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O. Introduction. 

When the motion of a fluid may be considered as approximately two-

dimensional, the fluid often exhibits well defined vortices. The existence of 

*) 
such vortices is an experimental fact, which already Poincaré tried to explain 

If dissipation may be neglected, the motion of the vortices is Hamiltonian, 

and it is natural to study the "gas of vortices" by the methods of statistical 

mechanics. Onsager [20] has argued that when the total energy of the system 

is sufficiently large, the "gas of vortices" is in a "negative temperature 

state". He further argued that, in such a state, vortices of the same sign 

attract each other. In fact the coalescence of vortices of the same sign has 

later been observed in computer experiments (see Montgomery and Joyce [17]), 

** 
and is claimed to explain in part the existence of large well-defined vortices 

In this paper we study rigorously the statistical mechanics of 

a gas of vortices in the thermodynamic limit. We let thus the volume of fluid 

go to infinity, while the density and mean energy of vortices tend to constants. 

*** ) 
In this limit, no negative temperature states are found to exist , contrary 

to Onsager's proposal. 

Our main results are presented in Sect. 3, (Theorems 3.1, 3.2.) 

*) The argument of Poincare ( [22] chapitre VIII) is based on a discussion of 

the stability of motion. 

**) See also Kraichnan and Montgomery [15] for a discussion of this theory. 

Note that vorticity is conserved in an inviscid fluid (theorem of Helmholtz); 

therefore Onsager's mechanism cannot explain the appearance of well defined 

vortices in a fluid where the vorticity is smoothly spread out initially. 

***) Negative temperature states are known to exist for certain other systems 

without kinetic energy (spin systems). We claim that nothing of the sort is 

present here. 



1. Potentials. 
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Let v = (ν^,ν^) be the velocity field of an incompressible two-

. . 2 ... 
dimensional fluid in a bounded open region A c TR . The incompressibility 

relation : 

implies the existence of a stream function Ψ such that 

if we know that the flow of v through pieces of the boundary of A vanishes. 

Introducing the vorticity 

(1.1) 

one sees that the instantaneous angular velocity of a fluid element is ω/2 . 

The relation (1.1) may be solved for Ψ as 

Ψ(x) = JA
 dy ω(y)V(x,y) , 

where the potential V(x,y) is the kernel of the operator V = (-Δ) ^ , 

defined with suitable boundary conditions (b.c.) on the space 

L2(A) = L2(A , Lebesgue). 

We impose the physical condition that the fluid does not cross the 

boundary of A .If ∂Λ is smooth, v is thus parallel to the boundary, 

and grad Ψ normal to it. Therefore Ψ is constant on ∂Λ , and we may 

take this constant equal to 0 . Mathematically, this corresponds to taking 
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Δ = Δ , where Δ is the Laplacean with Dirichlet b.c. : - Δ. is defined 
Λ A 9^9 

*)
 # as the Friedrichs extension of the positive operator «· acting 

3x7 3xf 
OO , , 1 / 

on C functions with compact support in A . The corresponding potential 

will be denoted by V^(x,y) . We extend the definition of this potential so 

that V^(x,y) =0 if x £ A or y £ A ; V^(x,y) is then the kernel of an 

2 2.. 2 
operator on L IR ) , vanishing on the orthogonal complement of L (A) . 

If A c Λ' , the definition of the Friedrichs extension implies that the domain 

2 
of Δ^ is contained in the domain of Δ^, (with the identification of L (Λ) 

2 
to a subspace of L (Λ')) , and that 

V-V}1Ai -ΔΛ 

where 1 is the orthogonal projection on L (Λ) . Writing 

we have thus A*A < 1 
“ A 

hence 

AA* < 1Λ, , 

and finally 

V. < V. , when AcA' . 
A — Λ' 

(1.2) 

**) 
It is convenient to introduce also the potential 

(1.3) 

*) For a discussion of the Friedrichs extension see for instance Riesz and 

Nagy [24] § 124, Reed and Simon [23]. 

**) We write 
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which corresponds to free b.c. , (this is a definition of free b.c.) 

If we write 

VX,y) = Vx’y) " Voo(x’y) (1.4) 

then (x, y) V^(x,y) is continuous in A x A . (To see this it suffices to 

notice that V^(x,y) is a harmonic function of both x and y ). We define 

(1.5) 

Let A be fixed, contained in the circle of radius R centered at 0 , and let 

Λ' be a circle with large radius R' centered at O . For y Є A , V^,(*,y) 

is harmonic with boundary values — log R' + 0(·|τ) . Therefore, by the 

maximum principle 

When ω has support in A and satisfies the "neutrality" condition 

ojdx = 0 , we have thus 

hence 

lim J ω(x)u)(y)V. , (x,y)dx dy = / ω(x)ω(y)V (x,y)dx dy . 
R'-x» Λ 

Combined with (1.2) this gives 

Jm(x)m(y)VA(x,y)dx dy £ ̂ (x)m(y)V
eo
(x,y)dx dy 

when Jm(x)dx = 0 . 

(1.6) 
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2 

If L = {
n
i
a

;L
+n

2
a
2 : η^,τ^ G Z} is a lattice in E. , and 

Λ = {X1a1+X2a2 : 0 £ £ 1} , a potential
 per

(x,y) with periodic b.c. 

may be introduced. It is a periodic function φ of x-y , with 

where [ΛI is the surface of Λ .It is seen that V. corresponds to 
1 1 Λ per 

the inverse of the Laplacean on a torus, restricted to the orthogonal complement 

of the constant functions. We have thus 

Jm(x)m(y)VA(x,y)dx dy £ ]ω(χ)ω(y)VA per(x,y)dx dy 
(1.7) 

when /m(x)dx = 0. 

The difference V, (x,y)-V (x, y) is continuous at x = y , and we define 
A per 00 

which is a constant. 

2 2 
3 3 

The Friedrichs extension of ~ —2
 act

^
n
S
 on functions which 

3x^ 3X2 

are C°° with bounded derivatives on Λ is ~A.„ . Here Δ..
τ
 is the Laplacean 

AN AN 

with Neumann b.c., which corresponds to vanishing normal derivative on the 

boundary of A when this boundary is sufficiently smooth. If A e Λ' we 

have -Δ,
ΧΤ
 < “Δ,|χ

, with the usual identifications. We define V... to be 

the inverse of ”^A^ restricted to the orthogonal complement of the constant 

functions on A . The corresponding potential satisfies thus 



7 

Assuming always 

Jω(x)dx = Ο , 

one obtains easily the following inequalities 

/ω(χ)ω(γ)νΛ!Ν(χ,γ)άχ dy £
 /ω(χ)ω(ν)Υ

ΛΝ
(χ,γ)άχ dy (1.8) 

if A c Λ' , 

/ω(x)ω(y)V
oo
(x,y)dx dy £ /m(x)m(y)VAN

(x,y)dx dy , (1.9) 

/ω(χ)ω(γ)Υ
Λ per

(x,y)dx dy £ fm(x)m(y)V
AN

(x,y)dx dy . (1.10) 

The difference VAN(x,y) - Υ^χ,γ) is continuous at x = y , and we define 

which is a continuous function of x . 

The potentials V
A

 , , V
A per

 , V
AN
 may all be interpreted as 

two-dimensional electrostatic potentials, VA corresponding to conducting b.c., 

and V to insulating b.c. on 3A .If Λ c: Λ* , the electrostatic energy 
00 ^ 

of a distribution of charge in A , with conducting b.c., is less than 

the energy of the same distribution in A* (inequality (1.2)). This is 

because, going from A' to A , one allows the electric field of the given 

charge distribution to perform work on the freely moving charges of the newly 

introduced conducting boundary . 
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2. Mechanics of vortices. 

