words in the available memory, which means that we may

have lengths of thousands of steps. Even in regions which were sufficiently

close to the critical point for scaling behavior to be observed, typical walks

(a few hundred steps) never touched the boundaries of our lattice. As we plunged
deeper and deeper into the critical region, the only consideration that we had

to keep in mind was the time of approach to equilibrium. Within very reasonable
computer times we were able to achieve very high precision, an essential require-
ment, as our aim consisted of measuring logarithmic deviations from mean field
behavior. It is clear that the N = 0 case introduces an enormous simplification
in the calculation. Had we treated the field theory case using a random walk
description, the calculation of the weights carried by each point of the curve
(which here is just a constant) would have to involve a determinant viewed as

an expansion in terms of closed walks (see Appendix A).

In four dimensions, the upper critical dimensionality for the ferromagnetic
vector model, logarithmic corrections to scaling are expected from the pertur-
bative solutions of the Callan-Symanzik renormalization group equations [16, 17].
However, they were not yet tested in a nonperturbative context; we are able to
provide such a test with the help of our numerical simulations. Thus, we measured,
for a diffe;ent values of the parameter £ (see §2), the mean length of curves

with fixed end points :
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 fuel! o
we0+x d w dm
< |w| >= = gn(z ¢'''Yy ~ -const. ——, (8.3)
s Elwl d!?.ng we0->x IX[""""' dE,I'IE ’
w:0x

where m 1is the inverse correlation length, see (5.1), and the last equality

follows from the identification :

G.(0,x) = I & . (8.4)

HI

Letting £ =8 = e and T (b/bc)—] , an ansatz of the form :

1/2 |£nr N (8.5)

m(rb) ~ Ty

Ny
together with (8.3) allowed us to determine from the data listed in Table I
that N = .14 +.03 . This value is to be compared with the renormalization
group prediction of (1/8). Figures 3 and 4 show a linear and a logarithmic
1/2

plot of the data and best fits obtained from mean field theory (m(Tb)rva )

and from (8.5).

Encouraged by these results, we set out to gather numerical data on the
behavior of Q(B) , defined in (6.2), as R A Bc . In fact, we actually mea-

sured a related quantity a ; defined as :

I L X, (wyyws)z, (w)z, (w,)
. - ¢ 1?272°7RTITTR 2
|J|=1 ml.O»yl
- w337y,
Q(g3yysy,) = £ (8.6)
z L z,(w,)z,(w,)
[j[=] w]:0—>yl BT 17 B2

w2:j+y2
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i~

To compute Q mnumerically, we generated sequences of two self-avoiding
walks that started from the origin and ended at two distinct points, Y,
and Yy - We then recorded the fraction of the total number of iterations
corresponding to configurations in which the two curves did not intersect.
The results of our measurements, for two different choices of the endpoints,
are shown on Table II. Assuming a scaling law for a(e;yl,yz) of the type :

- B/"BC T
QB3y;»¥,)  ~ © Clyp,y,)  |ant] (8.7)

~

where G 1is independent of the endpoints, and using the relation :

Z@a®) = 1 1

RECICHAS ) Gg(0,y,)C, (3,y,) (8.8)
20 P

1

which follows from (8.6), we can easily obtain :

" B/"Bc -2 e
Q(B) ~ {x “(B) = L C(y;»y,)G,(0,y)G (Goy.) Y| ent] ¥ . (8.9)
. B B 2
)’1,}’2 |.]|"'I

The expression in the curly brackets tends to some constant as R A Bc , which

permits us to identify, using (6.20)
G=T . (8.10)

For the case of the self-avoiding random walk we may, as shown in sections 6, 7,
relate Q(B) to the susceptibility x(B) via (6.18), where the equality holds.

Thus for Q , in view of (8.9); we have



U ~ae = -7 & e . (8.11)

Resorting again to the renormalization group equations one can try to fit the

data with an expression such as :

5(T;yl,y2) = C(y,;y,) {|2nt]| —GRn[RnTI}_G , (8.12)

-]
which results from the relation -=%% ~ |£nx‘

x_l ﬁ-TIRnTl_G (perturbatively one finds E = 0 , thus G = 2N) . From the

][_G , whose solution yields

data in Table II, we obtain (instead of B and 1 , our fits were made for

b and T, » as in (8.5))

y‘l = (5’59030)

C(y,»y,) = *89 #:02 G = +24 .02 . (8.13)
(59_5)0,0)

I}

o
The perturbative prediction of the renormalization group in G = 1/4 .

