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0. Introduction.

The purpose of these notes is to report some recent results and speculations
concerning the statistical mechanics of surfaces or interfaces and to try to convey

an impression of the beauty of and interest in a mathematical theory of random sur-
faces.

Random surfaces and their statistical mechanics appear in many differcot phy-

sical contexts among which one might mention :

(i) Crystal growth and the statistical mechanice of erystal surfaces in a
solution.

(ii) Interfaces between different phases of a physical system; (e.g. Bloch
walls, or the liquid-vapor interface in water, ete.)

{(iii) Gauge theories; (the high temperature expansion expresses a lattice
gauge theory as a theory of random surfaces; the low temperature expansion exprosses

a four-dimensional lattice gauge theory with discrete gauge group as a theory of

two-dimensional vortex sheets.)

(iv) Dual resonance models; (string theory in its Euclidean formulation can
be formulated as a theory of random surfaces. It may be viewed as a generalization

of Brownian motion, from random paths to random surfaces.)

Heedless to say that random surfaces appear in other problems of condensed
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matter physice, in peophvsics (surfaces of mountains),...

In the following, we briefly review some rigorous results concerning random

gurfaces and interfaces. We discuss :

1. The interface in the three-dimensional Ising- and rotator model [1].
2. The solid-on-solid model [2].
3. Self-avoiding random surfaces and string theories [3].

&, Lattice gauge theories [4].

We refer to the literature quoted here and in the following for information
concerning the physical situations deseribed by these models, detailed statements

of results and proofs.

We have profitted from collaboration and/or discussions with M. Aizenman,
J. Bricmont, J.-L. Lebowitz and E. Beiler.

1. The interface in the IsinE— and rotator model.

We start by recalling the definition of the Ising- and the rotator {(classical
XY-) model on a simple, (hyper) cubic lattice Ed . d >3 : With each site j EEd

we associate a spin Sj » and
1) Sj = 1 in the Ising model;

2) Sj 3 51 s in the rotator model, i.e. Ej can bé parametrized by anm angle
Bj € [0,2x) .

We use the convention

Ej = & 1 , in the Ising model

Hj = 0,m , in the rotator model.

Let A be some finite sublattice of z s B.B.

d

nnn_L.T-I'iEE :—rijlir,—ngHEL,u.g,___‘d] .

The energy of a configuration Eﬂ = {sj]jEA of gping in A , given a fixed

configuration sﬁc - {Ej}jEA: of spins in the complement, A" , of A , is given

by the Hamilton function
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H, » = ¥ §,:5, + W5, |5 ), (1)
[ (ijden i ] A A€

where W is a boundary term defined by

Ws,|s )= -1 5.8, , (2)
A AE (i S

i€n, JEAS

and (ij) indicates that i and j are nearest neighbors. The equilibrium state
for a spin system in A with Hamilton function Hj'| given by (1), (2) and some

fixed b.c. 5 . at inverse temperature B , is defined to Lo
A

_, -BH (5[5 )
(s ) Ly ATAT L pogs (3)

(8,18 ) =2

where d5 is the counting measure on (~-1,1] , in the Ising model, and the Lebespgue
mEasure on 5] y in the rotator model. Furthermore

-gH, (5 |5 )
2, (s ) =fe AN s,
Ly jea

is the partition function. We shall impose the following kinds of boundary conditions:

{+b.c.) Sj = + . for all j E hﬂ
(tb.c.) S, =+, forall je A° with iy20
S, ==, forall je A% with jp <o

(step b.c.) Ej + if j »0 , or j1 =0 and jz >0

1

Sj = = o otherwise,

Let A(S) be some continuous function depending only on finitely many Ej . The
equilibrium expection of A in the thermodynamic limit, for X b.c.
(X = +,+, step) , is given by

<h>. oo lim [ AMSMu (8, %)
B.X L, T B llt|..,,T

(&)
The limit is known to exist for + b.c., but some limit can always be obtained by

pauaing to subsequences. We define {[-}aE - by
L]
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The spontaneous magnetization, M(B) , is given by

M(B) = <sj:£'+ g {(5)
It is known that for d > 3

M(g) # 0 , for large enough E& .

In two dimensions this remains true in the Ising model, but the two-dimensional
rotator model does not exhibit spontanecus magnetization, exXceépt at B = =
{a well=known theorem due to Mermin.) However, this model shows a Kosterlitz-Thouless
transition, from a high temperature phase with exponentially decaying correlations

to a low temperature phase where correlations have only power law decay. This has
been rigorously established in [5). This transition appears to be closely related

to the roughening transition in the three-dimensional Ising model, (see Secr. 2).

It is essentially the same phenomenon as the roughening transition in the solid-on=

golid model described in the next section.

Hext, we define thermodynamic functions 3

(a) The free energy

. d-1,-1
£(B) = lim (TL™ ") "log Z (5 ) (6)
L.T‘“" E'hL,T lﬂll':
which is independent of the b.c. that are imposed.
(b} The surface tension {or surface free energy)
Z (+)
- E'
we) = £ 8 = 1im 1im LV 10g E——LT—(;; (7)
L= Tom B, A
L,T
(e) The step free energy
zE A ()
i ¥
o(8) = £7(e) = tim tim 1P700p T (8)
Lom T Bohy o s
“h

simi larly, f(k}fu!. k = 3,...,d=1 , can be defined.



Theorem 1.

1) [6] In the d > 2 dimensional Ising model

1(B) > 0w M(E) >0 , (i.e. B > E: .)

{See also Sect. &.,)

2} [7) In the rotator model

t(8) =0 , for all B < = and arbitrary d .

3) [7] 1f «(B) =0 then there is no interface, in the sense that

*:M:-Eii = 1/2 {E-hﬂ# + 1/2 ﬂ‘.«l:-ﬂ__ .

(provided {{'}}Elt is invariant under translations in directions perpendi-

cular to the I-direction.)

We define the roughening temperature TH - BEI as the smallest temperature
for which 1{-335'1 = 1/2 {{+j}5,* + 1/2 t{»}?ﬁ'_ . It was first proven by Dobrushin
[8] (see also [9,10] for simplifications and extentions) that BR is finite for
the Ising model in three or more dimensions, i.e. the lsing model in d > 3 dimen-
sions has non-translation-invariant’ equilibrium states at sufficiently low tempera-
tures. In two dimensions, all equilibrium states of the Ising model are convex com-
binations of {{r}:ﬂr+ and {{*}}E’_ » hence translation-invariant. This result is
due to Aizemman [11].

