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Abstrackt.

1 re-examine the notions of spontaneocusly broken, global and local syesetrie
and discuss them in terms of some examples in quantum field theery or statistical
méchanics. I then briefly recall some basic ideas and facts about the renormalizaci
group. They are used to introduce and discuss the concept of dynamically enhanced

{or "generated") asymptotic symmetries.
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1. Remarks on the historical development of symmetry concepts; basic definitions.

| %

We distinguish two aspects of symmetry

a) a geometrical, static aspect, and

b) a dynamical aspect.
Moreover, dynamical syometries can elther be

bl) global symmetries, or
b2} local "symmetries".

a) The physics of the antique and of the middle ages (Ptolemy, Kepler...),
before Galilei and Newton, only knew the static, geometrical aspect of the concept
of symmetries. {The orbits of the planets were believed to have high symmetry. An
attempt was made by Kepler to explain the interplanetary distances in terms of the

platonic solids. Matter was conceived as being built of highly symmetric "elementary
bodies", ete.).

The geometrical aspect of symmetry is of course still extremely important in
molecular physics, crystallography, condensed matter physics, biophysics. Historical-
ly, it has been an important root in the development of group theory. In a more alge-
braie oucfit, it still appears in every branch of physics in discussions of the sym

metries of invariant states (vacuum'- or equilibrium states) of physical systems.

b) The idea that it is not the orbits of physical systems which necessarily

cxhib:;t high symsetries, but that it is the dynamical laws of physical systems which

may admit invariance or symmetry groups could of course appear only after dynamies
was introduced into physics, l.e. after the discovery of Newtonian mechanics.

I now briefly characterize static and global dynamical sysmetries of physical
systems abstractly : We consider a physical system , 5 . The family of all possible
atates of 5 is called X ; its clements X:¥ss.s « We assume that X carries the
action of a group G , i.e. with each x € X and each g € 6 we associate a state

h# € X , the image of x under the transformation g .

a) A state x of a physical system has a static sysmetry, described by a sub-
group He G, if

“h = x , for all hEMH.

(H is the stability group of x . All states on the same G-orbit have conjugate
stability groups). An orbit of a dynamical, physical system, 5 , is a mapping lrum

the real line, the time axis, into the space of states; X ; of 5 , i.e.



R3¢t x(t) €X,
The family of all possible orbits is denoted O .

bl) S has a global (dynamical) invariance - or symmetry group He G if

with each x(+) € 0 the trajectory
{x(e), : ¢t ER)

is again an orbit of 8§ , i.e. an element of O , for all h € H . This means that
x(t), = x (),

(where x = x{0) , X - image of x under h , :h[t] = prbit with initial condi-
tion :h} .

b2) Mext, we give a somewhat misleading, abstract characterization of local

{(dynamical) symmetries : Suppose 5 consists of (spatially separated, but coupled)

constituents, 51....,5n i s Eo R .y L.E. BE Sl x 51 Wowes W En
An orbit, x(t) , of § cthen consists of an n-tuple {ulit}.....nn{t}] , where
xi{L] is an orbit of the constituent system 51 vy L= liiassm . A subgroup HES G

is a "local symmetry group" of 5 if, for arbitrary hl,.HH.hnl in H and an arbi-

trary orbit, x(t) , of § ,

x(c), o (x0E), ;..oyx (€}, ) ,
E 1 h1 n hn

h - {hl....,hn} , 18 again a possible orbit of S . Usually, it is not assumed that
h

be time-independent.

"Local symmetries” have little in common with global symmetries, since for
physical systems admitting a local symmetry group (an invariance group of gauge
transformations of the second kind) one cannot devise any experiment which would
distinguish beétveen the two orbits x(t) and :{t}h « Thus, x(t) and :{n}h

really correspond to the same, physical orbit of fu, expressed in different "inter-

nal coordinates".

The idea of "local symmetries" has led to the development of gauge theories,
(H. Weyl, 0. Klein, W. Pauli, Yang and Mills), in physics, and in mathematics it
gave rise to the theory of fibre = and principal bundles.

The present trend in particle physics is to eliminate global symmetries from
the fundamental dynamical laws, but to find dynamical laws admitting a (usually non-
abelian) "local symmetry group", although the spatial symmetries (Poincaré covari-
ance) are still global symmetries, unless gravity is included. Such dynamical laws




are expressed in the form of gauge theories. That trend poses the interesting, theo-
retical problem of deriving the global, internal symmetries of phenomenclogical

models or macroscopic descriptions as dynamically generated, asymptotic symmetries;

(see Sect. 5).

1.2.

We now turn to the discussion of symmetry breaking. We start with the breaking

of global symsetries : We distinguish between

i} Explicit breaking.
ii) Spontancous breaking.

111) Dynamical breaking.

We speak of an explicitly broken symmetry if the dynamics of a physical system con-
tains & "small" term which is pot invariant under a symmetry group leaving invariant
the other terms of the dymamics. This concept is of importance when one tries to unde:
stand small masses (like the pion mass). It often arises in quantum field theories
which, in the classical limit {(tree approximation}, have a symmetry that does not
survive on the quantum lewvel, because of anomalies. (Examples may be chiral symmetries
(PCAC), dilation or conformal invariance). A different example for i) is the eight-

fold way. This topic is not discussed in my notes, although it is very important.

We say that a global symmetry group, H , of a physical system, 5 , is broken

spontanedusly (or dynamically) if H is an invariance group of the dynamics, but 1!

is impossible to transform an orbit, x(t) , of § into the orbit ;tt]h , [or some
h€H , by a sequence of local operations {(local = local in space) without passing

through states (or "configurations") of the system which have infinite energy, (or

infinite actiomn).

By considering the example of an infinite, three-dimensional ferromagnet one

convinces oneself that the definition sketched above is appropriate.

Spontanecusly broken, global symmetries can in general be characterized by a
local order parameter, (in the example of the ferromagnet by the spontaneocus magnefi-
Zation = expectation wvalue of the spin observable associated with & point or some

microscopically small region).

It is not easy to distinguish between the concepts of spontaneous and dynamical
symmetTy breaking on an abstract level. (One might say that dynamical symmetry break-
ing does not manifest itself on the tree level and is non=-perturbative, while spon-
taneous breaking appears already on the tree level and may be discussed perturbative-
ly).

It is much more difficult to give an abstract characterization of the "sponta-



neous or dynamical breaking of local symmetries". This notion cannot mean that the

physics of a system admitting a local symmetry proup, i.¢. 4 pencral covariance under
changes of the internal coordinates, depends on the choice of local, internal coordi-
nates. Broken, local symmetries cannot be characterized by (gauge-invariant) lecal

order parameters.

The concept of a broken, local symmetry is intrinsically dynamical and must,
in the author's opinion, be discussed in the context of a specific formulation of
specifiec theories. One might vaguely describe it as follows : A system with a local,
internal symmetry group H (assumed to be a compact Lie group) has always dynamical
degrees of freedom carried by gauge fields which are indexed by generators of the
Lie algebra of H . One might say that H is "broken spontanecusly (or dynamically)"
down to a subgroup H, = H if the degrees of freedom associated with the coset space

1
H,.’H1 are "frozen out at small energies”, i.e. are invisible at large distances.
(But see Sect. 3).

A discussion of the concept of symmetry enhancement is postponed to Sects. &
and 5.




2. Spontaneous breaking of global sysmetries.

General references are [2,3,4,5,6]. General, group theoretical discussions of
the possible symmetry breaking patterns in physical systems can be found e.g. in [17].

The breaking of spatial symmetries is a general phenomenon in the physics of matter

at positive density (and temperature), in the thermodynamic limit : The boosts are

always broken, rotation invariance is often broken {directional long range order;
e.g. in liquid crystals), translation invariance is broken in systems with a crystal-
line equilibrium state (translational long range order). The mathematical understand-
ing of systems with broken rotation - or translation invariance is however rudimenta-
Y.

There is a prominent example of the breaking of Lorentz invariance in a system

at zero temperature and density : The boost symmetries are broken on the charged sec-
tors of quantum electrodynamics [18], although the term "broken™ is used here in a

slightly different (weaker) sense.

An important feature of the breaking of continuous, internal syssetries and

translation invarlance is that it is always accompanied by the appearence of zero

mags excitations (the Goldstone bosons, the phonons, respectively) which manifest
themselves in the slow decay of correlations of suitably chosen observables; (6, 20].
(The breaking of rotatiom invariance also implies the existence of correlations with
alow decay but not the existence of Goldstone excitations).

#

Starting from our definition im Sect. 1, one can easily convince oneself = ot
least heuristically - that, in one and two dimensions (space dimensions, in equili-
brium =ratistical mechanics; space-time dimensions in quantum field theory), conti-
nuous internal symmetries or translation imvariance cannmot be broken spontancously
or dynamically [6,20,21,22] (I recall the droplet argument, made rigorous in [22]),

except in systems with interactions of extremely long range [23,24].

It may not be generally appreciated that we do not know any example of a svates

with translation invariant dynamics for which we can prove mathematically that the

breaking of translation invariance occurs, (except im the rather unphysical, one-di-
mensional jellium model which exhibits a Wigner lattice or in idealized models of

systems at positive density, bul at zero temperature). Moreover, there are no koown

continuum models of liquid crystals for which we can riHnrnunlE gatablish directional
long range order. These are serious gaps in the mathematical foundations of condensed

matter physics.

