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0. Introduction.

When the motion of a fluid may be considered as approximately two=
dimensional, the fluid often exhibits well defimed vortices. The existence of
such vortices is an experimental fact, which already Poincaré tried to n:plﬂin.}.
If dissipation may be meglected, the motion of the vortices is Hamiltonian,
and it is natural to study the "gas of vortices" by the methods of statistical
mechanics. Onsager [20] has argued that when the total energy of the system
is sufficiently large, the "gas of vortices" is in a "negative temperature
state". He further argued that, in such a state, vortices of the same sign
attract each other. In fact the coalescence of vortices of the same sign has
later been observed in computer experiments (see Montgomery and Joyce [17]),

and is claimed to explain in part the existence of large well-defined vortices

In this paper we study rigorously the statistical mechanics of
a gas of vortices in the thermodynamic limit. We let thus the volume of fluid
go to infinity, while the density and mean emergy of vortices tend to constants.
L]

In this limit, no negative temperature states are found to exist s contrary

to Onsager's proposal.

Our main results are presented in Sect. 3, (Theorems 3.1, 3.2)

*) The argument of Poincaré ( [22] chapitre VIII) is based on a discussion of
the stabillty of motion.

#*) See also Kraichnan and Montgomery [15] for a discussion of this theory.
Note that worticity is conserved in an inviscid fluid (theorem of Helmholtz);
therefore Onsager's mechanism cannot explain the appearance of well defined
vortices in a fluid where the vorticity is smoothly spread out inicially.

waey MNepative temperature states are known to exist for certain other systems
without kinetic energy (spin systems). We claim that nothing of the sort is
present here.



1. Potentiala.

Let v = f?lrvz} be the velocity field of an incompressible two-
dimensional fluid in a bounded open region A cR® . The incompressibilicy

relacion

implies the existence of a stream function ¥ such that

ay ay
'“'1"::1:.:2 o Yy ® = 2

if we know that the flow of v through pieces of the boundary of A wvanishes.

Introducing the vorticity

’ (1.1)

one sees that the instantaneous angular velocity of a fluid element is~ w/2 .

The relation (1.1) may be solved for ¥ as

¥(x) = fﬂ dy w(y)Vix,y) ,

where the potential WV(x,y) is the kernel of the operator V = {-ﬂjvl r

defined with suitable boundary conditions (b.c.) on the space
LE(AI = szh » Lebesgue).

We impose the physical condition that the fluid does not cross the
boundary of A . If &3A is smooth, v is thus parallel to the boundary,
and grad ¥ normal to it. Therefore ¥ is constant on 3A , and we may

take this constant equal to 0 . Mathematically, this corresponds to taking



» Wwhere A is the Laplacean with Dirichlet b.e. : - A, is defined

as the Friedrichs extension " of the positive operator - E-i=- E—E acting

4 = A

on € functions with compact support in A . The cnrr-lpn::lng ::Etntlll
will be denoted by Uh{:.yl . We extend the definition of this potential so
that vn{:,r} =0 if xd A or Y€ A ?ntx.y} is then the kernel of an
operator vn on LEMI}  vanishing on the orthogonal complement of I‘..Il‘.h.} s

If Aec A" , the definition of the Friedrichs extension implies that the domain

of A, is contained in the domain of A (with the identification of inh}

A A'
to a subspace of Lz{h*}} s and that

1,(-8,01, < =8,

wvhere 1JllL is the orthogonal projection on Lz{n) . Writing

1/2

I L e U ST Lol W
we have thus A*A < lh -
hence
AA* < lh' :
and finally
“ni“h' whem AcCA' . (1.2}
It is convenient to introduce also the |:|n'r:|:'|:u:illm:I
V_(x,y) = = 3= log|y=x| (1.3)

*) For a discussion of the Friedrichs extension see for instance Riesz and
Nagy [24] § 124, Reed and Simon [23].

:2}112

') We write |[x| = (x] + x5



which corresponds to free b.c. , (this is a definition of free b.c.)
If we write
¥, Gy) =V (xy) = V_(x,5) (1.4)

then (x,y) 4":"n(:.1.r} is continuous im A x A . (To see this it suffices to

notice that ?ﬂh'?:' is a harmonic function of both x and v ). We define
W) =17 (x,2) (1.5)
h E h [ ] L L]

Let A be fixed, contained in the circle of radius R centered at O , and let
A" be a circle with large radius ®' centered at 0 . For vEA , ?ﬂ,{i,ﬂ

is harmonic with boundary values % log R' + n{%ﬂ » Therefore, by the

maximum principle
1 R
|E"A,{-.:r.'l- 5o log R'| < o) -

When « has support im A and satisfies the "neutrality” condition

Inud:-ﬂ.wh.!va thus

| fuu)¥,, (x,y)dx dy| < ohp)

hence

H}}: I wi{ﬂm(rﬂh

vz y)dx dy = [wlx)uly)V_(x,y)dx dy .
Combined with (1.2) this gives

Julx)uly)V, (x,y)dx dy < [ulx)uly)V, (x,y)dx dy (1.86)

when [u(x)dx =0 .



If L = {nlul*rn?l2 : ny.n, € Z} is a lattiee in EE , and

A= {1111+1251 : 0 i-il'lz < 1} , a potential vy F'r[:.j} with periodic b.c.

may be introduced. It is a periodic function @ of x=-y,with

~sp(e) = £ s(e-a) - a7,
aEl .

where |A| is the surface of A . It is seen that V, - corresponds to

the inverse of the Laplacean on a torus, restricted to the orthogonal complement

of the constant functions. We have thus

Joxu IV (x,y)dx dy < Juxdat)vy  (xy)dx dy (1.7)

vhen Ju(x)dx = 0.
The difference un PEr{:.rl-v_{:,yl is continuous at x = y , and we define

1
L. v, Far{:,r}-ﬁ_[x.y}]:_?

vhich is a constant.

2 2
The Friedrichs extemsion of - 24— - E_E acting on functions which
ox d

X
1 2
are € with bounded derivatives on A is -ﬁhH « Here bhﬂ is the Laplacean

with Neumann b.c., which corresponds to vanishing normal derivative on the
boundary of A when this boundary is sufficiently smooth. If Ac A' we

have with the usual identifications. We define “ﬁH to be

b = "By

the inverse of =4 restricted to the orthogonal complement of the constant

AN
functions on A . The corresponding potential satisfies thus

=1
ﬁm“mt'prl o 'l-'? |I.'| &



Assuming always

Ju(x)dx = 0 ,

one obtains easily the following inequalities

Ju(duly)V, 1. (x,y)dx dy < Julxu(v)¥, (x,y)dx dy (1.8)
if AcA,
Julxduly)IV_(x,y)dx dy < Ju(xdu(y)V, Goy)dx dy (1.9)

Im{x}m{y}ﬂﬂ . {x,y)dx dy < Iu{:}m{y}ﬂhﬂ{1.¥}dx dy . (1.10)

er

The difference vAH{:.yj - V_(x,y) is continuous at x = y, and we define
1
W) = 5 [V, (x,5) “_t:.r}lz_y

which is a continuous functionm of x .

The potentials vﬁ « V. Un per ?AH may all be interpreted as

two-dimensional electrostatic potentials, vy corresponding to conducting b.e.,

and ?_ to insulating b.c. en aA . If Ac A", the electrostatic energy

of a distribution of charge in A , with conducting b.c., is less than

the energy of the same distribution im A" (inequality (1.2)). This is
because, going from A" te A , one allows the electric field of the given
charge distribution to perform work on the fmeely moving charges of the newly

introduced conducting boundary .



2. Mechanics of vortices.
————e
The kinetic energy of the fluid contained im A is
-l el 2
« & (4,09 = £ V)
- X

5 Iﬂu{:Ju{y}Vht:.f]d: dy

where ¢ is the density of the fluid.

m
Suppose that w = E g where the Wy have definite signs, small
1
a

disjoint supports centered at Epeeresby o and vpf ui{:]du - Ri « Then

m m
Kef £ ¢ Jo, (e 0V, (x,y)de dy
1 N SRt A R

a5 E Juog (g (Y, (x,y)dx dy
+ E R.R.V (F..,E.)
i< 11 A1)

If the supports of the Wy tend to the points Ei # W have

k-5 Elmi(:}ui(r}v_iz.r}dx dy + Up(E 0eeniE )

where we have written

uﬁ{‘:lr*"' l{n}

- 2
i Ei Hﬁ{Ei} + lij Rinj"ﬁ{EL’EjJ e (2.1)



(remember that W is given by (1.5)). We define similarly

A

U_EElilnliE,n] - L ti.nj‘irFtEilEj} "

i<]

and for a parallelogram A

Uﬁ pnr{zl""'grﬂ

- i H:Hh o + iEj Ei“]"n purlﬁi'ej} .

The quantity UA{EI‘*“'Eh} is finite when the gy are distinect
and inside A . On the other hand K + = when m > 0 . We view UA as a
renormalized energy of the vortex system; it may take positive or negative

values. Note that, as a consequence of (1.2) ,

UpCEyseeesby) < UpalEpaennf)) when Ac A" (2.2)

Using (1.8} and (1.7} ve obtain also
U (Epseneaky) S U_(E)oeeesf) when LR =0,
U (Eyaeenab) < U, p-rtcl...‘.:_} when I R, =0 .

