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0. Introduction.

The purpose of these notes is to report some recent results and speculations
concerning the statistical mechanics of surfaces or interfaces and to try to convey

an impression of the beauty of and interest in a mathematical theory of random sur-

faces.
Random surfaces and their statistical mechanics appear in many different phy-
sical contexts among which one might mention :

(i) Crystal growth and the statistical mechanics of crystal surfaces in a

solution.

(ii) Interfaces between different phases of a physical system; (e.g. Bloch

walls, or the liquid-vapor interface in water, etc.)

(iii) Gauge theories; (the high temperature expansion expresses a lattice

gauge theory as a theory of random surfaces; the low temperature expansion expresses

a four-dimensional lattice gauge theory with discrete gauge group as a theory of

two-dimensional vortex sheets.)

(iv) Dual resonance models; (string theory in its Euclidean formulation can
be formulated as a theory of random surfaces. It may be viewed as a generalization

of Brownian motion, from random paths to random surfaces.)

Needless to say that random surfaces appear in other problems of condensed
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matter physics, in geophysics (surfaces of mountains),...

In the following, we briefly review some rigorous results concerning random

surfaces and interfaces. We discuss :

1. The interface in the three-dimensional Ising- and rotator model [1].

2. The solid-on-solid model [2].

3. Self-avoiding random surfaces and string theories [3].

4. Lattice gauge theories [4].

We refer to the literature quoted here and in the following for information

concerning the physical situations described by these models, detailed statements

of results and proofs.

We have profitted from collaboration and/or discussions with M. Aizenman,

J. Bricmont, J.-L. Lebowitz and E. Seiler.

1. The interface in the Ising- and rotator model.

We start by recalling the definition of the Ising- and the rotator (classical

XY-) model on a simple, (hyper) cubic lattice Z’.d , d >3 : With each site j GZL'd

we associate a spin Sj , and

1) Sj + 1 in the Ising model;

2) Sj € S1 , in the rotator model, i.e. Sj can be parametrized by an angle

6. € [0,2m) .
: [0,27)

We use the convention

S. =+ 1, in the Ising model
6. = 0,7 , in the rotator model.
Let A be some finite sublattice of Zd s €.8.

= = 3 d'_ . — - _
N=h p=1i€2 :-T<j KT, -L<j <L, a=2,..,d

The energy of a configuration Sp = {Sj}th of spins in A , given a fixed
=48.7

AC jlienc
by the Hamilton function

configuration S of spins in the complement, A€ , of A , is given



o T

H, == % S..S. + w(sA1s (1)
(ijd)er * 3 A€

where W is a boundary term defined by

WEs,|s )= -z: S.°S. , (2)
s ip 3
i€A, jEAS
and (ij) indicates that i and j are nearest neighbors. The equilibrium state
for a spin system in A with Hamilton function HA given by (1), (2) and some

fixed b.c. S o v at inverse temperature B8 , is defined to Le
A

_, —BH,(S,]S )
(s ) L A e nogs, (3)

dug(s,|s ) =
B A jen 3

Zg,A

where dS 1is the counting measure on {-1,1} , in the Ising model, and the Lebesgue

measure on S1 , in the rotator model. Furthermore

-gH, (S, |S )
2o 8 D =fe M AN pas,
S JEA

is the partition function. We shall impose the following kinds of boundary conditions:

(+b.c.) Sj =+, for all j € A€
(¢b.c.) Sj =+ , for all j € AS with jl >0
S, =-, for all je A with jp <o
(step b.c.) Sj =+ if Jl >0 , or g = 0 and >0
Sj = - , otherwise.
Let A(S) be some continuous function depending only on finitely many Sj . The
equilibrium expection of A in the thermodynamic limit, for X b.c.
(X = +,+, step) , is given by
<A> = lim [ A(S)dp_(S | X (4)
BsX T B AL T

The limit is known to exist for + b.c., but some limit can always be obtained by

passing to subsequences. We define <(-)>B by

e
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<A(S)>B’_ = <A(-S)>8.+ .

The spontaneous magnetization, M(B) , is given by

M(B) = <Sj>B,+ . (5)
It is known that for d > 3

M(BR) # 0 , for large enough B

In two dimensions this remains true in the Ising model, but the two-dimensional
rotator model does not exhibit spontaneous magnetization, except at B = = |
(a well-known theorem due to Mermin.) However, this model shows a Kosterlitz-Thouless
transition, from a high temperature phase with exponentially decaying correlations

to a low temperature phase where correlations have only power law decay. This has
been rigorously established in [5]. This transition appears to be closely related

to the roughening transition in the three-dimensional Ising model, (see Sect. 2).

It is essentially the same phenomenon as the roughening transition in the solid-on-

solid model described in the next section.

Next, we define thermodynamic functions :

(a) The free energy

d-1)_110g Z (s ) (6)

f(g) = 1lim (TL
BsAp rAC

L,T»e

which is independent of the b.c. that are imposed.

(b) The surface tension (or surface free energy)

Z (+)
t(B) = f(l)(B) = lim 1lim Ll_dlog ~E:££LE(*+ (7)

L+ Tow ZB,R *)

L,T
(c) The step free energy

Z +

(2) 2-d BsAp T(+)
o(B) = £°7(B) = 1lim 1lim L” “log o 2 Ty (8)

Lye Too B,ﬁL § step

Similarly, f(k)(ﬁ), k = 3,...,d-1 , can be defined.



Theorem 1.

1) [6] In the d > 2 dimensional Ising model

1(B) >0« M() >0, (i.e. B > B‘c )

(See also Sect. 4.)

2) [7) In the rotator model

1(B) = 0, for all B < «® and arbitrary d .

3) [7] 1f 1(B) =0 then there is no interface, in the sense that

<(')>B,+ =1/2 <(')>B,+ +1/2 <(°)>B,- ,

(provided <(.)>B,* is invariant under translations in directions perpendi-

cular to the 1-direction.)

We define the roughening temperature TR = B;

for which <(-)>B =1/2 <(-)>8 o 1/2 <(-)>B _ . It was first proven by Dobrushin
» ]

+

as the smallest temperature

[8] (see also [9,i6] for simplifications and extentions) that By is finite for

the Ising model in three or more dimensions, i.e. the Ising model in d > 3 dimen-
sions has non-translation-invariant equilibrium states at sufficiently low tempera-
tures. In two dimensions, all equilibrium states of the Ising model are convex com—
binations of <(-)>ﬂ’+ and <(-)>B’_ , hence translation-invariant. This result is

due to Aizenman [11].

