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0. Introduction.

When the motion of a fluid may be considered as approximately two-
dimensional, the fluid often exhibits well defined vortices. The existence of
such vortices is an experimental fact, which already Poincaré tried to explain*).
If dissipation may be neglected, the motion of the vortices is Hamiltonian,
and it is natural to study the "gas of vortices" by the methods of statistical
mechanics. Onsager [20] has argued that when the total energy of the system
is sufficiently large, the 'gas of vortices" is in a '"megative temperature
state'". He further argued that, in such a state, vortices of the same sign
attract each other. In fact the coalescence of vortices of the same sign has
later been observed in computer experiments (see Montgomery and Joyce [17]),

* %
and is claimed to explain in part the existence of large well-defined vortices )

In this paper we study rigorously the statistical mechanics of
a gas of vortices in the thermodynamic limit. We let thus the volume of fluid
go to infinity, while the density and mean energy of vortices tend to constants.
*Kk

In this limit, no negative temperature states are found to exist , contrary

to Onsager's proposal.

Our main results are presented in Sect. 3, (Theorems 3.1, 3.2)

*) The argument of Poincaré ( [22] chapitre VIII) is based on a discussion of

the stability of motion.

**) See also Kraichnan and Montgomery [15] for a discussion of this theory.
Note that vorticity is conserved in an inviscid fluid (theorem of Helmholtz);
therefore Onsager's mechanism cannot explain the appearance of well defined

vortices in a fluid where the vorticity is smoothly spread out initially.

*¥%%) Negative temperature states are known to exist for certain other systems
without kinetic energy (spin systems). We claim that nothing of the sort is

present here.



1. Potentials.

Let v = (vl,vz) be the velocity field of an incompressible two-
dimensional fluid in a bounded open region A c]R2 . The incompressibility

relation :

implies the existence of a stream function ¥ such that

if we know that the flow of v through pieces of the boundary of A vanishes.

Introducing the vorticity

’ (1.1)

one sees that the instantaneous angular velocity of a fluid element is™ w/2 .

The relation (1.1) may be solved for Y as

¥x) = [, dy oMV(x,y)

where the potential V(x,y) 1is the kernel of the operator V = (-A)_l .
defined with suitable boundary conditions (b.c.) on the space

LZ(A) = Lz(ﬁ , Lebesgue).

We impose the physical condition that the fluid does not cross the
boundary of A . If 093A 1is smooth, v 1is thus parallel to the boundary,
and grad ¥ normal to it. Therefore Y 1is constant on 3A , and we may

take this constant equal to O . Mathematically, this corresponds to taking



A= ﬁA , where A is the Laplacean with Dirichlet b.c. : - ﬁn is defined
2 2
*
as the Friedrichs extension ) of the positive operator - E-Ev—-——f acting
9x X

on C  functions with compact support in A . The correspond}ng po%ential
will be denoted by Vh(x,y) . We extend the definition of this potential so
that Vﬂ(x,y) =0 if xd€d AN or y €& A Vﬁ(x,y) is then the kernel of an
operator Vﬁ on LZGRZ) » vanishing on the orthogonal complement of L2(A) .
If Ac A' , the definition of the Friedrichs extension implies that the domain
of A is contained in the domain of ﬁA' (with the identification of LZ(A)

A
to a subspace of LZ(A')) , and that

where lh is the orthogonal projection on LZ(A) . Writing

_ 1/2_1/2 % o plf2es 1/2
A= (=8,)"7V, , A =V 7(=8,,)7 L,
we have thus A*A <1,
==

hence

AA* 5_1A| R
and finally

V;, _f_\?ﬁ, when AcA' . (1.2)

*k
It is convenient to introduce also the potential )

V_(x,y) = - %1; log|y-x| (1.3)

*) For a discussion of the Friedrichs extension see for instance Riesz and

Nagy [24] § 124, Reed and Simon [23].

2, x2)1/2

**) We write |x| = (xl 5



which corresponds to free b.c. , (this is a definition of free b.c.)

If we write
¥,y =V, (xy) - V_(x,y) (1.4)

then (x,y) - vﬁ(x,y) is continuous in A x A . (To see this it suffices to

notice that ‘vﬁ(x,y) is a harmonic function of both x and y ). We define

Wﬂ(x) = %vﬁ(x,x) . (1.5)

Let A be fixed, contained in the circle of radius R centered at O , and let
A' be a circle with large radius R' centered at O . For y€A\ , "\}'A,(‘,y)

is harmonic with boundary values g? log R' + O(%T) . Therefore, by the

maximum principle
1 R
[Vh.(°,y)- E;-log R'| f_O(iT) .

When  has support in A and satisfies the "meutrality" condition

IA wdx = 0 , we have thus

[Im(x)w(yﬁh. (x,y)dx dy| < 0(%1-)

hence

lim | wE)w(y)V,, (x,y)dx dy = [u(x)w(y)V_(x,y)dx dy .

R'9w
Combined with (1.2) this gives

fm(x)m(y)vﬂ(x,y)dx dy 5_Iw(x)m(y)vm(x,y)dx dy (1.6)

when [u(x)dx =0 .



If L = {nlal+n2a2 : ny,m, €Z} 1is a lattice in B? , and

A= {A1a1+A2a2 : 0 < AI’AZ <

may be introduced. It is a periodic function ¢ of =x-y,with

1} , a potential VA per(x,y) with periodic b.c.

-ap(e) = T 8(-a) - [A|Th
ael .
where |A| 1is the surface of A . It is seen that ) per corresponds to

the inverse of the Laplacean on a torus, restricted to the orthogonal complement

of the constant functions. We have thus

fw(x)w(y)Vh(x,y)dx dy j_fm(x)m(y)vﬁ per(x,y)dx dy (1.7)

when fm(x)dx =0,

The difference VA per(x,y)-vm(x,y) is continuous at x =y , and we define

wﬂ per E (x!Y)“Vm(x’Y)]xg

VA per v

which is a constant.

a2 2

axf 39X

(o)

acting on functions which

The Friedrichs extension of -

[aSI ]

are C~ with bounded derivatives on A is I Here L. is the Laplacean
with Neumann b.c., which corresponds to vanishing normal derivative on the

boundary of A when this boundary is sufficiently smooth. If Ac A' we

have _ﬂAN f-HﬂA'N with the usual identifications. We define VAN to be
the inverse of —&AN restricted to the orthogonal complement of the constant
functions on A . The corresponding potential satisfies thus

_ O |
AnTan o) = 8y |A]



Assuming always

Ju(x)dx =0 ,

one obtains easily the following inequalities

Jo@uV, 1 Gy)dx dy < fo®uV )y (x,y)dx dy (1.8)
if AcA',

Im(x)m(y)vm(x,y)dx dy g_fw(x)w(y)VAN(x,y)dx dy , (1.9)

Ju) )V, per(x,y)dx dy < Ju®w()V, (x,y)dx dy . (1.10)

The difference VAN(x,y) - V_(x,y) is continuous at x =y, and we define

1|
W ® =5 [V Gy - Vw(x.y)]x_,y

which is a continuous function of x .

The potentials Vios Ve oo may all be interpreted as

e per ’ VAN

two-dimensional electrostatic potentials, VA corresponding to conducting b.c.,

and V  to insulating b.c. omn 3A . If A< A' , the electrostatic energy
oo

of a distribution of charge in A , with conducting b.c., is less than

the energy of the same distribution in A' (inequality (1.2)). This is
because, going from A' to A , one allows the electric field of the given
charge distribution to perform work on the freely moving charges of the newly

introduced conducting boundary .



2. Mechanics of vortices.

The kinetic energy of the fluid contained in A is

2 2
K= %-fhv = %—In(grad ¥)

e - L = 2
5 ( ahw,w) 5 (m,vﬁw)

- % J’ﬁm(x)w(y)vﬂ(my)dx dy .,

where ¢ 1s the density of the fluid.

m

Suppose that ¢ = ¢ ws where the ws have definite signs, small
1 .
disjoint supports centered at 51""’Em , and /Ef wi(x)dx = Ri . Then

m m
K=8 1 1 Jo, (®)w; ()V, (x,y)dx dy
i=1 j=1 = * ]

R-"'% g Imi (x)wi (Y)VA(XsY)dK dy
+ L RR.V,(§:85)
i<j

If the supports of the Wy tend to the points Ei » we have

K - %-ifui(x)wi(y)vw(X,y)dx dy > U, (E1,0005E )

where we have written
U, (Epseensky)

2
= 5 RS W (E. AN, CE :
By Wy(gp) ¢ Zh AALTY (2.1)



(remember that Uh is given by (1.5)). We define similarly

Uw(il,---,im) = 'z_ Riijw(E'i’aj) ’
i<j

and for a parallelogram A |

U (gl,...,gm)

A per
=1 sz + I R.R.V REx B ]
1 A per g zz i W bk Ko i

i i<]j

The quantity UA(EI,...,gm) is finite when the Ei are distinct
and inside A . On the other hand K > ® when m > 0 . We view Uﬁ as a
renormalized energy of the vortex system; it may take positive or negative

values. Note that, as a consequence of (1.2) ,

Uh(il""’am) < UA,(ZI,...,Em) when Ac A'. (2.2)

Using (1.6) and (1.7) we obtain also
UJ‘\(EI,-..’E'm) i Um(gl,o»ogam) When E Ri_ o 0 .