Since the vortices move with the fluid by the theorem of Helmholtz,

we have
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E.E - ?{Ei:l - - ( l J Brld T{Ei}
Eiz -EITEEi}
0o 1
- grad I [ dyuw (y)V,(E;.¥)
=1 j :|
o [ % ) 1
-] ad . dj‘ .{]'_'!'l" {E- -:f.:' + £ ¥ {E v & ¥ {2-3
= BERGL M ST R TR p 61 /o AM

We admit that if the i-th vortex were alone in infinite space, its wvelocicy
would vanish (although its internal structure might change with tinn].}. This
means that we may replace in the right hand side of (2.3), ?hEEifF} by
Vﬂ(;i,y} - ?_[Ei,y} - ?ﬁ{;i,y} (see (1.4)). Notice that ?A is self-adjoint
and that its kernel is real (because -aﬂ is a real operator). Therefore
Vo) = ¥ (yax) and
et 1 a
grad Uﬂ{:,yl| = — grad ?h[:.:3|

]
x=y=E, x=g,

= grad Hh{gi}

*) A more careful discussion would approximate the velocity field some distance
away from the vortex inm the form x -+ v{£i3+(_lﬂ'gtnd ?.{1,{1] ; dnd define
?{ﬁi} on this basis. Note that an isolated vortex enclosed in a box A will
usually move, due to the presence of walls. In the simple example of a
straight infinite wall we have V,(x,£) = V_(x,£)=V_(x,°) where ¢ is the
symmetric of £ with respect to the wall. The vortex at £ moves under the

]

influence of its mirror image at £ . The motion of ;,c’ corresponds

exactly im ? dimensions to the motion of a smoke ring in 3 dimensions.
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Altogether (2.3) becomes

E
d il = o 1

ﬂi_i; £ ) gr;dilﬂiﬂhiiii L Ejﬂﬂitisij}]

i2 it

Replacing s by = we take this as definition of the motion of point vortices.

We have thus

i

o R, P
i dt 384

(2.4)

de aul
o R, b |
e &5

#

)

These are Hamiltonian nquntiunl' in the 2m wvariables Ein with

i ®1l,.0.,m ;o™ 1,2 . In particular Liouville's theorem implies that the
volume alement dE - d{llhﬁallh “aw '“'dl:Ilh ﬂE-z is prﬂll‘“l‘ﬁ under time
evolution. The total volume of accessible phase space is in fact finite

(= |h|" , where |A| is the surface of A) . It is thus natural to follow

Onsager, and apply the methods of statistical mechanics to systems of vortices.

This means describing systems of many vortices in terms of Gibbs ensembles.

The microcanonical ensemble is the probability measure

-1
1] G{Uh[E1+--«-£n}'E)dE ' (2.5)

where {1 is a normalization comstant, and the support of the measure is on

the energy surface definmed by

*) Wricing q, = Eild;ﬁlnil ' Py " Eiiniﬁﬁf#lnii . we obtain the familiar
equations dqi!dt - auﬁfﬂpl.dpifdt - -auﬁqui . It is however more natural to

retain the variables B, -
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U!L{Ellllllflm} = E

The statistical description of a system by the microcanonical ensemble is
usually justified by assuming ergodicity of the measure (2.5) under time
)

evolution ’ .

The heart of statistical mechanics is the study of the thermodynamic

limit, where jA,n,E tend to infinity, while the density |n|-ln and
specific energy |ﬂ|-15 have finite limits p,c . Before taking the limit
one replaces (2.5), where E has a fixed value, by an expression where E
varies in an interval (|A|(e-6).|A|(e+5)) , and only after the thermodynamic
limit does one let & + 0 . It is a new physical assumption that this compli-
cated limiting process gives a correct description of (2.5) when A,n,E are
large but finite, and E is a number, not an interval. In the next sections

we go into the formalism of statistical mechanics, and study the thermodynamic
limit. Before that let us recapitulate the physical assumptions that have

been made :

")
Nothing is known on the ergodicity of a system of n vortices in a box.

{For a discussion of the dynamics of 3 or 4 vortices in infinite space, sce
Movikov [18] , Novikov and Sedov [19], Aref [1] , Ziglin [28] , Aref and
Pomphrey [2]). Actually, ergodicity may be too strong an assumption. It would
be enough to assume that for large A,n,E , (2.5) has one ergodic component
of measure close to 1 . (One may suppose that the other components would

be invisible for instance because points starting in them would, by small

random perturbations, go to the large ergodic component).



{a)
(b)
{e)
(d)

(e)

=13 =

Two dimensions

Ho viscosity

Point vortices

Ergodicity of the microcanonical ensemble under time evolution; (or
dominance of an ergodic component in the presence of small random
perturbations).

Fixed total energy may be replaced by a small energy interval; the
thermodynazic limit is a good approximation for the description of large,

finite systems at moderate densities and energy.

3. Statistical mechanics of vortices.
e —— — —————————————— e ——

3.1,

Introductory remarks.

In order to simplify matters, we assume that all vortices have

strength Ri = 4+ R, with R > 0 . According to (2.1) the Hamilton functiom

for n positive vortices at positions Epreneef and m negative vortices

at positions El""'Em in an open reglon A cR® is given by

n m
n —m 2 -
Uttt = b Bt Y 0 LAY

+ I azvn.xtzi,;l] + I Ez?h.I{EE,E;J

1 gi<ign lij<kgm
- L nzuﬂ x“i'Ei} . (3.1)
() (Y v

j-l'i-i-i |
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where X specifies the boundary conditions (b.c.), X =D {(Dirichlet or
conducting b.c.), X =F (free or insulating b.c.), X =P (periedic b.c),
X = N (Neumann b.c.) , E = {El.---.EnJ » Furthermore

W W, ¥ By Ny BV W and

A EW Vg TV Ny ® AF AP = "\ per

AP ?h e in the notations of Sects. 1,12.

v

1]

The system is called neutral if n = = , It is straightforward, but
cumbersome notationally, to deal with vortices of variable strength, distri-
buted according to some a priori distribution, di(R) , of compact support;

(see Appendix B).

It may be of interest to also consider the thermodynamics of
"non-neutral” systems, e.g. n 2 0 . Their behaviour differs from the one
of neutral systems (m=n) which we study below. In order to obtain thermody-
namic behaviour, a meutralizing, uniform background vorticity must be
introduced. Physically, such a background vorticity corresponds to a fluid

in uniform rotation with constant angular velocity, or one which "shears"

between two parallel lines. In this way one obtains a family of vortex systems
interpolating between the neutral two-component Coulomb plasma and the
“jellium" [26] in which all point vortices have strength - R , and there is

a neutralizing, uniform positive background vorticity.

For the purpose of comparison (e.g. with numerical studies [17]) we
not only discuss the physically motivated Dirichlet -, but also free-, periodic -
and Neumann b.c.. The remarks on the physics of the vortex system, assumptions

{a) through (e), Sect. 2, suggest to study the micro-canonical ensemble.
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It turns out, however, that for many values of the thermodynamic paramster
this ensemble is equivalent to the canonical ensemble. Moreover, for the
system of point vortices studied below, the canonical ensemble is known to be
equivalent to the grand canonical ensemble. This is a simple consequence of
the scaling properties of u.".,.:( {see Sect, & of [8], [9] and Theorem 3.2).

Mathematically, the grand canonical ensemble is the most convenient one.

3.2. Definition of ensembles and thermodynamic functions, the main results.

(a) Microcanonical ensembles

Let Ed be the characteristic function of the interval [-4,0]
and & the one of (-=,0] . The microcanonical partition function for a
neutral system of n positive and n negative vortices in a bounded, open

domain A -l:li.2 is given by
0™, 0,8) = P [, 880, (B , (3.2)
ﬂ. L]

where E 1is the total enargy, and

jal (4] p
dE™ =« 1 d%g, , dET = 1 4°E,
j=1 * ju1 4

(We closely follow notation in [8] , [9) and [25]). We also define
a¥(h,m,E) = G0 L W, (N EM-E)AERdE (3.2')
AIEis n! _l!n 15 Lol b :

Let

E A In

W.&Em.ném -

e
il

where |A| is the "volume" (area) of A . These quantities are the energy

density, energy density uncertainty and particle density, respectively. We



R
define the entropy densities

a:’x{p,:} = TiT log ﬂb'x{h,n,t}

{3.3)
‘i{“*cj 5 T%T log n“{ﬂ.n.:} > ui'xtﬂ,t] -
and
lﬁ'xin,tl = lim l:'xip.:] . lxip.c] = lim !i{n-ti .
AR AR

with &,ce and p kept fixed, (A .--""It1 in the sense of van Hove [25]).
For Neumann b.c. the thermodynamic limic of ii can be shown to exist

(sea Sect.4).
The function litp,:} is by definition an increasing function of ¢

It is easy to see [25] that if the thermodynamic limit of -i{p,g}

exists and if lx{p.;] is strictly increasing at some ¢ = ¢, then

'lilll2 ﬂi‘ltn.cnl - -ﬁ'lﬁn.:ﬂ}- .:{ﬂ‘l:ﬂjl
IR

for all &§ » 0 . It might happen, however, that ulﬂp,:] = 8 = comst. ,
for ¢ E [cu,:l] poEy T By - In that case it is conceivable that 16'1{9,:}
depends on 4 and is strictly smaller than s{p,c) , for some ¢ € {:u.cl}

and some sufficiently small & . Thus it might happen that

§: X
T

L] £)

i B <0, {3.4)

P z X F 5 ¢
at energy densities ¢ around which 8 (p,*) is comstant. This was, in

fact, expected by Omsager [20]. Of course, in a fipite region A .,



=y -

Eti'x(n.:}
e e < [
dL

if € is large enough, depending en A . The true behaviour of
uﬁ'x{p,a},l = 0,F,F, or N , as a function of & is described in the

following result.