The kinetic energy of the fluid contained in A is 

where ρ is the density of the fluid. 

m 
Suppose that ω = Σ ω. where the ω. have definite signs, small 

1 1 1 

disjoint supports centered at » and u^(x)dx = . Then 

If the supports of the tend to the points , we have 

where we have written 

(2.1) 



- 9 -

(remember that W is given by (1.5)). We define similarly 

and for a parallelogram A
 , 

The quantity υ.(ζ
1#

...,ξ ) is finite when the ξ. are distinct 
A 1 m i 

and inside A . On the other hand K -► °° when m > 0 . We view as a 

renormalized energy of the vortex system ; it may take positive or negative 

values. Note that, as a consequence of (1.2) , 

υΛ(ξχ im) 1
 υ
Λ·

(ζ

1’ when
 Λ c Λ

'■
 (2

·
2) 

Using (1.'6) and (1.7) we obtain also 

V5i’··”^ ιυ-(ζι ε
π

) when 2 Ri= 0 · 

UA(il’···’^ — UA
 per(?l when Σ Ri = ° ' 

Since the vortices move with the fluid,by the theorem of Helmholtz, 

we have 
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(2.3) 

We admit that if the i-th vortex were alone in infinite space, its velocity 

would vanish (although its internal structure might change with time) . This 

means that we may replace in the right hand side of (2.3), by 

Y«i*y) " vJh’y) = V*H’y) ( see (1.4)). Notice that is self-adjoint 

and that its kernel is real (because -Δ^ is a real operator). Therefore 

V^(x,y) « VA(y,x) and 

= grad WA(Çi) 

*) A more careful discussion would approximate the velocity field some distance 

away from the vortex in the form x ν(ξ^)+| grad ν^χ,ζ^) , and define 

ν(ξ^) on this basis. Note that an isolated vortex enclosed in a box A will 

usually move, due to the presence of walls. In the simple example of a 

straight infinite wall we have ν.(χ,ξ) = V (χ,ξ)-ν (χ,ξ ) where ξ is the 
J\ 00 00 

symmetric of ξ with respect to the wall. The vortex at ξ moves under the 

influence of its mirror image at ξ . The motion of ξ, ξ corresponds 

exactly in 2 dimensions to the motion of a smoke ring in 3 dimensions. 
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Altogether (2.3) becomes 

Replacing « by = we take this as definition of the motion of point vortices. 

We have thus 

(2.4) 

*) 
These are Hamiltonian equations in the 2m variables ξ. with 

iα 

i = l,..., m ; a = 1,2 . In particular Liouville’s theorem implies that the 

volume element dξ = . . .
 A d

£ml
 Λ d

5m2 is preserved under time 

evolution. The total volume of accessible phase space is in fact finite 

(= |A|m , where |A| is the surface of A) . It is thus natural to follow 

Onsager, and apply the methods of statistical mechanics to systems of vortices. 

This means describing systems of many vortices in terms of Gibbs ensembles. 

The microcanonical ensemble is the probability measure 

(2.5) 

where Ω is a normalization constant, and the support of the measure is on 

the energy surface defined by 

*) Writing q
i
 = ξ^

1
ν/
ρ~ν^|| , p

i

 = ξ^^/çîj I * we obtain the familiar 

equations dq^/dt = 9U^/dp^,dp^/dt = -8U^/dq^ . It is however more natural to 

retain the variables ξ. 
iα 
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U Λ(ξ1,...,ξιη) E · 

The statistical description of a system by the microcanonical ensemble is 

usually justified by assuming ergodicity of the measure (2.5) under time 

*) ) 
evolution 

The heart of statistical mechanics is the study of the thermodynamic 

limit, where Λ,η,Ε tend to infinity, while the density |A[ 1n and 

specific energy | A| 1E have finite limits ρ ,ε · Before taking the limit 

one replaces (2.5), where E has a fixed value, by an expression where E 

varies in an interval (|Λ|(ε “δ ) , | Λ [(e +δ ) ) , and only after the thermodynamic 

limit does one let fi 0 . It is a new physical assumption that this compli-

cated limiting process gives a correct description of (2.5) when Λ,η,Ε are 

large but finite, and E is a number, not an interval. In the next sections 

we go into the formalism of statistical mechanics, and study the thermodynamic 

limit. Before that let us recapitulate the physical assumptions that have 

been made : 

> . 
Nothing is known on the ergodicity of a system of n vortices in a box. 

(For a discussion of the dynamics of 3 or 4 vortices in infinite space, see 

Novikov [18] , Novikov and Sedov [19], Aref [1] , Ziglin [28] , Aref and 

Pomphrey [2]). Actually, ergodicity may be too strong an assumption. It would 

be enough to assume that for large Λ,η,Ε , (2.5) has one ergodic component 

of measure close to 1 . (One may suppose that the other components would 

be invisible for instance because points starting in them would, by small 

random perturbations, go to the large ergodic component). 
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(a) Two dimensions 

(b) No viscosity 

(c) Point vortices 

(d) Ergodicity of the microcanonical ensemble under time evolution; (or 

dominance of an ergodic component in the presence of small random 

perturbations). 

(e) Fixed total energy may be replaced by a small energy interval; the 

thermodynamic limit is a good approximation for the description of large, 

finite systems at moderate densities and energy. 

3. Statistical mechanics of vortices. 

3.1. Introductory remarks. 

In order to simplify matters, we assume that all vortices have 

strength R
i
 = ± R , with R > 0 . According to (2.1) the Hamilton function 

for n positive vortices at positions ξ ,.,.,ξ and m negative vortices 
1 n 

— — 2 
at positions ξ

1
,...,ζ in an open region Λ c: IR is given by 

1 m 

(3.1) 
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where X specifies the boundary conditions (b.c.), X = D (Dirichlet or 

conducting b.c.), X = F (free or insulating b.c.), X = P (periodic b.c), 

X - N (Neumann b.c.) , ξΠ Ξ (ξ
χ
,...,ζ^) . Furthermore 

W Ξ W , V Ξ V , W, = 0 , ν
Α π

 Ξ V , W. _ Ξ W and 
A,D A * A,Q A A,F , A,F , Λ,Ρ A. per 

V. _ Ξ V. in the notations of Sects. 1,2. 
Λ,Ρ A per 

The system is called neutral if η = m . It is straightforward, but 

cumbersome notationally, to deal with vortices of variable strength, distri-

buted according to some a priori distribution, dλ(R) , of compact support; 

(see Appendix B). 

It may be of interest to also consider the thermodynamics of 

"non-neutral'' systems, e.g. n = 0 . Their behaviour differs from the one 

of neutral systems (m=n) which we study below. In order to obtain thermody-

namic behaviour, a neutralizing, uniform background vorticity must be 

introduced. Physically, such a background vorticity corresponds to a fluid 

in uniform rotation with constant angular velocity, or one which "shears" 

between two parallel lines. In this way one obtains a family of vortex systems 

interpolating between the neutral two-component Coulomb plasma and the 

"jellium" [26] in which all point vortices have strength - R , and there is 

a neutralizing, uniform positive background vorticity. 

For the purpose of comparison (e.g. with numerical studies [17]) we 

not only discuss the physically motivated Dirichlet -, but also free-, periodic 

and Neumann b.c.. The remarks on the physics of the vortex system, assumptions 

(a) through (e), Sect. 2, suggest to study the micro-canonical ensemble. 
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It turns out, however, that for many values of the thermodynamic parameter 

this ensemble is equivalent to the canonical ensemble. Moreover, for the 

system of point vortices studied below, the canonical ensemble is known to be 

equivalent to the grand canonical ensemble. This is a simple consequence of 

the scaling properties of U. (see Sect. 4 of [8], [9] and Theorem 3.2). 
A 9 X. 

Mathematically, the grand canonical ensemble is the most convenient one. 

