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0. Introduction. 

The purpose of these notes is to report some recent results and speculations 

concerning the statistical mechanics of surfaces or interfaces and to try to convey 

an impression of the beauty of and interest in a mathematical theory of random sur-

faces . 

Random surfaces and their statistical mechanics appear in many different phy-

sical contexts among which one might mention : 

(i) Crystal growth and the statistical mechanics of crystal surfaces in a 

solution. 

(ii) Interfaces between different phases of a physical System; (e.g. Bloch 

walls, or the liquid-vapor interface in water, etc.) 

(iii) Gauge théories; (the high temperature expansion expresses a lattice 

gauge theory as a theory of random surfaces; the low temperature expansion expresses 

a four-dimensional lattice gauge theory with discrete gauge group as a theory of 

two-dimensional vortex sheets.) 

(iv) Dual resonance models; (string theory in its Euclidean formulation can 

be formulated as a theory of random surfaces. It may be viewed as a generalization 

of Brownian motion, from random paths to random surfaces.) 

Needless to say that random surfaces appear in other problems of condensed 
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matter physics, in geophvsics (surfaces of mountains),.. . . 

In the following, we briefly review some rigorous results concerning random 

surfaces and interfaces. We discuss : 

1. The interface in the three-dimensional Ising- and rotator model [1 ]. 

2. The solid-on-solid model [2]. 

3. Self-avoiding random surfaces and string theories [3]. 

4. Lattice gauge théories [4]. 

We refer to the literature quoted here and in the following for information 

concerning the physical situations described by these models, detailed statements 

of results and proofs. 

We have profitted from collaboration and/or discussions with M. Aizenman, 

J. Bricmont, J.-L. Lebowitz and E. Seiler. 

1. The interface in the Ising- and rotator model. 

We start by recalling the definition of the Ising- and the rotator (classical 

XY-) model on a simple, (hyper) cubic lattice 2, d ≥ 3 : With each site j € ZZd 

we associate a spin Sj , and 

1) Sj= ± 1 in the Ising model; 

2) Sj  sl, in the rotator model, i.e. Sj can be parametrized by an angle 

Θj € [0, 2π) . 

We use the convention 

S. = ± <=> 

= ± 1 , in the Ising model 

θ. = Ο, π , in the rotator model. 

Let Λ be some finite sublattice of ZZd , e.g. , e.g. 

Λ = L,T = {j  ZZd : -T < j1 < T, -L < j
a
 < L , a - 2,...,d) 

The energy of a configuration = (Sj}j Λ of spins in Λ , given a fixed 

configuration SΛe = {S,}jc of spins in the complement, C , of A , is given 

by the Hamilton function 
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(1) 

where W is a boundary term defined by 

(2) 

and (ij) indicates that i and j are nearest neighbors. The equilibrium State 

for a spin System in A with Hamilton function given by (1), (2) and some 

fixed b.c. S , at inverse temperature β , is defined to be 

(3) 

where dS is the counting measure on {-1,1} , in the Ising model, and the Lebesgue 

measure on S1 , in the rotator model. Furthermore 

is the partition function. We shall impose the following kinds of boundary conditions 

(+b.c.) Sj= + , for all j € AC 

(±b.c. ) = + , for all j  A
C
 with j1 ≥ 0 

Sj = - , for all j  A
C
 with j1 < 0 

(step b.c.) = + if j1 > 0 , or j1 = 0 and j2 > 0 

= - , otherwise. 

Let A(S) be some continuous function depending only on finitely many S. . The 

equilibrium expection of A in the thermodynamic limit, for X b.c. 

(X = + ,±, step) , is given by 

(4) 

The limit is known to exist for + b.c., but some limit can always be obtained by 

passing to subsequences. We define <(·)> by 
3 
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The spontaneous magnetization, M(β) , is given by 

M(β) = <Sj>β,+ . (5) 

It is known that for d ≥ 3 

M(3) ≠ 0 , for large enough 3 

In two dimensions this remains true in the Ising model, but the two-dimensional 

rotator model does not exhibit spontaneous magnetization, except at β = oo, 

(a well-known theorem due to Mermin.) However, this model shows a Kosterlitz-Thouless 

transition, from a high temperature phase with exponentially decaying correlations 

to a low temperature phase where correlations hâve only power law decay. This has 

been rigorously established in [5]. This transition appears to be closely related 

to the roughening transition in the three-dimensional Ising model, (see Sect. 2). 

It is essentially the same phenomenon as the roughening transition in the solid-on-

solid model described in the next section. 

Next, we define themodynamie functions : 

(a) The free energy 

(6) 

which is independent of the b.c. that are imposed. 

(b) The surface tension (or surface free energy) 

(7) 

(c) The step free energy 

(8) 

Similarly, f (β), k = 3,...,d-l , can be defined. 
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Theorem 1. 

1) [6] In the d _> 2 dimensional Ising model 

τ(β) > 0 M(β) > 0 , ( i. e. β > βc . ) 

(See also Sect. 4.) 

2) [7] In the rotator model 

τ(β) = 0 , for ail β < oo and arbitrary d . 

3) [7] If τ(β) = 0 then there is no interface, in the sense that 

<(.)>β,± ■ 1/2 <(.)>6,+ + 1/2 <(.)>β,- > 

(provided <(·)>β,
 +

 is invariant under translations in directions perpendi-

cular to the 1-direction.) 

We define the roughening temperature T = β-1 as the smallest temperature 

for which <(·)>β, +- = 1/2 <(·)>β,. + 1/2 <(·)>β,-. It was first proven by Dobrushin 

[8] (see also [9,10] for simplifications and extentions) that is finite for 

the Ising model in three or more dimensions, i.e. the Ising model in d ≥ 3 dimen-

sions has non-translation-invariant equilibrium States at sufficiently low tempera-

tures. In two dimensions, ail equilibrium States of the Ising model are convex com-

binations of <(·)>0 . and <(·)>„ , hence translation-invariant. This result is 

due to Aizenman [11]. 

