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§ 1. Introduction, basic ideas and main results. 

It has been known for some time that the one-dimensional Ising model 

exhibits a phase transition when the forces are sufficiently long range. If 

the interaction energy is given by 

then there is a spontaneous magnetization at low temperature. This resuit 

is due to Dyson [2, 4] and was obtained by comparison to a hierarchical model. 

On the other hand if 

Rogers and Thompson [7] showed that the spontaneous magnetization vanishes 

for all temperatures. The same resuit is expected if the exponent 1/2 is 

replaced by 1. See [3, 8] for other related results. 

. . . . 2 
In this paper we establish a phase transition when J(r) = 1/r 

This is a borderline case which has been discussed by Anderson and Yuval [1] 

in connection with the Kondo problem. Thouless has also studied this model 

and predicted a discontinuity in the spontaneous magnetization as a function 

of temperature - the Thouless effect [10] . Simon and Sokal [9] have rigorously 

established this discontinuity assuming 

i) there is a spontaneous magnetization, for β= T- 1 large, and 

ii) the spin-spin correlation < σ σ > (β) - < σ > (β)² has a uniform 
x y x 

power fall off for β > βc . 

Some time ago Dyson established the Thouless effect in a hierarchical model 
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[4], 

We shall apply an energy-entropy argument similar to the one we deve-

loped for the two-dimensional Coulomb gas [5] to establish the existence of 

2 
a spontaneous magnetization for the 1/r² model at low temperature, 

T = β- 1 < < 1 , thus establishing i) above. The simplest form of this 

argument is due to Landau and Lifshitz [6], In order to explain their idea 

we first set up our notation, Let 

(1.1) 

denote the energy of a configuration, σ = {σi}i
 £ Z , of Ising spins 

= ±1 . We impose the boundary condition 

= + 1 , for |i| > L , 

where 2L is the length of a finite subsystem, and we shall let L tend 

to °° . It is convenient to introduce the lattice Z* of nearest neighbor 

bonds, b = (i,i+l) , i £ ZZ . (Note that Z* = Z + 1/2 if we identify b 

by its mid point). 

Each configuration σ of spins completely specifies a subset 

Γ Ξ Γ(σ) C Z* , where Z* Ξ Z* n [-L,L] , which is the set of spin flips, 
L  L 

i · e · 

b E T iff τ = σ.σ. = -1 . 
b ii+1 

Note that our choice of boundary conditions implies that the cardinality 

of Γ(σ) (i.e. the number of spin flips in Γ(σ)) is even. Conversely, 

each even subset Γ c Z* of spin flips determines a unique 
JL 

configuration σ = σ(Γ) of spins. Subsets of a configuration 
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Γ of spin flips are denoted by γ , γ’ , γ1 , γ2 , . - - - Given some γ C Γ , 

let b_(γ) be the smallest and b
+
(y) the largest bond belonging to γ , 

and let d(γ) be the diameter of γ , i.e. the total number of bonds of Z* 

lieing between the left end point of b_(y) and the right end point of b
+
(y) . 

(It is assumed that Z* is equipped with its natural order). 

The basic energy-entropy argument may now be described as follows : 

Consider the elementary configurations, Γ = {b ,b+} C Z* , whose energy is 

given by 

for some positive constant C1 . Here, i < b means that i is smaller than 

or equal to the left end point of b , i > b means that i is larger than 

or equal to the right end point of b . [For the reader familiar with [5] 

we note that Η(Γ) is proportional to the electrostatic energy, with respect 

to the two-dimensional Coulomb potential, of a dipole of length d(T) in 

the plane]. The entropy of the class of elementary configurations Γ with 

diameter d(T) = l is l-1 , because there are l-1 such configurations 

for which O
Q
 = -1 . In the approximation in which only elementary configura-

tions are included one concludes that for > 3 

uniformly in L , hence 
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[Here < · >+(β) denotes the expectation in the equilibrium state of the model 
L 

at inverse temperature β with boundary conditions σi = +1 , for |i| > L . 

The limit L > 00 exists, by correlation inequalities [11] ]. 

The above argument is similar to the Peierls argument for the two-

dimensional Ising model. To make it rigorous, we must consider general confi-

gurations of spin flips. This makes our rigorous energy-entropy arguments 

somewhat involved. 

