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Introductory comments

The present notes have no scholarly ambition. They address a subject that
has a history of more than fifty years. The number of relevant publications is
truly enormous. Presumably we have missed some of the really important papers in
this subject. We have only tried to review some of the main trends during the

late sixties and the seventies, have emphasized their mathematical aspects and
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have given work in which we have been persconally involved more weight than it de-
serves. Since these notes collect material explained in lectures that were suppo-
sed to cover our work, we do not find anything particularly wrong in that cir-
cumstance.

Hany of the results mentioned in Sect. 2.1 are contained in joint work of
J. Glimm, A. Jaffe and T. Spencer, of J. FrEhlich, B. Simon and T. Spencer and
of J. Frohlich, K. Israel, E. Ljeb and B. Simon. Moreover, variocus important re-
sults, due to Griffiths ; Dobrushin ; Minlos, Pirogov and Sinai ; Lebowitz, and
others are mentioned or underly our presentation. The most important mathematci-
cally rigorous results in Sect. 2.2 are due to J. Glimm and A. Jaffe. The ideas
and concepts in §§ 3 and 4 are parct of the"conventional wisdom" of the modern
form of the renormalization group, invented by Wilsen ; Kadanoff ; Jona-Lasinio
and al. and extended by Fisher ; Wegner ; Brézin, Le Guillou and Zinn-Justin, and
many others. Qur presentation has drawn inspiration from cnes by Simal, whoe - to-
gether with Bleher and Dobrushin - has contributed the first crucial ideas and
results clarifying the mathematical status of the rencrmalizacion group. The for-
malism and the techniques in § 5 are inspired by work of Symanzik and were deve-
loped in joint work with D. Brydges. The main results reported in that sectiom
followed similar results by M. Aizenman. Further developments were carried out
by D. Brydges, J. Fréhlich and A. Sokal.

These notes contain no proofs, and the results are often stated somewhat va-
guely. They have the character of a brief status report and were writtem in a hur-
ry. They are intended for light reading and may serve as a guide to the literatu-
re. It is hoped that they convey some of the beauty of the machematical structures
and problems involved in statistical mechanics (see, in particular, Sects. 2.1, &.1, 4.2
and 5), and that they might challenge some readers to look into some of these probleas.

§ 1. Introduction

1.1. Ganeral remarks

In the development of theoretical physics there have occurred several major
advances during the seventies. Although it is to some extent subjective what one
considers to be a major advance and although it may be too early to tell we think
that many theoretical physicists would include the following ones among the most
significant discoveries of the seventies :

1) Gauge theories of the fundaomental (electro-weak and strong) interactions.

2} Renormalizability of gauge theories, and asymptotic freedom in QCD (i.e. the
discovery of the fact that interactions mediated by nom-ghelign gauge fields in
theories like quantum chromodynamics, abbreviated QCD, become weak at high ener-
gies or short distances, but strong at large distances. This latter circumstance

léd to the idea of guark confinement).
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1) New, productive forms of the rencrmaltzation group (e.g. the E-expansion
{1] ; more recently the Feigenbaum theory [2]} and iks applications to a quantica-
tive theory of second order phase transitions and critical phenomena and to the
study of dynamics. (The basic idea of the renormalization group is to study the
behaviour of a physical system under a change of scale - in space or time - by
integrating out fluctuations on successively larger length scales.)

We have not included in this list important developments in astrophysies,
condensed matter physics and other fields in or related to theoretical physics.
Moreover, we have not mentioned advances in mathematical plivsics during the past
decade, wyet, among which one must mention

= constructive quantum field theory ;

= fluid dynamics (e.g. dynamical systems theory, onset of turbulence...; study
of shock waves, Navier-Stokes equs. ...) ;

- non—equilibrium statistical mechanics ; theory of phase transitions in equi-
librium statiscical mechanics ; stability of non-relativistic matter...

From the point of view of a theoretical physicist who is not concerned very
much with mathematical rigour developments 1) through 3) mentioned above have
reached a rather high degree of perfection and completeness, although from the
point of view of rigorous mathematics the state of the art has actually remained
quite rudimentary. This is a challenge to mathematical physicists and mathena-
ticians and is why we are, in these notes, addressing the subject of phase fran-
sitions and critical phenomena, related to topic 3) above.

During the past few vears there have been very important beginnings in othe
directions vhich may become major trends inm the physics of the eighties and aeson
wvhich one might include :

a) Supersysmetry, supergravity, spontancous (and dynamical) breaking of super-
symmetries.

b) The mathematical description of complicated behaviour of (elassical) macros-
copic systems ; ("roads to turbulence", "transition to chaos", "theory of attrac-
tors"”, "stochastic resonances"...).

¢} The theory of disordered systems ("localisation", "Irustratinn“ﬂi in "spin-
glasses”, "turbulent Erydlﬂld":j, “wave propagation in disordered media",...).

tne hopes that supersymmetry will solve some of the problems lefr open
within ordinary Yang-Mills theory and that it might show a way towards a gquantum
theory of gravitation. Disordered, or chaotic systems acre a natural and important
play ground for people previously busy with eritical phenomena. While these last
topics mirror perhaps the present trend of the world towards more chaos, disorder

1 a concept related to vhat the sathematician calls curvature
' g potion recently proposed by Ruelle
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and frustration, supersymmetry reflects our longing for order, harmony and unity.
Topics b) and ¢) are sure to have something to do with reality, but supersymmetry
may remain a dream.

In the following we shall discuss some recent rigorous results on phase
transitions amd eritical phenomena, topics 3) above, but we can recommend any of
the other topics - 1), 2Z) and a) through ¢) - for future Beurbaki seminars. Alc-
hough phase cransitions and cricical phenomena are perhaps not so fashionable
among physiciscs, anymore, they do still pose serious problems challenging the
mathematician and mathematical physicist. Good mathematical umdc:standing of cri-
tical phenomena is presumably a prerequisite for furcther progress in quantum
field theory and, guite generally, in the theory of systems with infinitely many

degrees of freedom.

1.2 Aliccle phenomenology of phase transitions and critical phenomena

We nov try to explain, in intuitive terms, wvhat phase transitions are and
what kinds of phase transitions may occur. Qur examples are chosen from condensed
matter physies. Other examples are found in nuclear physics, astrophysics, quantum
field theory... We shall study phase transitions in ferromagnets and mathematical
models thereof (defined in Sect. 1.5).

A ferromagnet consists of a macroscopic (i.e. nearly infinite - with respect
to a microscopic scale) piece of bulk matter, ideally arranged in a crystalline
structure. At each point of the crystal lattice there is an atom or molecule with
non-zero total angular momentum, (spin). There are interactions between the spins
located at nearby points of the lattice which tend to align the spins. (It is
argued that the dominant interactions are the so called exchange interactions
vhich are a consequence of the Pauli principle.)

When the temperature, T , is large thermal fluctuations descroy correlations
betwveen spins located at very distant points of the lattice. If the system is
placed in a magnetic field which is then slowly turned off, no magnetization
remains. However, if T is sufficiently small the system remains magnetized
(spontaneous magnetization) even after the external magnetic field has been turned
off. Let h denote the strength of the magnetic field, and let M(T,h) denote
the magnetization as a function of temperature T and magnetic Field h . The
behaviour of M(T,h) is shown in the following graphs :

H{T,h = 0+)

-
=4
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b M({. ,h)

The temperature, T_, at wvhich the phase transition cccurs is called eritical
temperatura. The so called magnetic susceptibility, ¥ , is given by
dM(T, h)

X(T,h) = ——g==

It turns out that the susceptibility, %(T) ®» % ({T,h=0} , of a magnet in zero ma-
gnetic field diverges to + = , as T approaches Tc ; a8 indicated in the above
graph. It is an important theoretical problem to determine the way in which ¥(T)
diverges at T.. This is a typical problem in the theory of critical phenomena. 1t
is expected that, im dimension d # & ,

i |
(*) ¥(T) ~ (T TE} » T2T,,

for some number Y called eritical exponent. Of course, in a laboractory, all that
is available to us are three-dimensional or approximately planar pieces of ferro-
magnetic material. But in theory one can study d-dimensional magnets, where d
is an arbitrary natural (or complex) number. It is expected that in four dimen
sions there are logarithmic corrections to the power law divergence of (T} , b
in Eive or more dimensions {#*) is expected to hold with
¥=1.

This has recently been proven rigorously for some class of models ; (zee §§ 2, 5).
It is quite surprising that the value of ¥ is independent of dimension, for
d 25 , and of the details of the mathemacical models of ferromagnets. For d € & ,
¥ appears to depend on 4 ;, but not on the details of the mathematical model. One
says, that critical exponents, like ¥ , are untversal. (See §§ &4, 5.)

It should be emphasized that there are Jdifforent kinda of phase transitiors ;|
(see Sect. 1.5.) For example, the melting of ice ie a transition which is quite
different from the one in a ferromagnet : Tt has latent heat, and there is no
quantity analogous to the susceptibility ¥ which would exhibit some (universal)
power law divergence at the transition temperature.

In these notes we only consider the mathematical theory of the kind of phase
transitions found in ferromagnets and its relation with guantum Field theoary.

The following two aspects will be ignored :
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i) We shall study models of classical spins, i.e. gquantum mechanical effects are
taken into account only implicitly. (This is usually unjustified, except if the
spin at each point of the lattice is enormous.) Our (naive) models of Eerromagnets,
lattice spin gystems, are defined in Sect. 1.5 and analyzed in subsequent sections.

ii) We shall not discuss the connections between phase transitions and sponta-
neous breaking of (internal or spatial) symmetries, except in a few rather vague
remarks. This topic has been considered in many excellent surveys, some of which

are quoted in the bibliography.

1.3. Some physical problems mathematically related to each other

The main purpose in the following is to explain the relation between two cir-

cles of problems, namely

A) the construction of relativistic quantum field theories in the continuum
limitc ; and

B) higher order phase transitions and critical phenomena in lattice spin systems.

We think chac the realizacion that A) and B) are intimately rtelated is an im-
portant and deep idea, (1, 3, 4].

We shall then emphasize the discusaion of B). In particular, we shall sketch
how, mathematically, the theory of higher order phase transitions and critical
phenomena is related to

- the statistical mechanics of topological defects in ordered media [5] ;
- the study of non-linear mappings on infinite dimensional spaces, of their fixed
points and of the stable and unstable manifolds near those fixed points ;

= the mathematical theory of random walks and their intersection properties.

1.4. Relacivistic quantum field theory

We now recall what is meant by a relativistic quantum field theory and its
Euclidean description. Clearly we have to over-simplify matcers.

