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Introductory comments

The present notes have no scholarly ambition. They address a subject that
has a history of more than fifty years. The number of relevant publications is
truly enormous. Presumably we have missed some of the really important papers in
this subject. We have only tried to review some of the main trends during the

late sixties and the seventies, have emphasized their mathematical aspects and
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have given work in which we have been personally involved more weight than it de-
serves. Since these notes collect material explained in lectures that were suppo-
sed to cover our work, we do not find anything particularly wrong in that cir-
cumstance.

~ Many of the results mentioned in Sect. 2.1 are contained in joint work of
J. Glimm, A. Jaffe and T. Spencer, of J. Frohlich, B. Simon and T. Spencer and
of J. Frohlich, R. Israel, E. Ljeb and B. Simon. Moreover, various important re-
sults, due to Griffiths ; Dobrushin ; Minlos, Pirogov and Sinai ; Lebowitz, and
others are mentioned or underly our presentation. The most important mathemati-
cally rigorous results in Sect. 2.2 are due to J. Glimm and A. Jaffe. The ideas
and concepts in §§ 3 and 4 are part of the''conventional wisdom" of the modern
form of the renormalization group, invented by Wilson ; Kadanoff ; Jona-Lasinio
and al. and extended by Fisher ; Wegner ; Brézin, Le Guillou and Zinn-Justin, and
many others. Our presentation has drawn inspiration from ones by Sinai, who - to-
gether with Bleher and Dobrushin - has contributed the first crucial ideas and
results clarifying the mathematical status of the renormalization group. The for-
malism and the techniques in § 5 are inspired by work of Symanzik and were deve-
loped in joint work with D. Brydges. The main results reported in that section
followed similar results by M. Aizenman. Further developments were carried out
by D. Brydges, J. Frohlich and A. Sokal.

These notes contain no proofs, and the results are often stated somewhat va-
guely. They have the character of a brief status report and were written in a hur-
ry. They are intended for light reading and may serve as a guide to the literatu-
re. It is hoped that they convey some of the beauty of the mathematical structures
and problems involved in statistical mechanics (see, in particular, Sects. 2.1, 4.1, 4.2

and 5), and that they might challenge some readers to look into some of these problems.

§ 1. Introduction

l1.1. General remarks

In the development of theoretical physics there have occurred several major
advances during the seventies. Although it is to some extent subjective what one
considers to be a major advance and although it may be too early to tell we think
that many theoretical physicists would include the following ones among the most
significant discoveries of the seventies :

1) Gauge theories of the fundamental (electro-weak and strong) interactions.

2) Renormalizability of gauge theories, and asymptotic freedom in QCD (i.e. the
discovery of the fact that interactions mediated by non-abelian gauge fields in
theories like quantum chromodynamics, abbreviated QCD, become weak at high ener-
gies or short distances, but strong at large distances. This latter circumstance

led to the idea of quark confinement).
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3) New, productive forms of the renormalization group (e.g. the €-expansion
[1] ; more recently the Feigenbaum theory [2]) and its applications to a quantita-
tive theory of second order phase transitions and critical phenomena and to the
study of dynamics. (The basic idea of the renormalization group is to study the
behaviour of a physical system under a change of scale - in space or time - by
integrating out fluctuations on successively larger length scales.)

We have not included in this list important developments in astrophysics,
condensed matter physics and other fields in or related to theoretical physics.
Moreover, we have not mentioned advances in mathematical physics during the past
decade, yet, among which one must mention

- constructive quantum field theory ;

- fluid dynamics (e.g. dynamical systems theory, onset of turbulence..., study
of shock waves, Navier—-Stokes equs. ...) ;

- non-equilibrium statistical mechanics ; theory of phase transitions in equi-
librium statistical mechanics ; stability of non-relativistic matter...

From the point of view of a theoretical physicist who is not concerned very
much with mathematical rigour developments 1) through 3) mentioned above have
reached a rather high degree of perfection and completeness, although from the
point of view of rigorous mathematics the state of the art has actually remained
quite rudimentary. This is a challenge to mathematical physicists and mathema-
ticians and is why we are, in these notes, addressing the subject of phase tran-
sitions and critical phenomena, related to topic 3) above.

During the past few years there have been very important beginnings in other
directions which may become major trends in the physics of the eighties and amon;
which one might include :

a) Supersymmetry, supergravity, spontaneous (and dynamical) breaking of super-
symmetries.

b) The mathematical description of complicated behaviour of (classical) macros-

copic systems ; ("roads to turbulence", "transition to chaos', "theory of attrac-
tors'", '"stochastic resonances'...).

¢) The theory of disordered systems ("localisation", "frustration"1) in "spin-
glasses', "turbulent crystals"zl, "wave propagation in disordered media",...).

One hopes that supersymmetry will solve some of the problems left open
within ordinary Yang-Mills theory and that it might show a way towards a quantum
theory of gravitation. Disordered, or chaotic systems are a natural and important
play ground for people previously busy with critical phenomena.IWhile these last

topics mirror perhaps the present trend of the world towards more chaos, disorder

1) a concept related to what the mathematician calls curvature
2) a potion recently proposed by Ruelle
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and frustration, supersymmetry reflects our longing for order, harmony and unity.
Topics b) and c) are sure to have something to do with reality, but supersymmetry
may remain a dream.

In the following we shall discuss some recent rigorous results on phase
transitions and critical phenomena, topics 3) above, but we can recommend any of
the other topics - 1), 2) and a) through c) - for future Bourbaki seminars. Alt-
hough phase transitions and critical phenomena are perhaps not so fashionable
among physicists, anymore, they do still pose serious problems challenging the
mathematician and mathematical physicist. Good mathematical understanding of cri-
tical phenomena is presumably a prerequisite for further progress in quantum
field theory and, quite generally, in the theory of systems with infinitely many

degrees of freedom.

1.2 Alittle phenomenology of phase transitions and critical phenomena

We now try to explain, in intuitive terms, what phase transitions are and
what kinds of phase transitions may occur. Our examples are chosen from condensed
matter physics. Other examples are found in nuclear physics, astrophysics, quantum
field theory... We shall study phase transitions in ferromagnets and mathematical
models thereof (defined in Sect. 1.5).

A ferromagnet consists of a macroscopic (i.e. nearly infinite - with respect
to a microscopic scale) piece of bulk matter, ideally arranged in a crystalline
structure. At each point of the crystal lattice there is an atom or molecule with
non-zero total angular momentum, (spin). There are interactions between the spins
located at nearby points of the lattice which tend to align the spins. (It is
argued that the dominant interactions are the so called exchange interactions
which are a consequence of the Pauli principle.)

When the temperature, T , is large thermal fluctuations destroy correlations
between spins located at very distant points of the lattice. If the system is
placed in a magnetic field which is then slowly turned off, no magnetization
remains. However, if T is sufficiently small the system remains magnetized
(spontaneous magnetization) even after the external magnetic field has been turned
off. Let h denote the strength of the magnetic field, and let M(T,h) denote
the magnetization as a function of temperature T and magnetic field h . The

behaviour of M(T,h) 1is shown in the following graphs :

T M(T,h=0+)
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The temperature, T_ , at which the phase transition occurs is called ecritical
temperature. The so called magnetic susceptibility, X , is given by

X(T,h) = 2LLD)

It turns out that the susceptibility, ¥(T) = x(T,h=0) , of a magnet in zero ma-
gnetic field diverges to + o , as T approaches 'I'c , as indicated in the above
graph. It is an important theoretical problem to determine the way in which ¥ (T)
diverges at T.. This is a typical problem in the theory of critical phenomena. Tt
is expected that, in dimension d # 4 ,

(%) X (T) ~ (T—TC)_Y , T2T

c ’

for some number Y called critical exponent. Of course, in a laboratory, all that
is available to us are three-dimensional or approximately planar pieces of ferro-
magnetic material. But in theory one can study d-dimensional magnets, where d
is an arbitrary natural (or complex) number. It is expected that in four dimen-
sions there are logarithmic corrections to the power law divergence of ¥ (T) , bhut
in five or more dimensions (*) is expected to hold with
Yy =1

This has recently been proven rigorously for some class of models ; (see §§ 2, 5).
It is quite surprising that the value of Y 1is independent of dimension, for
d 2 5, and of the details of the mathematical models of ferromagnets. For d < 4 ,
Y appears to depend on d , but not on the details of the mathematical model. One
says, that critical exponents, like Y , are untversal. (See §§ 4, 5.)

It should be emphasized that there are different kinds of phase transitiorvs ;
(see Sect. 1.5.) For example, the melting of ice is a transition which is quite
different from the one in a ferromagnet : It has latent heat, and there is no
quantity analogous to the susceptibility ¥ which would exhibit some (universal)
power law divergence at the transition temperature.

In these notes we only consider the mathematical theory of the kind of phase
transitions found in ferromagnets and its relation with quantum field theory.

The following two aspects will be ignored
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i) We shall study models of classical spins, i.e. quantum mechanical effects are
taken into account only implicitly. (This is usually unjustified, except if the
spin at each point of the lattice is enormous.) Our (naive) models of ferromagnets,
lattice spin systems, are defined in Sect. 1.5 and analyzed in subsequent sections.

ii) We shall not discuss the connections between phase transitions and sponta-
neous breaking of (internal or spatial) symmetries, except in a few rather vague
remarks. This topic has been considered in many excellent surveys, some of which

are quoted in the bibliography.

1.3. Some physical problems mathematically related to each other

The main purpose in the following is to explain the relation between two cir-

cles of problems, namely

A) the construction of relativistic quantum field theories in the continuum
limit ; and

B) higher order phase transitions and critical phenomena in lattice spin systems.

We think that the realization that A) and B) are intimately related is an im-
portant and deep idea, [1, 3, 4].

We shall then emphasize the discussion of B). In particular, we shall sketch
how, mathematically, the theory of higher order phase transitions and critical
phenomena is related to

- the statistical mechanics of topological defects in ordered media [5] ;
- the study of non-linear mappings on infinite dimensional spaces, of their fixed
points and of the stable and unstable manifolds near those fixed points ;

- the mathematical theory of random walks and their intersection properties.

1.4. Relativistic quantum field theory

We now recall what is meant by a relativistic quantum field theory and its
Euclidean description. Clearly we have to over-simplify matters.

Relativistic quantum field theory is an attempt towards combining the special
theory of relativity and quantum mechanics into one mathematically consistent and
physically correct theory (satisfying some causality principle). It can be charac-
terized by various postulates, e.g. the (Garding-) Wightman axioms' [6]. These
axioms say that a relativistic physical system on a d-dimensional space~time can
be described, in the simplest case, by the following mathematical structure :

(WO0) The states of the system are the unit rays of a separable Hilbert space, /G .
(Wl) With each test function f in the Schwartz space xfcmd) is associated an
unbounded operator, ¢(f) , (the field operator) defined on and leaving invariant

a dense domain & < ?¢ which is independent of f , and

1) Gauge theories require some modifications in those axioms ; see [7].
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P(£)* 2 ¢(F) .
(W2) There is a continuous, unitary representation,
U : (a,A) € P—— U(a,n) ,
of the Poincaré group #® on 7?6, with the property that
U(a,$(E)U, A% = §(E, )
where

f(a,A)(x) = f(A"'(x-a)) ,

and
U(a,A)® = D .

(W3) The spectrum of the generators of the translation subgroup {U(a,l): aEIRd},
where d 1is the dimension of space-time, is contained in the forward light cone
V+ ("positivity of the energy"), and 0 is an eigenvalue of those generators.

The eigenstate associated with O 1is called the physical vacuwm and is de-
noted by Q .

(W4) Field operators smeared out with test functions whose supports are space-
like separated commute, (as operators defined on & ).

This is the "locality axiom" and expresses the causality principle alluded to
above.

(W5) o is obtained by applying arbitrary polynomials in {1,¢(f) : f ﬁtth}

to the physical vacuum, Q .

