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Abstract. 

I re-examine the notions of spontaneously broken, global and local symmetries 

and discuss them in terms of some examples in quantum field theory or statistical 

mechanics. I then briefly recall some basic ideas and facts about the renormalization 

group. They are used to introduce and discuss the concept of dynamically enhanced 

(or "generated") asymptotic symmetries. 
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1. Remarks on the historical development of symmetry concepts; basic definitions. 

1.1. 
We distinguish two aspects of symmetry 

a) a geometrical, static aspect, and 

b) a dynamical aspect. 

Moreover, dynamical symmetries can either be 

b1) global symmetries, or 

b2) local "symmetries". 

a) The physics of the antique and of the middle ages (Ptolemy, Kepler...), 

before Galilei and Newton, only knew the static, geometrical aspect of the concept 

of symmetries. (The orbits of the planets were believed to have high symmetry. An 

attempt was made by Kepler to explain the interplanetary distances in terms of the 

platonic solids. Matter was conceived as being built of highly symmetric "elementary 

bodies", etc.). 

The geometrical aspect of symmetry is of course still extremely important in 

molecular physics, crystallography, condensed matter physics, biophysics. Historical-

ly, it has been an important root in the development of group theory. In a more alge-

braic outfit, it still appears in every branch of physics in discussions of the sym-

metries of invariant states (vacuum'- or equilibrium states) of physical systems. 

b) The idea that it is not the orbits of physical systems which necessarily 

exhibit high symmetries, but that it is the dynamical laws of physical systems which 

may admit invariance or symmetry groups could of course appear only after dynamics 

was introduced into physics, i.e. after the discovery of Newtonian mechanics. 

I now briefly characterize static and global dynamical symmetries of physical 

systems abstractly : We consider a physical system , S . The family of all possible 

states of S is called X , its elements x, y,... . We assume that X carries the 

action of a group G , i.e. with each x  X and each g  G we associate a state 

x  X , the image of x under the transformation g . 
g 

a) A state x of a physical·system has a static symmetry, described by a sub-

group H Ì G , if 

xb = x , for all h  H . 
h 

(H is the stability group of x . All states on the same G-orbit have conjugate 

stability groups). An orbit of a dynamical, physical system, S , is a mapping from 

the real line, the time axis, into the space of states, X , of S , i.e. 



  t → x ( t )  X . 

The family of all possible orbits is denoted O . 

bl) S has a global (dynamical) invariance - or symmetry group H Ì G if 

with each x(·)  O the trajectory 

{x(t)h : t  } 

is again an orbit of S , i.e. an element of 0 , for all h  H . This means that 

x(t)
h

 = xh(t) , 

(where x = x(0) , xh = image of x under h , xh(t) = orbit with initial condi-

tion xh ) . 

b2) Next, we give a somewhat misleading, abstract characterization of local 

(dynamical) symmetries : Suppose S consists of (spatially separated, but coupled) 

constituents, S1,...,Sn, n = 2, 3, ..., i.e. S  S
1
 x S2 x...x Sn. 

In 1 2 n 

An orbit, x(t) , of S then consists of an n-tuple (x1(t),..., xn(t)) , where 

xi(t) is an orbit of the constituent system , i = 1,...,n . A subgroup H  G 

is a "local symmetry group" of S if, for arbitrary h1,...,h
n
 in H and an arbi-

trary orbit, x(t) , of S , 

h = (h1,...hn, , is again a possible orbit of S . Usually, it is not assumed that 

h be time-independent. 

"Local symmetries" have little in common with global symmetries, since for 

physical systems admitting a local symmetry group (an invariance group of gauge 

transformations of the second kind) one cannot devise any experiment which would 

distinguish between the two orbits x(t) and x(t), . Thus, x(t) and x(t), 
h h 

really correspond to the same, physical orbit of S , expressed in different "inter-

nal coordinates". 

The idea of "local symmetries" has led to the development of gauge theories, 

(H. Weyl, O. Klein, W. Pauli, Yang and Mills), in physics, and in mathematics it 

gave rise to the theory of fibre - and principal bundles. 

The present trend in particle physics is to eliminate global symmetries from 

the fundamental dynamical laws, but to find dynamical laws admitting a (usually non-

abelian) "local symmetry group", although the spatial symmetries (Poincaré covari-

ance) are still global symmetries, unless gravity is included. Such dynamical laws 



are expressed in the form of gauge theories. That trend poses the interesting, theo-

retical problem of deriving the global, internal symmetries of phenomenological 

models or macroscopic descriptions as dynamically generated, asymptotic symmetries; 

(see Sect. 5). 

1.2. 

We now turn to the discussion of symmetry breaking. We start with the breaking 

of global symmetries : We distinguish between 

i) Explicit breaking. 

ii) Spontaneous breaking. 

iii) Dynamical breaking. 

We speak of an explicitly broken symmetry if the dynamics of a physical system con-

tains a "small" term which is not invariant under a symmetry group leaving invariant 

the other terms of the dynamics. This concept is of importance when one tries to under 

stand small masses (like the pion mass). It often arises in quantum field theories 

which, in the classical limit (tree approximation), have a symmetry that does not 

survive on the quantum level, because of anomalies. (Examples may be chiral symmetries 

(PCAC), dilation or conformal invariance). A different example for i) is the eight-

fold way. This topic is not discussed in my notes, although it is very important. 

We say that a global symmetry group, Η , of a physical system, S , is broken 

spontaneously (or dynamically) if H is an invariance group of the dynamics, but it 

is impossible to transform an orbit, x(t) , of S into the orbit x(t)h , f°
r some 

h  Η , by a sequence of local operations (local = local in space) without passing 

through states (or "configurations") of the system which have infinite energy, (or 

infinite action). 

By considering the example of an infinite, three-dimensional ferromagnet one 

convinces oneself that the definition sketched above is appropriate. 

Spontaneously broken, global symmetries can in general be characterized by a 

local order parameter, (in the example of the ferromagnet by the spontaneous magneti-

zation = expectation value of the spin observable associated with a point or some 

microscopically small region). 

It is not easy to distinguish between the concepts of spontaneous and dynamical 

symmetry breaking on an abstract level. (One might say that dynamical symmetry break-

ing does not manifest itself on the tree level and is non-perturbative, while spon-

taneous breaking appears already on the tree level and may be discussed perturbative-

ly). 

It is much more difficult to give an abstract characterization of the "sponta-



neous or dynamical breaking of local symmetries". This notion cannot mean that the 

physics of a system admitting a local symmetry group, i.e. a general covariance under 

changes of the internal coordinates, depends on the choice of local, internal coordi-

nates. Broken, local symmetries cannot be characterized by (gauge-invariant) local 

order parameters. 

The concept of a broken, local symmetry is intrinsically dynamical and must, 

in the author’s opinion, be discussed in the context of a specific formulation of 

specific theories. One might vaguely describe it as follows : A system with a local, 

internal symmetry group H (assumed to be a compact Lie group) has always dynamical 

degrees of freedom carried by gauge fields which are indexed by generators of the 

Lie algebra of H . One might say that H is "broken spontaneously (or dynamically)" 

down to a subgroup Ì H if the degrees of freedom associated with the coset space 

H/H1 are "frozen out at small energies", i.e. are invisible at large distances. 

(But see Sect. 3). 

A discussion of the concept of symmetry enhancement is postponed to Sects. 4 

and 5. 



2. Spontaneous breaking of global symmetries. 

General references are [2, 3, 4, 5, 6]. General, group theoretical discussions of 

the possible symmetry breaking patterns in physical systems can be found e.g. in [17]. 

The breaking of spatial symmetries is a general phenomenon in the physics of matter 

at positive density (and temperature), in the thermodynamic limit : The boosts are 

always broken, rotation invariance is often broken (directional long range order; 

e.g. in liquid crystals), translation invariance is broken in systems with a crystal-

line equilibrium state (translational long range order). The mathematical understand-

ing of systems with broken rotation - or translation invariance is however rudimenta-

ry. 

There is a prominent example of the breaking of Lorentz invariance in a system 

at zero temperature and density : The boost symmetries are broken on the charged sec-

tors of quantum electrodynamics [18], although the term "broken” is used here in a 

slightly different (weaker) sense. 

An important feature of the breaking of continuous, internal symmetries and 

translation invariance is that it is always accompanied by the appearence of zero 

mass excitations (the Goldstone bosons, the phonons, respectively) which manifest 

themselves in the slow decay of correlations of suitably chosen observables; [6, 20]. 

(The breaking of rotation invariance also implies the existence of correlations with 

slow decay but not the existence of Goldstone excitations). 