It is conjectured that 

βR > βc , in d = 3 ; 

(9) 
βR = βc , in d >_ 4 . 

A theoretical argument for the truth of this conjecture is described in the next 

section. 

Next, we introduce some order parameters for the roughening transition in the 

Ising model. (Our discussion serves mainly as a préparation for the considerations 

in Sect. 4.) A convenient order parameter to locate the interface is 

(10) 

where J= (j2,...,jd) , and 

(10) 
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(11) 

For β < βR , 

D(β) = M(β)2 > 0 

Moreover, 

D(β) -1 , as β -> oo , 

in dimension d > 3 . We conjecture that for ail β > βR 

D(g) < M(B)2 , 

in fact, that D (β,η) is negative, for n large enough. (We are not aware of any 

proof of this very plausible conjecture.) We define 

B'R
 = inf {β : D(β) < M(β)2} > β

R 
(12) 

Another convenient "order parameter" for the roughening transition might be 

the step free energy, σ(β) , defined in (c) above. For β < βc , 

σ(β) = 0 . 

In dimension d > 3 

It is conjectured that 

σ(β) = 0 , for β < βR 
(13) 

σ(β) > 0 , for β > β
R 

We set 

β”R = inf(β:σ(β) > 0} (14) 

Theorem 2. 

β (d=3) < βR,βR',β''R (d=3) < β (d=2) . 

For β and βR' this resuit was proven by van Bejeren [12], for β” it has recent-

ly been established in [13]. The expected resuit would be 
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βc (d=3) < βR (d=3) < βc (d=2) (15) 

β
C
 =

 β
R

 , d > 4 . 

Next, we sketch a suitable notion of an interface in an Ising model : We 

notice that if ± b.c. are imposed at the boundary of AL,T then there is a 

(Peierls) contour ΣL decomposing Λ into two disjoint subsets, A
T and 

A , such that (T,0) € AL,T , Sj = + if j € AL,T borders ΣL , Sj = - if 

j € AL,T borders ΣL and 

We define the interface ΣL to consist of the union of ΣL and all closed contours 

which are * connected with ΣL. . 

In two dimensions, the interface, Σ , has finite width, uniformly in L , 

and has long wave length fluctuations on a scale of VL , provided the temperature 

is small enough, (β > βc ) . This resuit is due to Gallavotti [14]. 

In d > 3 dimensions the conjectured behaviour of the interface is as follows: 

For d > 3 dimensions the conjectured behaviour of the interface is as follows ; 

is well localized near {χ:χl = - 1/2} and very rigid and thin, uniformly in L ; 

D (β,n) is negative, for n large enough - presumably for all η _> 1 . (For rigorous 

results valid at large 3 see [8,9,10,12].) 

For d = 3 and β < βR (but 3 close to βR) the interface ΣL still has 

finite width but fluctuates on a logarithmic scale. (A theoretical argument support-

ing this claim is reviewed in the next section.) As 3 is decreased, some of the 

following phenomena may occur : Interlacing chains of - spins will start to perco-

late into A and, as a consequence, the interface grows many handles. In addition, 

short wave length fluctuations may cause a lot of wrinkles on the interface. Hence 

the interface fattens. When 3 approaches βc , the interface might approach some 

self-similar surface, and below βc it will become "space-filling". Unfortunately, 

there are no rigorous results, except for very large β . (See also [13] for some 

speculations.) 

We now turn to the discussion of the rotator model : By Theorem 1, parts 2) 

and 3), the rotator model never exhibits an interface. 
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Does this mean that all equilibrium States are translation-invariant ? Before attempt-

ing to answer this question we quote a resuit that characterizes the translation-

invariant equilibrium States of the Ising- and the rotator models. For the rotator 

model, define <(.)>β, θ by 

(16) 

where R(θ) rotates each spin Sj through an angle θ . If Μ(β) = 0 (i.e. 

β < βc ) the States <(·)>β,0 Ω
 coïncide with <(·)>

0
 , , for all θ  [0,2π). 

Indeed, for β < β , <(*)>Q , is the unique translation-invariant equilibrium 

State. This resuit is valid in the Ising- and the rotator model [15]. 

Theorem 3. 

Let β > βc be such that the free energy is continuously differentiable at 

β. 1) Then 

1) [16] In the Ising model, every translation invariant equilibrium State is 

a convex combination of <(·)>„ , and <(·)>β, 

2) [7] In the rotator model, every translation-invariant equilibrium State 

has a representation 

(17) 

where p is some probability measure. 

We now return to the question as to whether all equilibrium States of the rota-

tor model are translation-invariant. The physical reason why there are no interfaces 

in the rotator model, as remarked, is quite obvious : One might wish to measure the 

profile of an interface in the rotator model in terms of 

But 

^ Since f(β) is concave, this condition is satisfied for almost all values of β . 
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for all β and n ; (see [7] for a precise statement.) Thus, the interface becomes 

very wide (fat.) Since the model has a continuous symmetry, this is no surprise : 

In order to fulfil ± b.c., it suffices to turn the spins upside down extremely 

slowly as one moves from j+ = (T,0) down to j_ = (-T,0) . Interfaces (Bloch walls) 

are not among the "topologically stable" defects of this model. 

The role of Bloch walls (Peierls contours) or interfaces in the Ising model is 

really played, in the rotator model, by another type of "topologically stable 

defects", the vortices. They are characterized by an integer winding number of the 

spin configuration, and, since the spin takes values in the unit circle, must have 

co-dimension 2. The easiest way of describing vortex configurations in the rotator 

model proceeds by applying a duality transformation, i.e. Fourier transformation in 

the angular variables (see [5,17] , and refs. given there.) 