From these "axioms" it follows [6] that a relativistic quantum field theory
is uniquely characterized by the vacuum expectation values of products of field
operators, the Wightman distributions,

(1.1) Wn(X1,...,%n) = <Q,¢(x4)...0(xn)Q> ,
n=20,1,2,... , Wo=1. Wn 1is a tempered distribution on MS(Rnd) which is
invariant under simultaneous Poincaré transformations of its arguments and has va-
rious other properties which follow from (W0)-(W5) ; see [6].
Let
x= (% , xer,

be the decomposition of a point in space-time into time = and space components. It
can be shown that the distributions wn(t1,;1,...,tn,;n) are the boundary values
of analytic functions, the Wightman functions, whose domain of analyticity contains,
in particular the points

{(X15.4.5%n) : Im(tm-tm_’) #0 , m=2,3,...,n}
This permits us to introduce the functions
(1.2) Sn(X1y+-vrXn) = Wn(itq,Xq,...,1tn,Xn) ,
n=20,1,2,... , So =1, t ~real, for m=1,...,n, t; # tj for 1 # j . They
are called Euclidean Green's or Schwinger functions. It has been proven by

Osterwalder and Schrader [8] (see also [9, 10] for further related results) that
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under suitable conditions (called Osterwalder-Schrader axioms) a sequence of functions
[= =]
{Sn(x1,---,xn)}n=o
uniquely determines, by analytic continuation, a sequence of Wightman distribu-
tions corresponding to a relativistic quantum field theory, in the sense of pos-
tulates (WO)-(W5). Among those conditions are

- invariance of Sn(xX4,...,%n) under simultanecus Euclidean motions of all its
arguments, and under arbitrary permutations, for all n = 1,2,3,... ;

- a positivity condition, called Osterwalder-Schrader - or reflection positi-
vity, related to the positivity of the scalar product on d& and the positivity
of the energy, (W3). This condition has an analogue in statistical mechanics,
(existence of a selfadjoint transfer matrix). See [8, 11].

In most models of scalar relativistic quantum field theory, the Schwinger
functions, Sn , turn out to be intimately related to the so called correlation
functions of some lattice spin system, studied in equilibrium statistical mecha-
nics : Schwinger functions can be constructed as continuum limits of correlation

functions of lattice spin systems, as the lattice spacing tends to 0 , [12].

1.5. Lattice spin systems

We shall consider the simplest, classical spin systems, described by the
following mathematical structure :
1) As our lattice we choose the simple (hyper-) cubic lattice, EZd . With each
site j € 29 we associate a classical spin
(1.3) o() € ml‘(‘j) =R,
N=1,2,3,... . A configuration, ¢ , of spins assigns to each j a fixed vector
5(j) € RY . For each finite subset, A , of the lattice, we define a space of all

spin configurations on A

JEA
@, {w(3) : jeEA € Ky
which is a configuration of spins of a finite subsystem in A . We set K_= K, d -

_ N
{ K, = X Rsy » and
(1.4)

i1i) The a priori distribution of the spin ©(j) at j 1is given by a probabi-
lity measure, dk(&(j)) , (the same for all j ), on the Borel sets of 'RN . The

a priori distribution of a configuration N of spins on A 1is given by

(1.5) TT dA@G))
JEA
which is a probability measure on 1{A .

i1i) For each configuration 5A of a finite subsystem we define an energy, or
Hamilton function

1.6 ®
(1.6) HA(mA) .
which is assumed to be a continuous function on K, . Let {An}n=l be an arbi-

A
trary sequence of finite regions in 2d increasing to Zd (e.g. in the sense of
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Fisher [13]). We assume that the Hamilton functions {HA}chZd have the property
that the thermodynamic limit of the interaction energy between the spins in a
bounded region A and the ones outside A ,

(1.7) wA,AC = nlitga{HAn - (HA+HA11~A)} 5

exists, for each finite sublattice A , and that for all =2 0 , the thermodyna-

mic limit of the free energy per unit volume,
]

(1.8) BE(B,A) = nl_i.rgn a7 log zB(Arn

where

(1.9) Z, (An) -J exp[-BH, (@, )I1TT ar@()) ,
B n KAn An An _]EAn

exists. Here B = (kT)~' 1is the inverse temperature.

iv) An equilibrium state at inverse temperature B of the infinite lattice spin
system is given by a probability measure, duB,k(a) , on (the oO-algebra generated
by the Borel cylinder sets of) K_ > with the property that, for every bounded

measurable function A on K, , where A 1is an arbitrary finite sublattice,

A o
(1.10) <AX ) = JA(wA)dUB,A((D) = JdO(CPAc)Je a0

-exp[—BHA($A)]A($A}T#Tdk($(i):,
where dp(mAC) is a finite measure on K

AC These are the so called Dobru:shin-
Lanford-Ruelle equations [14].
Whenever reasonable we shall think of the simplest examples of lattice :yctems

having properties i) through iv) above, e.g.

- - 2 —
(1.11) dA (@) = const.exp[ - Al@|4 + %r lpl2 + Bhw’]de ,
A>0, 2 and h real numbers,
(1.12) H@ =- I o().0G")
i>Jj'€eA
13-3"1=1

Note that, for p2 = A , N = 1 , this model approaches the usual Ising model, as
Ao,

For N=1,2 and | €£d <5 , this example exhibits all kinds of phase tran-
sitions and ciritcal behaviour, as B ranges over (0,) and h over (-1,1)
The parameter h has the physical interpretation of a magnetic field. In the
following, B and h will usually be the only parameters that we shall vary. Ve
therefore write f(B,h) 1instead of £f(B,A) , < (.)aB,h instead of < (.) A
etc. Moreover

(1.13) £@) = £@B,h=0) , <(IFZ= <()F 0 -

Next, we introduce some basic quantities in terms of which phase transitions
and critical phenomena can be discussed. (For simplicity, we shall often consider
one - component spins, i.e. N =1 .)

The basic objects in terms of which lattice spin systems are analyzed are the

correlation functions
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n

(1.14) <@(x4) . e0lxn)>g = I 111 ©Gx ) dug 4, ()

It is these correlation functions which often turn out to be directly related to
the Euclidean Green's functions, Sn(X4,...,%Xn) , defined in (1.2), of a relativis-
tic quantum field theory. Of particular importance are

a) the magnetization

M(Bah) = <(.D(K)> - af(aﬁhph)

B,h
b) the susceptibility
x@h =g HED -3 co0m |,

h xezd
where

.

OO | = OOy | = <OO)>5 3

c) the internal energy density

3(Bf(B,h))
(B ) e
and B
d) the specific heat
c(@,h) = - kpz 2L

We are also interested in the asymptotic behaviour of the two-spin correlation,

<w(0)m(x)>g L s as

e) the inverse correlation length (mass)

m(B,h) = - 1lim % 10g<l0(0)tD(X)>E h
| x| »o 2

which measures the exponential decay rate of <tp(0)w(x)>§ h
]

|x| - © . One measure of that behaviour is

We now come to the description of various types of phase transitions and in-
troduce the notion of eritical exponents.
We all have some intuitive understanding of what is meant by a phase transition :
If some thermodynamic parameter is varied there may occur a sudden change in the
behaviour of the system, as described in Sect. 1.2. Let us imagine that we vary
the inverse temperature B . It is convenient to distinguish between the following
two kinds of phase transitions
1) "Phase transitions with local order parameter" : For B small the equilibrium
state is unique, while for large P there are several, mutually singular solutions
of the DLR equations (1.10). In the example specified by (1.11), (1.12) this kind
of phase transition occurs in zero magnetic field (h=0) in two or more dimensions,
provided N =1 (i.e. in the Ising model) and in three or more dimensions, provi-
ded N > 2
Remark.— It may happen that the equilibrium state is degenerate (i.e. that there
are several solutions of the DLR equations) only at the phase transition point.
I1) "Phase transitions without local order parameter" : The equilibrium state
<(.)>B is unique for all values of B , but does not depend analytically on B .
This kind of phase transitions has been established in the example introduced in

(1.11) and (1.12), for N=d =2 : For h =0 and small P , correlations in



586-11

<(.)3% have exponential fall-off, i.e. m(B) > 0 , while for large B they have
only power law fall-off and m(B) = 0 . Mathematically, this is a rather subtle
problem ; see [15].

In both cases, I) and II), there will be at least one value, Bo , of the in-
verse temperature which separates two different regimes, i.e. at which the transi-
tion occurs. One can distinguish two kinds of transition points

(1) Bo = B. s a critical point
We say that o 1is a critical point if
m(B) VO , as BB, , or BNB..
A phase transition with a critical point is traditionally called a "higher order
phase transition'" (although Ehrenfest's definition of the order of a transition is
actually different and is not very useful).

The transitions in the example (1.11), (1.12) with h =0 and N =1,2,d22,
are transitions passing through a critical point, Bc , as B 1is varied. This is
typical of transitions in a ferromagnet ; (see Sect. 1.2).

(2) Bo s mot a eritical point
Bo 1is not a critical point if m(B) 1is strictly positive in an open interval con-
taining Bo

If in example (l.l1) one fixes @ > Bc and varies h then a phase transition
occurs at h =0, and h = 0 1is not a critical point. Moreover (for N = 1,2,3 )
the equilibrium state is unique, except at h = 0 . A more interesting example of
this kind of transition (traditionally called first order phase transition) is dic-
cussed in [16]. The melting of ice is such a transition ; (see Sect. 1.2).

For the construction of relativistic quantum field theories only transitions
with critical points are relevant.

With "eritical phenomena' is meant the behaviour of a physical system in ther-
mal equilibrium near the critical point of a (higher order) phase transition.

Among the first theoretical attempts towards understanding higher order tran-
sitions and critical phenomena were the Landau theory of second order phase tran-
sitions and mean field theory. These theories are quantitatively wrong in dimension
two or three and do not describe experiments accurately.

It is the purpose of the following to pin point some of the mathematical
questions arising in the modern theory of critical phenomena, as developed by
Wilson, Kadanoff, Jona-Lasinio and collaborators, and many others ; see [l, 3, 4, 17].

Furthermore, we shall try to explain how the construction of the Schwinger
functions of a relativistic quantum field theory can be reduced, in principle, to
the study of the behaviour of lattice spin systems in the vieinity of some critical
point.

The approach to the critical point in a lattice spin system is described in
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terms of critical exponents which we define next. For the sake of concreteness we
consider the examples introduced in (1.11), (1.12). The only critical points of
these systems lie on the line h =0, (for N = 1,2,3 . This is a consequence of
the Lee-Yang theorem [13, 18] and refs. given there).

We assume, temporarily, that d # 4 . Let Bc be some critical point. It has
been expected for a long time (originally on the basis of scaling arguments, more

recently as a consequence of the renormalization group) that the quantities M(B) ,

x(B) , c(B) , m(B) , ... introduced above have a power law behaviour in
=8B a5 pop
c c Bl
M(e) ~ 1el” ,  for B> B
x(t) ~t Y
(1.15) c(t) ~ ¢ < for B < Bc ,
m(t) e
where B', Y, @ and Vv are some positive numbers which are called critical

-a . . . .
exponents. (We hasten to add that the law c(t) ~ t is violated in two dimen-

sions.) The mathematical meaning of f(x) ~ M is

e log f(x)

x\O0 log x
One also introduces a critical exponent 1 (the "anomalous dimension') for the
two-spin correlation <tp(0)¢(x)>g . To simplify matters, suppose that B = Bc

so that m(B) = m(Bc) =0 . Then n 1is defined by

[ —~ le_(d_2+n)

(1.16) ‘<w(0)w(x)>ﬁ

in the sense that

s
|x| »

n=2-d- lim 1og<lp(0)g0(x)>glloglxi.

x| =0
It is expected that in four dimensions there are logarithmic corrections to the

scaling law [19], e.g. N
(1.17) m(t) ~ V2 (105(%))“’ , etc.

One of the main problems in the theory of phase transitions with critical points
is a proof of the scaling laws (1.15)-(1.17) and the calculation of the critical
exponents. Of help in this task are the so-called scaling relations and critical

exponent inequalities, e.g.