UA(Eli‘t-’Em) i U (El,...,Em) When Z Ri, - 0

A per

Since the vortices move with the fluid,by the theorem of Helmholtz,

we have
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rry = v(g) - = ( ) grad ¥(g;)
Eiz -31?(5i) =30
0o 1
= e grad § Iﬂdy03(y)vﬁ(£i,y)
L 5 )] 2.3
~ grad. dy w.(y)V, (E.,y) + I V(E.:E. . 243
-1 o - S o | AL 18 A &t

We admit that if the i-th vortex were alone in infinite space, its velocity

*
would vanish (although its internal structure might change with time) ). This
means that we may replace in the right hand side of (2.3), Vﬂ(gi,y) by

VA(Ei’y) - Vm(gi,y) ﬂ‘vh(gi,y) (see (1.4)). Notice that V_  1is self-adjoint

A

and that its kernel is real (because -ﬂh is a real operator). Therefore

vh(x.y) = Vﬂ(y.x) and

grad{v (x,y)| = l—grad ? (x,x)|
A 2 A
X=y=g i X=g i

= grad Wh(gi)

*) A more careful discussion would approximate the velocity field some distance
away from the vortex in the form x -+ v(gi)+(_lﬂ grad Vw(x,gi) , and define
V(Ei) on this basis. Note that an isolated vortex enclosed in a box A will
usually move, due to the presence of walls. In the simple example of a

straight infinite wall we have Vh(x,ﬁ) = vw(x,g)~vm(x,gs) where Es is the
symmetric of & with respect to the wall. The vortex at £ moves under the
influence of its mirror image at ES . The motion of E,gs corresponds

exactly in 2 dimensions to the motion of a smoke ring in 3 dimensions.
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Altogether (2.3) becomes

€.

il
gl w|[ O

N gradi[RiWA(ai) + I RjVA(Ei,Ej)]

i2 =l j#i

Replacing ~ by = we take this as definition of the motion of point vortices.

We have thus

R diil - EEA
i2
L (2.4)
/o R, degp 30,
dt %,
)

*
These are Hamiltonian equations ) in the 2m variables Eia with
i=1,...,m ; o = 1,2 . In particular Liouville's theorem implies that the
volume element dg = dgu/\dgu/\ AdgmlA dEmZ is preserved under time
evolution. The total volume of accessible phase space is in fact finite
(= [A|m , where |A| is the surface of A) . It is thus natural to follow

Onsager, and apply the methods of statistical mechanics to systems of vortices.

This means describing systems of many vortices in terms of Gibbs ensembles.

The microcanonical ensemble is the probability measure

-1
Q a(uﬂ(sl,..-,sm)-E)da : (2.5)

where  1is a normalization constant, and the support of the measure is on

the energy surface defined by

*) Writing q; = EilJEJIRil » Py = EizRi“ﬁ/leil , we obtain the familiar
equations dqi/dt = aUA/dpi,dpi/dt = _aUA/dqi . It is however more natural to

retain the variables Eia :
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U, (Byaiceesbn) & Bl

The statistical description of a system by the microcanonical ensemble is
usually justified by assuming ergodicity of the measure (2.5) under time

*)

evolution .

The heart of statistical mechanics is the study of the thermodynamic

limit, where A,n,E tend to infinity, while the density IA[—ln and
specific energy [AI-lE have finite limits p,e . Before taking the limit
one replaces (2.5), where E has a fixed value, by an expression where E
varies in an interval (|A|(e=6),|A|(e+§)) , and only after the thermodynamic
limit does one let & » O . It is a new physical assumption that this compli-
cated limiting process gives a correct description of (2.5) when A,n,E are
large but finite, and E 1is a number, not an interval. In the next sections

we go into the formalism of statistical mechanics, and study the thermodynamic
limit. Before that let us recapitulate the physical assumptions that have

been made :

bt

Nothing is known on the ergodicity of a system of n vortices in a box.

(For a discussion of the dynamics of 3 or 4 vortices in infinite space, see
Novikov [18] , Novikov and Sedov [19], Aref [1] , Ziglin [28] , Aref and
Pomphrey [2]). Actually, ergodicity may be too strong an assumption. It would
be enough to assume that for large A,n,E , (2.5) has one ergodic component
of measure close to 1 . (One may suppose that the other components would

be invisible for instance because points starting in them would, by small

random perturbations, go to the large ergodic component).



(a)
(b)
(c)
(d)

(e)
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Two dimensions

No viscosity

Point vortices

Ergodicity of the microcanonical ensemble under time evolution; (or
dominance of an ergodic component in the presence of small random
perturbations).

Fixed total energy may be replaced by a small energy interval; the
thermodynamic limit is a good approximation for the description of large,

finite systems at moderate densities and energy.

3. Statistical mechanics of vortices.

3.1. Introductory remarks.

In order to simplify matters, we assume that all vortices have

strength Ri =+ R, with R > O . According to (2.1) the Hamilton function

for n positive vortices at positions Eyseeesk and m negative vortices
n

at positions Ei,...,ﬁm in an open region A c]R2 is given by

n —m " 2 - 2
U, 4(E4E) = L R W, X(si) + I RW

2 2 e
+ I RV, _(£.,£) + EoRY, J(E.E)
1 gi<gn A, X170 lgj<kgm et

2 —
= E R VA,X(Ei'Ej) ’ (3'1)

i.-l’l."n

j-l,-cn’m



= 1K=

where X specifies the boundary conditions (b.c.), X =D (Dirichlet or

conducting b.c.), X =F (free or insulating b.c.), X =P (periodic b.c),

X =N (Neumann b.c.) , gn = (gl,...,gn) . Furthermore

WA,D = wﬁ 3 VA,D = VA % wA,F =0, VA,F =V_, wA,P = '.\'!L per and
z i i SEEL L

VA,P VA per in the notations of Sects s

The system is called neutral if n = m . It is straightforward, but
cumbersome notationally, to deal with vortices of variable strength, distri-
buted according to some a priori distribution, dA(R) , of compact support;

(see Appendix B).

It may be of interest to also consider the thermodynamics of
"non-neutral" systems, e.g. n = O . Their behaviour differs from the one
of neutral systems (m=n) which we study below. In order to obtain thermody-
namic behaviour, a neutralizing, uniform background vorticity must be
introduced. Physically, such a background vorticity corresponds to a fluid

in uniform rotation with constant angular velocity, or one which "shears"

between two parallel lines. In this way one obtains a family of vortex systems
interpolating between the neutral two-component Coulomb plasma and the
"jellium" [26] in which all point vortices have strength - R , and there is

‘a neutralizing, uniform positive background vorticity.

For the purpose of comparison (e.g. with numerical studies [17]) we
not only discuss the physically motivated Dirichlet -, but also free-, periodic -
and Neumann b.c.. The remarks on the physics of the vortex system, assumptions

(a) through (e), Sect. 2, suggest to study the micro-canonical ensemble.
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It turns out, however, that for many values of the thermodynamic parameter
this ensemble is equivalent to the canonical ensemble. Moreover, for the
system of point vortices studied below, the canonical ensemble is known to be
equivalent to the grand canonical ensemble. This is a simple consequence of

the scaling properties of U (see Sect. 4 of [8], [9] and Theorem 3.2).

AX

Mathematically, the grand canonical ensemble is the most convenient one.

3.2. Definition of ensembles and thermodynamic functions, the main results.

(a) Microcanonical ensembles

A SRR A .
Let & be the characteristic function of the interval [-A,0]
and § the one of (-»,0] . The microcanonical partition function for a
neutral system of n positive and n negative vortices in a bounded, open

domain A cﬁmz is given by
A,X o 1,2 A n =n, n.—n
Q77 (A m,E) = () {2:1‘5 (U, x(&E)-E)dede , (3.2)

where E 1is the total energy, and

n n
= 1 dzgi T Ll
i=1 jul

dg™

(We closely follow notation in [8] , [9] and [25]). We also define

X | ERNr . n —n n,—-n
Q" (A,n,E) = (=) Jtha U, x(&,E)-E)degde . (3.2')
Let
I PT A - 2n
E = m » = m s P = m ’
where |[A| is the "volume" (area) of A . These quantities are the energy

density, energy density uncertainty and particle density, respectively. We
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define the entropy densities

6,X 1 AX
sﬁ (p,e) W log Q (Ayn,e)
(3.3)

X 1 X O'g A
SA(p.e) = TIT log @ (A,n,e) > Sh’ (p,e) »
and

X
sa’x(p,e) = lim si’x(p,e) 5 Sx(p,e) = 1lim Sﬁ(D,E) ’

A ;Rz ﬁ/Rz

with &,e¢ and p kept fixed, (n/”]R2 in the sense of van Hove [25]).
For Neumann b.c. the thermodynamic limit of Ji can be shown to exist

(see Sect.4).
The function si(p,e) is by definition an increasing function of

It is easy to see [25] that if the thermodynamic limit of si(p,e)

‘ F X 7 . ’ .
exists and if s (p,e) 1s strictly increasing at some ¢ = €5 then

. 6,X §,X X
llm2 sﬁ’ (p,eo) =g’ (p,eo)= s (p,eo),
LR

for all 6§ > O . It might happen, however, that sx(p,e) =s = const. ,

for ¢ € [60,61] » €, <€ In that case it is conceivable that sa’x(p,e)

1

depends on & and is strictly smaller than s(p,e) , for some ¢ € (eo,sl)

and some sufficiently small § . Thus it might happen that

§,X
35 " (pe) Bs( 2€) -g <o, (3.4)

11

at energy densities ¢ around which sx(p,-) is constant. This was, in

fact, expected by Onsager [20]. Of course, in a finite region A ,
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§,X
3SA (p,€)
e < 0
JdE

if e 1is large enough, depending on A . The true behaviour of
sa’x(p,a),x = D,F,P, or N , as a function of € 1is described in the

following result.