It is conjectured that

B, > Ec s im d = 3 ;

(9)

B =B . in d24.

A theoretical argument for the truth of this conjecture is described in the moaxl

section.

Next, we introduce some order parameters for the roughening tramsition in the
Ising model. (Our discussion scrves mainly as a preparation for the considerations

in Sect. 4.) A convenient order parameter to locate the interface is

Dig,t =<5, &) 5 (on-1,070,2 °* B

where J = (ips..00dy) + and



D(E) = 1im D(E,n) . {11)

[+
For £ < El 5

D(6) = M(8)° >0
Moreover,

DiB) +-1, as B-+= ,

in dimension d > 3 . We conjecture that for all @ » BR

D(E) < M(B)? ,

in fact, that D{g8,n) is negative, for n large enough. (We are not aware of any

proof of this veryplausible conjecture.) We define
8! = infl8:D(8) < m(8)*) > 8, (12)

Another convenient "order parameter™ for the roughening transition might be

the step free energy, of(8) , defined in (c) above. For B < BE i

o(p) = 0

In dimension d > 3

lim 8" LolB) = =2
e

It is conjectured that

o(B) = 0 , for B < ﬂ“

(13)

u{ﬂ}bﬂ,fnrﬂ'}ﬂﬂ

We set

HH = inf{g:o(g) > O} (14)
Theorem 2.
ﬂnld-:‘r} £ Enfﬁi.ﬂgfd'ﬂ £ E:{d-ﬂ

For B . and Bé this result was proven by van Bejeren [12], for ElE it has recent-
ly been established in [13). The expected result would be



Bo " ﬁ& = HH ., for all d
Btid*SI < HHEGFJI < ﬂnfdiE} (15)
B =B . d24.

Mext, we sketch a suitable notion of an interface in an Ising model : We
notice that if ¢ b.c. are imposed at the boundary of A, ¢ then there is a
-] (]
(Peierls) contour EL decomposing HL.T into two disjoint :uhsnss, ﬁ;,T and

v i 1 g i = e
A T such that {'Eifﬁ £ -I'LLJ § Sj =+ if jE J‘LL,T borders E sj if

L

L L]
jE nL_T borders £, and

L
[ ]
HIL - anL,T n {:::1 == 172} .

-]
We define the interface EL to consist of the union of EL and all closed contours
a
which are * connected with IL H

In two dimensions, the interface, :L » has finite width, uniformly in L ,
and has long wave length fluctuations on a scale of L , provided the temperature

is small enough, (g > En} . This result is due to Gallavotti [14].

ln d >3 dimensions the conjectured behaviour of the interface is as follows:

For d =3 and B > EH v or for d > 4 and all 8 > EE y the interface L
is well localized near lH:HI = = 1/2} and very rigid and thin, uniformly in L ;
D{g,n) is negative, for n large enough - presumably for all n > 1 . (For ri,urous
results valid at large B see [8,9,10,12]).)

For d=3 and B < BH (but B elose to HHI the interface IL still has

finite width but fluctuates on a logarithmic scale. (A theeretical argument support-
ing this claim is reviewed in the next section.) As g is decreased, some¢ of the
following phenomena may occur : Interlacing chains of - spins will start te pereo-
late into n+ and, as a consequence, the interface grows many handles. In addition,
short wave length fluctuations may cause a lot of wrinkles on the interface. llence
the interface fattens. When § approaches Hc » the interface might approach some
self-gimilar surface, and below B. it will become "space-filling". Unfortunately,

there are no rigorous results, except for very large B . (Sce also [13] for some

speculations. )

We now turn to the discussion of the rotator medel : By Theorem 1, parts 2)
and 3), the rotator model never exhibits an interface.




Docs this mean that all equilibriwes states are Lranslation=-invariant 7 Before attempt-
ing to answer this question we gquote a result that characterizes the translation-
invariant equilibrium states of the Ising= and the rotator models. For the rotator
model, define {I-Jbﬂla by

{AIE}}E.H o C#{R(615133_+ ' (16)

where R(8) rotates each spin Ej through an angle @& . If M(E) = 0 (i.e.
B < B ) the states <(+)> coincide with <(-)>» , for all 8 € [0,2%).
c E,n B,+

Indeed, for B < B-E g -:{-}}B is the unique translation-invariant equilibrium
1]

+*
state. This result is valid in the Ising- and the rotator model [15].

Theores 3.

Let B > E: be such that the free energy is continuously differentiable at

B Thin

g.

1) [16] In the Ising model, every translation invariant equilibrium state is

a convex combination of {{*}}H , and <(.)>
B

-

By

2) [7] In the rotator model, every translation—invariant equilibrium state

has a representation

| de(a) “‘}”a.a ; (17)

where p is some probability measure.

We now return to the guestion as to whether all equilibrium states of the rota-
tor model are translation-invariant. The physical reason why there are no interfaces
in the rotator model, as remarked, is quite obvious : One might wish to measure the

profile of an interface in the rotator model in terms of

Pu,r(8m) = [ 80 8) S (a1 By Wpts 18 Boeed

But

LléT- DL,T{H‘E} = ‘Sinial.si—n—l.a}}ﬂ.* g

1)

Since f(B) is concave, this condition is satisfied for almost all values of £ .
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for all £ and n ; (sce [7] for a precise statement.) Thus, the interface becomes

very wide (fat.) Sincc the model has a continuous symmetry, this is no surprise :

In order to fulfil ¢ b.c., it suffices to turn the spins upside down extremely
slowly as one moves from j, = {T,E} down to j_ = {-T,a} « Interfaces (Bloch walls)
are not among the "topologically stable" defects of this model.

The role of Bloch walls (Peierls contours) or interfaces in the Ising model is
really played, in the rotator model, by another type of "topologically stable
defects", the vortices. They are characterized by an integer winding number of the
spin configuration, and, since the spin takes values in the unit circle, must have
co-dimension 2. The easiest way of describing vortex confipurations in the rotator
model proceeds by applying a duality transformation, i.e. Fourier transformation in
the angular variables (see [5,17] , and refs. given there.)