Theorem 3.1.

For X = D,F,P,N , there exists a function ﬂx{p.cl such that

£ + ux{p.:J

is increasing and concave in ¢ , with values in the open interval

{==,p= plog %] » and if ﬂx{p.'} is strictly concave at ¢

lﬁ'x{u.c} - ‘I{ﬂil} - ﬁK{Drt} :

&K X
A and 5y exist). If

belongs to an interval of linearity, {EH'EL} of qH[plnj then

{in particular the thermodynamic limits of &

Tl s (oec) § 0 (00e) (3.5)
A AmE

lim ﬁﬁlniﬂ.cl gﬂnfu,nnl . (3.6)

A AR

(Note that tq is the left extremity of the interval). Finally

Ha o*pye) = =, lim a¥*?

'p'phi% .
e g odm
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Notice that

I | 1.2, .20 2
p-plug% nizzmluguﬁl A= p-'l%f )

is the entropy of an ideal (non-interacting), two-component gas of vortices.
A proof of (3.5) and (3.6) is given in Appendix A. The remaining statements
then follow by proving the equivalence of the microcanonical, canonical and

grand canonical ensemble for all, but possibly countably many values of

g = 3ﬂx;ﬂ!:!

aE

and exploiting detailed properties of the free energy as a function of p

and B ; see Theorem 3.2 and Sects. 4,5.
In Sect. 4 we show
t“(p.:} 1 lxtu.z} % :D{n.ﬂ < p=p lns% ' (3.7)

for all ¢ <= pand X = F or P .

Using a conjectured extemsion of the results im [4), [5] (proven
for a lattice Coulomb gas) to the continuum gas studied here one is able to
establish the equivalence of all three ensembles, for § sufficiently small,
i.e. © sufficiently large, and Dirichlet boundary conditioms, and to exhibit
the approach of tuip.s} to p=plog %- a8 ¢ =+ w  explicitly; (see

Sect. 5).

In the next section we establish some general properties of :6{p.c}

and s{p,e) , in particular we prove the following scaling relation : For




_lg_

arbitrary b.c. and all & > 0

') = H'leo EH}-EI {&i ; Ez L P—gnzlng 8) (3.8)
9, 0o e 3 o b B E .

which can be transferred to the thermodynamic limit if the latter exists.

In that case we obtain
ﬂtzfpﬂz —ﬂl:fﬁﬂg 2
slp,e) = e s(e ps0) = BwefoR™ ,

by choosing " =0, p' = ﬁ-zp ; B = .4“;':“2 H

Thus, the entropy as a functiom of g and £ is determined by
the entropy as a function of p , for a fixed value, Ey ®8: o ; of the
energy density € , provided the thermodynamic limit exists. (See Sect. &
and Appendix A). Existence of the thermodynamic limit can be proven for
strictly neutral systems with Neumann b.c. (Sect. &). This summarizes our

main results, but see also Theorem 3.2 and (3.34).

(b) Canonical and grand canonical ensembles.

The canonical partition function for a system of n positive and
m negative vortices in a bounded, open domain A :HE y with D,F,F or
¥ boundary conditions at aA , is defined by
n
Buhix:E 'En}

¢*hn,m,8) = ot fiia dE"dE™ ; (3.10)

with ”n X given by (3.1), and

I!}R{a'..n.m.al i I unlese m=m

if X= H,F or P b.c. are imposed. We define



- I =
Qx(n.n.ﬂ} z q“{n.n.n.al .

1 X
8£,(048) = = 77 log Q' (AmsB) (3.11)

rd - 4 A
with p = TET : Eﬁtp,ﬂj is the free energy denmsity for a neutral system

in A with b.e. X .

It is proven in [B), [9], Sects. 3,4, that for 0 < g < E% and
R

TAT bounded,

Q*(h,n,n,8) < K(3)™T (3.12)
and

Q(hn,n,B) = « , for @ 3 i’f ; (3.13)

for X=F,P and ¥ . In Appendix B ; this result is extended to X =D

{in which case (3.12) has been shown to hold for g < E% in [9]).

R

By using an argument of Griffiths [12] it has been observed in
[13] that

F , F
£ (p,8) = lim fnin.ﬂi
}.J"ﬂz
(where the limit is understood in the sense of van Hove; see Definition
2.1.1 in [25]). The same argument works for Neumann b.c., (the important

ingredient in the proof being inequality (1.8)).

For all four choices of b.c. the existence of the thermodynamic
limit of !:{p,ﬂ] can also be deduced from the equivalence of the canonical

and the grand canonical ensemble and the existence of the thermodynamic limit
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of the pressure for all 0 < B < ﬁ—; and X = DO, EP,N ; (see Sect. 5).

L]
E
We now define the grand partition functionm

E!“l.,t,ﬂ:l - Inq-qut'ﬁlni-lﬁ} ¥ (3.14)

[ ]
L
g m=0

q*(A,0,0,8) =

(1]
il
-

vhere z = :E"" is the activity, 0 <z <= ., The pressure is then given by

ﬂpifz.ﬂl - T%T log EI{h,z,Ei . {3.15)
In Sect. 5 we show that for g¢i£
R
F
Py lz,8)
0 < pylz.B)< £ P:Ehﬂi < K(z,8) , (3.16)
P
Py l2,B)

where K(z,B) is some finite constant independent of A , provided A
is a circular or rectangular region containing (£ : |E] <1} . Moreover,

for X=F and N and {A] an increasing sequence of circular or rectangular

regions

leihﬂ.'l is monotone increasing in A ,

(3.17)
pnit,all is monotone decreasing in A

By (3.16) and (3.17) ,



pi(z,8) = lim py(z,B) (3.18)
Lm?
exists and is finite and positive, for all 0 <z <= , 0 <« B « i—; ’
R

and X = D,F,N .

One can also establish (3.18) for X = P , with J'u.-""lz chrough

a sequence of squares or rectangles. (See Sect. 5 and [6]).
By (3.16) and (3.17), for X = F,N ,
0 < py(z,B) < p'(z,8) < p (2,8) < p)(z,8) . (3.19)

By (3.10), (3.14) and (3.15)

- n
X o Ak | liz-ihl}
lim - =
Eantlﬂ'} Ph{::l |_||I_|' lnﬂ{ & ) I

for X= F,F and N , and

i n+m
lim gp)(z,8) = p) (2) T%[ log( ¢ LEAD_, .5, (3.20)
B0 n,m=o s
It ia an elementary fact that
lim p:{:} -2z, (3.21)
2
AR

By (3.19) and (3.20)

F'il{ﬂ < lim gp"(z,8) < 2z
Pyo

for X = D,F,P,N and arbitrary A ., so that by (3.21),
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lim Bp (z,B) = 2z = llnﬂFnilpﬂ} i
[ ) E™n
(3.22)

for X = D,F,P,N and for all &\
Next, by (3.10), (3.14) and (3.15) ,

i}
a(pp, (2,8)) 2
A LB 1 aPe (e)p, (Bt E)
38 |ﬂ| A A i

2

-'%IT Iﬁrhd

EEdznvntE.nllu;+{ﬁ.=;E.n}-n1'{ﬂ.=;£.n1l ”

where pﬂ{ﬂ.:;ﬁ] is the one-vortex correlation, and ﬂ;tiﬂiaiﬂin] is the
correlation of a vortex with strength R at £ and a vortex with strength

+ R at n , in the grand canonical ensemble; see [25], [10] for definitions.

In a bounded region A ,

lhu[p
BE™~o

(BsziEsn)- ﬂ {E'I-Lﬂ}] =0 ,

e

and

Lim pﬁts.z:ci - F
A0

Thus, by a domindted convergence Argusent,

(B9 (5.8)) g2
lim f d E" (E)
) |n|
™o

(3.23)

I a%e lim(v L=V, (E4m))
|| g

Suppose now that A is the disc of radius r centered at the origin. Then



-zﬁ-
2 2 2
linl?_fE'ﬂ}'?ﬁ{E.ﬂ}J = (1/4m)log r"-(1/2a)log{c"-E") ; (3.24)
e

see Sect. 3 of [8], [9] .

Tharefore

]
H{H'P {Siﬂ-}}

gu - % :Hzlilﬁﬁw}lag r
™o

2

+-—j—1 I: {-Itllnsirz—tz}dtl (3.25)
2¥r

2
zR 2
-'ETLIQE'I:‘.!] ®

Hence
3(6p, (2,8))
1im 48
80

diverges to ==, a§g [ +=,

By (3.17) and (3.22)

D
(B D z.8) —— 3{HPE{I.E}}

lim
8o 9B B w0 i
for arbitrary A . Therefore we conclude that

it}
yro a(a pa;l.B}}
£ ™o

- —- (3.26)

Theorem 3.2.

Let a = EREF#H . Then, for all cholces of b.c., X = D,F,P,N,

gp (z.8) = 22/ 2% %) , (3.27)
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where inu} is a finite, strictly positive convex function of a , for

0D<a=<l » with the following properties :

D He PHe) == ,
oAl

2) 1lia Pla) =2 ,
o yo

d X
1 lim—Ffa) m = m
uhndn

Moreover, the canonical and grand canonical ensemble are equivalent, for

S
all g€ [0, 2T) , and
&
Ef tﬂ. ﬂ] - T[D la ﬂ,{(z-ﬁ}n} ] # {312'&1
{u}

Femarks.