Up until 1976 there were no known examples of models with 2 continuous, inter-
nal symmetry group for which spontancous symmetry breakimg, and hence the existonce
of Goldstone excitations, was established rigorously (except for the somewhat trivial

spherical model of Berlin and Kac). That situation changed with the appearence of



[7], where a class of three = or higher dimensional lattice models of statistical

mechanics, including the classical Heisenberg model, and the well known 1H;|ﬂ_

quantum field model in three space-time dimensions vere discussed vhich exhibit

spontaneous breaking of internal O(N) symmetries at suitably chosen values of the
thermodynamic parameters, the coupling constant 3 and the bare mass, respectively.
The method in [7] involves a rigorous version of spin wave theory. It was extended
in [25] to quantum-mechanical lattice models, including the quantum XY model and
the Heisenberg anti=ferromagnet. The method was generalized considerably in [24].

Howewver, the Heiatnberﬁ ferromagnet, for example, has so far resisted all attempts

at a mathematically rigorous understanding. All these developments have been reviewed
pedagogically e.g. in [3,8,9,26] , and T do not repeat that here.

A new method im the theory of phase transitions and continuous symmetry break-
ing has been introduced recently by Spencer and myself [27]. Unfortunately, it can
only be applied to systems with an abelian symmetry group, so far, (although it is

conceivable that one might recover the results on O(N) lattice o-models of [7]).
The method has the advantage of extending to abelian lattice gauge theories, permit-
ting us to give fairly simple, new proofs of the results in [28,29]. 1t relies on a
representation of abelian lattice spin systems or - field theories as gases of defects

of co-dimension 2 carrving integer flux numbers. In three dimensions those defects

are closely related to the Abrikosov vortices in a super conductor. They interact
through long range forces. The broken symmetry appears when the defects have low ef-
fective activity ,z, and form a dilute gas. The symmetry is restored when the defects

condense. A heuristic discussion of the tramsition is based on an energy-entropy ar-

gument : The entropy , 5, of a defect line (or-metwork) of length L is bounded by

8 < c-L ,

-

where r is a geometric constant, the energy is bounded by
Eze'lelL,

where p is the flux carried by the defect, i.e. |w| > 1, and e' > 0 . The effec~

tive activity 2 is therefore bounded above by

< o-lBe'=0)L

z . B = 1/kT ,

and is exponentially small in L for large @g{(> c/e') . Thus, for small temperatures
T , the defects have small sizes and form a dilute gas. Hence the medium is ordered,
and the symmetry is spontanecusly broken. This argument is clearly reminiscent of

the Peierls argument, e.g. [26), where one considers a gas of Bloch walls. It might

have interesting applications to the theory of melting of solids. For a rigorous

version see [27]).



1. "Spontaneous breaking" of local, internal symmetries.

This topic is huge and less well understood than the breaking of global symme-
tries. It would require a series of lectures of its own. I therefore concentrate my
attention on the discussion of a few specific aspects which are probably not typical

for the whole circle of probless.

Systems admitting a local, internal symmetry group (i.e. general covariance
under changes of internal "coordinates") are always described in the form of paupe
(Yang-Hills)} theories. Presently, the most widely used, non-perturbative ultraviolet
regularization of gauge theories consists of putting these theories on a lattice.
This preserves pauge-invariance, translation invariance and positivity of the metric
in the physical Hilbert space, [30,31,32,33].

We pow consider an example : The gauge group G is chosen to bhe SU[(2Y . The
gauge field is denoted by i" {g;l,] i where xy 1is an arbitrary pair of nearest
neighbors in Ed , and gﬂr is an element of G formally given by
¥ it
[N GEE

8. = Fle

xy Y}y for all xv,

We also introduce a Higgs field i

with isospin 1 . Let y be the spin 1/2 character of 5U(2) , and U the spin |
representition. The Euclidean functional measure which determines the vacuum state
is given by

(@, v )4)

dulg.¢) =21 e
(xy)
(1)
Bx(g. ) "
e g dg . T A3,
p y) ™ x

- 2
Q@) 2 expl- HIY 3%

B, ® A g Byy * {(p a unit square = plaguette), f.f and A are positive
- etn ¥

constants. The r.s. of (1) is defined as the thermodynamic limit of the measurcs

associated with finite sublattices, with arbitrary boundary conditions (b.c.) isposed

at the boundary of each sublattice.

Let h @ x + hx be an arbitrary function from E.d inte G with the property

that h: = | , excopt for finitely many sites =x . We make the change of variables
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By T MuBayly T8y o
(2)
W -+ - =k
ix + "{h:]*u : (9 }! i

This change of variables leaves duy(g,4) invariant, i.e. du(g.4) = du{gh.ﬁh} + RO
matter vhat b.e. have been used to construct duy . Let

€3 £ [(-)dplg.8) -

It clearly follows that gauge-dependent observables, like g

e
or & , have zero
=y ®

expectation, i.e.

15“3'1- - -';::- =0 , (3)
independent of the b.c. used in the construction of <*> ., This is an immediate
consequence of a definition of <-> by means of the Dobrushin-Lanford-Ruelle equa-
tions, for example. It really expresses the triviality that if one does not fix a
ghuge by hand, the gauge is not fixed, and therefore gauge-dependent variables are

averaged out when one computes their expectation (an observation made e.g. in

[1o,11]) .

Let us now fix a gauge and see whether we obtain a useful notion of "breaking
of lécal symmetries". CGauge fixing is achieved by multiplying dp by a function
Fig.,%) with the property

[P eMman =1, (4)

Let e be the expectation determined by Fi{g,¢)du(g,4) . For gauge-invariant
observables, A ,

{ﬁ}F = chs (3)
However, it is now possible, a prieri, that

win

c*“}F f o i
if suitable b.c. are imposed.

. r . a -
One possible, partial E;“EE fixing is to turn all Higgs variables, *x , paral-
lel to the 3-axis, €y of E” . (Choose F to be proportionmal to
-
: 5[$; |¢ le)) . Then

char = tli;l}F-.j % {l?xllr =0 , (fl



2 S o . -
{no matter vhether p  is positive or negative). For this choice of F ,
Fla)dulg,4) has a residual, local invariance group : If in {2} every hx leaves ¢,

invariant {chxlnj - g ¥x) , hence belonging to a U(l) subgroup of € , then

PieMauce”, o) = Fle)dulz.e) . (1)

Thus, in a sense the coupling of the gauge field to the Higgs field has broken the
gauge group down to a residual U(1l), but since this happens no matter whether u is
positive or negative, it does not provide a terribly useful notion of “spontaneous,
local symmetry breaking”. (This becomes particularly evident in a theory with a large
gauge group G , L SU(3) , and a Higgs field, ¢ , with the property thac the
action of G on the vector space , ¥V, of pna:ihle values of 1:; decomposes ¥V into
several inequivalent G-orbits). The above notion depends of course on our choice

of F . It has been shown in [12] that, for some class of complete gauge fixings, ¥ ,

including the temporal gaupge, and arbitrary "symmetry breaking” b.c.
< }F-ﬂ, (8]

(This follows either from a "spin-wave" argument related to the one in [22], ar from
the principle of “symmetry restoration via defects", such as instantons). In [12]
HMorchio, Strocchi and the author have therefore proposed a gauge-invariant descrip

tion of the physics of a Higgs theory in the continuum limit, with the hope thar thi

might lead to a useful notion of "spontaneous local sysmetry breaking". In the exaspls
of the Georgi-Glashow model considered above, the appropriate, gauge invariant field
are

;;Fuu {photon), and :+$ (Higgs particle) . (9}

Moreover there is a gauge-covariant field

q-'l' - = = L =
x+F = “F - oF W W {10
s F = MR 4GP D] (W and W)
where N indicates normal ordering. From this field one may formally comstruct

fields localized on curves {TIF} with given endpoints (x,¥) :

«dgH ] 115
{.; !‘w}{xu[e:p [Y“Apm dE 1{11 F*mm} : (11
The conventional, gauge-dependent picture is recovered if :; a n] . Note that th
physical fields introduced in (9), (10) and (11) do not form any SU(2) msultiplets,
and there is no reason why the masses of the photon and the H+ and W hogon oaght
to be degenerate. In fact, this theory is expected to have a non-perturbative phos

in which there is only one massive, neutral vector particle (a massive photon), a



"Higgson" and neutral H+—H- bound states. In that phase the electric charge would
be confined, (region 1 of Fig.l). At large renormalized values of [ , u2 and B ,
the theory should however have & QED phase with 4 massless photon (coupled to the
vacuum by ;'Fuu] » 4 massive (unstable) "Higgson", massive 'H+ and W  wvector
bosons and massive magnetic monopoles, (region II, Fig.l). When one speaks of "spon-
taneous breaking of SU(2)" in this theory one is thinking of phase II. The picture
developped here can be tested in the lattice Georgi-Glashow model for which one ex-

pects the following phase diagram, [l.ui * 03 1,u: += a5 [ =+ =) 1

L4
'3
pure U(l) theory

[;Il-

ﬂl':

pure :L|'¢'|IEI -

/ lattice theory

[
|
[
[
!

Fig. 1 . 0
pure SU(Z) theory

I : confiuing phase/I1I : QED phase. The dashed line might correspond to a line of
singularities of the electric string tension, [34]. The only rigorous results concern
the existence and nature of the transitions on the lines £ == and £ = = (at Lc'

B, resp.). Sea [7,28,27,33].