Let 

the Villain approximation.) Let rβ(n) denote the n Fourier coefficient of 

rβ · The equilibrium State of the rotator is given by the measure 

(18) 

The Fourier coefficients of are thus given by 

(19) 

where ij is the oriented bond pointing from i to j , 

The factor Π jβ (βn), 0 arises by integrating the factors exp[iθ. (δη) . ] over Θ. , 

for all j . It imposes the constraint 

δn = 0 

which is solved (Poincarcé lemma) by 

n = δ m , 

where m : p >- mp  ZZ is defined on oriented unit squares (plaquettes), p  ZZ d . We 
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may write 

mp = ac  ZZ , 

where c is the oriented (d-2)-cell in (Zd )* dual to p . 

In the Villain approximation, 

Applying now the Poisson summation formula, we conclude that the Villain approxima-

tion to the rotator model is isomorphic to a model whose equilibrium State is given 

by 

where dy is a Gaussian measure on the space of"orbits"[a], where [a] is 

the equivalence class (ac + Σ χc c' ∂c,} , and χ : c ' χ , € IR isa function defined 

on (d-3)-cells, c' , of (ZZd ) The inverse covariance of dµG is 3 β δd . 

It follows from the (gauge invariance) properties of dµG that all configurations 

φ={φ  ZZ : c c (ZZd)* ) } must satisfy the constraint 

δφ = 0 

This shows that the connected components of each configuration φ can be interpreted 

as closed, (d-2)-dimensional vortices with integer winding numbers prescribed by 

{φ } . (Back in the rotator model φ corresponds to vortices in the spin field.) 

By choosing appropriate, non-translation-invariant boundary conditions one can force 

an open vortex into the System which extends to the boundary (where it is "closed 

off'' by the b.c.) and plays the role of an interface, Σ , in the Ising model. This 

vortex might cause a breakdown of translation invariance in the thermodynamic limit. 

In the next section we sketch theoretical arguments supporting the following 

Conjecture. [7] 

1) In d 3 dimensions, ail equilibrium States of the rotator model are 

translation-invariant and are given by formula (17) of Theorem 3. 

2) In d > 5 dimensions, the rotator model lias non-translation-invariant 

equilibrium States for ail 3 > βc. 
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3) In d = 4 dimensions there exists an inverse température BR > BC such 

that for β > βR there exist non-translation invariant equilibrium States while for 

β < βR ail States are of the form (17). 

The idea behind this conjecture is that in dimension d <_ 3 vortices have 

dimension 0 or 1 and are therefore unstable against long wave length fluctuations, 

no matter how large 3 is. (For d = 3 , results analogous to the ones of Galla-

votti [14] should hold.) For d = 4 , vortices are two-dimensional. They are there-

fore likely to be rigid for very large β , but are expected to have logarithmic 

fluctuations above a roughening temperature; see Sect. 2. Finally, vortices of di-

mension > 3 are expected to have finite fluctuations, as long as β > βc ; 

(Sect. 2.) 

2. The solid-on-solid model. 

In this section we review some recent rigorous results on an approximate, statis-

tical theory of (lattice) surfaces, like the interface in the Ising model, the vor 0172 

tex sheets in the four-dimensional rotator model or the electric flux "world sheets" 

in a lattice gauge theory. We also show that the same approximation yields an unin-

teresting theory of one- or three- and higher dimensional objects : One dimensional 

objects (strings) fluctuate on a scale of √L , as expected on the basis of the cen-

tral limit theorem, while three-dimensional objects ("bags") have uniformly bounded 

fluctuations. See Theorem 4, below. 

The approximation considered in this section involves the following elements : 

1) Only surfaces (or strings, or bags) which are graphe of functions are admit-

ted as elements of the statistical ensemble, E 

2) The statistical weight of a surface is a local functional of the surface, 

e.g. its area. 

Specifically, the models which we consider are defined as follows : As our 

parameter space we choose some finite, rectangular array of sites, Λ , in the lat-

tice ZZd , d = 1,2,3,... ; (the interesting case is d = 2.) Each (hyper-) surface 

m our statistical ensemble E Ξ E is given by the graph of a function, φ, 

assigning to each site j E Λ an m-tuple of integers, = (φj1,.,.,φjm) interpreted 

as the coordinates ("heights") of the (hyper-) surface in the directions transverse 

to the parameter directions, in such a way that (j1 ,...,jd , φ1j.,.,.,φmj.) are the 

coordinates of the center of a d-cell m the surface described by φ . We assume, 

temporarily, that 
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φj = Ο , for j  Λ , (0 b.c.). 

The statistical weight,» of the surface described by φ is defined by 

(20) 

where the "action” A(<φ>) is given by the total d-dimensional volume of φ (or 

an approximation thereof), in particular Α (φ^) is the area of the surface when 

d = 2 , and the partition function, Zβ,  , is chosen such that 

For m = 1 , 

(21) 

where the sum ranges over all nearest neighbor pairs. The factor exp(-β||) can 

be absorbed in a redefinition of Z . The model so obtained is called the solid-

on-solid (s-o-s) model [2], It describes the statistical mechanics of the interface 

of a limiting, d-dimensional Ising model with ± b.c. which is obtained by letting 

the nearest neighbor couplings in the 1-direction tend to oo while keeping them 

fixed in the other directions. 

When m > 1 it is difficult to analyze the models with actions given by the 

volume of d-dimensional hypersurfaces in ZZd+m ; (see Sect. 3.) We shall consider, 

instead, e.g. the small fluctuation approximation to the volume, given by 

(22) 

but approximate actions like 

(23) 

can be analyzed, too. 

We let <(.)>^ denote the expectation defined by (20), with Α(φ) as in 

(21) or (22), (23). [We shall usually think of the s-o-s model corresponding to 

(21), but most results described in the following remain valid for the models with 

actions (22), (23), as follows from the analysis in [5].] Let Έ(φ) be an arbitrary 

continuous, polynomially bounded function of {φj-φj,} , yhere (jj’) are nearest 

neighbor pairs belonging to some finite subset of ZZd . On this class of fonctions 
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a thermodynami c limit 

j. ZZd , as j →oo, can be constructed by a compactness argument; (for the action 

in (22) it exists by correlation inequalities [18], and, in all cases, it exists 

for large enough values of β .) We have 

Theorem A. 