(1.18) 2-nMv-y=0
(for a proper definition of 1 ), due to Fisher, or
(1.19) dv 22 -a,

the Josephson inequality, etc. For a survey of recent, rigorous results concerning
such inequalities see [20, 21, 22, 23].

One of the main achievements of the renormalization group is just precisely
that it predicts values for the exponents which fit the experimental data extre-

mely well. (Those predictions are obviously non-rigorous and obviously correct.)
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The main idea of the renormalization group is to study the behaviour of a
system under a change of scale, given by a transformation acting on an appropria—
tely chosen space of states, or Hamilton functions. (It appears that it is not
always possible to let those scale transformations act on a space of Hamilton
functions, so defining them on some convex manifold of states is a better star-
ting point.) In particular, one tries to find the fixed points of these scale
transformations, corresponding to scale-invariant systems Critical exponents are
then related to real eigenvalues > | of the linearizat:ion of the scale trans-
formation at a hyperbolic fixed point.

It will now be our task to make these remarks more precise and to summarize
some of the progress that has been made in understanding phase transitions with
critical points, critical exponents, scale transformations and the renormaliza-

tion group.

§ 2. Recent results on phase transitions with critical points

In this section we describe some recent results on phase transitions with
critical points and we briefly outline some general ideas that go into the pioofs

of those results.

2.1. Existence of phase transitions

Presently there are basically three general methods to rigorously escablish
the existence of phase transitions in lattice systems of statistical mechanics
(a) Exact solutions. This technique applies only to a limited class of modelc
such as one-dimensional systems with finite range interactions, the two-dimensic-—

nal Ising model, the eight-vertex models,..."’

. In recent years, the interestc iu
exact solutions has been revived through the work of Jimbo, Miwa and Sato [24],
Faddeev and collaborators [25] and Thacker and collaborators [26]. Exact solutions
tend to provide a fairly detailed description of the phase transition, including
quantitative information, but often somewhat obscure the physical mechanisms lea-
ding to the transition. We shall not discuss any exact solutions in the following.

(b) Energy-entropy (Peierls-type) arguments. In its most general form this me-
thod can be viewed as a way of reinterpreting spin systems as gases of ("topolo-
gically stable') defects in an ordered medium [5] (Bloch walls = Peierls contours,
vortices, magnetic monopole lines...) and of analyzing transitions in defect gases
by estimating defect - energies and - entropies.

This method can be applied to study thermodynamic phases in which the defect

gas is dilute. The original Peierls argument [28] was invented to analyze the

Ising model. It was reconsidered and extended by Griffiths and Dobrushin, in the

1) See e.g. E.H. Lieb's survey, [27].
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sixties [29]. Subsequently, Minlos, Pirogov and Sinai developed a very general,
constructive form of the Peierls argument [30]. Glimm, Jaffe and Spencer first ap-
plied it to quantum field models, introducing a new technique to analyze 'contour
probabilities" [31]. Furthermore they combined a Peierls argument with expansion
methods permitting to estimate small fluctuations around defect configurations
[32]. Some of their ideas were systematized and extended in [11, 33, 34].

The observation that the basic elements of the Peierls argument, energy-
entropy considerations, can be applied to rigorously analyze a much wider class
of model systems equivalent to gases of defects, including ones with long-range-
interactions and massless phases, is contained in work by the authors, [15, 35, 36].
In particular, we have succeeded to set up Peierls—type arguments in systems with
continuous (but abelian) symmetry groups. Our techniques combine entropy - (i.e.
combinatorial) estimates for suitably constructed blocks of defects with some
kind of "block spin integration', borrowed from the renormalization group, which
serves to exhibit self-energies of defects.

We now briefly describe some general elements of the simplest kind of Peierls
argument somewhat more precisely : Consider a physical system whose configurations
can be described by a classical spin field, © . We suppose for the moment that
5 is defined on Rg (rather than Rd ), continuous except on surfaces of co-
dimension = 1 and with values in a compact manifold M (e.g. SN , N=0,1,2,...).

Consider, as an example, a configuration ¢ which is continuous except on a

hyperplane Hk of dimension k < d-1 . The space of all configurations

6 :IRd ~ Hk — M can be decomposed into homotopy classes labelled by the elements
of the homotopy groups

(2.1) nd_k_l(M)

A configuration G labelled by a non-trivial element of (M) 1is called a

Td-k-1
topological defect of dimension k .

The idea is now to interpret the equilibrium configurations of the spin field
¢ (distributed according to an equilibrium state duB(Eb ) as equilibrium confi-
gurations of a gas of interacting, topological defects. The locus of a defect, & ,
in this gas, corresponding to a non-trivial element = € nd_k_l(M) , 1s a closed,
bounded surface, Ek , of dimension k . In the following we assume that all homo-
topy groups of M are discrete.

It turns out that the main features of the statistical mechanics of defect
gases can often be described by an energy-entropy argument of the following type :

One calculates a self-energy density, e(gk) , of a defect &  corresponding to

k

Bi € nd_k_l(M) . The energy of Gk is then estimated by

(2.2) E(6 ) 2 e(g)lE |,

a non-trivial element

where IZkI is the k-dimensional area of Ek .
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After introducing some coarse graining (e.g. replacing continuum models by
lattice models) one can argue that the entropy S(gk,n) of the class of all de-
fects labelled by 8l whose loci contain a given point, e.g. the origin, and
have area

IZ, | = const. n , =n=1,2,3,...,

k
is estimated by

(2.3) S(gk,n) < c(gk).n .

where c(gk) is a geometrical constant. The density, p(g ,n) , of such defects,

6 is then proportional to

-BE (6k) +S(gk,n) . e(-Bs(gk)+c(gk))n

~

k ]
(2.4) o(gk,n) x e

provided the interactions between different defects are, in some sense, weak. For-

mula (2.4) suggests that when the inverse temperature [ decreases below the point

(2.5) B(g,) =~ c(gk)fe(gk) ’

defects labelled by 8y condense, and there are, with high probability, infini-

tely extended defects of type . One expects, therefore, that there is a phase

g
transition, as B 1is varied thrEugh B(gk) .
The argument sketched in (2.2)-(2.5) is called an energy-entropy argument.

The art is then to apply such arguments to specific spin systems to actually prove
that a transition occurs. This has been done for a large class of lattice spin
systems with abelian symmetry groups1). This may sound confusing, because the nc-
tion of a "topological defect" does not make sense when one considers spin confi -
gurations on a lattice. It turns out, however, that in models with abelian symue-
try groups one can use a duality transformation (Fourier transformation on the
group) to exhibit what in the continuum limit corresponds to topological defects.
Since this will presumably sound rather vague, we now briefly describe two exam-
ples.

(1) The Ising model (see (1.11) and (1.12)). In this example : M = {-1,1} ,
©(x) = 1 with probability 1/2 , for all x €z% , and

(2.6) Hy@ = I (1-0G().0G")
jri'en
13-3"1=1

The defects are the Peierls contours, i.e. (d-1)-dimensional, closed connected
surfaces in the dual lattice separating a domain where ¢ takes the value + 1

from a domain where it takes the value =-1. By (2.6), the energy of a contour is
equal to its (d-1)-dimensional area. It is a simple, combinatorial exercise to
show that in d =2 2 dimensions the number of contours of area n enclosing the

. . . n - . .
origin 1s bounded above by ¢, where ¢ 1is a geometrical constant. The inter-

) or non -abelian, but discrete symmetry groups.
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actions between contours are given by an exclusion principle.

Suppose now that, for all x outside an arbitrarily large, finite set
A c:zd , d22, ox) =+1. Let p4s(B) and p_(B) be the probabilities that
@) = +1,-1, respectively, in an equilibrium state at inverse temperature

B , with the above boundary conditions outside A . Clearly every configuration

@ for which ©@(0) = -1 must contain at least one Peierls contour enclosing the
origin. Hence -
2.7 L B)I=I e B it
2
n=2d

if B 1is large enough, and thus
(2.8) <tD(0)>B = p+(B) - p-(B) =1 - 2p-(B) >0,

for large B . This shows that in zero magnetic field (h=0) and for large B
there is a spontaneous magnetization in the direction imposed by the boundary
conditions. It is not hard to show that for small P there is no spontaneous
magnetization, (the equilibrium state in the thermodynamic limit is unique for
small f ). Thus there is a phase transition.

(2) The two-component rotor (classical XY) model. In this model : M = S7 ,

dk($) is the Lebesgue measure on S' , the Hamilton function is given by

(2.9) HA(6)= T {-0(G).0G"} = 2 {1-cos(d()-9G") ,
isi' P
15-3"1=1 13-3"1=1

where 9(j) 1is the angle parametrizing the unit vector a(j)

Since m4.(S%) = Z, ni(S1) =0, 1# 1, the defects of this model are
labelled by an integer and their loci have co-dimension 2 . They are called
vortices. In order to study the transitions in this model, the idea is to invent
a rigorous version of the energy-entropy argument (2.2)-(2.5) for the gas of vor-
tices equivalent to the rotator model. The equivalence between the rotator model
and a vortex gas can be seen by Fourier series expansion of the equilibrium state,
duB(a) , in the angular variables {9(j)} and subsequent application of the
Poisson summation formula ; see e.g. [37, 15, 35]. The problem that one meets
when one tries to analyze the vortex gas is that there are interactions of extre-
mely long range between individual vortices. In three or more dimensions, these
interactions turn out to be quite irrelevant, and the arguments (2.2)-(2.5) can
be made rigorous. One concludes from (2.4) that, for large P , the density of
vortices is small, i.e. the number of defects per unit volume in each equilibrium
configuration 5 is very small. Therefore one expects that, in the average, ®

has a fixed direction, i.e.
(2.10) <O(x)>g = H(B) # 0,

for large B ; ﬁ(B) is determined by the boundary conditions. These arguments

are made rigorous in [35] (a slightly non-trivial task). It is well known that
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for small B , or for arbitrary B and d = 1,2 [38],
(2.11) <6(x)>B =0 .

In two dimensions, the vortices are point-like objects. The interaction between
two vortices of strength q4 and q2 , respectively, separated by a distance 2

is approximately given by

(2.12) - 4142 5= In %

which is the Coulomb potential between two point charges, q4 and qz , in two
dimensions. Suppose now that gq4 = - q2 = | . The entropy, £ , of the class of
configurations of a + vortex and a - vortex separated by a distance £ , within

some distance « £ from the origin is given by

(2.13) es ~ const. 23
Thus, for B > 8m ,
(2.14) e PES & const. (2 +1)3"(B/2M

is summable in £ . This means that configurations of one vortex of strength +I
and one vortex of strength =1 , separated by a finite distance, are thermodyna-
mically stable.In fact, it can be shown by a somewhat difficult, inductive cons-
truction [15], extending over an infinite sequence of length scales, that for
sufficiently large values of P all vortices can be arranged in finite, neutral
clusters of finite diameter and finite density. The conditions characterizing
those clusters are scale-invariant. Our construction thus involves ideas of scale-
invariance and self-similarity. Furthermore, it requires successive integrations
over "fluctuations'" on ever larger length scales, (a device reminiscent of renor-
malization group methods).