The above considerations extend to more general Higgs theories with the pro=
perty that the stabilicy group H: of :; ¥ 0 is conjugate to one subgroup H of
the gauge group G , for all ;I +“Tha gauge fields corresponding to generators of
the Lie algebra of H;i , for all x , are the "electromagnetic and gluon fields",
the remaining generators of the Lie algebra 9 of G are the "broken generators"

and should correspond to massive (H-neutral) bound states or massive vector bosons.

Things become problematic when there are several, inequivalent Higgs orbits,
i.c. the abstract group corresponding to H: depends non-trivially on :;,:; FO0.
(Example : G = SU(3) , ; in the adjoint regresentntinn, wua ) o TBE Feff{:] be
the effective Higgs potential, (including radiative corrections). Let {;n} denote
the orbit on which veff_[$] takes its minioum, Hn EEE_FnrrEEPUnding (abstract)

stability group, and -51' the Lie algebra of Hn . Let ;! be the Higgs field awve-



raged over a ball centered at x of radius =~ H"l . where M 1% a typical mass

scale (a fluctwation length scale of ¢ ) of the theory. Then with high probability
e
$E). (12)

Perturbation theorists then say that © 1is broken down to Hu y that the gauge
fields corresponding to generators of l?ﬂ (in the sense indicated above and in [12])
remain massless, while the ones corresponding to ?E.&u ACqULTe BaBsEE.

On a non-perturbative level, this prediction is probably wrong, as argued by
Morchio and Strocchi [35] on the basis of ideas and results in statistical mechanics
[36,37,38] and of [12] : Suppose v‘ff.{i: has a local minimum en an orbit {?;} "
;; - ;; + ﬁ;} ; with stability group Hi = ]-1.;| « {In general Hl & Hn i but we make

this assumption for clarity). Let Hi'“l be the curvatures of ve[f transversal
ke (80, (3,) at ¢ .3, , respectively. If
0 1 [l |
—1 i ol i = 2_l. 2‘ = Ty
ba = Vg BV g (B )ra0f-HMs 0 (11)

for some positive constant a = {:-l}rzn ‘L_thn I! is close to {3;1 predominant
1y. (If (13) fails it may happen that ;: iz close to [:1} s predominantly,
even if V.. (6,) >V .. (3)) . However, with some probability (vanishing in per
turbation theory. but positive non-perturbatively) there appear "bubbles, B ., of the
false vacuum" such that -:: is close to f;;} y for X E B . The effect of these

bubbles on the physics of such a theory can be estimated by a Peierls (action-entroj

argusent [36] and a atudy of mniq_aeneratiun [38]. (1 follow a presentation in [37])
First we pust estisate the probability p of the event Ex that 3 iz close i

- : - TS |
(¢;) » i.e. that x (e.g. the origin) belongs to a bubble B = {y|ly-=] M

false vacuum. We choose b.c. such that *; £ {;;] , ag |z] » = . A connected piece,

r, of the boundary of a bubble is called a contour (or phase boundary). Foar the evont

5L E =
Ex to occur it is necessary that there be a contour I separating (y]||y-x| <o
from = , as follows from our definitions of 31 and of comtours. The action of o

bubble B such that 3B ST is bounded below by ﬁ{|T|} ; where

Allr|) = uH-]|I'E + nu-l-l'llrl

Here © is a constant chuEA-l]rE“ and |r| is the volume of I . The first
term is a surface term, the second term a lover bound for &4 volume term. The preci

dependence of M , a and o on coupling constants is not known, presently. If

Ai]rl][?h-I > 1 (15)



the statistical weight of a contour [ is bounded above by exp[=A(|r]|}] . There-
fore the probability p for Ex to oceur i= bounded by

Pz r* expl-a(|T])] 1) . (16)
r

=3
where ©° ranges over all contours T of volume Ir|] = const.H “n , n = 1,2,3,...,
r e . -
surrounding {y||y-x]| <M 1} . The number of such contours with given volume,
|r[ - tunnt+Hf31 y is bounded by

™ , (c m0(1) is a geometrical constant) . (17)

From (14), (16) and (17) we conclude that
p << 1 if (15) holds. (18)

By the results of [38,35] one then expects that gauge fields corresponding to gene-
rators in ﬂﬂﬁ}n {in the sense of [12]) ) acquire masses -|;n] » while gauge fields

corresponding to the generators of ,?.u E.'{h acquire masses
- 1k, as

Similar considerations apply to Fermion masses. Thus - 1f there are no further local
minima giving rise to other bubbles - 61 is really "broken down" to Hl y rather

than to the larger group Hﬂ . Moreover, there is no elementary Higgs field causing
the "beeaking" from Hu dowm to Hl . [35]. Finally, one does not expect any dyna-

th

mical monopoles with charges labelled by iziﬂufﬂl} 5 {ik = k homotopy group),

but only ones with charges labelled by IEICIHﬁ} - ulfﬂu) , ag argued in [37].

Finally, we should mention that the applicability of conventional perturbation
theory, based on the (generally incorrect) assumption that t;x}r # 0, to Higgs
gauge theories has been discussed in [12], with the result that the deviations can

penerally be expected to be entirely non-perturbative.

This ends our discussion of the notlion of "spontanecus breaking of local
(gauge) symmetries" : In abstracto, it is somewhat vague and misleading. It must be
understood dynamically, and one should be aware of the fact that non=perturbative
offects generally alter the conventional interpretation. Such effects, together with
the requirements of renormalizability, some form of asymptotic freedom and the re-
quirement that there exist an "unbroken" SU{]]: x {1} may be useful guides for
mode] builders.

1} A lower bound on p is more difficult to derive, see [37].



4. Renormalization group ideas.

We consider a class of physical systems which can be described by a family
{algebra), (L , of 1EE!L"nh59tvﬂhlei", e.g. Euclidean fields, in quantum field
theory (QFT), or spin fields, in statistical mechanics {(5M), and some space, X ; of
time-translation invariant states, e.g. Euclidean vacuum functionals in QFT , equi-
librium states in SM . Let & € OL, By AI we denote the translate of A by a
vector % in space-imaginary time (QFT) , or space (5M) . Let p €E X be a state
characterizing a specific physical system. Question : How do correlations,

(A B) . A8 in R,

behave, as |x-y| + = , i.e. in the (infrared) scaling limit 7 (In a continuum sys-
tem one may also be interested in the behaviour of p{ﬁx-hyi s @8 |x—y[ + 0D : the
short distance, or ultraviolet limit. We focus our acttention on the scaling limit}.
In order to answer that question, one tries to construct functions, nn[ﬁ} , depending

on A EM and on a scale parameter & , such that

Eh,ﬂf“'r} z lim mh{ﬂluBEE}{nIAEx'BHY} o u(ﬁﬁx}n{ﬂﬁ?i} (20)
-
exists. (My discussion is slightly oversimplified at this point, since one often
chooses p on the r.s., of (20) to depend on & , as well, such that Py ®pproache:
a eritical state; as & + =), In order to find uﬁ[&] s A €0l, and other quantities
of interest at large distances, one tries to determine the large scale effectiv
dynamics, by integrating out fluctuations on a sequence of increasing length scales.

One popular scheme to accomplish that is the Kadanoff "block spin transformations’

Abstractly, they can be described as a non-linear transformation, 1 , &cting omn

X = ﬂl:
t : (p.A) + vlp,A) = ipT.HT} . {21)
: ) 2)
with ntthtj p{A) 5

such that each application of 1 increases the scale of effective fluctuations,
i.e. transforms a dynamics on a given scale into an effective dynamics on the nex
larger scale. In order to answer the question raised at the beginning by means of

such a scheme one must study the manifold Hm of fixed points of 1 :

" - i 555
p* £ Hﬁ =X Iff pT A : (23)

2 or 1= Tg ! with ”{"nx'suyj - rnnst.niu{ﬁh-ﬂy]_ (21"}



Under suitable hypotheses on the properties of 1 s one can decompose X in
the vicinity of some p* E Hﬁ into a stable manifold, H‘{n‘] , and an unstable
manifeld, H“(p'l ;

Fig. 2

States on Hnip‘} are driven towards p* , states on Hﬁ{p*i are driven away from
p* , under the action of 1 . The tangent space, R , to H“{p*] at p* is the
linear space spanned by eligenvectors of Dfp. ; the linearization of 1 at p* ,
corresponding to eigenvalues of modulus > 1 . R is called the space of "relevant

perturbations". The space, 1 , of "irrelevant perturbations" is defined by replacing

t by 1:_l in the definition of R , and the lplﬂt; M , of "marginal perturbations"

is the tangent space to Hn at p* . Let p € H-ip‘J » One argues that the funct-

lons ﬂﬁiﬂ} are computable in terms of A and of the rate of approach of
(eeafP ) ) vos to p* . (See (21), (21')) .
ST E
n times

The point of interest to us is now the following : It may happen that the

fixed point p® has a larger symmetry group than a state p on H'{p'} « Thiz en-

tails that the scaled correlations, Eﬁ n{:_g] » exhibic a larger svmmetry than the
®

original correlations u{A“vH } . If this happens we speak of asymptotic enhancement

of symmetry, of of the (dynamical) peneration of asymptotic symmetries. It is quite

irrelevant in this general discussion, whether the symmetry in question is internal

or spatial, global or local (i.e. pauged).