Starting from our definition in Sect. 1, one can easily convince oneself - at 

least heuristically - that, in one and two dimensions (space dimensions, in equili-

brium statistical mechanics; space-time dimensions in quantum field theory), conti-

nuous internal symmetries or translation invariance cannot be broken spontaneously 

or dynamically [6, 20, 21, 22] (I recall the droplet argument, made rigorous in [22]), 

except in systems with interactions of extremely long range [23, 24]. 

It may not be generally appreciated that we do not know any example of a system 

with translation invariant dynamics for which we can prove mathematically that, the 

breaking of translation invariance occurs, (except in the rather unphysical , one-di-

mensional jellium model which exhibits a Wigner lattice or in idealized models of 

systems at positive density, but at zero temperature). Moreover, there are no known 

continuum models of liquid crystals for which we can rigorously establish directional 

long range order. These are serious gaps in the mathematical foundations of condensed 

matter physics. 

Up until 1976 there were no known examples of models with a continuous, inter-

nal symmetry group for which spontaneous symmetry breaking, and hence the existence 

of Goldstone excitations, was established rigorously (except for the somewhat trivial 

spherical model of Berlin and Kac). That situation changed with the appearence of 



[7], where a class of three - or higher dimensional lattice models of statistical 
I 

mechanics, including the classical Heisenberg model, and the well known λ|φ|4 -

quantum field model in three space-time dimensions were discussed which exhibit 

spontaneous breaking of internal 0(N) symmetries at suitably chosen values of the 

thermodynamic parameters, the coupling constant λ and the bare mass, respectively. 

The method in [7] involves a rigorous version of spin wave theory. It was extended 

in [25] to quantum-mechanical lattice models, including the quantum XY model and 

the Heisenberg anti-ferromagnet. The method was generalized considerably in [24]. 

However, the Heisenberg ferromagnet, for example, has so far resisted all attempts 

at a mathematically rigorous understanding. All these developments have been reviewed 

pedagogically e.g. in [3, 8, 9, 26] , and I do not repeat that here. 

A new method in the theory of phase transitions and continuous symmetry break-

ing has been introduced recently by Spencer and myself [27]. Unfortunately, it can 

only be applied to systems with an abelian symmetry group, so far, (although it is 

conceivable that one might recover the results on O(N) lattice σ-models of [7]). 

The method has the advantage of extending to abelian lattice gauge theories, permit-

ting us to give fairly simple, new proofs of the results in [28, 29]. It relies on a 

representation of abelian lattice spin systems or - field theories as gases of defects 

of co-dimension 2 carrying integer flux numbers. In three dimensions those defects 

are closely related to the Abrikosov vortices in a super conductor. They interact 

through long range forces. The broken symmetry appears when the defects have low ef-

fective activity , z , and form a dilute gas. The symmetry is restored when the defects 

condense. A heuristic discussion of the transition is based on an energy-entropy ar-

gument : The entropy
 ,
 S, of a defect line (or-network) of length L is bounded by 

S  c · L , 

where c is a geometric constant, the energy is bounded by 

E ≥ c'|φ| L , 

where φ is the flux carried by the defect, i.e. |φ|  1 , and c' > 0 . The effec-

tive activity z is therefore bounded above by 

z  e - (bC C)L , b = 1/kT , 

and is exponentially small in L for large β(> c/c') . Thus, for small temperatures 

T , the defects have small sizes and form a dilute gas. Hence the medium is ordered, 

and the symmetry is spontaneously broken. This argument is clearly reminiscent of 

the Peierls argument, e. g. [26], where one considers a gas of Bloch walls. It might 

have interesting applications to the theory of melting of solids. For a rigorous 

version see [27]. 



3. ’’Spontaneous breaking" of local, internal symmetries. 

This topic is huge and less well understood than the breaking of global symme-

tries. It would require a series of lectures of its own. I therefore concentrate my 

attention on the discussion of a few specific aspects which are probably not typical 

for the whole circle of problems. 

Systems admitting a local, internal symmetry group (i.e. general covariance 

under changes of internal "coordinates”) are always described in the form of gauge 

(Yang-Mills) theories. Presently, the most widely used, non-perturbative ultraviolet 

regularization of gauge theories consists of putting these theories on a lattice. 

This preserves gauge-invariance, translation invariance and positivity of the metric 

in the physical Hilbert space, [30, 31, 32, 33]. 

We now consider an example : The gauge group G is chosen to be SU(2) . The 

gauge field is denoted by g = (gxy} , where xy is an arbitrary pair of nearest 

neighbors in ZZ , and g is an element of G formally given by 

for all xy. 

We also introduce a Higgs field , 

d 3 
φ : x   → φ E 

with isospin 1 . Let χ be the spin 1/2 character of SU(2) , and U the spin 1 

representation. The Euclidean functional measure which determines the vacuum state 

is given by 

(1) 

, (p a unit square = plaquette), β, ζ and λ are positive 

constants. The r.s. of (1) is defined as the thermodynamic limit of the measures 

associated with finite sublattices, with arbitrary boundary conditions (b.c.) imposed 

at the boundary of each sublattice. 

Let h : x → hx be an arbitrary function from d into G with the property 

that h = 1 , except for finitely many sites x . We make the change of variables 



(2) 

This change of variables leaves dµ (g, φ) invariant, i.e. dµ (g, φ) = dµ(g , φ ) , no 

matter what b.c. have been used to construct dµ . Let 

<·> ≡ ∫ (·)dµ(g,φ) 

It clearly follows that gauge-dependent observables, like g or φ , have zero 
xy x 

expectation, i.e. 

<gxy> = <φx> = 0’ 
(3) 

independent of the b.c. used in the construction of <·> . This is an immediate 

consequence of a definition of <·> by means of the Dobrushin-Lanford-Ruelle equa-

tions, for example. It really expresses the triviality that if one does not fix a 

gauge by hand, the gauge is not fixed, and therefore gauge-dependent variables are 

averaged out when one computes their expectation (an observation made e.g. in 

[10, 11]) . 

Let us now fix a gauge and see whether we obtain a useful notion of "breaking 

of local symmetries". Gauge fixing is achieved by multiplying dµ by a function 

F(g, φ) with the property 

(4) 

Let <· > be the expectation determined by F(g,φ)dµ(g,φ) . For gauge-invariant 
F 

observables, A , 

<A> = <A> . 
F 

However, it is now possible, a priori, that 

(5) 

if suitable b.c. are imposed. 

One possible, partial gauge fixing is to turn all Higgs variables, φx , paral-
3 x 

lel to the 3-axis, e , of E . (Choose F to be proportional to 

Π δ(φ
x
-|Φx|

e
3)) · Then 

x 

(6) 



(no matter whether y is positive or negative). For this choice of F , 

F(<φ>)dµ(g, φ) has a residual, local invariance group : If in (2) every hx leaves e3 

invariant (U(hx)e3 = e3, x) , hence belonging to a U(1) subgroup of G , then 

F(φh)dµ (gh, φh) = F(φ) dµ (g, φ) . (7) 

Thus, in a sense the coupling of the gauge field to the Higgs field has broken the 

gauge group down to a residual U(l), but since this happens no matter whether μ is 

positive or negative, it does not provide a terribly useful notion of "spontaneous, 

local symmetry breaking". (This becomes particularly evident in a theory with a large 

gauge group G , = SU(3) , and a Higgs field, φ , with the property that the 

action of G on the vector space , V, of possible values of φx decomposes V into 

several inequivalent G-orbits). The above notion depends of course on our choice 

of F . It has been shown in [12] that, for some class of complete gauge fixings, F , 

including the temporal gauge, and arbitrary "symmetry breaking" b.c. 