Relativistic quantum field theory 1% an attempt towards combining the special
theory of relativity and quantum mechanics into one mathematically consistent and
physically correct theory (satisfying some causality principle). It can be charac-
terized by various postulates, é.g. the (Garding-) Wightman axioms'’ [6]. These
axioms say that a relativistic physical system on a d-dimensional space-time can
be described, in the simplest case, by the following mathematical structurs :

(W0) The states of the system are the unit rays of a separable Hilbert space, 76 .
(W1} Wich each test function f in the Schwarcz space thﬂﬁj is associated an
unbounded operator, &(f) , (the field operator) defined on and leaving invariant

a dense domain & =% which is independent of f , and

Y Gauge theories require some modifications in those axioms ; see [7].
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$(E)* 2 (D .
(W2) There is a continuous, unitary representation,
U : (a,A) € P——= Ula,d) ,
of the Poincaré group P on H. with the property that
Ua, A p(EIU(a,A)* = ¢{f{a.n}j '
where
E{.,n}{“} s f(A"Y(x=-a)) ,
and
Ula, Al =€ D .

(W3) The spectrum of the generators of the translation subgroup (Ufa,l):a€ Bd]

where d is the dimension of space-time, is contained in the forward light cone
Ve ("positivity of the energy"), and 0 is an eigenvalue of those generators.
The eigenscace associated with 0 is called the physteal vacuum and is de-
noted by 0 .
(W4} Field operators smeared out with test functions whose supports are space-
like separated commute, (as operators defined on & ).
This is the "locality axiom" and expresses the causality principle alluded to
abowve.
(W5) & is cbrained by applying arbitrary polynomials in {1,¢(f} : £ o ,::_:.:"1]
te the physical vacuum, 0 .

From these "axioms" it follows [6)] that a relativistic quantum field theory
is uniquely characterized by the vacuum expectation values of products of fizlJ
operacors, the Wightman distributions,
(1.1) Hn{Xeyeoosxn) = <Q00x4)...40xn)02> |
ne=0,1,2,... » Wa®l . HWnp is a tempered distribution om J{Rnd} which 1s
invariant under simultaneous Poincaré transformations of its arguments and has va-
rious other properties which follow from (WO)-(W5) ; see [6].

Lat

x= {t,x) |, ;'Ell:d_] .
be the decomposition of a point in space-time into time - and space components. It
can be shown that the distributions Wn(ti,Xy1,.stn.%n) are the boundary values
of analytic functions, the Wightman functions, whose domain of amalyticity comfains,
in particular the points
{{x4s:22%n) 3 1““,,,",,,...]"”' s m=2.3, ...,n)

This permits us to introduce the functions
(1.2} SniX1pseesXn) = “n“l'-hinuni-:n‘;n.'! '
n=0;1;25000 5 Sgm]| , t real, for m= l,...,n , £y # ti for i ¢ j . They
are called Buclidean Green's or Schwinger functions. It has been proven by
Osterwalder and Schrader [8] (see also [9, 10] for further related results) that
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under suitable conditions (called Osterwalder-Schrader axioms) a sequence of functions
(Snlxayeyxn))

uniqualy determines, by dnalytic continuation, a sequence of Wightman distribu-

tions corresponding to a relativistic quantum field theory, in the sense of pos-

tulates (WO)-(W3). Among those conditions are

- invariance of Sni{X4,...,%n) under simultanecus Euclidean motions of all its
arguments, and under arbitrary permutations, for all mn = 1,2,3,... ;

- a positivity condition, called Osterwalder-Schrader - or reflection positi-
vity, related to the positivity of the scalar product on b and the positivity
of the energy, (W3). This condition has an analogue in statistical mechanics,
{existence of a selfadjoint transfer matrix). See [8, 11].

In most models of scalar relativistic quantum field theory, the Schwinger
functions, 5pn , turn out to be intimately related to the so called correlation
functions of some lattice spin system, studied in equilibrium statistical mecha-
niecs : Selwinger functions can be constructed as contimuom limits of correlation
funotions of lattice spin systems, as the lattice spacing tends to 0, [12].

1.5. Lattice spin systems

¥We shall consider the simplest, classical spin systems, described by the
following mathematical structure :
i) As our lattice we choose the simple (hyper-) cubic lattice, Ed . With each
site j € 29 we associate a classieal spin
(1.3) 3(j) € Ry, =R,
M= 1,2,3,... . A configuration, @ , of spins assigns to each j a fixed vector
w(j) € ¥ . For each finita subset, A , of the lattice, we define a space of all

spin configurations on A
JEA
- @) s iea) €Ky
which is a configuration of spins of a finite subsystem in A . We set K_= K,g.

ii) The a priori distribution of the spin ©(j) at j is given by a probabi-
lity measure, d.?u.{a{j}} s l(the same for all j ), on tha Borel sets of HH » The

M
{ K.ﬁ- }{ Rm , and
{1.4)

a priori distribution of a configuration Eﬁ of sping on A is given by

{1.5) TT da@iy
JEA
which is a probability measure on “!L *

iii) For each confipuration ;Eﬁ of a finite subsystem we define an emergy, or
Hamilton function
{1.6) Hn'[mh} .
which i1s assumed to be a continuous function on K-!'h Lt {.|"|.\¢~,|]-1.|I_I be an arbi=

trary sequence of finite repions in ﬁ'!.d increasing to Ed {(e.g. in the sense of
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Fisher [13]). We assume thar the Hamiltonm functions [Hn]“ﬂd have the property
that the thermodynamic limit of the fntaraction energy between the spins in a
bounded region A and the ones outside A ,

(L7 Wy pc ® Lm0, = (yeiy 0)

exists, for each finite sublattice A& , and that for all B 2 0 ; the thermodyna-

mic limit of the free emergy per wmit volume,
I

= 1 - n} .
(1.8) BE(B.A) “1_1“:!:.ﬂr Taal log ?-Ellh
where
(1.9) 2g(An) = J -np[-ﬂllﬂnwﬂn}lﬂ dafp(i)) ,

LT jEAn
exists. Here P & {(kT)~' is the inverse temperature.
iv) An equilibrium state at tmverse temperature [ of the infinite lattice spin
system is given by a probability measure, d“E- 1{5} » on{the o-algebra generatad
L]
by the Borel cylinder sets of) K_, with the property that, for every bounded

measurable function A on Kh , where A is an arbitrary finite sublattice,

+ = - [ By e (@) - : .
(1.I0) <A, = J.*.{-pﬁ}duailtm = Idﬂ{‘-li'hn][e MBS exp(-pH, (@, )]GS, ) Ed}.{wim
where dn{w_ﬁ-ﬁc} is a finite measure on Rac These are the so called Dobru:hin-

Lanford-Ruelle equations [14]).
Whenever reasonable we shall think of the simplest examples of lattice ryitomn

having properties i) through iv) above, e.g.

(1.11) @) - const.expl - MBI + B 1312 + pror1ae
AxD0, wr and h real numbers,
(1.12) Hy@ =- I a(i).eg") .

123" €A

13=3" =1
Mote that, for u¥ = A , N = | , this model approaches the usual Istng modal, as
A -

For N=1,2 and | sd < 5 , this example exhibits all kinds of phase tran-
sitions and ciritcal behaviour, as P ranges over (0,m) and h over (=1,1) .
The parameter h has the physical interpretation of a mymatic field. In the
following, B and bh will usually be the only parameters that we shall vary. de
therefore write f(B,h) instead of F(B,A) , <(.}=

h inatead of < (.) 5oA

gtc. Morcover

(1.13) f(R) = £(R,h=0) , '-'E-}}E 3 {{'}:.B,h-ﬂ .
Mext, we introduce some basic quantities in terms of which phase transitions

and critical phenomena can be discussed. (For simplicity, we shall often consider
one = component spins, i.e. N = [ .)
The basic objects in terms of which lattice spin systems are analyzed are the

correlation functions
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n
£1.14) {w{11}~~~'ﬂ{'ﬂn}}ﬂ.h . ] H m{:h}ﬂuﬂ_hl’m} .

It is these correlation functions which often turn out to be directly related to
the Buclidean Green's functions, Sp(x4,....%n) . defined in (1.2), of a relativis-
tic quantum field theory. Of particular importance are

a) the magnetization

MB.h) & <o(x)>, , = BN

b) the susceptibility
x(B,h) = g1 %h.h? = I a:r.p{ﬂ'!lm{x]}; T
where x€Z¢ .

wmm{x::f_h = <pl0holx)> N {mw}};.h ;

c) the internal emergy density

alB,b) = - a(BE (B, h)) .

Ju(@,h)

el Bl

We are also interested in the asymptotic behaviour of the two-spin correlationm,

and
d) the speeifiec heat

< p(0)p(x) }; p oo 8% Ix] = = . One measure of that behaviour is
L]
e) the inverse correlation length (mass)

m{B,h) = - I:lli:w*ﬁ:—l Ingcm{ﬂ}m{ﬂ}ah

which measures the exponential decay rate of {mtﬂhmf:}};’h ’

We now come to the description of various cypes of phase transitions and in-
troduce the notion of eoritical exponents.

We all have some intuitive understanding of what is meant by a phase transition :
If some thermodynamic parameter is varied there may occur a sudden change in the
behavieur of the system, as described in Sect. 1.2, Let us imagine that we wary
the inverse temperature B . It is convenient to distinguish between the following
two kinds of phase transitions :

1) "Phase transitions with local order paremeter" : For B small the equilibrium
state is unique, while for large B there are several, mutuzlly singular solutions
of the DLR equations (1.10). In the example specified by (1.11), (1.12) this kind
of phase transition occurs in zero magnetic field (h=0) in two or moredimensions,
provided N = | (i.e. in the Ising model) and in three or more dimensions, provi-
ded Wz 2.

Remark.— 1t may happen that the equilibrium state is degemerate (i.e. that there
are several solutions of the DLR equations) only at the phase transition poinc.

11) "Phase transitions without local order parameter" : The equilibrium scate
4 I:.}}B is wmique for all values of B , but does not depend amalytically on B .
This kind of phase transitions has been established in the example introduced in

(1.11) and (1.12), for H=d =2 : For h=0 and small P , correlations in
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c{.}:ﬁ have exponential fall-off, i.e. m{B) > 0 , while for large B they have
only power law fall-off and m(f) = 0 . Mathematically, this is & rather subtle
problem ; see [15].