One might argue that the concept of symmetry enhancement is only interesting
for physics if it has some stability properties. Let © be some (global or local,

internal or spatial) syemetry group, and let H be a subgroup of G . Consider a
C-invariant fixed point, p* , of 1 , (1t is assumed to have suitable smoothness
propertics). Suppose that the H-invariant subspace of M coincides with the G-inva-

riant subspace of M . Then, in some vicinity, N , of p* , every H-invariant




fixed point of 1 is also G-invariant. Thus, all states in U Hst?;‘,l . where

p/N

U ranges over all H-invariant fixed points, p , of 1 in K ., are driven towards
o/

G-invariant fixed points. Moreover if the H-invariant subspace of M@ R coincides

with the G-invariant subspace of M@ R , at p* , then for some neighborhood N

of p* , the H-invariant subspace of marginal and relevant perturbations of a

o = & v o I a 5 . a L
H-invariant fixed point p € N is also G-invariant, {(i.e. H-invariant states neal

p* tend to approach G-invariant states under the action of 1 ) . This is the de-
sired stability of our concept. The concept of symmetry enhancement has been descrili
e.g. in [14), (see also Dirr's notes). The first rigorous study of models exhibiting
this phenomenon (e.g. the Eﬂ-m&daln. see Sect. 5) probably appeared in [27,39].
abstract discussion very similar to the one presented here appeared subscquently |
[16] (which inspired the present section).



5. Symmetry enhancement : Generation of asymptotic, global and local symmetries.

In this final section we sketch very briefly some examples of the phenomena
described at the end of Sect. & and point out why "symmetry enhancement” might be the
right concept permitting us to decide whether a local (gauge) symmetry in some gauge

theory is "spontaneously broken", or not.

First, we consider the = spin models on the square lattice, Ez y N = 56,7,

N
+++ « The classical spin, ?‘: , 4t a site x Eﬁz is given by

2mn
x
]

3: = {cos Ex.nn H'.r:: ¥ I}I = 0= D=l ¥ .

The equilibrium state of the model at inverse temperature B 1is given by the measure

aM @ - 27 exp[ﬂ;; cos(0,-6,)] , (23

where xy is an arbitrary pair of nearest neighbors. This measure is the limit of
the measures

h cos(NE

3
*da (24)

dy .

-1
(8) =2~ explBl cuu{&ﬁ—ﬂy.’l] ne

8,h Y 3

as h =+ = ; (dé = Lebesgue measure on unit circle). The classical XY- , or rotator

model corresponds to h =0 . For h > 0, the measure llh.lEl h and dn:im have a
L]

discrete, global syssetry group (generated by Z, and reflections) while the rotator

(h = 0) has a continuous, global symmetry group. Im [39] Spencer and the awthor have

shown that, for all h E[0,=] and W 4 Hn s where Hn is a suffiently large integer
independent of h , there exists an interval [g(h,N) , B(h,N)] of values of p
which are all critical points and at which the cerrelation length of the spin systems

described by dl“'ﬂ h is infinite. Moreover,
]
g{h,N) < B(O,N) = Er_{ruu:nr} < m

BlhN)—== , 38 h—=0 or N—=w= .

We have constructed an infinite sequence of renormalization transformations which
drive dy towards & U{l)-invariant state ﬂ.ua - for all h E (O,=] , K > Hu ;
L]

< B

g.h

and all g E I:El.,,ﬁ:} » with B(h,N) < B < B(h,N) . Thus, asymptotically, the

1 2

discrete symmetry of the Z  models is enhanced to a continuous symmetry. We conjec-

N
ture that for each h € (0,=] and each g E {E{h,ﬂ}.i{h,ﬂ}} + N2 H.;. s there exists
gsome B' = B'(8,h) > BE (rotator) such that spin correlations in duﬂ b and in
L ]

d“ﬁ' have identical (long distance) scaling limits, (although this does nmot quite



follow from our construction).

In [27] we have established similar results for the QED phases [29] of the
Eﬁ lattice gauge theory in four dimensions : Local 3&-—inunriance iz asymptotically
enhanced to local U(l)-invariance.

Recently, we have also examined examples of non-abelian gauge theories coupled
to some Higgs fields (not transforming under the fundamental representation) for
which we argue that, for suitable choices of the coupling constants E.L..I..u2 + thae

theory is in the same (long distance) "universality class” as the corresponding pure

Yang-Mills theory (for some B' = B"(B,L,..:) , L =0, & =0), if only gauge

ficld expectations are considered. Im such & case one could say that the matter fields
leave the full gauge group “"unbroken". (In the opposite case it would be appropriate
to speak of "local symmetry breaking"). It would be interesting to study symmetry
enhancement at short distances in continuum grand unified theories.

Hore standard exasples of symsetry enhancement which are, however, nobt wery
well understood mathematically are :

- Restoration of full Euclidean invariance of correlations of lattice theories in the

scaling limit (as BB vhere B, is a critical point).

= Restoration of translation invariance above the roughening temperature in the three-

dimensional Ising model or in a lattice gauge theory, [34].

Problems of symmetry enhancement are typically wery invelved, technically, so
that we cannot present any details here.
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CONTINUUM (SCALING) LIMITS OF LATTICE FIELD THEORIES

(TRIVIALITY of " 1IN 4 >
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Jurg Frohlich
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35, FRouwte de Chartres
F=91440 Bures=sur-Yvette

SUMMARY =

I describe some recent techniques for comstructing the continuum
{= scaling) limit of lattice field theories, including the one - and
two = component Al;lﬁ theories and the Ising - and rotator models
in a space (- imaginary time) of dimension d {:J 4 . These techniques
should have applications to other related models, like the self-
avoiding random walk in five or more dimensions and bond percolation
in seven or more dimensions. Some plausible conjectures concerning
the Gaussian nature of the scaling limit of the d > 2 dimensional
rotator wodel and the d > & dimensional U(1) lactice gauge theory

in the low temperature (weak coupling) phase are described.

I. INTRODUCTORY REMARES, RESULTS AND COMJECTURES.

An important topic in Euclidean (quantum) field theory and sta-
tistical mechanics is the study of the scaling = continuum limit of
lattice field theories. That limit corresponds to the large distance
limit of rescaled lattice correlation functions at values of the
inverse square coupling constant £ (= field strength, or inverse
temperature) approaching a critical value, as the distance scale
tends to infinity. Civen a family of lattice field theories, e.g.



lattice Amﬁ theories or Ising models, indexed by the dimension d

d, we define the upper

of the {(space = imaginary time) lattice =
eritical dimension E; by the property that, for d > EE , the sca-
ling limit of the corresponding lattice field theory is trivial

(Gaussian, in the case of a scalar field theory), and an appropriate

version of mean field theory provides an exact description of the

approach to the eritical point.

The lower critical dimension E: of those families of models
is defined by the property that in dimension d > !t there exists
a eritical point, BE « w, pf f at which some correlation length

diverges.

It is often a subtle problem to determine the behaviour of a
field theory when d = E{ or d = EE . For example, in the N-vector
podels (O(N) non-linear sigma models on the lattice) En = 2 and
dE =& . For the N = 2 model, i.e. the rotator or classical XY
model, it has recently been proven rigorously, by T. Spencer and the
-uthnrl, that there exists a Kosterlitz-Thouless tramsition, in parti-
cular that Ec « = and that the susceptibility diverges as E_,Hﬂn .
in dioension d = E: = 2 . The proof is, however, fairly complicated.
For N> 3 and d = !n = 2 it is conjectured that E: = = (asymp-
totic freedom), but nmo rigorous proof is known. Moreover the nature
of the scaling limit, as g .7 ﬁc ¢ 183 unknown, except in the two-
dimensional Ising model (N=1) . For all these models, the analysis
of the scaling limit in dimension d = E; = 4 is incomplete, although
for N = |,2 there are promising partial results. (When N > 3,
not even the fact that E; = 4 has been proven rigorously, although
that result appears to be within reach of present mathematical
methods; E: = 2 follows frumz}, The analysis of these models in
dimension d = gf and d = i; is important for the study of the
scaling limit and the appreoach to the critical point (critical expo-
nents) in dimension d , with .gc <d < E; by means of a 2Z+c -
or 4-¢ ¢:p:nsinn3'ﬁ. At present, not much is known about how to

study the approach to the critical point directly whem d < EE -



Fortunately, this is not always necessary for the construction of the
continuus limit of lattice field theories in dimension d < E;. We

may think of the massive, weakly coupled iuﬁ theories in two or
three dimensions the continuum limit of which is under rigorous mathe-
matical and quantitative control (see u.g.j-lu], although we are not

able to caleulate e.g. the critical exponents for these models.
In these notes we discuss the following rigorous results :

I} For one - and two - component h[ﬁlﬁ theories, the Ising -
and the retator model

= 11,12
d =4, .

2) For d » E; , the continuum limit in the single phase region
of these models is Gaussian (i.e. a free or generalized free field)s
and the critical exponent vy of the susceptibility takes its mean

fleld valus, 1.0. y =1 1012

3) For d = E; = & , the continuum limit in the single phase
region is Gaussian if field strength renormalization is infinite, i.e.

if the ultraviclet dimension of the flelds iz not :annni:nl.l2

4) 1f hyperscaling holds for Ec =d j_E; then the critical
exponent n of the two-point function at £ = Ht satisfies

S . | 12
ﬂ_"l'__z 2 L -

For the one-component models most of these results were flirst
obtained by Ai:enmault who invented some very beautiful and clever
inequalities. He also discovered a very simple proof of hyperscaling
in two~dimensional Ising wudtlall. Subsequently, the author [ound
new proofs and extensione of some of Aizenman's resulte, in particular
proofs of I]-#].IE. by adapting a technique developed with D. Brydges

and T. Spencer which was inspited by ideas due to Ewmlnlihlz. Evnlﬁ;

15,16

and for some related results,

There are also partial results towards proving the following

conjectures :

5) For the models introduced in 1) = 4&)



n=a , for d > i; .

iuunlz for a discussion).