Consider the models defined in (20) - (23). Then 

1) For d = 1 , 

2) For d = 2 , 

uniformly in x , provided β is large enough. When β is small enough, 

(24) 

3) For d > 3 , 

for all 3 

Remarks. 

(1) Part 1) is a standard consequence of the central limit theorem : The ran-

dom variables φ
j-qj, , (jj') ranges over the bonds (nearest neighbor pairs) 

of ZZ , are independently distributed! 

The first half of part 2) follows from a standard low-temperature (Peierls 

contour) expansion, (as observed in [19].) The deepest resuit is the lower bound in 

(24) which was established in [5] by a rather difficult analysis. The upper bound in 

(24) and part 3) are standard consequences of infrared bounds [20] which are applica-

ble, because the functions exp(-β|φ|) and exp(-β/2 φ2) are of positive type. 

Part 3) has recently been noticed in [13]. 
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(2) The model with d = 2 , m = 1 and Α(φ) given by the r.s. of (22) is 

dual to the Villain approximation of the two-dimensional rotator mode]; see Sect. 1, 

(18), (19), etc. The behaviour described in part 2) of Theorem 4 is, in this case, 

related to the Kosterlitz-Thouless transition [5]. 

(3) The transition described in part 2) is a model of the roughening transition: 

For large (3 typical lattice surfaces are rigid, i.e. have uniformly bounded fluc-

tuations. When β drops below some critical value, βR , then typical surfaces are 

rough and exhibit logarithmic fluctuations. This is the universal behavior of conti-

nuum surfaces. A roughening transition occurs only in ensembles of lattice surfaces, 

because the lattice breaks the continuous group of translations transverse to the 

surface. At high temperatures, this symmetry is restored, i.e. "enhanced at large 

distances" in the models considered above, [5,21]; (see also [22].) 

Next, we sketch a few ideas in the proofs of parts 2) and 3) of Theorem 4. 

For simplicity we consider the action (22) with m = 1 , but the results hold in 

general [5]. We start with the lower bound in (24). 

Let dµβ, 
 Λ

(φ) be the Gaussian measure with mean 0 and covariance (-βΔ.) -1 , 

where Δ is the finite difference approximation of the Laplacean with 0 Dirichlet 

data at the boundary of Λ . The equilibrium State of our model can be rewritten 

as follows : 

(25) 

There are three basic steps in the proofs [5] of the lower bound in (24). 

1° The first step is a combinatorial identity : Let p denote an arbitrary 

function on ZZ2 of finite support with values in π ZZ ; p is called a "charge 

density". We say that p is neutral iff Σ pj = 0 . Let φ (ρ) Ξ Σ φjρj 

It is proven in [5] by means of an inductive construction extending over all distance 

scales of 2n = 0,1,2,... , that, for all A Ì ZZ2, 

(26) 

where F is a finite family of collections, N , of neutral charge densities, p , 

with the property that two densities, p and p* ≠ p , in each M have disjoint 

supports which are so far separated that cos φ(ρ) and cos φ (ρ') are'' almost inde-

pendent*! Furthermore, cN > 0 for all N  F . The constant K(p) is an entropy 
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factor which can be bounded by exp (cA(p)) , where 

and An (p) is number of 2n x 2n squares needed to cover the support of p 

2° The second step consiste of a "block spin integration" which allows us to 

extract "self-energies" of the densities, p , providing convergence factors which 

compensate the constants K(p) . In the simplest case (namely for the partition 

function) it results in the following identity : For all N E F , 

(27) 

where E(p) stf const. Σi, j pi( A)-1 ij Pj.. Pi is related to the electrostatic energy of the 

charge density p , and the renormalized charge densities, p , are still neutral 

but have "magnified" supports. 

A key estimate consists in showing that 

E(p ) ≥ ε Α(ρ) , 

for some ε > 0 . Thus, for large β , 

where d(p) is the diameter of the support of p . Thus, for large β , 

(28) 

is a positive measure which is, formally, invariant under the continuous symmetry 

φ . -> φj +c , (29) 

where c is an arbitrary real constant; for 

cos φ(p) = cos[(φ+c)(p)], 

as Σ c p. = 0 , by the neutrality of p ; moreover dµβ,  φ) is clearly formally 

invariant under the symmetry (29), except that the b.c. imposed on dy (φ) break 

(29). 
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3° Since, for large β , the measure dwren given by (28) is positive and 

formally invariant under the continuous group of symmetries (29) which, however, is 

always broken by the b.c. imposed at ∂, we may apply a Mermin-type argument to 

conclude that 

(30) 

for all k ^ 0 . Here φ(k) Ξ (2π) ΣjεZZ2 φ,eik.j From this one can deduce the 

lower bound in (24), (by Fourier transformation.) 

Next, we comment on the proof of the upper bound in (24) and part 3) of Theo-

rem 4. Part 3) was previously proven in [13]. Here we sketch a slightly different 

argument which gives a stronger resuit. For technical convenience we interpret the 

State <(.)>β as a limit of finite volume States <(·)>β,Λ
 with periodic b.c. 

[in order to define the periodic b.c. State, one replaces the counting measure on 

(φj  ZZ) by εχρ (-εφj2) x the counting measure. One first takes  ZZd and subse-

quently ε 0 .] As explained in [20], the upper bound in (24) and part 3) follow 

from estimates of the form 

(31) 

with ε small enough, (ε||j h||
 2 2

 < ε , for some ε >0.) Here ∂a is the a 

component of the finite difference gradient, and h is an arbitrary real-valued 

function on A . Inequality (31) is proven by using a transfer matrix in the 

α-direction of the lattice. As explained in [20], the transfer matrix formalism 

reduces the problem to estimating the quadratic form with integral kernel 

where 

from above in terms of the quadratic form with integral kernel exp[-Fβ (x-x')] 

This is accomplished by using Fourier transformation : For Fβ (x) = β|x| , the re-

quired bound follows by noticing the inequality 

I[(k+ich2)+β2]-| < ec(β)e2h2 [K2+β]-1 , 

for |eh| < β/2 . For Fβ (x) = (β/2)x2 , one uses 
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for arbitrary ε and h . 