1) For free b.c., (3.27) and (3.28) are proven in [8] . The extension to
other b.e. is indicated in Sect. 5. From (3.27) one derives the equation

of state

0%(0.8) = (p/8)(1-8R2/8x) ;

see [16], [8] , [9] .

2) Assuming that the methods of [4], [5] extend to the continuum Coulomb
gas, for sufficiently small, but positive values of a , one can show

Fnlul is € in a , For small a , and

£ ¥ = 010 @) , (3.29)

as u\uﬂ ;i Bme Sact. 5.
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We now turn to the proof of Theorem 3.2. For the proof of equ. (3.27)

see [B), [9] and Sect. 5. It follows from (3.10), (3.14) and (3.15) by using
Holder's imequality that ﬂpxiz.ﬂ} is convex im g8 , hence in a . Thus,

using (3.27)

2. X
0 < 3 (Ep {;'B}} - 5 (log :]Bprz.ﬂl
3a

(2=a)

2/2=a

: ﬁi' log =z {% Gog 28p"(z,8)+22 F'(a)]

(2-a) (2=a)

= P'{(a) , for z =1 (3.30)

Thus F(a) = P(a) is convex. That it is finite for © < a <1 follows

directly from (3.16), and that it diverges when o1 follows from (3.10)

and (3.13). (All quantities, G° , =° and p~

, diverge when B,.-"‘-E%

R
because of the logarithmic singularity of ?i{;,n] at E=n E 3A . See

(8], [9).)

By (3.22) and (3.27) ,

lim Bp (2,8) = 2P (0) = 2z , i.e.
B ™o

F'0) = 2 , for all X.

This proves property 2) of Fx . Mext,

2
3 (gD B3 oD
25 (80 (2.8)) = 3= o= (89 (2,8))

2 D
™ L 1 n' 2!’2‘“ d? a
o] PR (log z) Bp (z,8)+=z —J—l“ }
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This identity combined with (3.26) yield property 3), for X =D . In

order to prove 3) for X = F,P and N , suppose first that

."Lr.:.h&l,_,;m".-,-.l

uniformly in g € (0,1) . Then

2 (68 0.8)) 3¢, <=,

for some constant g and all g € (0, %} « Since by (3.28)
o B

lim(g (s,8)) = p(log & -1)
gt

and since the entropy denaity ix(p.c} is increasing in ¢ we conclude

that
5 ]
8 (e.e) = p(l- log 3) ,
for all ¢ 2 g * X=F, PN . But, by Theorem 3.1 ,

s (o,c) g o (o) < p(l-log B , (3.31)

for all e < = ., Actually, the upper bound om nn follows from propertias

2) and 3) of FD and equ. (3.27), Theorem 3.2, as shown below. Thus
X D
8 (pse) > 8 (p,e) ,

for ¢ € (e s») » X = F,F or N . This however contradicts inequality (3.7).

We therefore conclude that

lim EEE!El P
da !
ape
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for all X . This completes the proof of property 3). Finally, we observe
that by (3.27) p (z,8) is analytic in z , except at z = O,= , and
strictly convex on (0,=) . As is well known (see [25]) this entails the
equivalence of the grand canonical and the canonical ensemble. Equ. (3.28)

therefore follows from (3.27) by Legendre transformation (see Sect. &

of [8], [9]).

The contents of Theorem 3.2 may be summarized, in terms of the

free energy demsity EH(p.ﬂ} , by means of the following Fig.l :

a5, )
4

- -ﬁfo.EJ

Fig. 1

Proof of Theorem 3.1.

The main part of Theorem 3.1 is proven in Appendix A. The function

uI{p.cI is defined by



--Eg_

oMpse) = inf  (Be-BEN(p.B)) .
B€ (0, °3)
B

Suppose ﬂf%ﬁ,ﬂ}i: continuously differentiable at some value ﬂb of g .
Then

M (0,8) - BEM(p,8)] ;

E.Eu

a {p.: y = [g

and €, is determined by the eguation

X
c, = [-“-i-igil (0,8)]
E=g

Qa

Moreover, the microcanonical and the canomical ensemble are equivalent at

those values of B and € , and

lin2 :i‘x{p.:n} - limE l:fﬁuEn} - nI{n.sz .
& AR AR

By properties 2) and 3) of B and equ. (3.28), Theorem 3.2 - which we

have established without using Theorem 3.1 - there exists a sequence

{e_} converging to O such that anfﬂ.B} is strictly concave and continuously
differentiable at B = Eﬂ . for all n . (By (3.28), {Hu} can ba chosen

to ba independent of o1 ) By property 3) of ¥ , Theorea 3.2 ,

-t”" (©,8)] — =

=g
n

as n + = ., Therefore {Un{p,:“}} is a strictly increasing sequence,

and by property 1) of Fn s Theorem 3.2,



lim ﬂD{p-Enl = sup uuin.zn} = oll-log %] "

n-be n
Using inequality (3.5), Theorem 3.1, which is established in Appendix A
we thus obtain

1im -Rip.::l < an{p.s,'l < p[l-log %] ;

A .--"'!'.1

for all g == , and using (3.6)

&,D _ D
lim 1lim 8, {n.:n} lim lim ah{p,znj

n-r-'ml n—rﬂhﬂl

5 i ]
= lim o (p,e_) = pll-log %]
o *“n 2
Next, by property 1) of r » Theorem 3.2, there exists a sequence

{E:l‘.l converging to :5- such that

lim B'£0(8",p) = ~=
- n 1]

and Efniﬂ.a,'p is strictly concave and continucusly differentiable at

g = E‘I:t . (Again, {H;l] may be chosen to be independent of p .} Thus

D
il
o (820l guge

Ly ]
in

tends to == , a8 n - =, In conclusion

Lim o”(p,e}) = lim lim s)(p,e!)
[+ Ti-som mﬂ

« 1im 1im ¢°*P

{pyc!) = ==
n—-,.iiﬁ %
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This, together with (3.5) and (3.6) (proven in Appendix A) completes the

proof of Theorem 3.1 for X = D . By inequality (3.7) (which is proven in

the next section)

-x{p.si L: :D{p,:l . {3.32)

for all e <= , X = F,P,N . Thus ux,:x and nﬁ'ﬂ tend to == , as

£ + == . and

2% (0,0 < s%(p,) < pl1-log %l .

for all g <= ,

As already noted inm the proof of Theorem 3.2, inequalities (3.22)
and (3.32) yield properties 1) - 3) of F., X = F,P,N , stated in
Theorem 3.2. By repeating the arguments given above for X =D we
thus conclude that, for each choice of X = F,P or N , there exists a
BEQUEnCE {Eu] diverging to +=  such that
lim 1lim ii'x{g,[n} = 1im 1lim ni{p,:n}

-+ ﬁJ'EF ne- ﬁ)‘!F

h
e 1im nn{u,:“} = pli-log %] N

=

This completes the proof of Theorem 3.1.

All as yet unproven statements about entropy, free energy or

pressure are established in Sects. 4,5 and Appendices A and B.
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Mext, we recall some facts and properties of correlation functions
of the two-component Coulomb gas in the grand canonical ensemble. (We
believe that the properties of correlations in the micre canonical
ensemble are identical in the thermodynamic limit, but we have no proof).

In [21]), [l0] it is proven that, for all =z >0 , 0 < g <« E%— and all mn,m ,

R
the thermodynamic limit of the correlation functions of n vortices of
vorticity +R at positions (" and m vortices of vorticity -R at

positions E° ,

oX(8,2;E%, ™ = lim p:{ﬂ,ﬂiE".E’} . (3.33)
LR
exists if .n..-"'lz by inclusion, and for X = D,F and N . (For the
definition of the grand canonical correlation functions see [25], [10]).
The limiting functions, ax , are Euclidean invariant. Of particular
interest are the correlations of the vorticity, w(x) , which we denote

by tuiﬁli.-.m{{n}rxiﬁ,:} « It is well known (see e.g. [11]} that

<wl(Eduln)> (8, 2) = o™X (8,2:0)8(5-n)
‘i[ﬂxi+-EB|l:Et“]-pI.++{ﬂt=:Er“}] ‘

Here px{ﬂiti[] is the one-vortex correlacion which ie conscant in £
and the superscripts on the right side of (3.34) indicate the sign of the

vorticity of the two vortices.

It follows from [11] and [8], [9] that

o5 (g, zie.m) =5 (B ziE)
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is a positive, convex function of |f=-n| which tends to O , as

|e=n| + = , for X = D,F and N . Thus

w(Ew(n)> (8.2) . E¥n (3.34)

is a megative, concave function of |g-n| which increases to 0 , as

|e=n| + = . This means that if the vorticity at the point [ is constrained

to be positive it is predominantly negative at all points n # £ ,

(in contrast to what might be expected heuristically). For X = P , one
can still show that :m{EJm{nlbi{E,:j is negative, for £ ¢4 n , in any

bounded rectangle A

Much less is kpown about systems of vortices of negative vorticity
{CiB+ -R) , immersed in a neutralizing positive background vorticity. This
system is stable for arbitrary values of the inverse temperature £ -
in contrast to the two-component vortex plasma. The thermodynamic limits
of the free energy and the pressure have been constructed [26], and results
similar to (3.22), (3.26) and (3.27) can be derived. Howaver, the micro—
canonical ensemble does not seem to have been analyzed directly, and the
existence of correlation functions is only known for one special value of
8 , [14], {(see also [7]). It is an interesting speculation that for
large values of the inverse temperature B the correlation functioms of
this system exhibit directional long range order. We do however not have

a proof of this.
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G Prntnrtian of the entropy.