The dependence of ﬁ' on the choice of endpoints helps considerably.
A mere inspection of the data could not rule out the possiblity that a
could tend to some constant C' € (0,1] . One could try a fit of the form :
Q(13y)5¥,) = C(¥,,,) {|ant|=Gn ||}~ + C' . (8.14)

If G 1is not too large, this would bc numerically indistinguishable from :

Qa(C+C') - (GO an{ |ent| - Canfant |} & (C+C') - (6C)an|ont]| . (8.15)
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The best one can make is to determine the combinations (C+C') and (GC) ,

which leaves us with one free parameter, and allows for a number of equally

good fits. To cope with this problem, one can then use the dependencé of Q

on the choice of endpoints. In (8.14) we have assumed the scaling law (8.7),

and the independence of C' on the endpoints. Should '6 tend to a nonzero

value as 1 + 0 , such a value would be connected to the behavior at the critical
point, where curves are infinitely long and thus, insensitive to the endpoints.

Taking the ratio :

_ Q(t3y),y,)
R(t; endpoints) = —— M — (8.16)
~ . ' '
Q(t3y(5¥,)
a value of C' # 0 would imply that R should depend on T . Our data, however,
show this ratio to be independent of 1, to a very good accuracy as 1 =+ 0 .
Using yi = (10,1,0,0), yé = (10,-1,0,0) as endpoints, we computed (8.16)
for three different values of 1 and found it to be 1.57 *+03 . This tends

to support our contention that Q > O , thus Q>0 , as T-+0 [27] .
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TABLE |
(Values of [< w >| versus b).

b < Ju] >0 < Jo] >
2.100 19.99 19.78
2.060 21.81 21.66
2.021 24.19 - 24.38
2.002 26.01 26.27
1.984 28.23 28.65
1.966 32.61 32.00
1.948 37.61 37.23
1.931 46.2) 46.35

(1) Values obtained from the Monte-Carlo similation.
(2) Best fit to the data assuming

1/2

i) m(Tb) =C Ty |£nT |_N

b

C=12.69 1 -13 ; bc = 1,904 1 002 ; N = <14 +03
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TaBLE 11

Values of Q(Tb;yl,yz) versus b .,

b 3(1) 6(2)
2.021 681 *681
2.002 671 *671
1.984 +663 *661
1.966 + 645 *648
1.948 +635 *634

(1) Values obtained from the Monte-Carlo simulation.

(2) Best fit to the data assuming bc = 1,904 and

C(y,»¥,) = 89 % 02 G

24 = 02



Appendix A : The N > 0 limit,

Let us consider the random walk representation of paragraph 3. The

expressions (3.9) and (3.10) for zg \ bay be rewritten as :
| s . -21a(j i
zg,x(t) =2,y 1 daj) £@a(3)e ta()eld)
i
- -n. (w)
A @ =2 sl dami@a) @iaGn I dee™ Hgrazia)
(A.2)

In (A.1), we have just reintroduced the Fourier decomposition of f , whereas
in (A.2), we have made use of (3.7) and identified the Gaussian integral of
(A.1) with the determinant. We can once more appeal to the random walk represen-
tation to express this determinant as [2]
—_ .

now')

(BP+2ia) = (HZia(j))_Nfzexp[ L 4 by N 1(2ia(g)) ]

j 2€EZ o' 1292 2[w'] &

dethN/z

(A.3)

We may then insert (A.3) into (A.2) . The resulting expression displays

N as a parameter, and it is not hard to show that z%ik(w) is analytic around
N = 0, (provided we work in finite volume, or keep B small; see e.g. [9]).
We shall examine the N » O 1limit of zN and for that purpose we expand

By

the exponential to obtain :

Im] " -n, (w)-N/2
B 1 da(idf(a(§)) (2ia(§)) :
J

N e
ZB,J\(M) = Aﬂ,}\



~[n, ()4t n  @)]

(=] ] . ]
e &k —— 1 (ia(e)) ¢ (A.4)
k! "2 . Wy e
k=0 Wyseaty . 1 k 2
1 k
where I' = I z . Each term in the expansion corresponds to a sum over
w z€EZ~ w:iz~z

k closed random walks, i.e., a polymer gas. However, in the N + 0O limit

only the k = 0 term will contribute, yielding :