(8) 

(This follows either from a "spin-wave" argument related to the one in [22], or from 

the principle of "symmetry restoration via defects", such as instantons). In [12] 

Morchio, Strocchi and the author have therefore proposed a gauge-invariant descrip-

tion of the physics of a Higgs theory in the continuum limit, with the hope that this 

might lead to a useful notion of "spontaneous local symmetry breaking". In the example 

of the Georgi-Glashow model considered above, the appropriate, gauge invariant fields 

are 

→ → 
φ·F (photon), and φ·φ (Higgs particle) (9) 

Moreover there is a gauge-covariant field 

(10) 

where N indicates normal ordering. From this field one may formally construct 

fields localized on curves (γ ) with given endpoints (x, y) : xy 

(11) 

The conventional, gauge-dependent picture is recovered if φ  e . Note that the 
X 3 

physical fields introduced in (9), (10) and (11) do not form any SU(2) multiplets, 

and there is no reason why the masses of the photon and the W and W boson ough 

to be degenerate.In fact, this theory is expected to have a non-perturbative phase 

in which there is only one massive, neutral vector particle (a massive photon), a 



"Higgson" and neutral W -W bound states. In that phase the electric charge would 
2 

be confined, (region I of Fig. 1). At large renormalized values of ζ , μ and b , 

the theory should however have a QED phase with a massless photon (coupled to the 
» 

vacuum by φ·Fµv) »
 a massive (unstable) "Higgson", massive W and W vector 

bosons and massive magnetic monopoles, (region II, Fig. 1). When one speaks of "spon-

taneous breaking of SU(2)" in this theory one is thinking of phase II. The picture 

developped here can be tested in the lattice Georgi-Glashow model for which one ex-
2 2 

pects the following phase diagram, (λ,μ > 0 ; λ,μ → ∞ , as ζ → ∞) : 

Fig. 1 

I : confining phase/II : QED phase. The dashed line might correspond to a line of 

singularities of the electric string tension, [34] . The only rigorous results concern 

the existence and nature of the transitions on the lines b = ∞ and ζ = ∞ (at ζ , 

b , resp.). See [7, 28, 27, 33]. 
c 

The above considerations extend to more general Higgs theories with the pro-

perty that the stability group H→ of φ ≠ 0 is conjugate to one subgroup H of 
Φx x 

the gauge group G , for all φx . The gauge fields corresponding to generators of 

the Lie algebra of H→ , for all x , are the "electromagnetic and gluon fields", 
Φx 

the remaining generators of the Lie algebra j of G are the "broken generators" 

and should correspond to massive (H-neutral) bound states or massive vector bosons. 

Things become problematic when there are several, inequivalent Higgs orbits, 

i.e. the abstract group corresponding to H→ depends non-trivially on φx, x≠0. 0 . 

(Example : G = SU(3) , φ in the adjoint representation, ...). Let V (φ) be 

the effective Higgs potential, (including radiative corrections). Let (φ ) denote 

the orbit on which V __ (φ) takes its minimum, H the corresponding (abstract) 

stability group, and the Lie algebra of HO . Let φx be the Higgs field ave-



raged over a ball centered at x of radius ≈ Μ-1, where M is a typical mass 

scale (a fluctuation length scale of Φ ) of the theory. Then with high probability 

(12) 

Perturbation theorists then say that G is broken down to Ho , that the gauge 

fields corresponding to generators of o (in the sense indicated above and in [12]) 

remain massless, while the ones corresponding to acquire masses. 

On a non-perturbative level, this prediction is probably wrong, as argued by 

Morchio and Strocchi [35] on the basis of ideas and results in statistical mechanics 

[36, 37, 38] and of [12] : Suppose (φ) has a local minimum on an orbit (Φ1) , 
Φ1 = Φ0 + Φ1, wi 
Φ1 = Φ

ο
 + δφ1, with stability group Ì HO . (In general Φ , but we make 

2 0 
this assumption for clarity). Let M ,M2 be the curvatures of V eff transversal 

(Φo), (Φ1) at Φo, Φ1, 

to (φ
ο
), (Φ1) Φo, Φ1 at respectively. If 

Δα Ξ 0 , (13) 

-1 
for some positive constant a (ζ ) , then φx is close to (φ ) predominant-

ly. (If (13) fails it may happen that φ is close to (Φ1 ) , predominantly, 
→ x, 7 

even if Voff (φ1) > V
 eff

 (φ0)) · However, with some probability (vanishing in per-
eff. 

turbation theory, but positive non-perturbatively) there appear "bubbles, B , of the 

false vacuum" such that Φ is close to (φ. ) , for x  B . The effect of these 
x 1 

bubbles on the physics of such a theory can be estimated by a Peierls (action-entropy 

argument [36] and a study of mass generation [38]. (I follow a presentation in [37]): 
• . , , 

First we must estimate the probability p of the event that φ is close to 
→> x x — 1 
(φ1) , i.e. that x (e.g. the origin) belongs to a bubble B  {y[|y-x| ≤M } 

false vacuum. We choose b.c. such that Φz  (Φ0) as |z| → ∞. A connected piece, 

Γ, of the boundary of a bubble is called a contour (or phase boundary). For the event 

to occur it is necessary that there be a contour Γ separating {y||y-x|  M 

from ∞ , as follows from our definitions of φ and of contours. The action of a 
x 

bubble B such that SB  Γ is bounded below by A(|Γ|) , where 

A( |Γ|)  σΜ -3|Γ| + Δα·Μ -1|Γ| (14) 

2 - 1 
Here σ is a constant (ζμ λ ) and |Γ| is the volume of Γ . The first 

ren. 
term is a surface term, the second term a lower bound for a volume term. The precis 

dependence of Μ , a and σ on coupling constants is not known, presently. If 

A ( (||) |Γ|-1 >> 1 (15) 



the statistical weight of a contour Γ is bounded above by exp[-A( |Γ|)] . There-

fore the probability p for E to occur is bounded by 

(16) 

where Σ ranges over all contours Γ of volume |Γ| = const.Μ n , n = 1, 2, 3,..., 

surrounding {y||y-x|  M } . The number of such contours with given volume, 
-3 “ 

|Γ| = const.Μ n , is bounded by 

cn 
e , (c ≈ 0 (1) is a geometrical constant) . (17) 

From (14), (16) and (17) we conclude that 

p << 1 if (15) holds. (18) 

By the results of [38, 35] one then expects that gauge fields corresponding to gene-

rators in oj ϴ hjo (i
n the sense °f [12] ) acquire masses |Φo|, while gauge fields 

corresponding to the generators of hjo ϴ hj1 acquire masses 

 √p| δΦ1|. (19) 

Similar considerations apply to Fermion masses. Thus - if there are no further local 

minima giving rise to other bubbles - G is really "broken down" to , rather 

than to the larger group HO . Moreover, there is no elementary Higgs field causing 

the "breaking" from H down to H1. , [35]. Finally, one does not expect any dyna-

mical monopoles with charges labelled by π2 (Η /Η1), (πk = kth homotopy group), 

but only ones with charges labelled by π2(G/Ho)  1(Ho), » argued in [37]. 

Finally, we should mention that the applicability of conventional perturbation 

theory, based on the (generally incorrect) assumption that <Φx>F ≠ 0 , to Higgs 

gauge theories has been discussed in [12], with the result that the deviations can 

generally be expected to be entirely non-perturbative. 

This ends our discussion of the notion of "spontaneous breaking of local 

(gauge) symmetries" : In abstracto, it is somewhat vague and misleading. It must be 

understood dynamically, and one should be aware of the fact that non-perturbative 

effects generally alter the conventional interpretation. Such effects, together with 

the requirements of renormalizabi1ity, some form of asymptotic freedom and the re-

quirement that there exist an "unbroken" SU(3)
c
 x U(l) may be useful guides for 

model builders. 

1) A lower bound on p is more difficult to derive, see [37]. 



4. Renormalization group ideas. 

We consider a class of physical systems which can be described by a family 

(algebra) , Oi , of local "observables", e.g. Euclidean fields, in quantum field 

theory (QFT), or spin fields, in statistical mechanics (SM), and some space, X , of 

time-translation invariant states, e.g. Euclidean vacuum functionals in QFT , equi-

librium states in SM . Let A  Oi. By A we denote the translate of A by a 
x 

vector x in space-imaginary time (QFT) , or space (SM) . Let p  X be a state 

characterizing a specific physical system. Question : How do correlations, 

p (A * B ) , A, B in Oi , 
x y 

behave, as |x-y| → ∞ , i.e. in the (infrared) scaling limit ? (In a continuum sys-

tem one may also be interested in the behaviour of ρ (Ax ·Βx ) , as |x-y| → 0 : the 

short distance, or ultraviolet limit. We focus our attention on the scaling limit). 

In order to answer that question, one tries to construct functions, αA (θ) , depending 

on A  Oi and on a scale parameter θ , such that 

(20) 

exists. (My discussion is slightly oversimplified at this point, since one often 

chooses ρ on the r.s. of (20) to depend on θ , as well, such that ρ approaches 
θ 

a critical state, as θ → ∞) . In order to find αA(θ), A  Oi, and other quantities 

of interest at large distances, one tries to determine the large scale effective 

dynamics, by integrating out fluctuations on a sequence of increasing length scales. 

One popular scheme to accomplish that is the Kadanoff "block spin transformations". 