It is conjectured that

(9)
B, =8 , in d> 4.

A theoretical argument for the truth of this conjecture is described in the next

section.

Next, we introduce some order parameters for the roughening transition in the
Ising model. (Our discussion serves mainly as a preparation for the considerations

in Sect. 4.) A convenient order parameter to locate the interface is

D(B’n) =<S(n,6).s(—n—1,6)>s,i s (10)

where 3 = (jZ""’jd) , and



D(£) = 1im D(B,n) . (11)

n-+w

For B < BR ’

D(B) = M(B)* >0
Moreover,

D(B) > -1, as B > o ,

in dimension d > 3 . We conjecture that for all g8 > BR

D(B) < M(B)2 >

in fact, that D(B,n) is negative, for n large enough. (We are not aware of any

proof of this veryplausible conjecture.) We define

v . 2
Bg = inf{B:D(B) < M(B)"} > B (12)

Another convenient "order parameter" for the roughening transition might be

the step free energy, o(8) , defined in (c) above. For B < Bc s

o(B) =0 .

In dimension d > 3

lim 8 '6(B) = =2 .

B
It is conjectured that

o(B) = 0, for B < By

(13)
o(B) >0 , for B > BR

We set

Bﬁ = inf{B:0(B) > O} (14)

Theorem 2.
Bc(d=3) < BR’Bﬁ’BE(d=3) E_Bc(d=2) 5

For B, and Sﬁ this result was proven by van Bejeren [12], for BE it has recent-

R
ly been established in [13]. The expected result would be



Bp = Bﬁ = Bﬁ , for all d

Bc(d=3) < BR(d=3) < sc(d=2) (15)

Next, we sketch a suitable notion of an interface in an Ising model : We

notice that if + b.c. are imposed at the boundary of A

. L,T then there is a

+
(Peierls) contour EL decomposing AL 7 into two disjoint subsets, AL T and
- o + » 3 o ’
. = i ] rs L .= = 1
AL,T > such that (E,O) € AL,T , S] + if j € AL,T border L SJ if
j € nL’T borders EL and
BZL = BAL’T n {x:xl =-1/2} .
We define the interface ZL to consist of the union of ZL and all closed contours
o
which are * connected with I -
In two dimensions, the interface, EL , has finite width, uniformly in L ,

and has long wave length fluctuations on a scale of VL , provided the temperature

is small enough, (B > Bc) . This result is due to Gallavotti [14].

In d >3 dimensions the conjectured behaviour of the interface is as follows:

For d =3 and B > BR » or for d >4 and all B > Bc , the interface :L

is well localized near {x:x, = - 1/2} and very rigid and thin, uniformly in L ;

1
D(B,n) 1is negative, for n large enough - presumably for all n > 1. (For rigorous

results valid at large B8 see [8,9,10,12].)

For d =3 and B < BR (but B close to BR) the interface EL still has

finite width but fluctuates on a logarithmic scale. (A theoretical argument support-

ing this claim is reviewed in the next section.) As B is decreased, some of the
following phenomena may occur : Interlacing chains of - spins will start to perco-
late into A" and, as a consequence, the interface grows many handles. In addition,
short wave length fluctuations may cause a lot of wrinkles on the interface. lence
the interface fattens. When B approaches Bc » the interface might approach some
self-similar surface, and below Be it will become "space-filling". Unfortunately,

there are no rigorous results, except for very large £ . (See also [13] for some

speculations.)

We now turn to the discussion of the rotator model : By Theorem 1, parts 2)

and 3), the rotator model never exhibits an interface.
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Does this mean that all equilibrium states are translation-invariant ? Before attempt-
ing to answer this question we quote a result that characterizces the translation-
invariant equilibrium states of the Ising- and the rotator models. For the rotator
model, define <(.)>B,9 by

<A(s)>B = <A(R(e)s)>B - (16)

» 0

where R(86) rotates each spin Sj through an angle 6 . If M(B) = 0 (i.e.

B < Bc) the states <(-)>B 6 coincide with <(+)> for all 6 € [0,27).

B,+ *
Indeed, for B < Bc . <(~)>B . is the unique translation-invariant equilibrium
)

state. This result is valid in the Ising- and the rotator model [15].

Theorem 3.

Let B > Bc be such that the free energy is continuously differentiable at

B.l) Then

1) [16] 1In the Ising model, every translation invariant equilibrium state is

a convex combination of <(-)>B N and <(.)>
]

B,-

2) [7] 1In the rotator model, every translation-invariant equilibrium state

has a representation

[ do(®) <>, o, (17)

where p 1is some probability measure.

We now return to the question as to whether all equilibrium states of the rota-
tor model are translation-invariant. The physical reason why there are no interfaces
in the rotator model, as remarked, is quite obvious : One might wish to measure the

profile of an interface in the rotator model in terms of

Dy, p(B:m) = f s(n,ﬁ)'s(-n-1,3)d”B(SAL T|i b.c.)
But

lim D

S P = S 8 S -n-1,8) 78,4

Since f(B) 1is concave, this condition is satisfied for almost all values of B8 .
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for all B and n ; (sce [7] for a precise statement.) Thus, the interface becomes

very wide (fat.) Since the model has a continuous symmetry, this is no surprise :
In order to fulfil # b.c., it suffices to turn the spins upside down extremely
slowly as one moves from j_ = (1,8) down to i_= (-T,a) . Interfaces (Bloch walls)

are not among the "topologically stable" defects of this model.

The role of Bloch walls (Peierls contours) or interfaces in the Ising model is
really played, in the rotator model, by another type of "topologically stable
defects", the vortices. They are characterized by an integer winding number of the
spin configuration, and, since the spin takes values in the unit circle, must have
co-dimension 2. The easiest way of describing vortex configurations in the rotator

model proceeds by applying a duality transformation, i.e. Fourier transformation in

the angular variables (see [5,17] , and refs. given there.)
Let

rB(B):= exp[Bcosb] (or := ¢ exp[--§(6+2nn)2]
nE Z

»

the Villain approximation.) Let ?B(n) denote the n'" Fourier coefficient of

r, - The equilibrium state of the rotator is given by the measure

aug(®) = 271 T x,(6,-0.0M do . (18)

(ij) B 3

The Fourier coefficients of n, are thus given by

B

) =z T, (n, Pu s

H s (19
b (i3) 8 (Gn)j’o

where 1ij is the oriented bond pointing from i to j

(6n). = T n, , and = -
b3; P "b

The factor 6(5 )..0 arises by integrating the factors exp[iej(én)j] over 0,

J

H

for all j . It imposes the constraint

én = 0

which is solved (Poincaré's lemma) by

where m : p > n%E Z is defined on oriented unit squares (plaquettes), p € Xd . We



=hlot=
may write
m o €Z ,
P c
. . . d,*
where ¢ 1is the oriented (d-2)-cell in @) dual to p .