From these inequalities (31) follows. The upper bound in (24) and part 3) of 
2 

Theorem 4 follow from (31) by expanding to second order in ε , dividing by ε2 

and taking ε to 0 . 

In dimension d ≥ 3 , we expect that a resuit much stronger than part 3) of 

Theorem 4 holds. For all β > 0 , 

(32) 

for some constants c(3) < oo and (β) > 0 . This would imply that ail correlations 

between distant pieces of three- or higher dimensional random hypersurfaces decay 

exponentially. For d = 3 , (m = 1) and the action A(φ) given by (22), the 

bound (32) has recently been proven by Gopfert and Mack in [23]. 

Next, we review some results on surface (or step) free energies in the solid-

on-solid models : Let Zβ,  (ξ),^ be the usual partition function of the model with 0 b.c. 

defined in (20). Let Zβ, A (ξ) » ξ Ɛ ZZm , be the partition function of the same model, 
P 

but with b.c. 

(33) 

We set 

(34) 

We note that τd (ξ = 1 ; β) (
m =

 1) is expected to behave qualitatively similarly as 

the step free energy, σ(β) , of the (d+l)-dimensional Ising model. We consider, for 

simplicity, only the case m = 1 , assume that ξ ≠ 0 and that the action is given 

by (21) or (22). We then have 

Theorem 5. 

1) ij(ξ;B) = 0 , for all e, 

2) τ2 (ξ;β) > 0 , for large β 

τ2 (ξ ; β) = 0 , for small β 

for all ξ ≠ 0 
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3) For the mode1s with action given by (22) and d _> 3 , 

rd (ξ; β) > 0 » for all e > 0 , ξ ≠ 0 . 

Remarks. 

Part 1) is trivial. The inequality in part 2) is a consequence of a standard 

low temperature expansion; e.g. [19]. The equation in part 32) follows from the re-

sulte of Sects. 6 and 7 of [5]. Part 3) follows from the results of Göpfert and Mack 

[23] (d = 3) and correlation inequalities [18], (d = 3 → d > 3) . For results 

related to the ones in [23] but established earlier see also [24]. 

We believe that Theorem 5 can be extended to all m _> 1 and all actions 

(21) - (23) , but not all cases have been worked out. 

Finally, some recent results in [5,25] suggest that the continuum limits of 

the two-dimensional models studied in this section are given by massless Gaussian 

measures, for β< βR and for arbitrary m = 1,2,3,... . (This is trivial for 

d = 1 .) In the next section, we study random surfaces with more complicated conti-

nuum limits. 

3. Selfavoiding random surfaces and string theories. 

In this section we restrict our discussion to two-dimensional random surfaces 

embedded in a lattice ZZd (or embedded in Ed) , d = 3,4,... . We propose to con-

sider statistical theories of such surfaces which are geometrically more natural than 

the ones studied in the last section, but which are seemingly almost as simple as 

the s-o-s models. Our discussion is sketchy; (some details appear elsewhere.) 

The models considered in Sect. 2 have a serious defect : All random surfaces 

admitted in the ensembles introduced in Sect. 2 are required to be graphs of funct-

ions. It is natural to study more general ensembles of lattice surfaces and their 

continuum limits. If one admits lattice surfaces which may pass through each plaquet-

te (unit square) of ZZd an arbitrary number of times one cannot construct a mathe-

matically meaningful statistical theory : The number of such surfaces of a given 

area - i.e. containing a given number of plaquettes counted with multiplicites -

grows faster than exponentially in the area; see e.g. [26]. 

There are at least three ensembles of lattice surfaces which are physically 

natural : 



- 19 -

a) Branched random surfaces arising in plaquette percolation models [27]. 

(They consist of arbitrary connected arrays of "occupied" plaquettes, each plaquette 

in ZZd being either "empty" or "occupied’* once. The weight of such a surface, Σ , 

is given by p (A)Z, 0 < p < 1 , Α(Σ) « U plaquettes belonging to Σ .) 

b) Let γ be a closed curve in ZZd , and let EγS.a be the class of all 

"self-avoiding" connected lattice surfaces bounded by γ , i.e. surfaces, Σ c= ZZd , 

with the property that each link b € Σ , b  γ , belongs to precisely two plaquet-

tes of Σ and each b € γ to precisely one plaquette of Σ 

c) Let γ be a closed curve in ZZd , and let Eγ be the ; class of all connected 

surfaces bounded by γ which pass through each plaquette of ZZd at most once. 

The ensemble Eγ described in c) occurs naturally in the study of interfaces : 

(see Sect. 1), while the ensemble Eγs,a. introduced in b) and the one introduced 

in a) (which we denote by Eperc) arise in models which are limits of gauge théo-

ries; see Sect. 4, and [27,28]. For a somewhat detailed discussion of plaquette-

(and general d-cell) percolation see [27] - we limit our review to a discussion of 

E S.a. and Eγ , ensembles which are also studied in connection with string théories 

Let E≠γ = Eγs.a. , or E . Each surface Σ € E is assigned the statistical 

weight 

(35) 

where χ(Σ) counts the number of handles of Σ (Euler characteristic), β > 0 , 

µ _> 0 ; (Α(Σ) , the area of Σ , counts the number of plaquettes in Σ .) 

It is an elementary combinatorial exercise to show that for each d and each 

(36) 

for β large enough, while 

Zβ, µ (γ) diverges, (37) 

for 3 small enough. 