Abstractly, they can be described as a non-linear transformation, τ , acting on 

X x Oi : 

τ : (ρ, Α) → τ(ρ, Α) = (pτ, Ατ), (21) 

with ρτ(Ατ) = ρ(Α)2, 

such that each application of τ increases the scale of effective fluctuations, 

i.e. transforms a dynamics on a given scale into an effective dynamics on the next 

larger scale. In order to answer the question raised at the beginning by means of 

such a scheme one must study the manifold Mm of fixed points of τ : 

(22) 

2) or τ = τθ, with ρ(Aθx ·Βθy) = const.ρτθ (Αx ·Βy ). (21') 



Under suitable hypotheses on the properties of τ, one can decompose X in 

the vicinity of some ρ*  Mm into a stable manifold, Μs (p*) , and an unstable 

manifold, Μ (ρ*) : 

Fig. 2 

States on Ms (ρ*) are driven towards ρ*, states on M (ρ*) are driven away from 

ρ* , under the action of τ . The tangent space, R , to Μu(ρ*) at ρ* is the 

linear space spanned by eigenvectors of Dτρ*, the linearization of τ at ρ* , 

corresponding to eigenvalues of modulus > 1 . R is called the space of "relevant 

perturbations". The space, I , of "irrelevant perturbations" is defined by replacing 

τ by τ -1 in the definition of R , and the space, Μ , of "marginal perturbations'' 

is the tangent space to M at ρ* Let ρ  Μ (ρ*) . One argues that the funct-

ions α (θ) are comPutable in terms of A and of the rate of approach of 

(...(ρτ)τ)τ ··· to ρ* . (See (21), (21')) . 

n times 

The point of interest to us is now the following : It may happen that the 

fixed point ρ* has a larger symmetry group than a state ρ on M
s
(ρ*) . This en-

tails that the scaled correlations, GA (x, y) , exhibit a larger symmetry than the 
A , B 

original correlations ρ(Αx·By) . If this happens we speak of asymptotic enhancement 

of symmetry, or of the (dynamical) generation of asymptotic symmetries. It is quite 

irrelevant in this general discussion, whether the symmetry in question is internal 

or spatial, global or local (i.e. gauged). 

One might argue that the concept of symmetry enhancement is only interesting 

for physics if it has some stability properties. Let G be some (global or local, 

internal or spatial) symmetry group, and let H be a subgroup of G . Consider a 

G-invariant fixed point, ρ* , of τ , (τ is assumed to have suitable smoothness 

properties). Suppose that the H-invariant subspace of M coincides with the G-inva-

riant subspace of Μ . Then, in some vicinity, N , of ρ* , every H-invariant 



fixed point of τ is also G-invariant. Thus, all states in U Μ (ρ) , where 
p/N S 

U ranges over all H-invariant fixed points, ρ , of τ in N , are driven towards 
ρ/N 
G-invariant fixed points. Moreover if the H-invariant subspace of MR coincides 

with the G-invariant subspace of M  R , at ρ* , then for some neighborhood N 

of ρ * , the H-invariant subspace of marginal and relevant perturbations of a 

H-invariant fixed point ρ  N is also G-invariant, (i.e. H-invariant states near 

ρ* tend to approach G-invariant states under the action of τ ) . This is the de-

sired stability of our concept. The concept of symmetry enhancement has been described 

e.g. in [14], (see also Dürr's notes). The first rigorous study of models exhibiting 

this phenomenon (e.g. the N-models, see Sect. 5) probably appeared in [27, 39]. An 

abstract discussion very similar to the one presented here appeared subsequently in 

[16] (which inspired the present section). 



5. Symmetry enhancement : Generation of asymptotic, global and local symmetries. 

In this final section we sketch very briefly some examples of the phenomena 

described at the end of Sect. 4 and point out why "symmetry enhancement" might be the 

right concept permitting us to decide whether a local (gauge) symmetry in some gauge 

theory is "spontaneously broken", or not. 

2 
First, we consider the  spin models on the square lattice,  , N = 5, 6, 7, 

... . The classical spin, S , at a site x   is given by 

The equilibrium state of the model at inverse temperature β is given by the measure 

(23) 

where xy is an arbitrary pair of nearest neighbors. This measure is the limit of 

the measures 

(24) 

as h → ∞ ; (dθ = Lebesgue measure on unit circle). The classical XY- , or rotator 
(N) 

model corresponds to h = 0 . For h > 0 , the measure dµ and dµb have a 

discrete, global symmetry group (generated by N and reflections) while the rotator 

(h = 0) has a continuous, global symmetry group. In [39] Spencer and the author have 

shown that, for all h  [0, ∞] and N  N , where N is a suffiently large integer 

independent of h , there exists an interval [b(h,N) , b(h,N)] of values of β 

which are all critical points and at which the correlation length of the spin systems 

described by dp is infinite. Moreover, 
β > h 

b(h,N)  β(0,Ν) ≡ βc(rotator) < ∞, 

β(h,Ν) → ∞, as h → 0 or N → ∞. 

We have constructed an infinite sequence of renormalization transformations which 

drive dp , towards a U(l)-invariant state dp* , , for all h  (0, ∞] , N  N , 
β 

and all β  (β1, β2) , with b(h, N) ≤ β < β2 ≤ β(h, Ν) . Thus, asymptotically, the 

discrete symmetry of the models is enhanced to a continuous symmetry. We conjec-

ture that for each h  (0,∞] and each β  (b(h, N), β(h,N) ) , N  N0, there exists 

some β' ≡ β'(β, h)  βc (rotator) such that spin correlations in dp and in 

dµb, have identical (long distance) scaling limits, (although this does not quite 



follow from our construction). 

In [27] we have established similar results for the QED phases [29] of the 

lattice gauge theory in four dimensions : Local N-invariance is asymptotically 

enhanced to local U(l)-invariance. 

Recently, we have also examined examples of non-abelian gauge theories coupled 

to some Higgs fields (not transforming under the fundamental representation) for 
2 

which we argue that, for suitable choices of the coupling constants β, ζ, λ, μ , the 

theory is in the same (long distance) "universality class" as the corresponding pure 

Yang-Mills theory (for some b = b'(b, ζ,...) , ζ = 0, φ = 0), if only gauge 

field expectations are considered. In such a case one could say that the matter fields 

leave the full gauge group "unbroken". (In the opposite case it would be appropriate 

to speak of "local symmetry breaking"). It would be interesting to study symmetry 

enhancement at short distances in continuum grand unified theories. 

More standard examples of symmetry enhancement which are, however, not very 

well understood mathematically are : 

- Restoration of full Euclidean invariance of correlations of lattice theories in the 

scaling limit (as b bc, where bc is a critical point). 

- Restoration of translation invariance above the roughening temperature in the three-

dimensional Ising model or in a lattice gauge theory, [34]. 

Problems of symmetry enhancement are typically very involved, technically, so 

that we cannot present any details here. 
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CONTINUUM (SCALING) LIMITS OF LATTICE FIELD THEORIES 

(TRIVIALITY of λφ4 IN d 4 DIMENSIONS) 
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SUMMARY : 

I describe some recent techniques for constructing the continuum 

(= scaling) limit of lattice field theories, including the one - and 
I → | 4 

two - component λ |φ| theories and the Ising - and rotator models 

in a space (- imaginary time) of dimension d 4 . These techniques 

should have applications to other related models, like the self-

avoiding random walk in five or more dimensions and bond percolation 

in seven or more dimensions. Some plausible conjectures concerning 

the Gaussian nature of the scaling limit of the d > 2 dimensional 

rotator model and the d 4 dimensional U(1) lattice gauge theory 

in the low temperature (weak coupling) phase are described. 

1. INTRODUCTORY REMARKS, RESULTS AND CONJECTURES. 

An important topic in Euclidean (quantum) field theory and sta-

tistical mechanics is the study of the scaling = continuum limit of 

lattice field theories. That limit corresponds to the large distance 

limit of rescaled lattice correlation functions at values of the 

inverse square coupling constant b (= field strength, or inverse 

temperature) approaching a critical value, as the distance scale 

tends to infinity. Given a family of lattice field theories, e.g. 



lattice λφ4 theories or Ising models, indexed by the dimension d 

of the (space - imaginary time) lattice d , we define the upper 

critical dimension dc by the property that, for d > dc , the sca-

ling limit of the corresponding lattice field theory is trivial 

(Gaussian, in the case of a scalar field theory), and an appropriate 

version of mean field theory provides an exact description of the 

approach to the critical point. 

The lower critical dimension d of those families of models 
—c 

is defined by the property that in dimension d > d there exists 

a critical point, bc < ∞, of b at which some correlation length 

diverges. 

