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§1. Introduction, basic ideas and main results.

It has been known for some time that the one-dimensional Ising model
exhibits a phase transition when the forces are sufficiently long range. If

the interaction energy is given by

in inf|r| +3)
7 ]

r o+ |

J(i=j) = J(x) > ef

then there is a spontaneous magnetization at low temperature. This result
is due to Dyson [2,4] and was obtained by comparison to a hierarchical model.

On the other hand if

N
1im [2a@)] V% £ J(e)e = 0
N n=|
Rogers and Thompson [7] showed that the spontaneous magnetization vanishes

for all temperatures. The same result is expected if the exponent 1/2 is

replaced by 1. See [3,8] for other related results.

In this paper we establish a phase transition when J(r) = 1!#2 .
This is a borderline case which has been discussed by Anderson and Yuval [1]
in connection with the EKondo problem. Thouless has also studied this model
and predicted a discontinuity in the spontaneous magnetization as a function
of temperature - the Thouless effect [10] . Simon and Sokal [9] have rigorously

established this discontinuity assuming
i) cthere is a spontaneous magnetizacion, for E= 1'.'I large, and

i1) the spin-spin correlatiom < o, ﬂ? > (B) = ﬂux > {E]E has a uniform

power fall off for B > En .

Some time ago Dyson established the Thouless effect in a hierarchical model



[4].

We shall apply an energy-entropy argument similar to the one we deve-
loped for the two-dimensional Coulomb gas [5] to establish the existence of
a4 spontanecus magnetization for the Hrz model at lew temperature,

Tm= ﬂ-l < < | , thus establishing i) above. The simplest form of this

argument is due to Landau and Lifshitz [6). In order to explain their idea

we first set up our notation. Let

P =2
H (o) = 1 |i-j| (1-050.) {1.1)
'I."=_'|
denote the energy of a configuration, o = Iui}i ex * of Ising spins

a; = +1 . We impose the boundary condition
o; =+1, for |i| 2L ,

where 2L is the length of a finite subsystem, and we shall let L tend
to = , It is convenient to introduce the lattice Z* of nearest neighbor
bonds, b= (i,i#]1) , i € . (Note that Z* m X+ 1/2 if we identify b

by its mid point).

Each configuration o of spins completely specifies & subset
rezrie}c E‘L » where E*L = ®* n [-L,L] , which is the set of spin flips,
i.e.

bET iff T - 900 = =]
Note that our choice of boundary conditions implies that the cardinalicy

of TI'{o) (i.e. the number of spin flips in T[(o)) is even. Conversely,

each even subset T = EE.E of spin Fflips determines a unlque

conf iguration g = gfl) of spins. Subsets of a configuration



I of spin flips are denoted by v, vy’ s ey ae - Given some yc< T ,

let b_(y) be the smallest and h*ITJ the largest bond belonging te ¥
and let d(y) be the diameter of y , i.e. the total number of bonds of Z=*
lieing between the left endpoint of b_(y) and the right end point of b'[T}

(It is assumed that &E* is equipped with its natural order).

The basic energy-entropy argument may now be described as follows :
Consider the elementary configurations, T = Ib_.b‘} = %%, whose energy is

given by

W) =4 ¢ |i-j|"? > C, tn () ,
ifh-
b_cj<h,

for some positive constant C, . Here, i < b means that i is smaller than
or equal to the lefr end point of b, 1 * b means that 1 1is larger than

or equal to the right end point of b . [For the reader familiar with [5]

we note that H(F) is proportional to the electrostatic energy, with respect

to the two-dimensional Coulomb potential, of a dipole of length d(I') im

the plane]. The entropy of the class of elementary configurations I with
diameter d(r') = ¢ is £=1 , because there are =1 such configurations
for which o, " =] . In the approximation in which only elementary configura-

tions are included one concludes that for E]H >3

I + L =
z <l=0_ »(B) < L @
* oL i=2

g ink

! (t=1) < 1/2 ,

unifermly in L , hence

~o, ;15] I lim= o

":f“:”’ 0.
L .
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[Here < +=:{E} denotes the expectation im the equilibrium state of the model
at inverse temperature £ with boundary conditions ui:-id s for || 2L .

The limit L = = exists, by correlation inequalities [11] ).