One can argue that there is some value, βo , of 3 which only depends on d 

(and possibly on μ ), but is independent of γ such that (36) holds for all 

β > β0 , while (37) holds for ail β < βo 

As a field theorist one is then interested in the question whether βo is a 
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critical point, in the sense that there is some divergent correlation length, as 

β βo. · This question can be investigated by considering, for example, the "string 

tension" 

(38) 

where γ is a square loop in a coordinate plane, Α(γ) the minimal area enclosed 

by γ , and d(y) its diameter. In a statistical mechanics context, e.g. in the 

s-o-s model, the string tension is interpreted as the surface tension. The point 

is a critical point if 

(39) 

More refined methods to analyze the vicinity of βo would involve the study of 

"correlations". We sketch one example; (but see [27] for a more detailed discussion) 

Let γ, γ' be two non-intersecting loops, and define 

We define a ''glue bail mass" 

(40) 

where γa' is the loop that corresponds to a translation of γ’ in the direction 
Si 

of a lattice axis by a distance a . 

If βo is a critical point in the sense of (39) one expects that 

(41) 

A more subtle question concerns the behaviour of the dimensionless quantity 
2 

m(β,µ)2 /α (β, µ) , as β \βo . In [23] a model is studied in which the analogue of 

this quantity tends to 0 , as β βo. 

Finally, we want to ask whether the three models introduced in this section 

exhibit roughening. This question can be studied, for example as follows : We choose 

a square loop, γ , of diameter d(γ) lying in a coordinate plane and define the 

probability 

(42) 
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where d(∑,0) is the maximal distance of the set Σ π from the origin, and πo 

is a (d-2)-dimensional plane perpendicular to the curve γ and containing the 

origin. We consider 

(A3) 

It is easy to show that for 3 sufficiently large 

P(d) < e c(β)d , (44) 

for some constant c(β) > 0 . 

The question then is whether there exists some value βR of β , with R 

βR > βo , (45) 

such that for β< βo< β<βR 

P(d) = 1 , for all d < oo 

On the basis of results concerning the Ising model in three dimensions [6,13] and 

the s-o-s model [5] (see Sects. 1,2) one would conjecture that the percolation model 

of branched surfaces exhibits a roughening transition. 

(If βo
 is a critical point it might also be possible that (44) is valid for 

all β < βo , with ο(β) 0 , as β\βo.) 

Once all these preliminary questions (see (39) - (45)) - which actually seem 

to be very hard ones - are out of the way one can address the most interesting one : 

What are the continuum limits of these lattice models of random surfaces ? So far, 

there has not been much theoretical progress on these questions. 

Until now, there is only one convincing attempt at constructing a continuum 

theory of random surfaces, the one by Polyakov [29], clarified in [30]. Presumably, 

this theory, too, can be obtained as a continuum limit of some "lattice theory" : 

It is essentially the continuum limit of discrete, imaginary-time quantum gravity 

of piecewise linear, simplicial (two-dimensional) surfaces; a straightforward, 

functional integral version of Regge calculus. Polyakov's theory is certainly very 

fascinating, but (as the remark above indicates) its relation to the physics of 

interfaces in statistical mechanics or to gauge theory is mysterious. In contrast, 

the other models, a), b) and c), discussed in this section and the s-o-s model 

discussed in Sect. 2 are related to gauge theory and to the physics of interfaces, 

respectively, in a definite way : They are obtained as limiting models, as some para-

meter tends to 0 or oo. See Sects. 2 and 4. Polyakov’s theory is intended to 
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represent a correct mathematical formulation of string theories, (dual resonance 

models.) 

4. Lattice gauge theories. 

There are (at least) two ways in which random geometrical objects, such as 

random loops or random surfaces, arise in the analysis of lattice gauge theories 

(in the imaginary time description.) 

1) Sheets of chromo-electric flux. 

Lattice gauge theories can be reformulated as gases of random geometrical 

objects in different ways : The best known such reformulation results from the strong 

coupling (high temperature) expansion which represents a lattice gauge theory as a 

gas of closed random surfaces - closed sheets of chromo-electric flux - which inter-

act by hard core exclusion [31]. (For a somewhat different description of chromo-

electric flux sheets, see also [32].) 

2) Defect gas description of lattice gauge theory 

We first consider a pure lattice gauge with a discrete gauge group on a 

d-dimensional lattice (or a Higgs theory with a non-trivial, discrete unbroken sub-

group.) In such a theory, gauge field configurations can be characterized in terms 

of frustrated plaquettes, i.e. unit squares, where the curvature is non-vanishing. 

As a consequence of an integral fora of the Bianchi identities, frustrated plaquettes 

fora (d-2)-dimensional, closed surfaces which one calls (by an abuse of this name) 

vortices. They are labelled by group elements. The original lattice gauge theory 

can now be reformulated as a gas of vortices interacting by geometrical constraints. 

At weak coupling (low temperature) the vortices have small effective activities and 

fora a dilute gas. This observation is the starting point for the low temperature 

analysis of lattice gauge theories : Vortices play the role of the Peierls contours 

in the Ising model and can be used to construct an analogue of the Peierls argument 

(or a contour expansion) which permits one to control the qualitative features of 

such lattice gauge theories at weak coupling, in three or more dimensions. See [21] 

The upshot of this analysis is that gauge theories with discrete gauge groups exhi-

bit deconfining transitions in dimension _> 3 . 