It is often a subtle problem to determine the behaviour of a 

field theory when d = d_
c
 or d = dc . For example, in the N-vector 

models (0(N) non-linear sigma models on the lattice) dc = 2 and 

d = 4 . For the N = 2 model, i.e. the rotator or classical XY 
c 

model, it has recently been proven rigorously, by T. Spencer and the 

author1, that there exists a Kosterlitz-Thouless transition, in parti-

cular that bc < ∞ and that the susceptibility diverges as b bc, 

in dimension d = dc. The proof is, however, fairly complicated. 

For N > 3 and d = = 2 , it is conjectured that bc = ∞ (asymp-

totic freedom), but no rigorous proof is known. Moreover the nature 

of the scaling limit, as b bc, , is unknown, except in the two-

dimensional Ising model (N=l) . For all these models, the analysis 

of the scaling limit in dimension d = dc = 4 is incomplete, although 

for N = 1, 2 there are promising partial results. (When N ≥ 3 , 

not even the fact that dc = 4 has been proven rigorously, although 

that result appears to be within reach of present mathematical 
2 

methods; _d
c
 = 2 follows from ). The analysis of these models in 

dimension d = dc and d = dc is important for the study of the 

scaling limit and the approach to the critical point (critical expo-

nents) in dimension d , with d < d < d by means of a 2 + ε -
3 4 

or 4 - ε expansion *. At present, not much is known about how to 

study the approach to the critical point directly when d < dc. . 



Fortunately, this is not always necessary for the construction of the 

continuum limit of lattice field theories in dimension d < d . We 
4 

may think of the massive, weakly coupled λφ theories in two or 

three dimensions the continuum limit of which is under rigorous mathe-

matical and quantitative control (see e.g. 5-10), although we are not 

able to calculate e.g. the critical exponents for these models. 

In these notes we discuss the following rigorous results : 

1) For one - and two - component λ | Φ | theories, the Ising -

and the rotator model 

d = 4, 11’12· 
c , 

2) For d > dc , the continuum limit in the single phase region 

of these models is Gaussian (i.e. a free or generalized free field)» 

and the critical exponent γ of the susceptibility takes its mean 

field value, i.e. γ = 1 

3) For d = dc = 4 , the continuum limit in the single phase 

region is Gaussian if field strength renormalization is infinite, i.e. 
12 

if the ultraviolet dimension of the fields is not canonical, 

4) If hyperscaling holds for dc ≤ d ≤ dc then the critical 

exponent η of the two-point function at b = bc satisfies 

0 ≤ η ≤ 2 –d/2, 12. 

For the one-component models most of these results were first 

obtained by Aizenman11 who invented some very beautiful and clever 

inequalities. He also discovered a very simple proof of hyperscaling 

in two-dimensional Ising models11. Subsequently, the author found 

new proofs and extensions of some of Aizenman's results, in particular 
12 

proofs of 1) -4), , by adapting a technique developed with D. Brydges 
. 13 14 

and T. Spencer which was inspired by ideas due to Symanzik . See ; 

and15, 16 f
or some related results. 

There are also partial results towards proving the following 

conjectures : 

5) For the models introduced in 1) -4) 



η = Ο , for d > d 
c 

(see12 for a discussion). 

6) When d = dc = 4, the continuum limit is Gaussian, ’ 

7) For the self-avoiding random walk dc = 4 ; for bond percola-

tion dc = 6 , 
c 

8) The scaling limit of the rotator model in the low temperature 

(multiple phase) region, i.e. β > βc, is Gaussian in dimension 

d ≥ 2 .An analogous result is expected for the weakly coupled 

U(l) lattice gauge theory in dimension d_4 . 

An interesting open problem is to analyze the scaling limits of 

the d = 3 Ising - and the d = 2, 3 rotator models and of the U( 1 ) 

lattice gauge theory in dimension d = 4 , as b bc . We conjecture 

that these scaling limits are non-trivial (hyperscaling). 

It might be mentioned that, in addition to 1) -4) , there are 

rigorous results on the scaling limits of lattice field theories with 
12, 18 

long range ferromagnetic two-body interactions . As an example 

we mention that the scaling limit of the one-dimensional Ising model 
2 

with ferromagnetic 1/r2 interaction energy is Gaussian for b < bc. . 

(The existence of a phase transition, i.e. b < ∞ , and spontaneous 
C . 20 

magentization at large values of b has recently been proven in20). 
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2. GENERAL REMARKS ON SCALING LIMITS. 

To be specific, we consider a real, scalar field φ , 

Φ : j  d → φ(j )  I , 0) 



with I   , The Ising model corresponds to I = {-1, 1} , a lattice 

λφ4 theory to I =  . We imagine the field φ = {φ(j)} , is 

distributed according to some probability measure dµb (φ) (typically 
p 

a Gibbs measure) depending on a real parameter b interpreted as the 

inverse temperature or field strength. We define φx (j) = j(j+x) , 

x  , and assume that dµb (φ) is translation - invariant, i.e. 

dμb(φx) = dµb(φ), for all x . (2) 

The correlation functions of this lattice theory are defined as the 

moments of dµb , i.e. 

(3) 

We may assume that < φ(x) <b = 0 . Of particular importance are 

the two-point function 

< j(x) j(y) >b = ∫φ(x) φ(y) dµb(φ) (4) 

and the susceptibility 

(5) 

In the following we are interested in analyzing the long distance 

limit of the correlations defined in (3). We suppose there exists 

some value bc of b such that for b < bc there exists a constant 

m(b) > 0 , the inverse correlation length or mass, with the property 

that 

< φ(y) φ(y) > b ≤ const. e-m(b) |x-y|, < φ(x) Φ(y) >b ≤ const. e, (6) 

as |x-y | →, and 

m(b) → 0, as b → b
c
. (7) 

These assumptions are known to hold for Ising models and lattice 
4 . 21 

λφ fields . We now define the scaled correlations 

Gθ(xl,...,x
n

) = α(θ)η < φ(θx1)... φ(θ
x
n) > b(θ), (8) 

where 1 < θ < ∞, xj  dϴ-1 ≡ {y: θy  d}, 

j = Ι,...,n and b(θ) < bC , a(θ) are functions of θ determined 



by the requirements that for 0 < | x-y | < ∞ 

(9) 

It follows from (6), (7) and (9) that 

b (θ) → b
c
 , as Θ → ∞ (10) 

If we want to construct a massive continuum (θ→∞) limit we choose 

b(θ) such that 

θm(b(θ)) → m* > 0 , as θ → ∞ ; 11 

if we try to construct a scale-invariant continuum limit we set 

b(θ) = b for all θ . (There are other possible conditions fixing 
b(θ) 

the choice of b(θ) . See e.g. ). Once b(θ) is chosen, a(θ) is 

essentially determined by (9). The correlation functions in the 

continuum limit are then given by 

(12) 

Thus, in order to construct the continuum limit, it is crucial to 

know the behaviour of the two-point function. In many models (e.g. 

the self-avoiding random walk or bond percolation) this turns out 

to be very hard. We now elaborate on this point. Suppose one can 

prove a power law a priori bound on < φ(x)φ(y) >b, for b < bc, 

e.g. 

< φ(x)φ(γ) b ≤ c(b) |x-y|-(d-2+n), 03) 

with sup c(b) < ∞ Then condition (9) imposes the following lower 
b<b

C bound on α(θ) : 

a(θ) ≥ const. θ(d-2+n)/2 
α(θ) ≥ const. θ (13') 

One may attempt to analyze the two-point function by studiing its 

operator inverse, the two-point vertex function Γb (x-y) which, in 
b 

perturbation theory, is expressed as a sum of one-particle irreducible 

diagrams. For this reason one may hope to estimate it by means of a 

convergent, infrared-finite expansion if the dimension d is large 

enough. This is a difficult analytical problem. Fortunately, for the 



models studied in the following and in 11, 12, 14, an a priori bound 

of the form (12), with n ≥ 0, has been established in 2, 22 (the 

infrared - or spin - wave bound), and this turns out to be sufficient 

to show that d = 4 and that the continuum limit is Gaussian when 

d > 4 , thanks to new correlation inequalities discussed in the 

next section. 

A more systematic procedure to determine β(θ) and α(θ) relies 

on the renormalization group e.g. in the form of Kadanoff Block spin 

transformations, (calculation of large scale effective Hamiltonian or 

action) : 

Let κ be a function on d defined by 

where xα is the αth component of x  d. Let κx(y) = k(y-x), 

x   d.We consider 

(14) 

xj.  d, j = 1, ..., n . Now, note that Gθ (κx1,..., κxn) depends 

only on the variables 

{φθ(
Xj

) :
 Xj
  d} 

where 

(15) 

and θ = ε -1m Lm, L is some positive integer and m = 1, 2, 3,.... 