In the Villain approximation,

rB(n) = expl T i

Applying now the Poisson summation formula, we conclude that the Villain approxima-
tion to the rotator model is isomorphic to a model whose equilibrium state is given
by '
_~ 19 o
du(@ =21 1 (£ e ©Odua),
B di%x @ €Z &
ce@ ) Tc

where dy. is a Gaussian measure on the space of'orbits"[a] , where [a] is

the equivalence class {a + I Xc'} ,and yx :c' > O €ER 1is a function defined
c'€dc N -

on (d-3)-cells, c' , of sz) . The inverse covariance of duG is B 16d

It follows from the (gauge invariance) properties of duG that all configurations

%
Q@ = {qE €EZ : cC sz) } must satisfy the constraint

dp =0

This shows that the connected components of each configuration ¢ can be interpreted
as closed, (d-2)-dimensional vortices with integer winding numbers prescribed by

{qk} . (Back in the rotator model ¢« corresponds to vortices in the spin field.)

By choosing appropriate, non-translation-invariant boundary conditions one can force
an open vortex into the system which extends to the boundary (where it is '"closed
off" by the b.c.) and plays the role of an interface, I , in the Ising model. This
vortex might cause a breakdown of translation invariance in the thermodynamic limit.

In the next section we sketch theoretical arguments supporting the following

Conjecture. [7]

1) In d <3 dimensions, all equilibrium states of the rotator model are

translation-invariant and are given by formula (17) of Theorem 3.

2) In d > 5 dimensions, the rotator model has non-translation-invariant

equilibrium states for all B8 > BC .
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3) In d = 4 dimensions there exists an inverse temperaturce B, > BC such

R
that for £ > BR there exist non-translation invariant equilibrium states while for

R < ﬁR all states are of the form (17).

The idea behind this conjecture is that in dimension d < 3 vortices have
dimension O or 1 and are therefore unstable against long wave length fluctuations,
no matter how large B 1is. (For d = 3 , results analogous to the ones of Galla-
votti [14] should hold.) For d = 4 , vortices are two-dimensional. They are there-
fore likely to be rigid for very large £ , but are expected to have logarithmic
fluctuations above a roughening temperature; see Sect. 2. Fin lly, vortices of di-
mension > 3 are expected to have finite fluctuations, as long as B8 > BC 5

(SECt- 20)

2. The solid-on-solid model.

In this section we review some recent rigorous results on an approximate, statis-
tical theory of (lattice) surfaces, like the interface in the Ising model, the vor-
tex sheets in the four-dimensional rotator model or the electric flux "world sheets"
in a lattice gauge theory. We also show that the same approximation yields an unin-
teresting theory of one- or three- and higher dimensional objects : One dimencional
objects (strings) fluctuate on a scale of VL , as expected on the basis of the cen-
tral limit theorem, while three-dimensional objects ('bags'") have uniformly bounded

fluctuations. See Theorem 4, below.
The approximation considered in this section involves the following elemcnts

1) Only surfaces (or strings, or bags) which are graphs of functions are admit-

ted as elements of the statistical ensemble, E

2) The statistical weight of a surface is a local functional of the surface,

e.g. its area.

Specifically, the models which we consider are defined as follows : As our
parameter space we choose some finite, rectangular array of sites, A , in the lat-
tice Zﬁ ,» d =1,2,3,... ; (the interesting case is d = 2.) Each (hyper-) surface
in our statistical ensemble E = Eh is given by the graph of a function, $A ,
assigning to each site j € A an m—-tuple of integers, $j = (¢},...,¢?) interpreted
as the coordinates ("heights'") of the (hyper-) surface in the directions transverse
to the parameter directions, in such a way that (jl,...,jd, ¢;,....¢?) are the
coordinates of the center of a d-cell in the surface described by $ﬁ . We assume,

temporarily, that
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¢§. =0 , for 3 € A, (O b.c.).

The statistical weight, wB(3A) , of the surface described by $n is defined by

» -1 _-BA(3,)
where the "action" A($ﬁ) is given by the total d-dimensional volume of $h (or

an approximation thereof), in particular A($h) is the area of the surface when

d = 2 , and the partition function, ZB A e is chosen such that
>
A
For m=1,
Ao = [A] + = fo.-¢.| (21)
: (i) 1

where the sum ranges over all nearest neighbor pairs. The factor exp(-8|A|) can

be absorbed in a redefinition of ZB AC The model so obtained is called the solid-
]

on-solid (s-o-s) model [2]. It describes the statistical mechanics of the interface

of a limiting, d-dimensional Ising model with #* b.c. which is obtained by letting

the nearest neighbor couplings in the l-direction tend to « while keeping them

fixed in the other directions.

When m > 1 it is difficult to analyze the models with actions given by the
volume of d-dimensional hypersurfaces in Zﬁ+m ; (see Sect. 3.) We shall consider,

instead, e.g. the small fluctuation approximation to the volume, given by

1
AG) ~ I+ 3 = @307, (22)
Gi" J ]
but approximate actions like
> >
AL+ & o6l (23)
Gim g
can be analyzed, too.
We let <(-)>8 A denote the expectation defined by (20), with A(%A) as in
;]

(21) or (22), (23). [We shall usually think of the s-o-s model corresponding to
(21), but most results described in the following remain valid for the models with
actions (22), (23), as follows from the analysis in [5].] Let F(g) be an arbitrary
continuous, polynomially bounded function of {¢j—¢j,} » where (jj') are nearest

neighbor pairs belonging to some finite subset of %9 . On this class of functions
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a thermodynamic limit

<F>_ = lim <F>

B B.hj ’

Jw

Aj/'zd , @8 j + ® | can be constructed by a compactness argument; (for the action

in (22) it exists by correlation inequalities [18], and, in all cases, it exists

for large enough values of £ .) We have

Theorem 4.