In Sect. 1 we have showm that

(4.1)

in the sense of quadratic forms; see also [24], [23] . From these inequali-
ties and the definition of the kinetic energy, K , in Sect. 2 (see (2.1),

(3.1)) we conclude that

n
n —=m uﬂ'F{E 'Em} n =m
(E,E) = b3 Uth{E £) (4.2)
O, oCE"ED
AP

Up.p

for arbitrary En € A" N En €A". Kow, recall the definitions of

R(A,n,E} and of u:(p,il = gee (3.2"), (3.3). Since

ﬁ*tun HIED,En}-E] is monotone decreasing in I.IJIL x inequalities (4.2)
» ]

Elve

5} (9,€)

n:{n.r:] < j:i!‘.n.n} . (4.3}

li{ﬂ,ﬂ)

This proves the first two inequalities in (3.7) and inequality (3.32).

Next, we show that the thermodynamic limit of l:{p.:} existas,
Let A be the union of m sets L im=1l,...,m , with disjoint

interiors. By (1.8)

(4.4)



in the sense of quadratic forms on functions f£(£) with the property
that j& E{E]dzi =0 , for all i . (If f wiolates this condicion, for
i
some 1 , we set {I.'J'ﬁ ,q.f} = 4@ : (4.4) then holds in general). Let
-

E be the subset of points of E" contained in ﬂ'i and Ed the subset

A,
i i
of En contained im ﬂ.i « By (4.4) and (3.1),

U, ENEY LU, (€ .E, ) (4.5)

Since & is monotone decreasing in U , we conclude that

1,2 = = capl =0
i ehmE) > Gp® [, 8@ U, (6, [T )-E)dgaE (4.6)
A - W W |
4 |
We set Li! W » Clearly, 0 =< j‘i =1 and Ehi = 1 . We choose m
and “‘1] »i=1,,..,m, such that k, = A.n are integers, for all i .

Finally we sat E, ¥ .'l..LE « By (4.8)

i
m k k
'(AmE) > T Hh—lrii f S, o€ LE DR
=1 *§ kg 3!
{ﬁi}
k. ok
By taking logarithms we find
N s N
g,le,e) > L A8, (p,e) (6.7)
1=1 1

Since & <1,

in
ﬂH{h,n,E] i'lﬂ‘_z 5 i!.l
(nl!)

s)(p,e) <o(l-log ) . (4.8)
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By standard arguments [25], (4.7) and (4.8) imply the existence of the

thermodynamic limit of EH

Next, we compare the entropy with the free energy. Since

§(x-E) < o PR (4.9)

for all B , we cbtain from (3.2') and (3.10)

ﬂx'”uﬂrﬂ} x qxihl'ﬂlﬁliﬂE W
hence

5 5(0,6) < 8ylo,c) < Be-BE)(0,B) . (4.10)

As shown in [8], [9] and Appendix B, fi{n.ﬂ} is bounded uniformly in

A , for arbitrary ¢ and X = D,F,F.N , provided

B < 4n R2

Conversely,
¥ L
Q (An,B) £ E Q.+ ﬂ-c+ Q. ]
j=1
where
o -8u, (E%E) .
qj - lI:;nlf"' IhIn e " h.X
R P N
. A X6 £ j+1 £ df

A

b,
E j
exp|A[{=Be;, *8, (poeg, )1

whera



n],'lr_

E
=_L o -1 - = [ § &
e il i |41 (B By % 87 comats

-gu, (", E™)
i 1.2 A X L - n =N, =T
= EETJ Iﬁ;u“ & {Uh,x{E o) -E )dETdE

=1
A
I

¥E
X 1
< q (Ayn, B+y)e "

and we have used (4.9). Given B < frlR'E weé choose ¥ > 0 so small that

By € 4aR 2 . Then qx{ﬁ,n.ﬂ+?} irﬂﬂult.lﬁi s independently of our choice

of El . See [B], [9] , and Appendix B. Finally

-au, (M ED
A X 5 (U, (", E™))ag"aE"

N
Q=GP ane £V

-BE in
_{r -] !' Jﬂ—a
(nl)
These estimates permit us to use the arguments in [25], Sect. 3.4.3, to

conclude cthat

-2F)(0,8) < max(s}"“(p,e)-Be)+E, (4.11)
[

with EA + 0 , as |A| +m , 1f (for each A ) t,El and Eﬂ are chosen

suitably. Combining (4.10) and (4.11) we obtain

8£%(p,8) = min(ge - lim -j’x{p.nlj . (4.12)
- nftnﬁ

where EI{p.ﬂl = lim fﬁ{p.ﬁ] « with na'ﬁﬁ e.g. in the sense of
AR

van Hove [25); see Sect. 5.
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Next, we exploit the scaling properties of the Green's function

Va.x

"h x * in order to establish the scaling properties of the entropy (see
B

(3.8), (3.9), Sect. 3.2). Let @& be an arbitrary, positive number. We set

of the Laplacean with X b.c. at 3A and of the one-body potential

o 1) - {E:8E € A} .

Lemma 4.1. For X = D,P,N

1y v _(8g,en) =V _ (E.m) -
nlx E lh‘x

2) W L(60) =W _ () + (1/tm)log 6
' B AR

For all choices of X

2
» U, 60N EDM = v @ ¢ EER g
' "
B A:X
Proof. 1) Let X = D,P or N . The Green's functiom ?ﬂ I{E,n} is
L]

uniquely specified by the following properties :

a) For n € A, ¥ x(Esn) is harmonic in E in A~ {n} ;
]

Uy x(Eond =V, ylnig) .

b) For n € A,

ﬁﬁ'x{;in].n = %: log|g-n|+const.,

ag [ +n -

ed V., (E;n) +0 , if either £ or n approach 3\ .
] AT
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c.) fig'

N . 1i|’|,l'wll1{l.',;,.1'|',l =0 , for [E 3A.

cp) ?A-Piﬂ;n} is periodic in € and n ,
with domain of periodicity = A .

Now, note that ?ﬂ xiﬂt.ﬁn} gatisfies a),b) and :I} (X = D,P,N)
L]
if inm a), b) and nH} A is replaced by ﬂ'lﬂ . This proves 1). Lemma &4.1,2)
then followe from (1.3), (1.4) and (1.5). Using 1) and 2) we finally see

that 3) follows frem (3.1) and (1.3).

We are now prepared to prove the scaling relation (3.8) for the
entropy :f{n.:} . (We temporarily suppress the super— and subscripts X).
By (3.2') and (3.3), Sect. 3.1,

1 1.2 = n =n n.=n
sy(ps€) = 57 logly) IH“E (U, (£",E )-E)AEdE"}

= %%T i B8 T%T . We now make a change of variables,

| H
.
[l
-
i=]
]

E. +n. ™ ﬁ-lgj - E} + ﬁj = H_IEj s J=1,...,n . We set
[Bn]n - {Enl.---,ﬂnn} ; BEC.

Note that n" and 1 Tange OvVer {ETlh}“ , and

dEn - Eznﬂnn y BEC,

Hence
=3 1 1,2 4n
s, {p,e) =8 -1 ! gl(=)"8
A le Al ot
- no=—n Enﬁz n,—mn
J 6 (v -1 (057} + == loge~ E)dn dn }a
1 .1In [ i
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2
-1 EHEH1BE:+ E%F-Hz log 8) + 2p log @

-2
8, {pse) = 0 '8
A 8 LA

which is (3.8).

5. Free energy and pressure; conclusions.

5.1. Existence of the thermodynamic limit

Combining definitions (3.10), (3.11) with inequality (4.2) we obtain

i

D n I‘E
£,608) < < £6.8)

P
£, (0.8)

and, using im addition (3.14), we get
prz.Bl
N A D
0<vplz8) < < P lz.p) . (5.1)

pi(:.a}

In Appendix B it is shown that, for all z and all g <« #IRI '

p:l::.ﬂ:l < const. , A3 (g:]€] <1}, (5.2)

for some finite constant independent of A . Inequalities (5.1) and (5.2)

yield (3.16).

By (3.10), (&.4) and (4.5)

K =]
Q' (A,m,8) > T QA ,k.,B) ,
i o
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]
[ztplﬂ} = ‘El }'1E:. (0.8) . (5.3)
im i

- §

vhere A, 2 |4, |/|A] 4 k; = dm,... a8 in Sect. 3. If A is a unit square,

for example, then clearly

Qeak,8) >0

for all k eand all B < k:!ﬂz » Furthermore, since
|
Q (A,n,B) < Qntﬂ.n,ﬁ} < const.”

if B < iifﬂi and Inf|A| is bounded uniformly im A (see Appendix B),
we conclude that fﬁ{n,ﬂ} satisfies uniform upper and lower bounds, for
all p >0 and all B < 4%/R> . This and (5.3) show that if A" B> , in

the sense of van Hove [25] ,

lim £3(0,8) = £(p.8)
\me

exists. An argument originally due to Griffiths [12] can be used to show
that the thermodynamic limit of fi{n,ﬂ} exists. See also [8],[9],[13] .
For X = D,P we do not give a direct proof of the existence of the

thermodynamic limit of the free energy, but analyze the pressure and then

exhibit the equivalence of the canonical and the grand-canomical ensembles

(Sect. 5.2).