The above argument is similar to the Peierls argument for the two-
dimensional Ising model. To make it rigorous, we must consider general confi-
gurations of spin flips. This makes our rigorous energy-entropy arguments

somewhat involwved.

We now establish some further notation and definitions. Each configu-
ration T of spin flips is partitioned into disjoint subsets Yy Ygeeees

called "Eriniti?e" {or "connected") contours in such a way that the following

condition D (D for "distance") holds :

a) Each Y is even, U T, - r , and
azl

'l'un'l"ul-ﬁlu-?:nl

b) distly,y )z ¥ [min(d(y ) , aﬁu.}}}m , for ada. (1.2)

e) If % is a subset of some Y, (called a "constituent" of ?q]

satisfying the inequality

distlvv, ~v) 3 2 d(v) ' (1.3)
then card (y) is odd, [we say that y is charged] , for all a

In b) and ¢) of condition D, M is a constant independent of T and v

to be chosen later.

In order to establish the existence of a partition of each configura-
tion T into primitive contours ETI.TI....! satisfying condition D ,
we choose the finest partition (y 1 _. of I satisfying a) and
e LEE R

h). Then ¢) is automatically fulfilled (see also Sect. 2 of [5]). The

uniqueness of {Tu} will not concern us- we arbitrarily assign to each T



an arbitrary, but fixed partition satisfying condition D . We briefly
comment on the construction of [Tu} in the appendix. [For readers familiar
with [5] we note that the Yo correspond to the neutral multipoles, or
molecules, p , introduced in Sect. 2 of [5]. Charges in the Ising model
studied here are defined module 2 - even, odd. Thus, each Yo ©an be inter-

preted as a neutral molecule of spin flips].

Condition b) ensures that neutral molecules, Y, ¢ are far separated,

and hence their total energy is nearly addivive, i.e.

HOv Uy o) m By ) + BG4 oo f o

[Recall that in the nearest neighbor Ising model the energies of disjoint

contours are exactly additive]. In Sect. & we show

Theorem A. Let e E!.E be an arbitrary configuration of spin flips,

and let v bhe a primitive contour of [ . Then

GH(TiTr=y) = H{I) = H(T~y)

(1.6])
> H(y ) (1=-const, Hrt{lnﬂlll .

for M sufficiently large.

Property c) in condition D is our primitivity (or connectivity)
condition and will be crucial in the energy estimates, (i.e. in the proofs

of Theorem B , below, and Theorem 2.2).

Now we estimate the probability that ©_ = -1 in terms of our primitive

rontours @



(1.5)

where [ ranges over all allowed configurations, and xn{F] =D iF

antr} = |, xn{r} = ] if qu{r} - =] : Here un{rj is the value of the
spin o in the configuration T . Note that if E'rn} are the primitive
contours of T then 3u{T} = O unless there is some contour , separating
0 from *L . Given a set v of spin flips, let I(y) © E denote the
interval spanned by the end points of ¥ . Thus xﬂﬂ'} = ) , unless

0E l[-ru] ., for some a . Let a = | label the primitive contour of minimal

diameter enclosing O . Then by Theorem A

-E/DHly,) = BH(T~y,)

T L5 e

T
1 OEI(Y,)
7 < I-n¢ > [(B) <

I 8 = HH{T}

T

-{BFEIIH(TI.'I
x L = (1.6)
L
DEII‘.v]}

if M is chosen sufficiently large; see {1.4).

The last imequality follows because, given any I , T ~ v, also appears
in the densminator. To estimate the sum over Y, we need rather involwed

energy-entropy osrguments similar to those in [5] .

In order to estimate the energy and entropy of primitive contours ¥,

we introduce a sequence of length scales, o s A= 0, 01,2,... . Lat



B, " iiﬂz diy)]1+1 ,

where [x] is the integer part of & non-negative number x . For every
o< nn . let H“{vj be the sinisus number of open intervals of length 2"

needed to cover v . For n » n, ve SEL H“{v} =0 . We define

N{y) = L J::I!“i."r]l : C1.7)
n=0
The quantity N{y) oeasures both, the energy of a primitive contour v
and the entropy of the family of all primitive conmtours, v , such that

0 € I{y) and N(y) takes some given value.

Our principal estimates on the energy and entropy of primitive contours

may now be stated as follows.