Clearly, in théories with continuous gauge groups, vortices (as defined above) 

are not likely to provide us with a useful notion, although vortices of a somewhat 

different type appear to play an important role in a confinement mechanism in gauge 

theories with gauge groups containing a non-trivial, discrete center. As an example 
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of a gauge theory where vortices are not a useful notion we consider the compact 

U(l) lattice model (compact QED.) This gauge theory permanently confines electric 

charge in two and three dimensions [23], but exhibits a deconfining transition in 

four or more dimensions [33,21], Vortices are not among the "topologically stable 

defects" of the U(1) model and cannot be used to explain those facts. (This cir-

cumstance is analogous to the one that the interface is unstable in the rotator 

model; see Sect. 1.) The topologically stable defects of the U(1) model which are 

dilute at weak coupling are its magnetic excitations : Monopoles in three dimensions, 

monopole lines (magnetic currente) in four dimensions, etc. In the continuum limit, 

such excitations are labelled by first Chern classes of the field configurations at 

infinity (identified with S2 x ]Rd-3 .) Thus they have dimension d-3 and carry an 

integer magnetic charge. The corresponding magnetic excitations of the U(l) model 

on the lattice can be exhibited by applying a duality transformation (Fourier trans-

formation in the gauge field variables) and a Poisson summation formula, (as explained 

at the end of Sect. 1 for the rotator model.) The interactions between different 

magnetic excitations have long range. This makes the analysis of these models, at 

weak coupling, interesting and mathematically non-trivial; see [21,23,33]. 

In the U(1) model, confinement breaks down if the magnetic excitations are 

bound in finite, neutral clusters which form a dilute gas, thus causing only small 

(infrared-irrelevant) corrections to Gaussian "spin wave" theory. This only happens 

in four or more dimensions. 

In a non-abelian, pure gauge theory, e.g. one with gauge group SU(n) , there 

are two kinds of topological excitations, vortices, of co-dimension 2, and instantons, 

of co-dimension 4. Vortices are labelled by elements of the center of the gauge 

group, instantons by elements of π3(G) . One can argue that, in four or more dimen-

sions, it is the statistical mechanics of the instanton gas which détermines whether, 

at long distances, the theory is in a perturbative or non-perturbative phase. In 

four dimensions, it is most likely that the instanton gas is always in a plasma 

phase, instantons are not stably bound in neutral clusters, the infrared behaviour 

is non-perturbative. However, in five or more dimensions, instantons form closed 

surfaces of dimension d-4 , and a simple energy-entropy argument suggests that, at 

weak coupling, the effective activity of an instanton decreases exponentially in its 

volume (= length for d = 5 ,...). One is thus led to predict that non-abelian models 

exhibit a deconfining transition to a perturbative phase at weak coupling, in five 

or more dimensions. (In contrast to abelian gauge theories or eones with discrete 

gauge group, there are, however, no rigorous results for non-abelian lattice gauge 

theories at weak coupling, yet!) 

Next, we briefly summarize some recent, rigorous results concerning random 

geometrical objects in lattice gauge theories and some limiting models of such theo-

ries : 
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As our lattice we choose ZZd , the gauge group is assumed to be compact and 

is denoted by G . The gauge field, g = {g } , is a map from oriented pairs of 

nearest neighbors, xy , in ZZd to elements, gxy , of G such that 

Formally 

for all xy (46) 

The Euclidean functional measure (vacuum functional) of a lattice gauge theory is 

defined by 

(47) 

where Λ is a rectangular array of sites, dg is the Haar measure on G , for all 

xy , A(g) is the (Euclidean) lattice action for the model in A , β= l/e2 is 

the inverse square coupling ("inverse temperature"), and Zβ,  . is the usual parti-

tion function (making dµβ a probability measure.) Given a loop γ in ZZd , we let 

(48) 

denote the ordered product of gauge fields along γ , (i.e. the holonomy operator 

associated with γ .) We define the (Wegner-) Wilson loop observable by 

W(Y) = x(gγ) ) , (49) 

where χ is some (irreducible) character of G . 

We shall consider the following examples of lattice actions : 

(1) (50) 

where p ranges over the plaquettes (unit squares) of A , 3p is the oriented 

boundary of p , and is a faithful character of G , (e.g. the one of the fonda-

mental representation for G = SU(n).) 

(2) (51) 

where δe is the (Kronecker) δ- function on G concentrated at the unit element, e, 

and G is assumed to be discrete in this example. 
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Let Z be a (d-2)-dimensional surface in the dual lattice, ( ZZd)* , with boundary 

∂Σ (a closed, (d-3)-dimensional surface.) We define a disorder operator, DZ(∂∑) , 

where z is an element of the center of G , as follows : 

D
z
 (∂Σ) = expt-β(g.zE)-A(g))] , (52) 

where 

(g.zE) ∂p= 

g. *z if p is dual to a d-2 cell in Σ ; 

g. , otherwise. 

In order to analyze the behaviour of chromoelectric flux sheets we study expectation 

values like 

(53) 

η = 1,2,3,... . In particular, the roughening transition for electric flux sheets 

can be analyzed in terms of <WX(Y)D
Z
(∂∑)>Β 

We also introduce bulk- and surface thermodynamic functions, (see Sect. 1, 

(6)—(8); Sect. 3, (38) for related definitions) : 

(a) The free energy : 

(b) The string tension : 

where γL is a square loop in the 1-2 coordinate plane of diameter L . [The 

string tension corresponds to the surface tension, τ(β) , in spin Systems. In 

three-dimensional ZZ2 models they are related by a duality transformation.] 

We define an expectation 

(54) 

One can also define the analogue of 
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(c) The step free energy : 

where the loop γL' differs from γ by a step of height 1 in the middle of two 

opposite sides. The functions α(3,χ) and o(3) serve to describe the thermodynamics 

of chromo-electric flux. In particular, o(3) is of interest in studies of the 

roughening transition of flux sheets [4] . It is natural to also introduce functions 

describing the thermodynamics of "magnetic flux" (vortex sheets), or more generally 

the thermodynamics of the gas of stable ("topological") excitations, like the magne-

tic excitations in the U(l) model,... . As an example, we define a thermodynamic 

function for vortex sheets : Let A be some rectangular array of sites centered at 

0 , and Σ a (d-2)-dimensional coordinate plane in ZZd )* . We let Ω denote the 

set of plaquettes on 3Δ which are dual to some d-2 cell in Σ . We consider the 

following boundary conditions on 3A : 

(0 b.c.) g∂p = e (the unit element in G) , for all p c ∂Λ ; 

(twisted b.c.) 

gap 

e , p c ∂Λ , p  Ω 

z , p € Ω , for some z in the center of G . 