A -n-(m)"le
wy =gl®ly 15n LG QiaG) da(j)
A

N
o J Fla)) 2iai)) V2aa()

By

o .
z (@) =1lim 2z
Bs2 7 Noo

Jav, cuyanya () £020)
(A.5)

= Blml I lim
N0 Jd“n/z(t) f(2¢)

where the last equality follows from (3.7). The expression for the two-point

correlation in the N - O 1limit becomes :

lim < ¢' 6/ () > = Tz (@ (A.6)
N-+0 W : Xy f
Using the notation introduced in (4.2),
20 () = Blwl 1 p(n,(w)) (A.7)
By A ]

jEw

we shall now compute p(n) for g|$|4—theory and the nonlinear o¢-model.



=EoU=

Ny
a) g[¢|-theorz.

£(1o1%) - expl-B[3]% + 24EIMA) |3

+|2 +C)
~(gt?+[2dgm3]t)

Jd\JrH_N,Z(t) e ‘
(t) (Bt +[2dpHmg)O)

p(n) = lim
N-O fdv

N/2

Recalling from (3.6) that dvo(t) = 6(t)dt we immediately obtain :

—(gt2+[2d3+m§]t)

-

p(n) = fdv (t)e

(A.8)

(A.9)

Inserting this into (A.6) , (A.7), we obtain the propagator for the Edwards

model of self-suppressing random walks. Letting g = 0 and using (3.7) we

obtain, for the .simple random walk :

p(n) = ———
(2dﬁ+m§)n

b) The nonlinear o-model.

£(31%) = 837N

dv (t) 6§(2t-N)
p (n) = 1ip L HN/2
N-O Jdvn(t) 8 (2t-N)

Using (3.6), we integrate numerator and denominator by means of :

(A.10)

(A.11)



k-1
fav (&) 6Qe-N) = (@ T— (A.12)

r(k)

after cancellations we arrive at :

N/2)™ T(N/2)

T CarRT2) . (A.13)

p(n) = lim
N-+O
This vanishes unless n=0,1, in which case we may use the identity

xT'(x) = r(x+1) to establish :

p(n) = 6 1% :Sno
Therefore in (A.7), (A.B), we have the restriction that each site of the walk
w cannot be visited more than once. This corresponds to the self-avoiding

random walk.



Appendix B : relations among critical exponents.

Let us first consider the susceptibility of the continuum theory. By

definition :

Sino 02(0) >
8P w X€EZZ

a Sgey 0 (B.1)

where I d G (0,x) = x(B) 1is the susceptibility of the lattice theory

at inverse temperature RB(8) .

The expected behavior of such a quantity near the critical temperature
is the'power law (5.4) for d # 4 . However, for d = 4 one might have expres-

sion (5.7), which admits a logarithmic deviation in the form :
x (B) “‘T—YIERT[G (B.2)

analogously we may write the solution of eq. (5.12) near the critical point as

-1/y N/v

1(8) ~ 6 | ane | (B.3)

with N # 0 only for d = 4 , where v = 1/2 . In this way, requiring that
the limit in (B.l) exist

-d _y/v

~ %0079 0 [nno|G'YN/“

x(m)
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N 6—2+n+y/u E+G-yN/v

| 06 |

implies, at the same time, the relations

Y = v(2-n) (B.4)

and its extension for the logarithmic deviations in d = 4

G =92N -E : (B.5)

Furthemore, one can relate the exponents of the susceptibility for the S.A.W.
to the exponents which appear in the counting problem for chains with L steps

if N(L) 1is the number of such chains, asymptotically for L large

N(L) ~ u¥ 1° [mL R . (B.6)
Then
x® =z, & eeloponay b
X€EZ™ w:0x L=0

pie=E (B.7)

p+] = v (B.B)

R=20G (B.9)
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A quantity often studied in polymer physics is the so called mean end-
to-end distance, which is the square root of the mean square distance for paths
of length L . Once again, let us introduce indices for the asymptotic behavior
of this quantity, which is expected to diverge as Ll/anLlD , where & 1is in
fact the Hausdorff dimension of these chains, and U measures violations to

the self-similar behavior on different scales of the chain.