We now establish some further notation and definitions. Each configu-

ration Γ of spin flips is partitioned into disjoint subsets
 γ1, γ2,..., 

called "primitive" (or "connected") contours in such a way that the following 

condition D (D for "distance") holds : 

a) Each γ is even, U Y = Γ , and 
a a 

a> 1 

γ Γ) γ , = 0 , a # a ' . 
a et 

b) dist(y, γ,) > M [min(d (γ ) , d(y , ) ) ] , for a # a' 
α' a - a a 

(1.2) 

c) If γ is a subset of some γ (called a "constituent" of γ ) 
a a 

satisfying the inequality 

3/2 
dist(γ,γ

a
~y) > 2M d(y) (1-3) 

then card (γ) is odd, [ we say that γ is charged] , for all a 

In b) and c) of condition D, M is a constant independent of Γ and γ , 

to be chosen later. 

In order to establish the existence of a partition of each configura-

tion Γ into primitive contours satisfying condition D , 

we choose the finest partition {γ^ of Γ satisfying a) and 
α α = 1 , 2 , · .. . 

b). Then c) is automatically fulfilled (see also Sect. 2 of [5]). The 

uniqueness of {γα} will not concern us- we arbitrarily assign to each Γ 
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an arbitrary, but fixed partition satisfying condition D . We briefly 

comment on the construction of {γα} in the appendix. [For readers familiar 

with [5] we note that the γα correspond to the neutral multipoles, or 

molecules, p , introduced in Sect. 2 of [5]. Charges in the Ising model 

studied here are defined modulo 2 - even, odd. Thus, each y can be inter-
α 

preted as a neutral molecule of spin flips], 

Condition b) ensures that neutral molecules, γα , are far separated, 

and hence their total energy is nearly additive, i.e. 

H(γαUγα') = Η(γ
α

) + H(y
a
') , a # a’ 

[Recall that in the nearest neighbor Ising model the energies of disjoint 

contours are exactly additive]. In Sect. 4 we show 

Theorem A. Let Γ C Z* be an arbitrary configuration of spin flips, 

and let y be a primitive contour of Γ . Then 

dΗ(Γ;Γ~γ) = H(Γ) - H(T~y) 

(1.4) 

> H(y) (l-const. Μ- 1(lnΜ)3) , 

for M sufficiently large. 

Property c) in condition D is our primitivity (or connectivity) 

condition and will be crucial in the energy estimates, (i.e. in the proofs 

of Theorem B , below, and Theorem 2.2). 

Now we estimate the probability that σ = -1 in terms of our primitive 

contours : 
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(1.5) 

where Γ ranges over all allowed configurations, and χ (Γ) = 0 if 

σ (F) = 1 , Y (Γ) = 1 if σ (Γ) = -1 , Here σ (Γ) is the value of the 

spin σ in the configuration Γ . Note that if {γ } are the primitive 
ο a 

contours of F then XQ(T)
 =

 0 unless there is some contour separating 

0 from ±L , Given a set γ of spin flips, let Ι(γ) C IR denote the 

interval spanned by the end points of γ . Thus χ (Γ) = 0 , unless 

0 € Ι(γ ) , for some α . Let α = 1 label the primitive contour of minimal 

diameter enclosing 0 . Then by Theorem A 

(1.6) 

if M is chosen sufficiently large; see (1.4). 

The last inequality follows because, given any Γ , Γ ~ γ also appears 

in the denominator. To estimate the sum over we need rather involved 

energy-entropy arguments similar to those in [5] . 

In order to estimate the energy and entropy of primitive contours γ , 

we introduce a sequence of length scales, 2n , n = 0,1,2,... . Let 



-δ-

n = [ln2 d (γ) ] + 1 , 
ο 2 

where [χ] is the integer part of a non-negative number x . For every 

n < no , let Ν
n
(γ) be the minimum number of open interval s of length 2n 

needed to cover γ . For n > n we set N (γ) = 0 , We define 
ο n 

(1.7) 

The quantity Ν(γ) measures both, the energy of a primitive contour γ 

and the entropy of the family of all primitive contours, γ , such that 

0 E Ι(γ) and Ν(γ) takes some given value, 

Our principal estimates on the energy and entropy of primitive contours 

may now be stated as follows. 