In both cases, I} and II), there will be gt Ieast one value, Ba , of the in-
verse temperature which separates two different regimes, i.e. at which the transi-
tion occurs. Onme can distinguish twe kinds of transition points :

(1) Bo = B 18 a critical point :
We say that PBs is a eritical poimt if
m{p) 0 , as B7 P , or B WP, .
A phase transition with a critical point is traditiomally called a "higher order
phase transition" (although Ehrenfest's definition of the order of a transition is
actually different and is not very useful).

The transitions in the example (1.11), (1.12) with h =0 and N =1,2,d212 ,
are transicions passing through a critical poinc, B: » a8 B is varied. This is
typical of transitions in a ferromagnet ; (see Secc. 1.2).

(2) Ps a8 not a oritical point :
Bs is not a critical point if m{d) is strictly positive in an open interval con-
taining Bo .

If in example (1.11) one fixes B > ﬂc and varies h then a phase ctransirion
occurs at h=0 , and h=0 is not a critical point. Moreover (for N = 1,2,3 )
the equilibrium state is unique, except at h = 0 . A more interesting example of
this kind of tramsition (traditionally called first order phase transition)] 1s dic-
cussed in [16]. The melcing of ice is such a transition ; (see Sect. 1.2).

For the construction of relativistic quantum field theories only transition:
with critical points are relevant.

With "eritical phenomana™ 1z meant the behaviowr of a physical syatem in ther-
mal equilibrium near the critical point of a (higher order) phase transition.

Among the first theoretical attempts towards understanding higher order tran-
sitions and critical phenomena were the Landau theory of second order phase tran-
sicions and mean field theory. These theories are quantitatively wrong in dimension
twe or three and deo not describe experiments accurately.

It is the purpose of the following to pin point some of the mathematical
questions arising in the modern theory of critical phenomena, as developed by
Wilson, Kadanoff, Jona-Lasinioc and collaborators, and many others ; see [, 3,4, 17].

Furthermore, we shall try to explain how the comstruction of tha Schuinger
functions of a relativistic quantim field theory can be reduced, in principls, to
the study of the behaviour of lattice spin systems in the vicinity of some oritical
point.

The approach to the critical point im a lattice spin system is described in
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terms of oritical expoments which we define next. For the sake of concreteness we
consider the examples introduced in (1.11), (1.12). The only critical points of
these systems lie on the line h =0 , (for W = 1,2,3 . This is a consequence of
the Lee-Yang theorem [13, I8] and refs. given there).

We assume, temporarily, that d o & . Let BE be some critical peint. It has
been expected for a long time (originally on the basis of scaling arguments, more

recently as a consequence of the renormalization group) that the quantities M(B) ,

¥(B) . ec(B) , m(B) , ... introduced above have a power Lo behaviour in
3 ] EE;;E , a5 B -—-f :
E.E c ﬁ'
H{e) ~ el R for B > Bc
x(t) ~ 7
(1.13) elt) ~ ¢ 2 for B<B_,
mit) ~ "

where B' , v, o and v are some positive numbers which are called eritioal
grpongnts. (We hasten to add that the lawv efc) ~ t " is violated in two dimen-
sions.) The mathematical meaning of £({x) ~x" is
ue= lim A%F—iiﬁl
¥4 0 o x

One also introduces a critical exponent m (the "anomalous dimension") for the
c

=
g0 that @mip) = nl{ﬂtl = 0 . Them n is defined by

two—spin correlatiom <@{0ip(x)> To simplify matters, suppose that [ = BE ,

(1.16) <Ot~ |x"WI

B
in the sense that |x]| =

n=2-4d- lim lng{m{mmi:{,}};“uglul.
|| =+
It is expected that in four dimensions there are logarithmic correctioms to the

scaling law [19], e.g. -
(1.17) mit) ﬂ-:‘fﬁflng{%i}.u s BEE.

One of the main problems in the theory of phase transitions with critical points
is a proof of the scaling laws (1.,15)-(1.17) and the calculation of the critical
exponents. Of help In this task are the so-called scaling relations and critical

gxponent inequalitios, e.g.

(1.18) {(2-m)v =y =10
(for a proper definition of n ), due to Fisher, or
(1.19) dval-a,

the Josephson inequality, etc. For a survey of recent, rigorous results concerning
such inequalities see [20, 21, 22, 23].

One of the main achievements of the renormalization group is just precisely
that it predicts values for the exponents which fit the experimental data extre-

mely well. (Those predictions are obviously non-rigorous and obviously correct.)
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The main tdea of the renormalization group ts to study the behaviour of a
syatem wndar a change of seale, given by a transformation acting on an appropria-
tely chosen space of statas, or Howilton functions. (It appears that it is not
alvays possible to let those scale transformations act on a space of Hamilton
functions, so defining them on some convex manifold of states is a better star-
ting point.) In particular, one tries to find the fized potnte of these scale
transformations, corresponding to scale-invariant systems Critical exponents are
then related to real eigenvalues > | of the linearizatiun of the scale trans-
formation at a hyperbolic fixed point.

It will now be our task to make these remarks more precise and to summarize
some of the progress that has been made in understanding phase transitions with
critical points, critical exponents, scale transformactions and the remormaliza-

tion gEroup.

§ 2. Recent results on phase transitions with eritical poincs

In this section we describe some recent results on phase tramsitioms with
critical points and we briefly outline some general ideas that go into the piuois

of cthose results.

2.1. Existence of phase transitions

Presently there are basically three general methods to rigorously escualilish
the existence of phase transitions in lattice systems of statistical mechanics
(a) Exaect solutions. This technigque applies only to a limited class of mode .
such as one-dimensional systems with finite range interactions, the twr=dimensir-
nal Ising model, the eight-vertex models,..." . In recent years, the interesc i.
exact solutions has been revived through the work of Jimbo, Miwa and Sato [24],
Faddeev and collaborators [25] and Thacker and collaborators [26). Exact solutions
tend to provide a fairly detailed description of the phase transition, including
quantitative informacion, but often somewhat obscure the physical mechanisms lea-
ding to the transition. We shall not discuss any exact solutions inm the [ollowing.
(b} Enargy-entropy (Peieris-type) arguments. In its most general form this me
thod can be viewed as a way of reinterpreting spin systems as gases of (“topolo-
gically stable") defects in an ordered medium [5] (Bloch walls = Peierls contours,
vortices, magnetic monopole lines...) and of analyzing transitions in defect gases
by estimating defect - energies amd - entropies.
This method can be applied to study thermodynamic phases in which the defect
gas is dilute. The original Peierls argument [28] was invented to analyze the
Ising model. It was reconsiderod and extended by Criffiths and Dobrushin, in the

1) See e.g. E.H. Lieb's survey, [27].
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sixties [29]. Subsequently, Minlos, Pirogov and Sinai developed a very general,
constructive form of the Peierls argument [30). Glimm, Jaffe and Spencer first ap-
plied it to quantum field models, introducing & new technique to analyze "contour
probabilicies" [31]. Furthermore they combined a Peierls argument with expansion
methods permitting to estimate small fluctuations around defect configurations
[32]. Some of their ideas were systematized and extended in [11, 33, 34].

The observation that the basic elements of the Peierls argument, energy-
entropy considerations, can be applied to rigorously analyze a much wider class
of model systems equivalent to gases of defects, including ones with long-range-
interactions and massless phases, is contained in work by the authors, [15, 35, 36].
In particular, we have succeeded to set up Peierls-type arguments in systems with
continuous (but gbelfan) symmetry groups. Our techniques combine entropy - (i.e.
combinatorial) estimates for suitably constructed blocks of defects with some
kind of "block spin integration", borrowed from the renormalization group, which
serves to exhibit self-energies of defects.

We now briefly describe some general elements of the simplest kind of Peierls
argument somewhat more precisely : Consider a physical system whose configurations
can be described by a classical spin field, © . We suppose for the moment that
@ is defined on R
dimension 2 | and with values in a compact manifold M (e.g. EH e N=O,1,2,...).

{racher than I:';I ), continuous except on surfaces of co-

Consider, as an example, a configuration ¢ which is continuous except on a
hyperplane H_ of dimension k € d-1 . The space of all configurations
P : Eﬁ ﬁaHk —+ M can be decomposed into homotopy classes labelled by the clements
of the homotopy groups
{2.1) “d-k-l{H}

A configuration © labelled by a non=-trivial element of “d“k“I{H] is called a
topological defect of dimension k .

The idea is now to interpret the equilibrium configurations of the spin field
@ (distributed according to an equilibrium state duﬂiﬁh Y as equilibrium confi-
gurations of a gas of tnteracting, topological defects. The locus of a defect, ﬁh'
in this gas, corresponding to a non~trivial element Fie E "d-k-J{H} Iz & closed,
bounded surface, Ek y 0f dimension k . In the following we assume that all homo-
topy groups of M are discrete.

It turns out that the main features of the statistical mechanics of defect
gases can often be described by an energy-entropy argument of the following type :
One calculates a self-energy demsity, E{Eh} y of a defect ﬁk corresponding to
a non-trivial element g, € m, . _ (M) . The energy of &  is then estimated by

(2.2) E{ﬁk} b s{ghjlthl '

where lthl is thae k-dimensional areca of tk i
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After introducing some coarse graining (e.g. replacing continuum models by
lattice models) one can argue that the entropy E{gk.n} of the class of all de-
fects labelled by By, whose loci contain a given point,; e.g. the origin, and

have area

[Ekl = cengt. n , @W= 1,2,3,...,
iz estimated by
{2.3} S{Eki“} sc{ﬂkj Ty

vhere ¢f is a peometrical constant. The density, pip .0} ; of such defects,
Bl B

Ek , is then proportional to

(2.4) plg ) = o BE(8K) +5(gk,n) < L (-Belr) +e (pk) In

provided the interactions between different defects are, in some sense, weak. For-

mula (2.4) suggests that when the inverse temperature [ decreases below the point

(2.5) Blg,) = clg)/elg,) .

defects labelled by g condense, and there are, with high probability, infini-
tely extended defects of type By - One expects, therefore, that there is a phase
transition, as B is wvaried through Bigk}

The argument sketched in (2.2)-(2.5) is called an energy-entropy argumcnt.
The art is then to apply such arguments to specific spin systems to actually prow
that a transition occurs. This has been done for a large class of lattice upin

systems with abelian symmetry groups .

This may sound confusing, because the ne-
tion of a "topological defect” does not make sense when one considers spin confi
gurations on a lattice. It turns out, however, that in models with abelian aymuc-
try groups oneé can useé a duality transformation (Fourier transformation on the
group) to exhibit what im the continuum limit corresponds to topological delects
Since this will presumably sound rather vague, we now briefly describe two exam-
ples.