&) When d = E; = & . the continuum limit is Glulliln,lz'l?.

7) For the self-avoiding random walk E; = & ; for bond percola-
tion ﬁ; = 6 ,IE.

B) The scaling limit of the rotater model in the lov temperature
{multiple phase) region, i.e. B » B: ¢ 18 Gaussian in dimension
d > 2 12 . An analogous result is expected for the weakly coupled

U{l) lattice gauge theory in dimension d > & .

An interesting open problem is to analyze the scaling limits of
the d = 1 Ising = and the d = 2,3 rotater models and of the U(l)
lattice gaupe theory in dimension d = 4 , as B .7 E: . We conjecture

that these scaling limits are non—-trivial (hyperscaling).

It might be mentioned that, in additiom to 1) =4) , there are
rigorous results on the scaling limits of lattice field theories with

|!'15+ As an example

long range ferromagnecic two-body interactions
we mention that the scaling limict of the one-dimensiomal Ising model
with ferromagnetic I.I"rz interaction emergy is Gaussian for @ < 8. -
(The existence of a phase transitiom, i.e. ﬂc == _ and spontaneous

magentization at large values of B has recently been proven inzu}.
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2. GEMERAL REMARKS ON SCALING LIMITS.

To be specific, we consider a real, scalar field o ,

p:jex? —oPNET, ()



with I € R. The Ising model corresponds te 1 = {-1,1} , a lattice
Mp'ﬁ theory to 1 = R . We imagine the field o = {p(j)] € 5d is
distributed according to some probability measure d“Ew{ {typically
a Gibbs measure) depending on a real parameter £ interpreted as the
inverse temperature or field strength. We define :p“t’jl = p(j+x) ,

x € ﬂd , and assume that dpﬂll:lﬂ'} is translation - invariant, i.e.
d”ﬂw:} - duﬁ{tp] , for all =x . (2)

The correlation functions of this lattice theory are defined as the
moments of dp, , i.e.
. n
< IN#:I} - '-l'-'l{:ll:“.'l T I kfl '-Ii"hk'.‘ duaw} . (3)
We may assume that < @(x) >y ™ 0 . Of particular importance are

the two-point function
< wix) wiy) >, = ] wix) wiy) du () (&)

and the susceptibility

x(g) = L = w(0) pix) = (5)

xE X B"
In the following we are interested in analyzing the long distance

limit of the correlations defined in (3). We suppose there exists

some value EE of B such that for B < H: there exists a constant

m{B) > 0 , the inverse correlation length or mass, with the property

that
< @(x) wly) >, < const. 0yl | (6)
as |x—}'| + = o and
m{B) ~ 0 , as B-'"'Et. (7

These assumptions are known to hold for Ising models and laktice

.‘upﬁ fi:ldazl. We now define the scaled correlations

Bglppennx) = al8)” < w(ox,) ... wlox ) > (8)

g{e) °*
where ] <8 < = :j € Ed‘_] E {y:0y € Ed}l
1]

Ju ly.aayfi 5 And B(B) < H-E ;, afB) are functions of © determined



by the requirements that for 0 < |x-y| < =

0 < lim Eﬂ{:.y} z G*(x=y) ¢ =, (9)

LR

It follows from {6), (7) and (9) that
BE)/"E_ ., as B += ' {10}

If we want o construct a massive continuum (6-+w) limit we choose
E{8) such that

ém(B(0)) —= n* >0 , a8 0 — = ; (11)

if we try to construct a scale-invariant continuum limit we set
g(g) = B, for all o . {Ih:r:zgri other possible conditions fixing
the choice of @g(6) . See e.g.” ). Once E(8) is chosen, a(B) is
essentially determined by (9). The correlation functions in the
continuum limit are then given by

Gﬂtn].+++.x“} = ;i: GE{:1.++.,nn1 s M= 2. 3,4,... . (12)

Thus, in order to construct the continuum limit, it is crucial to

know the behaviour of the two-point function. In many models (e.g.

the self-avoiding random walk or bond percolatiom) this turns out
to be wory hard. We nmow elaborate on this point. Suppose one camn
prove & power law a priori bound om < {x)ply) ?a , for B < ﬂt .
.-

i_{d_z*n} . {I:’j

< @ix)ply) = = c(B) |[x-y

g

with Eu ckB) < = . Then condition (9) imposes the following lower
<

bound on “ald)

ald) > const. E{d_1+“}f2 i (13")

One may attempt to analyze the two-point function by studiing its
operator inverse, the two-point vertex function Fﬂ{:-y] which, in

perturbation theory, is expressed as a sum of one-particle irreducible

diagrams. For this reason one may hope to estimate it by means of a
convergent, infrared-finite expansion if the dimension d is large

enough. This is a difficult analytical problem. Fortunately, for the



11,102,148, an a priori bound

2,22 {the

infrared - or spin - wave bound), and this turns out te be sufficient

models studied in the following and in
of the form (12), with n * 0 , has been established in

to show that i; = &4 and that the continuum limit is Gausslan when

d * 4 , thanks to new correlation iluquulil.i!u”'lE discussed in the

next section.

A more systematic procedure to determine B(8) and alf) relies

on the renormalization group e.g. in the form of Eadanoff Block spin

transformations, (calculation of large scale effective Hamiltonian or

action) 3

Let w be a function on IF defined by

=d [+ [ £
E i il ii‘iu.l|lli1d

k(x) =
0, otherwise,

vhere x° is the uth component of x E itd

. Let u;{ﬂ = kl{y=-x) ,
x E Ezd . We consider

-d

n
Gk ,eucyt, ) = E G (¥ipeeany )M B . (v),
By . :"I""'?n.EEd-I 8] " al X k
; ' (14)
M. E:Ed1I j=1l,...,0n . Now, note that G _(kx_ ,...,x_ ) depends
j £ 8" % *n
only on the variables
. d
{wﬂtxj} : % € ;E.t}
vhere
_al8) r d
maf_'l}l Edcd ]’EEd P{y), xE E‘.E ; (15
£ ~la o ¢

and O = :_]LF s L is some positive integer and m = ]1,2,3,... .

Given duﬂta}[m} s let duu be the unique measure on the configura-
" [T} ] LL] .

tions of the "block field “'5 {iﬂﬂ{x}]!EEc vith the property that

n 0
J B 9g(xJdug(0g) = 1 0 () dug ) @ (16)

k=] 1



for all xy,....x) in E: and all n . If dua{tp] is a Gibbs mea-
sure for all E one expects that duﬁﬁpﬂ} is again a Gibbe measure,
i.e, duﬂ is given in terms of an effective Hamilton function, or
action, on a scale of eb = L™ . The caleulation of the effective
Hamilton functien proceeds by a succession of Block spin (or - field)
transformations, and each such tramsformation increases the scale by
a factor of L. A mathematical description of the general EFeatures
of that technigue may be Found inz] » explicit examples have been

studied inzﬁ.

In this approach the functions E(8#) and a(8) are determined

by the requirements that

6m(B{6)) = m* = const. > O , and that
(17)

du® (w*)

lim duﬂﬁﬁg

s
is a well-defined probability measure with moments 7 O,= . It is
hoped that dp* is again a Gibbs measure, but this does not always
seem Eo be the case. Condition (17) and the functions g({8) and
a{d) determine the exponents v and y of the mass and the suscep-
tibilicy, respectively, If m* =0 and dp* is n:ale"invirinnt
then duy* is a fixed point of the Bleck spin transformations, and
the fall-off of the two-point Function is determined by a(8) .

The smeared continuum correlation functions are given by
T e J;,E, o (x, du* (0*) .
In practice, it turns out that it is usually very hard to construct
the limiting measures du* and to show that they are Gibbs measures,
but there are now some examples where the Block spin transformations
can be made to work in a rigorous filhiﬂnli. However, in these exam-

ples du* is a massless Gaussian.

In the following, we investigate the scaling limits of the
1sing model and lattice M& models in d > & dimensions using

merely an a priori bound of the form (13) with n > 0 and new



inequalities on the four-point Ursell function which permit us to

avoid applying Block spin transformations.

3. THE CONTINUUM (= SCALING) LIMIT OF THE ll.ll': LATTICE FIELD THEORY
AND THE ISING MODEL IN d '.':;} 4 DIMENSIONS.

We now explain some basgic ideas in the proofs of results 1) - 4)
described in Sect. |. Let ¢ be a real scalar lattice field (or a

classical spin) with action (Hamilton function)

Hip) = - k3 wii) w(i') , (18)
(ii")
where (jj"') are nearest neighbor pairs in .Ed. The measure ﬂuﬂ .
i.e. the Euclidean vacuum functional (or Cibbs state) is given by
=] =gH s
duﬂi¢} -2y e EH () mdie(i)) . (19)
3
where
Ak
di(e) = expl-7 @' + % o -cldy , (20)

0<fe<m, >0,y and € real, and Z, is the partition function.