Given dµb(θ)(φ), let dµθ be the unique measure on the configura-

tions of the "block field" φθ = {φ (x)}x with the property that 

(16) 



for all x1,..., xn in d and all n . If dµb(φ) is a Gibbs mea-

sure for all β one expects that dµθ(φθ) is again a Gibbs measure, 

i.e. dµθ is given in terms of an effective Hamilton function, or 
θ 

action, on a scale of εθ = Lm . The calculation of the effective 

Hamilton function proceeds by a succession of Block spin (or - field) 

transformations, and each such transformation increases the scale by 

a factor of L. A mathematical description of the general features 

of that technique may be found in , explicit examples have been 

studied in24. 

In this approach the functions β(θ) and α(θ) are determined 

by the requirements that 

θm(β(θ)) ≡ m* = const. ≥ 0 , and that 
(17) 

is a well-defined probability measure with moments  0, ∞. It is 

hoped that dµ* is again a Gibbs measure, but this does not always 

seem to be the case. Condition (17) and the functions β(θ) and 

α(θ) determine the exponents v and γ of the mass and the suscep-

tibility, respectively. If m* =0 and dµ* is scale-invariant 

then dµ* is a fixed point of the Block spin transformations, and 

the fall-off of the two-point function is determined by α(θ) . 

The smeared continuum correlation functions are given by 

In practice, it turns out that it is usually very hard to construct 

the limiting measures dµ* and to show that they are Gibbs measures, 

but there are now some examples where the Block spin transformations 

can be made to work in a rigorous fashion . However, in these exam-

ples dµ* is a massless Gaussian. 

In the following, we investigate the scaling limits of the 

Ising model and lattice λφ4 models in d > 4 dimensions using 

merely an a priori bound of the form (13) with n ≥ 0 and new 



inequalities on the four-point Ursell function which permit us to 

avoid applying Block spin transformations. 

3. THE CONTINUUM (= SCALING) LIMIT OF THE λφ4d LATTICE FIELD THEORY 

AND THE ISING MODEL IN d > 4 DIMENSIONS. 

We now explain some basic ideas in the proofs of results 1) - 4) 

described in Sect. 1. Let φ be a real scalar lattice field (or a 

classical spin) with action (Hamilton function) 

18) 

where (jj') are nearest neighbor pairs in d . The measure dµb, 

i.e. the Euclidean vacuum functional (or Gibbs state) is given by 

(19) 

where 

(20) 

0 < b < ∞, λ > 0, μ and ε real, and Zb is the partition function. 

Equation (19) is to be understood as the thermodynamic limit of mea-

sures associated with finite sublattices. The limit exists for a 

large class of boundary conditions by correlation inequalities, 6, 7. 

If μ = λ , ε = λ/4 and λ → ∞ we obtain the Ising model. For all 

such models it is shown in , by using the infrared or spin wave 

bound of , that 

(21) 

for some geometric constant cd , independent of b , λ and μ , as 

long as b < bc. (It is shown e.g. in that the critical inverse 

temperature, bc, is finite, and properties (6) and (7) are proven 

in 21, 25). As shown in Sect. 2, α(θ) must therefore satisfy the 

lower bound 

α(θ) const. (b(θ)θd-2)½
 , (22) 



or if bc < ∞ 

α(θ) ≥ (bcθd-2)
1/2

 . (23) 

The four-point Ursell function, , is defined by 

(24) 

where Σ ranges over all three pairings of {1,2,3,4} . It satisfies 

the following inequalities 

(25) 

where z1 ranges over d , and |zℓ -z1| = 1 , ℓ = 2, 3, 4 . The upper 

bound is the well-known Lebowitz inequality , the lower bound is 

the new inequality proven in which is closely related to Aizenman's 

inequality11 . We define 

u4, θ(x1,...,x4) = α(θ)4 u4, b(θ) (θx1, ..., θx4). (26) 

In order to satisfy as general a class of renormalization conditions 

as possible we permit λ and a to depend on θ , as well : A 

minimal condition on λ=λ(θ), μ = μ(θ) and on b(θ) and α(θ) 

is that inequalities (9), Sect. 2, be satisfied. We now obtain from 

(25), (26) 

0 ≥ u
4,
 θ(X1,...,

x4
) ≥ α(θ)-4 θd3b(θ)2. 

(27) 

The nice feature of (27) is that the upper and lower bounds are 

independent of λ(θ) , μ(θ) . (In a sense, (27) says that the predic-

tion of the linearized renormalization group provides a rigorous 

bound). Now, by (21) and (22) 

α(θ)-4θdb(θ)2 ≤ const, θ4-d (28) (28) 

which tends to 0 , as θ → ∞ , in dimension d > 4 . One can use 

the infrared bound (21) to show that 



(29) 

uniformly in θ, provided xi ≠ xj , for i ≠ j , and d > 4 . 

See 12, 17. By (27) - (29) 

(30) 

at non-coinciding arguments, in d > 4 dimensions. Thus dc = 4 , 

and the continuum limit is a free or generalized free field, provided 

d > dc = 4 . For d = 4 , the same result follows if either 

(i) α(θ2)/b(θ)θd-2 → ∞ , or (31) 

(ii) the limiting theory is scale-invariant. (Some uniformity 

in the limit of the two-point function is assumed; see 12). In case 

(i), (27) and (31) yield (30), and the limiting theory has non-

canonical short distance behaviour. In case (ii), triviality follows 

from a theorem of Pohlmeyer 27. (Thus, in the language of the Callan-

Symanzik equation, λφ44 is trivial, unless the b- and γ functions 

have a non-trivial common zero, and the corresponding theory is not 

scale-invariant). In 12 we have also proven a sharper form of (25) 

which suggests that the continuum limit in d = 4 is trivial, without 

any additional hypotheses, but we do not have a complete argument. 

Inequality (25) can also be used to calculate critical exponents. 
.... . 21 

Combining it with an argument due to Glimm and Jaffe one shows 

that the critical exponent γ of the susceptibility χ has its 

mean field value, γ = 1 , in d ≥ 5 dimensions 17, 12. It follows 

directly from (25) that if hyper scaling holds (i.e. the critical 

theory is non-trivial) then n ≤ 2- d/2 , d = 2, 3, 4 . See 12 

We conclude with some brief comments on the proof of the basic 

inequality (25). The proof in 12 relies on Symanzik's random walk -, 

or polymer representation of scalar Euclidean field theories 13, 14 : 

One reexpresses a lattice field theory as a gas of random walks 

interacting through some soft core repulsion determined by dλ(φ). . 

Let ω1,..., ωn be n arbitrary random walks immersed in that gas 



and interacting with each other and with the (closed) random walks 

in the gas through the same soft core repulsion. Let z(w1,...,ωn) 

be their joint correlation. Then 

, and 

(32) 

By a correlation inequality 12, 14 

z(w1,w2) ≥ z(w1)z(w2), (33) 

unless w1 and w2 intersect. Thus 

(34) 

where Σ is a short hand for the sum on the r.s. of (32). By 
p ; w1 , w2 

requiring that w1  w2 contains some lattice point z and then 

summing over all possible points z one can, after splitting 

into two walks, i = 1, 2, and applying a Simon-type inequality 25, 14, 

resum the r.s. of (34) to obtain (25). See 12 , and 17 for an alternate, 

prior proof of a related inequality. Rather than discussing these 

technical aspects we emphasize that the r.s. of (34) should really 

vanish in the continuum limit, in dimension d ≥ 4 , because 

the random paths in the continuum are expected to have a Hausdorff 

dimension DH ≤ 2 , so that, for d () 4 ≥ 2DH, two random paths 

do not intersect with probability 1. This is, in fact, a known 

theorem for Brownian paths in four or more dimensions 28. Because of 

the repulsive character of the self-interaction, the field theoretic 

paths appear to have rather less tendency to intersect each other 

than Brownian paths and thus the r.s. of (34) is expected to vanish 

in the continuum limit in four dimensions. (I am indebted to 

T. Spencer for explaining such arguments to me). 
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Summary. 

I present a brief survey of progress in the understanding of quantum field 

models, lattice gauge theories and spin systems that has been achieved during the 

past few years - roughly since the Μ  φ conference in Rome. Significant progress 

has occurred in the analysis of systems with abelian global or local symmetry groups, 

such as the Ising - and rotator models, one- and two-component λ[φ| -theories and 

abelian lattice gauge theories, and in the mathematical foundations of renormaliza-

tion group schemes for such systems. Some progress has been made with zero mass 

cluster expansions, with the construction of continuum gauge theories, and in surface 

physics. 