Theorem 3.1.

For X = D,F,P,N , there exists a function ox(p,e) such that

£ -+ GX(paﬁ)

is increasing and concave in € , with values in the open interval

(-»,p= plog %9 , and if cx(p,-) is strictly concave at ¢

sa’x(p.s) = Sx(p,e) o Gx(pse) R

(in particular the thermodynamic limits of si’x and sf exist). If ¢

belaongs to an interval of linearity, (eR,eL) of gx(p,-) then

T s)(pye) 5 0 (pre) (3.5)
AARZ

Lin %%(p,e) 20" (psep) - (3.6)
- AR?

(Note that is the left extremity of the interval). Finally

ER

lim cx(p,e) = -» , lim BG’X = p- plog % .
£ £-++00
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Notice that

Hparts 120 2h _on
p-plogz Al)::zmlog[(n!) |ﬂ| ] ’ p—m .

is the entropy of an ideal (non-interacting), two-component gas of vortices.
A proof of (3.5) and (3.6) is given in Appendix A. The remaining statements
then follow by proving the equivalence of the microcanonical, canonical and

grand canonical ensemble for all, but possibly countably many values of

X
- 90 (p,€)
ae

B

and exploiting detailed properties of the free energy as a function of o

and B ; see Theorem 3.2 and Sects. 4,5.
In Sect. 4 we show

8" (p,e) < s*(p,¢) < s%(0,€) < p=p log % , (3.7)

for all e <~2and X=F or P.

Using a conjectured extension of the results in [4], [5] (proven
for a lattice Coulomb gas) to the continuum gas studied here one is able to
establish the equivalence of all three ensembles, for B sufficiently small,
i.e. € sufficiently large, and Dirichlet boundary conditions, and to exhibit
P

the approach of SD(p,g) to p-plog 5 » 88 € > , explicitly; (see

Sect. 5).

In the next section we establish some general properties of sa(p,e)

and s(p,e) , in particular we prove the following scaling relation : For
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arbitrary b.c. and all 6 > 0 ,

2

- 2 '

sﬂ(p',s') = 2 'log 0+6 25 -1 (6 p',eza' + Bzg— leog 9) (3.8)
6 A

which can be transferred to the thermodynamic limit if the latter exists.

In that case we obtain

2 2
8me /pR S(e—Bna/pR

2
s(p,e) = e 0,0) - 8me/pR™ ,

2
. - 4
by choosing ' =0, p' =6 2p , 8 =e me/pR

.

Thus, the entropy as a function of p and € is determined by
the entropy as a function of p , for a fixed value, €, €8 o , of the
energy density e , provided the thermodynamic limit exists. (See Sect. 4
and Appendix A). Existence of the thermodynamic limit can be proven for
strictly neutral systems with Neumann b.c. (Sect. 4). This summarizes our

main results, but see also Theorem 3.2 and (3.34).

(b) canonical and grand canonical ensembles.

The canonical partition function for a system of n positive and
. . 5 % 2 .
m negative vortices in a bounded, open domain A c<R” , with D,F,P or

N boundary conditions at 93A , is defined by

-gU ( En ’Em)
X s S n,—m AX
Q" (Asn,m,B) = e IAn+m dg dg e ’ (3.10)

!
with Uh X given by (3.1), and

Qx(Asn.m,B) =0, unless n =m

if X=N,F or P b.c. are imposed. We define
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QX(A.n,B) = QK(A.n,n.B) ’

and
1 X
8£,(0,8) = = Tyr log O (A,n,8) , (3.11)

with p = %%T : fi(p,B) is the free energy density for a neutral system

in A with b.ec. X .

It is proven in [8], [9], Sects. 3,4, that for 0 < B < ﬁ% and
R
- bounded,
Al
Q*(A,n,n,8) < K@) ™™ (3.12)
and
X 4
Q (!\,n;n,B = o , for g > iy S (3.13)
R

for X =F,P and N . In Appendix B , this result is extended to X = D

(in which case (3.12) has been shown to hold for B8 < 2% in [9]).
R

By using an argument of Griffiths [12] it has been observed in

[13] that

F . F
f (p,B8) = 1lim fh(p.B)
A/"IR2

(where the limit is understood in the sense of van Hove; see Definition
2.1.1 in [25]). The same argument works for Neumann b.c., (the important

ingredient in the proof being inequality (1.8)).

For all four choices of b.c. the existence of the thermodynamic
limit of fi(p,B) can also be deduced from the equivalence of the canonical

and the grand canonical ensemble and the existence of the thermodynamic limit
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of the pressure for all 0 < B < ﬁ% and X = D, KFP,N ; (see Sect. 5).
R

We now define the grand partition function

EX(A z,B) = ; zn+mQx(hsn’m’B) ’ (3.14)
n,m=0
Q*(1,0,0,8) = 1 ,

eBu is the activity, O <z <« , The pressure is then given by

1]

where z

Py (2,8) = Thr log £ (A,2,8) . (3.15)

In Sect. 5 we show that for B<-é§
R
F
Pﬁ(zys)
N D
0 < p)(z,B) < < p,(2,8) < K(z,8) , (3.16)

Pi(Z.B)

where K(z,B) 1is some finite constant independent of A , provided A
is a circular or rectangular region containing {£ : [5|5~1] . Moreover,

for X=F and N and {A} an increasing sequence of circular or rectangular

regions

X . : : .
p (z,g) 1is monotone increasing in A ,

(3.17)
pD(z,s) is monotone decreasing in A .

By (3.16) and (3.17) ,
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- X
px(z,B) = lim p)(z,8) (3.18)
A)ﬂRz
. i P AT 4
exists and is finite and positive, for all 0 <z <« , 0 < B <=5
R

and X = D,F,N .

One can also establish (3.18) for X = P , with J‘s./"]Rz through

a sequence of squares or rectangles. (See Sect. 5 and [6]).
By (3.16) and (3.17), for X = F,N ,
X X D D
Qs Ph(zaB) <p (ZQB) <p (ZQB) < Ph(Z.B) . (3"19)

By (3.10), (3.14) and (3.15)

§ X o z|ﬂ|)
lim Bp (z,B8) = p,(z) = log( L )
B0 : y | | nl)

for X =F,P and N, and

o n+m
Lin gp) (z,8) = py(2) = Tyr log( I b, (3.20)
BN n,m=o0 e
It is an elementary fact that
. o
1lim ph(z) = 2z (3.21)

A R?

By (3.19) and (3.20)

pi(z) < lim Bpx(z,ﬂ) < 2z
f\vo

for X = D,F,P,N and arbitrary A , so that by (3.21),
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N
lim Bp (z,B) = 2z = 11mBP (2,B) ,
B0 B~ \
(3.22)
for X = D,F,P,N and for all A . J

Next, by (3.10), (3.14) and (3.15) ,

D

3(Bp,(z,B)) 2
i i R 2

ST gy J,d“Ew (E)p, (B,2;E)
T [AT ‘A A A

2
R 22 ++ . i ]
T TAT IAxAd &d nVﬁ(E.n)[pﬂ (B,23E,n) Py (B,z3E,n)]

2 : ++ .
where pﬂ(a,z;g) is the one-vortex correlation, and pA+(B,z;Esn) is the
caorrelation of a vortex with strength R at £ and a vortex with strength
+ R at n , in the grand canonical ensemble; see [25], [10] for definitionms.

In a bounded region A,

11m[p

N A (BsZ;Esn)“OR—(B,Z;E,n)] =0 ,
B No

and

lim o, (8,258) = 2
B™\o

Thus, by a dominated convergence argument,

2805 (2, 8))
28 )

lim

lhl I d Ew (&)
[T

(3.23)

—T—T I a® g lim(V_ (E'n)'V (g,m)) .
n+§

Suppose now that A 1is the disc of radius r centered at the origin. Then
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2 2
Lim(V, (E-m)~V, (£,m) = (1/4m)log r’=(1/2m)log(x ~£") ; (3.24)
n+§
see Sect. 3 of [8], [9] .
Therefore

lim 55 =3 zR“[(1/4m)1log T

B\o
b 5 Ir (-2t)10g(r2-t2)dt] (3.25)
2 o
mr
2
R 2
= - %;— [log r-2]
Hence
D
3(5Pﬂ(2,3)) .
' ey - G diverges to =-» , as r > @,
B\o
By (3.17) and (3.22)
D
Lo 30p0a,8)) g, 20ERAEE)
BNo B \o
for arbitrary A . Therefore we conclude that
D
1ig 2B P (2,8)) _ _ . (3.26)
8 \No op

Theorem 3.2.

Then, for all choices of b.c., X = D,F,P,N,

Let a = BR2/4n .