d
Let us also consider another quantity. If r2 = I xi
i=]
z d rzGB(O,x) B gt B rsz ~
XEZZ X€Z L=0 w:0 x
|w|=1L
~ oamwyes 12 i |®  ~
L
~ T 1PY28) gy |RA2D L (B.10)
On the other hand
_ -m(p)r
: (irz GO X 7 i T "~
X€EZZ r r ?Qnr|[
-4 -t \ -N.n- -
~ ()" 4| n@) | ~1°| ] ™MI"? |2nr]E (B.11)

so that, by comparing (B.10) and (B.l1), we obtain

p+1+42/6 = v(4-n) (B.12)



- ()I —

and for d = 4

R+ 2D = 4 N-E (B.13)

which by (B.4), (B.8) and (B.5) , (B.9) reduce to

(=]
]

1/y (B.14)

D=N . (B.15)

It is worthwhile noting that the exponents of the mean end-to-end distance are

functions only of the exponents of the correlation length.
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Inequalities for the =z's

We shall rederive here [3] the inequalities (7.4) and (7.5) which are

the fundamental ingredients for the estimates contained in section 7.

Let us first consider the case (A), in which the two walks

)

(In this appendix, we shall omit the super (sub)-scripts for the

do not intersect. We shall show

z(w],mz) 2_z(w])2(w2)

By (3.10) this follows from

If we define

and

then

Thus we have

z(t]+t2) > Z(t])Z(tz)

20 20
%(t) - Z(t) Il Egt (J)'U t(J)
J

F(x,y) = n 2 (xt+ys)

1
[ dx = F(x,1) + F(0,1) =

F(l,1) = T
o
1 1 9 © o
= I dx — e z(xt+s) + 2n z(s)
o z(xt+s) s

(c.1)

(c.2)

(C.3)

(C.4)

(C.5)



._b'J_

SN S . > 012
z(xi+s) z(xt+s) = -g X tZ(J) < 4|7 >

J

9
ox (tx+s)

with < '>(t) denoting an average value in the measure

> > .12 ,.
e : £ | De 8RN TG N (5

where Z(t) 1is, as usual, a normalization factor. However,

) ey |7
sy 1D Gy

k

for all values of y , as

< 1EH1E s 13w >0

i

=gz s < 325 130P >

(C.6)

(C.7)

<0

(xt+ys) o

(C-8)

(C.9)

is one of the Griffiths inequalities. So, we arrive at a lower bound if we set

s = 0 in (C.6). Thus, using (C.5), we obtain

2n z(t+s) > 2n z (t) + gn 2(5)

which through exponentiation and the definition of 2z 1implies

-2gL t(j)s(3)
z(t+s)e ] > z(t)z(s)

when the two curves do not intersect I t(j)s(j) = 0 and (C.1)
J

follows .

(c.10)

(c.11)



= l'in =

For the inequality (B) let us first observe that the expectation

< ¢](x)¢l(y)_>(t) has a random walk representation :

1 1 _
< ¢ (x) ¢ (y) >(t) = 200 u?ﬁ Ide(s) z(t+s) . (C.12)
J 3 +y
So that
z z(w),w)) = I fav (t))dv (t))z(t +t,) =
wzzx+y w, : Xy ] 2
2
_ 1 1
—Id%uup 2(E) <4 2y (€I
but <o @ () >y =< o el > (C.14)

by Ginibre's inequality and as

z(ml) = fdvm](t]) z(tl)

Doz = < ¢ e ) >
Wy 1 Xy

inequality (B) follows, that is

L oz(u,w) <z(w) I z(@ (C.15)

w w
2

2)
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FIGURE CAPTIONS

Figure 1| — Critical line for g|$|4 theories.

Figure 2 - Elementary deformations used in the Monte-Carlo procedure.

Figure 3 - Linear plot of < |w| > vs b . The full curve is our best-fit, whereas
the dotted one corresponds to a mean field fit (no log corrections) with bc =1.904

Figure 4 - Log plot of < |m| > vs b .



g (B,)

:

B (Ising) Be

Bo

Fig.1



P, P
S
! i Alw|=+2
:?‘"""""i: ST X
£ R R 7!
i1 . s
e ; 5
|
E Alw| =0
R R &
RO i e i
R Alw| = -2
2 %

m

old configuration w

new configuration w’

Fig. 2



507
Jwhd
45—
4 0
35—
3 0--

29T

20—

15

(wiyvs b

1.90

.95

200

2.05

Fig.3



40 —
Ln(lwl)

3.8

6=

3.4 —

325

3.0

28

ln dwld vs Ln Tp

4.5

Fig.4



1S redtt Yy D e ) A irynig-ianbou )