For small B , vortices unbind and form a plasma. Such Coulomb plasmas are
studied rigorously in [39]. Thus, one expects a phase transition, as B 1is va-
ried. It is non-trivial to show that the transition in the two-dimensional vortex
gas just described corresponds, in the two-dimensional, two-component rotor model,

to one from a small B phase in which <C$(0).$(x)> has exponential fall-off

— — B
in |x| to a large PB phase in which <@(0).9(x)> falls off like an inverse

power (<1) of |x| , as |x| = o . This is provenBrigorously in [15]. For de-
tails and further results on this and related models see [15, 35, 36, 39].
We now proceed to discussing the third general method in the theory of phase
transitions.
(¢) Infrared bounds (rigorous spin wave theory) [40]. This method which origi-
nated in [40] is rather general and is the only known method which gives satis-
factory results in models where the spin takes values in a non-linear manifold

and the symmetry group is non-abelian. (A review for mathematicians may be found

e.g. in [41].) We describe it in terms of an example : Let © be a lattice spin
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with N = 1,2, or 3 components. Let
— 1 —
(2.15) @) = ™ ®s1amx) 12 - Naox)

which is a measure on the (N-1)-dimensional unit sphere approaching the uniform

measure, as h - 0 . The Hamilton function is given by

(2.16) @ = Z  (0-0(3).0G") ,
j»j'ea
13=3"1=1

and let duB’h(a) be an equilibrium state satisfying the DLR equations (1.10).
It is known that for h # 0 , duB,h is unique (within some class of boundary
conditions). We suppose that the underlieing lattice is three - or higher dimen-—
sional. Let A be a large, finite (hyper) cube,

S = —— Z 80)
The basic idea of spin wave theory is that for large 8

(2.17) ©(8) ~ Me, + 60(A)

where 31 is the unit vector in the Il-direction, i.e. the direction of the ma-
gnetic field (see (2.15)), M>0 if h > 0 , and 5¢(A) is the fluctuation of
©(A) around Me, which one expects to be « B~1/2 | for equilibrium configura-
tions at low temperatures (large f ).

These ideas can be formalized as follows : Let

- — C . - —_ _ - 2
<<p(0)-<o(x)>B’h— <<D(0).to(x)>6’h I<w(0)>B’hI ’
h # 0, and let GE h(k) be the Fourier transform of *C&(O).&(x))é h in x
which is a function on the d-dimensional torus,
B = [—n,n]d , (the first Brillouin zone).

By using the so called transfer matrix method, Simon and the authors [40] have
shown that d

(2.18) 0 < Gg’h(k) < NB-1[2d - 2 afl cos k 1-7 .

The upper bound in (2.18) which is called infrared -, or spin wave bound and our

proof of this bound were inspired by known results (the Kidllen-Lehmann spectral
representation of a two-point function, e.g. [42]) in relativistic quantum field
theory. Mathematically, the proof is related to a proof of the Holder inequality
for traces ; (in fact one proof of (2.18) is based on the Holder inequality app-

lied to the trace of a product of integral operators.) By Fourier transformation

0< <1025 . < Np—'I, , where
B,h d
(2.19) -d 4 d
I, = (2m) J d'k[2d =2 ¥ cos k_]-1.
a
B o=
We note that I, is divergent for d = 1,2, but finite in d > 3 dimensions,

d
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(with Id o« d=1 , for large d ).

By (2.15) it is obvious that

P 2 =
< 19(0) | %,h 1
Thus, for B > NId .
(2.20) M(B,h)2 = |<$(0)>B L1221 -8 >0,
3
uniformly in |h] > 0 , 1i.e.
(2.21) lim M(B,h) = M(B) > 0 .
hy O

It is easy to prove that M(B) = 0 , for sufficiently small R . We therefore
conclude that there is a phase transition.

It follows from the infrared bound (2.18) that

(2.22) §5(8) ~ \/Np-1181 2~ /A

in accordance with heuristic ideas based on spin wave theory. Note that for
d=1,2, 66(&) does not become small, as the volume |A| of A tends to e .
This suggests that there is no spontaneous magnetization when d = | or 2 . Indeed,

for N 2 2 , there is no spontaneous magnetization and no symmetry breaking in two
dimensions ; the well-known Mermin-Wagner theorem [38] ; (see also [43] for a
proof which formalizes the above fluctuation argument).

The results reported here extend to a large class of spin systems, but the
hypotheses required for the known proofs of the infrared bound (2.18) impose se-
rious limitations on the class of Hamilton functions for which (2.18) is known to
be valid [11. 3)].

We conclude this subsection by mentioning some recent results on the struc-—
ture of the space of translation - invariant equilibrium states in the Ising =
(N=1) and the two-component rotor model (N=2)

For h# 0, or for h=0 but B so small that M(B) = 0 , the (transla-
tion-invariant) equilibrium states are unique [44, 45]. Next, suppose that h = 0,
M(B) #0 (i.e. there is a non-zero spontaneous magnetization) and that B 1is a
2BE) . (since BE(B) is
concave in B , this is true for all, except perhaps countably many, values of
B .) Then :

point of continuity of the internal energy density, -

(i) In the Ising model, there exist precisely two extremal, translation-invariant

equilibrium states, <(.)>B e with
]

0 < <(0)> <O0)>, _

B+

See [46]. A deeper result, due to Aizemman [47], is that in the two-dimensional

Ising model (i) is true for all B > Bc , Without assuming translation invariance.
(ii) In the N = 2 rotor model (under the same hypotheses) there exist infini-

tely many extremal, translation-invariant equilibrium states

{<(')>B.3 : 9 € [0,2m)])
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which can all be labelled by an angle O and such that
cos 8)

sin 9

<tp(0)>B’8 = ]<(p(0)>B,0l (

For the proof see [48].
The proofs of the results mentioned here are rather unintuitive and of very

limited interest to the mathematician, although they involve some clever ideas.

2.2. Existence of critical points and inequalities for critical exponents

Almost all rigorous results concerning the existence of crit cal points and
critical exponents known to us are results on the Ising - and the two - component
rotor model, or the more general family of models defined in (1.11), (1.12), for
N =1,2,(3,4) components. We therefore restrict our review to these models, but
see [49] for a discussion of Dyson's hierarchical model.

The first rigorous results on the existence of critical points and estimates
on critical exponents were proven by Glimm and Jaffe ; see [50] and refs. given
there. As a censequence of the Lee-Yang theorem, the inverse correlation length
m(B,h) introduced in Sect. 1.4, e) is strictly positive, when h # 0 . Let B.

be defined by
(2.23) B. = sup{B : m(B)

c

m(B,h - 0) > 0]

Rosen and Glimm and Jaffe (see [50] for references) have shown that m(B) tends
to 0 continuously, as B 7 B, - It has also been shown [20. 3)] that the magne-
tic susceptibility x(B) diverges, as B 7 BC
Among rigorously established inequalities for critical exponents are (see
(1.15), Sect. 1.4, for definitions)
v21/2

0sn=sl

dv <2 -a,

etc. We refer the reader to [50] for a summary and references and to [21] for
interesting generalizations.

Although the proofs of these results are quite clever, they are based on
very special features of the Ising - and rotor model. They hardly involve mathe-
matical arguments which are interesting in their own right and are therefore not
paraphrased here.

There are now emerging two somewhat general, rigorous approaches towards a
theory of the critical point and critical exponents [22, 23], [51, 52] which ap-
pear to give fairly complete results in five or more dimensions, for reasons we

shall try to explain in the following.



586-21

§ 3. Scale transformations and scaling limit

In order to simplify our discussion, we consider a one-component spin field,
@ , on the lattice Zﬁ . Let duB(w) be an equilibrium state. (For simplicity,
we imagine that B 1is the only thermodynamic parameter that is varied, but there
could be dependence on a magnetic field, h , or other parameters, as well.) Let

(3.1) 0, (i) =eG+x) , xez,

and assume that duB(m) is translation invariant, i.e.
32 d =d
(3.2) Yo (@) g ()

As in Sect. 1.4, we define the correlation functions as the moments of duB , 1.e.
n
(3.3) <O(x1) ... 0(xp)>, = J TT olx,)du, ()
B kel k”B
By a trivial re-definition of ¢ it is always possible to assume that
<Lp(x)>B =0 .

In the following we are interested in analyzing the long distance limit of
the correlation functions defined in (3.3) and in relating existence and proper-
ties of this limit to the behaviour of the equilibrium state and the correlations,
as P approaches a critical point Bc , defined as in (2.23). We assume that, for
B < Bc , the state <(.)>B is extremal invariant (i.e. duB 1s ergodic under the
action of lattice translations, defined in (3.1)) and that m(B) 1is positive,
i.e. <¢)(x)tp(y)>B tends to 0 exponentially fast, as |x-y| — o with decay
rate denoted m(B) ; see Sect. 1.4, e). Furthermore, we assume that m(B) tends
to O continuously, as B 7 Bc . As mentioned in Sect. 2.2, these assumptions
are known to hold in the Ising - and the N = 2 rotor model and in the family of
models introduced in (1.11), (1.12), for N = 1,2 .

We now define the scaled correlations

(3-4) Ga(xn---,xn) s 0(8)n<l0(3x1)---tp(31n)>6(3) ]
where
] <9<,
(3.95) {
d d _ . . d
BxJ €Z ﬁxj 6?258__1 = {y: 9y ez} ,

and B(9) < BC and oa(d) are functions of the scale parameter & which one
tries to choose in such a way that a non-trivial limit, as 9 - o , exists. In
the models mentioned above it suffices to impose the following renormalization con-
dition : For 0 < |x-y| <=, |

(3.6) 0 < 1lim Gq(x,y)
I O
It turns out that in our class of models (3.6) suffices to show that some limit

G¥(x-y) <o,

(3.7) G*¥(X14y.-.,%Xn) = lim GB,(x1,...,xn)
Gi—bm 1
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exists, and G*(xq,...,%Xn) 1is a translation-invariant distribution, for all

n=3,4,... . It follows from (3.4) and (3.6) that
(3.8) B 7 Bc , as 9 -» o,

If the limiting correlation G*(x-y) 1is required to have exponential fall-off

in Ix-yl one would try to impose, in addition to (3.6),

(3.9) om(B(Y)) — m* >0, as I > o .
If m(t) , t El&E;B , is known to satisfy a scaling law
(3.10) m(t) ~t¥,

see (l1.15), then (3.9) and this scaling law imply that

ot @)V = a(ﬁ‘i—%@)" < consti)
c

i.e.

(3.11) BD) ~ Bc ~ const. S"I/V , as O - ™,
Up to some technical finesse, it follows from (3.6) and (3.9) that
(3.12) Xg = xeé,‘%_18_d(;a(0,X)
remains bounded, as 9-e. By (3.4)
(3.13) Xg = a(®)2 97X (B(S))
If X(B) satisfies a scaling law
(3.14) x(t) ~ 7,
see (1.15), and
(3.15) a(@®z ~ 472

(this really defines the critical exponent mn ) then it follows, using (3.11)-
(3.15), that
(3.16) 2 -mMv-y=0.

This is one example of a relation between critical exponents. By (3.6), (3.9),
m(B®)) — 0, as Y>> .

Recalling, in addition, the definition (3.4) of Ga(x,y) , we see that n 1is a

measure of the fall-off of <@X)p(y)> at an intermediate distance scale,

o 3 when Bc - B~8_”v .

B

We now claim that in our class of models, see (1.11), (1.12),
(3.17) n=0.

For these models, the infrared bound (2.18) holds. From that bound one can deduce
that, for d =2 3 ,
(3.18) 0 5 <(0)e(x)>; < e Ix-y1* 7,

(at least for one - or two-component fields ; see [53]). Here 4 is a geometric
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constant, Since Bc < o 1is strictly positive, we conclude from (3,4), (3,8) and
(3.18) that

(3.19) a(®2 > const, 9972 |
whence (3.17).

Quite generally, control of the two-point function in the form of an inequa-
lity (2.18) or (3.18) is required in order to determine the choice of a(9d)

We now must focus our attention on the question of why we are interested in
the large scale behaviour of a lattice spin system, i.e. in studiing the limit
where O - « . Here are some answers.

1) Suppose we are able to construct the limiting correlation functions,
G*(Xq5...,%n) , of the rescaled correlations, G&(x1,.,.,xn) , as O - o , such
that the renormalization conditions (3.6) and (3,9) hold. Then we must have, in
particular, a way of determining the functions B(8) and o(3) . But, by (3.10)
and (3.11), the choice of B(3) determines the critical exponent V , and, by
(3;15), the choice of «(8) determines 1 . Thus an explicit construction of the
9 » o limit determines, in principle, the critical exponents v , Y and n

2) As our derivation of relation (3.16) shows, proving merely existence of a
9 -  1limit yields non-trivial relations between critical exponents.