Consider the models defined in (20) - (23). Then

1) For d=1,

e 2
<(¢0—$%) >B ~ cl(B)]x1 , as x| > = .
2) For d =2,
(3 -4.)° (8)
< ¢0 ¢X >B < c2 =

uniformly in x , provided £ 1is large enough. When £ is small enough,

2
63(8) log|x| < <($0*3%) >B < c&(ﬁ) log|x| (24)
3) For d> 3,
> > 2
<(¢0"¢x) >8 < CS(B) .

for all B .

Remarks.

(1) Part 1) is a standard consequence of the central limit theorem : The ran-
. > L . .
dom variables ¢j—$j, » where (jj') ranges over the bonds (nearest neighbor pairs)

of Z , are independently distributed!

The first half of part 2) follows from a standard low-temperature (Peierls
contour) expansion, (as observed in [19].) The deepest result is the lower bound in
(24) which was established in [5] by a rather difficult analysis. The upper bound in
(24) and part 3) are standard consequences of infrared bounds [20] which are applica-
ble, because the functions exp(-B|¢|) and exp(- % ¢2) are of positive type.

Part 3) has recently been noticed in [13].
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(2) The model with d =2 , m =1 and A(@A) given by the r.s. of (22) is
dual to the Villain approximation of the two-dimcnsional rotator model; see Sect. 1,
(18), (19), etc. The behaviour described in part 2) of Theorem 4 is, in this casc,

related to the Kosterlitz-Thouless transition [5].

(3) The transition described in part 2) is a model of the roughening transition:

For large B typical lattice surfaces are rigid, i.e. have uniformly bounded fluc-
tuations. When B drops below some critical value, BR , then typical surfaces are
rough and exhibit logarithmic fluctuations. This is the universal behavior of conti-
nuum surfaces. A roughening transition occurs only in ensembles of lattice surfaces,
because the lattice breaks the continuous group of translations traunsverse to the
surface. At high temperatures, this symmetry is restored, i.e. "enhanced at large

distances" in the models considered above, [5,21]; (see also [22].)

Next, we sketch a few ideas in the proofs of parts 2) and 3) of Theorem 4.
For simplicity we consider the action (22) with m = 1 , but the results hold in

general [5]. We start with the lower bound in (24).

Let duB A(¢) be the Gaussian measure with mean O and covariance ('—Baﬂ)_1 ,

where éﬂ is the finite difference approximation of the Laplacean with O Dirichlet
data at the boundary of A . The equilibrium state of our model can be rewritten

as follows :

Z dw,(¢,) = T (I &Cp.-n))du, ,(¢)
B,ATBTTA €A n€ Z j B,A
= 1 (1+2 ¢ cos(Zﬂqj¢j))duB’h(¢) . (25)

JEA .=1
J qJ
There are three basic steps in the proofs [5] of the lower bound in (24).

1° The first step is a combinatorial identity : Let p denote an arbitrary

function on 22 of finite support with values in 2nZ ; p 1is called a "charge
density". We say that p is neutral iff I pj =0 . Let ¢(p) =& ¢jpj
j i

It is proven in [5] by means of an inductive construction extending over all distance
scales of 2" , n =0,1,2,... , that, for all A czz .

I (142 ¥ cos(2mq.¢.)) = & cy T (1+K(p)cos¢(p)) , (26)

: = B |

JEA q.=1 NEF pEN

] A

where F, is a finite family of collections, N , of neutral charge densities, p ,

A
with the property that two densities, p and p' # p , in each N have disjoint

supports which are so far separated that cos ¢(p) and cos ¢(p"') are "almost inde-

pendentq Furthermore, ¢, >0 for all NE€ FA . The constant K(p) 1is an entropy



= 15

factor which can be bounded by exp(cA(p)) , where

oo

A(p) = I (An(p)-l) .
n=o

and An(p) is the number of 2" x 27 squares needed to cover the support of p .

2° The second step consists of a "block spin integration" which allows us to
extract "self-energies'" of the densities, p , providing convergence factors which
compensate the constants K(p) . In the simplest case (name¢'y for the partition
function) it results in the following identity : For all N ¢ FA ,

J 1 (1+K(p)cos ¢(p))du
pEN

B’A(¢)
(27)

=[n (1+e-BE(p)K(p)cos ¢(p))du

b MO

~ -1 .
where E(p) ™~ const. I pi(-&n)ij Dj 1s related to the electrostatic energy of the
1,]
charge density p , and the renormalized charge densities, p , are still neutral

but have "magnified" supports.

A key estimate consists in showing that

Ep) > eAlp) ,

for some € > 0 . Thus, for large B ,

z(p) = e—SE(Q)K(p) < e-Blz 2nd(p)<< 1

where d(p) 1is the diameter of the support of p . Thus, for large B8

]

dwren.(¢) o E;I L N I (1+z(p)cos ¢(p))dy (¢) , (28)

A ner, NoeN Bl

is a positive measure which is, formally, invariant under the continuous symmetry

. > p.tC (29)
¢J ¢J ’
where c¢ 1is an arbitrary real constant; for

cos ¢(p) = cos[($+c)(P)] ,

(¢) 1is clearly formally
(¢) break

as I c 55 = 0, by the neutrality of p ; moreover duB A

invariant under the symmetry (29), except that the b.c. imposed on

dug A
(29).



- 16 -

3° Since, for large B , the measure dwre given by (28) is positive and

n.
formally invariant under the continuous group of symmetries (29) which, however, is
always broken by the b.c. imposed at 9A , we may apply a Mermin-type argument to

conclude that

- - 2 const.
lim_ faw__ (6 )[¢ (k) |7 > ==—= (30)
A72 ren 'A k2
for all k # O . Here a(k) = (2'17)-2 ) 2¢.e1k‘J . From this one can deduce the
€z

lower bound in (24), (by Fourier transformation.)