3.2. Definition of ensembles and thermodynamic functions, the main results, 

(a) Microcanonical ensembles 

Let <$Δ be the characteristic function of the interval [-Δ,Ο] 

and δ the one of (-°°,θ3 . The microcanonical partition function for a 

neutral system of n positive and n negative vortices in a bounded, open 

2 
domain Λ c: IR is given by 

(3.2) 

where E is the total energy, and 

(We closely follow notation in [8] , [9] and [25]). We also define 

(3.2') 

Let 

where [Λ| is the "volume" (area) of A . These quantities are the energy 

density, energy density uncertainty and particle density, respectively. We 
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define the entropy densities 

(3.3) 

and 

2 
with δ,ε and p kept fixed, (A^TR in the sense of van Hove [25]). 

For Neumann b.c. the thermodynamic limit of s1^ can be shown to exist 

(see Sect.4). 

y 
The function s (ρ,ε) is by definition an increasing function of ε 

It is easy to see [25] that if the thermodynamic limit of β^(ρ,ε) 

X 
exists and if s (ρ,ε) is strictly increasing at some ε = then 

y 
for all δ > 0 . It might happen, however, that s (ρ,ε) = S

Q

 e const. , 

δ X for e Є ^·
ε
0
,ε

ι^ ,
 ε

ο <
 ε

1 . In that case it is
 conceivable that s , (ρ,ε) 

depends on δ and is strictly smaller than s (ρ,ε) , for some ε € (
ε
0»
ε
^) 

and some sufficiently small δ . Thus it might happen that 

(3.4) 

at energy densities ε around which s (p,·) is constant. This was, in 

fact, expected by Onsager [20], Of course, in a finite region A , 
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if ε is large enough, depending on Λ . The true behaviour of 

δ X 
s , (ρ,ε), Χ = D, F, P, or N , as a function of ε is described in the 

following result. 

Theorem 3.1. 

X 
For X = D, F, P, N , there exists a function σ (ρ,ε) such that 

ε + σΧ(ρ,ε) 

is increasing and concave in ε , with values in the open interval 

(-°°,P- p log -|) , and if σΚ(ρ , .) is strictly concave at ε 

δ, Χ, λ X / \ X /■ \ 
s (ρ,ε) = s (ρ,ε) = σ (ρ,ε) , 

δ χ x 
(in particular the thermodynamic limits of s^* and exist). If

 ε 

x 
belongs to an interval of linearity, (ε„,ετ) of σ (p, .) then 

L 

(3.5) 

(3.6) 

(Note that is the left extremity of the interval), Finally 
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Notice that 

is the entropy of an ideal (non-interacting), two-component gas of vortices. 

A proof of (3.5) and (3.6) is given in Appendix A. The remaining statements 

then follow by proving the equivalence of the microcanonical, canonical and 

grand canonical ensemble for all, but possibly countably many values of 

and exploiting detailed properties of the free energy as a function of p 

and β ; see Theorem 3.2 and Sects. 4,5. 

In Sect. 4 we show 

s
N
(p,e) < s

X
(p,ε) < s

D
(p,c) < p-p log |· , (3.7) 

for all ε < 00 and X = F or P . 

Using a conjectured extension of the results in [4], [5] (proven 

for a lattice Coulomb gas) to the continuum gas studied here one is able to 

establish the equivalence of all three ensembles, for 3 sufficiently small, 

i.e. ε sufficiently large, and Dirichlet boundary conditions, and to exhibit 

the approach of 8^(ρ,ε) to p- p log y , as ε -* °° , explicitly; (see 

Sect. 5). 

In the next section we establish some general properties of s (ρ,ε) 

and s (p,e) , in particular we prove the following scaling relation : For 
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arbitrary b.c. and all θ > 0 , 

(3.8) 

which can be transferred to the thermodynamic limit if the latter exists. 

In that case we obtain 

by choosing 

Thus, the entropy as a function of p and ε is determined by 

β · 2 · 
the entropy as a function of p , for a fixed value, = * 0 , of the 

energy density ε , provided the thermodynamic limit exists. (See Sect. 4 

and Appendix A). Existence of the thermodynamic limit can be proven for 

strictly neutral systems with Neumann b.c. (Sect. 4). This summarizes our 

main results, but see also Theorem 3.2 and (3.34). 

(b) Canonical and grand canonical ensembles. 

The canonical partition function for a system of n positive and 

2 
m negative vortices in a bounded, open domain Λ c TR , with D, F, P or 

N boundary conditions at 3Λ , is defined by 

(3.10) 

with U given by (3.1), and 
A y X 

QX(A,n,m,3) ≡ 0 , unless n = m 

if X = N,F or P b.c. are imposed. We define 
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and 

(3.11) 

2n X 
with p = -pq- ; f^(p,3) is the free energy density for a neutral system 

in A with b.c. X . 

4π 
It is proven in [8], [9], Sects. 3,4, that for 0 < 3 < —j and 

R 
-,—r bounded, 
Ul 

QX(A,n,n,8) < K(8)n+m (3.12) 

and 

(3.13) 

for X = F, P and N . In Appendix B , this result is extended to X = D 

2π (in which case (3.12) has been shown to hold for β < —2 in [9]). 
R 

By using an argument of Griffiths [12] it has been observed in 

[13] that 

(where the limit is understood in the sense of van Hove ; see Definition 

2.1.1 in [25]). The same argument works for Neumann b.c., (the important 

ingredient in the proof being inequality (1.8)). 

For all four choices of b.c. the existence of the thermodynamic 

X 
limit of f^(p,B) can also be deduced from the equivalence of the canonical 

and the grand canonical ensemble and the existence of the thermodynamic limit 
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A π 
of the pressure for all 0 < 3 < —x and X = D, F, P, N ; (see Sect. 5) 

R 

We now define the grand partition function 

(3.14) 

QA(A,0,0,B) 1≡ , 

βµ 
where z = eP is the activity, 0 £ z < » . The pressure is then given by 

(3.15) 

In Sect. 5 we show that for 

(3.16) 

where Κ(z, β) is some finite constant independent of Λ , provided Λ 

is a circular or rectangular region containing {ξ : |ξ| <_1} . Moreover, 

for X = F and N and {Λ} an increasing sequence of circular or rectangular 

regions 

x 
p.(z,$) is monotone increasing in A , 

p (z, β) is monotone decreasing in A 

(3.17) 

By (3.16) and (3.17) , 



- 22 -

(3.18) 

. . . 4π 
exists and is finite and positive, for all 0<ζ<°°,0<β<—=■ , 

R 
and X = D, F, N . 

2 
One can also establish (3.18) for X = P , with through 

a sequence of squares or rectangles. (See Sect. 5 and [6]). 

By (3.16) and (3.17), for X = F, N , 

(3.19) 

By (3.10), (3.14) and (3.15) 

for X = F,P and N , and 

(3.20) 

It is. an elementary fact that 

(3.21) 

By (3.19) and (3.20) 

for X = D, F,P,N and arbitrary A , so that by (3.21), 
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for X = D, F, P, N and for all A . 

(3.22) 

Next, by (3.10), (3.14) and (3.15) , 

where ρ^(β, z ; ξ) is the one-vortex correlation, and ρ^“(β, z ; ξ, η) is the 

correlation of a vortex with strength R at ξ and a vortex with strength 

+ R at η , in the grand canonical ensemble; see [25], [10] for definitions. 

In a bounded region Λ , 

and 

Thus, by a dominated convergence argument, 

(3.23) 

Suppose now that A is the disc of radius r centered at the origin. Then 
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2 2 2 
limCV^-rO-V (ξ,η)) = (l/4π)log r -(l/27π) log (r -ξ ) ; 

π+ξ 
(3.24) 

see Sect. 3 of [8], [9] . 

Therefore 

(3.25) 

Hence 

diverges to -» , as r -> 00 

By (3.17) and (3.22) 

for arbitrary A . Therefore we conclude that 

(3.26) 

Theorem 3.2. 

2 
Let a = βR /4π . Then, for all choices of b.c., X = D, F, P, N 

(3.27) 
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X 
where F (a) is a finite, strictly positive convex function of a , for 

0 < a < 1 , with the following properties : 

Moreover, the canonical and grand canonical ensemble are equivalent, for 

all β Є [0, ~) , and 
R 

(3.28) 

Remarks. 