80 (z,8) = 22/2'“Fx(a) . (3.27)
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where Fx(a) is a finite, strictly positive convex function of a , for

0

nAa

o <1 , with the following properties :

1) lip Fr(a) = ,
a1

2) lin Fr(a) = 2 ,
a'\jo

3) 1lim -‘% @) = -«
a™No

Moreover, the canonical and grand canonical ensemble are equivalent, for

all g € [o, é%) , and
Lt 2 anc

fo(B,p) = -2%9-[0 log{%ﬂ-‘-’-} —1J . (3.28)
2F (o)

Remarks.

1) For free b.c., (3.27) and (3.28) are proven in [8] . The extension to

other b.c. is indicated in Sect. 5. From (3.27) one derives the equation

of state

pX(0,8) = (o/8)(1-gR/8n) ;
see [16], [8] , [9]

2) Assuming that the methods of [4], [5] extend to the continuum Coulomb
gas, for sufficiently small, but positive values of a , one can show

[+ +]

D 2 .
that F (a) 1s C in o , for small a , and

f—a F'(a) = 0(log a) , (3.29)

as a\,O ; see Sect. 5.
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We now turn to the proof of Theorem 3.2. For the proof of equ. (3.27)

see [8], [9] and Sect. 5. It follows from (3.10), (3.14) and (3.15) by using
Holder's inequality that Bpx(z,s) is convex in B , hence in o . Thus,

using (3.27)

v ISR
0 i‘a (8p (gsB)) . 5 (log z)spx(z,s)

0. (2-a)

PR S log z|[ . 7 (log ﬂﬂpx(z,8)+22

(2-0)° (2-0)

2/2-a

F'(a)]

+ 2220 q)

=F"'() , for z=1 (3.30)

Thus F(a) = Fx(a) is convex. That it is finite for 0 < a < 1 follows

directly from (3.16), and that it diverges when o, "1 follows from (3.10)
and (3.13). (All quantities, QX - EX and px , diverge when B/;tﬁg :
because of the logarithmic singularity of Vi(g,n) at £ =n € 3A ? See

(81, [91.)

By (3.22) and (3.27) ,

lim Bpx(z,s) = zFx(O) miZzil e,
B8\vo

¥X(0) = 2 , for all X .

This proves property 2) of FX . Next,

2
9 D R 2 D
m (Bp (z,B)) = F it v (Bp (z,B))

2 D
R 2 D 2/2-a dF (o)
- -(log z)Rp (z,B)+z -——-n]
b [(2—::)2 da
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This identity combined with (3.26) yield property 3), for X =D . In

order to prove 3) for X = F,P and N , suppose first that

X
dF (a)
da

> const. > = e ,
=

uniformly in o € (0,1) . Then

X
g%-(ﬁf (psB)) 2 e <=,

for some constant €, and all g € (O, ﬁ% ) . Since by (3.28)
R

Lin(g£* (p,8)) = p(log & -1)
gN\o

. A X A - .
and since the entropy density s (p,e) 1s increasing in e we conclude

that

sx(p,e)

p(1- log ) ,
for all ¢ 2 €5 ? X = F,P,N . But, by Theorem 3.1 ,

sD(p,e) UD(O,E) < p(l-log %) - (3.31)

A

for all e < « . Actually, the upper bound on UD follows from properties

2) and 3) of FD and equ. (3.27), Theorem 3.2, as shown below. Thus
X D
s (D,E) > 8 (Q!E) ’

for ¢ € (eo,w) » X=F,P or N . This however contradicts inequality (3.7).

We therefore conclude that

X
o dF
11““747551““'

aNp
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for all X . This completes the proof of property 3). Finally, we observe
that by (3.27) px(z,B) is analytic in 2z , except at z = O,» , and
strictly convex on (0,») . As is well known (see [25]) this entails the
equivalence of the grand canonical and the canonical ensemble. Equ. (3.28)

therefore follows from (3.27) by Legendre transformation (see Sect. 4

of [8]! [g]).

The contents of Theorem 3.2 may be summarized, in terms of the

free energy density fx(p,B) , by means of the following Fig.l :

ﬁfx(e, )
) l

= A _G.X(e’e)

0 [{og% -1]

., \l\-

Fig. 1

Proof of Theorem 3.1.

The main part of Theorem 3.1 is proven in Appendix A. The function

ox(p.e) is defined by



- 29 -

X (0se) = IRE . (Be=BT (p,B)) s

Suppose Bf&p,ﬁ)is continuously differentiable at some value Bo of B .

Then

2 (g£%)

0B

(DJB) - fo(p)B)] 5

B=B,

X
o"(pse,) = [B
and € is determined by the equation

X
= [28E) (5 gy]

o aB
=8
o

Moreover, the microcanonical and the canonical ensemble are equivalent at

those values of B and € , and

. . X
lim si’x(p,e ) = lim sf(p,e ) = o (p,e)
2 ) 2 ) 0
AR A7IR

By properties 2) and 3) of FD and equ. (3.28), Theorem 3.2 - which we

have established without using Theorem 3.1 - there exists a sequence

{Bn} converging to O such that BfD(D,B) is strictly concave and continuously
differentiable at B8 =8 , for all =n . (By (3.28), {Bn} can be chosen

to be independent of p! ) By property 3) of FD » Theorem 3.2 ,

- (265D

B=8
n

D . . . .
as n + » ., Therefore {o (p,an)] is a strictly increasing sequence,

and by property 2) of FD , Theorem 3.2,



- 30 -

. D
1im UD(p,En) = sup o (p,sn) - O[l'log‘%] .
n-e n

Using inequality (3.5), Theorem 3.1, which is established in Appendix A

we thus obtain

Tim sﬂ(o.e) < o(p,e) < pli-1og £1

AiﬂRz

for all ¢ < = , and using (3.6)

. P D . : D
lim 1lim sﬁ' (p,en) = 1lim lim aA(p,en)

A
e ) g2 e ) ag?
. D
= 1lim ¢ (p,sn) = p[l-log %ﬂ
n-ee
Next, by property 1) of FD , Theorem 3.2, there exists a sequence
{B8'} converging to AT  guch that
n RZ

lin B'£°(8!,0) = ==

-

and BfD(B,p) is strictly concave and continuously differentiable at

B = B; . (Again, {B;} may be chosen to be independent of p .) Thus

™
m

D
3(Bf")
["""""‘aB (B’p)]B'B:I

tends to -« , as n -+ «. In conclusion

lim cD(p,a;) = lim lim sﬁ(p,e;)
n-o -0 &/ﬁRz

= lim lim sa’n(p,e;) = -

A
n-o A/]Rz
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This, together with (3.5) and (3.6) (proven in Appendix A) completes the

proof of Theorem 3.1 for X = D . By inequality (3.7) (which is proven in

the next section)

sx(o,s) < sD(p,e) ’ (3.32)

§
for all € <o , X = F,P,N . Thus cx,sx and s g X tend to -« , as

€ + - , and

%% (p,¢) < s¥(p,e) < pll-log %] ,

for all e < = ,

As already noted in the proof of Theorem 3.2, inequalities (3.22)
and (3.32) yield properties 1) - 3) of FX , X=F,P,N, stated in
Theorem 3.2. By repeating the arguments given above for X =D we
thus conclude that, for each choice of X = F,P or N , there exists a

sequence {En} diverging to +»  such that

lim 1lim si’x(p.e ) = lim 1lim sﬁ(p,e )
e 2 " n>® 2 =

AL 7R AR

= 1 x = - —p-
lim ch(p,en) pl1-log 2] .

n-+e

This completes the proof of Theorem 3.1.

All as yet unproven statements about entropy, free energy or

pPressure are established in Sects. 4,5 and Appendices A and B.
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Next, we recall some facts and properties of correlation functions
of the two-component Coulomb gas in the grand canonical ensemble. (We
believe that the properties of correlations in the micro canonical
ensemble are identical in the thermodynamic limit, but we have no proof).

In [21], [10] it is proven that, for all z >0 , 0 < B < ﬁ% and all n,m ,
R

the thermodynamic limit of the correlation functions of n vortices of
A e n : o
vorticity +R at positions £ and m vortices of vorticity -R at

positions ET ,

0% (8,2;E%,E") = lim pK(B,z;En,Em) , (3.33)
R
exists if A/”IRz by inclusion, and for X = D,F and N . (For the
definition of the grand canonical correlation functions see [25], [10]).
The limiting functions, pX , are Euclidean invariant. Of particular
interest are the correlations of the vorticity, w(x) , which we denote

by <w(51)...w(£n)>x(8,z) . It is well known (see e.g. [11]) that

<w(®)um)>X(8,2) = pX(8,2;0)6(E-n)
-2[px’+-(8,z:E.n)-pX’++(B,z;E,n)] .

Here px(s,z;g) is the one-vortex correlation which is constant in & ,
and the superscripts on the right side of (3.34) indicate the sign of the

vorticity of the two vortices.

It follows from [11] and [8], [9] that

ox’+'(8.z;£.n) *px’++(ﬂ,z;£.n)
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is a positive, convex function of |£-n| which tends to O , as

|e=n| » © , for X =D,F and N . Thus

w(®)wm> (B,z) » E#n (3.34)

is a negative, concave function of |t=n| which increases to 0 , as

[E—n[ + o , This means that if the vorticity at the point £ 1is constrained

to be positive it is predominantly negative at all points n # £ ,

(in contrast to what might be expected heuristically). For X = P , one
can still show that <w(g)w(n)>i(3,z) is negative, for £ # n , in any

bounded rectangle A

Much less is known about systems of vortices of negative vorticity
(€28 -R) , immersed in a neutralizing positive background vorticity. This
system is stable for arbitrary values of the inverse temperature B -
in contrast to the two—-component vortex plasma. The thermodynamic limits
of the free energy and the pressure have been constructed [26], and results
similar to (3.22), (3.26) and (3.27) can be derived. However, the micro-
canonical ensemble does not seem to have been analyzed directly, and the
existence of correlation functions is only known for one special value of
g , [14], (see also [7]). It is an interesting speculation that for
large values of the inverse temperature B the correlation functions of
this system exhibit directional long range order. We do however not have

a proof of this.
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4. Properties of the entropy.