Next, we comment on the proof of the upper bound in (24) and part 3) of Theo-
rem 4. Part 3) was previously proven in [13]. Here we sketch a slightly different

argument which gives a stronger result. For technical convenience we interpret the

state <(_-)>B as a limit of finite volume states <(')>B,ﬁ with periodic b.c. .
[In order to define the periodic b.c. state, one replaces the counting measure on
{¢j €EZ} by exp(-eqng) x the counting measure. One first takes A.“7 Zd and subse-
quently €™n0 .] As explained in [20], the upper bound in (24) and part 3) follow

from estimates of the form

2 2
<exp(e ? hj(au¢)j)>8,h-$ explc(B)e ||h(l2] . (31)

with € small enough,. (€|]h[]§ <€, for some € > 0.) Here aa is the ath

component of the finite difference gradient, and h 1is an arbitrary real=-valued
function on A . Inequality (31) is proven by using a transfer matrix in the
a-direction of the lattice. As explained in [20], the transfer matrix formalism

reduces the problem to estimating the quadratic form with integral kernel

eeh(x-x')e'FB(x-x')

where

Blx| , or
FB(X) -

(8/2)x>

from above in terms of the gquadratic form with integral kernel exp[—FB(x-x')]
This is accomplished by using Fourier transformation : For FB(x) = B|x| , the re-

quired bound follows by noticing the inequality

‘ P
|[(k+i£h)2+ﬁz] 1| < CL(B)E h [k2+ﬂ] : ,

for |eh| < B/2 . For FB(x) = (8/2)x2 , one uses



=

£2h2/2ﬁ

|exp[-(1/28)(k+ich)2]| <e cxp[‘(l/Zﬁ)kZ] ;

for arbitrary € and h .

From these inequalities (31) follows. The upper bound in (24) and part 3) of
. . S 2
Theorem 4 follow from (31) by expanding to second order in ¢ , dividing by €

and taking € to O .

In dimension d > 3 , we expect that a result much stronger than part 3) of
Theorem 4 holds. For all B8 > 0 ,

> -m(B) | x|
<4, ¢,25] < c(®)e ; (32)
for some constants c(B) < ® and m(B) > O . This would imply that all correlations
between distant pieces of three- or higher dimensional random hypersurfaces decay
exponentially. For d = 3 , (m = 1) and the action A(¢ﬁ) given by (22), the
bound (32) has recently been proven by Gopfert and Mack in [23].

Next, we review some results on surface (or step) free energies in the solid-

on-solid models : Let ZB A be the usual partition function of the model with O b.c.
3

defined in (20). Let ZB A(Z) , E € ZF‘, be the partition function of the same model,
]
but with b.c.

$: =% ,for jeA, i >0

]
(33)
-> . .
¢j =0 , for j€ A, i < 0
We set
3> >
1,(£38) = 1lim_ log(z, ,/Z_ ,(£)) (34)

We note that Td(g = 13;8) (m = 1) 1is expected to behave qualitatively similarly as

the step free energy, o(g) , of the (d+l1)-dimensional Ising model. We consider, for

simplicity, only the case m =1 , assume that £ # O and that the action is given
by (21) or (22). We then have

Theorem 5.

1) 11(L;H) 0, for all ¢

2) TZ(L;B) >0, for large B
for all ¢ # 0

Tz(g;e) 0 , for small B8



S

3) For the models with action given by (22) and d > 3 ,

1d(£;8) >0, for all £>0, £ #0 .

Remarks.

Part 1) is trivial. The inequality in part 2) is a consequence of a standard
low temperature expansion; e.g. [19]. The equation in part 2) follows from the re-
sults of Sects. 6 and 7 of [5]. Part 3) follows from the results of Gopfert and Mack
[23] (d = 3) and correlation inequalities [18], (d =3 - d > 3) . For results

related to the ones in [23] but established earlier see also [24].

We believe that Theorem 5 can be extended to all m > 1 and all actions

(21) - (23) , but not all cases have been worked out.

Finally, some recent results in [5,25] suggest that the continuum limits of

the two-dimensional models studied in this section are given by massless Gaussian

measures, for B < BR and for arbitrary m = 1,2,3,... . (This is trivial for
d =1.) In the next section, we study random surfaces with more complicated conti-

nuum limits.

3. Selfavoiding random surfaces and string theories.

In this section we restrict our discussion to two-dimensional random surfaces
embedded in a lattice Zd (or embedded in ZEd) , d=3,4,... . We propose to con-
sider statistical theories of such surfaces which are geometrically more natural than
the ones studied in the last section, but which are seemingly almost as simple as

the s-o-s models. Our discussion is sketchy; (some details appear elsewhere.)

The models considered in Sect. 2 have a serious defect : All random surfaces
admitted in the ensembles introduced in Sect. 2 are required to be graphs of funct-
ions. It is natural to study more general ensembles of lattice surfaces and their
continuum limits. If one admits lattice surfaces which may pass through each plaquet-
te (unit square) of Zﬁ an arbitrary number of times one cannot construct a mathe-
matically meaningful statistical theory : The number of such surfaces of a given
area - i.e. containing a given number of plaquettes counted with multiplicites -

grows faster than exponentially in the area; see e.g. [26].

There are at least three ensembles of lattice surfaces which are physically

natural
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a) Branched random surfaces arising in plaquette percolation models [27].
(They consist of arbitrary connected arrays of "occupied" plaquettes, each plaquette
in Zd being either "empty" or "occupied" once. The weight of such a surface, [ ,

is given by pA(z) y, O0<p<1l, A(Z) = # plaquettes belonging to I .)

EB.EI.-

b) Let Yy be a closed curve in Zd , and let be the class of all

d

"self-avoiding" connected lattice surfaces bounded by y , i.e. surfaces, f cz  ,

with the property that each link b€ £ , b & y , belongs to precisely two plaquet-
tes of I and each b € y to precisely one plaquette of [

c) Let y be a closed curve in Zd , and let EY be tii: class of all connected

. d
surfaces bounded by y which pass through each plaquette of Z  at most once.

The ensemble EY described in c) occurs naturally in the study of interfaces;
(see Sect. 1), while the ensemble Ei'a' introduced in b) and the one introduced
in a) (which we denote by Eperc.) arise in models which are limits of gauge theo-
ries; see Sect. 4, and [27,28]. For a somewhat detailed discussion of plaquette-

(and general d-cell) percolation see [27] - we limit our review to a discussion of

8ioa's . . . . . . :
E and EY » ensembles which are also studied in connection with string theories.

Let Eﬁ = E:'a' , OT ET . Each surface [ € Eﬁ is assigned the statistical

weight

wi Gl =z () Lexpl-8(A(Z) +ux(2))] , (35)

B,yu

where x(I) counts the number of handles of I (Euler characteristic), B > O

?

u >0 ; (A(Z) , the area of I , counts the number of plaquettes in I .)