(1) The Ising model (see (1.11) and (1.12)). In this example : M = [-1,1} ,
iplx) = 21 wicth probabilicy 12 , for all x Ezd y and

(2.6) Ho = I (l-0(i).w(")
jai'"EA
Lj=§" 1=l

The defects are the Pelerls contours, i.e. {(d=1)-dimensional, closed connected
surfaces in the dual lattice separating a domain where o takes the valuc +

from & domain where it takes the value =1. By (2.6), the energy of a contour is
equal to its (d = l}=dimensional area. It iz & simple, combinacorial exercise to
show that in d 2 2 dimensions the number of contours of area n enclosing the

" m " 4] = " =
origin 15 bounded above by ¢ , where ¢ is a geometrical comstamnt. The inter-

" or non -abelian, but discrete symmetry groups.
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actions between contours are given by an exclusion principle.

Suppose now that, for all x outside an arbitrarily large, finite set
A :::Ed , 422, wix) =+1. Let ps(B) and p_(B) be the probabilities that
(0} = +] ;=1 , respectively, in an equilibrium state at inverse temperature

B , with the above boundary conditions outside A . Clearly every configuration

@ for which ©{0) = -1 must contain at least one Peierls contour enclosing the
origin. Hence P
(2.7) p-(B) s T P <g,

n=2d

if B is large enough, and thus
(2.8) {lﬂfﬂlbﬁ = pye(B) = p-(B) = 1 - 2p-(B) >0,

for large B . This shows that in zero magnetic field (h=0) and for large @B
there is & spontanecus magnetization in the direction imposed by the boundary
condictions. It is mot hard co show that for small B there is no spontaneous
magnetization, (the equilibrium state in the thermodynamie limit is unique for
small B ). Thus there is a phase transition.

(2) The two-compoment rotor (elassical XY) model. In this model : M = 57 ,
dllih is the Lebesgue measure on 57 , the Hamilton function is given by
(2.9 H@ = I (-9().G = X (1-cos(d() =8 ,

1.] EA 1.1 EA
1i=3"1=I 1i=4" =1
where O(j) is the angle parametrizing the umit vector @(j) .

Since my(8") = Z, m(sY) =0, i ¥ | , the defects of this model are
labelled by an integer and their loci have co-dimension 2 . They are called
vorticss. In order to study the tramsitioms im this model, the idea is to invent
a rigorous version of the energy-entropy argument (2.2)-(2.5) for the gas of vor-
tices equivalent to thae rotator model. The equivalence between the rotator model
and a vortex gas can be seen by Fourier series expansion of the equilibrium stace,
duﬂi{;} s inm the angular variables ({3{(j}} and subsequent application of the
Poizson summation formula ; see e.g. [37, 15, 35]. The problem that one meets
when one tries to analyze the vortex gas is that there are interactions of extre-
mely long range between individual vortices. In three or more dimenstons, these
interactions turn out to be quite irrelevant, and the arguments (2.2)=(2.3) can
be made rigorous. Ome concludes from (2.4) that, for large @ , the density of
vortices is small, i.e. the number of defects per unit volume in each equilibrium
configuration ¢ is very small. Therefore one expects that, in the average, @

has a fixed direction, i.e.

(2.10) <E{::r>ﬁ - H(B) # 0,

for large B ; M(R) is determined by the boundary conditions. These arguments

are made rigorous in [35] (a slightly mon-trivial task). It is well known that
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for small B , or for arbitrary B and d = 1,2 [38],
(2.11) ¢E{:):vﬂ =0,

In two dimensions, the vortices are point=-like objects. The interaction between
two vortices of stremgth gq, and gqa , respectively, separated by a distance @
is approximately given by

(2.12) = g4qz E% In &

which is the Coulomb potential between two point charges, qs and gz , in twe
dimensions. Suppose now that q4 = - gz = 1 . The entropy, = , of the class of
configurations of a + vortex and a - vortex separated by a distance L , within
some distance o« L  from the origin is given by

(2.13) a® = conse. 13
Thus, for B > Bm ,
(2.14) e PEeS o conse. (24 1)3B/2M

ig susmable inm £ . This means that configurations of one vortex of strength +I|
and one vortex of strength -1 , separated by a finite distance, are thermodyna-
mically stable.In Fact, it can be shown by a somewhat difficult, inductive cons-
truction [15], extending over an infinite sequence of length scales, that for
sufficiently large values of B all vortices can be arranged in finite, neutral
clusters of finite diameter and Einite density. The conditions characterizing
those clusters are scale-invariant. Our construction thus ipvelves ideas of scale-
invariance and self-similarity. Furthermore, it requires successive integrations
over "fluctuations" on ever larger length scales, (a device reminiscent of renoi-
malization group methods).

For small P , vortices unbind and form & plasma. Such Coulomb plasmas are
studied rigorously in [39). Thus, one expects a phase transitiom, as B is va-
ried. It is non-trivial to show that the transition in the two-dimensional vortex
gas just described corresponds, in the two-dimensional, two-component roter model,
to one from a small B phase in which ﬂza{ﬂ}.a{:]}u has exponential fall-off
in x| to a large P phase in which *{G[D];E{xlkﬂ falls off like an invers:e
power (<1) of |x| , as |x| == . This is proven rigorously in [15]. For de-
tails and further results on this and related models see [15, 35, 36, 39].

We now proceed to discussing the third general method in the theory of phase
transitions.

(e) Infrared bounda (rigorous spin wvave theory) [40]. This method which origi-
nated in [40] iz rather general and is the only known method which gives satis-
factory results in models where the spin takes values in a non-linear manifold
and the symmetry group is non-abelian. (A review for mathematicians may be found
e.g. in [41].) We describe it in terms of an example : Let ¢ be a lattice spin
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with H = 1,2, or 3 components. Let
(2.15) @) = e M@ 12 - Daee |

which is a measure on the (N=-I)=-dimensional unit sphere approaching the uniform

measure, a8 h -+ 0 . The Hamilton function is given by

(2.16) Hy@ = I (1=-3).8(G" ,

and let duﬂrhﬁE} be an equilibrium state satisfying the DLR equations (1.10).
It is known that for h 4 0 , duﬂ.h iz unique (within some class of boundary
conditions). We suppose chat the underlieing lattice is three - or higher dimen-
gtomgl. Let A be a large, fimite [hyper) cube,

- 1 -
@A) = E oli) .
val. A jEA

The basic idea of spin wave theory is that for large @
(2.17) ©(A) = Ma, + SB(A)

where :1 is the unit wvector in the I-direction, i.e. the direction of the ma-
gnetic field (see (2.15)), M >0 if h >0 , and &p(a) is the fluctuation of
©(a) around Me, which one expects to be o« B~V2 | for equilibrium configura-
tions at low temperatures (large B ).

Thase ideas can be formalized as follows : Lat

cﬁ{m.ﬁu:u}:-‘;_h = <p(0) .En:u}:-mh - | <0y al*

h#0, and let EE h{k} be the Fourier transform of ~=E{01+Efﬂl};
L] ®
whieh is a function on the d-dimensional torus,

in =
h

B = [-n.n]d , (the first Brillouin zone).

By using the so called transfer matrix method, Simon and the authors [40] have
shown that

d
(2.18) 0% G; pE) S Np-1[2d - 2 E eos kI .
4 a=|

The upper bound in (2.|8) which is called infrared -, or spin wave bound and our
proof of this bound were inspired by known results (the Killen-Lehmann spectral
representation of a two-point funetion, e.g. [42]) in relativistic quantum field
theory. Mathematically, the proof is related to a proof of the Hilder inequality
for traces ; (im fact one proof of (2.18) is based on the Holder inequality app-
lied to the trace of a product of integral operators.) By Fourier transformatiom

05 <I@0)I2% < NB='1, , where
(2.19) { g A 3
Id s (2m) J dk[2d - 2 3 cos Eﬁj“.

B = |
We note that Id is divergent for d = 1,2, but finite in d 2 3 dimensions,
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{with 1d « d=" , for large d ).
By (2.15) it is obvious that
<190} 135 =1 .
Thus, far B > Hld .

(2.20) M{(B,h)2 = I{G{D}}B hl-" 21 - F'IIEI-“Id >0,
uniformly in |h| > 0 , i.e.
(2.21) lim M(B,h) = M(B) > 0O .

h% 0

It is easy to prove that M(B) = 0 , for sufficiently small B . We therefore
conclude that there i@ a phase transition.
It follows from the infrared bound (2.18) thac

(2.22) 6(a) =~ /up-11a1(2-d)/d

in accordance with heuriscic ideas based onm spin wave theory. Note that for

d = [,2, ﬁ&kﬂ] does not become small, as the volume [al of A& tends to = .
This suggests that there is no spontaneous magnetization when d = | or 2 . Indeed,
for N 2 2 , there iz no spontaneous magnetization and no symmetry breaking in two
dimensions ; the well-known Mermin-Wagner theorem [38] ; (see also [&3] for a
proof vhich formalizes the above fluctuation argument).

The results reported here extend to a large class of spin systems, but the
hypotheses required for the known proofs of the infrared bound (2.18) impose se-
rious limitations on the class of Hamilton functions for which (2.18) is known to
be walid [11. 3)].

We comclude this subsection by mentioning some recent results on the struc-
ture of the space of translation - invariant equilibrium states in the Ising -
(N=1} and the two-component rotor model (N=2) :

For h#0 ,o0or for h=0 but B =0 small that M{R) = 0 , the (transla-
tion-invariant) equilibrium states are wunique [44, 45]. Next, suppose that h = 0,
M(B) #0 (i.e. there is a non-zero spontaneous magnetization) and that B is a
point of continuity of the internal energy d:n:itr.--gﬁﬁfl « (Since PBE(R) 1is
concave in B , this is true for all, except perhaps countably many, values of
B .) Then :

(i) In the Ising model, there exist precisely two extremal, translation-invariant

equilibrium states, {{.}}ﬂ .t with
L]

0 < -:w-mlb-ﬂ._ - - {wm:}a__ .

See [46]. A deeper result, due to Alzenman [47], is that in the two-dimensiconal
Ising model (i) is true for all B > HE y Without assuming translation invariance.
(i) In the N = 2 rotor model (under the same hypotheses) there exist infini-

tely many extremal, translation-invariant equilibrium stcates

[{E']}H,B : 8 € [0,2nm))
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vhich can all be labelled by an angle 9 and such that

- - cos o
<BO)3y o = 1<HO)3, ( )

gin & °
For the proof see [48].
The proofs of the results mentioned here are rather unintuitive and of very
limited interest to the mathematician, although they involve some clever ideas.