Let

rE{'B'_i:--e:u;p[BtnsE] {or := I expl- 'EIEHIHMIJ =
nt &

th

the Villain approximation.) Let Eﬂ{n} denote the n Fourier coefficient of

ry - The equilibrium state of the rotator is given by the measure

=1
du_(8) =2 " N r_ {6,-6.)0 d6. {18)
¢ (ij) Bt 1y '

The Fourier coefficients of ¥y are thus given by

- e | -
1 [“} = n r ':.n- .}ﬂ & . (14)

where ij is the oriented bond pointing from i to j ,

(fn)., ¥ I n, , and ¥ -n
1 b3j b b b

The factor ? ﬁEﬁn}j,D arises by integrating the factors cup[iﬂi{ﬁn}j] over Hj "

for all j . It imposcs the constraint

én = 0
which is solved (Poincaré's lemma) by
n=8m i

where m 3 p II-FE Z in defincd on oriented unit squares (plaquettes), p € 1tt . Wir
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may write

“pE“cEE g

where ¢ is the oriented (d-=1)-cell in Eﬂ}* dual to p .
In the Villain approximation,
= ! N
rﬂ{n} = pxp| TE D | a

Applying now the Poisson summation formula, we conclude that the Villain approxima-

tion to the rotator model is isomorphic to a model whose equilibrium state is given

by

g o

dugla) =27 1 (£ e © Odula),
:Eﬁﬂ'.l* :pL_Ei!i:
where dug is a Gaussian measure on the space of"orbits"[a] , where [al is
the equivalence class [.;ci- E xc.} s and y : ' =+ EER is a function defined
c'€dc iz
on (d-3)-cells, c' , of Wdili . The inverse covariance of duG is B 1'lﬂn:l .

It follows from the (gauge invariance) properties of d”E that all configurations
Q= {.;.: ER rp e md]‘} must satisfy the constraint

Sp =0 .

This shows that the comnected components of each configuration @ can be interproted
as closed, (d-2)-dimensional vortices with integer winding numbers prescribed by
{wcil . {Back in the rotator model ¢ corresponds to vortices in the spin field.)

By choosing appropriate, non-translation-invariant boundary conditions one can force
an open vortex into the system which extends to the boundary (where it is "closed
of f" by the b.c.) and plays the role of an interface, I , in the Ising model. This
vortex might cause a breakdown of tramslation invariance in the thermodynamic limit.

In the next section we sketch theoretical arpuments supporting the f[ollowing

Conjecture. (7]

1) In d <3 dimensions, all equilibrium states of the rotator model are
translation-invariant and are piven by formula (17) of Theorem 3.

2) In d > 5 dimensions, the rotator model has non-translation-invariant
equilibrium states for all @ » ﬂ= .
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3} In d = & dimensions there existe an inverse temperature HR > Ft such
that for E > L there exist non-translation invariant equilibrium states while for

B < Eﬂ all states are of the form (17).

The idea behind this conjecture is that in dimension d € 3 vortices have
dimension 0 or 1 and are therefore unstable against long wave length fluctuations,
no matter how large B8 is. (For d = 3 , results analogous to the ones of Galla-
votti [14] should hold.) For d = & , vortices are two-dimensional. They are there=
fore 1ikely to be rigid for very large B , but are expected to have logarithmic
fluctuations above a roughening temperature; sce Sect. 2. Fiv 1ly, vortices of di-

mension > 3 are expected to have finite fluctuations, as lung as B > Ec z
(Sect. 2.)

2. The solid=-on=-solid model.

In this section we review some recent rigorous results on an approximate, statis-
tical theory of (lattice) surfaces, like the interface in the Ising model, the vor-
tex sheets in the four-dimensional rotator model or the electric flux "world sheors™
in a lattice gauge theory. We also show that the same approximation yvields an unin=
teresting theory of one- or three— and higher dimensional objects : One dimen:ional
objects (strings) fluctuate on a gcale of VL , as expected on the basis of the cen-
tral limit theorem, while three-dimensional objects ("bags™) have uniformly bounded

fluctuations. See Theorem &, balow.
The approximation considered im this section involves the following elencats

1) Only surfaces (or strings, or bags) which are graphs of functions are admit-

ted as elements of the statistical ensemble, E

2} The statistical weight of a surface is & local functional of the surface,

e.g. its arca.

Specifically, the models vhich we consider are defined as follows @ As our
parcmeter space we choose some fipite, rectangular array of sites, A& , in the lag-
tice Eﬂ s d =1,2.3.... i (the interesting case is d = 2.) Each (hyper=) zurfuce
in our statistical ensemble E = Eh ig given by the graph of a [unction, ;H .
assigning to each site j € A an m-tuple of integers, ij - {i},...,i?} interpreced
as the coordinates ("heights") of the (hyper=) surface in the directions transverse
to the parameter directions, in such a way that (jl,...,jdi 1},..._1?} are Lhe

coordinates of the center of a d-cell in the surface described by ;h » We assume,
temporarily, that
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Ij =0, for j & &, (0 b.c.).

The lt{ti:ti::l weight, wﬂ{:h} » of the surface described by zﬁ is defined by

_ -1 -BA(E)
w () 25" A

. (z20)
vhere the "action" n{in} is given by the total d-dimensicnal volume of Eﬁ {or
an approximation thereof), in particular A{;ﬂ} is the area of the surface when
d=2, and the partition functiom, Iﬂ L ® is chosen such that
L]
w. (s} =1,
8 BT A

For m=1,

Ae,) = [a] + £ |o.~4.,] . (21)
A Gity 3 )
where the sum ranges over all nearest neighbor pairs. The factor exp{-B|A|) can
be absorbed in a redefinition of IB A The model so obtained is called the solid-
L]
on-so0lid (s-o-5) model [2). It describes the statistical mechanics of the interface

of a limiting, d-dimensional Ising model with * b.c. which is obtained by letting

the nearest neighbor couplings in the 1-direction tend to = while keeping them

fixed im the other directioms.

When m > 1 it is difficult to analyze the models with actions given by the

d+m

volume of d-dimensional hypersurfaces in Z ; (see Sect. 3.) We shall consider,

instead, e.g. the small fluctuation approximation to the volume, given by

SR AT S (1 8 L (22)
(ij*y J

but approximate actions like

Al + x 1857651 (23)
(ii" ]
can be analyzed, too.
We let i{-liﬂ j denmote the expectation defined by (20), with A{ih} as in

L]

(21) or (22), (23). [We shall usually think of the s-o-s model corresponding to
(21), but most resulrs described in the following remain valid for the models with
actions (22), (23), as followe from the analysis in [5).] Let F(¢) be an arbitrary
continuous, polynomially bounded function of llj-*l}j,l » where (ji') are nearest

neighbor pairs belonping to some finite subset of 24 | On thils class of functions
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a thermodynamic limit

<F» = lim <F> =
B g Pl
ﬁjﬂﬂd s 88 § + = | can be constructed by a compactness argument; (for the action

in (22) it exists by correlation inequalities [18]), and, in all cases, it exists
for large enough values of B .) We have

Theorem &.