Let Zo,β, , <(.)>oβ,  , be the partition function and the expectation with 0 b.c. on 

∂Λ , and Z , <(·)> the corresponding quantities with twisted b.c. . We 

define 

(d) The magnetic "string" tension 

One will introduce analogous functions associated with other excitations of dimension 

_> 1 , in particular with the stable ones, (like the magnetic current lines in the 

four-dimensional U(l) model.) Point-like excitations are studied in terms of "topo-

logical susceptibilities" and sum rules (like the Stillinger-Lovett sum rule for 

the gas of magnetic monopoles in the three-dimensional U(l) model.) 

These quantities will be studied in more detail elsewhere. 
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Next, we surrrmarize some recent results. 

Theorem 6. 

1) [27] Let G = ZZn , let dµβ be given by eq. (47) with an action A(g^) defined 

as in (51). (This is the n-states Potts lattice gauge theory.) Then there exists an 

analytic interpolation in n (of thermodynamic functions and correlations) in a 

neighborhood of the positive real axis with the property that the model corresponding 

to the limit n → 1 is the plaquette percolation model of branched random surfaces 

defined in Sect. 3, a), (ensemble E ) 

2) [28] Let G = SU(n) , and renormalize the gauge fields such that 

Then, for 0 small enough, there exists an analytic interpolation in n with the 

property that the n → 0 limit yields the model of selfavoiding random surfaces 

defined in Sect. 3, b) (ensemble Eγs.a. ) , in particular 

where Zβ, µ (γ) is defined in (36). 

This resuit motivates the definition and analysis of the models introduced in 

Sect. 3. 

Next, we discuss some results which are related to the ones in Sect. 1. They 

are based on the correlation inequalities in [7] which are only known to hold for 

abelian gauge groups and an action A(g^) given by expression (50) , (i.e. the 

Wilson action.) The analogue of Theorem 3 is the statement that if the free energy 

f(B) is continuously differentiable at some value β = βo then there exists only 

one translation invariant State, <(.)> βo , for β = βo [7]. Thus non-uniqueness 
o 

of the vacuum functional in an (abelian) lattice gauge theory only occurs at a first 

order transition. A resuit analogous to Theorem 1 is 

Theorem 7. [7] 

1) If α(β,χ) = 0 , and <(·)>^ is invariant under translations in the 1-2 plane 

then 

<(·)>Χβ
 = <(.)>e ’ 

(i.e. the electric flux sheet is completely rough.) 
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2) If φ(β, z) = Ο , and ... thon 

<(·)>1 = <(.)>β , 

(i.e. the vortex sheet is rough or "fat”.) 

3) In the U(l) models, 

φ(β, z) = 0 , for all B , 

(i.e. U(l)-vortices are always fat. This is the analogue of the results for the rota-

tor model described in Sect. 1.) 

4) [6] In the three-dimensional ZZ2 model 

α(β) > 0 φ(β) = 0 □ 

Next, we would have to discuss roughening transitions in lattice gauge theories 

The electric flux sheet bounded by an (infinitely extended) Wilson loop may, a priori 

undergo a roughening transition which does not coïncide with a deconfining transition 

[32,4]. That transition can be described by the following "order parameter" : 

(55) 

where Σ is a (d-2)-dimensional, rectangular array of sites with sides of length 

2n which is centered at the origin and is perpendicular to the plane containing 

the Wilson loop. In the three-dimensional ZZ2 model the parameter D (β,n) defined 

in (55) is dual to the parameter D (β,n) introduced in Sect. 1, (10). For small B 

one expects that the phase of D (β, n) approaches the value arg z (the phase of 

the central element z ) exponentially fast, as n → oo . This can presumably be 

proven by a fairly straightforward extension of the arguments in [8,10]. The beha-

viour of the function D (B ,n)-D ( B,°°) is a measure for the fluctuations of the 

infinite flux sheet in directions perpendicular to the plane of the Wilson loop. 

The roughening transition is characterized by the circumstance that, for ail 

β > e
βR

 , 

arg 00D(B,n) = 0 , for all η , (56) 

while, for β < βR , 
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(57) 

(Here -
 G

 is the coupling constant at which the roughening transition occurs.) 

It follows from Theorem 7 that, in abelian lattice gauge theories , 

α(β, χ
ο
> = 0 arg D(β,n) = 0 , for all η , 

i.e. 

Β
C
>ΒR · 

(58) 

where βc is the point at which the deconfining transition occurs. 

It is expected that the roughening transition can also be characterized by the 

vanishing of the step free energy, σ(β) , i.e. 

σ(β) > 0 , for β < βR , 

(59) 

σ(β) = 0 , for β > β
R

 · 

However, there are no rigorous results about roughening transitions known, yet. 

Besides chromo-electric flux sheets there can exist other two-dimensional 

"topological" excitations, like vortex sheets, exhibiting a roughening transition. 

Such a transition should only occur in a phase characterized by a non-vanishing sur-

face free energy of the excitations in question, (the analogue of the string- or sur-

face tension. Recall that, in the four-dimensional U(l) model , φ(β,z) = 0 

implies that <(·)>z β = <(.)>
0
 is translation invariant!) One expects that in the 

confinement phase of a (lattice) gauge theory only the string tension is non-vanish-

ing, i.e. only the chromo-electric flux sheet may exhibit a roughening transition, 

while other two-dimensional defects, e.g. the vortex sheets in four-dimensional 

théories, are rough or "fat" throughout that phase. 

Heuristically, roughening transitions in lattice gauge theories can be described 

in terms of the models studied in Sect. 2, like the s-o-s model, but there is no 

rigorous justification of such approximate theories, yet. 

1) This characterization has been developed in collaboration with E. Seiler. 
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