3) But perhaps the main interest in constructing the limits, G*(xXq,...,Xn) ,
of the rescaled correlation functions comes from the fact that

these limits may be the Euclidean Green's functions of a relativistic quan-—

tum field theory, 1i.e.

(3.20) G¥(X1s.++5%Xn) = Sn(Xq1y..+5%Xn)

for some quantum field theory satisfying the Wightman axioms (W0)-(W5).

Indeed, in the models considered above, this is true if we can prove that
the distributions G*(x4,...,%Xn) are invariant under simultaneous rotations of
their arguments - but even if this property failed, the G* 's are the Euclidean
Green's functions of a quantum field theory with a vacuum state that would then
not be Lorentz invariant.

For some scaling (= continuum) limits of the models introduced in (1.11),
(1.12) in two and three dimensions and of the two-dimensional Ising model it has
been shown (see e.g. [12, 50], [24] respectively) that the distributions, G* ,
are the Euclidean Green's functions of relativistic quantum field theories satis-

fying all Wightman axioms (WO)=-(W5).

§ 4. Renormalization group (block spin) transformations

In this section we briefly sketch a specific idea how to accomplish the cons-—
truction of the scaling (= continuum) limits, G*(x4,...,xn) of the rescaled cor-

relations GB(X1""’xn) , as 3 - o , the Kadanoff block spin transformations.
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They may serve as a typical example of "renormalization (group) transformations".
Clearly there are other examples of this general idea, including ones in the con-
text of dynamics (in particular, the Feigenbaum theory [2]). We also try to indi-
cate how mathematical control of renormalization group transformations leads to

the calculation of critical exponents.

4.1. Block spin transformations
We define a function u = x® on :md as follows :
g R R TR L
2 2
uly) =
0 , otherwise,
where vy = (y‘,...,yd) E]Rd and € 1is an arbitrary positive number. Let
w (y) = u(y-ex) , x ezd .
Let Ga(x1,...,xn) be the rescaled correlation function defined in (3.4). Then
n
-d
(4.1) GH. seeesi. ) = 5 Ga(¥1sevesyn) |1 9 w. (v,)
9% Xn Y1se--5¥n inZg_., 9 k=1 Xk k a0
= (a(®)e~hn 5 <o(z4) . ..0(zn)> - Tl BTz ),
ZayeeeszninZ B~ o) ¥k 5

We now set

9=9 =¢'",

m
where L 1is some positive integer and m = 1,2,3,... , and define
(4.2) r (@x) = ae=1L™.L 7" 3 o(z) ,
by z€zd
—-;—SL‘mz”'—xu%
xEZ?.d, w=1,...,d . Then
(4.3) Gam(HX1,---,MXn) = <rm(¢(x1))---rm(w(Xn))>B(am)

Let du(w) be an arbitrary, translation-invariant, finite, positive measure on
the space of all configurations {p(x) : x E:Ed] . We define a transformation Rm

of 1 by the equation

n n
[ H r(o(x ))du(e) = J 111 o(x )d(R W) (0 ,
for all xq,...,xn in 29, n=1,2,3,...

Note that o (resp. Rm ) consists of a transformation increasing the scale
size (taking the average over all spins in a block) followed by a (in the present
example : linear) coordinate transformation in spin space. Further more, we note
that if @ 1s extremal invariant then so is Rmu .

In order to arrive at an interesting concept we now suppose that a(8) is
proportional to some power of O , i.e.

(4.4) a(@)2 ~ 4™ |

for some n . We then define
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(4.5) v r (o)) = LMd4-2)/2 Z o(z)

-—-%-SL“‘zu—xus-;*
Then
r (@(x)) = a(e™)ro... o r(o(x))
—

m times
Let Ru be the unique measure such that
n n
(4.6) TT roGx, Ndu() = | TT ox)d®w @« ,
k=1 S k=1 %
for all X4,...5%n , n = 1,2,3,... . [Note, R maps extremal invariant measures
to extremal invariant ones.] Then
- = m
4.7) d(R W) (@) = d(Ro ... o RW) (a()p) = d(R'}) (a(e))

m times
If we now choose du = clu,8 , where {uB} is a family of Gibbs states of our spin

system indexed by B we obtain, setting B = B(Sh) >

(4.8) G¥*(m_ ,...,u_ ) = lim G
X1 Xn o s S

n
(“x,""”‘xn) = lim J'I_Tw(xk)d(RmuB(em))(a(E)w),

m-»o k=1
provided the limit exists.

In order to prove existence of the limit in (4.8), one must analyze the trans-
formation R on (the boundary of) a suitably chosen cone of finite measures. |i
particular, one has to construct fixed points of R , study the spectrum of the
linearization of R at the fixed points (the linearization of R acts on a linear
space of measurable (or continuous, or analytic) functions of spin configurations,
@ ), and construct the stable and unstable manifold of R near a fixed point. We

shall discuss some examples below.

Remarks.— 1) By (4.4)-(4.6), the transformation R = Rn depends on the exponent
N . The condition that the limit in (4.8) exist and be non-trivial fixes n

2) We shall see that the critical exponents Vv and Y are determined by posi-
tive eigenvalues > 1 of the linearization of Rﬂ at the appropriate fixed point
of er

3) It is usually expected that if a measure | 1is a Gibbs measure (i.e. 1 sa-
tisfies the DLR equations for some Hamilton function H - more precisely sovme iu-
teraction [13, 14] = see (1.10)) then Rnu is again a Gibbs measure. This, howe-
ver, is not true in general. But if it is true on a suitably chosen space of Gibbs
states then Rn uniquely determines a transformation ﬁr] acting on a space of
(equivalence classes of) Hamilton functions, or interactions. The simplifying fea-
ture of this set—up is that the derivative of ﬂr] acts on the linear hull of the
same space.

4) Below, we shall briefly indicate how these ideas are applied to dynamics.
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4.2. Fixed points of block spin transformations, stable and unstable manifolds,

critical exponents

Let M be some cone of finite measures, JL , on some measure space of spin

configurations @ = {@(j)} Let Rn be a renormalization (block spin) tran-

«comrd
sformation acting on M , igzziscussed in Sect. 4.1. (One ought to assume proba-
bly that M can be given a topology such that the action of Rﬂ on M is
smooth.) Of particular interest are the fixed points, u* , of Rn . It is usu-
ally not so hard to convince oneself that there exists at least one fixed point.
Supposing, for example, that @(j) €ER , j € zd | and that Rn is given by
(4.4)-(4.6), it is easy to show that R_ has at least a one-dimensional manifold
of fixed points, u: , t €R , which are Gaussian measures. Gaussian measures
are uniquely characterized by their mean and their covariance. The mean of u;

is 0 , the covariance is of the form efC* , where

(4.9) Jduﬁzo(m)w(x)w(y) = C*(x,y) = c*(x-y) ~ lx-y[zhd"n )

See [54] and refs. given there. (Non-Gaussian fixed points have been constructed,
too, but no non-Gaussian fixed points interesting for statistical physics or re-
lativistic quantum field theory appear to be known, in the sense of rigorous ma-
thematics, except in the two-dimensional Ising model.)

There is an intimate mathematical connection between fixed points, u* , of
Rn and "stable distributions" in probability theory. It is worthwhile tonote that
fixed points, W* , cannot be strongly mixing. See e.g. [54, 55] and refs. given
there for a discussion of these probabilistic aspects. We stress, however, that
the main concepts of the renormalization group are more general than their proba-
bilistic formulation !

We now choose some fixed point, pu* , of Rn . We define Mf.p.==Mf.p.(Rn’u*)
to be the manifold of all fixed points of Rﬂ passing through w* . Since a cer-
tain class of coordinate transformations, like

©(j) — ow(j) , for all jez?,

for some positive o independent of j , commute with Rn , the fixed points of
Rn are not isolated, and the linearization of Rn at some fixed point p* will
generally have an eigenvalue | (and possibly further eigenvalues) corresponding
to coordinate transformations.

Under suitable hypotheses on Rn and M , one can decompose M 1in the vi-
cinity of u* € Mf.p.(Rn’u*) into a stable manifold, Ms(u*) , and an unstable
manifold Mu(u?)
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My

Fig. | \\‘\

States on Ms(u*) are driven towards Wu* , states on Mu(u*) are driven away
from Wu* , under the action of Rn . The tangent space, & , to Mu(u*) at p*

is the linear space spanned by eigenvectors of DRn(u*) (the derivative of Rn

at u* ) corresponding to eigenvalues of modulus > 1 . It is called the space of
"relevant perturbations'. The space S of "irrelevant perturbations" is the tan-
gent space to Ms(u*) and is spanned by eigenvectors of DRn(u*) corresponding
to eigenvalues of modulus < | . The space M of "marginal perturbations" is
spanned by eigenvectors of DRn(u?) corresponding to eigenvalues of modulus 1 . Ge-
nerically ¢%, will be the tangent space, € , to Mf.p_(Rn,uﬁ) , and, in a neigh-

borhood of w* , each point in M . (Rn,u?) can be reached by applying a coor-

£
dinate transformation to wu* . However, it may happen that the dimension of Vb
is larger than the one of & . In that case, linear analysis is insufficient. Tt
may happen that one can enlarge MS , (or Mu , or both,) by submanifolds of

points which are driven towards (away from) w* with "

asymptotically vanishing
speed'. This is precisely what appears to happen in the Ising - and rotor models
(more generally, in the models introduced in (1.11), (1.12)) in four dimensions
dim b= 2 = dim €+ 1 ; (moreover, dim & = 1 ). However, all fixed points are
scale-invariant Gaussian measures, and MS can be enlarged by a one dimensional
submanifold tangent to a direction in &, at p* .

In the situation described here one expects logarithmic corrections to
scaling laws.

[Another possibility compatible with dim # > dim & 1is the appearence of a
stable, periodic cycle. For the transformation Rn defined in (4.4)=(4.6) one
should be able to rule out this possibility.]

Suppose now that R, depends on a continuous parameter, O , and that 6o

n
is some "critical" value of & such that

dim M, = dim &, for & > 6o ,
dim¢f > dim€ , for & = &
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Then 6o 1is a bifurcation point, and one expects the emergence of new fixed
points (or periodic cycles) for & < 6o . In the study of the models mentioned
above, it was proposed by Wilson [1] to identify & with the dimension d and
to interpolate analytically in d " . The critical dimension, corresponding to
80 , is 4 , and above four dimensions the fixed points governing the critical
behaviour of those models are Gaussian, and n = 0 . There are partial results
towards showing that the "relevant" fixed points in dimension 4 are Gaussian,
as well ; [22, 23].

Next, we discuss how critical exponents are related to the spectrum of
DRn(u*) , where Rn is the transformation defined in (4.5)-(4.7). We consider a
simple case : In a neighborhood of W* , Mf.p.(Rn’uF) is obtained by applying
suitable coordinate transformations in spin space to W¥ . By adopting some nor-
malization condition which fixes the choice of coordinates we can project out
the marginal directions associated with Mf.p. . We assume that, after this re-

duction, the tangent space at W* splits into a one-dimensional space of relevant

perturbations and a co-dimension-one space of irrelevant perturbations, (in particular,
there are no further marginal perturbations). Taking smoothness properties of Rn.in

some neighborhood of w* for granted, we conclude that in some neighborhood of u* there
exist a one-dimensional unstable and a co-dimension-one stable manifold passing through u*.

Next, let {uB} be a family of Gibbs measures of some spin system cros-

sing the stable mani%i?d, Ms(u*) , transversally at some value Bc of the para-
meter B . We assume that, for all B < Bc s uB is extremal invariant, and that
the inverse correlation length, (or mass - see Sect. 1.4, e)), m(B) , is posi-
tive and continuous in f , with

(4.10) m(B) MO, as B 7 Bc .

as discussed at the beginning of Sect. 3. (The class of all spin systems whose
Gibbs states have these properties, for given Rn and W* , is called a untver-
sality elass.)