1) For free b.c., (3.27) and (3.28) are proven in [8] . The extension to 

other b.c. is indicated in Sect. 5. From (3.27) one derives the equation 

of state 

ρχ(ρ,β) = (p/s)(X-BR2/8u) ; 

see [16], [8] , [9] . 

2) Assuming that the methods of [4], [5] extend to the continuum Coulomb 

gas, for sufficiently small, but positive values of a , one can show 

that F (a) is C in a , for small a , and 

(3.29) 

as a \ 0 ; see Sect. 5. 
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We now turn to the proof of Theorem 3.2. For the proof of equ. (3.27) 

see [8], [9] and Sect. 5. It follows from (3.10), (3.14) and (3.15) by using 

X 
Holder’s inequality that βp (z, β) is convex in β , hence in a . Thus, 

using (3.27) 

= F"(a) , for z « 1 (3.30) 

X 
Thus F(a) ≡ F (a) is convex. That it is finite for 0 £ α < 1 follows 

directly from (3.16), and that it diverges when as'* 1 follows from (3.10) 

x x Y 4 
and (3.13). (All quantities, Q , ≡ and p , diverge when 

X R 
because of the logarithmic singularity of ν^(ξ,η) at ξ = η £ 8Λ . See 

[8], [9].) 

By (3.22) and (3.27) , 

FX(0) = 2 , for all X . 

This proves property 2) of F . Next, 
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This identity combined with (3.26) yield property 3), for X = D . In 

order to prove 3) for X = F,P and N , suppose first that 

uniformly in a Є (0,1) . Then 

4π . 
for some constant ε and all β Є (0, —?r ) . Since by (3.28) 

° R2 

X 
and since the entropy density s (ρ, ε) is increasing in ε we conclude 

that 

for all ε > ε , X = F,P,N . But, by Theorem 3.1 , 
= 0 

(3.31) 

for all ε < 00 . Actually, the upper bound on σ follows from properties 

2) and 3) of and equ. (3.27), Theorem 3.2, as shown below. Thus 

X, v D,
 ) s (ρ, ε) > s (ρ, ε) , 

for ε Є (ε »°°) , X = F,P or N . This however contradicts inequality (3.7). 

We therefore conclude that 
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for all X . This completes the proof of property 3). Finally, we observe 

that by (3.27) ρ (z, β) is analytic in z , except at z = 0,°° , and 

strictly convex on (0,°°) . As is well known (see [25]) this entails the 

equivalence of the grand canonical and the canonical ensemble. Equ. (3.28) 

therefore follows from (3.27) by Legendre transformation (see Sect. 4 

of [8], [9]). 

The contents of Theorem 3.2 may be summarized, in terms of the 

X 
free energy density f (ρ, β) , by means of the following Fig. l : 

Fig. 1 

Proof of Theorem 3.1. 

The main part of Theorem 3.1 is proven in Appendix A. The functio 

X 
σ (ρ,ε) is defined by 
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Suppose Sf^P ,3) is continuously differentiable at some value 3
Q

 of ί 

Then 

and e
Q
 is determined by the equation 

Moreover, the microcanonical and the canonical ensemble are equivalent at 

those values of 3 and ε , and 

By properties 2) and 3) of F° and equ. (3.28), Theorem 3.2 - which we 

have established without using Theorem 3.1 - there exists a sequence 

{β
n

} converging to O such that βf
D
(p, β) is strictly concave and continuously 

differentiable at 3=3 , for all η . (By (3.28), (3 } can be chosen 
η n 

to be independent of ρ ! ) By property 3) of FD , Theorem 3.2 , 

as n -*■ °° . Therefore {σ^ζρ,ε^)} is a strictly increasing sequence, 

and by property 2) of FD , Theorem 3.2, 
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Using inequality (3.5), Theorem 3.1, which is established in Appendix A 

we thus obtain 

D 

for all ε < °° , and using (3.6) 

Next, by property 1) of , Theorem 3.2, there exists a sequence 

4π 
{β'} converging to —2 such that 
n Rz 

and 3f°(3,p) is strictly concave and continuously differentiable at 

3 = 3^ . (Again, {3^} may be chosen to be independent of p .) Thus 

tends to , as n -* «>. in conclusion 
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This, together with (3.5) and (3.6) (proven in Appendix A) completes the 

proof of Theorem 3.1 for X = D . By inequality (3.7) (which is proven in 

the next section) 

X, v D, . 
s (ρ, ε) < s (ρ, ε) , (3.32) 

XX <$ X 
for all e<°°,X = F,P,N. Thus σ ,s and s * tend to , as 

ε -v -“> , and 

for all ε < 00 . 

As already noted in the proof of Theorem 3.2, inequalities (3.22) 

X 
and (3.32) yield properties 1) - 3) of F , X = F, P, N , stated in 

Theorem 3.2. By repeating the arguments given above for X = D we 

thus conclude that, for each choice of X = F, P or N , there exists a 

sequence diverging to +<» such that 

n 

This completes the proof of Theorem 3.1. 

All as yet unproven statements about entropy, free energy or 

pressure are established in Sects. 4, 5 and Appendices A and B. 
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Next, we recall some facts and properties of correlation functions 

of the two-component Coulomb gas in the grand canonical ensemble. (We 

believe that the properties of correlations in the micro canonical 

ensemble are identical in the thermodynamic limit, but we have no proof). 

4π 
In [21], [10] it is proven that, for all ζ>0,0<β<—~ and all n, m , 

R 
the thermodynamic limit of the correlation functions of n vortices of 

vorticity +R at positions ξη and m vortices of vorticity -R at 

positions f01 , 

(3.33) 

2 
exists if As^TEL by inclusion, and for X = D, F and N . (For the 

definition of the grand canonical correlation functions see [25], [10]). 

X 
The limiting functions, ρ , are Euclidean invariant. Of particular 

interest are the correlations of the vorticity, ω(x) , which we denote 

by <ω(ξ
1

)...ω(ξ ) > (β, z) . It is well known (see e.g. [11]) that 
I n 

X 
Here p (β, z ; ξ) is the one-vortex correlation which is constant in ξ , 

and the superscripts on the right side of (3.34) indicate the sign of the 

vorticity of the two vortices. 

It follows from [11] and [8], [9] that 
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is a positive, convex function of |ξ-η| which tends to 0 , as 

[ξ-η| oo , for X = D, F and N . Thus 

<ω(ξ)ω(η)>Χ(8, z) , ξ ≠ η (3.34) 

is a negative, concave function of |ξ-η| which increases to 0 , as 

| ξ-η | -* oo . This means that if the vorticity at the point ξ is constrained 

to be positive it is predominantly negative at all points η ≠ ξ , 

(in contrast to what might be expected heuristically). For X = P , one 

p 
can still show that <ω(ξ)ω(η)>^(3,z) is negative, for ξ ≠ η , in any 

bounded rectangle Λ 

Much less is known about systems of vortices of negative vorticity 

(e=&* -R) , immersed in a neutralizing positive background vorticity. This 

system is stable for arbitrary values of the inverse temperature 3 “ 

in contrast to the two-component vortex plasma. The thermodynamic limits 

of the free energy and the pressure have been constructed [26], and results 

similar to (3.22), (3.26) and (3.27) can be derived. However, the micro-

canonical ensemble does not seem to have been analyzed directly, and the 

existence of correlation functions is only known for one special value of 

3 , [14], (see also [7]). It is an interesting speculation that for 

large values of the inverse temperature B the correlation functions of 

this system exhibit directional long range order. We do however not have 

a proof of this, 
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4. Properties of the entropy. 