Theorem B. Let 'Tu}u-l.z.l.... be a partitioning of a configuration T

of spin flips into primitive contours aatiafyinﬂ_cnnditinn D . There exists

a constant ¢ > 0 independent of I such that for M sufficiently large

HOP) = H(T~y) > 3 B(v,) 2 eN(y), (1.8)

for every a .

Theorem C. Let ELER} be the collection of subsets % EE guch that

B{y) ct R, R=1,2,3,... , and O € I(y) . There exists a constant ﬂz

independent of B and L such that

C,R
card C (R} 2 e : {1.9)



Theorems B and C permit us to estimate the sum on the right side

of (1.6) uniformly in L :

-BeN(y,)
-.II-. < |-gn 1.-: < I a |
DET(y,)
C.(R+1)
e § o PR o
R>1
=] , for B » | ,

uniformly inm L . Thus we have proved

<o, :-"{a};neumrurn ‘: (8) > 0, (1.10)

[Lobom

for g = 1.

Yext, we show that m=0 , for small £ . This actually follows from
the results in [12] . Here, we sketeh a proof based on Simon's inequality
[13] in a form given in [l1&4] : Let ln denote the interval i-in‘in] P

tu*ﬂ.l,l,l,... « Let j € I, . Then in the thermodynamic limit (L== , the

existence of which follows from [11])

<9405 MO TN - <049, % (8) |i-k| 2 *ﬂkﬂif (8) , (1.11)
i€l
KE1o

where <3 (B) is the equilibrium state at inverse temperature E with
boundary conditions ... 0 when |n[ = [n . Since danni?dfﬂ} < 1 , {1.11)

implies that for sufficiently small &

"
S (8) — 0, as |j] = = ; (1.12)
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see [13] . (Choose e.g. I_ = {0} . Then (1.12) holds if 5 <(r |i|™7',
ido
For more details we refer to [13)] and Sect. 3 of [14]) . By the Griffiths

inequalicty [11]

<0,9; > (8) 3 tanh(pli|™) ~pli|™ . (1.13)
Hext, let ﬂc be the supremum over all those @ for which

fﬁunj ?+[E} < const. 1j|-E g {1.14)

for some ¢ > 0 . Let B < 5: « Im (1.11) we may choose
1= 1 () I-lij.lgfl . It then follows from (1.11) and (1.14) by iteration

o

that
<g,0:>7(8) 2 c® 1517, (1.15)
for some finite conmstamt C{EY} . Thus, for £ < Ec

<a 0 =T (8) ~ |fr|'z , a8 |§| == .

]

From Newman's Gaussian inequality (e.g. [14] , and refs. given there) it
then follows that all connected correlations fall off at least like

1/[distance]® if g < 8, -

If 8 =1 one cannot use these arguments, because the correlations
in (1.11) are not connected. It is conceivable, however, that our definition
of primitive contours and Theorems A through C would permit one to prove
convergence of a low temperature expansion for connected correlations if

= | and M = M{(E) is chosen conveniently. We pose this as an open problem.

The remainder of our paper is organized as follows. In Sect. 2 we prove



Theorem C. The proof is quite casy in coeparison to its higher dimensional
analogue [5]. This is because we can exploit the natural order of Z* . In
Sect. 2 we also introduce a new measure of v , N'(y) , which counts the num=-

ber of far separated, odd (i.e. "charged"”) constituents of v , and we show

that if v satisfies condition D, ec), see {1.3), then

Hiy) z 1/2 8" (v) .

The following section is devoted to proving that N and N' are equivalent,

i.e. that there exists a constamt C such that

CN'(y) > N{y) > N'(y) .

These two inequalities and Theorem A yield Theorem B.

In the final section, we show that the interaction energy between a
primitive contour and the remaining conmtours of an arbitrary configuration
of spin flips is relatively small. Thereby, we establish Theorem A. As shown
above, see (1.86) and (1.8)=(1.10}), this will complete our proof of the exis-

tence of a phase transition and spontaneous magnetization at low temperature.
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§2. Entropy estimate and a lower bound on H(y) .

An arbitrary collection of spin flips vy < ‘Et may be specified by

an increasing sequence of integers {ik]knl 2 : ik < ik . We define
gl wow s

+

the logarithmic length, L{y) , ef v by

L{y) = L {[Eo, (i, -0 )] +11} (2.1}
T R B S
Lemma 2.!. For any collection of spin flips ¥ dﬂEE
Ni{y) = L{y) , (2.2)

where N(y) is defined by (1.7).