Consider the models defined im (20) - {(23). Then

1) For d =1,
<{;;-;1}=>ﬂ ﬁ-clfﬁllnl a8 x| + -
2) For d =2,

|
o, ) 3 £ cnlB)

uniformly in x , provided £ is large enough. When B is small enough,

‘3“"’ log|x| < qfiﬂ-iixﬁﬂ < e, (8) log|x| (24)
> o 3
<o -0 )72, £ o (B) ,

for all @B

Remarks.

(1) Part 1) is a standard consequence of the central limit theorem : The ran—
M b . »
dom wvariables "j'zj‘ » where (jj') ranges over the bonds (nearest neighbor pairs)
of Z , are independently distributed!

The first half of part 2) follows from a standard low-temperature (Peicrls
contour) expansion, (ag observed in [19].) The deepest result is the lower bound in
(24) which was established in [5) by a rather difficult analysis. The upper bound in
(24) and part 3) are standard consequences of infrared bounds [20] which are applica-

ble, because the functions exp(-8[4|) and exp(- % 121 are of positive type.
Part 3) has recently been noticed in [13].
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(2) The model with d = 2 , m =1 and ﬁt¢h} piven by the r.s. of (22) is
dual to the Villain approximation of the two=-dimensional rotator model; sce Secci. 1,
(18}, (19}, etc. The behaviour described in part 2) of Theorem § 18, in this casc,
related to the Kosterlitz-Thouless transitiom [5].

(3) The transition described in part 2) is a model of the roughening transition:

For large B typical lactice surfaces are rigid, i.e. have uniformly bounded fluc-
tuations. When E drops below gome critical value, ER , then typical surfaces are
rough and exhibit logarithmic fluctuations. This is the universal behavior of conti-
puus surfaces. A roughening transition occurs only in ensembles of lattice surfaces,
because the lattice breaks the continuous group of tramslations travsverse to the
surface. At high temperatures, this symmetry is restored, i.e. "enhanced at large
distances" in the models considered above, [5,21];: (sec alse [22].)

Mext, we sketch a few ideas in the proofs of parts 2) and 3) of Theorem &.
For simplicity we consider the action (22) with m = 1 , but the results hold in
general [5]. We start with the lower bound in (24).

Let duE h{{] be the GCaussian measure with mean 0 and covariance {-Ehh}_l .
L]
where &, is the finite difference approximation of the Laplacean with O Dirichlet
data at the boundary of A . The equilibrium state of our model can be rewritten

as follows :

Z dw ()= 0 (E &4, n))du, ()
B8,A7 8 " SEA 1€ Z j B, A

= T (142 I cau[iwqj¢j}}duﬂiﬂ{¢} . (25)

JEA . =]
] qJ

There are three basic steps in the proofs [5] of the lower bound in (24).

1* The first step is a combinatorial identity : Let p denote an arbitrary
. 2 e g : g
function on Z~ of finite support with values in 27 Z ; p is called a "charge

density”. We say that p is neutral iff & oy 0. Let #(p) = E ¢j"j

J ]
It is proven in [5] by means of an inductive construction extending over all distance
scales of 2° , n = 0,1,2,... , that, for all AcZ’ ,
L]
M (1+2 I cos(Zng.¢,)) = L o N (1+K{p)cosdlp)) , (26)
I 43 NEF, © pEN

whire Fh is a finite family of collections, N , of neutral charge densities, »
with the property that two densities, p and p' # p , in cach N have disjoint
supports which are so far separated that cos é(p) and cos @¢(p") are"almost inde-

penﬂenfﬁ Furthermore, Y >0 for gll NE Fh . The constant K(p) is an entropy
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factor which can be bounded by explcAip)) , where

Alp) = E {ﬁn(n}-ll =
n=o

and ﬁnlp] is the number of 2" x 2" squares needed to cover the support of o .

2®* The second step consists of a "block spin integration" which allows us to
extract "self-energies" of the densities, p , providing convergence factors which
compensate the constants K(p) . In the simplest case (namc'y for the partition
function) it results in the following identity : For all N ¢ Fh .

J n (1+k{p)cos Hp}lduﬁ nl‘.ﬂ
pEN *

. (27)

= [n {1*E-EE{DII{n]Eu5 #(E}}duﬂ "

pEN '

_'1 1 N
h:'ij ﬂj is related to the electrostatic energy of the

(#) ,

where E(p) ® const. I pi(-ﬁ
i.j

charge density p , and the renormalized charge densities, E , are s5till neutral

but have "magnified" supports.

A key estimate consists in showing that

Elp) > cAlp) ,
for some ¢ > 0 . Thus, for large & ,

aliis E-E'E{n}“{p} < o812 tndlo) .

vhere di{p) is the diameter of the support of p . Thus, for large B ,

Moen. () = Tp ) T cy T (Lez(odeos $(5)dug (4 (28)

A
. "‘EFh pEN

is a positive measure which is, formally, invariant under the continuous symmelry

"l'-'j i '*'jﬂ: " (29)

vhere ¢ is an arbitrary real constant; for

cos ¢(p) = cos[(s+ec)(p)] ,

as L c E} =0 , by the neutrality of p : moreover duB h{#l is clearly formally
iovariant under the symmetry (29), except that the b.c. it;punud on duﬂ Ahp]l break

(29).



|

3* Since, for large E , the mcasure d"ren given by (28) is positive and

formally invariant under the continuous group of symmetries (29) which, however, is
always broken by the b.c. imposed at 3A , we may apply a Mermin-type argument to
conclude that

CONBEL .

(4130017 >
k

lim_ [dw

(30)
naz

ren

ik-j « From this one can deduce the

(L1]

for all k ¢0 . Hare #(k) & (2n)"% 050

je &2
lower bound in (24), (by Fourier tramsformatiom.)

Hext, we comment on the proof of the upper bound in (24) and part 3) of Theo-
rem 4. Part 3) was previously proven in [13]. Here we sketch a slightly different
arpument which gives a stronger result. For technical convenience we interpret the

state {{-}}E a5 a4 limit of finite volume states <£(-)> with periedic b.c.