In Sect. 1 we have shown that 

(4.1) 

in the sense of quadratic forms; see also [24], [23] . From these inequali-

ties and the definition of the kinetic energy, K , in Sect. 2 (see (2.1), 

(3.1)) we conclude that 

(4.2) 

for arbitrary ξη 6 Λη , ξm G Am . Now, recall the definitions of 

Ω(Λ,η,Ε) and of sf(p,c) - see (3.2'), (3.3). Since 
A 

— —ft
 # # 

δ (U. (ξ ,ξ )-E) is monotone decreasing in U. , inequalities (4.2) 
A 9 Λ IV y -tv 

give 

(4.3) 

This proves the first two inequalities in (3.7) and inequality (3.32). 

N 
Next, we show that the thermodynamic limit of s^(p,c) exists 

Let Λ be the union of m sets Δ. , i = l,..., m , with disjoint 

interiors. By (1.8) 

(4.4) 
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in the sense of quadratic forms on functions f(ξ) with the property 

2 
that f(Ç)d ξ = 0 , for all i . (If f violates this condition, for 

i 
some i , we set (f,V^ = +00 ; (4.4) then holds in general). Let 

I*' 

be the subset of points of ξ contained in and the subset 
i i 

of ξ contained in . By (4.4) and (3.1), 

(4.5) 

Since δ is monotone decreasing in U , we conclude that 

(4.6) 

We set λ. Ξ -τ-.-r . Clearly, 0 < λ. <1 and Σλ. = 1 . We choose n 
i |A| i i 

and [AJ , i = l,...,m , such that = λ^η are integers, for all i . 

Finally we set = λ^Ε . By (4.6) 

By taking logarithms we find 

(4.7) 

Since 

(4.8) 
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By standard arguments [25], (4.7) and (4.8) imply the existence of the 

. . N 
thermodynamic limit of s 

Next, we compare the entropy with the free energy. Since 

(4.9) 

for all β , we obtain from (3.2') and (3.10) 

hence 

(4.10) 

As shown in [8], [9] and Appendix B, f^(p,3) is bounded uniformly in 

Λ , for arbitrary p and X = D, F, P, N, provided 

β < 4π R-2 . 

Conversely, 

where 

where 
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-2 
and we have used (4.9). Given 3 < 4πR we choose γ > 0 so small that 

—2 X IΛI β < 4πR . Then Q (Λ, η, Β+γ) <_ const.1 1 , independently of our choice 

of . See [8], [9] , and Appendix B. Finally 

These estimates permit us to use the arguments in [25], Sect. 3.4.3, to 

conclude that 

(4.11) 

with E -► 0 , as | A( -»· °° , if (for each Λ ) l, E
1
 and E are chosen 

A 1 l 

suitably. Combining (4.10) and (4.11) we obtain 

(4.12) 

XX 2 
where f (p, β) = lim f. (p,3) , with K^JR e.g. in the sense of 

2 Λ 
Λ/ΊΓ 

van Hove [25] ; see Sect. 5. 
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Next, we exploit the scaling properties of the Green's function 

V of the Laplacean with X b.c. at 3Λ and of the one-body potential 
A 9 X 

W , in order to establish the scaling properties of the entropy (see 
Λ, X 

(3.8), (3.9), Sect. 3.2). Let θ be an arbitrary, positive number. We set 

θ 1A = {ξ:θξ £ A} 

Lemma 4.1. For X = D,P,N 

1) V
 X(θξ,θη) = V (ξ,η) 
Λ' θ A,Χ 

For all choices of X 

Proof. 1) Let X = D,P or N . The Green's function V,
 X
 (ξ,η) is 

" A 9 X 

uniquely specified by the following properties : 

a) For η € A, χ(ξ,η) is harmonic in ξ in Λ ~ {η} ; 

νΛ
>χ

(ξ>η) = νΛϊχ(η>ξ) · 

b) For n Ç A, 

as ζ + η 

C

D) V
A β(ξ,η) + 0 , if either ξ or η approach 3Λ . 



- 39 -

c ) V. _(ξ,η) is periodic in ξ and η , 
r A, r 

with domain of periodicity = A 

Now, note that χ(θξ,θη) satisfies a),b) and οχ) (X = D, P, N) 

if in a), b) and c ) A is replaced by θ ^A . This proves 1). Lemma 4.1,2) 
A 

then follows from (1.3), (1.4) and (1.5). Using 1) and 2) we finally see 

that 3) follows from (3,1) and (1.3). 

We are now prepared to prove the scaling relation (3.8) for the 

X 
entropy s^(p,e) . (We temporarily suppress the super- and subscripts X). 

By (3.2') and (3.3), Sect. 3.1, 

. We now make a change of variables, 

(θη)Π = (θη^,·.·, θη
η

) , etc. 

Note that η11 and η11 range over (Θ 1A)n , and 

Λ
2η, n 

dξ =0 dp , etc. 

Hence 
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i.e. 

which is (3.8). 

5. Free energy and pressure; conclusions. 

5.1. Existence of the thermodynamic limit 

Combining definitions (3.10), (3.11) with inequality (4.2) we obtain 

and, using in addition (3.14), we get 

(5.1) 

In Appendix B it is shown that, for all z and all β < 4πR , 

(5.2) 

for some finite constant independent of Λ . Inequalities (5.1) and (5.2) 

yield (3.16). 

By (3.10), (4.4) and (4.5) 
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i. e. 

(5.3) 

where = |Δ^|/|Λ| , = λ^η,... as in Sect. 3. If A is a unit square, 

for example, then clearly 

QN(A,k,S) > 0 

2 
for all k and all β < 4π/R . Furthermore, since 

QN(A,n,3) Q°(A,n,3) £ const.
11 , 

2 
if 3 < 4π/R and 2n/1A | is bounded uniformly in A (see Appendix B), 

N 
we conclude that f^(p,3) satisfies uniform upper and lower bounds, for 

2 2 
all p > 0 and all 3 < 4π/R . This and (5.3) show that if A/*IR , in 

the sense of van Hove [25] , 

exists. An argument originally due to Griffiths [12] can be used to show 

F 
that the thermodynamic limit of f^(p,3) exists. See also [8],[9],[13] . 

For X = D, P we do not give a direct proof of the existence of the 

thermodynamic limit of the free energy, but analyze the pressure and then 

exhibit the equivalence of the canonical and the grand-canonical ensembles 

(Sect. 5.2). 

The existence of the thermodynamic limit of the pressure for 

periodic b.c. can be inferred from [9] , [6]. (The arguments are somewhat 

lengthy and are therefore not reproduced here). For X = D, F and N we 



can establish the existence of the thermodynamic limit of the pressure by 

considering its first derivative in z : 

i. e. 

(5.4) 

By correlation inequalities [10] 

is increasing in Λ , for X = F, N , 

while 

is decreasing in Λ , 

for each fixed ξ . These properties along with (5.4) and (5.1), (5.2) 

establish (3.17) and the existence of the thermodynamic limit. (For 

X = F, N one could instead use Griffiths' argument [12]). 

Remark. The correlation inequalities in [10] , [21] can be used to construct 

the thermodynamic limit of all grand-canonical correlation functions. 

5.2. Scaling properties of the pressure and free energy. 

We recall the definition (3.10) of the canonical partition function. 

(We temporarily suppress reference to boundary conditions). 

. -1 
We change variables, ζ. + η. Ξ 0 ξ.,.., as in Sect. 4. By Lemma 4.1, 

J 1 J 
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With (3.14) this yields 

(5.5) 

hence 

2 2-a 
where a = 0R /4π . Now choose z' = 1 , z = θ . After passing to the 

thermodynamic limit and setting βρ(1,β) Ξ F(a) we obtain 

βρ(ζ,β) - z
2/(2 a)F(a) 

which proves equ. (3.27), Theorem 3.2. Moreover, it shows that p(z, β) 

is analytic in z , except at z = 0,<», and strictly convex on the positive 

real axis, for arbitrary a € (0,1) . This proves the equivalence of the 

canonical and grand canonical ensembles. Therefore the thermodynamic limit 

of fX exists for all X = D, F, P, N , and fX satisfies equ. (3.28), 
Λ 

Theorem 3.2. 