The existence of the thermodynamic limit of the pressure for
periodic b.c. can be inferred from [9]) , [6]. (The arguments are somewhat

lengthy and are therefore not reproduced here). For X = D,F and N we
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can establish the existence of the thermodynamic limit of the pressure by

considering icts first derivative in =z :

X
a(8p(z,8)) )
: nT - 4™ Iﬁdztnifﬂ.z;il :
ii"l
ap) (2,8) = A" % dec M di et eai0) | (5.4)

By correlation inmequalities [10]

pf{ﬂ.:;ﬁ) is increasing in A , for X = F,N ,
while

n:{E.:;E] is decreasing in A ,

for each fixed [ . These properties along with (5.4) and (5.1), (5.2)
establish (3.17) and the existence of the thermodynamic limit. (For

X=F,N one could instead use Griffiths' argument [12]).

Remark. The correlation inequalities im [10] , [21] can be used to construct

the thermodynamic limit of all grand-canonical correlation functions.

5.1. Scaling properties of the pressure and free energy.

We recall the definition (3.10) of the canonical partition function.

(We temporarily suppress reference to boundary conditioms).

-Bu, (£, ED)
QIhlnl.lﬂ'] - ;lm' I nm’dﬂndf!ﬁ A .
A

We change variables, Ej - ﬂj 3 i-IEj.‘+i. as in Sect. 4. By Lemma 4.1,
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2(n+m)

nim! {E*lﬂ}nﬁm

Q(A,n,m,B) = dl‘lﬂﬂim -

HI
-g(n*m)-— log ©
- expl-8U _, (nn ) le ke

8 A
2
- glowm) (2-8RfAw) g7l o, 8)
With (3.14) this yields
-1, 2-8R%/4x
Ethllllﬂ'] = E{E lllIH ll IE: L] (SFE}
hence
i 2-a ,
pyz'.8) = 8 % _ (87" ,8) ,
8 A
where o = Eﬂifﬁi . Now choose z' =1 , z = uz'“ . After passing to the

thermodynamic limit and setting £p(l,8) = F(a) we obtain

If{E-EIF

Bp(z,8) = = (o)

which proves equ. (3.27), Theorem 3.2. Moreover, it shows that p(z,8)

is analvtic in = , except at z = 0,=, and strictly convex on the positive
real axis, for arbitrary a € (0,1) . This proves the equivalence of the
canonical and grand canonical ensembles. Therefore the thermodynamic limit
of ﬁf axists for all %X =D,P.P.N ., snd £ satiefles equ. (3.28),

Theorem 3.2,

5.3. Comments on the equivalence of the canonical and micro-canonical

ensembles; conclusions.

Notice that if we can prove that the function !l{m} is continuously

differentiable in a at some value a of a then BI“[H.p} is
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fma

continuously differentiable in B at B = Eﬂ
R

. In that case

:ﬁ':(p.z} - lI{p,:I = mintﬁnz-ﬂnfxﬁﬂ.ﬂﬂi} 5
e

see e.§. [25]. If continuous differentiability is true for all
B € (0,4n/8%) it follows that the thermodynamic limit s°' (p,e) of
the entropy exists for all p > 0 and all real ¢ (see Theorem 3.2),

and JE‘I{p,e} would be a strictly inecreasing functiom of e .

We can think of two techniques that might enable one to derive

differentiability properties of FIEn} H

1) One could try to extend the techniques of Brydges and Federbush

[4], [5] to the two-dimensional continuum Coulomb gas. This would enable

one to prove that for 0 < a < a y for some o <1, Fn{a} is C

L

1o Fﬂ{u} s A8 @ + 0 :

in a and to determine the rate of divergence of

In the thermodynamic limit

af Pe

2 -
K - - & fa% walg| 0" TR 00 0 By 20,00 (5.6)

Taking for granted that the methods of [4], [5] apply to the continuum

gas one would conclude that

kg
L 4 8
o (B,236,0) = p  (B,2;£,0) ~ comst.B [ dl]r. ——

k™ +m(B) l

and the inverse correlation length, m(B) , behaves like

n{ﬂ‘ji = 2z,

as B + 0 , up to corrections of higher order in § . (These asymptotic



- 45 =

formulas are suggested by Debye-Hiickel theory). By inserting these

resylts in (5.5) we conclude that

3(Bp-(z,8

38 # const.in B , (5.7)

as @ =+ 0 .

2) One can try to exploit the results of Faddeev et al. [27],
claimed to be exact results for the two-dimensional sine-Gordom theory.
That theory is isomorphic to the two-dimensional, two-component Coulomb
gas studied here [8] , [9]. The vacuum energy demsity of the sine-Gordon
theory, normalized such that it vanishes in the free-field limit, i.e.
when B +0 or z + 0 , is precisely the pressure of the Coulomb gas.
The results in [27] indicate that the pressure is a smooth function of g
in the interval {n,itIHE] » This would imply that the function Fila) ,
s¢e Theorem 3.2, is smooth in a € (0,1), and therefore the entropy 1is

uniquely determined by the free energy.

Acknowledgements. We thank 0.E. Lanford III and T. Spencer for very

helpful discussions.
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.hEnnd.ix A.

Proof of Theorem 3.1.

We know that the limits

-8U) (", B

X -] =1

£ (p,8) = & lim|A| "log 7 J dE"dE e
(m!) hzﬂ.
exist when .ﬂ..v"!z in the sense of van Hove, and |.ﬂ|-|'2n +p , defining

the free energy density, for the boundary comditions X = D,F,P,N . We have

ghown that

£(0,8) = == , for E:“—; .
R

and H-fx{n.ﬂl is a finite concave function of B om (O , i;a',i s With

E
fxtn.ﬂ} +-= when B + E% . This is part of the content of Theorem 3.2,
4

and is proved without the help of the present Appendix. Define

oX(o,e) = inf (Be-BE(p,B)) . (A.1)

s€(0, 23
B

This is clearly an increasing function of ¢ . Let ;_Ll:ﬂ}l and EH':H]
be the left and right derivative of Bfl{p,ﬂ} with respect to g . We
shall from now on omit the superscript X . General arguments concerning

the equivalence of ensembles [25] give the following results :

(a) limy sl(pe) = Lim, 5, (oe) = 0lpse) = Be=BE(p,e)
A AR AR

when ¢ = EE{EI -

() 1lim sup &} (p.e) < olore)
AAR
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when ¢ € fER{E}rELIE}] i (alp,*) is then linear on EEE(EJ.tL{E}]} .

Propogition. For all X and ¢ » EHfE) ¥

lim inf uil:p,:] > uip.:nfﬂ}] (a.1)
AARE
z . . *)
when A”R" in the sense of Fisher .

We shall prove this proposition for X = D which is the most diffi-
cult, but also the most interesting case. Other b.c. can be analyzed in a

very similar way.
We now establish some notatiom i

£, TeplB) . o = u{n,:E{EH ’ (A.2)

Instead of specifying points (En,-Eﬂ:l in ﬂin , the positions of vortices,
we shall specify configurations, X , a set of n + vortices and a set of
n = vortices.1f 5 1is & set of configurations, X , and % the corresponding

subset of A" , (i.e. B = {¢E%X), (X)) : X € §)) we define
1 n n -0
vol § = —— [dgdE x_(§,8)
(nl!) 5
with xg the characteristic functiom of .
Given an arbitrary v > 0 and ¢ >, 4 e shall try, for large A and

|ﬂ.|'lzn Mp , to construct a set § of configurations such that

*) See [25] for the definitions.
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A _llug vol 5 > 8 =y (A.3)
n o

and such that all configurations in 5§ have energy in the interval
((e=8) |A|,(c+8)|A|), for some arbitrarily small,but positive & . Since

e > e, and by (A.2), this proves (A.l1).

The proof of (A.3) consists of an explicit construction of § which we
now outline : We choose an integer v << n , with v *=and v/n + 0 , as n + =
and consider configurations of 2(n-v) wvortices im A with energy in an
interval [[:ﬂ*ﬁ'}lhl, £n[h|] . To these configurations we add the 2v
remaining vortices in a small number (two) of wery concentrated clusters in
such a way that they contribute an amount of energy proportional to |
and make a negligeable contribution to the specific entropy.

Let En be the set of configurations of 2(n-v) wvortices with
energy in the interval [{:u-ﬁ'}|A|,zu|hE] . Since %/n+ 0 we have, for

large A ,

=1
|Al "log vol _ 8 > s v/3 . (A.4)

o

We may also assume that y has been chosen so small that
|4l Mog vol 8° < 5 -2y (A.5)
no o , 3

where E: is the set of configurations with energy =< {Eﬂ-ﬁ‘}|ﬂ| . Since
A-"Ez in the sense of Fisher we may decompose most of the area of A
into little squares, © , of area 1/2 . Let <(-)> denote the expectation
value given by the measure Ivnlnuusuﬂ'lvuln_vﬂ'] on En . Then, for more

than half of the squares [ ,
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<number of vortices in [ > < ,% (A.6)

Bince h;’IRz in the sense of Fisher, some fraction ( > constant) of
these little squares has a distance > x diam A to the boundary of A
for gsome & * 0 . We choose one such square, El . Lat SL-E En be the set

of all those configurations in Eu with mo vortices in El . It follows

easily from (A.6) that

1
vol 8 >gwol 8 . (AT}

Hence, for A sufficiently large
=1
|A] “log vol _ S, > s /3, (A.8)

an immediate consequence of (A.4) and (A.7). (We note that we could, for
each N = 1,2,3,..., find M squares, Il'**"IH y with distances
> = diam A such that the set of configurations 8, < S  with no vortices

1 - " N
in L Uree UL satisfies wol _ S, > (1/4)'vel _ S , and

=]
|A] “log wel S, > 8" /3,
for sufficiently large A& ).