B
[In order to define the periodic b.c. state, one replaces the counting measure on

{1-:‘ EX] by ﬂp{-r.llr_]z-} » the counting measure. One first takes A~ E'.d and subse-
quently e w0 .] As explained in [20]), the upper bound in (24) and part 3) follow
from estimates of the form

<exple £ h j_llp[ﬂ(ﬁ?tz|lh||:3 . (31)

: jtanﬂjhﬁ_n

with € small enuugh,r {:|1h||§ < £, for some £, *» 0.) Here Bn is the nth

component of the finite difference gradient, and h is an arbitrary real-valued
function on A . Inequality (31) is proven by using a transfer matrix in the
a-direction of the lattice. As explained in [20]), the transfer matrix formalism

reduces the problem to estimating the quadratiec form with integral kernel

Ei:'h-{l-x ; }E-*FE{IE—]; ")

where

Blx| , or

F (x) =
8 2
(B/2)x

from above in terms of the quadratic form with integral kernel expiﬂFE(:-x'}]
This is accomplished by using Fourier transformation : For FH{x} = #|x] , the re-
quired bound follows by noticing the inequality

T UL
|(ksichyeq?) 7l ¢ OIC D 271

for |eh| < B2 . For F (x) = (8/2)x" , one uses
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EzhszL

lexpl-(1/28) (keich)?]| < e expl-C1/280%%) ,

for arbitrary ¢ and h .

From these inequalities (31) follows. The upper bound in (24) and part 3) of
Theorem & follow from (31) by expanding to second order in ¢ , dividing by tz
and taking € to O .

In dimension d > 3 , we expect that a result much stronger than part 1) of
Theorem & holds. For all B >0 ,

|<;u';:}u|.i c(pre 2B x| ;

(32)

for some constants c(B) < = and m(B) > O . This would imply that all correlatioms
between distant pieces of three- or higher dimensicnal random hypersurfaces decay
exponentially. For d = 3 , (m = 1) and the action 1(¢h} given by (22), the
bound (32) has recently been proven by Gopfert and Mack in (23],

Hext, we review some results on surface (or step) free energies in the solid-
on-solid models : Let zﬂ.ﬁ be the usual partition function of the model with O b.c.
defined in (20). Let za.nm , EEZ" , be the partition function of the same model,
but with b.c.

8. =€ , for JE€ A, iy >0

3
(33)
Ij-n o for jE€ A, <0
We setr
1,(2:8) = lin, lag{IBiHIIE’nEE]] (34)

We note that Td(E = 1;8) (m = 1) is expected to behave qualitatively similarly as

the step free energy, o(g) , of the (d+1)-dimensional Ising model. We consider, for

simplicity, only the case m = 1 , assume that £ ¥ 0 and that the action is given
by (21) or (22). We then have

Theorem 5.
1) 1 (LR =0, for al) o .
) 1,{6:8) >0, for large #

for all E 4 O .
Tziﬂiﬂi = 0 , for small B
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1) For the models with action piven by (22Z) and d >3 ,

1d{1;;ﬂ}:n,far.11 E>0 , E+0 .

Remarks.

Part 1) is trivial. The inequality in part 2) is a consequence of a standard
low temperature expansion; e.g. [19]. The equation in part 2) follows from the re-
sults of Sects. & and 7 of [5). Part 3) follows from the results of Gopfert and Mack
[23] (d = 3) and correlation inequalities [18], (d =3 = d > 3) . For results
related to the ones in [23] but established earlier see also [24].

We believe that Theorem 5 can be extended te all m 2 1 amnd all actions
(21) = {23) , but not all cases have been worked out.

Finally, some recent results in [5,25] suggest that the continuum limits of

the two-dimensional models studied in this section are given by massless Gaussian

measures, for B < 8, and for arbitrary m = 1,2,3,... . (This is trivial for

R
d =1.) In the next section, we study random surfaces with more complicated conti-

nuum limits.

3. Selfavoiding random surfaces and string theories.

In this seetion we restrict our discussion to two-dimensional random surfaces
embedded in a lattice Z° (or embedded in E®) , d = 3,4,... . We propose to con-
gider statistical theories of such surfaces vhich are geometrically more natural than
the ones studied in the lagt sectlon, but which are seemingly almost as simple as

the s=-o-s models. Our discussion is sketchy; (some details appear elsewhere.)

The models considered in Sect. 2 have a seriows defect : All random surfaces
admitted in the ensembles inmtroduced in Sect. 2 are required to be graphs of funct-
ions. It is natural to study more general ensembles of lattice surfaces and their
continuum limits. 1f one admits lattice surfaces which may pass through each plaguet-
te (unit square) of Ed an arbitrary number of times one cannot construct a mathe-
matically meaningful statistical theory : The number of such surfaces of a given
area = i.e. containing a given number of plagquettes counted with multiplicites -
grows faster than exponentially in the area; see e.g. [26]).

There are at least three ensembles of lattice surfaces which are physically

natural i
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a) Branched random surfaces ariging in plaguette percolation models [27]).
(They consist of arbitrary connected arrays of "occupied" plaguettes, each plaguette
in z being either "empty" or "occupied" once. The weight of such a surface, I ,

is given by pnit} s Decp el , A(E) = # plaguettes belonging to [ .)

b) Let ¥y be a closed curve in Eﬂ s and let E:'ﬂ' be the class of all
"self-avoiding” connected lattice surfaces bounded by vy , i.e. surfaces, [ ::EF :
with the property that each link bE L , b ¥ v , belongs to precisely two plaquet-
teg of I and each b € ¥ to precisely onme plaguette of I

c) Let y be a closed curve in z9 , and let E? be 1l.- class of all connected
surfaces bounded by y which pass through each plaquette of %9 at most once.

The ensemble E? described in ¢) occurs naturally in the study of interfaces:
(see Sect. 1), while the ensemble E:"‘ introduced in b) and the one introduced

in a) (which we denote by E } arise in models which are limits of gauge theo-

BTC.
ries; see Sect. &, and [I?.Eﬁgi For a somevhat detailed discussion of plaquette=

(and general d-cell) percolation see [27] - we limit our review to a discussion of

8.a. 2 A : .
E and ET » ensembles which are also studied in connection with string theories.