Let M(j,m*) be the manifold of extremal, translation-invariant probability
measures, |L , on the measure space of spin configurations, ¢ , which have the

property that
Jdu(w)m(o)m(x)

has exponential decay rate m(j,m*) , as |[|x| - o , where
(4.11) LoG,m*) = o* >0,

for all j . If the space M of measures on which Rn acts is chosen appropria-
tely, M(j,m*) will typically be of co-dimension 1 , and M(eo,m*) = Ms(u*) .
in some neighborhood of  W* . lence, for j larpe enough, M“(u*) will typi-

) Another possibility is to identify & with the range of the interaction.
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cally cross M(j,m*) transversally at some point 1.1.j . We assume that {uB}B<BC
crosses M(j,m¥) transversally at a point . » for large enough j = which is
consistent with (4.10). Clearly the sequence {Bj] converges to Bc , @8 j o oo,
Furthermore, by the definition of Rﬂ , see (4.4)-(4.6), Sect. 4.1, and the defi-

nition of M(j,m*) , see (4.11),

(4.12) RnM(j,m*) = M(j-1,m*¥) ,
for all j
Let A be the unique, simple eigenvalue of DRn{u+} which is larger than
1 . In a neighborhood of p* , Mu(uﬁ) can be given a metric such that
(4.13) dist(uj,u*)/dist(U5+l,u*) — A, as joo,

as follows from (4.12). Thus if uB is sufficiently "close" to ¥ it follows
c

from our assumptions on {u (see Fig. 2) that

8} g>0

(4.14) By - B, ~ AJd , as joo.

Fig. 2

M(j+1,m*)

By the definition of M(j,m*) , see (4.11),

(4.15) m(B) = L dm* .
Thus, if we set ¢t = Bﬁ{‘ and m(t) = m(B) , B <B_ , we obtain from (4.14)
and (4.15) &
m(t) ~ tlnL/lnA., as t =0, i.e.
(4.16)
v =1nL/InA .

Thanks to relation (3.16), the exponent Y of the susceptibility is determined
by n and v .

This concludes our general discussion of the basic renormalization group

strategy.

Remarks.— 1) The ideas and concepts discussed here have other interesting appli-
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cations torelativistic quantum field theory and statistical mechanics : As we

have argued in Sect. 4.1, (4.4) through (4.8), one can use renormalization trans-
formations, Rn , and their fixed points in order to construct the scaling limits,
G*(X1,...,%Xn) , of the correlation functions of a spin system which, under general
and explicit conditions [8], can be shown to be the Euclidean Green's functions

of a relativistic quantum field theory. So far, constructive quantum field theory
has - in this language - been mostly concerned with the analysis of Gausszan fized
points of the transformations Rﬂ , with n =0 , and the action of Rﬂ=0 in a
small neighborhood of those fixed points.

2) Another application of those ideas concerns the phenomenon of asymptotic sym-
metry enhancement. One example of this phenomenon is found in the fact that in
many models the scaling limits, G*(x4,...,%xn) , of the correlation functions of
some spin system are invariant under all simultaneous Euclidean motions of their
arguments, although the functions Gg(x1,...,%xn) are only invariant under trans-
lations by an arbitrary vector a €:E§_1 . Other examples concern the generation
of internal symmetries in the scaling limit. See e.g. [15, 35] for such examples.
(Symmetry enhancement arises whenever a fixed point, w* , and the marginal and
relevant perturbations of u* have a large, "accidental" symmetry group.)

3) Renormalization group methods can also be applied to dynamics : Let ¢,
denote a smooth flow on a finite dimensional manifold, M . Consider the following

mapping on ‘the space of all such flows on M :
. -1
Ry, a ¢ P T (Rg a9 A7 o by o A

where A 1is a smooth mapping from M into M , (a coordinate transformation).

The mapping Ry A is the analogue of the transformation Rn defined in (4.5)-
(4.7). When time is discrete, i.e. t =n=1,2,3,... , and
n
¢t_‘¢’

for some mapping ¢ from M into M , one would study, for example,

. ¢—>RA¢=A_1D¢0¢0A .

RA
This is the Feigenbaum map. It poses very interesting, mathematical problems and
serves to understand phenomena like the period doubling bifurcations and the
onset of turbulence ; see [2]. (This is one among few examples where non-trivial

fixed points have been constructed.)

4.3. Rigorous uses of block spin transformations

The first mathematically rigorous analysis of a specific example to which
the renormalization group strategy outlined in the previous sections can be ap-
plied is the one by Bleher and Sinai [49] who analyzed Dyson's hierarchical model.

The Hamilton function of this model is chosen in such a way that the renormaliza-



586-31

tion group transformations can be reduced to non-linear transformations acting

on some space of densities, f , of the single spin distribution,
dA(p) = f(p)do .

Their work was reconsidered and extended in [56] and in [49. 3)] and refs. given
there. It had a stimulating influence on the development of the probabilistic
approach to the renormalization group, initiated by Jona-Lasinio and his collea-
gues in Rome [57, 55] and continued by Sinai and Dobrushin, [54, 55] and refs.
given there. It was Gallavotti and collaborators [58] who [irst applied the re-
normalization group method to (the ultraviolet problem in) constructive quantum
field theory ina systematic and transparent way, although ideas and techniques related
to it - and developed independently - can already be found in work of Glimm and
Jaffe [59]. These applications concern the construction of the Ap* model - see
(1.11), (1.12) - in the continuum limit in three dimensions. [This problem is
equivalent to the study of a renormalization group transformation analogous to

Rn in the vicinity of a GaussiZan fixed point.] The work in [58] motivated fur-
ther applications to constructive quantum field theory, notably by Balaban [60],
and to statistical mechanics [61]. These developments are evolving towards a ri-
gorous mathematical theory of renormalization group transformations in the vici-
nity of Gaussian fixed points, (usually with a one-dimensional, unstable mani-
fold consisting of Gaussian measures). Such a theory is relevant for the analysis
of dipole gases in dimension d 2 2 and of the models considered in these notes
- see (1.11), (1.12) - in dimension d 2 5 . This work is carried out by Gawedzkl
and Kupiainen [62] and by Magnen and Sénéor [63]. A looser interpretation of the
renormalization group strategy partially motivated the work in [15, 36].

First applications of renormalization group methods to dynamics were made
in [2], although the idea to use them in the study of dynamics is certainly older ;
see e.g. [3. 5)].

All the work quoted here involves very intricate analytical and combinatorial
methods and can therefore not be sketched here.

In the remaining section we outline another much more special but quite suc-
cessful approach to critical phenomena which gives rather good results for the
models discussed in these notes, near Gaussian fixed points, [23]. It was inspi-
red by a formalism first developed in [64] and made rigorous in [23. 1)] relating
the theory of classical spin systems to the theory of random walks. A related,
slightly prior approach, due to Aizenman, may be found in [22].

But mathematically rigorous results on critical phenomena in equilibrium
statistical mechanics still do not nearly measure up to the practical successes

of the renormalization group. This ought to be a challenge !
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§ 5. Random walks and critical phenomena in the Ising - and the Ap“* models

in d =2 5 dimensions

While the emphasis in Sections 3 and 4 was on general ideas and principles
it is on specific results and special methods, contained in [23, 65], in the
present section. These methods are motivated by an approach developped in [64].
The main results are related to some prior results of Aizenman [22]. We limit our
review to examples illustrating the flavour of those methods, emphasizing the re-
levance of the theory of random walks in the analysis of Ising - and Ap* - models
in dimension d = 4 . The basic fact about random walks which motivates our ana-
lysis can be summarized in the following theorem : In four or more dimensions,
two random walks in the continuum limit (9 - «) , Z.e. two Brownian paths, star-
ting at different points, x4 # X2 , Of EY will never intersect each other,
with probability |1

In four dimensions the proof of this result is somewhat subtle, but in five

dimensions it is easy : Consider two random walks, w4 and w2 , on the lattice
d

28_1, starting at x4 , X2, respectively. The probability, Pz,i , that w;
i=1,2, will visit some lattice site 2z 1s a harmonic function of X; (xi#zﬂ
bounded by

Pz,i < const.Bz_d!z-xi'*fr1l2-d ,

where |x-yl 1is the Euclidean distance (distance in lattice units x 91 ) bet-

ween x and y . For wy; and w2 to intersect each other at least once, it is

necessary that w;y and w2 visit a common site =z ElEd_1 . The probability of

this last event is bounded by 4=24d
9
P =P P < const.
z,12 2l ez 2 = Ix1—-z+8‘1|d“2.lxz—z+3_1ld_2
Thus, the probability, Pint , that 4 and (2 intersect each other somewhere
is bounded above by
4-d -d 1
. < < .
Poe. S E Pz,12 < const.d Eld 9 %12+ 01192. 1xa -z +0-1]3-2
z€Z%r1

which, for |x4-%2| > 0 , clearly tends to 0 , as O - o , provided
d=5.
In four dimensions, the last estimate is poor and has to be refined. We shall

apply a refined argument to spin systems, (Sect. 5.2).

5.1. Rigorous results on the existence of the scaling limit of the d > 5 dimen-

sional Ising - and Ap§ - models

The Hamilton function of the models considered in this section is defined by

(5.1) HA(cp) = - > o(HNeG") ,
1% B
[3=3"1=1
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where A 1is some finite region in Zd-, and d > 4 . We consider the following

family of single spin distributions :
A u2
(5.2) dA(p) = exp[-ztp“ + T(pz +const.]dy ,

see (1.11), (1.12) ; (there is no magnetic field, i.e. h = 0). Formally, a Gibbs
state g which solves the DLR equations (1.10) for this model is given by

(5.3) duy (@) = z;e‘“‘“‘”)r_[dmp(j)> ,
J

where ZB is the so-called partition function chosen so that JduB&p) =1 . The
r.s. of equation (5.3) has to be understood as the thermodynamic limit of measu-
res associated with finite sublattices, A . The limit, A 7 z4 , exists by cor-
relation inequalities [67]. As remarked in Sect. 1, we obtain the standard Ising
model if we set UL = A and let A - o . All results in this section remain true in
this limit. By the infrared bound [inequality (2.18) of Sect. 2.1, (c)] and cor-

relation inequalities, see [53], we have
2-d
(5.4) 0 < <tD(X)tD(y)>B S ey MIx-yl ’

for B < Bc and d = 3 , where ¢ is a geometrical constant, and

d
<(-)>B = J(-)duﬁ(w)

See also (3.18). Furthermore, as remarked in Sect. 2.2,

(5.5) { m(B) VO, as B 7 Bc , and v = 1/2 ,

X(B) # », as B7”B,, and y =1
For proofs, see [20]. Let
Gg(X1,.+->%n) = G(e)n<lp(3x1)---<0(axn)>3(8) .

with A=A , u=u®) . We choose a(®) , BWE) , AE) and u(I) such that

G¥(x-y) = lim Gg(x,y)
X R QF e
exists and satisfies

(5.6) 0 < G*¥(x-y) <@, for 0< |x-y| <o .

Whether (5.6) can be fulfilled or not is a rather difficult question and is not
analyzed here. [Note that by renormalizing A(9®) and u(9) we can always require
that Bc =] ; see [40].]
By (5.4) and (5.6), and because B(®) 7 Bc <o, as I/ o,
(5.7) a(d) 2 ConSt.B(dlz)_l
We now define the four-point Ursell function, u, B :
L
: yX2,Xa, =< iate -z >,

where 2 ranges over all three pairings of {1,2,3,4} . The four-point Ursell func-

tion of the model defined in (5.1)-(5.3) satisfies the following remarkable inequalities
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4
> > -3B2 :
(5.9) 02u, o(x1,...,%x4) 2 -3 Zt o TT<oetx)oz)>,
Zy.eeZy k=1
where 2z, ranges over zd , lzg=-2z41 <1, & =2,3,4. [For a more precise

statement see [23].] The upper bound on Uy g is the Lebowitz inequality [68],
the lower bound is the new inequality of [23] closely related to Aizenman's ine-
quality [22].