We now modify configurations in 51 by adding v + vortices and

y = yortices inf. . Let w(x) denote the charge {or vorticity) demsity

1
corresponding to the 2y vortices in :1 . Clearly

supp w € £y o [dx w(x)= 0 , [dx|u(x)| = 2R . (A9)

A shown in Sect. 1, it then follows that
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s dz:dz?hﬁxju{y][?ﬁ x{x,y]ﬂﬂ_{xhy]]
(A.10)
=]
< :nult.{Ru]EKJEE-r diam A .

Mext, we describe the way in which we distribute the 2v vortices in £1
more precisely : They are all contained in a disc D of radius at most
ﬂiikﬂn}-lfz inscribed in El . Each individual vortex is in a disc of
radius r ,

1 .,1/2
r << fiisﬁ
g0 that the distance of two such discs is at least 2r . The discs containing
a positive vortex form a cluster, those containing a negative vortex form

another cluster, and the two clusters are at a distance = lfﬁ[!n]_lfz :

see Figure 2. To be specific we may assume that these clusters are roughly

Figure 2

eircular pieces of a regular lattice (hexagonal or square) of small discs
of radius r , with lattice distance proportional to r . By (A.10), the

interaction energy of vortices within one such cluster is
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~ (e tegt-t - hvi.o(diam &Y (A.11)

100

rfv << 1 , a8 v o=w,
The interaction energy between the two different clusters is

~ =(Rvo /21 log(——) - RovZ0(diam A D) . (A.12)

4

These estimates are to be understood as follows 3

(a) Uniform constants only depending on the geometry of the clusters

have not been computed.

(b) Apart from those constants, (A.1l) and (A.12) give the exact

behavior of the total interaction energy of the 2v vortices, in the

sénse that the interaction energy is contained in an interval
[“-rh':lﬂz'ﬂ'zlﬂ-l(L) ¥ {-ﬁ--l:"}
ey

where K and k are constants independent of r,v and A , and n tends

te O ,as e+0,A+=

Next, we must estimate the interaction energy between the 2w
vortices in D Ey and the 2(n-v} wvortices im A ~ L, @ We fix a confi-
guration 5 of 2(n-y) wvortices in ANEy o This configuration determines

a charge density, a(x) , with supp e A~ I, » and

[ atx)d’x = 0 .

Naxt, we fix the position of each of the 2v vortices in I to be at

the center of one of the little discs of radius r contained in D c 1‘.1 .
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Let un[:} denote the charge density corresponding to this particular
configuration. Furthermore, let NE{I] denote the charge demsity obtained
from uu{:} by rotating the positions of all 2v wvortices about the

center of Il (= center of D ) through an angle 8 .

We now note that

in =
I dEuE{x] = wix) (A.LG)

is invariant under rotations about the center of El , and [ ;{u}dit =0,

The interaction energy between the 2v  vortices inside Il with charge

distribution mﬁix} and the 2(n-v) wvortices of the configuration 51

in A~ El is given by
W, 2 [ a®x d’y w000V, L(x) A-15
" x dY w, (x)ly ALK Xy ¥ (A.15)
Hext
E'I':i 2 2 =
jn OWg = [ d%xd’y w(x)a(V, (xy) .

Since v, H{x.r} is a harmonic function of = , for x E D , for all choices
§
of b.c. X and all y €ANE, , and since ] E(x}dzu =0 it follows that

2w

| e Wy =0 . (A.16)
a

As long as n is finite (or, equivalently, |A| is finite) HE is a

continuous, periodic functiom of ® . This is true because

dist(supp 1 ,» supp wg) Z %lln}-l!z :

Thus there exists at least one value ﬁs of & such that
1
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W, =0 . (A.17)

As one varies the position of each of the 2v wvortices in
e SI throughout one of the small discs of radius r (depicted inm Figure 2),
the variation, AW, , in the interaction energy between the 2v  vortices

in D and the 2(n-v) vortices in A ~ El is bounded by

[nﬂhl :ﬁ:nnnt.{v{n-u}fﬂﬁi}-r . (A.18)

Thig follows from (A.15) and the continuity properties of ) xil.yi with
Ll

respect to x E D , for arbitrary v € A ~ El .

Thus if the position of each of the 2v vortices inside El

is anyvhere inside one of the 2v little discs, rotated by Be s
1
inside D then, by (A.17) and (A.18),

[w, | < comst.(vln=v)/vZg)-r . (A.19)

1

g

To complete the proof of our proposition we now must choose v
and r , calculate the total energy uncertainty, using (A.13) and (A.19),
and caleulate the entropy of the class of configurations comstructad above.

For example, we may choose

o= {cllﬁifdilm njlfz

(A.20)
-1/

£ = ¥ Eexp[—ta diam A} ,
where €y 9C, and €, are finite, positive constants. Then the total
energy of the 2v wvortices in De L is, by (A.13), contained in the

interval
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¢, [k=n,K] Ez[ﬁ.! . (A.21)

for a positive constant . (depending smoothly on :l,cz.ngl , with
n+0, as h,f'".'llz ; in the sense of Fisher. Moreover
=g, diam I
| = cjdilﬂftlhlfdinn plié g3 3
5
1

W
I |
Thus the total energy of the configuration, 5§ , consisting of 5 and

of the 2v vortices put inte D by the construction described above,

is contained in the interwval

[{zn+ciﬁ-ﬁ1][ﬁ[,(cn+cﬁﬁkﬁz}|h1] ; (A.22)

where

§, = &'+n+expl-0(diam A}] ,

1

§, = exp[-0{diam N)] .

2

By choosing €y1€icy suitably, e,k can attain any prescribed, positive

value.

To calculate the entropy of 5 , we first calculate the total
volume, V., , of all configurations of the 2v vortices inside D

constructed as described above :

v = ey const. (Jp) eTEONSEY dlan A (4.23)
v
Note that ﬂﬁ is independent of Sy » (in spite of the fact that the

angle EE depends on 5 .) Thus the volume of 5 is given by
1

1 = 1 5.V
ve ns Yo la-v"l Ty



s B
and hence, using (A.B), (A.20) and (A.23)

=] =1
|A] "leog vol 8 Al “leg vol _ S,

+ [A|-llug{fu]

> 8,~2y/3 - const.(|A| 'dian plie

A.24
> 8,7Y (A.24)

provided AR , in the sense of Fisher, and, given y , |A| is chosen

sufficiently large.

Clearly (A.24) and (A.22) complete the proof of (A.3) and hence of

our proposition.

Remark. In our proof we have used two special features of the Coulomb

interaction @

1) v, ((xy) diverges to 4= , as y +x , for each x ED .
L
{This was used im (A.11) and permitted our choice of v , namely

a2 w0, as |A] += . See (A.20)) .

2} More importantly, in our estimate of the interaction energy,

W , between the 2v wvortices in D and the 2{n=v) wvortices im A >~ Il

we have used the harmonic property of Fh x{x.r] with respect to x €D ,
1

for % E A~ T

1

It turns out that one can avoid using either of these two elements,

1) and 2). Instead one uses the following elements :
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a) Inequality (A.5)

b) Given an arbitrarily small square I , the set of configurations

of w(+ or =) particles inside [ of energy > c".lz has a volume

?; gl:unut-{uI}-P s p<m=  provided ¢ is small enough.

¢) Charge conjugation invariance (i.e. + particles and - particles
have equal a priori probabilities); or repulsive (positive) two body

potentials of short range.

d) Ome repeats the construction described above in N widely

separated squares, I‘.l,....l:H i (see remark between (A.8) and (A.9)).

These properties are all valid in the vortex gas studied in this
paper, but they hold for a much larger class of classical statistical systems.
The proof of our Proposition, assuming only a) - ¢) above, becomes however
more difficult. (A clever interplay between d), c) and a) permits to control

the entropy and energy uncertainty.) We do not give the details.
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Agg:ndi: B.

Stability in the canonical and grand canonical ensembles, and monotomicity

properties of the pressure.

In this appendix we briefly describe two methods for proving the
stability bounds (3.12) and (3.16) for 8 < 4n/R° . In [8] , [9] these
facts have already been established for b.c. X = F,N . Thanks to the
third inequality in (3.16) it suffices to prove the stability bound (last
inequality in (3.16)) for Dirichlet b.c.. The bound (3.12) follows from

(3.16) by standard arguments; see e.g. Corollary 3.6 of [8].

We then briefly indicate how one proves the monotonicity properties
(3.17) and, finally, how one can treat vortex gases, where the vorticity,
B , of individual vortices varles, but is distributed according to some

finite measure dA(R) of compact support.

Let W () be the Green's function of the operator =4 +u1 .
A X A X
where ﬁh X is the Laplacian on thn ; Lebesgue) with X b.c. at the
L]
boundary ap of 4 , and yu > 0, Clearly
¥{”} < ?Eu'} for y2u' >0 . (B.1)

|I|-l-x - -I'-Ipx !