Proof. We define
- [1“2t1hil'1k}] a0 1S S (2.3)

Let [[{T} be a minimal collection of open intervals of length EL needed
to cover v . By minimal, we mean that Ilf?) containg the smallest possible

number of intervals, i.e.
card IIETJ = Ht{TI ;

see (1.7). For every [ = ﬂ...i.lh . Tgfv} necessarily contains an interval
covering lk which does not cover ik+| . Lemma 2.1 follows by summation over

k . .

Proof of Theorem C. Clearly every v is determined by fixing il and

specifying ln,{1k+|-lk} . By (2.1) = (2.3) and the assumption N(y) < R ,



P & BT

wi have

Lt +]zLly) <R (2.4)

R+

There are less tham 2 ways of specifying (inorder) integers th-#[ - |

which satisfy (2.4). [In fact it is easy to see that there are precisely

2 I ways of choosing a sequence of integers n, > I such that Ink =L].
L+l
Furthermore, there are less than 2 integers z > | such that

ftn23] =t , since

Thus we conclude that there are less tham

L, B *]
B+ k' k s E{Elhrl]luz

2 + 2

collections of spin flips ¥ with L(y) < N{y) < R and with il Fixed.
If wo require that O € I{y) then there are fewer than d{y) possible

choices for il and thus Theorem B follows after noting that

diy) = EL{TI < e“'L“I

Now, we turn to the definition of N'(y) . Let T;{T} be the subcollec-
tion of intervals, 1I' , of length En contained 1in In{T] (defined in the

proof of Lemma 2.1) which are isolated in the sense that

Inf2 _ .b+Inf2

dist(I',1) > 2M 2 = 2 ; (2.5)

for all IE 141} S A L | I“{?j congists of a single interval we set

I;ivl =@ . We define



- | =

M) E Jy] + T [T
n>|

Here |5| denotes the cardinality of the set S . Let T be an arbitrary
configuration of spin flips, and let y < T be an arbitrary primitive
contour in a partition of T into primitive contours satisfying condition
D, Sect. I. Them by (1.3} I' N y is charged for any 1' € I;{?l . More
precisely, |I' n y| is odd. Thus |I;i13| is a lower bound for the number
of charged blocks of spin flips (i.e. ones containing an odd number of spin
flips) on a scale 2" . The following theorem shows that N'(y) is a natural

measure of the energy, H{y) , of ¥ .

Theorem 2.2. 1f T© satisfies (1.3) (condition D,c)) then

Hiy) > 5 N'(y) . {(2.7)

Proof. Note that for any configuration T of spin flips, uiﬂj = =] if

and only if
[(i,jl nr| is odd (2.8)
Let xr{i,j} = | if (2.8) holds and 1r{i.j} = 0 othervige. Then

By = 2 E |i-5]7% x () (2.9)
iej
Now, let ' be given by v . If in (2.9) we consider the subsum for which

[i=j] = | we have

£ i 7% G5 = Iyl (2.10)
fi=j|=I !

i<
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Wext, let 1; be an interval in I;{?} and 1 an interval in [

()

n+l m+l

covering I; . We may then choose L such that I; and 1 are

n+l
centered at the same point which we may for convenience suppose to be the
origin. Let

D =D (1) 1 {i,jl i<0<j;i,jE I,

*lmln]

If i and j belong to o then, by the definition of I;(T} i

[{i,jl n y| is odd. Thus 1T{i.j] = | . It is then easy to show that

2 1 il @i =2 T il 2.11)
i,jen_ i,jen, '
i< ie]

for each Dn . It follows from the definition of I;ET} and D“ that the

aels
BT 5 TUEEHY) W ne R

are disjoint. By (2.10) and (2.11)

Hiv) = 2|y| »+ 2 £ I £ |i.—j|'1
=l 1'€T8 (v) i,jep (1")
i<}
L
>3 N v} - "
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§3. The equivalence of N and N' .

Theorem 3.1. There is a constant C independent of M such that

B'(y) < N(y) < c(en)® N'(y) , (3.1)

for any finite subset y < ZE*.