6TE FL USANy yropy inaao) T(6961) Td ¥ CYI0IAY) pur L inynag-ianboy )
(NINA MON SSAL] JNUAPEIY ) SAOKIS 19joqus (SLE1) TV Y swrpy

(NIO MAN "aUaLS

SIDWUL) [ CIOA S Jen ey Iofy fo spoldapy (TG 1) (] MM pur Ty furinn)

(Finquuep] tndasd) | SMUVINGUIS JO MRS (RSN DL, (SE61) f 1 Mo
Q1L ST oL p g (€ L6T) Y Tasorung pue Uy tuosdwig

6T LE P61 SE

Cee sy yaepy cunnao) (ELET) T TUBNSS pur g IZpo A (| fUAEEp] wnz 13ngy

1 .m«. ..u.ﬂ:.c_. WISHY W) (TL61) ) [ Tuaps pue T oy Iy

(2apuquIr) ‘ssal
aodg fo dumianagg apeag 280yt (EL61Y ¥ 4D

T B LT B I R N e A R R N [ R R IR A I

coandde cond ey uuy (GEgl) 4 taruTea e
(aapuquir) fssaL) SsIdans
a3puquuc)) st -000d§ poaan) o 1o :n::.:vq a0 M (S5E61) D 3?._...:.,“. ol
LTUOL ey o ue) (SSe1) G:nx ¥
IL6E 198 ol ¥ D (L6 1) "L Imynie <
(IO MAN AN T AN, P el oy
JU2441) OF NONINPOLIU] W oI PHADa) Ul WO Syane) 3yl (I961) & "irynig
806 '€ USUs yiepy (79610 N Y TS
TOC TN L NIdiT sy u (€96 ) ) THneNnen
6T
FIGEIE96 1) TES T69T THT Y08 Y Jody 1T9n ) D ] Bpuaran g
168 '€ Uy ey r(E961) TL hun pue L 3 furwmey
"SOE 9C P IRL61) e s THE sy oy w0 “(EL61) Td TR
(uotaouiyy ‘sacuy
paydridoounur)  aung- rdg Na Annng Ay o sis{euy Uy (196 1) Ty frsotuag

SSETALD MAD

PIET- I

“(L961) 98¢ "6LT

(] f"l -r

.
ESRIIRVETARY;

g €79 uon®
2504 uctf) 1UaSuIs $52] 31€ 2N W SUOLIIPUOD JIBUIPIOOD ISN [|TYS am XE2 PO
193)13d 21]) 01 S)[NS21 INO PUIIND [[B1[s am Y21y Ut Jaded Sunwonyiiof t u)

Joodd ut pappit aloy

"Wia[qoId dN{rA-[THIUT INSIIAIITICYD Y] O UOHUANE 3*
pajira oy ‘Nailey " yuryy 1ayiing sy suotssnastp (nydjay pur jsaiaut nag:
J0j uapunyy pue Binquiy ur sdnosd Lanuras 21 Jo siaquiawn 241 YUt 2y

SIIMUSEPI MOy I

uawdejasap

[0y D11 Ul _ D ST UOHIN{os aY) CIEp _ ) 10J uu:.;_ aputon sjudwidojasap ,

PUR A [PWINTW 2 (0 < 4) FIO R a1 weiep sog aeyn smoys | w2iqoud Syancy

ay1 01 sE [[am s ansu21aeieyd oyl o1 sagdde ([ (¢ 'd {7 1] ut osic paquasap sty
siuowidoaaap [cwintw uo [gz] ieynig-r1anboy) jo yuawndie jnjnneaq v

0 (1) ez D UD vz M DY

2inbas 0y ATy am () 4,4 2 8 B UIRIGO 0] Japio U]

(Y1) M 2

Surwojof ayi aacy Aqjeury aw
i 1 . T ' .
08 ‘e D nofm rsasnbal e 2 JO UOHITIND[ED 34} 7ff w0 cuonrnba uon
-e3edoud ino wi Ajensn sy 82975 e spaau 195 on pue ‘(7). D LxTR%0
07/ ey sz jo ¥73 pX SOIRUINI00D DIUOWITI 01 UOTITILIIO]
-Sued) 31j) 1ng " Ay (70N { SSe[d i ar WIF
Ul Py 2m 25041 O

Uyl

20 e sainbay

IT}Q0 0} 12DI10 Ut

a4

a7z 1110w o<