A list of non-perturbative problems in non-abelian gauge theory and statis-

tical physics concludes my notes. 
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I. Introduction. 

A convenient point of orientation for these notes might be the author’s con-

tribution to the proceedings of the Μ  φ conference in Rome, in 1977, [1] . In 

that article I have emphasized the importance of non-perturbative methods in contem-

porary physics, proposed a list of typical, non-perturbative problems and then stated 

what was known, or could be hoped to be proved about them. For the convenience of 

the reader I state those problems, somewhat freely, once more : 

A. Non-super-renormalizable field theories, infinite field strength - and charge 

renormalization. 

B. Gauge theories in general (confinement, significance of topological field confi-

gurations,..., construction of super-renormalizable gauge theories, ...). 

C. Super-selection sectors, topological charges, quantum solitons. 

D. Critical phenomena, theory of critical points, mass generation, interactions of 

very long range. 

E. Scattering of charged particles interacting with the radiation field. 

What I knew (or, may be, was known in general) about either of those problems, 

in 1977, was certainly a bit disappointing, even to a mathematical physicist. (I did 

refer to or sketch a few perhaps somewhat interesting results which, however do not 

seem to have made much of an impression : I referred to work on quantum solitons in 

two space-time dimensions [2, 3] where e.g. topological commutation relations between 

the fundamental field and the soliton field were derived and analyzed, and the mass 

of the soliton was estimated in terms of a surface tension, a quantity that can be 

expressed in terms of partition functions with "twisted boundary conditions". Although 

I was aware of the fact that such ideas could be applied to three space-time dimen-

sional gauge theories, I did not write anything about this topic, and I did not 

understand the extension of those ideas to four dimensions and their implications 

for the confinement problem. As well known, these gaps have since been filled in; 

see [4 ,5] and refs. – I also explicitly mentioned arguments for the existence of 

a phase transition accompanied by the breaking of parity in two- and four-dimensional 

gauge theories with θ-vacua, at θ = π . Those arguments are rigorous for some 

two-dimensional models [6] and were inspired by results of Coleman et al. [7] . In a 

somewhat different form they were finally rediscovered in 1980 [8, 9].) 

In the past few years, substantial progress has been made in solving the 

problems summarized above. Among the people who have posed and solved some of them 

are D. Brydges, E. Seiler and T. Spencer. I was fortunate to have had scientific 

contact with them. Thanks to their efforts and the efforts of M. Aizenman, T. Bafaban, 



D. Buchholz and K. Fredenhagen, P. Federbush, G. Gallavotti et al., K. Gawedzki and 

A. Kupiainen, G. Mack et al., J. Magnen and R. Sénéor and others we now do have some-

thing to say about how to solve those problems. Some of the achievements have been 

described in Lausanne and at other places, like Cargèse, in 1979, see [10, 11] and 

refs, to be found there. 

As in Rome, I limit my review on the problems indicated under D , with some 

allusions to B . But what can now be said about D has interesting consequences for 

the problems mentioned under A. These notes are meant as comments on the lectures of 

M. Aizenman, K. Gawedzki, J. Imbrie and T. Spencer who have reported on specific, 

recent results concerning phase transitions, critical points or - intervals, scaling 

limits and other related topics in classical spin systems and quantum field models. 

Moreover, G. Mack has described recent results in lattice gauge theory. See also 

[12]. For sources on gauge theories other than his notes, see e.g. [13-16]. 

Much of the work referred to above has been inspired or is relying in a 

sense on work of J. Glimm and A. Jaffe - see [17, 18] and refs. - Ja. G. Sinai -

see [19] and refs. - and others, who were among the first to incorporate renormali-

zation group ideas into mathematical physics. 

There has been very impressive progress on the problems described under C 

and E above, as well. One should recall the work of Faddeev et al. [20] and Thacker 

et al. [21] on two-dimensional, completely integrable quantum field models, Jimbo, 

Miwa and Sato, see [22] and refs, given there, on the two-dimensional Ising model 

(they have understood how to make use of the topological commutation relations men-

tioned above in a very powerful way) and the work of Buchholz and Fredenhagen on the 

axiomatic theory of superselection sectors and scattering of charged particles. But 

these topics are not discussed in my notes. 

2. Problems concerning phase transitions and critical phenomena and what we have 

learned about how to solve them. 

As is well known, the mathematical structures of classical equilibrium sta-

tistical mechanics (ESM) and quantum field theory in the Euclidean description (EFT) 

- not involving Fermi fields - are identical. They are a branch of probability theory, 

namely the theory of random fields, in a wide sense. The following problems therefore 

come up in both, ESM and EFT. 

2.l. Bulk problems. 

Bulk problems concern the study of bulk thermodynamic functions and of the 

properties of equilibrium states (in ESM), or Euclidean vacuum functionals (in EFT). 



Presently, there are good mathematical techniques to investigate those objects in 

three situations : Let <(·)> denote an equilibrium state or a vacuum functional 

of some physical system. (In ESM, b b = (kT) is the inverse temperature, in EFT 

b = g is the inverse square coupling or field strength). 

(1) Small b : <(·)>b ≈ uncorrelated ("ultralocal") state. 

→ Convergent high temperature (strong coupling) expansions. 

(2) Large b < (·) >b ≈ equilibrium state of ideal gas of defects [x Gaussian 
b 

spin waves] 

The defects may be Bloch walls, vortices... . 

→ Combined low temperature - cluster expansions; rigorous spin wave theory. 

As an asymptotic expansion one can often use (renormalization group improved) 

perturbation theory. 

(3) Intermediate b , vicinity of critical points or - intervals : < (·) >b ≈ per-

turbation of a critical state ("scaling distribution"), e.g. a Gaussian, by 

irrelevant and marginal operators. 

→ Convergent renormalization group analysis; qualitative analysis of scaling 

limits, (based on group theoretical and bifurcation analysis, a priori 

bounds, correlation inequalities, etc.) 

So far, successful, mathematically rigorous applications of (3) have been 

limited to the following situations : The scaling distribution is Gaussian (see 

[19, 24] for a description of this class of critical states), and 

(a) no relevant or marginal perturbations are present, scaling distribution is an 

attractive fixed point of renormalization group transformations; e.g. [25] , where 

a zero-mass cluster expansion is proposed; 

(b) space of relevant perturbations of scaling distribution is empty, space of mar-

ginal distributions is one-dimensional (consisting of a quadratic polynomial in the 

field- or spin variables); [26, 27, 14, 28]. While in [27, 14] a combination of renorma-

lization group techniques and a generalized Peierls argument has been applied to 

exhibit transitions in the two-dimensional rotator and related models and in higher 

dimensional, abelian lattice gauge theories, genuine real-space renormalization 

group transformations have been used in [28] to study charicatures of dipole gases. 

(c) In [29] and subsequently in [30], it has been shown that the scaling limits of 

the correlation functions in the Ising- and rotator models and some class of lattice 

field theories are Gaussian in d > 4 dimensions, and some critical exponents have 

their mean field values. (Thus, in these examples, the fixed point of the renormali-



zation group is Gaussian, the spaces of relevant and marginal perturbations are one-

dimensional, and these perturbations preserve the Gaussian nature of the state). 

In [29, 30] qualitative methods, based on correlation inequalities and infra-

red bounds have been used. See also Sect. 3. 

So far successful applications of renormalization group techniques have been 

limited to abelian models or models with linear fields. The reasons are two-fold : 

A technical reason is that duality transformations (linearizing the fields) and cer-

tain correlation inequalities, both only available in abelian models, have proved to 

be very useful and quite indispensable tools, [14, 27, 29, 30]. A more fundamental rea-

son is that for models with non-abelian symmetries and non-linear fields we do not 

know any scaling distributions (fixed points). Of course they would be non-Gaussian. 

Therefore one does not know any efficient renormalization group schemes, (except to 

estimate the ultraviolet cutoff dependence of unnormalized expectations [15]). It is 

conceivable, though perhaps not very likely, that Polyakov's solution of the string 

dynamics [31] may improve that situation for non-abelian gauge theories. 

For a general description of real-space renormalization group transformations 

see e.g. [19] and for concrete, recent results the notes by Aizenman, Gawedzki and 

Spencer. 

Impressive, new applications of combined low temperature - cluster expan-

sions - see (2) - drawing some inspiration from the renormalization group are des-

ribed in the notes of Imbrie (phase diagrams of P(φ) models) and Mack (confinement 

in the three-dimensional U(1) model), and refs, given there. 