In Sect. 1 we have shown that

A"
A.F 4.1)

a,p

in the sense of quadratic forms; see also [24], [23] . From these inequali-
ties and the definition of the kinetic energy, K , in Sect. 2 (see (2.1),

(3.1)) we conclude that

n —m
UA’F(a IE )

< Sl
N n —m

Ry G

ENLEHED) (4.2)

UA’D(E

for arbitrary En € A" . Em % Now, recall the definitions of
Q(A,n,E) and of si(p,e) - see (3.2"), (3.3). Since

6—(Uﬁ X(En,En)—E) is monotone decreasing in UA , inequalities (4.2)

A 4

give

SE(D,E)

5)(ps€) < < s (p,€) . (4.3)
P
5, (0,€)

This proves the first two inequalities in (3.7) and inequality (3.32).

Next, we show that the thermodynamic limit of si(p,e) exists.
Let A be the union of m sets ai , 1i=1,...,m , with disjoint
interiors. By (1.8)
(4.4)

AN = AN °?
R
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in the sense of quadratic forms on functions f(g) with the property

that Iﬂ f(g)dzg =0, for all i . (If £ wviolates this condition, for
i
some 1 , we set (f,vﬂ

Nf) = 4+» ;3 (4.4) then holds in general). Let
i’

£

A be the subset of points of £n contained in ﬂi and EL the subset
i i

of En contained in &i . By (4.4) and (3.1),
(5, 35 ) (4.5)
i i
Since & is monotone decreasing in U , we conclude that
N RN - - n.=n
2 (A,n,E) > (57) Iﬁhs (g U"‘i'N(EAi'EAi)-E) dg dg (4.6)

TET_ . Clearly, O < Ai <1l and Eki =1 . We choose n

=
(1]
w
[(]
[nd
>
1l

and |4, , i=1,...,m , such that ki = lin are integers, for all 1i .

Finally we set Ei s liE . By (4.6)

Mane > 1 (Ly? 87U, i "'ki)-E )
»m,E) > = - A, N £ »¢ 1
i=1 i i i
(A.)
1
ki .ki
-dg "dE 7} .

By taking logarithms we find
m

N N

sp(pse) > I A;s, (p,€) (4.7)
i=1 i

Since & <1,

2n
Poam <8 | 1.

(n1)?

8\ (p,€) < p(l-log 9) . (4.8)
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By standard arguments [25], (4.7) and (4.8) imply the existence of the

thermodynamic limit of sN .

Next, we compare the entropy with the free energy. Since

6 (x-E) < e BB | (4.9)

for all B , we obtain from (3.2') and (3.10)

gx(h9nsE) i_Qx(A9n9B)eBE ’
hence

s3%(0,6) < s)(p,€) < Be-BEN(D,B) . (4.10)

As shown in [8], [9] and Appendix B, fﬁ(p,ﬂ) is bounded uniformly in

A, for arbitrary p and X = D,F,P,N , provided

8 < 4m R 2
Conversely,
X 2
Q (Ayn,B) < L Q.+ Q. + Q, s
jeiad g
where
1.2 -y, (", E™
Q=GP [ 5 e
A
STTREG -E, . )de"dE"
L ﬂ’x 5 ’g j+1 E E
24
f.explﬁl{"BEj+1+sh (Dnej+1)} P

where
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E.
o N = (a1t “E.) = § = .
Eoe N , Gj = |A] (Ej+1 Ej) = § = const;

-gu, (", EM
ALX n =n, n,=n
8 (U y(£7,E)-E))de dE

1 e
Q< 5 (HT) 'IAZne

YE
f_Qx(ﬂ!n’8+Y)e . ’

and we have used (4.9). Given B8 < 4ﬁR-2 we choose Yy > 0 so small that
B+y < 4ﬂR-2 . Then QX(A,n,B+Y) g_const.lAl , independently of our choice

of E, . See [8], [9] , and Appendix B. Finally

-gU, (E",ED)
e ALX o T n —n n,=n
- (n!) I 2n © 8 (ER UR,X(E »E7))dEde

>

-BE 2n
<e L |A|

(n1)?

These estimates permit us to use the arguments in [25], Sect. 3.4.3, to

conclude that

X ' X
~8£,(0,8) 5_mzx<si (05€)-Be)+E, (4.11)

with Eﬁ + 0, as [A[ + oo , if (for each A ) R,El and E2 are chosen

suitably. Combining (4.10) and (4.11) we obtain

BE%(p,8) = min(ge - _Lim_s3°%(p,e)) , (4.12)
e %S

where fx(p,a) = lim fﬁ(p,s) , with Aaﬁﬁkz e.g. in the sense of
AR

van Hove [25]; see Sect. 5.
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Next, we exploit the scaling properties of the Green's function

VA X of the Laplacean with X b.c. at 93A and of the one-body potential
’

WA X in order to establish the scaling properties of the entropy (see
’

(3.8), (3.9), Sect. 3.2). Let © be an arbitrary, positive number. We set

oA = {£:0 € A} )

Lemma 4.1. For X = D,P,N

1) v _(egson) =V _ Esm) .
I‘l’x s ]'A,x

2) W _(eg) =W _ () + (1/4n)log @
A>X 8 IA,X

For all choices of X

2
D U (N EDD = NE « R g

8 A,X

Proof. 1) Let X =D,P or N . The Green's function VA X(g,n) is
9

uniquely specified by the following properties :

a) For n € A, vy x(€sn) is harmonic in £ in A~ {n} ;

VA’X(CZ..’T]) oo VA’X(H-E) .

b) For n e A’

1
Vh,x(i.n) A= E? log|5-n|+const.,

as £ +n

cD) Vﬁ D(.5,n) +0 , if either § or n approach 3A .
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0

CN) (EEE Vh’N)(E,n) =0 , for £ € 3A .

cP) VA’P(i,n) is periodic in & and n ,
with domain of periodicity = A

Now, note that VA X(GE,Bn) satisfies a),b) and cx) (X = D,P,N)
]
if in a), b) and cx) A 1is replaced by 6-1h . This proves 1). Lemma 4.1,2)
then follows from (1.3), (1.4) and (1.5). Using 1) and 2) we finally see

that 3) follows from (3,1) and (1.3).

We are now prepared to prove the scaling relation (3.8) for the

entropy si(p,s) . (We temporarily suppress the super- and subscripts X).

By (3.2') and (3.3), Sect. 3.1,

$7©+€) = 7 1oslip” [ 58 @ENE B

with p = %%T SEER= T%T . We now make a change of variables,
-1 — - -1— .
. . =8 . .+ n. =06 . =1,...,n . We set
E_'l +nJ E_] ’ EJ nJ EJ s ] ’ s
n
(n) = (Bnl.---,enn) , etc.

Note that nn and ﬁn range over (6—11\)n , and

dgn = ezndnn , etc.

Hence

5, (056) = e'zl—:ll—l log{ (2p) 6" .
6 A

2nR2

4

[ s _ (a) log6- E)dn"dn" } ,

(B—LA)ZR 0 A



- 40 =

2
-2 2 2 R 2
sA(p,e) =0 s -1 (07p,0 e+ %F_ 8" log 6) + 2p log @

e A

which is (3.8).

5. Free energy and pressure; conclusions.

5.1. Existence of the thermodynamic limit

Combining definitions (3.10), (3.11) with inequality (4.2) we obtain

F
fA(p,B)

D N
£ G < < £ (,8)

P
fn(p !B)

and, using in addition (3.14), we get

pF(z,B)
N A D
0 <« pﬂ(z’B) < < PA(ZsB) - (5.1)

pz(z.s)

In Appendix B it is shown that, for all 2z and all B < 4«R2 -

Pﬁ(z,e) < const. , AD{g:|g] <1}, (5.2)

for some finite constant independent of A . Inequalities (5.1) and (5.2)

yield (3.16).
By (3.10), (4.4) and (4.5)

N m
Q (f\snss) e izl Q("}‘iskisﬁ) 3
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N N
£,0,8) < I AE, (0,8) , (5.3)

1 i

nom B8

)

where Ai = |ﬂi]/|h| » k; = \m,... as in Sect. 3. If A 1is a unit square,

for example, then clearly

QNrk,B) >0

for all k and all B < 4ﬂ/R2 . Furthermore, since
O TR L T T

if B < 4n/R2 and 2n/|A| is bounded uniformly in A (see Appendix B),
we conclude that fﬁ(p,B) satisfies uniform upper and lower bounds, for
all p >0 and all B < 4ﬂ/R2 . This and (5.3) show that if A/”IR2 , in

the sense of van Hove [25] ,

1im fi(p,s) = ,8)

h}ﬂRz

exists. An argument originally due to Griffiths [12] can be used to show
that the thermodynamic limit of fi(p,ﬂ) exists. See also [8],[9],[13] .
For X = D,P we do not give a direct proof of the existence of the
thermodynamic limit of the free energy, but analyze the pressure and then
exhibit the equivalence of the canonical and the grand-canonical ensembles

(Sect. 5.2).