M o= L ]
Proof. Define T“ E In Iu , and set

f(n) = E% (n-t-2)] |

b fin)

where 2M = 2° . We claim that if n is such that 2 < d{y¥) = so that

Iftn}{T} contains at least two intervals = then

N = 17213 O] & 8 e ()
(3.3)
SHZ Remy™ * Mgy

where th'}l -~ |Inh']| . HI;I[T',I = |I;{ﬂ| . We note that 1f n 1is such that

2f ™ 2z dly) then, by the definition of I (y) , N (y) = 0 , so (3.3) holds

trivially. We shall iterate (3.3) to obtain (3.1). To establish our claim,

5 i 11 P o if L1
let I:1 be an interval in If{n}{Y} . By the definition of If{nl there
exists an interval lI in Ii:{n}h} such that

2 ¢(n)
di"{II'IE} < 2M 2

T el e

Henca lI and 'I:2 can be covered by a single interval of length 2"

3 L1
Also if ll 4 I2 and I3 belong to Ifin}{T: and are such that
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3
Ef{lﬂ

dise(l 12] < M 2 . i=1,3 then I, r.nlt2 T 13 can be covered by

ii
a single interval of length " , provided M is large enough. Thus at most
I- L1} 3 »
5 “Hn'! (v¥) | intervals of I“h] suffice to cover all the intervals imn

I?{“}{$} , and (3.3) follows.

Let &

b=2 . Clearly, (3.3) can be applied only if

(3.4)

(=4

fi(n) = % (n-é)] >0, L.e. n>

For each mn we now iterate (3.3) gin) times, whera § gin) is the maxi-

mal number for which
ftin]{n] 1 T

Here f" denotes the m=fold copposition of f with itself. This yields

i

MORI T Bul o e o (v)
TS e ™ (n) £ (n)
i : . {3.5)
£ & i H'm (y) + 2 " |y|
m= £ (n)

Here we have used the fact that |y| = H“E?I s for all n . Now, we make
twe elementary assertions which are easily checked (see Sect. 3 of [5] for

detalls) :

1) 0, 0<n<n

TOREE (3.6)

[(2n,(3/2))""

LHI{nan}I , otherwise

L

where

11“ = 2{—;44} « const. in M
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2) Lec
Smyj * {n|f"(n) = j}
Then
150,50 < 6(3/2)"
By (3.5)
N(y) = E N (y)
n=0
o _ Lim)
< 2y ™ e ()
n=0 m= | f (n)
<Ely] + P E N'(y) = (B+R)N'(y) ,
=1 ]
where

w n
E= £ L(n) <@ * EE—EIF < cnnnt.{lnH]E i
=0 n

with | < p = (in, 32!

follows by summing over n with fnl'.n]I = § Fixed and using (3.7}, i.e.

= fin)
r o§ 2 ()
n=0 m=| £ (n)

- - I
(i 27 by
j-ﬂl:n-l 15,517 N30

| &

I I N'(y) .
=0

| &

(31.7)

< 2 . Here, we have used (3.6)., The bound on F

Remark. Theorem 3.1, (3.1} and Theorem 2.2, (2.7) clearly lmply the lower

bound on H[Ti} stated in Theorem B, (1.B), with e = Ennﬂt‘([nﬂ}hz .
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§4. Interaction energy : the proof of Theorem A.

Let T be an arbitrary even configuration of spin flips, and let
{T+12¢T3¢-+al be a partition of T into primitive contours satisfying

condition D, Sect. 1. We set

and specify vy by the positions {ik]ir.-l 2 of all spin flips contained
W

oo w

in v , where the sites ik belong to Z*, and i, < k= LE e

S T S

We define W(y,[') to be (=1) xinteraction energy between vy and

r" which iIs given by
Wiy, T") = H{r) = H{I") - H{y) (4.1)
Using £2.9) and (4.1} we see that

ce i 42 . A
Wy .M*') =2 £ |i-j] “{x. di.0) #+x €85y = x (0.3}
i<] xr Y r

=4 1 |1-5]7% (iy3dupe (iad) (4.2)
i<j 2

Theorenm 4.1. 1f T =y uy,uy v ... satisfies condition D, Sect. I, then

there is a constant I:3 independent of M such that

0 < W{y,r") = 93H_| inM * Liy) EE

where L{y) is the ln&nri:hni: length of y defined in (2.1), and M is

the constant appearing in condition D, (1.2) and (1.3) -




_zn-

Remark. By (2.2} and Theorem 3.1,
L{y) < N(y) = cinn? ¥ (v)
Thus by Theorem 2.2.

c W een)? Hey)

C 3

S M LGy < 26

Using (&.1) we conclude that

HOP*) + Hiy) =H(r) < const.M ' (eaM)  Hiy) ,

EH Y U T' 1)

([0}

H{T) =H(r")

H{$}{1—:unnt.H-|(th]1} .