Let E: - E:'.' , OF E+ . Each surface I E Eﬁ is assigned the statistical
weight

vi Ll =z (07 expl-B(AMD+x(D)] (35)

where x(E) counts the number of handles of I (Euler characteristic), E > 0 ,

# >0 ; (A(E) , the area of [ , counts the number of plaquettes in E .)

It is an elementary combinatorial exercise to show that for each d and each

Zg “Ev} = Ly expl-B(A(E)+ux(E))] < = (36)

& EEE
Y

for B large enough, while

EE.uET} diverges, {37)

for B small enough.

One can argue that there is some value, Eﬂ » of B which only depends on d
(and possibly omn u )}, but is independent of y such that (36) holds for all
g > Eﬂ ¢ while (37) holds for all g < Eﬁ -

As a field theorist one is then interested in the question whether ﬂn is a
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critical point, in the sense that there is some divergent correlation lenmgth, as

R“‘qh‘l} . This question can be investigated by considering, for example, the "3::‘inE

tension

a(gw) = -lim A log 2, (1) , (38)
d{y)+= '

where vy is a square loop in a coordinate plane, A(y) the minimal area enclosed

by v , and d{y) its dismeter. In a statistical mechanics context, e.g. in the

s-o-8 model, the string tension is interpreted as the surface tension. The point

Bo is a critical point if
alBwl™=~0 , as By By (39)
More refined methods to analyze the vicinity of Bn would involve the study of

"correlations™. We sketch one example; (but see [27] for a more detailed discussion):
Let y,y' be two non-intersecting loops, and define

expl-B(A(L)+ux(E))]

2 (ysy") L
EI‘I #
IEE‘I'U'I' i

I coonected

We define a "glue ball mass"

_ 1 3

m(g,p) 1: - log IB,F{T'?I} # (40)
where 1; is the loop that corresponds to a translation of y' in the direction
of a lattice axis by a distance a .

| § 3 B, is a critical point in the sense of (39) one expects that
mE,u) ™0 , as EVgR . (41)

A more subtle question concerns the behaviour of the dimensionless quantity

miﬂ.ulzfu{E.u] y A8 ﬂ'ﬁqﬂﬂ « In [23] a model is studied in which the analogue of
this quantity tends to O ; a8 B'H‘ﬂn .

Finally, we want to ask whether the three models introduced inm this section
exhibit ﬂygh«\:niﬂ.ﬁ. This question can be studied, for example as follows : We choosc
a square loep, y , of dismeter d(y) Ilying in a coordinate plane and define the
probability

Plaly) =z, (07 g ewl-BADu] (42)
¥

4(x,0)>d
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vhere d(L,0) is the maximal distance of the set LM 3  from the origin, and 4
o
is a (d-2)-dimensional plane perpendicular to the curve y and containing the

origin. We consider

P(d) = lim P(d|y) . (43)
diy)e=

It is easy to show that for £ sufficiently large

P(d) < o C(BM | (44)

for some constant c(g) > 0 .

The question then is whether there exists some value HR of B , with

B, > B

R o ° (43)

such that for ﬂu LB < ﬂn
P{d) =1 , forall d<= .,

On the basis of results concerning the Ising model in three dimensions [6,13] and
the s-o-s3 wmodel [5] (see Sects. 1,2) one would conjecture that the percolation model

of branched surfaces exhibits a roughening transition.

(Lf B, is a critical point it might also be possible that (44) is valid for
all g < B, , with c(B)™0 , as ﬂuﬂnu.]

Once all these preliminary questions (see (39) - (45)) - which actually seem
te be very hard ones - are out of the way one can address the most interesting one :
What are the continuum limits of these lattice models of random surfaces ? So far,

there has not been much theoretical progress on these questions.

Until now, there is only one convincing attempt at constructing a continuum
theory of random surfaces, the one by Polyakov [29]), clarified in [30]. Presumably,
this theory, too, can be obtained as a continuum limit of szome "lattice theory” :

It is essentially the continuum limit of discrete, imaginary-time quantum gravity

of piecewise linear, simplicial (two-dimensional) surfaces: a straightforward,
functional integral version of Regge calculus. Polyakov's theory is certainly very
fascinating, but (as the remark above indicates) its relation to the physics of
interfaces in statistical mechanics or to gauge theory is mysterious. In contrast,
the other models, a), b) and c), discussed in this section and the s-o-s model
discussed in Sect. 1 are related to gauge theory and to the physics of interfaces,
respectively, in a definite way : They are obtained as limiting models, as some para-

meter tends to O or = . See Sects. 2 and 4. Polyakov's theory is intended to
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represent a correct mathematical formulation of string theories, (dual resonance
models. )

4., Lattice gauge theories.

There are (at least) two ways in which random geometrical objects, such as-
random loops or random surfaces, arise in the analysis of lattice pauge theories

{(in the imaginary time description.)

1} Sheetes of chromo—electric [lux.

Lattice gauge theories can be reformulated as gases of random geometrical
objects in different ways : The best known such reformulation results from the stromg
coupling (high temperature) expansion which represents a lattice gauge theory as a
gas of closed random surfaces - closed sheets of chromo-electric flux - which inter=

act by hard core exclusion [31]. (For a somewhat different description of chromo-

electric flux sheets, see also [32]).)

2) Defect gas description of lattice gauge theory

We first consider a pure lattice gauge with a discrete gpauge group on a
d-dimensional lattice (or a Higgs theory with a non-trivial, discrete unbroken sub-
group.) In such a theory, gauge field configurations can be characterized in terms
of frustrated plaquettes, i.e. unit squares, vhere the curvature is non=-vanishing.
As a consequence of an integral form of the Bianchi identities, [rustrated plaguettes
form (d=2)-dimensional, closed surfaces which one calls (by an abuse of this name)
vortices. They are labelled by group elements. The original lattice gauge theory
can now be reformulated as a gas of vortices interacting by pgeometrical constraints.
At weak coupling (low temperature) the veortices have small effective activities and
form a dilute gas. This observation is the starting point for the low temperature
analysis of lattice gauge theories : Vortices play the role of the Pelerls contours
in the Ising model and can be used to construct am analogue of the Peierls argument
{(or a contour expamsion) which permits one to control the qualitative features of
such lattice gauge theories at weak coupling, in three or more dimensions. See [21]
The upshot of this analysis is that gauge theories with discrete gauvge groups exhi-

bit deconfining transitions in dimension > 3 .