2.2. Surface problems. 

Typical examples of surface problems are : 

- Rate of approach to the thermodynamic limit; (this is important e.g. for the theo-

retical evaluation of Monte Carlo calculations). 

- Finite size scaling; see [31] and refs.. 

- Roughening transitions : 

In ESM, the instability of interfaces, e.g. in the three-dimensional Ising model. 

In EFT,the instability of electric or magnetic flux sheets in lattice gauge theory. 

- Surface thermodynamics : 

In ESM, surface free energies and surface tensions,... . 

In EFT, the Casimir effect (see the notes by Symanzik) , string tensions and ratios 

of partition functions with twisted boundary conditions in lattice gauge theory,... 



- Physical effects of infinite surface layers inside infinite systems : Behaviour of 

state near such layers or near boundary; surface phase transitions. 

For recent results see e.g. [33-36] and Sect. 7 of [27]. In [34] it is shown 

that in the three-dimensional Ising gauge theory a roughening transition would not 

coincide with the deconfining transition. In [36] it is proved - among other results -

that if the surface tension in an abelian spin system vanishes then there is no in-

terface; in particular, there are no interfaces in the rotator model in any dimension. 

The methods described under (1) – (3) in Sect. 2.1 can also be applied to 

surface problems, but such applications tend to be much more complicated than the 

corresponding applications to bulk problems. In particular, I do not know of any 

mathematically rigorous renormalization group analysis of a genuine surface problem. 

Surface problems are likely to stay with us for quite some time. 

4 
3. The scaling limit of the λφ4d lattice field theory in d () 4 dimensions. 

In this section I propose to explain some basic ideas behind the results 

(orginally due to Aizenman [29]) described in Sect. 2.1, (3), (c). I follow the ap-

proach taken in [30] which is based on very suggestive ideas of Symanzik [37]. 

Let φ denote a real scalar lattice field (or classical spin) with action 

(Hamilton function) 

(1) 

where (jj') are nearest neighbors in d. . The Euclidean vacuum functional (Gibbs 

state) of the system is given by the measure 

(2) 

where Z is the partition function, and 
b, λ 

(3) 

0 < b < ∞, λ > 0 , μ and ε real. (The measure dµb,λ is to be understood as the 

thermodynamic limit of measures associated with finite sublattices and defined by 

(2). The limit exists by correlation inequalities). If μ = λ, ε = λ/4 and λ → ∞ 

we obtain the Ising model. The objects of our study are the scaling limits of the 

correlations 

(4) 



defined by 

G(x ..,x
2m)

 ≡ lim θ→∞α(θ)
2m<φθx1...φ

0x2m
 > bθ, λθ, (5) 

where βθ and dλθ (φ) are chosen such that the system is in the single phase region, 

for all θ < ∞ , and a critical point is approached, as θ → ∞, (keeping e.g. the 

effective mass positive). Moreover, α(θ) is determined by the condition that 

0 < G(x,y) < ∞ , (6) 

for 0 < |x-y| < ∞ . It follows from the infrared (spin wave) bound [38] that the 

lower bound in (6) can only hold if 

7) 

Let u(4) b, λ be the connected (Ursell) four-point function. A new correlation inequali-

ty proven in [30] (see [29] for a related, prior result) says that if xi ≠ xj, 

for i ≠ j , 

(8) 

where z1 ranges over d , and |zℓ -z1| ≤ 1 , ℓ = 2, 3, 4. (The upper bound is the 

well known Lebowitz inequality). Together with (5) and (7) inequality (8) implies 

that the scaled four-point Ursell function is bounded by 

From (6), the infrared bound of [38] and this inequality it follows easily that, for 

d > 4 and x. ≠ x. , for i ≠ j , 

(9) 

See [29, 30] for details. From (9) one may deduce that the scaling limits of all cor-

relations are Gaussian (at non-coinciding arguments). 

The basic idea behind the proof of inequality (8) and of (9) is to represent 

u (4) b,λ as a sum over all pairs of random walks, ω1, ω2 , connecting pairs 

(Xp(l),Xp(2)) ’ (X
p(3)

,X
p(4)

)
 °

f points· More precisely, 



(10) 

where z(ω1,..., ωk) is a correlation function of k open polymer chains, described 
JL K. 

by walks ωΊ , . . .ωk, , in a certain gas of closed polymers with soft core repulsive 
i. K. 

interactions [37, 30] . Now, it is shown in [30] that all negative contributions to 

u(4) b, λ come exclusively from those walks, ω1 and ω2 , which intersect each other. 

If the walks were ordinary random walks then the probability of intersection would 

approach 0 in the scaling ( ≡ continuum) limit in dimension d ≥ 4 , [39]. One would 

thus conclude that the scaling limit of u vanishes. This intuition is made 

precise in the form of inequality (8) which, however, only proves convergence to a 

Gaussian limit in dimension d ≥ 5 . One can improve inequality (8) in such a way 

that that result appears to extend to four dimensions, but there is only a partial 

result, so far, [30]. 

Next, suppose that 

<φxφy> b,λ ≤ const. |x-y|-(d-2+h), (11) 

as | x-y | → ∞ , if β and λ are chosen so as to approach a critical point. We 

are interested in the nature of the scaling limit, assuming that (11) holds. Condi-

tion (6) and (11) now imply that 

α(θ) ≥ θ(d-2+n)/2 (12) 

Using (8) and (12) it is then not hard to see that if xi ≠ xj , for i ≠ j , 

(13) 

provided d ≥ 3 . Thus, the scaling limit of u(4) (at non-coinciding arguments) 

vanishes, unless 

(14) 

(For d = 2 , (14) is always true, as shown by Simon). Thus if we can prove that the 

scaling limit is non-Gaussian (hyperscaling) then ≤ 1 (d = 2) , n ≤ ½ (d = 3), 

n = 0 (d = 4) . I recall that n is always non-negative in these models [38] and 

that η = 0 is only compatible with a non-Gaussian scaling limit if the latter Is 

not scale-invariant. For further recent results on critical exponents (γ = 1 , in 

d ≥ 5) see [29, 30]. A problem that has not been settled in [29, 30] is to show that 

n=0, in d ≥ 5, or - more precisely - that the covariance of the Gaussian scaling 



limit of the λd ≥ 5 theory is actually the standard free field two-point function, 

(as expected). The qualitative methods discussed here and the Block spin transforma-

tions used in [28] can presumably be extended to other systems : It seems likely 

that, using those techniques, one will be able to prove that the scaling limits of 

the d > 2 dimensional rotator and the d 4 dimensional U(1) lattice gauge 

theory are Gaussian in the low temperature region (b > bcrit.). Other applications 

may concern the self-avoiding random walk and percolation. 

For further applications of Symanzik's polymer representation, (e.g. to a 

mass generation mechanism) see [30] . 

4. Open problems. 

Here is a list of open problems which may keep us busy for the next several 

years. 

1. Show that the physical mass of the two-dimensional N-vector models, with N _ 3 , 

is strictly positive, for all b < ∞ 

2. Prove that pure, non-abelian lattice gauge theories (with Wilson- or Villain 

action) have deconfining transitions in dimension 5 . (Is there a non-perturbative, 

rigorous form of spin- , or 'glue wave” theory for such theories, analogous to the one 

for spin systems [38] ?) 

3. Exhibit permanent confinement in these models in dimension 4 . 

4. Prove the existence of a QED phase in the four-dimensional lattice Georgi-Glashow 

and Weinberg-Salara models without Fermions, at weak coupling. 

5. Find efficient real-space renormalization group transformations and some of their 

fixed points for some non-trivial models with non-linear fields and/or non-abelian 

symmetries. 

6. Develop concrete stochastic-geometric methods useful in statistical physics and 

Euclidean field theory. (Examples : Develop the statistical mechanics of defect gases, 

Prove convergence of the Regge-calculus (simplicial) approximation of the Euclidean 

string model to Polyakov's solution of that model [31], etc.) 

7. Exhibit directional long range order in the two-dimensional jellium model at low 

temperature. Exhibit crystalline (translational) ordering in three-dimensional, 

(classical or quantum) particle systems at low temperature. Discuss the nature of the 

melting transition in three dimensions. 

The problems described here are non-perturbative equilibrium problems. 



However, the action may be in dynamical problems and the study of disordered and 

‘chaotic systems, during the coming years. (Would this not correspond to the state of 

the world ?) Disordered and dynamical systems theory, non-equilibrium statistical 

mechanics, fluid dynamics and turbulence are very active fields of research, and, 

quite generally, macroscopic physics seems to celebrate a comeback. 
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