5.3. Comments on the equivalence of the canonical and micro-canonical 

ensembles; conclusions. 

X 
Notice that if we can prove that the function F (a) is continuously 

X 
differentiable in a at some value a of a then βf (B,p) is 

o 
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4πα 

continuously differentiable in 3 at 3 =

 —Ô— · In that case 

° R 

8δ,Χ(ρ,ε) = s
X
(p,e) = min(3

o
t-3

o
f
X
(p,$

o
)) , 

ε 

see e.g. [25]. If continuous differentiability is true for all 

2 δ X 
β G (0,4π/R ) it follows that the thermodynamic limit s , (ρ, ε) of 
o 

the entropy exists for all p > 0 and all real ε (see Theorem 3.2), 

δ X 
and s’ (ρ,ε) would be a strictly increasing function of ε 

We can think of two techniques that might enable one to derive 

X 
differentiability properties of F (a) : 

1) One could try to extend the techniques of Brydges and Federbush 

[4], [5] to the two-dimensional continuum Coulomb gas. This would enable 

<v> rv» D / N . 00 

one to prove that for 0 < a < a , for some a < 1 , F (a) is C 

d D 
in a and to determine the rate of divergence of ^ F (°0 > as a 0 : 

In the thermodynamic limit 

Taking for granted that the methods of [4], [5] apply to the continuum 

gas one would conclude that 

and the inverse correlation length, m(3) » behaves like 

m(3) « 2z3 , 

as β -*■ 0 , up to corrections of higher order in 3 . (These asymptotic 
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formulas are suggested by Debye-Hückel theory). By inserting these 

results in (5.6) we conclude that 

(5.7) 

as β 0 . 

2) One can try to exploit the results of Faddeev et al. [27], 

claimed to be exact results for the two-dimensional sine-Gordon theory. 

That theory is isomorphic to the two-dimensional, two-component Coulomb 

gas studied here [8] , [9]. The vacuum energy density of the sine-Gordon 

theory, normalized such that it vanishes in the free-field limit, i.e. 

when 3 -> 0 or z 0 , is precisely the pressure of the Coulomb gas. 

The results in [27] indicate that the pressure is a smooth function of 3 

2 
in the interval (0,4π/R ) . This would imply that the function F(a) , 

see Theorem 3.2, is smooth in a € (0,1) , and therefore the entropy is 

uniquely determined by the free energy. 

Acknowledgements. We thank O.E. Lanford III and T. Spencer for very 

helpful discussions. 
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Appendix A. 

Proof of Theorem 3.1. 

We know that the limits 

2 —1 
exist when Ay^TR in the sense of van Hove, and | A| 2n -> p , defining 

the free energy density, for the boundary conditions X = D, F, P, N . We have 

shown that 

and 3fX(p»3) is a finite concave function of 3 on (0 , ■—) , with 

X 4π * 
f (p, 3) ·+■ -“ when 3 + —2 . This is part of the content of Theorem 3.2, 

R 
and is proved without the help of the present Appendix. Define 

(A. 1) 

This is clearly an increasing function of ε . Let εγ (3) and ε„(3) L R 
X 

be the left and right derivative of βf (p , 3) with respect to 3 .We 

shall from now on omit the superscript X . General arguments concerning 

the equivalence of ensembles [25] give the following results : 

when
 ε

 = Є
 R
(β) · 
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when ε € (e
R
(3),ε^(ρ)] ; (σ(ρ,*) is then linear on [B

R
(3),ε^(3)]) . 

Proposition, For all X and ε > cR(3) > 

(A. 1) 

2 . * ) 
when in the sense of Fisher 

We shall prove this proposition for X = D which is the most diffi-

cult, but also the most interesting case. Other b.c. can be analyzed in a 

very similar way. 

We now establish some notation : 

εο = , S

Q

 = o(p,c
R

(3)) · (A. 2) 

Instead of specifying points (ξ11,!^) in Λ2η , the positions of vortices, 

we shall specify configurations, X , a set of n + vortices and a set of 

/NJ # 

n - vortices.If S is a set of configurations, X , and S the corresponding 

subset of A2n , (i.e. S = {(ξΠ(Χ),"^(X) ) : X € S}) we define 

with χ~ the characteristic function of S . 
u 

Given an arbitrary γ > 0 and ε > , we shall try, for large A and 

|A|
 1

2n « p , to construct a set S of configurations such that 

*) See [25] for the definitions. 
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IΛI Hog vol S > s -γ 
11 & η ο 

(A.3) 

and such that all configurations in S have energy in the interval 

((ε-δ)|A|,(ε+δ)|A[) , for some arbitrarily small, but positive δ . Since 

ε > and by (A.2), this proves (A.l). 

The proof of (A.3) consists of an explicit construction of S which 

now outline : We choose an integer v << n , with v -*00 and v/n 0 , as n 00 

and consider configurations of 2(n-v) vortices in A with energy in an 

interval [(ε —δ1)|Λ|, ε |Λ|] . To these configurations we add the 2v 

remaining vortices in a small number (two) of very concentrated clusters in 

such a way that they contribute an amount of energy proportional to |A[ 

and make a négligeable contribution to the specific entropy. 

Let S
O
 be the set of configurations of 2(n-v) vortices with 

energy in the interval [ (ε^-δ ' ) | A | ,ε^| A| ] . Since v/n 0 we have, for 

large A , 

(A.4) 

We may also assume that γ has been chosen so small that 

(A.5) 

where S
o
 is the set of configurations with energy < (ε^—δ1)|A| . Since 

2 
Ay*3R in the sense of Fisher we may decompose most of the area of A 

into little squares, Z , of area l/2p . Let <(·)> denote the expectation 

value given by the measure (vol S ) vol (.) on S . Then, for more 
n-v ο n-v 0 

than half of the squares Σ , 
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<number of vortices in Σ > < -r- (A. 6) 

2 
Since Λ in the sense of Fisher, some fraction ( > constant) of 

these little squares has a distance κ diam A to the boundary of Λ , 

for some κ > 0 . We choose one such square, Σ
1
 . Let c: S

O
 be the set 

of all those configurations in S
O
 with no vortices in Σ

1
 . It follows 

easily from (A.6) that 

(A. 7) 

Hence, for Λ sufficiently large 

1A- 1log vol S > s -2γ/3 , 
1 1 n-v 1 o 

(A.8) 

an immediate consequence of (A.4) and (A.7). (We note that we could, for 

each N = 1, 2, 3,..., find N squares, Σ
1

, ..., Σ
N

 , with distances 

> κ diam A such that the set of configurations cz S
O
 with no vortices 

N 
in Σ. U · · · U Σ

N
 satisfies vol S

N
 > (1/4) vol S , and 

1 N n-v N n-v o 

I A| hog vol
n

_
v

S
N

 > s
o

- 2γ/3 , 

for sufficiently large A ). 

We now modify configurations in by adding v + vortices and 

v - vortices in . Let ω(x) denote the charge (or vorticity) density 

corresponding to the 2v vortices in Σ, . Clearly 

2 2 
supp ω c Σ

1
 » Jd x ω(x) = 0 , Jd χ|ω(χ)[ ■ 2vR . (A9) 

As shown in Sect. 1, it then follows that 
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/ d
2xd2y ω(χ)ω(γ) [ν

Λ χ

(χ,γ)-ν
οο

(χ-γ) ] 

£ const.(Rv)
2
(/2p.K diam A) 

(A.10) 

Next, we describe the way in which we distribute the 2v vortices in 

more precisely : They are all contained in a disc D of radius at most 

1 / 2 

(l/4)(2p ) ' inscribed in Σ
1
 . Each individual vortex is in a disc of 

radius r , 

so that the distance of two such discs is at least 2r . The discs containing 

a positive vortex form a cluster, those containing a negative vortex form 

-1/2 
another cluster, and the two clusters are at a distance « 1/4(2p) ; 

see Figure 2. To be specific we may assume that these clusters are roughly 

Figure 2 

circular pieces of a regular lattice (hexagonal or square) of small discs 

of radius r , with lattice distance proportional to r . By (A.10), the 

interaction energy of vortices within one such cluster is 
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(A.11) 

r/7 << 1 , as v -> 00 . 