2.2. Existence of critical points and inequalicies for critical exponents

Almost all rigorous results concerning the existence of crir cal points and
critical exponents known to us are results on the Ising - and the two - component
rotor model, or the more general family of models defined in (1.11), (1.12), for
He=1,2,(3,8) components. We therefore restrict our review to these models, but
see [49) for a discussion of Dyson's hierarchical model.

The first rigoerous results on the existence of ecritical points and estimates
on critical exponents were proven by Glimm and Jaffe ; see [50] and refs. given
there. As a censequence of the Lee=Yang theorem, the inverse correlation length
m{p,h) introduced in Sect. 1.4, e) is strictly positive, when h # 0 . Let ﬂc
be defined by
(2.23) ﬂ-¢ = sup(p : m(f) = m{B,h=0) >0} .

Rosen and Climm and Jaffe (see [50)] for references) have shown that mi{B) tends
to 0 continuously, as f 7 ﬂc . It has also been shown [20. 3)] that the magne-
tic susceptibility %(B) diverges, as B T Bc i
Among rigorously established inequalities for critical exponents are (see

(1.15), Sect. 1.4, for defimitions)

vz 1/2

y=1

D=n=l

dvs2-a,

etc. We refer the reader to [50] for a summary and references and to [21] for
interesting generalizations.

Although the proofs of these results are quite clever, they are based on
very special features of the Ising - and votor model. They hardly involve mathe-
matical arguments which are interesting in ctheir own right and are therefore not
pacaphrased here.

There are now emerging two somewhat general, tiguruuu approaches towards a
theory of the critical point and critical exponents [22, 23], [51, 52] which ap-
pear to give fairly complete results in five or more dimensions, for reasons we

shall try to explain in the following.
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§ 3. Scale transformations and 31:31in= limit

In order to simplify our discussion, we consider a one-component spin field,
¥ , on the latcice E.d . Let dl-l-ﬁf‘-lﬂ be an equilibrium state. (For simplieity,
we imagine that P is the only thermodynamic parameter that is varied, but there
could be dependence on a magnetic field, h , or other parameters, as well.) Let

(3.1) 0 () ~wli+n) , xez?,

and assume that dun{m} is translation invariant, i.e.

(3.2) :lua(r.n“} - duﬂim} ;
As in Sect. l.4; we define the correlation functions as the moments of du.n i
n
(3.3) CP(xa) ... @(xy)> = J TT wix, ddu, () .
278 7 )y %

By a trivial re-definition of ¢ it is always possible to assume that
f:m{x}}ﬂ -0 .

In the following we are interested in analyzing the long distance limit of
the correlation functions defined in (3.3) and in relating existence and proper-
ties of this limit to the behaviour of the equilibrium state and the correlations,
as [ approaches a critical point B= y defined as in (2.23). We assuse tha:, for
B < E: . Ehe stace <(.)>

p
action of lattice translations, defined in (3.1)) and that m(p) is positive,

is extremal invariant (i.e. duﬂ is ergodic under the

i.e. {m{x}m(ﬂ}a tends te 0 exponentially fast, as Ilx=-y| — = with decay
rate denoted m{B) ; see Sect. 1.4, e). Furthermore, we assume that m{R) ctends
to 0 continuously, as f 7 ﬂ.{: . As mentioned in Sect. 2.2, these assumptions
are known to hold in the Ising - and the N = 2 rotor model and in the family of
models introduced in (1.011), (1.12), for N = 1,2 .

We now define the scaled correlations

(3.4) Cglxys-nonkn) @ a(@)7€0(Bx1) .. .0Bxn) >y q) +
whers
1 s 83 <,
(3.5) {
&-:j EEd—:'.j Eﬁf.g,, [y : Oy Eiﬁd] .

and B3 < HE and a(3) are functions of the scale parameter @ which one
tries to choose im such a way that a non—trivial limit, as O = = , exists. In
the models mentioned above it suffices to impose the following remormalization con-
dition §: For D < |x=y| €= ,

(3.6) 0< lim Gﬂ{'x.}'} B G (x-y) <=,

H-em
It turns out that im our class of models (3.6) suffices to show that some limic

(3.7} ':;"E:'h“”.?!u} = lim G.. [X4yesesXnl)
-'}i - o4
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exists, and G*(X4,...,%n) 15 & translation-invariant distribution, for all
n=34,... . It follows from (3.4) and (3.6) that

(3.8) B(H 7 Br_ y a8 D e,

If the limiting correlation G*{x-v) 1is required to have exponential fall-off

in Ix-yl| one would try to impose, in addition to (3.6),

(3.9) da(p(H)) ——m* >0, as J-m,
IF mie) , t = E""'B;B , is known to satisfy a scaling law
(3.10) mit) ~t¥ ,

see (1.15), then (3.9) and this scaling law imply that

ar(eyY = aBa BBV | onat.
[ i

L.e. £ '

(3.11) B®) ~B_ - const. &'V, as B,
Up to some technical finesse, it follows from (3.6) and (3.9) that

=g

(3.12) Xg :Eé%_,a G (0,x)

remains bounded, as SO=e, By {3.4)

(3.13) Xg = a(®32 87x(8(3)) .

If wi(B) satisfies a scaling law

(3.14) x(e) ~¢ ¥,

see (1.15), and

(3.15) a@2 ~ gt |

(this really defines the critical exponent n ) then it follows, using (3.11)=-
{3.15), that
(3.16) (2-mv-y=0.

This is one example of a relation between critical exponents. By (3.6), (3.9),
m(B(3)) — 0 , as & + = ,

Recalling, in addition, the definition (3.4) of Ga(:.yj , Wwe see that n is a
measure of the fall-off of {:D{I}:n{_',r}}ﬂ at an intermediate distance scale,
a 3 when ﬂt - B r---'ﬂ'_l"ﬁ'r .

We now claim that in our class of models, see (1.11), (1.12),
(3.11 n=0.

For these models, the infrared bound (2.18) holds. From that bound one can deduce
that, for d 2 3 ,
(3.18) 0s ﬂﬂ{ﬂ}tp{ﬂ}ﬂ = ::da"lmu—zrliqri ,

{at least for one = or two-component fields ; see [53]). Here ey is a geometric
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constant. Since ﬂc £ w ig strictly positive, we conclude from (3,4), (3,8) and
(3.18) that

(3.19) a(®)2 > const. 8° ¢ ,

whence (3.17).

Quite generally, control of the two-point function in the form of an inequa-
lity (2.18) or (3.18) is required in order to determine the choice of ald)

We now must focus our attention on the question of why we are interesced in
the large scale behaviour of a lattice spin system, i.e. in studiing the limit
where O = = , Hére are some AnNSWETs.

1) Suppose we are able to construct the limiting correlation functions,
G*(X4ye0es%n) , of the rescaled correlacions, QE{:"‘*":“j y A8 D - o , such
that the renormalization conditioms (3.6) and (3.9) hold. Then we must have, in
particular, a way of determining the functions B(3) and a(d) . But, by (3.10)
and (3.11), cthe choice of QA(D) determines the critical exponent v , and, by
(3.15), the cholce of a3 determines n . Thus an explicit construction of the
O = o limit determines, in principle, the critical exponents v , ¥ and n .

2) As our derivation of relation (3.16) shows, proving merely existence of a
O -+ e limit yvields non-trivial relations between critical exponents.

i) But perhaps the main imterest in constructing the limits, G*(x4,....%pn'
of the rescaled correlation functions comes from the fact that

these limits may be the Buclidean Green's fimetions of a relativistic quan-

tum field theory, i.e.

(3.20) C*(XqyrenyXp) ® SpiXq, ..., %0} .

for some quantum field theory satisfying the Wightman axioms (WO)={W5]).

Indeed, in the models considered above, this is true if we can prove that
the distributions G*(x4,...,%n) are invariant under simultaneous rotations of
their arguments - but even if this property failed, the G* 's are the Euclidean
Green's functions of a quantum field theory with a vacuum state that would then
not be Lorentz invariant.

For some scaling (= continuum) limits of the models introduced im (1.11),
(1.12) in two and three dimensions and of the two-dimensional Ising model it has
been shown (see e.g. [12, 50], [24) respectively) that the distributions, G* ,
are the Buclidean Green's functions of relativistic guantum field theories satis-

fying all Wightman axioms (WO)-{W3).

§ 4. Henormalization proup (block spin) transformations

In this section we briefly sketch a specific idea how to accomplish the cong-
truction of the scaling (= continuum) limits, G*(xq,...,%n) of the rescaled cor=-
relations Gglxy,...,%n) , as 9 + @ , the Kadanoff block spin transformations.
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They may serve as a typical example of "remormalizaiion (group) transformationa”.
Clearly there are other examples of this general idea, including ones in the con-
text of dynamics (in particular, the Feigenbaum theory [2]). We also try to indi-
cate how mathesatical control of renormalization group transformations leads to
the calculation of critical exponents.

4.1. Block spin Eramsformations

We define a funccion W m uﬂ on Ed as follows @

E-dj -%Eyu£%| u-I'-I-l--l-'d
uiy) = {
1] , otherwise,
whera y = E]r‘,...,]rd} l':'l‘l.'l:| and £ 1s an arbitrary positive number. Let

H:{jn'.'! = uiy-Ex) , = EE" :

Let {:a{x,,...,:n} be the rescaled correlation function defined im (3.4). Then
n

_d
“"-1} G HI TR } G ¥ Gﬂi?n---r?n} ‘I_l- 0w ':Tk}
B{ 1 Hxn _1.r-|....,:ﬂ.—.,iniﬂ!%__t k=1 *k o
- (a(@a ¥ <@lze)...o(zn)> T s (32, .
ZyyesraZn in 29 B9 kel Y :
We now set
= - =1y
) 3_ L,
where L 1is some positive integer and m = [,2,3,... , and define
(4.2) e (0(x)) = ale-'L™).L 0" I olz) ,
. | zEzd :
mpS s
€%, wel,....d . Then
(4.3) E&n{'lrch.....u:n} n {rnl!ml:m'.l'j...rn{m{m}}}ﬂiﬂ-] .

Let du{p) be an arbitrary, tramslation-invariant, finite, positive measure on
the space of all configurations [p{x) : x Eﬂ'.d] . We define a transformation Hm
of W by the eguation

1] i
I TT r,(@lx))duiw) = [ TT obx )dR u (@) ,
k=] k=1
for all XMyse-seXn AN Ed, LR K [

Note that T (resp. Hm ) consists of a transformation increasing the scale
size (taking the average over all spins in a block) followed by a (im the present
example ! linear) coordinate transformation in spin space. Further more, we note
that 1f W is extremal invariant then so is Itmu .