It is an elementary combinatorial exercise to show that for each d and each

z, (v)

B.u exp[-B(A(D)+ux(2))] < = (36)

= I

o
Y

for B 1large enough, while

ZB’u(Y) diverges, _ (37)

for B small enough.

One can argue that there is some value, 80 , of B which only depends on d

(and possibly on p ), but is independent of y such that (36) holds for all
B > Bo ,» while (37) holds for all B < BO .

As a field theorist one is then interested in the question whether BO is a
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critical point, in the sense that there is some divergent correlation length, as
R~ ﬁo . This question can be investigated by considering, for example, the "string

tension"

a(B,p) = -1lim A('\f)-1 log Z

syl B.u(Y) ’ (38)

where Yy 1is a square loop in a coordinate plane, A(y) the minimal area enclosed
by y , and d(y) its diameter. In a statistical mechanics context, e.g. in the

s-o-s model, the string tension is interpreted as the surface tension. The point

Bo is a critical point if
a(B,0)~N0 , as B~y B, - (39)
More refined methods to analyze the vicinity of B, would involve the stﬁdy of

"correlations". We sketch one example; (but see [27] for a more detailed discussion):

Let vy,y' be two non-intersecting loops, and define

Hi

ZB,U(Y,Y') b 4 EXP["ﬁ(A(E)*‘UX(E))]

LEE
€ YUy'
L connected

We define a "glue ball mass"

ECR R |
m(B,p) = lim - = log ZB.U(Y'Y;) : (40)

a-+rw

where y; is the loop that corresponds to a translation of y' in the direction

of a lattice axis by a distance a .

If 8o is a critical point in the sense of (39) one expects that
m(B,w) N0 , as BB - (41)

A more subtle question concerns the behaviour of the dimensionless quantity
m(B,u)Z/a(B,u) , as B'\$Bo . In [23] a model is studied in which the analogue of
this quantity tends to O , as B \y QD.

Finally, we want to ask whether the three models introduced in this section
exhibit roughening. This question can be studied, for example as follows : We choose
a square loop, Yy , of diameter d(y) 1lying in a coordinate plane and define the

probability

Pl = 2, M : y  expl-BA(D+x(D)] (42)
s H ):CEY

d(z,0)>d
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where d(Z,0) 1is the maximal distance of the set L N n from the origin, and L
o
is a (d-2)-dimensional plane perpendicular to the curve Y and containing the

origin. We consider

P(d) = 1lim P(d|y) . (43)
d(y)r=

It is easy to show that for B sufficiently large

P(d) < e ©(B) (44)

for some constant c(B) > 0 .
The question then is whether there exists some value BR of B , with

B, > B > (45)

such that for Bo < B < BR
P(d) =1 , for all d< =

On the basis of results concerning the Ising model in three dimensions [6,13] and
the s-o-s model [5] (see Sects. 1,2) one would conjecture that the percolation model

of branched surfaces exhibits a roughening transition.

(1f Bo is a critical point it might also be possible that (44) is valid for
all B < Bo » with c(B) ™0 , as BNy Bo.)

Once all these preliminary questions (see (39) - (45)) - which actually seem
to be very hard ones - are out of the way one can address the most interesting one :

What are the continuum limits of these lattice models of random surfaces ? So far,

there has not been much theoretical progress on these questions.

Until now, there is only one convincing attempt at constructing a continuum
theory of random surfaces, the one by Polyakov [29], clarified in [30]. Presumably,
this theory, too, can be obtained as a continuum limit of some "lattice theory"

It is essentially the continuum limit of discrete, imaginary-time quantum gravity

of piecewise linear, simplicial (two-dimensional) surfaces; a straightforward,
functional integral version of Regge calculus. Polyakov's theory is certainly very
fascinating, but (as the remark above indicates) its relation to the physics of
interfaces in statistical mechanics or to gauge theory is mysterious. In contrast,
the other models, a), b) and c), discussed in this section and the s-o-s model
discussed in Sect. 2 are related to gauge theory and to the physics of interfaces,
respectively, in a definite way : They are obtained as limiting models, as some para-

meter tends to O or « . See Sects. 2 and 4. Polyakov's theory is intended to
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represent a correct mathematical formulation of string theories, (dual resonance

models.)

4. Lattice gauge theories.

There are (at least) two ways in which random geometrical objects, such as-
random loops or random surfaces, arise in the analysis of lattice gauge theories

(in the imaginary time description.)

1) Sheets of chromo-electric flux.

Lattice gauge theories can be reformulated as gases of random geometrical
objects in different ways : The best known such reformulation results from the strong
coupling (high temperature) expansion which represents a lattice gauge theory as a
gas of closed random surfaces - closed sheets of chromo-electric flux - which inter-
act by hard core exclusion [31]. (For a somewhat different description of chromo-

electric flux sheets, see also [32].)

2) Defect gas description of lattice gauge theory

We first consider a pure lattice gauge with a discrete gauge group on a
d-dimensional lattice (or a Higgs theory with a non-trivial, discrete unbroken sub-
group.) In such a theory, gauge field configurations can be characterized in terms
of frustrated plaquettes, i.e. unit squares, where the curvature is non-vanishing.
As a consequence of an integral form of the Bianchi identities, frustrated plaquettes
form (d-2)-dimensional, closed surfaces which one calls (by an abuse of this name)
vortices. They are labelled by group elements. The original lattice gauge theory
can now be reformulated as a gas of vortices interacting by geometrical constraints.,
At weak coupling (low temperature) the vortices have small effective activities and
form a dilute gas. This observation is the starting point for the low temperature
analysis of lattice gauge theories : Vortices play the role of the Peierls contours
in the Ising model and can be used to construct an analogue of the Peierls argument
(or a contour expansion) which permits one to control the qualitative features of
such lattice gauge theories at weak coupling, in three or more dimensions. See [21].
The upshot of this analysis is that gauge theories with discrete gauge groups exhi-

bit deconfining transitions in dimension > 3 .