: B
Equation (19) is to be understood as the thermodynamic limit of mea-

sures associated with finite sublattices. The limit exists for a
large class of boundary conditions by correlatiom inequllitilulﬁ‘?.
If p=2,em= %— and A — = we obtain the Ising model. For all
such models it is shown i,nz2

bound afz, that

¢ by using the infrared or spin wave

©

< @Eely) 25 < = [x-y| P

» 43 , (21)

for some geometric constant €y independent of B , % and p , as
long as 8 < 8 . (It is shown e.g. in® that the critical inverse

temperature, £ . is finite, and properties (6) and (7) are proven

, 21,2 . "
in” " 5)- As shown in Sect. 2, a(8) must therefore satisfy the

lower bound

d-2,1/2

alB) > ecenst. (B(B)O ") ; {22)



or if B <=
[

d-2,1/2

a(8) > (8,87 ) 3 (23)

The four=-point Ursell function, W . ig defined by

A AL o Liie e S ¢ e T i

C €0l 3000, () g (24)

where % ranges over all three pairings of ({1,2,3,4) . It satisfies
the following inequalities
4

r* B < oi{x dpiz) > , (23)
zy..ez, kel "k p

2
0> uﬁ'E{:I,.u.,:ﬁ} > =38

whete z, Tanges over EF y and |=l—z|i =] , 2= 2 3.4 . The upper
bound is the well-known Lebowitz inequality , the lower bound is
the new inequality proven im]E which is closely related to Aizenman's

inﬂquilityll « We define

&
“ﬁ'lﬂ{!]."*.‘!k} - EEE} UiIE{HI

In order to satisfy as general a class of renormalization conditions

(O, +y0%,) . (26)

as possible we permit 3 and a to depend on © , as well : A
minimal condition on A = A{B) , w = w(é) and on B(8) and a(B)
is that inequalities (9), Sect. 2, be satisfied. We now obtain from
(25), (28)

=i d 2
] i u#'ﬁl::lll..+++.:ﬂi.-l i II{H} E' 35{*] ;-
-d -1
. g 8 n “n{“klﬂ :kj . (27)
Zpveeandy k=]
The nice feature of (27) is that the upper and lower bounds are
independent of X{(8) , uw(B) . (In a sense, (27) says that the predic=
tion of the linearized renormalization group provides a rigorous
bound)., Mow, by (21} and (22}

4-d

n(uj-ﬁﬂdﬁfﬂjz_i const. 8 (28)

which tends toe 0 , a8 B + = | in dimension d > & ., One can use

the infrared bound (21) to show that



-4 4 -1
* &7 N Gy (3, 48 'h} < const. , (29)
TieeaE, k=1

uniformly in @ , provided xg ¥ xj s for i ¢ 3 , and d > & .

sae' 17 By (27 - (29)
UF(o, pecuepX, ) = 1im v, (% ,...,%,) =0, (30)
&) i Tl Lo

at non-coinciding arguments, in d > & dimensions. Thus E; L
and the continuum limit is a free or generalized free field, provided

d » E; = 4 . For d = & , the same result follows if either
L 2

(1i) the limiting theory is scale-invariant. (Some wniformity
im the limit of the two=point functiom is assumed; EE!li}. In case
(i), (27) and (21} yield (30), and the limiting theory has non-

canonical short distance behaviour. Im case (ii), triviality follows
27

from a theorem of Pohlmeyer . (Thus, in the language of the Callan-

; ; & ;
Symanzik equatiom, Mp, 1is trivial, unless the @@= and vy functions

have a non-trivial cuu:nn zero, and the corresponding theory is not
scale-invariant). I'nlE we have also proven a sharper form of (25)
which suggests that the continuum limit in d = &4 is trivial, without
any additional hypotheses, but we do not have a complete argument.
Inequality (25) can alsc be used to calculate critical exponents.
Combining it with an argument due to Glimm and Jnffczl one shows

that the critical exponent ¥ of the susceptibility x has its
7202 1¢ follous

directly from (25) that if hyper scaling holds (i.e. the critical
12
TR

wean field value, vy = 1 , in d > 5 dimensions

theory is pon-trivial) them n < E-% g d = 2.3,4 , Se

We conclude with some brief comments on the proof of the basic
inequality (25). The proof iﬂ]2 relies on Symanzik's random walk -,
or polymer representation of scalar Euclidean field Lhrnricsl3'|h :
One reexpresses a lattice field theory as a gas of random walks
interacting through some soft core repulsion determined by d)(y) .

Let Wpwess sl be n arbitrary random walks immersed in that gas



and interacting with each other and with the (closed) random walks
in the gas through the same soft core repulsion. Let :{u1.11..un}

be their joint correlatiom. Then

< pl{xlwly) »g = L z{w) , and

o
uﬁ.ﬂ{:]""'lﬁ} = L _— E & [:{ml,mzj-z{mllz{uzl] .
P e (1) ™ p(2) (32)
By 4 correlation inquIlitylz'Iﬁ
={U1Iu2} _:.__ E:wl}zimzi ] {33]
unless o, and “, intersect. Thus
ﬂiuﬁ,ﬂhl""’:ﬁ} > - ) E :{ul}:{uz}x{{ul,mz:mlﬁm!ﬂl}],
Pty «8y (34)
wvhere L is a short hand for the sum on the r.&. of (32). By

piupruwy
requiring that by n .y contains some lattice point 2z and then
susming over all possible points 2z one can, after splitting wj

into two walks, i = 1,2, and applying a Simon-type inequulityls‘lﬁi

12 1 for am alternate,

resum the r.s. of (34) to obtalin (25). S5ee , and
prior proof of a related inequality. Rather than discussing these
technical aspects we emphasize that the r.s, of (34} should really
vanish in the continuum limit, in dimension d > 4 , because

the random paths in the continuum are expected to have a Hausdorff

dimension DH %<2 , so that, for d 4 = EIIH s two random paths

>
do not intersect with probability l.{'l':!hi.n ig, in fact, a knowm
theorem for Browmian paths in four or more dimen:inniiﬂ. Because of
the repulsive character of the self-interaction, the field theoretic
paths appear to have rather less tendency to intersect each other
than Brownian paths and thus the r.s. of {(34) is expected to wvanish
in the continuum limit in four dimensions. (I am indebted to

T. Spencer for explaining such arguments to me).



REFERENCES.

1. J. Frohlich and T. Spencer, Commun. Math. Phys. 81, 527 (1981).

2. J. Fréhlich, B. Simon and T. Spencer, Commun. Math. Phys. 50,
79 (1976).

3. K. Wilsen and J. Kogit, Physics Reports 1IC, No. 2, 76 (1974).

4, E. Brézin, J.C. Le Guillo#l and J. Zinn-Justin, Fhys. Rev. DI4,
2615 (1976).

5.  J. Glimm and A. Jaffe, Quantum Physics, Berlin-Heidelberg-
New York : Springer-Verlag 1981.

b, B. Simon, The P{#jz Euclidesn (Quantum) Field Theory, Prince-

ton : Princeton University Prese 1974,

7. Constructive Quantum Field Theory, G. Velo and A.5. Wightman,
eds., Berlin-Heidelberg-New York : Springer Lecture Notes in

Physics 25, 1973,
8. J. GClimm and A. Jaffe, Fortschr. Phys. 21, 327 (1973).

8. G. Benfatte, M. Cassandre, G. Gallavotti,..., Commun. math.
Phys. 71, 95 (1980).
G. Benfatto, G. Gallavotti and F, Nicold, J. Funct. Anal, 36,
363 (1980).
J. Feldman and K. Osterwalder, Ann. Phys. (K¥) 97, B0 (1976).
J. Magnen and R. 5&nfor, Ann. Inst. H. Poincaré 24, 85 (1976},
Comsun. Math. Phys. 56, 237 (1977).

10. T. Spencer, Commun. Math. Phys. 39, 63 (1974), &4, 143 (1975);
T. Spencer and F. Zirilli, Commun. Math. Phys. 49, 1 (1976).

11. M. Aizenman, Phys. Rew, Lett. &7, 1 (19B1).

12, J. Frohlich, Nucl. Phys. B, in press; and in preparation,

13. K. Symanzik, in : Local Quantum Theory, R. Jost, ed., New York @
Academic Press, 1969,



14,

15.

6.

17.

18.

19.

20.

21.

22.

23.

24.

25

26.

27

28.

D. Brydges, J. Frohlich and T. Spencer, Commun. Math. Phys.,

in press.

D. Brydges and P. Federbush, Comsun. Math. Phys. EE, 79 (1978).
D. Brydges, J. Frohlich and A. Sokal, in preparation.

M. Aizenman, in preparation, and private communication.

Some preliminary results have been obtained by A. Sokal,
T. Spencer and the author.

The conjectures are based on results contained in refs. 1,24,
27 and in J. Frohlich and T. Spencer, J. Stat. Phys. 24, 617
(1981), Commun. Math. Phys., in press.

J: Frohlich and T. Spencer, to appear in Commun. Math. Phys..

0. McBryan and J. Rosen, Commun. Math. Phys. 31, 97 (1976).
J. Glimm and A. Jaffe, Commun. Math. Phys. 52,203 (1977).

A. Sokal, Ph.D. thesis, Princeton University, Jam. 1981.

Ya. G. S5inai,; in : Mathematical Problems in Theoretical Physiecs,
G. Dell'Antonio, 5. Doplicher and G. Jona-Lasinio, eds. Berlin-

Heidelberg-New York: Springer Lecture Notes in Physics BO, 1978;
and references therein.

G. Joma-Lasinio, Nuovo Cimento EEB. 099 (1975).

K. Gawedzki and A. Kupiainen, Commun. Math, Phys. 77, 31 {1980},
Renormalization Group Study of a Critical Lattice Model I, II,
Commun. Math. Phys. to appear.