In order to arrive at an interesting concept we now suppose that afd) is
proportional to some power of o , 1.e.

(4.4) a(®a ~ gi=24n

for some mn . We then define
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(n-d=-2) /2
4.5) = L =
(4.5) rip(x)) (a plz)
-'1151.":“—:'5'5%
Then
:m{m{xn = a(E”1)r e ... o v(0(x)) .
L
m times
Let Ru be the unique measure such that
n 1]
(4.6) TT rlotx))dule) = j TT el )dmu v,
k=1 k=]
for all x4,...,%n , 0= 1,2,3,... . [Note, R maps extremil invariant measures
to extremal invariant ones.] Then
(4.7) d(R_W) () = d(Rs ... s BW) (a(ede) = d(R"W) (ale)w) .

m Cimes
If we now choose dp = duB , where [”E} is a family of Gibbs states of our spin

system indexed by [ we obtain, setting A = E{ﬂm} .

(4.8) G“[Hxi.....u:n.'l = lim Gantum..--.uxnll = lim Iﬁwtﬂ}d{lﬂlﬂmﬂ}}m{ﬂm‘l '
R m=scs - =

provided the limit exists.

In order to prove existence of the limit in (4.8), one must analyze the trans-
formation R on (the boundary of) a suitably chosen cone of finite measures. i
particular, one has to construct [ixed points of R , study the spectrum of the
linearization of R at the fixed points (the linearization of R acts on & linear
space of measurable (or continuous, or analytic) functions of spin configuration:,
@ ), and construct the stable and unstable manifold of R near a fixed poinc. We

shall discuss some examples below.

Remarks.— 1) By (4.4)=(4.6), the transformation R = R“ depends on the exponent
N . The condition that the limit in (4.B8) exist and be non-trivial fixes n .

2) We shall see that the critical exponents v and Yy are determimed by posi-
tive eigenvalues > | of the linearization of Rn at the appropriate fixed point
af nn §

3) It is usually expected that if a measure 1 is a Gibbs measure (i.e. u sa-
tisfies the DLR equations for some Hamilton function H - more precisely sume ia-
teraction [13, 14] = see (1.10)) then Rnu is again a Gibbs measure. This, howe
ver, is not true in gemeral. But if it is true on a suitably chosen space of Gibbs
states then Rn uniquely determines a transformation Hr] acting on a space of
{equivalence classes of) Hamilton functions, or interactions. The simplifying fea-
ture of this eet-up is that the derivacive of i{ﬂ acts on the linear hull of the

SameE SPpACE.
4) Below, we shall briefly indicate how these ideas are applied to dynamics.



586-26

4.2. Fixed points of block spin transformations, stable and unstable manifolds,

¢rictical exponents

Let M be some cone of finite measures, U , on some measure space of spin
configurations ¢ = [m{j]]jfﬁﬂ + Let F*l be a renormalization (block spin) tran=
sformation acting on M , as discussed in Sect. 4.]. (One ought to assume proba-
bly that ¥ can be given a topology such that the action of Rh on M is
smooth.) Of particular interest are the fixed points, u* , of En . It is usu-
ally not so hard to convince oneself that there exists at least one fixed point.
Supposing, for example, that o(j) ER , j €Zd , and that er is given by
(4.4)-(4.6), it is easy to show that Rn has at least a one-dimensional manifold
of fixed points, u; s tER , which are Gausatan measures. Gaussian measures
are uniquely characterized by their mean and their covariance. The mean of u;
is 0 , the covariance is of the form efC* , where

(4.9) Jdu;_ﬂcw)m:ﬂmm " C*(x,y) = e*(x-y) ~ le-ylP

See [54] and refs. given there. (Non-Gaussian fixed points have been constructed,
too, but no non-Gaussian fixed points interesting for statistical physics or re- :
lativistic quantum field theory appear to be known, in the sense of rigorous ma-
thematics, except in the two-dimensional Ising model.)

There is an intimate mathematical connection between fixed points, u* , of
Hn and "scable distributions” in probability theory. It isworthwhile tonote that
fixed points, u* , cannot be strongly mixing. See e.g. [54, 55] and refs. given
there for a discussion of these probabilistic aspects. We stress, however, that
the main concepts of the renormalization group are more general than cheir proba-
bilistic formulation !

We now choose some fixed point, w* , of R“ . We define Hf.p. "‘f.p.{“n‘"t}
to be the manifold of all fixed points of Hn passing through u* . Since a cer-

tain class of coordinate transformations, like
: i d
w(j) — mp{j) , for all JEE" ,

for some positive a independent of j , commute with Rn y the Fixed points of
Hn are not isolated, and the linearization of Hn at some fixed point w* will
generally have an eigenvalue | (and possibly further eigenvalues) corresponding
to coordinate transformations.

Under suitable hypotheses on Hﬂ and M , one can decompose M in the vi-
cinity of w* € HE_FF{RH.HF} into a stable manifold, anu*} , and an unstable
manifold Hh{u'l :
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Fig. |

States om H‘{MF} are driven towards W* , states on H“fu'} are driven away

from wu* , under the action of R_ . The tangent space, # , to Hul{u"} at u*

is the linear space spanned by :igenvcctnr: af nH“{u‘} (the derivative of R“
at u* ) corresponding to cigenvalues of modulus > | . It is called the space of
"relevant perturbations". The space § of "irrelevant perturbations” is the tan-
gent space to HE{uF} and is spanned by eigenvectors of Dﬂn{uF} corresponding
to eigenvalues of modulus < | . The space A of "marginal perturbationg" is
spanned by eigenvectors of Dﬂn{u‘} corresponding to eigenvalues of modulus 1 . Ge-
nerically % will be the tangent space, ¥, to HE_P_[Hn.uFJ » and, in a neigh-
borhood of uw* , each point in HE.P.{R“,uF} can be reached by applying a coor-
dinate transformation to u* . However, it may happen that the dimension of J&
is larger than the one of ¥ . In that case, linear analysis is insufficienc. Ti
may happen that one can enlarge HE y lor Hu , or both,) by submanifolds of

n

points which are driven towards {(away from) W* with “asymptotically vanishing
apeed”. This is precisely vhat appears to happen in the Ising - and rotor models
(more generally, in the models introduced in (1.11), (1.12)) in four dimensions :
dim = 2 = dim €+ 1 ; (moreover, dim & = 1| ). However, all fixed points are
scale-invariant Gaussian measures, and HE can be enlarged by a one dimensional
submanifold tangent to a direction in # at u* .

In the situation described here one expects logarithmiec corrections Lo
scaling laws.

[Another possibility compatible with dim s> dim ¥ is the appearence of a
stable, periodie eycle. For the transformation B defined in (4.4)=(4.6) one
should be able to rule out this possibility.]

Suppose now that R, depends on a continuous parameter, & , and that &g

ig some "eritical™ walue of & such chat
dim M= dim B', for & > &g ,
din > dim® , for & = & .
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Then &g is a bifurcation point, and one expects the emergence of new fixed
points (or periodic cycles) for & < 65 . Im the study of the models mentioned
above, it was proposed by Wilsom [1] to identify & with the dimenston d and
to interpolate analytically in d ". The critical dimension, corresponding to
bg , is & , and above four dimensions the fixed points goverming the critical
behaviour of those models are Gausalan, and mn = 0 . There are partial results
towards showing that the "relevant" fixed points in dimension 4 are Caussian,
as well ; [22, 23].

MNext, we discuss how critical exponents are related to the spectrum of
DR“{uF} » where Hn is the transformation defined in (4.5)-(4.7). We consider a
simple case : In a neighborhood of W* , HLF-{HH'H*} is obtained by applying
suitable coordinate transformations in spin space to W* . By adopting some nor-
malization condition which fixes the choice of coordinates we can project out
the marginal directions associated with Hf.p. . We assume that, after this re-
duction, the tangent space at u* splits into a cne-dimensional space of relevant
perturbations and a so-dimenation-ong space of irrelevant perturbations, (inparticular,
there are no further marginal perturbations). Taking smoothness properties of R“ in
some neighborhood of u* for granted, ve conclude that in some neighborhood of W* there
exist a one-dimensional unstable and a co~dimension-one stable manifold passing through u*.

Next, let ["B]E-}ﬂ be a family of Gibbs measures of some spin system cros-
sing the stable manifold, H‘{qu ¢ Eransversally at some value B: of the para-
meter B . We assume that, for all f < Bu v g is extremal invariant, and that
the inverse correlation length, (or mass = see Sect. 1.4, e)), m{(B) , is posi-
tive and continuous im B , with

(&.10) m{) ¥ 0, as BFB_,

as discussed at the beginning of Seet. 3. (The class of all spin aystems whose
Gibbs states have these properties, for given ItI_I and u* , is called a wriver-
sality olass.)

Let M(j,m*) be the manifold of extremal, translation-invariant probability
measures, i , on the measure space of spin configuratioms, @ , which have the
property chat

fdu{mjmtﬂlw{:}

has exponential decay rate wm{j,m*) , as Ix| =+ = , where
Ch.11) ij{j.,n":l s m* >0,

for all j . If the space M of measures on which Hn acts is chosen appropria-
cely, H{j,m*)} will typically be of co~dimension [ , and Mie,m*) = H‘{u":l s

i some el ghlaorhosd of 0¥ o lence, for §  larpe enough, H”{u'] will typi-

" Another possibility is to identify & with the range of the {nteraction.
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cally eross M{j,m*) cransversally ac some point uj « We assume that [uB!B¢H;
crosses M{j,m*) transversally at a point Bg . s for large enough J = which is
consistent with {(4.10). Clearly the seguence J[ﬁj] converges Lo I!'n , 88 j = e,
Furthermore, by the definition of FH,I , 3o (&.4)=(45.8), Sect. &.1, and the defi=-
nition of M{j,m*) , see (&4&.11},
(4.12) HnH{j.m'l = M{j=-1,m*) ,
for all j .

Let A be the unique, simple eigenvalue of DRn{u*} which is larger than

I . In & meighborhood of wu* , Hu{'u."']l can be given a metric¢ such thac
(4. 13) dlst{uj.u*}.f'd.i:tfuj+1,u'] —_— L . as jee,

a5 follows from (&4.12). Thus if T.J.B iz sufficiently "close™ to u* it follows
c
from our assumptions on {I.lE] B0 {see Fig. 2) that

- H-i i s
(4. 14) ﬂj E: A , a3 § .