I w

Hence Theorem A is proven, and this yields the upper bound on 1/2 Hhi]l

in Theorem B, (1.8), provided M is large enough.

Proof of Theorem &4.1. Let Ih dencte the interval [ik,ik+t] ; where

{i } defines y . Note that by (1.2) if Y, N [k 4 @, for

eik=1,2,1,...

pome o > 2 then I{Tu} E:Ik : [see condition D, b). We recall that

Ii‘rul = K is the interval spanned by the endpoints of yu] « In order to
bound W we define for each Kk three sets of pairs (i,j) of sites, AL

Ek and (‘.k » where

""k = {(i.)i € Ihu}l . for some Y such that

Iifuj c Ik ,and j & Ik] #
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{(i,i)| i€e1

k and j € I{Tul '

i
for some such that H'I-“‘.II [ [k}

2 ((i,§) i €1

=

. and j E I{vul » with

f2

dist(j,I) > Hdh:l! » for some y_ such that

I{TuJ = 1.1 (4.4)

[The sets -[:1_' deal with the evénts where Il.’.-.rn]l =1 Ik_ . Hence by (1.2)

f2 3!2] .

dl‘."rh.'l > I'Ivtll::'n'f!:.r and :ii.st{qrh,,ar} > Md(y)

We define

A o BE [y, *#% *%2 ) ,
T A B Thy

whera iy is the characteristic function of the corresponding sct defined

Eh’ﬂ"ﬂ'ﬂ. L= .ﬁkjﬂhj':k &
Now, we claim that
:':T{iijjxrl{i'ij} - E:.rliilj} +H:*F!{jiij . (4.

Clearly the left side of (4.5) vanishes if both i and j belong to Ik i
for some k , simce then [i,jl1 N y = @ which is an even set. Similarly if
both & and J are contained in the complement of 1(y) the left side of
{(4.5) vanishes. Thus we may suppose that i € Ik , for some &k , and j € I
Now, suppose that the right side of (4.5) vanishes. Then the conditions

id IETa} ; for all Ts L= [h

5)

k‘l-



= 17 =

and
j € 1(y) , for all y_c o
a®2,3,.., and (4.6)
dist(j,1,) < Md(y)*/?

must all be Fulfilled simultaneously. We now observe that if Ym nli,jlée
then (4.6) and (1.2) imply Y, e [i,j] . Thus we conclude that |r' n [i,j]]

is even, hence the left side of (4.5) vanishes, and our claim is established.

In order to prove (4.3) it suffices therefore to show that

. e =2 i u = ;. .
E li=j| © % (i,3) < const.M tnM.{[fn,(i, .-i }]+1] (4.7)
b HE ’ — 2 k+] "k

for I‘ - lk 'Bk ,Et and all k . For convenience suppose i, =0 , i =g,

k k+1
First, we consider the case where :k - Eh . We bound the sum over 1 on

the left side of (4.7) by d(y) times the maximum over i E lk vhich is
less than
-3 const .
diy)( I a2 WY 2 =5 : (4.8)

jeli| > md(y)

For the case Kk = A, ve def ine ur to be the union of all intervals l{wﬁ)

such that

r r+l
- = Ik and 2 « d{Tu} <2 .

By (1.2) (condition D,b)) such intervals are sparse :
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aistl(0,1),1¢r )] > w2712

dist[I(y ),I0v )] > w2 4.9)

for a ¥ a' . Using these inequalities, we can bound the left side of (4.7)

by

2 ® |im3]7% xdtili € u)
T j<D<i<Lk

< const £ I |iihlx{{i|l € Ur}}
r Dei<ik

< const. M lat ¢ 271 577/2

T
< const. Wl one . (4.10)
The factor of 2 in the first line of (&4.10) takes care of a similar sum

ranging over 0 <« 1< < j .