Lat “:uittn'iu} be an (n,m) particle Hamilton function defined as in
| ]

(3.1), but with V, . replaced by uifi and with W, ((£) replaced
by 3 lim WPXEm-v (60 . By (B.1)
m+E '
(u), n —m . (v n —a _ n —m
uh.ﬂiﬁ £ % }1n Uﬂ,xtﬁ +E ) UA,I{E Y (B.2)
T4 ]
and the last equation holde for all X , provided one sets U Eﬁn.fll B

AX
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for n¥m, when X =F,P or N . We define

(p); o —m
=gu (E.E)
()X il I, n A, X
QT (AymmB) = = ¢ = Iﬁn+_ dg'dg e (B.3)
and
N, @m0
By (B.2)
3
qx " q':“}l
H for wu z_ﬂ " {BFS}
o S 1) b4

#

i.e. it suffices to establish stability of a gas where the "vortices"
interact through a Yukawa = rather than a Coulomb potential, and this will

(X f the form

follow from an upper bound on E
=00 0p 2,8) < expliete.B)[A]] (B.6)

where |A| is the area of A , and k(z,8) is a finite constant, for

K
all z > 0 and all B < iﬁflz «» If X=D, A= U A, , where
je1 ¢
ﬁl,....ﬂn are disjoint, open sets then
'@
| Rt A Y & U oo 1 i o
" j'l j-
and one checks easily that this entails
(WD b (WD
E {ﬂttrﬁ} = 'Ul = {ﬂjlzrﬂ} . fﬂ-?]
J:

Thus it suffices to prove (B.B) for X =D and a region A of unit area.
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By (4.2), this will prove (B.6) for X = F,P,N , as well. In the literature
one finds two fairly convenient methods for proving (B.6); see [8], [9], [3] .
They both rely on the sine-Gordon transformation which also plays a crucial
role in a proof of the monotonicity property (3.17) based on correlation

inequalities [10]. We briefly recall some of the main formulas defining

this transformation. Let C (= ‘.’}LH;J be the integral kernel of a positive
L]

definite quadratic form on Li{.l'l. , Lebesgue). Leat duE{-ﬂ denote the
Gaussian measure on U'(A) (the dual of f::{.ﬂ.” with mean 0 and

covariance C . Let En be a kernel with the property that

c(g) = lim (C{Esn)-C_(Esn)) (B.8)
g

is continuous and integrable near 3A . Formally, we define random fields
iaé

iag

L and e "z by

L

2
a € (E,E)
=.Lu¢=n{£j $id 2 o

(Lad (6)

1 (B.9)

2
a C(E,E)
=Ii“¢={E} -e? 1ot (L)

It follows that

iﬂ* 'r% lzn {E} iu.ﬁ
H :H{E} =- g e TI(E) . (B.10)

By the definition of duE and (B.8) - (B.10)

n iao.d
J I te Te e Mug(e) = expl-UlEyse.aE )] (B.11)
o

vhere



UCEysnennbpd = L @ ClE,E.) + 5 :(E ) (B.12)

l<i<j<n 1-1

(u) - :
If we get C = ?n_n ; Eﬁ ¥_ we obtain

2zf,:cos HB#:nii}diE

i“}ﬂih,liﬂ] . = i

==
]
=

where t{-}rc denotes integration with respect to the Gaussian measure

(u)
o0

du.(¢) , and C = u>o.

Remark. Formally, the proof follows by power series expansion of the

exponential, the idemtity
2z:cos 4EB¢=#{£} = ={:elﬂER‘=ufE} + :e-i HH*:EEE}}

and identity (B.11). To make these formal calculations rigorous, one
first proves Lemma B.l for a regularized wersion of ?{":'IIE.II} which is
continuous in £ and n and then removes the regularization, proving
at the same time a uniform bound of the form (B.6). Details for X = F
may be found in [8], [9] . For X = D , =& convenient regularizatiom

consists of replacing

v (e by (V) - Vi), M us 0.

This is used in [3].

By (B.10),
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IJ.LWN""EH?Q':E]'I'EE'IA i:ur.{-:- HEE-{E.]INQ-II"'EHH {E}diﬁ .
vhere

c(g) = lim[v¥)

(E,n) = ."_{El'n-}l ' (B.13)
m+E 4,0

and we may choose u = 1 . One verifies easily thac, for anz < 4w and A

a unit square or unit disc

@  f expl-S &'e(r)) ¢®¢ < = , and
® expl-§ ®He@remV (c,ma’cay
BA x BA n

< const. 8 ,

for all & > 1 , To prove (a) and {b) we notice that

-c(£)< {il}-lln{lfdlanft,ﬁﬁ}} + const. and that ?é:}D{E,n] has exponen-

tial decay im [E—1'|[ i (this is used in the proof of (b)).

Estimates (a) and (b) are typical of the estimates one needs
to control the renormalization group scheme in [3] which (with Lemma B.1)

vields the bound

=00 2,8) < exp c(arD2? (B.14)

2

for some constant c{EHI}I which is finite for 0 < BR™ < &x , and A

is assumed to be a unit square or unit disc. The method in [3] is designed

to establish (B.9) for a renormalized version of E{“}ch

EF.? < 6y . This causes some technical complications which are unnecessary

+2:8) & For all

in our case. It is not entirely trivial to develop a simplified version
of [3] which can be used to prove (B.9) without appealing to sophisticated
techniques. Since details are lengthy but fairly straightforward, we

omit them.
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When A is a disc, one can set p = 0 and prove (B.9) by
following the method in [8], [9]). This case is quite simple, because the
Green's functions of the Laplacean with Dirichlet b.c. on the boundary
of a disc has a simple explicit expression. One proceeds as follows :
One defines C = viﬁ; - 'IFJ,I « The Green's function T'rh,D is calculated
in [8]), [2]). Let h., and A be two discs centered at the origin, with

ﬂn = A and diut{hﬂ,a.lﬂ-} 0 . Then

2 (8,2,8) = <explzf,:cosvBre: (04’1,

< cazptﬁziu rcos/BRe:_(£d%e)s /2 . (B.15)
* <expléz [ :cos/BRe: (£)d E]*lf:
wh,

Now, notice that the re=Wick ordering factor I'.‘le:"g* ch:{Ej] is uniformly
bounded on A Therefore a convergent upper bound on the first factor
on the r.s. of (B.15) follows from the results in [8], [9]. A bound for
the second factor can be proven by adapting the arguments in Sect. 3 of

[B8] : Im equs. (3.11) and (3.15) of [8] the terms

oy a
jEllzj-uj+ﬂ| I“j :j+nE are replaced by
; 5w, |° i | Pexd-2 & ez, Dretlw, DY, (B.16)

vhere g = Eszﬁt s and
- e([z]) = lim [v_-¥, J(z) < 3= in(1/dist(z,30)) + const.
M L]

Since lljwjﬂti < const.dist(z,,3A) and [H -z, anl < const. diur_l:uj,ah} :

i

for all :1.“.,15 and "1""":1 contained in h‘-.ﬂ.n ¢ (B.1B) im
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bounded by const.” . The estimates in Sect. 3 of [8] and the boundedness

of (B.18) vield a finite upper bound on the second factor im (B.l5).

Finally, we note that the stability bound for qlfﬁ,n,n,ﬂ}

follows from (B.14) and (B.4) by the Cauchy estimate.

We now outline the idea of the proof of the monotonicity proper-

ties (3.17) of the pressure. First note that

X
ap) (z,8) e
“T- | n:{B.z:E}ﬂzl: ; (B.17)
A

see (5.4). In the sine-Gordon representation

X =]
pp(B,2iE) = 22 (A, 2,8) <:cosvBRé: _(E) .
(B.18)
- 2
. expl2z htcn:fﬁﬂi.u{Eld El?c s
with C = Un ¥ * It now follows from the correlation inequalities in [10]
L]

and the inequalities

v v
AE Y "nz.h' EVyn

"nl.n s "nz.n SNp g

2=
[ ]
=)
[ =t
=
g
=
h
=]
=

whera 51 and Az are disjoint, open sets and

each fixed €

n:(n;:;z} is increasing in A , for X = F,N ,

p:{E.:;EI is decreasing in A .



From this (3.17) follows by standard arguments (provided the domains

are squares or discs).

We conclude with a few remarks on vortex gases with vortices
the vorticities of which are distributed according to a measure di(R) ,
with supp 1 ['Hn’nnl ' Hﬁ <= , The grand partition function of this
gas in the sine-Gordon represantation is given by

ivBRs

=X(A,1,8) = <exp[ aamf, e :u{t}dzz}n : (B.19)

Cm vh X - By taking the absolute value of the expression inside the
L]

expectation ﬂ[-}bﬂ we obtain

=4(A,1,8) € <exp[dr(R)[,:con/BRe: (£)4°6>, - (B.20)
By Jensen's inequality

qxpjdl{HJ[h=cnlJERi:n{E}ﬂzﬁ

(B.21)
< 2 farR)exp[zf, scos/BRS : (£)d7E]

where =z 2 Idl{ﬂ} « Thus, combining (B.19) - (B.21) one finds

=X (A, 1, 8) < :'ljdlcaz<a:p ‘fﬁ=‘°‘*33**nff}dzf’c

The right side is bounded for all =z > 0 and uniformly in R , provided

2 -
ERIn < 4n ; see (B.14). If dA(R) = dA(-R) , the correlation inequalities

in [10] are applicable, as well, and can be used to prove (3.17).
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