Fig. 2

HM{j+],m*)

By the definition of M{j,m*) , see (4.11],

(4, 15) m{ﬂ.j} s L m* .

Thus, if we set ¢ = E“ﬂ'—ﬂ' and m(t) = m(B) , B<B_ . we obtain from (4.14)
and (4.15) 2

mlt) ~ :1“ Liln A
(4.16) {

3 48 [ =0 ; 1.e.
ve InL/Ink .

Thanks to relation (3.16), the exponent ¥ of the susceptibility is determined
by m and v .

This concludes our general discussion of the basic renormalization group
strategy.

flemarksa.— 1) The ideas and concepts discussed here have other interesting appli-
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cations torelativistic quantum field theory and statistical mechanics : As we

have argued in Sect. 4.1, (4.4) through (4.8), one can use renormalization trans-

formatcions, Rﬂ , and their fixed points in order to construct the scaling limits,
GC*(%4,.-.,%n) , of the correlation functions of a spin system which, under general
and explicit conditions [8], can be shown to be the Euclidean Green's functions

of a relativistic quantum field theory. So far, constructive quantum field theory

has - in this language - been mostly concerned with the analysis of Gaussian fired

points of the transformations Rﬂ s With n = 0 , and the action of R in a

small neighborhood of those fixed points. =

2} Another application of those ideas concerns the phenomenon of asymptetic sym-
matry enhancement. One example of this phenomenon is found in the fact that in
many models the scaling limits, G*(Xqs+s+sXn) » OF the correlation functiomns of
gome spin system are invariant under all simulctaneous Euclidean motions of their
arguments, although the functions Gg(x4,...,xn) are only invariant under trans-
lations by an arbitrary vector a € Eg_,' . Other examples concern the generation
of internal symmetries in the scaling limit. See e.g. [15, 35] for such examples.
(Symmetry enhancement arises whenever a fixed point, u* , and the marginal and
relavant perturbations of u* have a large, "accidental™ symmetry group.)

3) Renormalization group methods can also be applied to dymamics @ Let ¢:
denote a smooth flow on a finite dimensional manifold, M . Consider the following

mapping on Ehe space of all such flows on M :
. =1
Byt % — By 0, =A w8y « 4,

where A is a smooth mapping from M into M , (a coordinate transformation}.
The mapping Ry is the analogue of the transformation Rn defined in (4.5)-

(4.7). Whenm time is discrete, i.e. t == |],2,3,... , and
o, = 4"
for some mapping & from M inte M , one would study, for example,

R.I'L ! ﬁ_*Rﬁﬁ-ﬂ_‘Il#l#ih .

This is the Felgenbaum map. It poses very interesting, mathematical problems and
serves to understand phenomena like the period doubling bifurcations and the
onget of turbulence ; see [2]. (This is one among few examples where non-trivial

fixed points have been constructed.)

4.3. Riporous uses of block spin transformations

The first mathematically rigorous analysis of a specific example to which
the renormal izatlon group strategy outlimed in the previous sections can be ap=
plied ix the one by Bleher and Sinai [49] who analyzed Dyson's hierarchical model.

The Hamilton function of this model is chosen in such a way that the renormaliza-
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tion group transformations can be reduced to non=linear transformations actimg

on some space of densities, f , of the single spin distribution,

di(p) = £(p)do .

Their work was reconsidered and extended in [56] and in [49. 3)] and refs. piven
there. It had a stimulating influence on the development of the probabilistie
approach to the remormalization group, initiated by Jona-Lasinio and his collea=-
gues in Rome [57, 55)] and continued by Sinai and Dobrushin, [54, 55] and refs.
given there. It was Gallavotti and collaborators [58)] who [ "rot applied the re-
normalization group method to (the ultraviolet problem in) comstructive gquantum
field theory inasystematic and transparent way, although ideas and techniques related
to it - and developed independently - cam already be found in work of Climm and
Jaffe [59]. These applications concern the construction of the MAp* model - see
(1.11); (1.12) - in the continuum limit in three dimensions. [This problem is
equivalent to the study of a renormalization group transformacion analogous to

Hn in the vicinity of a Gaussifan fixed point.] The work in [58) motivated Ffur-
ther applications to comstructive quantum field theory, notably by Balaban [60],
and to statistical mechanics [61]. These developments are evolving towards a ri-
gorous mathematical theory of renormalization group transformacions in the vici-
nity of Gaussian fixed points, (usually with a one-dimensional, unstable mani-
fold consisting of Caussian measures). Such a theory is relevant for the analysis
of dipole gases in dimension d 2 2 and of the models considered in these notes
= gee {(1.11), (1.12) - in dimension d = 5 . This work is carcied out by Gaved:zk:
and Kupiainen [62] and by Magnen and Sé&néor [63). A looser interpretation of the
renormal ization group strategy partially motivated the work in [15, 3&].

First applications of renormalization group methods to dymamice were made
in [2], although the idea to use them in the study of dynamics is certainly older ;
see e.g. [3. 5)].

All the work quoted here involves very intricate analytical and combinatorial
methods and can therefore not be sketched here.

In the remaining section we outline another much more special but quite sue-
cessful approach to eritical phenomena which gives rather good results for the
models discussed in these notes, near Gaussian fixed points, [23]. It was inspi-
red by a formalism first developed in [64) and made rigorous in [23. 1)] relating
the theory of classical spin systems to the theory of ramdom walke. A relaced,
slightly prior approach, due to Alzenman, may be found in [22].

But mathematically rigorous results on critical phenomena in equilibrium
stacistical mechanics still do not nearly measure up to the practical successes

of the renormalization group. This ought to be a challenge !
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§ 5. Random walks and critical phenomena in the Ia.i.ni = and the Ap* models

E d =25 dimensions

While the emphasis in Sections 3 and 4 was on general ideas and principles
it is on specific results and special methods, contained in [23, 65), in the
present section. These methods are motivated by an approach developped in [64].
The main results are related to some prior results of Alzenman [22]. We limit our
review to examples illustrating the flavour of those methods, emphasizing the re-
levance of the theory of random walks in the analysis of Ising - and Ap* - models
in dimension d 2 &4 . The basic faest about random walks which motivates our ana-
lysis can be summarized in the following theorem : I'm four or more dimenstiona,
two random walks in the contimam Iimit (0 - w) , {.g. two Broumian paths, astar-
ting at different points, x4 ¢ x3 , of Ed Wwill never intersect each othar,
with probability | .

In four dimensions the proof of this result is somewhat subtle, but in five
dimensions 1t is easy : Consider two random walks, @ and @3 , on the lattice
Eg_., . starting at x4 , Xz, respectively. The probability, F:,i , that @, ,
i= 1,2, will visit some lattice site =z is a harmonic function of x l[xii z)
bounded by

P . % nnnst.-ﬂz-—dlz—ui +E‘“Ii-d '

;1
where |x=y| is the Euclidean distance (distance in lactice units = &' ) ber-
ween x and y . For wy and ws to intersect each other at least once, it is

necessary that wy and wy visit a common site =z € Eg_.. + The probabilicy of

this last event is bounded by 4-2d
o
P = P a F -
T L Tk R ey . PR T
Thus, the probability, Pint , that @y and ¢ intersect each other somewhere
is bounded above by
P, 5 IP < const, 8 £, 8¢ I
int. y E;l2 :EE.d lx.,u;pa—r|d—f,|x,-:+-ﬁ—1|:¢-1
1

which, for |xy=-%3] > 0 , clearly tends to 0 , as & = = , provided
dz5.
In four dimensions, the last estimate is poor and has to be refined. We shall

apply a refined argument to spin systems, (Sect. 5.2).

5.1. Rigorous results on the existence of the scaling limit of the d =5 dimen-

sional Ising - and Mg} - models

The Hamilton function of the models considered in this section is defined by

(5.1) Holeh = - Z  wlidw('),
i.i'€A
Li=§" 1=l
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. ¢ ) d [ e
where A is some finite region in Z , and d2> & . We consider the following

family of single spin distributions :
2
(5.2) dAfp) = e::p[-%q:l-" + uTt.p-" + const. Jdy ,

see (1.11), (1.12) ; (there is no magnetic field, i.e. h = 0). Formally, a Gibbs
state g which solves the DLR equations (1.10) for this model is given by

(5.3) au (o) = e O TTa ) |
]

where zﬁ is the so-called partition funection chosen so that duﬂ @) = 1 . The
r.%. of equation (5.3) has to be understood as the thermodynampic limit of measu-
res associated with finite sublattices, A . The limit, A7 zd , exists by cor-
relation inequalities [67). As remarked in Sect. |, we obtain the standard Ising
model if we set W= X and let A - ., All resules in this section remain true in
this limit. By the infrared bound [imequality (2.18) of Sect. 2.1, (c)] and cor-

relation inequalities, sea [53], we have

(5.4) 05 <otely)y < c 8 tx-yI7¢

for B = ﬂ'r.: and d 2 3 , where cy is a geometrical constant, and

{[.}}B ] J{.jduatmj .

See also (3.18). Furthermore, as rematked im Sect. 2.2,

5.5 {mm)"-ﬂ. as B/ g, and wzl/2,

For proofs, see [20). Let
Gﬂ_tx‘ll---llﬂ} 'ﬂfﬂjnﬂ-ﬂ'{hi}---ﬂﬂ'cmﬂ]}ﬂ{&} L

with A = A(3) , u=1(9 . We choose a(® , B(8) , A(® and u(® such that

G*(x-y) = lim Gp(x,y)
: it OFm
existes and satisfies
(5.6) DLG¥(x-y) <, for O <€ |x~-¥%]| €2,

Whether (5.6) can be fulfilled or not is a rather difficult question and is not
analyzed here. [Note that by renormalizing A(8) and p(d) we can always require
thae B_ = | ; see [40].1

By (5.4) and (5.6), and because B(3) 7 ﬂ-l: T T - I

(5.7) a(8) > conse.nld/A=1

We now define the four-point Ursell fumction, u, B i

{5+5,'I uﬁlﬂ(h‘.-“!:,:l:;,:n} -ﬂ#{:‘ljl'*"‘w{“ll:.:}ﬂ-% 'ap{:ptl}}wthtz}]}E{m(tptjj}ml:xpt,ﬁ]1} ]

where X ranges over all three pairings of {1,2,3,4) . The four-point Ursell func-
P e
tion of the model defined in (5.1)=(5.3) satisfies the following remarkable inequalities
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(5.9) 02 u, gxrpenime) 2 -392 I Trwtthca )>g
LRI L
where =4 Tanges over zd s lzg-z41 =1, & =2,3,4 . [For a more precise

statement see [23].] The upper bound on Y B is the Lebowitz inequalicy [68],
the lower bound is the new inequality of [23] closely related to Aizemman's ine-
qualicy [22].