Finally, we consider the case where Iﬁ - Bk . The left side of (4.7)

is then bounded by a sum of two terms, denoted by EI and I, , where L

is the sum over all j € I{vu} ¢ for all Yo for which dlit(li1q1.[n,£]}3;ﬂt.
and [2 ig the sum over all j € li?u} . For all Y, for which

dlst{l{yu}.[ﬂ,t]} < ME . Thus

L 2 & |i-jl|'z < const.M | (&.11)
Qeli<k

b
Next, we bound Ez . Let u; be the union of all intervals It$u1 such that

Irf2 r+l

I(y,)  [-42,-42"""°] and 2" < dlv) < 2 .
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vhere r < [% in, L] . Then I_ is bounded by

2
= R
2E I li=i] * xt{ili € ulh
r =Mecj<Oecic<t
< const. N 'tn(ne) £ 27! 732

r

< const. H_]iu Mi{tng+1) .

{&.12)

The argument leading to this bound is very similar to the one used in (4.10).

Inequality (4.7) follows from (4.8), (4.10), (4.11) and (4.12). With

{4.5) this completes the proof of Theorem 4.1.
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AEEendi:.

In this appendix, we sketch the construction of a partition of an
arbitrary, even configuration T  Z* of spin flips into primitive contours

L

{y.3 in such a way that condition D, Sect. |, is satisfied. The
aoam] 2,360,

;i - . n
construction proceeds inductively over a sequence of length scales 2

o= 0,1,2,...

On scale 2° we first group adjacent spin flips (i.e. ones separated
by a distance of 2°) in pairs, in an arbitrary way. This yields a partition
" [#] 0 = A

of ' into subsets {¢mlutl.1.3.,.. » where each mu consigts of a single

gpin flip or a nearest meighbor pair of spin flips. Next, we regroup adjacent

subsats, uﬂ .uﬂ} (i.e. disl{wi,mf.} = iu} in pairs, in an arbitrary way.

For finite L , finitely many sweeps of pairing operations suffice to provide

us with a partition of T into subsets (v} with the property
aoa=l,2,3,...

¢ o 0 o o .
that dlﬂt{Tn,TqJ »2° , for a # a' . For every Y, we define

—

vS = (ildise(i D) <maaM?) .

We define

o ay (B o . 0
P° = {v, | |y ] is even, and y_ Ny , =@, for ada'},

and inductively,

=1 —
L
PPRa (3] 1¥2] is even, ] ECF ~ U P*) 0 0y, = 8,
L=
~ n-1 2
for Ta.E[I’HUPn},uﬁu.'} .
f=)
Finally, we set
PHEF"-UP"". (A.1)

n=Q
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It is easy to check that condition D is satisfied for P’ and that

dist(y,y") i_Hd{TIEI! , for all v E p° L Y ET~P .

We now suppose that on scale Ek , after k iInduetion steps, we have

arrived at a parcition of I with the folloving properties :

k
ol W i as

where F, = {y }

k ala=1,2,3,... satisfies condition D, and

. k 3/2
dul:{'rn.\-u}l Hd(‘rn:l / ;
for all T € Fk " 1: E ' ~ P, . Moreover
, kK k k
dlil{?“.$“} -l SRR

for Tk

H.Tt iﬂ r“"P ju*vi-

In order to do the induction step, i.e. increase the distance scale

from ih Lo Ik*l s we regroup the subsets {1kl into pairs
I T L [ i F,
K

L. Tz u 12 . in an arbitrary way, but subject to the rule that

dis:{f:.$:} <

for two subsets forming a pair. For finite L , finitely many sweeps of such

pairing operations suffice to partition T anh into new, larger subseta
E+

v Tuel,2,3 , with the property that

Ly

k+1

Yyo» 2 . for pdéd v . (A.2)

dlat{1:*1,T:*l

Let T:*I E {jldint{j_Y:+1} « Hd(T:fllarzl . We define
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-

PN N R ds even, vt AT =0, for wpv)
and inductively
prtl,n . {T:*'| i«,-:”| is even, " ' €(re(Py v "0 P 9
1=0
e lavl e, for e "0,

i=D

Then we define

prtl ¢ E pktl.m

fi =

{this union is finite for L < =), and

F u Fk+|

h+t

By (A.2), T~P =@ if k is such that 2! > L, i.e. the induction
terminates after finitely many steps when L < = , It is straightforvard to
check that P (= F_, for k > [in,L]+1)isa partition of I' satisfying condi-
tion D. For more details concerning a closely related, but more difficult

problem see Sect. 2 of [5].
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