Theorem B. Let {γ } be a partitioning of a configuration Γ 
αα=1,2,3 

of spin flips into primitive contours satisfying condition D „ There exists 

a constant ε > 0 independent of Γ such that for M sufficiently large 

Η(Γ) - Η(Γ~γ ) >½ Η(γ ) > εΝ(γ ) 
Α 2 α α 

(1.8) 

for every a . 

Theorem C. Let C (R) be the collection of subsets γ C Z* such that — L L 

N(γ) <R, R =1,2,3,..., and 0 E Ι(γ) . There exists a constant 

independent of R and L such that 

(1.9) 
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Theorems B and C permit us to estimate the sum on the right side 

of (1.6) uniformly in L : 

« 1 , for β » 1 , 

uniformly in L . Thus we have proved 

(1.10) 

for β » 1 · 

Next, we show that m=0 , for small β . This actually follows from 

the results in [12] . Here, we sketch a proof based on Simon's inequality 

[13] in a form given in [14] : Let I
O
 denote the interval [-lo,lo] , 

l = 0, 1,2,3, .. . . Let j E I
o

 . Then in the thermodynamic limit (L=°° , the 

existence of which follows from [11]) 

(1.11) 

where < · >° (β) is the equilibrium state at inverse temperature β with 

boundary conditions σ = 0 when |n| > l . Since <O σ. >°(β) < 1 , (1.11) 
n ο ο i 

implies that for sufficiently small β 

+ 
< σ σ . > (β) —>0 , as j —► oo ; o j j 

(1.12) 
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see [13] . (Choose e.g. I = {0} . Then (1.12) holds if β < ( Σ |i|- 2)- 1 

° i#0 
For more details we refer to [13] and Sect. 3 of [14]) . By the Griffiths 

inequality [11] 

+ __ 2
 -2 

< σ
ο
σ j > (β) > tanh(β|j |² ) =β|j| 0.13) 

Next, let
 βc

 be the supremum over all those β for which 

< σ σ. >
+
(β) < const. |j|-

 ε 

o j = const. |j| 
(1.14) 

for some ε > 0 . Let β < βc · In (1.11) we may choose 

I = I (j) Ξ [-|j|/2,|j|/2] · It then follows from (1.11) and (1.14) by iteration 
ο ο 2 2 

that 

< o
Q
oi. >+(β) < C(β) | j| |-

 2
 , (1.15) 

for some finite constant C(β) . Thus, for β < βc 

+ o -2 
< σoσj > (β) = j | , as | j | —► 00 

From Newman's Gaussian inequality (e.g. [14] , and refs. given there) it 

then follows that all connected correlations fall off at least like 

2 
l/[distance] if β < β c 

If β » 1 one cannot use these arguments, because the correlations 

in (1.11) are not connected. It is conceivable, however, that our definition 

of primitive contours and Theorems A through C would permit one to prove 

convergence of a low temperature expansion for connected correlations if 

β » 1 and Μ = M(β) is chosen conveniently. We pose this as an open problem. 

The remainder of our paper is organized as follows. In Sect. 2 we prove 



- 11 -

Theorem C. The proof is quite easy in comparison to its higher dimensional 

analogue [5], This is because we can exploit the natural order of Z* . In 

Sect. 2 we also introduce a new measure of γ , N'(γ) , which counts the num-

ber of far separated, odd (i.e, "charged") constituents of γ , and we show 

that if γ satisfies condition D, c), see (1.3), then 

H (γ) > 1/2 Ν' (γ) . 

The following section is devoted to proving that N and N' are equivalent, 

i.e. that there exists a constant C such that 

CN' (γ) > N (γ) > Ν' (γ) . 

These two inequalities and Theorem A yield Theorem B. 

In the final section, we show that the interaction energy between a 

primitive contour and the remaining contours of an arbitrary configuration 

of spin flips is relatively small. Thereby, we establish Theorem A. As shown 

above, see (1.6) and (1.8)-(1.10), this will complete our proof of the exis-

tence of a phase transition and spontaneous magnetization at low temperature. 
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§2. Entropy estimate and a lower bound on Η(γ) . 