The existence of the thermodynamic limit of the pressure for

periodic b.c. can be inferred from [9] , [6]. (The arguments are somewhat

lengthy and are therefore not reproduced here). For X = D,F and N we
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can establish the existence of the thermodynamic limit of the pressure by

considering its first derivative in z :

X
B(BP (zyﬂ)) e
z _'_ﬁa?"_ = |A] : Iﬂdzspi(s,z;’é) s
1‘&.
Bpi(z,B) = IAI_1 Iz dcc_lIAdzzpﬁ(B.c;a) . (5.4)

By correlation inequalities [10]

pﬁ(B,z;E) is increasing in A , for X = F,N ,
while

pE(B,z;E) is decreasing in A ,

for each fixed & . These properties along with (5.4) and (5.1), (5.2)
establish (3.17) and the existence of the thermodynamic limit. (For

X = F,N one could instead use Griffiths' argument [12]).

Remark. The correlation inequalities in [10] , [21] can be used to conmstruct

the thermodynamic limit of all grand-canonical correlation functionms.

5.2. Scaling properties of the pressure and free energy.

We recall the definition (3.10) of the canonical partition function.

(We temporarily suppress reference to boundary conditions).

-gU, (£", ™
dgndEme A

Q(Ayn,m,B) = m J’hn.'_m

We change variables, Ej +n, = a-lgj..... as in Sect. 4. By Lemma 4.1,

i
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e2(n+m) _ea

Q(Ann,mss) e W (e-lﬁ)n"'m dn dn .
2

—B(n+m)B— log 6
4

. exp[-BU _; (" le
6 A

2
= o (o) (2-BR7/4M 0 (6711 0, m, B)

With (3.14) this yields

2
£(h,2",8) = 2(07 10,02 BR /4751 gy (5.5)
hence
_2 2_.
Pﬂ(ztsﬂ) =0 p =1 (6 GZ'ys) ’
6 A
where o = BR2/4w . Now choose z' =1, z = B2-a . After passing to the

thermodynamic limit and setting B8p(1,B8) = F(a) we obtain

2/(2-a)

Bp(z,B) = z F(a)

which proves equ. (3.27), Theorem 3.2. Moreover, it shows that p(z,B)

is analytic in z , except at z = O,», and strictly convex on the positive
real axis, for arbitrary o € (0,1) . This proves the equivalence of the
canonical and grand canonical ensembles. Therefore the thermodynamic limit
of %f exists for all X = D,F,P,N , and fX satisfies equ. (3.28),

Theorem 3.2.

5.3. Comments on the equivalence of the canonical and micro-canonical

ensembles; conclusions.

Notice that if we can prove that the function Fx(a) is continuously

differentiable in o at some value a of a then fo(B,p) is
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4ma
continuously differentiable in B at Bo = 20 . In that case
R

sa’x(p,e) = sx(p,e) = min(BoE-Bofx(D.Bo)) ’
[

see e.g. [25]. If continuous differentiability is true for all
Bo € (O,An/Rz) it follows that the thermodynamic limit sa’x(p,e) of
the entropy exists for all p > O and all real € (see Theorem 3.2),

and ss'x(p,e) would be a strictly increasing function of € .

We can think of two techniques that might enable one to derive

differentiability properties of Fx(a) :

1) One could try to extend the techniques of Brydges and Federbush
[4], [5] to the two-dimensional continuum Coulomb gas. This would enable
one to prove that for 0 < o <% , for some a<1 . FD(G) is C
in o and to determine the rate of divergence of é% FD(u) , as o+ 0 :
In the thermodynamic limit

2(Bp"(2,8)) _

38 = %’E Idzg J"“|‘5|[¢1'+-(Ei,z;t—:,0)-p++(E.,z;E,Cv)] (5.6)

Taking for granted that the methods of [4], [5] apply to the continuum

gas one would conclude that

= ikg
o+ LB 2 E0) = p++(8.z;£,0) ~ const.B [ dzk —i—-—e—-—-—i
k™+m(B)

and the inverse correlation length, m(B) , behaves like
2
m(B)” ~ 2z8 ’

as B + 0, up to corrections of higher order in B . (These asymptotic



- 45 =

formulas are suggested by Debye-Hiickel theory). By inserting these

results in (5.6) we conclude that

D
2(8 aéZ.B)) ~ const.n B , (5.7)

as B ~+0 .

2) One can try to exploit the results of Faddeev et al. [27],
claimed to be exact results for the two-dimensional sine-Gordon theory.
That theory is isomorphic to the two-dimensional, two-component Coulomb
gas studied here [8] , [9]. The vacuum energy density of the sine-Gordon
theory, normalized such that it vanishes in the free-field limit, i.e.
when B >0 or z -+ 0, is precisely the pressure of the Coulomb gas.
The results in [27] indicate that the pressure is a smooth function of g
in the interval (0,4ﬂ/R2) . This would imply that the function F(a) ,
see Theorem 3.2, is smooth in o € (0,1), and therefore the entropy is

uniquely determined by the free energy.

Acknowledgements. We thank O.E. Lanford III and T. Spencer for very

helpful discussions.
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Appendix A.

Proof of Theorem 3.1.

We know that the limits

ol -1
£(0,8) = 8 'lim|A| "log

1 2 I dgnd‘gne
(nl)“ 4%

exist when A/ﬁ]Rz in the sense of van Hove, and |A|_12n +p , defining
the free energy density, for the boundary conditions X = D,F,P,N . We have

shown that
X
f (D,B) = -0 , for B ey

and fo(p,s) is a finite concave function of B on (0 , ﬁ%) , with
R
fx(p,B) + - yhen B ~ ﬁ% . This is part of the content of Theorem 3.2,
R
and is proved without the help of the present Appendix. Define

cx(p,e) = inf (Be-fo(p,B)) . (A.1)

BE(0, 23)
R

This is clearly an increasing function of € . Let ELQ3) and gR(B)
be the left and right derivative of fo(p,ﬂ) with respect to B . We
shall from now on omit the superscript X . General arguments concerning

the equivalence of ensembles [25] give the following results :

(a) lim2 si(p»e) = lim2 SA(D’E) = g(pse) = Be—BE(p,e)
A AR AR

when ¢ = sR(B) .

(b) 1lim sup Si(p.e) < olpse)

2
AAR



- 47 -

vhen ¢ € (ep(B),e (8)] 5 (olp,*) is then linear on [aR(B),eL(B)]) .

Proposition. For all X and e > e (8) ,

lim inf si(p,s) > U(D,ER(B)) (A.1)
> L)
AR

*
when h/’]Rz in the sense of Fisher )

We shall prove this proposition for X = D which is the most diffi-
cult, but also the most interesting case. Other b.c. can be analyzed in a

very similar way.
We now establish some notation :
e, = eg(B) » s = 0(p,e (B)) . (A.2)
Sy . n —-n : 2n AT .
Instead of specifying points (£ ,£) in A" , the positions of vortices,
we shall specify configurations, X , a set of n + vortices and a set of
n - vortices.If S 1is a set of configurations, X , and S the corresponding

subset of A2n , (L.e. S = {(En(X),En(X)) : X € S}) we define

i
vol § = —— [dg"dEx_(E",E")
(n!) S
with x+« the characteristic function of B

S

Given an arbitrary vy > O and ¢ >€, s We shall try, for large A and

]ﬁ[_12n S p , to construct a set S of configurations such that

*) See [25] for the definitions.
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=1
[A] “1log vol § > s -y (A.3)

and such that all configurations in S have energy in the interval
((e=8)|A|,(e*+8) |A]), for some arbitrarily small, but positive & . Since

€>e€, and by (A.2), this proves (A.l).

The proof of (A.3) consists of an explicit construction of S which we
now outline : We choose an integer v << n , with v >wand v/n >0 , as n > =
and consider configurations of 2(n-v) vortices in A with energy in an
interval [(50—6')|h|, eo|h|] . To these configurations we add the 2v
remaining vortices in a small number (two) of very concentrated clusters in
such a way that they contribute an amount of energy proportional to 'Ih!

and make a negligeable contribution to the specific entropy.

Let So be the set of configurations of 2(n-V) vortices with
energy in the interval [(50-6')|A|,€0|ﬁf] . Since V/n > 0 we have, for

large A,
-1
A - ' .
[A] " *10g voln_US0 > g (A.4)
We may also assume that vy has been chosen so small that
-1 <
[A] “1log volnS0 < so—ZY : (A.5)

where S: is the set of configurations with energy < (50—5')|A| . Since
_ ﬁ,/]Rz in the sense of Fisher we may decompose most of the area of A

into little squares, & , of area 1/2 . Let <(+)> denote the expectation

value given by the measure (voln_vSo)-lvol () on So . Then, for more

n-v
than half of the squares gy ,
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<number of vortices in I > < %- (A.6)

Since A,’]R2 in the sense of Fisher, some fraction ( > constant) of
these little squares has a distance > k diam A to the boundary of A ,

for some «k > 0 . We choose one such square, Zl . Let Sl C:S0 be the set

of all those configurations in SD with no vortices in El . It follows

easily from (A.6) that
vol S, > —-voln S . (A.7)
Hence, for A sufficiently large

[f\[_llog vol _ S, > s -2y/3 , (A.8)

il

an immediate consequence of (A.4) and (A.7). (We note that we could, for
each N =1,2,3,..., find N squares, El,...,ZN , with distances

> k diam A such that the set of configurations Sy © SO with no vortices

. N N
in 2, U UL, satisfies wvol > (1/4)"vol _ S, and

—vSN

> 30- 2¢/3

-1
|[A| “log VOIn-uSN

for sufficiently large A ).