8, Simon, Commun. Math. Phys. 77, 111 (1980).
J. Lebowitz, Commun. Math. Phys, 35, 87 (1974).
K. Pohlmeyer, Commun. Math. Fhys. 12, 204 (1969).

A Dvoretzky, P. Erdos amd 5. Kakutani, Acta Sci. Math.
(Szeged) 128, 75 (1950).



RESULTS AND PROBLEMS NEAR THE INTERFACE BETWEEN STATISTICAL MECHANICS

AND QUANTUM FIELD THEORY

Jurg Frohlich
Institut des Hautes Etudes Scientifiques
F=91440 Bures-sur-Yvette

Eunlarx.

I present a brief survey of progress in the understanding of quantum ficld
models, lattice gauge theories and spin systems that has been achieved during the
past fow years = roughly since the H N § conference in Rome. Significant progross
has occurred in the analysis of systems with abelian global or local symmetry groups,
such as the Ising - and rotator models, one- and two-component hlalﬁ-thﬂﬁrics and
abelian lattice gauge theories, and in the mathematical foundations of renormaliza-
tion group schemes for such systems. Some progress has been made with zero mass
cluster expansions, with the construction of continuum gauge theories, and in surface
physics.

A list of non-perturbative problems in non-abelian gauge theory and statis-
tical physics concludes my notes.

Contents.

1. Introduction

2: Problems concerning phase transitions and critical phenomena and what we have
learned about how te solve them.

The scaling limit of the Amﬁ lactice field theory in d %) 4 dimensions.
Open Problems.

Acknowledgements. I thank D. Brydges, E. Seiler and T. Spencer for fruitful colla-

borations which made my talk possible, K. Osterwalder for inviting me to speak in the
field theory session and the organizers for inviting me to participate at the confo-

rence and for pleasant hu#pitality+



I. Introduction.

A convenient point of orientation for these notes might be the author®s con-
tribution to the proceedings of the M N ¢ conference in Rome, in 1977, [1] . In
that article I have emphasized the importance of non=-perturbative methods in contem-
porary physics, proposed a list of typical, non-perturbative problems and then stated
what was known, or could be hoped to be proved about them. For the convenience of

the reader | state those problems, somewhat freely, once more :

A. MNon-super-renormalizable field theories, infinite field strength - and charge

renormalization.

B. Gauge theories in general (confinement, significance of topological field confi-

gurations,..., construction of super-renormalizable gauge theories, ...).
€. Super-selection sectors, topological charges, quantum sclitons.

D. Critical phenomena, theory of critical points, mass generation, interactions of
very long range.

E. Scattering of charged particles interacting with the radiation [ield.

What I knew {or, may be, was known in general) about either of those problems,
in 1977, was Eﬁrtuinly a bit disappointing, even to a mathematical physieist. (1 did
refer to or sketch a few perhaps somewhat interesting results which, however do not
seem to have made much of an impression : I referred to work on quantum solitons in

two space-time dimensions [2,3] where e.g. topological commutation relations between

the fundamental field and the soliton field were derived and analyzed, and the mass
of the soliton was estimated in terms of a surface tension, a quantity that can be

expressed in terms of partition functionms with "twisted boundary conditions". Although

1 was aware of the fact that such ideas could be applied to three space-tioe dipen-
sional gauge theories, I did not write anything about this topic, and I did not
understand the extension of those ideas to four dimensions and their implications
for the confinement problem. As well kmown, these gaps have since been filled in;
see [4,5] and refs. — I also explicitly mentioned arguments for the existence of
a phase transition accompanied by the breaking of parity in two- and four-dimensional
gauge theories with @-vacua, at 0 = v . Those arguments are rigorous for some
two-dimensional models [6] and were inspired by results of Coleman et al. [7] . In a
somewhat different form they were finally rediscovered in 1980 [8,9].)

In the past few years, substantial progress has been made in solving the
problems summarized above. Among the people who have posed and solved some of thom
are b, Brydges, E. Seiler and T. Spencer. I was fortunate to have had scientific
contact with them. Thanks to their efforts and the efforts of M. Aizenman, T. Bataban,



D. Buchholz and K. Fredenhagem, P. Federbush, G. Gallavotti et al., K. Gawedski and
A. Kupiainen, G. Mack et al., J. Magnen and R. Sénfor and others we now do have some-
thing to say about how to solve those problems. Some of the achievements have been
described in Lausanne and at other places, like Carglse, in 1979, see [10,11] and

refs. to be found there.

As in Rome, I limit my review on the problems indicated under D , with some
allusions to B . But what can now be said about D has interesting consequences [or
the problems mentioned under A. These notes are meant as comments on the lectures of
M. Alzenman, K. Gawedzki, J. Imbrie and T. Spencer who have roported on specific,
recent results concerning phase transitions, critical points or - intervals, scaling
limits and other related topics in classical spin systems and quantum field models.
Moreover, G. Mack has described recent results in lattice gauge theory. See also

[12]. Por sources on gauge theories other than his notes, sce e.g. [13-1a].

Much of the work referred to above has been inspired or is relying in a
sense on work of J. Glism and A. Jaffe - see [17,18] and refs. - Ja. €. Sinai
see [19] and refs. = and others, who were among the first to incorporatd remormali-

zation group ideas into mathematical physiecs.

There has been very impressive progress on the problems described under ©
and E above, as well. One should recall the work of Faddeev et al. [20] and Thacker
et al. [21] on two-dimensional, completely integrable quantum field models, limbo,
Miwa and Sato, see [22] and refs. given there, on the two-dimensional I[sing model
{they have understood how to moke use of the topological commitation relations men-
tioned above in a very powerful way) and the work of Buchholz and Fredenhagen on the
axiomatic theory of superselection sectors and scattering of charged particles. But

these topics are not discussed in my notes.

2. Problems concerning phase transitions and critical phenomena and what we have

learned about how to solve them.

As is well known, the mathematical structures of classical equilibrium sco
tistical mechanics (ESM} and quantum field theory in the Fuclidean description |
- not involving Fermi fields - are identical. They are a branch of probabilicy ¢
namely the theory of random fields, in a vide sense. The following problems thereor,
come up in both, ESM and EFT.

2.1. Bulk problems.

Bulk problems concern the study of bulk thermodynamic functions and of rhe

properties of equilibrium states (in ESM), or Buclidean vacuwum functionals (inm EFT



Presently, there are good mathematical techniques to investigate those objects in

three situations @ Let <{+)>_  denote an equilibrium state or a vacuum functional

B =
of some physical system. (In ESM, g = (kT) 1 iz the inverse temperature, im EFT
B = 3—! is the inverse square coupling or field strength).
(1} Small B8 : ﬂ{*lkﬂ # yncorrelated (Multralocal™) state.

-+ Convergent high temperature (strong coupling) expansions.

{2) Large B : ﬂ{-}}a 1 gquilibrium state of ideal gas of defects [x Gaussian

spin waves]
The defects may be Bloch walls, vortices... .
= Combined low temperature - cluster expansions; rigorous spin wave theory.

As an asymptotic expansion one can often use (renormalization group improwved)
perturbation theery.

{3} Intermediate £ , vicinity of critical points or — intervals : <(:)>_ = per-

-}
turbaction of a critical state ("scaling distribution™), e.g. a Gaumsian, by

irrelevant and marginal operators.

=+ Convergent rencrmalization group analysis; qualitative analysis of scaling
limits, (based on group theoretical and bifurcation analysis, a priori

bounds, correlation inequalities, ete.)

S0 far, successful, mathematically rigorous applications of (3) have been
limited to the following situations : The scaling distribution is Gaussian (sece

[19,24] for a description of this class of critical states), and

{a) no relevant or marginal perturbations are present, scaling distribution is an
attractive fixed point of renormalization group transformations; e.g. [25] , where

a zero-mass cluster expansion is proposed;

(b} space of relevant perturbations of scaling distribution is empty, space f mar-
ginal distributions is one-dimensional (consisting of a quadratic polynomial in the
field- or spin variablea); [26,27,14,28). While in [27,14] a combination of renorma-
lization group techniques and a generalized Peierls argument has been applied to
exhibit transitions in the two-dimensional rotator and related models and in higher
dimensional, abelian lattice gauge theories, genuine real-space renormalization

group transformations have been used in [28] to study charicatures of dipole gases.

{c} 1In [29] and subsequently in [30], it has been shown that the scaling limits of
the correlation functions in the Ising- and rotator models and some class of lattice
field cheories are Gaussian in d » 4 dimensions, and some critical exponents have

their mean field values. (Thus, in these examples, the fixed point of the remormali-



zation group is Gaussian, the spaces of relevant and marginal perturbations are one-

dimensicnal, and these perturbations preserve the Caussian nature of the state).

In [29,30] qualitative methods, based on correlation inequalities and infra-

red bounds have been used. See also Sect. 1.

So far successful applications of renormalization group techniques have been
limited to abelian models or models with linear fields. The reasons are two-fold
A technical reason is that duality transformations (linearizing the fields) and coer-
tain correlation inequalities, both only available in abelian models, have proved to
be very useful and quite indispensable tools, [14,27,29,30]. A more fundamental rea-
son is that for models with non-abelian symmetries and non-lincar fields we do not
know any scaling distributions (fixed points). Of course they would be non-Gaussian.

Therefore one does not know any efficient renormalization group schemes, (except to
estimate the ultraviolet cutoff dependence of unnormalized expectations [15]). It i=
conceivable, though perhaps not very likely, that Polyakov's solution of the string
dynamics [31] may improve that situation for non-abelian gauge theories.