Clearly, in theories with continuous gauge groups, vortices (as defined above)
are not likely to provide us with a useful notion, although vortices of a somewhat
different type appear to play an important role in a confinement mechanism in gauge

theories with gauge groups containing a non-trivial, discrete center. As an example
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of a gaugc theory where vortices are not a useful notion we consider the compact

U(1) 1lattice model (compact QED.) This gauge theory permanently confines electric

charge in two and three dimensions [23], but exhibits a deconfining transition in

four or more dimensions [33,21]. Vortices are not among the "topologically stable

defects" of the U(1) model and cannot be used to explain those facts. (This cir-
cumstance is analogous to the one that the interface is unstable in the rotator
model; see Sect. 1.) The topologically stable defects of the U(1l) model which are

dilute at weak coupling are its magnetic excitations : Monopoles in three dimensions,

monopole lines (magnetic currents) in four dimensions, etc. In the continuum limit,
such excitations are labelled by first Chern classes of the ficld configurations at
infinity (identified with s? x r43 .) Thus they have dimension d-3 and carry an
integer magnetic charge. The corresponding magnetic excitations of the U(l) model

on the lattice can be exhibited by applying a duality transformation (Fourier trans-
formation in the gauge field variables) and a Poisson summation formula, (as explained
at the end of Sect. 1 for the rotator model.) The interactions between different
magnetic excitations have long range. This makes the analysis of these models, at

weak coupling, interesting and mathematically non-trivial; see [21,23,33].

In the U(1) model, confinement breaks down if the magnetic excitations are

bound in finite, neutral clusters which form a dilute gas, thus causing only small
(infrared-irrelevant) corrections to Gaussian "spin wave" theory. This only happens

in four or more dimensions.

In a non-abelian, pure gauge theory, e.g. one with gauge group SU(n) , there

are two kinds of topological excitatioms, vortices, of co-dimension 2, and instantons,
of co-dimension 4. Vortices are labelled by elements of the center of the gauge

group, instantons by elements of nB(G) . One can argue that, in four or more dimen-
sions, it is the statistical mechanics of the instanton gas which determines whether,
at long distances, the theory is in a perturbative or non-perturbative phase. In

four dimensions, it is most likely that the instanton gas is always in a plasma

phase, instantons are not stably bound in neutral clusters, the infrared behaviour

is non-perturbative. However, in five or more dimensions, instantons form closed

surfaces of dimension d-4 , and a simple energy-entropy argument suggests that, at

weak coupling, the effective activity of an instanton decreases exponentially in its

volume (= length for d =5 ,...). One is thus led to predict that non-abelian models

exhibit a deconfining transition to a perturbative phase at weak coupling, in five

or more dimensions. (In contrast to abelian gauge theories or ones with discrete
gauge group, there are, however, no rigorous results for non-abelian lattice gauge

theories at weak coupling, yet!)

Next, we briefly summarize some recent, rigorous results concerning random
geometrical objects in lattice gauge theories and some limiting models of such theo-

ries :
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As our lattice we choose ﬂﬁ » the gauge group is assumed to be compact and
is denoted by G . The gauge field, j = {gxy} , is a map from oriented pairs of
ncarest neighbors, xy , in ZZd to elements, gxy , of G such that

=l

Byx = Byy

Formally

Joa (£)ag”

g.. = P(e ) , for all xy . (46)

Xy
The Euclidean functional measure (vacuum functional) of a lattice gauge theory is
defined by
-1 ~BA(gﬁ)

duB(g) = lim hii dgx

Z~.e . (47)
r7zd Bsh xych XY

where )\ 1is a rectangular array of sites, dgxy is the Haar measure on G , for all
Xy , A(gn) is the (Euclidean) lattice action for the model in A , B = 1/e2 is

the inverse square coupling ("inverse temperature"), and 2 is the usual parti-

B,A
tion function (making de a probability measure.) Given a loop Yy in Zﬁ', we let
g, = 1 Dg (48)
Xy<y
denote the ordered product of gauge fields along y , (i.e. the holonomy operator

associated with y .) We define the (Wegner-) Wilson loop observable by

UX(Y) = X(gY) ’ (49)

where y 1is some (irreducible) character of G .

We shall consider the following examples of lattice actions :

(1) A(g,) = - L Re x (g, ) (50)
A o "3 ?
pch =
where p ranges over the plaquettes (unit squares) of A , 93p 1is the oriented

boundary of p , and & is a faithful character of G , (e.g. the one of the funda-

mental representation for G = SU(n).)
(2) A(g,) =-1t ¢&(g.), (51)
A pch e “dp

where Ge is the (Kronecker) &- function on G concentrated at the unit element, e,

and G 1is assumed to be discrete in this example.
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Let &« be a (d-2)-dimensional surface in the dual lattice, ( Zﬁ)* , with boundary
9Y. (a closed, (d-3)-dimensional surface.) We definc a disorder operator, Dz(az) ,

where 2z 1is an element of the center of G , as follows :

D_(32) = exp[-B(A(g-z;)-A(g))] , (52)

where p
gap-z if p is dual toa d-2 cell in I ;

(g-zz)ap = (

Lgap , oOtherwise.

In order to analyze the behaviour of chromoelectric flux sheets we study expectation

values like

n n
1Y) . = .
< X(YJ)DZ(BEDB J.n HX(YJ)Dz(aE)duB(g) ' (53)
=l j=1
n=1,2,3,... . In particular, the roughening transition for electric flux sheets

can be analyzed in terms of <Wx(y)Dz(32)>B .

We also introduce bulk- and surface thermodynamic functions, (see Sect. 1,
(6)-(8); Sect. 3, (38) for related definitions) :

(a) The free energy :

f(B) = 1lim (TLd-I)_llog ZB A
L, T o A

(b) The string tension :

1 1
a(B,x) = lim - — log<W (y,)>
’ Lo . L2 x 'L

where YL is a square loop in the 1-2 coordinate plane of diameter L . [The
string tension corresponds to the surface tension, 71(B) , in spin systems. In

three-dimensional 'EZ models they are related by a duality transformation.]