We define the re-scaled four-point Ursell function
(5.10) ua,a(x1,...,xq) = G(B)“ua’ﬁ(a)(3x1,3x2,5x3,SXu)

From the definitions of Ga(x,y) and U, 9 and from (5.9) it follows that
L]
4

(5.11) 02 u, glxa,..e,xa) 2 a(9)~ adss(e)z.{z 2 879 TT 6g(x,»972)))

10224 k=1
Note that the upper and lower bound on wu, do not explicitly depend on A(9)

and u(Id) ! Now by (5.7), and since B(3) 7 Bc < o

(5.12) a(®)-* 898(9)2 < const.8*™
which tends to 0 , as O - « , in dimension

d> 4.
One can use inequality (5.4) to prove that

4
-d
(5.13) ' 97 TT 6alx,,92,) < K, ,
Z19.+.24 k=1 9k k 6

provided Ixi-le >8>0, for i #j , and some arbitrarily small & > 0 ,

and K5 is a constant which is finite for each & > 0 .
By (5.11)-(5.13),
(5.14) lim u, 3(xq,...,xq) =0,

S
provided xi# xj , for 1 #3j and d> 4 .

Hence

G (kaseaxu) = 2 GXGxp gy =X, ) )C* () (3) =X ()

if X; # xj . Inequalities analogous to (5.9) can be proven for arbitrary 2n
point functions. As in (5.11)-(5.13), they can be used to show that, in dimension

d >4 and for x. #x. , 1#7]3,
1 ] n

* = * L
(5.15) G (xn---,xzn) }p: tl:l; G (xp(Zﬂ.—l) xp(Z.Q.))
Thus the scaling (= continuum) limits of the correlation functions of the models defined

in (5.1)-(5.3), in particular of the Ising model, (at non-coinciding arguments)

in five or more dimensions are Gaussian. (This result is expected to hold in four

dimensions, too, but there are only partial results [22, 23]. See also Sect.5.2.)
We now show how to use inequalities like (5.9) to prove that the critical

exponent, Y , of the susceptibility, ¥x(B) , takes the value 1 , in five or more

dimensions

[t is not hard to derive the equation
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dx(B) : : 1 oz .
(5.16) =g = ;u‘ Ij'-zjl=l §{<w(0)w(J)>B<w(x)to(J 2> * 3 u,hB(O.x.J.J )}

(use (5.1), (5.3).) By using (5.9) and the fact that <:np(0)(p(x)>B is square-

summable in x , for d =25 and B < Bc , which follows from (5.4), we obtain
dx (B)
(5.17) c x(B)2 < T < c x(B)?2

for some finite, positive constants c_ , c_ and all B < Bc . Integrating over

B < BC we find
Yy =1

(One expects that v =1/2, n=0, in d =2 5, but the provL is incomplete.)

For results in four or less dimensions see [22, 23, 65, 66].

5.2. The random walk representation of classical spin systems

In the following we sketch some ideas that go into the proof [23] of an iden-
tity representing the classical spin systems as gases of random walks interacting
via soft core repulsion. This representation was first proposed by Symanzik in
[64]. It has many nice features which are useful for a qualitative understanding
of critical phenomena. A different, but related representation has been used in
[22].

The following calculations are formal. For a rigorous justification see [65].
We assume that
(5.18) dA(p) = g(w?)do ,

where g 1is continuous on R* and has stronger than exponential decay at infini-
ty. (A general class of even single spin distributions, in particular the one of
the Ising model, will be obtained from the one satisfyiné(S.lS)by taking weak li-
mits.) Let ‘

(5.19) : g(02) = Ié (a)e % 4a

be a Fourier decomposition of g . Let F(p) be a function depending smoothly on

only finitely many @(j) 's. We consider the correlation function
<OEEF@W@>, -

If we insert (5.19) into (5.3), with H given by (5.1) we obtain

sl -
(5.20) <OEIF(@>, = zB1J1ng(a(j>)da(j).Jm(x)F(m)e 7 <0, (BR*212) P 1740 5)
] ]

»
where <.,.> 1is the scalar product on £2(Zd) , and

(P£)(3) = - ,,E, £GY)
. 1j'=31=1

The @-integral on the r.s. of (5.20) is Gaussian, and we obtain

- 1 .
(5.21) <@(IF(@)>y = 25" %Jqé(a(j))da(j)-(ﬁl’ r2ia)] S0 o3 ("’P”z“""":’TiTawc_i)

We now expand (BP-+Zia);; in a Neumann series in PBP . (This expansion converges
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under our assumptions on g ; see [65].) Each term in the series is labelled by
a random walk, w, on Zd starting at x and ending at y . Let hj(w) be
the total number of visits of ® at site j . Then
(5.22) @ + ia)=1 = 3 gl Tia())™H@ |

XY wixoy i
where |w| 1is the total number of nearest neighbor steps made by w . We define

é6(t)dt , 1if n =20

(5.23) dvp (t) = {
b (n—'_'l—!—)TX]R+(t)tn‘1dt , N = 1,2,3,..

By inserting (5.22) and the identity

2iat

(21a)™m = Je dvn(t)

into the r.s. of (5.21) and carrying out the a(j)-integrals we obtain

. H oF : .
(5.24) <OOF@3=F = 73" J]Tdvnj(m)(c(m J B (lp)wc';-?%-?d)\-(tp(_l)+2t(3))-

The variables t(j) have the lnterpretatlon of waiting times for the jump pro-
cess ® . (Indeed when dA 1is Gaussian, one obtains a standard Poisson jump pro-
cess.) Identity (5.24) is the basic formula relating spin systems to random walks.

It can be iterated by writing

aF($) _ {COBSC. s OF

0w (y) ©(z)G(p) , for some z € zzd ,
where G 1s a function of ¢ with the same properties as F . We define
(5.25) 25(t) = ZFJ;BH@) Udl(cp(j) +2t(3)) ,
and
(5.26) zB(w1,...,uh) = JT]-E_Edan(mk)(t (J))Z (E4+ ... +tn)

where q,...,0n are some given random walks. The functions zB(m1,...,oh) can
be interpreted as correlation functions of n random walks, ®q,...,wn , immersed
in a gas of closed random walks (random loops) with soft core repulsion. See [23,

64, 65, 66]. It follows easily from (5.24) through (5.26) that

_ lwl
(5.27) ‘ <t::(:c)tp(y)>B = m:E—DyB zB(m)
and
(5.28) 04’8(31:---,xu)— p) Im1|+lm2I{ZB(m1,m2)"ZB(m1)ZB(mz)} H

P W1:iXp(1) = Xp(2)
W2 :Xp(3) =* Xp(4)

analogous formulas can be derived for arbitrary 2n-point functions.
The point is now that one can prove the following inequalities on zB(m1,...):
A) If w3 Nawz =0
z (wq,w 2z, (w)z, (W
B( 1,W2) B( 1) B( 2)

lwl

B) gﬂlmlzﬁ(m,mn---) < (gﬁ zB(m))zﬁ(wn--.)

It is quite remarkable that these inequalities po in opposite directions. They
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follow from (5.25) and (5.26) by applying standard correlation inequalities, due
to Griffiths and Ginibre [67]. (See [65] for more general results.)

If we insert B) into the r.s. of (5.28) we obtain
(5.29) uq,B(X1,.-.,Xq) <0 .

Inserting A) into the r.s. of (5.28) and noticing that zB(m1,m2) > 0 one

concludes that

(5.30) “4,B(x1""’x“) 2 -gGB(xpm,XmeXp{a).Xpm) ’
where
= lwal lwz |
(5.31) G (x1,%z[xa,x) = | Z Bz (@B 2g (@2)
Wo i X3y

w1 Nw2#0
If we require that some point z belongs to wq N wz and then sum over all choi-

ces of z € I'Zd we obtain

lwil+ w2 i [+ lw3 ]

2 ! L 1 UL

(5.32) GB(X1 ,X2|X3,Kq) <B zegd {D.":E.""Z &J'.":Z'—'XZB ZB((D-‘ ,(01)2[3((02,(.02)
z'z" wiixz~oz Wy :z"-x,

where |z'=-z| = |2"-2z| = 1 . (As argued below, this estimate is very poor in di-

mension d < 4 .) Applying B) to the r.s. of (5.32) and inserting the final result
into (5.30) we obtain our basic inequality (5.9). See [23, 65], and [22] for rela-
ted results.

We now suggest a substantial improvement of (5.32). (The inequality in (5.30)

is expected to be quite accurate.) Let B = B(S) 7 BC , as 9 - o , and let

- d -
xi—{}yi , yiERS_.‘ , 1 =1,...,4

Iyi-yj| 26>0 , for 1#]j,
independently of 9 . In order to construct the scaling (= continuum) limit of
uy we must study the behaviour of the r.s. of (5.31) for large O3 , i.e. for walks
wy and w2 which join points that are separated by a distance «3 and which make
large excursions (i.e. have '"large Hausdorff dimension'), because B(9) “’Bc . Now
on the r.s. of (5.31), the only walks w; and w2 which contribute must intersect
each other. We may then choose the point 2z on the r.s. of (5.32) to be the first
intersection of w; with w2 , (in the orientation of wq ). In that case, the
walks ) and w5 which end at the same point, 2z , are not permitted to inter-
sect each other, except once : at =z . Now, for |Ixq-2z| ~9 ~ |x3-2| , the proba-
bility pa(m%,mé) for two walks, ] and w) , not to intersect each other in
expected to behave like
3d~a , d < 4

(5.33) py(wi,ws) < ~
OFLERT S (logﬁ)n,forsome u>0,d=4,

with probability | , as 9 - o . If on the r.s. of (5.32) the trivial upper bound

is replaced by (5.33) one predicts that
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uq’a(xq,...,xq) —» 0, as 9 - oo,

like (log{B)_K , in four dimensions. See [65]. (For d < 3 , conjecture (5.33) is
consistent with known upper bounds on wug [69].)

These arguments can be made rigorous for standard random walks with indepen-—
dent increments [70] and yield a new proof of the well-known theorem [71] that,
in d 2 4 dimensions, two Brownian paths starting at different points of :md
never intersect each other, with probability |1

Arguments similar to the ones described here (see [66, 70]) have also been

considered by Aizenman [22].

REFERENCES

[1] K.G. WILSON, Phys. Rev. B4, 3174 and 3184 (1971).
K.G. WILSON and M.E. FISHER, Phys. Rev. Letters gg, 240 (1972).
[2] M. FEIGENBAUM, J. Stat. Phys. 19, 25 (1978) and 21, 669 (1979).
0.E. LANFORD I, Séminaire Bourbaki n° 563, November 1980.
P. COLLET and J.-P. ECKMANN, "Iterated Maps of the Interval as Dynamical Systems",
Progress in Physics, vol. 1, Boston-Basel-Stuttgart, Birkhauser, 1980.
[3] K.G. WILSON and J. KOGUT, Phys. Rep. 12C, 75 (1974), and refs. given there.
L. KADANOFF, Physics 2, 263 (1966).
L. KADANOFF, A. HAUGHTON and M. YALABIK, J. Stat. Phys. lé} N°® 2, 171 (1976).
G. JONA-LASINIO, Nuovo Cimento B 26, 9 (1975).
M. CASSANDRO and G. JONA-LASINIO, Adv. Physics 27, 913 (1978).
M.E. FISHER, Rev. Mod. Phys. 46, 597 (1974).
E. BREZIN, J.C. LE GUILLOU and.J. ZINN-JUSTIN, in '"Phase Transitions and Criti-
cal Phenomena', vol. 6, C. Domb and M.S. Green (eds.) New-York, Academic
Press, 1976.
E. BREZIN and J. ZINN-JUSTIN, Phys. Rev. Bl4, 3110 (1976).
etc.
[4] '"Phase Transitions and Critical Phenomena", vol. 1-6, C. Domb and M.S. Green
(eds.), New York, Academic Press.
S.K. MA, "Modern Theory of Critical Phenomena'", London-Amsterdam-DonMills,
Ontario, Benjamin 1976.
G. TOULOUSE and P. PFEUTY, "Introduction au Groupe de Renormalisation et &
Ses Applications'", Presses Universitaires de Grenoble, 1975.
C.J. THOMPSON, "Mathematical Statistical Mechanics', Princeton, Princeton Uni-
versity Press, 1980.
(5] N.D. MERMIN, Rev. Mod. Phys. 31, 591 (1979).
L. MICHEL, Rev. Mod. Phys. 52, 617 (1980).