We now modify configurations in S, by adding v + vortices and

1
v - vortices hlzl . Let ©(x) denote the charge (or vorticity) density

corresponding to the 2y vortices in El . Clearly

SUPP w C Iy » Idzx w(x)=0 , J'dzx|w(x)[ = 2R . (A9)

As shown in Sect. 1, it then follows that
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J a?xd%y w@wm IV, | (x,y)V, ()]
(A.10)

-1
5_const.(Rv)2(/fB-K diam A) .

Next, we describe the way in which we distribute the 2v vortices in Zl
more precisely : They are all contained in a disc D of radius at most

Q/&XZQ)-IIZ inscribed in El . Each individual vortex is in a disc of

radius r ,

R |
T << (5359 /2

so that the distance of two such discs is at least 2r . The discs containing
a positive vortex form a cluster, those containing a negative vortex form

another cluster, and the two clusters are at a distance Rfl/&(Zp)-ljz H

see Figure 2. To be specific we may assume that these clusters are roughly

Figure 2

circular pieces of a regular lattice (hexagonal or square) of small discs
of radius r , with lattice distance proportional to r . By (A.10), the

interaction energy of vortices within one such cluster is
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2

SR e 2 oY= Re v =<0 (diam A ) ) (A.11)

/v

/v <<l ,as v-+>w,

The interaction energy between the two different clusters is

1y _ r%%0cdiam ALy . (A.12)
4'2p

~ -(Rv2/2n)10g(
These estimates are to be understood as follows

(a) Uniform constants only depending on the geometry of the clusters

have not been computed.

(b) Apart from those constants, (A.1l) and (A.12) give the exact
behavior of the total interaction energy of the 2v vortices, in the

sense that the interaction energy is contained in an interval

[K-n,K] szzlog(—-k—) , (A.13)
/v

where K and k are constants independent of r,v and A , and n tends

to 0, as r+0, A» =

Next, we must estimate the interaction energy between the 2v
vortices in D c i and the 2(n-\) vortices in A ~ El : We fix a confi-
guration S1 of 2(n-y) vortices in A\‘El . This configuration determines

a charge density, q(x) , with supp Qc A~ 21 , and

| Q(x)dzx =0 ,

Next, we fix the position of each of the 2v vortices in El to be at

the center of one of the little discs of radius r contained in D c El .
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Let wo(x) denote the charge density corresponding to this particular
configuration. Furthermore, let we(x) denote the charge density obtained
from mo(x) by rotating the positions of all 2v vortices about the

center of El (= center of D ) through an angle 6

We now note that

2T _
i) dbwg (x) = w(x) (A.14)
o

is invariant under rotations about the center of El , and | E(x)dzx =0 .
The interaction energy between the 2v vortices inside El with charge
distribution wa(x) and the 2(n-v) vortices of the configuration S1

in AN L, is given by

2
Wo = 1 d%x 4y 0y RGIY, LGy (A.15)
Next
27 2 2 —
Iode Hg = [ dxd%y 0V, (Gxy) .

Since VA x(x.y) is a harmonic function of x , for x € D, for all choices
of b.c. X and all y € A‘~21 , and since [ Gfx)dzx =0 it follows that

2T

[ de Vg =0 . (A.16)
o

As long as n is finite (or, equivalently, |A| is finite) W, is a

continuous, periodic function of 6 . This is true because

dist (supp Q , supp me) 3_%(20)-1/2 .

Thus there exists at least one value es of 6 such that
1
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W =0 ., (A.17)

As one varies the position of each of the 2v vortices in

Dc I throughout one of the small discs of radius r (depicted in Figure 2),

1
the variation, AWB , in the interaction energy between the 2v  vortices
in D and the 2(n-v) vortices in A \-21 is bounded by
|aw61 < const. (v(n-v)/V2p)-r . (A.18)

This follows from (A.15) and the continuity properties of VA x(x,y) with
]

respect to x € D, for arbitrary y € A N El .

Thus if the position of each of the 2v vortices inside El

is anywhere inside one of the 2v 1little discs, rotated by GS *
1

inside D then, by (A.17) and (A.18),

|we | < comst.(v(n-v)/V2p)+r . (A.19)

Sy

To complete the proof of our proposition we now must choose v
and r , calculate the total energy uncertainty, using (A.13) and (A.19),
and calculate the entropy of the class of configurations constructed above.

For example, we may choose

v = (01[A|fdiam A)1/2

(A.20)
-1/2

r = c,v exp[—c3 diam A] ,

where ¢19Cy and c, are finite, positive constants. Then the total

energy of the 2v  vortices in D <z is, by (A.13), contained in the

interval
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c,[k-n,K] R*[A] (A.21)

for a positive constant <, (depending smoothly on cl,cz,c3) , with

n-+0, as A,iﬁRz , in the sense of Fisher. Moreover

—Cq diam A

Wy | < e /plal(|A]/aiam mM4 e

0
8

Thus the total energy of the configuration, S , consisting of S1 and
of the 2v vortices put into D by the construction described above,

is contained in the interval

[(EO+C4K-61)[A[,(eo+c4K+62)|A|] , (A.22)

where

61 = §'4n+exp[-0(diam A)] ,

§, = exp[-0(diam A)] .

2

By choosing €13CpsCy suitably, ¢,K can attain any prescribed, positive

value.

To calculate the entropy of S , we first calculate the total
volume, Vy , of all configurations of the 2y vortices inside D

constructed as described above :

vV = (11r2)2\’=u= const.(ﬁ%ﬂ erconekey g iam{ ‘ (A.23)
\J .

Note that V is independent of S, » (in spite of the fact that the
v

angle 6 depends on S .) Thus the volume of S 1is given by

$

vol S = vol S,V
n n-v 1 v
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and hence, using (A.8), (A.20) and (A.23)

-1 -1
|A| “log vol S = [A] "log vol _ S,

+ 7] 10g(V,)

> 8 -2v/3 - const. (|A| ‘diam Nk

> 8,7Y (A.24)

provided h)"IRz , in the sense of Fisher, and, given Yy |, |h| is chosen

sufficiently large.

Clearly (A.24) and (A.22) complete the proof of (A.3) and hence of

our proposition.

Remark. In our proof we have used two special features of the Coulomb

interaction :

1) VA x(x,y) diverges to +» , as y > x , for each x € D .
(This was used in (A.l1l) and permitted our choice of v , namely

1/2 .

v/|A| 0, as |Al > . See (A.20))

2) More importantly, in our estimate of the interaction energy,

W , between the 2v vortices in D and the 2(n-v) vortices in A ~ El

we have used the harmonic property of vy X(x,y) with respect to x € D ,
]

for y € AN El .

It turns out that one can avoid using either of these two elements,

1) and 2). Instead one uses the following elements :
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a) Inequality (A.5)

b) Given an arbitrarily small square I , the set of configurations
. R 2
of v(+ or -) particles inside I of energy > ev has a volume

V; z_const.(v!)-p s P <o , provided € 1is small enough.

c) Charge conjugation invariance (i.e. + particles and - particles
have equal a priori probabilities); or repulsive (positive) two body

potentials of short range.

d) One repeats the construction described above in N widely

separated squares, Zl,...,ZN ; (see remark between (A.8) and (A.9)).

These properties are all valid in the vortex gas studied in this
paper, but they hold for a much larger class of classical statistical systems.
The proof of our Proposition, assuming only a) - c) above, becomes however
more difficult. (A clever interplay between d), c) and a) permits to control

the entropy and energy uncertainty.) We do not give the details.
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Appendix B.

Stability in the canonical and grand canonical ensembles, and monotonicity

properties of the pressure.

In this appendix we briefly describe two methods for proving the
stability bounds (3.12) and (3.16) for B < dﬂ/Rz . In [8] , [9] these
facts have already been established for b.c. X = F,N . Thanks to the
third inequality in (3.16) it suffices to prove the stability bound (last
inequality in (3.16)) for Dirichlet b.c.. The bound (3.12) follows from

(3.16) by standard arguments; see e.g. Corollary 3.6 of [8].

We then briefly indicate how one proves the monotonicity properties
(3.17) and, finally, how one can treat vortex gases, where the vorticity,
R , of individual vortices varies, but is distributed according to some

finite measure dA(R) of compact support.