The interaction energy between the two different clusters is 

(A.12) 

These estimates are to be understood as follows : 

(a) Uniform constants only depending on the geometry of the clusters 

have not been computed. 

(b) Apart from those constants, (A.11) and (A.12) give the exact 

behavior of the total interaction energy of the 2ν vortices, in the 

sense that the interaction energy is contained in an interval 

(A.13) 

where K and k are constants independent of r, ν and Λ , and η tends 

to 0, as r 0 , Λ -> «> 

Next, we must estimate the interaction energy between the 2ν 

vortices in D c and the 2(n-ν) vortices in Λ ̂  : We fix a confi-

guration of 2(n-ν) vortices in Λ^Σ-^ . This configuration determines 

a charge density, Ω(Χ) , with supp Ω c Λ ̂  Σ^ , and 

2 
f Ω(Χ^ x = 0 . 

Next, we fix the position of each of the 2v vortices in Σ^ to be at 

the center of one of the little discs of radius r contained in D c Σ^ . 
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Let ω0(x) denote the charge density corresponding to this particular 

configuration. Furthermore, let ω (x) denote the charge density obtained 
U 

from ^
Q
(X) by rotating the positions of all 2ν vortices about the 

center of Σ
1
 (= center of D ) through an angle θ 

We now note that 

(A.14) 

2 
is invariant under rotations about the center of Σ

1
 , and J m(x)d x = 0 . 

The interaction energy between the 2ν vortices inside Σ
1
 with charge 

distribution ω0(x) and the 2(n-v) vortices of the configuration 

in A v Σ
1
 is given by 

(A.15) 

Next 

Since (x,y) is a harmonic function of x , for x G D , for all choices 

2 
of b.c. X and all y G Λ^Σ^ , and since J co(x)d x = 0 it follows that 

(A.16) 

As long as n is finite (or, equivalently, |AI is finite) W is a 
θ 

continuous, periodic function of θ . This is true because 

1 -1/2 
dist(supp Ω , supp ω

0
) 1^·(2ρ) 

Thus there exists at least one value 0C of θ such that 
S1 
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(A.17) 

As one varies the position of each of the 2v vortices in 

D c: throughout one of the small discs of radius r (depicted in Figure 2), 

the variation, AW
Q
 , in the interaction energy between the 2v vortices 

θ 

in D and the 2(n-v) vortices in Λ v Σ
1
 is bounded by 

I
AW

QI £ const.(v(n-v)//2p).r (A.18) 

This follows from (A.15) and the continuity properties of
 X

(x,y) with 

respect to x € D , for arbitrary y G A ̂  Σ
1

 . 

Thus if the position of each of the 2v vortices inside 

is anywhere inside one of the 2v little discs, rotated by θ , 
S
l 

inside D then, by (A.17) and (A.18), 

(A.19) 

To complete the proof of our proposition we now must choose v 

and r , calculate the total energy uncertainty, using (A.13) and (A.19), 

and calculate the entropy of the class of configurations constructed above. 

For example, we may choose 

(A.20) 

where c1, c2 and c3 are finite, positive constants. Then the total 

energy of the 2v vortices in D c Σ
1
 is, by (A.13), contained in the 

interval 



- 54 -

(A.21) 

for a positive constant (depending smoothly on c1, c2, c3) , with 

2 
η -* 0 , as A/^IR , in the sense of Fisher. Moreover 

Thus the total energy of the configuration, S , consisting of and 

of the 2v vortices put into D by the construction described above, 

is contained in the interval 

(A.22) 

where 

δ = δ'+n+exp[-0(diam A)] , 

$2 “ exp[-0(diam A)] 

By choosing suitably, c
4
K can attain any prescribed, positive 

value. 

To calculate the entropy of S , we first calculate the total 

volume, , of all configurations of the 2v vortices inside D 

constructed as described above : 

(A.23) 

Note that V is independent of , (in spite of the fact that the 

angle θ depends on S .) Thus the volume of S is given by 
s
l 



- 55 

and hence, using (A.8), (A.20) and (A.23) 

I ΛI Hog vol S = I Λ1 Hog vol S i 1 &
 n

 11
 n-v 1 

+ |Λ|
 11og(v

v
) 

-i 1/2 
> S

Q
-2Y/3 - const.(|Λ| diam A) 

> s -γ o 
(A.24) 

2 
provided A/^TR , in the sense of Fisher, and, given γ , | Λ | is chosen 

sufficiently large. 

Clearly (A.24) and (A.22) complete the proof of (A.3) and hence of 

our proposition. 

Remark. In our proof we have used two special features of the Coulomb 

interaction : 

1) V. (x, y) diverges to +°° , as y ->· x , for each x € D . 
A , Λ 

(This was used in (A.11) and permitted our choice of v , namely 

ν/[Λ|^2 ο , as | Λ | -> «> . See (A.20)) . 

2) More importantly, in our estimate of the interaction energy, 

W , between the 2v vortices in D and the 2 (n-ν) vortices in A '·'· 

we have used the harmonic property of V (x, y) with respect to x € D , 
A , Λ 

for y € Λν- . 

It turns out that one can avoid using either of these two elements, 

1) and 2). Instead one uses the following elements : 
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a) Inequality (A.5) 

b) Given an arbitrarily small square Σ , the set of configurations 

2 
of v(+ or -) particles inside Σ of energy >_ εν has a volume 

21 const, (v!) ^ , p < 0° , provided ε is small enough. 

c) Charge conjugation invariance (i.e. + particles and - particles 

have equal a priori probabilities); or repulsive (positive) two body 

potentials of short range. 

d) One repeats the construction described above in N widely 

separated squares, Σ
1
,..., Σ

2
 ; (see remark between (A.8) and (A.9)). 

These properties are all valid in the vortex gas studied in this 

paper, but they hold for a much larger class of classical statistical systems. 

The proof of our Proposition, assuming only a) - c) above, becomes however 

more difficult. (A clever interplay between d), c) and a) permits to control 

the entropy and energy uncertainty.) We do not give the details. 
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Appendix B. 

Stability in the canonical and grand canonical ensembles, and monotonicity 

properties of the pressure. 

In this appendix we briefly describe two methods for proving the 

stability bounds (3.12) and (3.16) for 3 < 4π/R
2

 . In [8] , [9] these 

facts have already been established for b.c. X = F, N . Thanks to the 

third inequality in (3.16) it suffices to prove the stability bound (last 

inequality in (3.16)) for Dirichlet b.c.. The bound (3.12) follows from 

(3.16) by standard arguments; see e.g. Corollary 3.6 of [8]. 

We then briefly indicate how one proves the monotonicity properties 

(3.17) and, finally, how one can treat vortex gases, where the vorticity, 

R , of individual vortices varies, but is distributed according to some 

finite measure dλ(R) of compact support. 