For a general description of real-space renormalization group transformations
s¢e e.g. [19] and for concrete, recent results the notes by Aizenman, Gawedzki and

Spencer.

Impressive, new applications of combined low temperature - cluster expan-
sions = see (2) — drawing some inspiration from the renormalization group are des-—
ribed im the notes of Imbrie (phase diagrams of PI&}I models) and Mack (confinement
in the three-dimensional U(l) model), and refs. given there.

2.2. Surface problems.

Typical examples of surface problems are :

= Rate of approach to the thermodynamic limit; (this is important e.g. for the theo—

retical evaluation of Mente Carlo calculations).
- Finite size scaling; see [31] and refs..

= Roughening transitions :
In ESM, the instability of interfaces, e.g. in the three-dimensional Teing model

In EFT, the instability of electric or magnetie flux sheets in lattice gauge theory.

- Surface thermodynamics :
In ESM, surface free energies and surface tensions,; ... -
In EFT, the Casimir effect (see the notes by Symanzik), string tensiona and rat|
of partition functions with twisted boundary conditions in lattice gauge theory,.



= Physical effects of infinite surface lavers inside infinite systems : Behaviour of

state mear such layers or near boundary; surface phase transitions.

For recent results see e.g. [33-36] and Sect. 7 of [27]. In [34) it is shown
that in the three-dimensional Ising gauge theory a roughening transition would not
coincide with the deconfining transition. Im [36] it is proved - among other results -
that if the surface tension in an abelian spin system vanishes then there is no in-

terface; in particular, there are no interfaces in the rotator model in any dimension.

The methods described under (1) = (3) in Sect. 2.1 can also be applied to
surface problems,; but such applications tend to be much more complicated than the
corresponding applications to bulk problems. Im particular, [ do not know of any
mathematically rigorous renormalization group analysis of a genuine surface problem.

Surface problems are likely to stay with us for quite some time.

3. The scaling limit of the Mmﬁ lattice field theory in d 2 4 dimensions.

In this section I propose to explain some basic ideas behind the results
{(orginally due to Aizenman [29]) described in Sect. 2.1, (3), (c). I follow the ap-
proach taken in [30] which is based on very suggestive ideas of Symanzik [17].

Let y denote a real scalar lattice field (or classical spin} with action
(Hamilton function)

H{p) = - Eoww, . (1)
(ii*y 44

where (jj') are nearest neighbors in :Ed . The Euclidean vacuum functional (Gibbs
state) of the system is given by the measure

_ .~1 _=gH(p)
where zﬂ A is the partition fumction, and
- SR PN e | S
dh(mj} = expl- 3 9 * 7 9 c]duu ; (3)
O<g<= k>0, y and ¢ real. (The measure du is to be understood as the

Bad
therzodynamic limit of measures associated with finite sublattices and defined by

(2). The limit exists by correlation inequalities). If u =% , ¢ = % and ) + =
we ohtain the Ising model. The objects of our study are the scaling limits of the

correlations

< ...tﬂx

x, L8 duﬂ_ilwl , (4)

s Ejm
" B X I



defined by

Gix eeenXy } z lim n{&} ﬂp R . (5)
1 i “hxln g E
where By and diﬂﬁpl are chosen such that the system is in the single phase region,

for all 8 <= , and a critical point is approached, as @ + = , (keeping ¢.g. the
cffective mass positive). Moreover, a(8) is determined by the condition that

0« Gix,y) ==, (6)

for 0 < |x~y| < = . It follows from the infrared (spin wave) bound [38] that the
lower bound in (6) can only hold if

d _ 1
K]
al8) > @ . {(7)
Let uéﬁi be the connected (Ursell) four-point fumction. A new correlation inequali-
L]

ty proven in [30] (see [29] for a related, prior result) says that if xi # Hj .

for 1¢ 3,
ol 2 8
0 > ug \(%yeeueyx,) > =387 Z° M ap w, >, (8)
k=1 " %k

TpaeE,

where 2 CANGES over Ed s and |=1-:l] <1, &=2,34. (The upper bound is the
well known Lebowitz inequality). Together with (5) and (7) inequality (B) implics
that the scaled four-point Ursell function is bounded by

u(ﬂl ;&}1 (B 0000, 0x,) :__Eﬁ‘&JH:
- 3} 2
e AR L n afa) T T )
Il-“gi h-l ak. E‘ 8

From (6), the infrared bound of [38] and this inequality it Follows easily thar, fo:

d >4 and X5 ¢ X5 for 145,
ll.ﬂ ﬂ{E}ﬁ ;ﬁ} {HI.I.”H.Q'K- } = D = L
R 8" ﬂ

See [29,30] for decails. From (9) one may deduce that the scaling limits of all cor-

relations are Gaussian (at non-coinciding arguments).

The basic idea behind the proof of inequality (B) and of (9) is to represent
{ﬁl
E A L2

F“'] I:.P{z.-'} ¥ {IF{JIFEP{‘EJJ of points. More Pfﬂﬁilll.'!’r

as a sum over all pairs of random walks, w,.u, ., connecting pairs



u;fiixl*...*:ﬁ] = F E {Iﬁul,uzl'!lul}:{uz}} = (10}

P Ml=!p{1}-*“p{1]

where z(w ,...,u, ) is a correlation function of k open polymer chains, described
by walks Wypwe el o in a certain gas of closed polymers with sofr core repulsive
interactions [37,30] . Now, it is showm in [30] that all negative contributions to
“;?i come exclusively from those walks, w, and Wy e whieh intersect each other.
If the walks were ordinary random walks then the probability of intersection would
approach 0 in the scaling { = continuum) limit in dimension d > & , [319]. One would
thus conclude that the scaling limit of u;fi wvanishes. This intulition is made
precise in the form of inequality (8) which, however, only proves convergence to a
Gaussian limit in dimension d > 5 . One can improve inequality (B) in such a way
that that result appears to extend to four dimensions, but there is only a partial

result, so far, [30].
Next, suppose that

o -{d=2+n)

T N const. |x=-y|

(11}

as |:-y[ += if B and 1 are chosen so as to approach a critical point. We
are interested in the nature of the scaling limit, assuming that (11) holdu. Condi-
tion (&) and (11) now imply that

E(Hjlﬂtd—z*ﬂ}fz (12)

Using (8) and (12) it is then not hard to see that if * ¢ :j y For 1 ¢#3 ,

u[ﬂ}iuiﬁ] (B3, gesse B, ) > = :&n:t.ﬂi_ﬂqzﬂ ' (13)
Ea.la L 4" —

provided d * 3 . Thus, the scaling limit of -.:H"]I {at non=-coinciding arguments)

vanishes, unless

115_2-% (14)

(For d =2, (14) is always true, as shown by Simon). Thus if we can prove that the
scaling limit is non-Gaussian (hyperscaling) then n <1 (d=2) , n < 1/2 {d~ 3),
n=0(d=4) . Irecall that n is always non-negative in these models [38] and
that n =0 is only compatible with a non-CGaussian scaling limit if the latter i=

not scale-invariant. For further recent results on critical exponents (y = | , in
d > 5} se¢[29,30]. A problem that has not been settled in [29,30) is to show that

n=0, in d>5, or - more precisely - that the covariance of the Caussian scaling



limit of the Awﬁ:}E theory is actually the standard free field two-point fumction,
- {as expected). The qualitative methods discussed here and the Block spin transforma-
tions used in [28] can presumably be extended to other systems : It seems likely
that, using those techniques, one will be able to prove that the scaling limits of
the d > 2 dimensional rotator and the d > 4 dimensional U©(l) lattice gauge
theory are Gaussian in the low temperature region (8 > Ecrit.}' Other applications

may concern the self-avoiding random walk and percolation.

For further applications of Symanzik's polymer representation, (e.g. to a
mass generation mechanism) see [30].

4. Open problems.

Here is a list of open problems which may keep us busy for the next several

YEATE.

1. Show that the physical mass of the two-dimensional N-vector models, with N = 7,

is stricely positive, for all B <= .

2. Prove that pure, non-abelianm lattice gauge theories (with Wilson- or Villain
action) have deconfining transitions in dimension > 5 . (Is there a non-perturbative,
rigorous form of spin- , or'glue wave' theory for such theories, analogous to the one
for spin systems [38]7)

3. Exhibit permanent confinement in these models in dimension < 4 .

4. Prove the existence of a QED phase in the four=dimensional lattice Georgi-Glashow

and Weinberg-Salam models without Fermions, at weak coupling.

3. Find efficient real=-space renormalization group transformations and some of thetbr
fixed points for some non-trivial models with non-linear fields andfor non=abelian

symmetries.

6. Develop concrete stochastic-geometric methods useful in statistical physics and
Euclidean field theory. (Examples : Develop the statistical mechanics of defect po
Prove convergence of the Regge-calculus (simplicial) approximation of the Euclid
string model to Polyakov's solution of that model [31], ete.)

7. Exhibit directional long range order in the two=dimensional jellium model ac low
temperature. Exhibit crystalline (translationmal) ordering in three-dimensional,
({classical or gquamtum) particle systems at low temperature. Discuss the mature of the

melting transition in three dimensions.

The problems described here are non-perturbative equilibrium prohlems.




However, the action may be in dynamical problems and the study of disordered and

"chaotic systems, during the coming years. (Would this not correspond to the state of

the world ?) Disordered and dynamical systems theory, non-equilibrium statistical
mechanics, fluid dynamics and turbulence are very active fields of research, and,

quite generally, macroscopic physics seems to celebrate a comeback.
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