Let V () be the Green's function of the operator -A +u2 -
ALX AX
where QA X is the Laplacian on LZ(A , Lebesgue) with X b.c. at the
L ]

boundary 93A of A , and u > O . Clearly

() (n") '
Vﬁ,X < UA,X s for u>u' >0 . (B.1)

Let Uiu;(gn,zm) be an (n,m) particle Hamilton function defined as in

(n)

(3.1), but with V replaced by V and with W, _(£) replaced

AX A,X A,X
by 7 lim (WH(E,m-V_(E,n) . By (8.1)
n+& ’
v ™ < im0 - U LT (8.2)
BXT2 PR 0= g MXT Ao X % 2%-70 :

and the last equation holds for all X , provided one sets UA x(ﬁn.ﬁm) S 4o
»

L]
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for n#m, when X =F,P or N . We define

(u) ,,n 7m
-BU "2 (E ,E )
(]J)X _"!_—. 1 n.,.m f.‘lx
QM (yn,m,8) = = ¢ Iﬂn+m de™ae™ e
and
=¥z, =z 2T QXm0
n,m=o
By (B.2)
3\
QX iQ(u)X
k for 1110 ’
Ex_i E(u)K
/

i.e. it suffices to establish stability of a gas where the "vortices"

(B.3)

(B.4)

(B.5)

interact through a Yukawa — rather than a Coulomb potential, and this will

follow from an upper bound on E(u)X of the form

E(u)x

(A,z,8) < explk(z,B)|A|] ,

(B.6)

where |A| 1is the area of A , and k(z,8) is a finite constant, for

2
all z > 0 and all B < 4W/R2 . If X=D, A= U Aj , where
j=1

A ...,hn are disjoint, open sets then

1’

L@
o) 2™ > (2 Ui”)n)(an,im) :
=] 1?

and one checks easily that this entails

'
(A,Z.B) =< I E
j=1

E(u)D (uw)D

(ﬂj)z’s) .

(B.7)

Thus it suffices to prove (B.6) for X =D and a region A of unit area.
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By (4.2), this will prove (B.6) for X = F,P,N , as well. In the literature
one finds two fairly convenient methods for proving (B.6); see [8], [9], [3] .
They both rely on the sine-Gordon transformation which also plays a crucial
role in a proof of the monotonicity property (3.17) based on correlation
inequalities [10]. We briefly recall some of the main formulas defining

this transformation. Let C (= Vi?g) be the integral kernel of a positive
definite quadratic form on Lz(ﬁ , Lebesgue). Let duc(¢) denote the
Gaussian measure on D'(A) (the dual of CZ(h)) with mean O and

covariance C . Let Co be a kernel with the property that

c(g) = lim (C(g,n)-C_(£,n)) (B.8)
L 54 3
is continuous and integrable near 9dA . Formally, we define random fields
:ela¢:0 and :e1a¢: by

%—aZCO(E,E)

e (5) = e el (®)
:eia¢:(£) =e %-QZC(E'E)eiu¢(E) i
It follows that
‘eia¢=o(s) = eﬂ% uzc(g):ei“¢=(a) . (B.10)
By the definition of duc and (B.8) - (B.10)
n o ia.é
[ mie 1 (€)dug() = expl-UCE),.. 06 )] (B.11)

j=1

where
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n
1 2
U(CE,y...5E ) = I o.0.C(E.,E£.) += I a. c(&.) (B.12)
1’ ’5n 1<i<j<n 1] 177] 2 4=1 1 i
If we set C = V(U) cC =V we obtain
LB o @
Lemma B.1l.
2
2z, :cosV/BR¢: (E)d°E
E(U)D(A,z,s) = <e s 2 >C ’

where <(-)>C denotes integration with respect to the Gaussian measure

(n)
oD

du,(¢) , and C =V u>o0.

Remark. Formally, the proof follows by power series expansion of the

exponential, the identity

-iv/BR¢

‘o

ivBRo

2z:cos /§R¢:o(£) = z(:e .O(E) + :e (€))

and identity (B.1l1). To make these formal calculations rigorous, one

(n)

n,D(E’n) which is

first proves Lemma B.l for a regularized version of V
continuous in £ and n and then removes the regularization, proving
at the same time a uniform bound of the form (B.6). Details for X = F

may be found in [8], [9] . For X = D, a convenient regularization

consists of replacing
() (w) _ (™
VA’D(E:H) by [VA,D VA’D](E.n) s M>> u>0.
This is used in [3].

By (B.10),
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fﬁ:cos BR¢:O(£)d2£-Iﬁ(nq{~% ch(i)]:cos/§R¢:(£)d2£ s

where

")

c(g) = ”‘“’IVA D

n+g

(E;n) . Vw(E,ﬂ)] ’ (B013)

and we may choose yu =1 . One verifies easily that, for BR2 < 4w and A

a unit square or unit disc

(a) I epr—% RZC(E)] dzg < o , and
® [ expl-5 Re@+emNV (5,na’ea’
6A x BA d

< const. 6 ,

for all ©6 > 1 . To prove (a) and (b) we notice that

—c(g)j_(43)—1£n(1/dist(£,an)) + const. and that Véi)D(E,n) has exponen-
3
tial decay in |€—n| ; (this is used in the proof of (b)).

Estimates (a) and (b) are typical of the estimates one needs
to control the renormalization group scheme in [3] which (with Lemma B.1)

yields the bound

E(u)D

(A,2z,8) < exp c(BRz)z2 8 (B.14)

for some constant c(BRZ) which is finite for O < BR2 <471 , and A
is assumed to be a unit square or unit disc. The method in [3] is designed

to establish (B.9) for a renormalized version of E(u)x

(Ayz,B) , for all
BR2 < 6m . This causes some technical complications which are unnecessary
in our case. It is not entirely trivial to develop a simplified version
of [3] which can be used to prove (B.9) without appealing to sophisticated

techniques. Since details are lengthy but fairly straightforward, we

omit them.
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When A 1is a disc, one can set u = 0 and prove (B.9) by
following the method in [8], [9]. This case is quite simple, because the
Green's functions of the Laplacean with Dirichlet b.c. on the boundary
of a disc has a simple explicit expression. One proceeds as follows :

Q) - ' . .
AD " VA,D . The Green's function VA,D is calculated

in [8], [9]. Let A, and A be two discs centered at the origin, with

One defines cC=1V

Ao c A and dist(ﬁo,8ﬂ3> 0 . Then

ED(ﬁ,z,B) = <exp[2zJA:cos/§R¢:o(E)d2£]>C

i<exp[4zfA :cos/§R¢:o(£)d25]>é/2 .

(o)

(B.15)

1/2

* <expléz I :cos BR¢:°(E)d2£]>C

A
0

Now, notice that the re-Wick ordering factor expP-% ch(i)] is uniformly
bounded on Ao . Therefore a convergent upper bound on the first factor
on the r.s. of (B.15) follows from the results in [8], [9]. A bound for
the second factor can be proven by adapting the arguments in Sect. 3 of

[8] : In equs. (3.11) and (3.15) of [8] the terms

n
_ oy o
jgllzj wj+n{ [wj j+n| are replaced by
o o o B L2
jEllzj-wj+n| ij_zj""ﬂl exd"i R {cclzj[)"'c(lel)}] ’ (B.16)

where a = BR2/4n , and

- c([z]) = 1im [v -V, 1(z,w) < 3= 4n(1/dist(z,30) + const.
Wz d

Since Izj-wj+nl 5_const.dlst(zj,3A) and |wj-zj+n[ f_const.dlst(wj,ah) s

for all =z 2z and w seres W contained in A\~A0 s (B:il6)-"is

l’.- 1
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bounded by const.” . The estimates in Sect. 3 of [8] and the boundedness

of (B.16) yield a finite upper bound on the second factor in (B.l5).

Finally, we note that the stability bound for Qx(ﬁ,n,m,ﬁ)

follows from (B.14) and (B.4) by the Cauchy estimate.

We now outline the idea of the proof of the monotonicity proper-

ties (3.17) of the pressure. First note that

X
ap,(z,B) O
= [T e, zs00a%E (B.17)
. A

see (5.4). In the sine-Gordon representation

op(8,258) = 2z 2\(A,2,8) <:cosVBRé: (£) .
(B.18)

2
. expl2z A.cos/§R¢:o(£)d E]>C ’

with C = Vh X* It now follows from the correlation inequalities in [10]
]

and the inequalities
v + V

AN T VAN 2V o

' +V v
Ay»D Az,ni AD 2

where _Al and A2 are disjoint, open sets and A=A U A, , that for

each fixed &

pf(BsZ;E) is increasing in A , for X = F,N,

and

pﬁ(ﬂ,z;z) is decreasing in A .
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From this (3.17) follows by standard arguments (provided the domains

are squares or discs).

We conclude with a few remarks on vortex gases with vortices
the vorticities of which are distributed according to a measure dA(R) ,
with supp A [_Ro’Ro] . R0 < » , The grand partition function of this

gas in the sine-Gordon representation is given by

_X iVBR¢,

(1,2,8) = <expf A(R)f,:e PR (p)a’e>, (B.19)

c . By taking the absolute value of the expression inside the

= V\x

expectation <(-)>C we obtain

£(1,1,8) < <expfdk(R)IA:cos/§R¢:o(E)d2£>c 5 (B.20)
By Jensen's inequality

expfdA(R)fﬂ:cos/§R¢:o(g)dzg
(B.21)
< zHIIdA(R)exp[zfﬁ:cos/§R¢:O(E)dZE] >

where 2z = IdK(R) . Thus, combining (B.19) - (B.21) one finds

EX(A,R,B) < z-ljdk(R)<exp zfﬁ:cos BR¢:O(£)dZE>C

The right side is bounded for all z > O and uniformly in R , provided

SRz < 4m ; see (B.14). If dA(R) = dA(-R) , the correlation inequalities

in [10] are applicable, as well, and can be used to prove (3.17).
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