We define an expectation

- x = 3 -
<( )>B ii: <( )ﬂgyL)>B/<%§YL)>B . (54)

One can also define the analogue of
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(¢c) The step free energy

W ()3

1
o(B) = lim e log
Lo Ej ’

where the loop Yi differs from YL by a step of height 1 in the middle of two
opposite sides. The functions a(B,x) and o(B) serve to describe the thermodynamics
of chromo-electric flux. In particular, o(B) 1is of interest in studies of the
roughening transition of flux sheets [ 4] . It is natural to also introduce functions
describing the thermodynamics of "magnetic flux'" (vortex sheets), or more generally
the thermodynamics of the gas of stable ("topological') excitations, like the magne-
tic excitations in the U(1) model,... . As an example, we define a thermodynamic
function for vortex sheets : Let A be some rectangular array of sites centered at
0, and I a (d-2)-dimensional coordinate plane in sz)* . We let Q denote the
set of plaquettes on 3A which are dual to some d-2 cell in I . We consider the

following boundary conditions on dA :

(0 b.c.) gap = e (the unit element in G) , for all p < 3A ;

(twisted b.c.)

e, pci3L, pédQ
=
z, p€Q , for some =z 1in the center of G .

Let Zg A <(- )>B A be the partition function and the expectation with O b.c. on

aA , and 2% <(- )>B A the corresponding quantities with twisted b.c. . We

B,A°
define

(d) The magnetic "string" tension

Z
0(R,z) = lim - §_3 1og( B A) 5
L,T>e TL 8 A

One will introduce analogous functions associated with other excitations of dimension
> 1, in particular with the stable ones, (like the magnetic current lines in the
four-dimensional U(1l) model.) Point-like excitations are studied in terms of "topo-
logical susceptibilities" and sum rules (like the Stillinger-Lovett sum rule for

the gas of magnetic monopoles in the three-dimensional U(1) model.)

These quantities will be studied in more detail elsewhere.
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Next, we summarize some recent results,

Theorem 6.

1) [27]) Let G = z o, let de be given by eq. (47) with an action A(gA) defined

as in (51). (This is the n-states Potts lattice gauge theory.) Then there exists an

analytic interpolation in n (of thermodynamic functions and correlations) in a

neighborhood of the positive real axis with the property that the model corresponding

to the limit n » 1 1is the plaquette percolation model of branched random surfaces

defined in Sect. 3, a), (ensemble Eperc.)

2) [28] Let G = SU(n) , and renormalize the gauge fields such that

1l - =n 1
ExyBxy ~ ByxExy ’

Then, for B small enough, there exists an analytic interpolation in n with the

property that the n > O limit yields the model of selfavoiding random surfaces

defined in Sect. 3, b) (ensemble Ei'a') , in particular
lim n_|Y|<W (Y)>B = ZB' O(Y) s
n+o Xo 2

where ZB u(Y) is defined in (36).
»

This result motivates the definition and analysis of the models introduced in

Sect. 3.

Next, we discuss some results which are related to the ones in Sect. 1. They
are based on the correlation inequalities in [7] which are only known to hold for
abelian gauge groups and an action A(SA) given by expression (50) , (i.e. the

Wilson action.) The analogue of Theorem 3 is the statement that if the free energy

f(R) 1is continuously differentiable at some value B = Bo then there exists only

one translation invariant state, <(-)>B , for B = 80 [7]. Thus non-uniqueness
: o
of the vacuum functional in an (abelian) lattice gauge theory only occurs at a first

order transition. A result analogous to Theorem 1 is

Theorem 7. [7]

1) If a(B,x) =0, and <(-)>é is invariant under translations in the 1-2 plane

then

x= .
<(.)>B <( )>B ,

(i.e. the electric flux sheet is completely rough.)
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2) 1f @(g,z) =0, and ... then
<(-)>Z =<)>,
(i.e. the vortex sheet is rough or "fat".)
3) In the U(l) models,
¢(B,z) = 0, for all B ,

(i.e. U(1l)-vortices are always fat. This is the analogue of the results for the rota-

tor model described in Sect. 1.)

4) [6] 1In the three-dimensional Z, model

a(B) >0 & @(B) =0 . s

Next, we would have to discuss roughening transitions in lattice gauge theories.

The electric flux sheet bounded by an (infinitely extended) Wilson loop may, a priori,
undergo a roughening transition which does not coincide with a deconfining transition

[32,4]. That transition can be described by the following "order parameter"
D(B,n) = <D, (L)>F , z fe , (55)

where I 1is a (d-2)-dimensional, rectangular array of sites with sides of length
2n which is centered at the origin and is perpendicular to the plane containing
the Wilson loop. In the three-dimensional 22 model the parameter D(B,n) defined
in (55) is dual to the parameter D(B,n) introduced in Sect. 1, (10). For small B
one expects that the phase of D(B,n) approaches the value arg z (the phase of
the central element 2z ) exponentially fast, as n > ® . This can presumably be
proven by a fairly straightforward extension of the arguments in [8,10]. The beha-
viour of the function D(R,n)-D(B,») 1is a measure for the fluctuations of the

infinite flux sheet in directions perpendicular to the plane of the Wilson loop.

The roughening transition is characterized by the circumstance that, for all

B>BR’

arg D(B,n) =0, for all n , (56)

while, for B < BR s
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lim arg D(g,n) ¥ O . 2 (57)

N

(Here e = Vs;l is the coupling constant at which the roughening transition occurs.)
It follows from Theorem 7 that, in abelian lattice gauge theories,

a(B,x,) =0 = arg D(8,n) =0 , for all n,

B. 2 B > (58)
where 8 is the point at which the deconfining transition occurs.

It is expected that the roughening transition can also be characterized by the

vanishing of the step free energy, o(B) , i.e.

O(B) >0 ’ for B < BR ’
(59)

o(B) =0 , for B> Br
However, there are no rigorous results about roughening transitions known, yet.

Besides chromo—electric flux sheets there can exist other two-dimensional
"topological" excitations, like vortex sheets, exhibiting a roughening transition.
Such a transition should only occur in a phase characterized by a non-vanishing sur-
face free energy of the excitations in question, (the analogue of the string- or sur-
face tension. Recall that, in the four-dimensional U(l) model , @(B,z) =0
implies that <(-)>; = <(-)>B is translation invariant!) One expects that in the
confinement phase of a (lattice) gauge theory only the string tension is non-vanish-
ing, i.e. only the chromo-electric flux sheet may exhibit a roughening tranmsition,
while other two-dimensional defects, e.g. the vortex sheets in four-dimensional

theories, are rough or "fat" throughout that phase.

Heuristically, roughening transitions in lattice gauge theories can be described
in terms of the models studied in Sect. 2, like the s-o-s model, but there is no

rigorous justification of such approximate theories, yet.

1) This characterization has been developed in collaboration with E. Seiler.
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