(6]

(7]
(8]

(9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

586-39

R. STREATER and A.S. WIGHTMAN, "PCT, Spin and Statistics and All That", New
York, Benjamin, 1964,

R. JOST, '"The General Theory of Quantized Fields', Providence, R.I., Amer.
Math. Soc. Publ., 1965.

J. FRﬁHLICH, K. OSTERWALDER and E. SEILER, article to appear.

K. OSTERWALDER and R. SCHRADER, Commun. Math. Phys. 31, 83 (1973), and 42,
281 (1975).

J.-P. ECKMANN and H. EPSTEIN, Commun. Math. Phys. 64, 95-130 (1979).

J. FROHLICH, Ann. Inst. H. Poincaré, Sect. A 21, 271 (1974).

W. DRIESSLER and J. FROHLICH, Ann. Inst. H. Poincaré, Sect. A 27, 221 (1977).

1) J. FROHLICH and T. SPENCER, in "New Developments in Quantum Field Theory
and Statistical Mechanics'", M. Lévy and P. Mitter (eds.), New York-
London, Plenum, 1977.

2) J. FROHLICH and E.H. LIEB, Commun. Math. Phys. 60, 233 (1978).

3) J. FROHLICH, R. ISRAEL, E.H. LIEB and B. SIMON, Commun. Math. Phys. 62, I
(1978).

1) "Constructive Quantum Field Theory", G. Velo and A.S. Wightman (eds.),
Lecture Notes in Physics 25, Berlin-Heidelberg-New York, Springer-Verlag,
1973. (See, in particular, the contribution by E. Nelson).

2) F. GUERRA, L. ROSEN and B. SIMON, Ann. Math. 101, 111 (1975).

3) B. SIMON, "The P(¢)2 Euclidean (Quantum) Field Theory", Princeton,
Princeton University Press 1974.

D. RUELLE, "Statistical Mechanics'", London-Amsterdam-DonMills, Ontario, Ben-
jamin, 1969,

R. ISRAEL, "Convexity in the Theory of Lattice Gases', Princeton, Princeton
University Press, 1979.

J. FROHLICH and T. SPENCER, Phys. Rev. Letters 46, 1006 (1981), and Commun.
Math. Phys. 81, 277 (1981).

R. KOTECKY and S. SHLOSMAN, Preprint 1981, to appear in Commun. Math. Phys.

"Phase Transitions and Critical Phenomena', vol. 6 : See ref. [4].

"New Developments in Quantum Field Theory..." : See ref. [11], 1).

E.H. LIEB and A. SOKAL, Commun. Math. Phys. 80, 153 (1981).

F. WEGNER, Phys. Rev. B5, 4529 (1972).

E. BREZIN, J.C. LE GUILLOU and J. ZINN-JUSTIN : See ref. [3].

J. GLIMM and A. JAFFE, in "Quantum Dynamics : Models and Mathematics'", L.
Streit (ed.), Berlin - Heidelberg-New York, Springer-Verlag, 1976 and
refs. given there.

J. GLIMM and A. JAFFE, Commun. Math. Phys. 51, I-14 (1976), and 52, 203 (1977).



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

(40]

586-40

. SOKAL, More Inequalities for Critical Exponents, J. Stat. Phys., to appear ;

Phys. Letters 71A, 451 (1979).

- AIZENMAN, Phys. Rev. Letters 47, 1 (1981) ;

article in preparation, (to appear in Commun. Math. Phys.).

. FROHLICH, Nuclear Physics B200[FS4], 281 (1982) ; and

D. BRYDGES, J. FROHLICH and A. SOKAL, article in preparation.

E.
V.
L.
H.
N.

E.
R.
R.
R.
R.
S

J.
Jie
Il
D.
D.
J.
J.

J.
N.
N.
0.
D.
D.
J.

. JIMBO, T. MIWA and M. SATO, in "Mathematical Problems in Theoretical Physics",

K. Osterwalder (ed.), Lecture Notes in Physics 116, Berlin-Heidelberg-
New York, Springer-Verlag, 1980 ; and refs. given there.
K. SKLYANIN, L.A. TAKHTAJAN and L.D. FADDEEV, Theor. Math. Phys. 40, 688 (1979).
E. KOREPIN, Commun. Math. Phys. 76, 165 (1980).
D. FADDEEV, Physica Scripta 24, 832 (1981).
B. THACKER, Rev. Mod. Phys. 53, N® 2, 253 (1981), and refs. given there.
ANDREJ and J.H. LOWENSTEIN, Phys. Rev. Letters 43, 1698 (1979), Phys. Letters
90B, 106 (1980) and 91B, 401 (1980).
H. LIEB, Physica 73, 226-236 (1974).
PEIERLS, Proc. Cambridge Phil. Soc. 32, 477 (1936).
B. GRIFFITHS, Phys. Rev. A 136, 437 (1964).
L. DOBRUSHIN, Soviet Phys. Doklady 10, 111 (1965).
A. MINLOS and Ya. G. SINAI, Theor. Math. Phys. 2, 167 (1970).
A. PIROGOV and Ya. G. SINAI, Funct. Anal. Appl. 8, 2l (1974) ; Theor. Math.
Phys. 25, 1185 (1975) ; Theor. Math. Phys. 26, 61 (1976).
GLIMM, A. JAFFE and T. SPENCER, Commun. Math. Phys. éé’ 203 (1975).
GLIMM, A. JAFFE and T. SPENCER, Ann. Phys. (NY) 1913 610 (1976),_51L,63] (1976) .
FROHLICH, R. ISRAEL, E.H. LIEB and B. SIMON, J. Stat. Phys. 22, 297 (1980).
BRYDGES, Commun. Math. Phys. 58, 313 (1978).
BRYDGES and P. FEDERBUSH, Commun. Math. Phys. 73, 197 (1980).
IMBRIE, Commun. Math. Phys. 82, 261 (1981), 82, 305 (1981).
FROHLICH and T. SPENCER, '"Massless Phases and Symmetry Restoration in Abelian
Gauge Theories and Spin Systems', Commun. Math. Phys. 83, 411 (1982).

. FROHLICH and T. SPENCER, "The Phase Transition in the One-Dimensional Ising

Model with 1/r2 Interaction Energy', to appear in Commun. Math. Phys..
V. JOSE, L.P. KADANOFF, S. KIRKPATRICK, D.R. NELSON, Phys. Rev. Blé,lZl? (1977).
D. MERMIN and H. WAGNER, Phys. Rev. Letters 17, 1132 (1966).
D. MERMIN, J. Math. Phys. 8, 1061 (1967).
McBRYAN and T. SPENCER, Commun. Math. Phys. 53, 99 (1977).
BRYDGES :
BRYDGES and P. FEDERBUSH :
FROHLICH, B. SIMON and T. SPENCER, Commun. Math. Phys. 50, 79 (1976).

} See ref. [34].



(41)]
(42]

[43]
[44]
[45]
[46]
[47]
(48]
[49]

[50]

(51]

[52]
(53]

[54]

(55]
[56]

[57]

[58]

[59]
[60]

[61]
[62]
(03]
[64]

[65]

586-41

J. FROHLICH, Bull. Amer. Math. Soc. 84, 165 (1978).

M. REED and B. SIMON, "Methods of Modern Mathematical Physiecs", vol. 2, pg. 70,
New York-San Francisco-London, Academic Press, 1975.

J. FROHLICH and C. PFISTER, Commun. Math. Phys. 81, 277 (1981).

J.L. LEBOWITZ and A. MARTIN-LOF, Commun. Math. Phys. 25, 276 (1972).

A. MESSAGER, S. MIRACLE-SOLE and C. PFISTER, Commun. Math. Phys. Eﬁ, 19 (1978).

J.L. LEBOWITZ, J. Stat. Phys. 16, 463 (1977).

M. AIZENMAN, Commun. Math. Phys. 73, 83 (1980).

J. FROHLICH and C. PFISTER, article to appear.

P.M. BLEHER and Ya. G. SINAI, Commun. Math. Phys. 33, 23 (1973), 45, 347 (1975).

See also : P. COLLET and J.-P. ECKMANN, "A Renormalization Group Analysis of the
Hierarchical Model in Statistical Mechanics", Lecture Notes in Physics 74,
Berlin-Heidelberg-New York, Springer-Verlag, 1978.

J. GLIMM and A. JAFFE, '"Quantum Physics'", Berlin-Heidelberg-New York, Springer-
Verlag, 1981.

K. GAWEDZKI and A. KUPIAINEN, Commun. Math. Phys. 77, 3l (1980), 82, 407 (1981);
articles to appear in Commun. Math. Phys. (1982).

J. MAGNEN and R. SENEOR, article to appear.

A. SOKAL, "An Alternate Constructive Approach to the @3 Quantum Field Theory,..",
Princeton Ph D thesis 1981, to appear in Ann. Inst. H. Poincaré.

Ya. G. SINAI, in 'Mathematical Problems in Theoretical Physics'", G. Dell'Antonio,
S. Doplicher and G. Jona-Lasinio (eds.), Lecture Notes in Physics 80,
Springer-Verlag 1978.

Ya. G. SINAI, Theor. Prob. Appl. 21, 64 (1976).

JONA-LASINIO, in "New Developments in Quantum Field Theory..." : Seeref.[I1], 1).

. van BEYEREN, G. GALLAVOTTI and H. KNOPS, Physica Zg} 541 (1974).

GALLAVOTTI and H. KNOPS, Nuovo Cimento 5, 341 (1975).

JONA-LASINIO, Nuovo Cimento B26, 9 (1975).

GALLAVOTTI and G. JONA-LASINIO, Commun. Math. Phys. 41, 301 (1975).

BENFATTO, M. CASSANDRO, G. GALLAVOTTI et al., Commun. Math. Phys. 59, 143

(1978), 71, 95 (1980).
. GLIMM and A. JAFFE, Fortschritte der Physik, 21, 327 (1973).

QO 0 0 60 T 0

(=

T. BALABAN, in '"Mathematical Problems in Theoretical Physics', Lecture Notes in
Physics 116 (seeref. [24]) ; Aarhus preprint, Jan. 1982.

K. CAWEDZKI and A. KUPTAINEN, Commun. Math. Phys. ZZ, 31 (1980).

K. GAWEDZKI and A. KUPIAINEN, ref. [51].

J. MAGNEN and R. SENEOR, ref. [52].

K. SYMANZIK, in "Local Quantum Theory'", R. Jost (ed.), New York-London, Academic
Press, 1969.

D. BRYDGES, J. FROHLICH and T. SPENCER, Commun. Math. Phys. 83, 123 (1982) ;



[66]
[67]

(68]
[69]
[70]

[71]

== B

[ T =R VR - B

586-42

. FROHLICH, Nuclear Physics B200[FS4], 281 (1982).

.B. GRIFFITHS, J. Math. Phys. 8, 478 (1967), 8, 484 (1967), Commun. Math. Phys.
6, 121 (1967).

. GINIBRE, Commun. Math. Phys. 16, 310 (1970).

. CARTIER, Séminaire Bourbaki n°® 431 (1972/73).

LEBOWITZ, Commun. Math. Phys. 35, 87 (1974).

. GLIMM and A. JAFFE, Ann. Inst. H. Poincaré, Sect. A, 22, 97 (1975).

. LAWLER, Duke Math. Journal 47, 655 (1980) ;
Preprint, Courant Institute 1982.

. DVORETZKY, P. ERDOS and S. KAKUTANI, Acta Sci. Math. Szeged lgﬁ, 75 (1950).

Jurg FROHLICH,

Seminar flr theoretische Physik
ETH- Honggerberg
CH-8049 ZURICH (Suisse).

Thomas SPENCER,

Courant Institute of Mathematical Sciences
New York University

251, Mercer Street

NEW YORK - N.Y. 10027 - U.S.A.