Clearly, in theories with continuous gauge groups, vortices (as defined ahove)
are not likely to provide ws with a useful notion, although vortices of a somewhat
different type appear to play an important role in a confinement mechanism in gauge

theories with gauge groups containing a non-trivial, discrete center. As an example
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of a gaupe theory whoere vortices are not a useful notion we consider the compact

U(l) lattice model (compact QED.) This gauge theory permanently confines electric

charge in two and three dimensions [23], but exhibits a deconfining transition in

four or more dimensions [33,21]. Vortices are not among the "topoleogically stable

defects” of the U(1) model and cannot be used to explain those facts. (This cir-
cumstance is analogous to the one that the interface is unstable in the rotator
model; see Sect. 1.) The topologically stable defects of the U(l) model which are
dilute at weak coupling are its magnetic excitations : Monopoles in three dimensions,

monopole lines (magnetic currents) in four dimensions, ete. In the continuem limit,
such excitations are labelled by first Chern classes of the [i¢]d configurations at

infinity (identified with §° x R9™

.} Thus they have dimension d-3 and carry an
integer magnetic charge. The corresponding magnetic excitations of the U(l) model
on the lattice can be exhibited by applying a duality transformation (Fourier trans-
formation in the gauge field variables) and a Poisson summation formula, (as explained
at the end of Sect. 1 for the rotator model.) The interactions between different
magnetic excitations have long range. This makes the analysis of these models, at

weak coupling, interesting and mathematically non-trivial; see [21,23,33].

In the U(l) model, confinement breaks down if the magnetic excitations are
bound in finite, neutral clusters which form a dilute gas, thus causing only small

(infrared-irrelevant) corrections to Gaussian "spin wave" theory. This only happens

in four or more dimensions.

In a non-abelian, pure gauge theory, e.g. one with gauge group SU(n) , there

are two kinds of topological excitations, vortices, of co-dimension 2, and instantons,
of co-dimension 4. Vortices are labelled by elements of the center of the gauge
group, instantons by eclements of 'H{G} . One can argue that, in four or more dimen-
sions, it is the statistical mechanics of the instanton gas which determines whether,
at long distances, the theory is in a perturbative or non-perturbative phase. In

four dimensions, it is most likely that the instanton gas is always in a plasma
phase, instantons are not stably bound in neutral clusters, the infrared behaviour

is non-perturbative. However, in five or more dimensions, instantons form closed

surfaces of dimension d-4 , and a simple energy-entropy argument suggests that, at
weak coupling, the effective activity of an instanton decreases exponentially in its
volume (= length for d = 5 ,...). One is thus led to predict that non-abelian models

exhibit a deconfining transition to a perturbative phase at weak coupling, in five

or more dimensions. (In contrast to abelian gauge theories or ones with discrete
gauge group, there are, however, no rigorous results for non-abelian lattice gauge
theories at weak coupling, vet!)

Mext, we briefly summarize some recent, rigorous results concerning random
geometrical objects in lattice gauge theories and some limiting models of such theo-

&

ries i
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As ouwr lattice we chooge Ed + the gauge group is assumed to be compact and
is denoted by © . The gauge field, p = IE:T] , 18 @ map from oriented pairs of
nearest neighbors, xy , in Ed to elements, gx?  of G swch that

Formally
" Ple ~ ¥ ) , for all =xy . (46}

The Euclidean functional measure (vacuum functional) of a lattice gauge theory is
defined by
=1 -M{E.ﬁ}

duﬂig} = lim d ZB.AE

n d 3 (47
AAE Exy

where A i a rectangular array of sites, dg’rr i the Haar measure on & , for all
XY , aigﬁl is the (Euclidean) lattice action for the model im A , B = I.|"e2 is

the inverse square coupling ("inverse temperature"), and 2 is the usual parti-

)
ticn function (making duE a probability measure.) Given a loop ¥ in Ed . we let
g = n 2 B, (&8)
T oy Y

denote the ordered product of gauge fields aleng y , (i.e. the holonomy operator
associated with y .) We define the (Wegner-) Wilson loop observable by

o =
x'f'n'} :I:{E,F} » (49)

where y is some (irreducible) character of € .

HWe shall consider the following examples of lattice actions :

(1) Alg,) ==L Re x (g. ) (50)
,I. L}
peh T2
where p ranges over the plaquettes (unit squares) of A , @p is the oriented
boundary of p , and Xq is a faithful character of G , (e.g. the one of the funda-
mental representation for G = SU(n).)

(2) Mgni == §

b &l . (51)

where & is the (Kronecker) &= function on G concentrated at the unit element, e,

and G is assumed to be discrete im this example.
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let & be a (d-2)-dimcnsional surface in the dual lattice, f-EF}' s with boundary
#l. (a closed, (d-3)-dimensional surface.) We definc a disorder operator, Dziaii "
vhere z 1is an element of the center of € , as follows :

namn = up['ﬂuts-tr.’lﬂlfs}ﬂ . (52)

where ;
gap-: if p is duval to a d-2 cell in I ;

{I':xJaP =

gﬂp s oOtharwise.

%,

In order to analyze the behaviour of chromoelectric flux sheets we study expectation
values like

n n
{jEl H&(TJ}thiﬂliﬂ E ijle{TjIDE{SE]dHEIEI ' (53)

n=1,2,3,... . In particular, the roughening transition for electric flux sheets
can be analyzed in terms of ﬁHI{?}DI{EI}}B

We also introduce bulk- and surface thermodynamic functions, (see Sect. 1,
(6)-(8); Sect. 3, (38) for related definitions) :

(a) The free energy :

£(g) = 1im (m¥ 1!
L Term

log 2
Bsby 1

{(b) The string tension :

alB,x) = H: - 1._12 l-ngih':{vhhﬁ .

where Ty, is a square loop in the 1-2 coordinate plane of diameter L . [The
string tension corresponds to the surface temsiom, 7T(B) , im spin systems. In

three-dimensional Z, models they are related by a duality transformation. ]

We define an expectation

" x’ - &
<f ‘.'}E I:'i:: <( }HIE{TL}}Erﬁ{TLhE . (54)

One can also define the analogue of
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(¢) The step free encrgy :

W (y')>»