We define the re-scaled four-point Ursell function

(5.10) u &tx'll"‘llxﬂ} = a{d)*u 'H[ﬂjfﬂiltﬂ'ﬂ:|hjr&xu]
From the definitions of Ga{x.r} and g8 and from (5. 9} it tollows that

(5.11) 0 2y gl¥1s0e k)2 a@m-» p@a. £ 8d ]‘[n o (2 000

Equnaly k=1
Note that the upper and lower bound on w, 8 do not explicitly depend on A(D)
L]

and (3 ! Mow by {(5.7), and since R{3) 7 Bc oo

(5.12) a(®)-» 8%8(9)2 < conse.8* ™
which tends to 0 , as & + e , in dimension

d > 4.
One can use inequality (5.4) to ptuve that
(5.13) L2 e . '!:F Gy (1812, ) S Ky 4
provided |xi-:j| 26>0, for i ¥ j , and some arbitrarily small & > 0 ,
and K. is a constant which is finite for each &> 0 .

By (5.11)=-(5.13),
(5.14) lim ug, ﬁ{“""':“} -0 ,
H-sem

provided xif Ij , for i #j and d> 4 .
Hence

G (xaseanomad = B GO, () =% 1) )6 x, 9y =%, 1))

if % ¥ Ij . Inequalities analogous to (5.9) can be proven for arbitrary In
point functions. As in (5.11)=(5.13), they can be used to show that, in dimension

d >4 and for % fx, , 1L£3j,
1 n

(5.15) ¥ (X1 e nyXan) = &l_ll G* (% 20-1) ~ %pan)’ -

Thus the scaling (= continuum) limits of the correlation functions of the models defined

inm {5.1)-(5.3), in particular of the Ising model, (at non-coinciding argumentcs)

in five or more dimensions are (gussian. (This result is expected to hold in four

dimensions, too, but there are only partial results [22, 23], See also Sect. 5.2.)
¥We now show how to use inequalities like (5.9) to prove that the cricical

cxponent, ¥ , of the susceptibilicy, (B} , takes the value 1 , in five or more

dimensionsa :

It is not hard to derive the cquation
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dy (B) ' 1 i & .
(5.16) =gp==% ”_,_Ejl_l Z (<w(0)w(j)>g<o0aeli')>y + 3 uy 400,%,5,i ;
fuse (5.1), (5.3).) By using (5.9) and the fact that f,m{’l'.l'.lll.ﬁl:ﬂ}ﬂ is square-

summable in x , for d 25 and BsSB_, which follows from (5.4), we obtain
(5.17) e x(®2 s KB < ¢y

for some finite, positive constants c_ , <, and all B < Bc . Integrating over

B<pPp we find
= Y =1,

(One expects that v = 1/2 , n =0, in d 2 5 , but the prosi is incomplete.)

For results in four or less dimensions see [22, 23, 65, 66].

5.2. The random walk representation of classical spin systems

In the following we sketch some ideas that go inte the proof [23] of an iden-
tity representing the classical spin systems as gases of random walks interacting
Ha soft core repulsion. This representation was First proposed by Symanzik in
[64]). It has many mice features which are useful for a qualitative understanding
of critical phenomena. A different, but related representation has been used in
[22].

The following calculations are formal. For a rigorous justification see [65].
We assume that
(5.18) di(y) = glp3idy ,

vhere g is continuous on ®' and has stronger than exponential decay at infini-
ty. (A peneral class of even single spin distributions, in particular the one of
the Ising model, will be obtained from the one :-titlyinﬁ-KS.iﬂ} by taking weak li-
mirs.) Lec

(5.19) : g(g3) = Jaq.};i"“"a

be a Fourier decomposition of g . Let F(w) be a function depending smoothly on
only finitely many (j) 's. We consider the correlation function

*:w{xlll-'{mj}ﬂ .

If we insert (5.19) into (5.3), with H given by (5.1) we obtain

e ;
(5.20) <OIP@)>g = 25| TRt [otar@e™ T CFHDSTTay)
J ]
where <.,.» is the scalar product on Ra(Zd) , and

;G =- B G .
- 1i"=il=1
The wintegral on the r.s. of (5.20) is Gaussian, and we obtain
[ i
B0 (=30 (P2 @Y 0
i
We now expand Eﬂ?-!iul;; in a Neumann series in AP . (This expansion converges

(5.21) <@p{x)F {"-F.'F:'B - EE." %Jrjr.ﬁl:uﬁﬂdu (i).(BF + Ein}l;;[
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under our assumptions on g ; see [65).) Each term in the series is labelled by
& random walk, w , on Ed starting at x and ending at y . Let r:j (w) be
the total number of visits of w at site j . Then

(5.22) ®P +ia)gr = "I 1T iagn™@ |

Xy j
where |wl is the total number of nearest neighbor steps made by w . We define

A () - (B(0E L i€ ne0
: *n {h_l—l:llxw.{t:lt“"dt T T T . PR

By imserting (5.22) and the identity

t

(2ia)-P = Ju“‘ dun(t)

into the r.s. of (5.21) and carrying out the a(j)-integrals we obtain
- i - ; =BH () 3F (@) . .
(5.24) <@(x)F)3 fm:%—-ﬁﬂ‘l];rd""j (w)ledi)d -[e Toty) Udl{m{]} +2e(j)) .

1
The variables t{j) have the interpretation of waiting times for the jump pro-

cess W . (Indeed when dA is Gaussian, one obtains a standard Poisson jump pro-
cess, ) Identity (5.24) is the basic formula relating spin systems to random walks.

It can be iterated by writing
aF{“}l {tﬂl‘lﬂ-t.  Or

2o(y) plz)G{yp) , for some z E Ed i
where G is a function of ¢ with the same properties as F . We define
(5.25) 25 () = 25 [ PO TTarco(s) + 250)
and - J
(5.26) r.ﬂl'm-“...,t.h} . [T]T h-lduﬂj () Etkfj}}lﬁfh +...4%Ln)
where @i,...,Un are some given random walks. The functions :n{wn---.wn] can

be interpreted as correlation functions of mn random walks, @y,...,un , iEeersced
in a gas of closed random walks (random loops) with soft core repulsion. See [23,
B4, B5, B6]. It follows easily from (5.24) through (5.26) that

(5.27) | wem>y = . E, 8 2w
and

= Ly |+ lesa | = -
(5.28) uﬂlﬂhq,.".uq} Eut:quﬁ-xpmﬁ [zﬂ{ﬁh.ﬂ;] =ﬁ|:u-.125{u=‘.r} ;

Gy S Xpy ) = Xpla)
analogous formulas can be derived for arbitrary 2In-point functions.
The point is now that one can prove the following inequalities on zuimn--..'l :
A) If wy Newy = @

:.'Btt.h Jdz) = E l’.m-,]aﬂ{m,] ;

B

) gn'*‘“:umm.m} s (Za'%

ﬂ{u:lh“{m.",} "

It is quite remarkable that these inequalities po in opposite directions. They
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follow from (5.25) and (5.26) by applying standard correlation inequalities, due
to Griffiths and Ginibre [67]. (See [65] for more general resulcs.)

I1f we insert B) inte the r.s. of (5.28) we obtain
{5.29) “ﬁ,E{“""“x“} <0 .

Inserting A) inte the r.s. of (5.28) and noticing that :E'{m ywz) 2 0 one
concludes that

(5.30) u‘!luﬂ'i,d““'z.} -4 '%GB{EP“] i Xpiz) |1¢11::" p?l;‘.{:n:' ¥
vhere
lsq | lag |

(5.31) Gglxvoxalxa,ea) ® B 87 g (wn)B P 2y (wa)

g DXy Ky

iy Mooy #0
If we require that some point z belongs to @y N wg and then sum over all chei-
ces of z E Eﬂ we obtain

. Imll'l'!tﬂ;l E Iﬂ:l*jhﬁl [ ] n L] L]

(5.32) Gﬂinnualxa.x-} 5 F:E'{:;d ﬂ=.=¥1-'= i w_:m,_::'ﬂ zg (04 ) 2 (w3, w03)

2LEY Ll ingE LIRS 8
vhere |z'=z| = |2"=2] = | . (As argued below, this estimate is very poor in di-
mension d £ &4 .) Applying B) to the r.s. of (5.32) and inserting the final result
into (5.30) we obtain our basic inequalicy (5.9). See [23, 65], and [22] for rela-
ted resultcs.
We now suggest a substantial improvement of (5.32). (The inequality in (5.30)
is expected to be quite accurate.) Lec B = (& 7/ E= , 48 O = o . and let

d .
x; = Byi v ¥y E Eﬁr' y o= |, a8
|3i-,.rj|zﬁ:-u . for idj,

independencly of @& . In order to construct the scaling (= continuum) limit of

us we must study the behaviour of the r.s. of (5.31) for large & , i.e. for walks
wy and wz which join points that are separated by a distance =3 and which make
large excursions (i.e. have "large Hausdorff dimension"), because A(3) =~ B, . Wow
on the r.s. of (5.31), the only walks @y and wy which contribute must {ntersect
each other. We may then choose the point z on the r.s. of (5.32) to be the first
intersection of wy with @y , {in the orientation of &y ). In that case, the
walks w} and ) which end at the same point, =z , are mot permitted to fHter-
gact each other, except once : at =z . Now, for |xy-2| ~38 ~ |x3-zl , the proba-
bility pﬂﬂu:.mﬁ} for two walks, w; and w; , nof to intersect each other in
cxpected to behave like

Y gl

(5.33) (wh ,0h) <{ )
R ~ | (log® ™, for some w>0 ,d =&,

with probability 1 , as & =+ = . If on the r.s. of (5.32) the trivial upper bound
is replaced by (5.33) one predicts that
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“ﬁ.a{:||l-h1:h] — u » a8 -ﬁ-—i-‘ ¥

like {lngaﬂ-". in four dimensiems. See [65]). (For d4 £ 3 , conjecture (5.33) is
consistent with known upper bounds on wuy [69]).)

These arguments can be made rigorous for standard random walks with indepen-
dent increments [70] and yield a new proof of the well=known theorem [71] thac,
in d 2 & dimensions, two Brownian paths starting at different points of Eﬂ
never intersect each other, with probability |1 .

Arguments similar to the ones described here (see [66, 70]) have also been

considered by Aizenman [22].
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