Let V ̂  be the Green's function of the operator -Δ. +μ
2

 , A , x Λ,Χ 
2 where Δ^ x is the Laplacian on L (A , Lebesgue) with X b.c. at the 

boundary 9Λ of Λ , and μ > 0 . Clearly 

for µ ̂  μ' > 0 (B.l) 

Let , ξ™) be an (n, m) particle Hamilton function defined as in 

(3.1), but with V replaced by and with W. ν(ξ) replaced A , Λ Λ , Λ Λ , X 

by j lim (
ν
^χ(ζ>τ))~ν

χ>
(ζ,η)) . By (B.l) 

n+ξ 

(B.2) 

and the last equation holds for all X , provided one sets U. γ(ξ
η
,^) 2 +«> Λ ψ X 
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for n ≠ m , when X = F,P or N . We define 

(B.3) 

and 

(B.4) 

By (B.2) 

Q
X
lQ

(y)x 

X „ _(y)X £ < £ 

for μ _> 0 , (B.5) 

i.e. it suffices to establish stability of a gas where the "vortices" 

interact through a Yukawa - rather than a Coulomb potential, and this will 

follow from an upper bound on Ξ^Χ of the form 

Ξ^Χ(Λ,ζ,β) <_ exp[k(z,$) |Λ| ] , (B. 6) 

where [Λj is the area of Λ , and k (z, β) is a finite constant, for 

2 — ^ — 

all z > 0 and all β < 4π/R . If X = D , A = U Λ. , where 
j = l J 

Λ^,.,.,Λ^ are disjoint, open sets then 

and one checks easily that this entails 

(B. 7) 

Thus it suffices to prove (B.6) for X = D and a region A of unit area. 
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By (4.2), this will prove (B.6) for X = F, P, N , as well. In the literature 

one finds two fairly convenient methods for proving (B.6) ; see [8], [9], [3] 

They both rely on the sine-Gordon transformation which also plays a crucial 

role in a proof of the monotonicity property (3.17) based on correlation 

inequalities [10]. We briefly recall some of the main formulas defining 

this transformation. Let C (= vj^^) be the integral kernel of a positive 

2 
definite quadratic form on L (A , Lebesgue). Let dµ (φ) denote the 

C 
oo 

Gaussian measure on V1(A) (the dual of C (A)) with mean 0 and 
o 

covariance C . Let C
O
 be a kernel with the property that 

(B. 8) 

is continuous and integrable near 8A . Formally, we define random fields 

ίαφ , iαφ , 
: e τ : and : e : by 

(B. 9) 

It follows that 

(B.10) 

By the definition of dµ and (B.8) - (B.10) 

(B.11) 

where 



- 60 -

(B.12) 

Lemma B.1. 

where <(·)> denotes integration with respect to the Gaussian measure 
C 

dP
c
(t) , and C = v£> , μ I o . 

Remark. Formally, the proof follows by power series expansion of the 

exponential, the identity 

and identity (B.ll). To make these formal calculations rigorous, one 

first proves Lemma B. l for a regularized version of ν^^(ξ,η) which is 

continuous in ξ and η and then removes the regularization, proving 

at the same time a uniform bound of the form (B.6). Details for X ■ = 

may be found in [8], [9] . For X = D , a convenient regularization 

consists of replacing 

This is used in [3]. 

By (B.10), 
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/
Λ

: cos/Î3R<|> :
ο
(ξ)ά

2
ξ=/

Λ
 exp[—1· R

2
c(Ç) ] : cos/βΕφ: (ξ)ά

2
ξ , 

where 

(B.13) 

2 
and we may choose μ = 1 . One verifies easily that, for βR < 4π and A 

a unit square or unit disc 

< const. θ , 

for all θ >_ 1 . To prove (a) and (b) we notice that 

-c(Ç)< (4π) ^£n(l/dist (ξ, 3Λ) ) + const, and that ν^^ίξ,η) has exponen-
Ü A, D 

tial decay in |ξ-η| ; (this is used in the proof of (b)). 

Estimates (a) and (b) are typical of the estimates one needs 

to control the renormalization group scheme in [3] which (with Lemma B.l) 

yields the bound 

Ε^°(Λ,ζ,Β) <_ exp C(3R
2
)Z

2
 , (B.14) 

2 . 2 
for some constant c (βR ) which is finite for 0 < βR < 4π , and Λ 

is assumed to be a unit square or unit disc. The method in [3] is designed 

to establish (B.9) for a renormalized version of Ξ^^(Λ,ζ,Β) , for all 

2 . .... 
βR £ 6π . This causes some technical complications which are unnecessary 

in our case. It is not entirely trivial to develop a simplified version 

of [3] which can be used to prove (B.9) without appealing to sophisticated 

techniques. Since details are lengthy but fairly straightforward, we 

omit them. 
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When A is a disc, one can set μ = 0 and prove (B.9) by 

following the method in [8], [9]. This case is quite simple, because the 

Green’s, functions of the Laplacean with Dirichlet b.c. on the boundary 

of a disc has a simple explicit expression. One proceeds as follows : 

One defines C = =

 D . The
 Green’s function D is calculated 

in [8], [9]. Let and Λ be two discs centered at the origin, with 

A Ì A and dist (Λ , ∂Λ) > 0 . Then 
o o 

Ξ°(Λ, z, β) = <exp[2z/^:cos/i3Rc{>:
o
^)d^]>

c 

(B.15) 

β 2 
Now, notice that the re-Wick ordering factor exp[- R c (ξ)] is uniformly 

bounded on Λ
O

 . Therefore a convergent upper bound on the first factor 

on the r.s. of (B.15) follows from the results in [8], [9]. A bound for 

the second factor can be proven by adapting the arguments in Sect. 3 of 

[8] : In equs. (3.11) and (3.15) of [8] the terms 
n 
Π fz.-w. [a[w.-z., ja are replaced by 
j
=1

‘ 1 J+n 1 J J+n 

(B.16) 

2 
where a = SR /4π , and 

Since |z.-w. [ < const.dist(z.,∂Λ) and Iw.-z., I < const. dist (w.,3Λ) , i J J+n' - J 1 J J+n1 - J 
for all and w-,. .. , w contained in Λ'-* Λ , (B.16) is Inin o 
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bounded by const.n . The estimates in Sect. 3 of [8] and the boundedness 

of (B.16) yield a finite upper bound on the second factor in (B.15). 

X 
Finally, we note that the stability bound for Q (A, n, m, 8) 

follows from (B.14) and (B.4) by the Cauchy estimate. 

We now outline the idea of the proof of the monotonicity proper-

ties (3.17) of the pressure. First note that 

(B.17) 

see (5.4). In the sine-Gordon representation 

(B.18) 

. exp [2z :cos/BR: (ξ) d ξ]> , 
Λ o L 

with C = X . It now follows from the correlation inequalities in [10] 

and the inequalities 

V + v > V 
Λ1, Ν A2, N - Λ, N 

V + V < V 
Λ1,D Λ2,D - Λ, D 

where Λ1 and are disjoint, open sets and A = Λ1 U A2 , that for 

each fixed ξ 

X 
ρ
Λ
(β, z ; ξ) is increasing in A , for X = F, N , 

ana 

ρ^(β, z; ξ) is decreasing in A 
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From this (3.17) follows by standard arguments (provided the domains 

are squares or discs). 

We conclude with a few remarks on vortex gases with vortices 

the vorticities of which are distributed according to a measure dγ(R) , 

with supp λ Ì= [-Ro, Ro] , R
O
 < °° . The grand partition function of this 

gas in the sine-Gordon representation is given by 

(B.19) 

C = X . By taking the absolute value of the expression inside the 

expectation <(·)> we obtain 
C 

X 2 
Ξ (Λ, λ, β) <_ <exp/dγ(R)J\ : cos/3R<j> : (ξ)d ξ> 

Λ O C 
(B.20) 

By Jensen’s inequality 

expJdX(R) J
A
:cos/f3R<j):

o
^)d^ 

≤z ^/dX(R)exp [z/A:cos/j3R<f> :
ο
(ξ)ά^ξ] , 

where z = Jdγ(R) . Thus, combining (B.19) - (B.21) one finds 

(B.21) 

X -I 2 
Ξ (Λ, λ, β) ≤ z Jdγ(R)<exp zj : cos/βR<{>: (ξ)d ξ> 

Λ O C 

The right side is bounded for all z > 0 and uniformly in R , provided 

2 
βR
O
 < 4π ; see (B.14). If dγ(R) = dγ(-R) , the correlation inequalities 

in [10] are applicable, as well, and can be used to prove (3.17). 
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