. 1 L &
ol = lim = — log =
L L {HKTTLI >

where the loop ?i differs from YL by a step of height 1 in the middle of two
opposite sides. The functions a(B,y) and o(B) serve to describe the thermodynamics
of chromo-electric flux. In particular, o(B) is of interest in studies of the
roughening transition of flux sheets [ 4] . It is natural toe also introduce functions
describing the thermodynamics of "magnetic flux" (vortex sheets), or more generally
the thermodynamics of the gas of stable ("topological™) excitations, like the magne=-
tic excitations in the U[{l) model,... . As an example, we define a thermodynamic
function for vortex sheets : Let A be some rectangular array of sites centered at
0,and I a (d-2)-dimensional coordinate plane in I:E".'l"|I . We let 0 denote the
set of plagquettes on A which are dual to some d-2 cell in [ . We consider the

following boundary conditions on 3A :
(0 b.c.) gap = ¢ f(the unit element in G) , for all pec ah ;
{twisted b.c.)

e, p<id\, pEn

Bap =
£, pER , for some z in the center of G .
Let I; § {{r}}: . be the partition function and the expectation with O b.c. on
L] #
ah , and z* A {{-}}; A the corresponding quantities with twisted b.c. . We
L Ll
define

(d) The Eésnetic "Htrinﬁ" tension

zt
w(g,z) = lim - --ifi lug{--E—"-':L}
L, T+ TL Ze s

One will introduce analogous functions associated with other excitations of dimension
> 1 , in particular with the stable ones, (like the magnetic current lines in the
four-dimensional U(1) model.) Point-like excitations are studied in terms of "topo-
logical susceptibilities" and sum rules (like the Stillinger-lovett sum rule for
the gas of magnetic monopoles in the three=dimensional U(l) model.)

These quantitics will be studied in more detail elsewhere.
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Next, we sumarize somce recent results.

Theorem 6.

1) [27) let G = Z o, let du, be given by eq. (47) with an action 1{gﬁ} defined

as in (51). (This is the n-states Potts lattice gauge theory.) Then there exists an

analytic interpolation in n (of thermodynamic functions and correlations) in a

neighborhood of the positive real axis with the property that the model corresponding

to the limit n + 1 1i& the plaguette percolation model of branched random surfaces

defined in Sect. 3, a), (ensemble Efert-]

2) [28) Let G = SU({n) , and renormalize the gauge fields such that

Bryby  Byby "0 1 -

Then, for B small encugh, there exists an analytic interpolation in n with the

property that the o + 0 limit yields the model of selfavoiding random surfaces

defined in Sect. 3, b) (ensemble E:'ﬂ'} s in particular

te o=l
lim n MW oy)>, =2, (v),
e X, B Bl
where 2. H{T} is defined in (36).

This result motivates the definition and analysis of the models introduced in

Sect. 3.

Hext, we discuss somé tesults which are related to the ones im Sect. 1. They
are based on the correlation inequalities in [7] which are only known to hold for
abelian gauge groups and an action d{nn} given by expression (50) , (i.e. the
Wilson action.) The analogue of Theorem 3 is the statement that if the free energy

fCB) is continuously differentiable at some value B = ﬁu then there exists only

one translation invariant state, t(+]:E s For B = Eﬂ [7]. Thus non-unigueness
]
of the vacuumm functional in an {(abelian) lattice gauge theory only eoccurs at a first

order transition. A result analogous to Theorem 1 is

Theorem 7. [7]

LS, S R e & ¥
1) 1f alB,x) = 0, and <( }?ﬁ is invariant under translations in the 1-2 plane
then

f{-l:; " c[-}nﬂ .

(i.e. the electric flux sheet is completely rough. )
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2) 1If wi(g,z) =0, and ... then
{t-}:; = {{-}}B .
{i.e. the vortex sheet is rough or "fat".)
3) In the U(l) models,
o(B,z) =0 , for all & ,

{i.e. U(l)-vortices are always fat. This is the analopue of the results for the rota-
tor model described in Sect. 1.)

4) [6] In the three-dimensional 'EI model

a(B) >0 = @(B) =0 . o

Next, we would have to discuss roughening transitions in lattice gauge theories.

The electric flux sheet bounded by an (infinitely extended) Wilson loop may, a priori,
undergo a roughening transition which does not coincide with a deconfining transition

[32,4]. That tramsition can be described by the following "order parameter™ :

D(E,n) = f:D:{aE}}E L zde {55)

where I is a (d-2)-dimensional, rectangular array of sites with sides of length
Zn which is centered at the origin and is perpendicular to the plane containing
the Wilson loop. In the three-dimensional Iﬂz model the parameter D(f,n) defined
in (55) is dual to the parameter D(B,n) intreduced in Sect. 1, (10). For small &8
one expects that the phase of D(8,n) approaches the value arg z (the phase of
the central element z ) exponentially fast, as mn + = ., This can presumably be
proven by a fairly straightforward extension of the arguments in [8,10]. The beha-
viour of the function D(E,n)-D(f,=) is a measure for the fluctuations of the

infinite flux sheet in directions perpendicular to the plane of the Wilson loop.

The roughening transition is characterized by the circumstance that, for all
E } ER ®

arg D(B,n) =0 , for all m , (56)

while, for B < HH i
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lim arg D(g,0) 40 . 1 (57)

(Here 5 - #h;l is the coupling constant at which the roughening transition occurs.)
It follows from Theorem 7 that, in abelian lattice gauge theories ,

alB,x ) =0 = arg D(8,n) = 0 , for all n,

l‘e'
B » H'H § {55}

where B, is the point at which the deconfining transition occurs.

It is expected that the roughening tramsition can also be characterized by the

vanishing of the step free energy, oflg) , i.e.

a(8) >0 , for B < B, .
(59)
olg) =0 , for B> B, -

However, there are no rigorous results about roughening transitions kmown, yet.

Besides chromo—electrie flux sheets there can exist other two-dimensional
"topological” excitations, like vortex sheets, exhibiting a roughening transitiom.
Such a transition should only occur in a phase characterized by a non-vanishing sur-
face free energy of the excitations in question, (the analogue of the string- or sur-
face tension. Recall that, in the four-dimensional U(l) model , w(B,z) = 0
implies that :{-}h; - {{-1>E is translation invariant!) One expects that in the
confinement phase of a (lattice) gauge theory only the string tension is non-vanish-
ing, i.e. only the chromo—electric flux sheet may exhibit a roughening transitionm,
while other two-dimensional defects, e.g. the vortex sheets in four-dimensional

theories, are rough or "fat" throughout that phase.

Heuristically, roughening transitions in lattice gauge theories can be described
in terms of the models studied ip Sect. 2, like the s-o-8 wmodel, but there is no
rigorous justification of such approximate theories, yet.

1) This characterization has been developed in collaboration with E. Seiler.
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