An arbitrary collection of spin flips γ C Z* may be specified by 
L 

an increasing sequence of integers {ik}k=1, 2,... , ik < ik+1 . We 

the logarithmic length, L(γ) , of γ by 

(2.1) 

Lemma 2.1. For any collection of spin flips γ C Z* 
L 

N (γ) > L(γ) , (2.2) 

where Ν(γ) is defined by (1.7). 

Proof. We define 

lk= [ln
2
(i

k+1-
 i
k
)] , k= 1,2,.., . (2.3) 

l 
Let Ιl(γ) a. minimal collection of open intervals of length 2l needed 

to cover γ . By minimal, we mean that Il(γ) contains the smallest possible 

number of intervals, i.e. 

card Ιl(γ) = Νl(γ) , 

see (1.7). For every l = (),..., l1 , I (γ) necessarily contains an interval. 
K l 

covering ik which does not cover i
k+1

 ^ . Lemma 2.1 follows by summation over 

k 

Proof of Theorem C. Clearly every γ is determined by fixing i1 and 

specifying (iK+-ik) · By (2.1) - (2.3) and the assumption N(γ) < R , 
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we have 

Σ lk + 1 < L(γ) < R (2.4) 

There are less than 2 ways of specifying (in order) integers l1 + 1 > 1 
K. 

which satisfy (2.4). [in fact it is easy to see that there are precisely 

2
L-

 1 ways of choosing a sequence of integers nk> 1 such that Ση
k
 = L] . 

lk+1 
Furthermore, there are less than 2 k integers z> 1 such that 

[ln
2
z] = lk , since 

2 k 

lk l
k+1 2 <z <2 

Thus we conclude that there are less than 

2
R+1 Gklk+1 (2R+ 1 ) ln2 

2 2 < e 

collections of spin flips γ with L(γ) < Ν(γ) < R and with i1 fixed. 

If we require that O € Ι(γ) then there are fewer than d(y) possible 

choices for i1 and thus Theorem B follows after noting that 

L(Y) R.ln2 
d(y) < 2 γ) < e 

Now, we turn to the definition of Ν'(γ) . Let l'n(γ) be the subcollec-
n 

tion of intervals, I’ , of length 2n contained in I (γ) (defined in the 

proof of Lemma 2.1) which are isolated in the sense that 

J· .
 T

 '
 2

3n/2 2b+3n/2 
dist(I' ,I) > 2M 2 Ξ 2 , (2.5) 

for all I E Ιn(γ) , I#1' .If I (γ) consiste of a single interval we set 

I'(y) = 0 . We define 
n 
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Here |s| denotes the cardinality of the set S . Let Γ be an arbitrary 

configuration of spin flips, and let γ C Γ be an arbitrary primitive 

contour in a partition of Γ into primitive contours satisfying condition 

D , Sect. 1. Then by (1.3) I' n γ is charged for any I' E I'n(γ) . More 

precisely, 1I ' n y | is odd. Thus |I'n(γ)| is a lower bound for the number 

of charged blocks of spin flips (i.e. ones containing an odd number of spin 

flips) on a scale 2n . The following theorem shows that Ν’(γ) is a natural 

measure of the energy, Η(γ) , of γ . 

Theorem 2.2. If Γ satisfies (1.3) (condition D,c)) then 

Η(γ) > ~ N’(γ) . (2.7) 

Proof. Note that for any configuration Γ of spin flips,
 a

^
cr

j
 =

 -1 if 

and only if 

|[i,j] Π Γ| is odd (2.8) 

Let xr(i,j) = 1 if (2.8) holds and xr(i,j) = 0 otherwise. Then 

(2.9) 

Now, let Γ be given by γ . If in (2.9) we consider the subsum for which 

|i-j|=1 we have 

(2.10) 
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Next, let I' be an interval in I'(y) and I . an interval in I (v) 
n n n+1 n+1 

covering I' . We may then choose I such that I' and I , are 
n n+1 η n+1 

centered at the same point which we may for convenience suppose to be the 

origin. Let 

D = D (I*) = { i, j I i < 0 < j , i, j € I ~I'} 
n nn ,j|| J,I,J n+l n 

If i and j belong to D then, by the definition of Ι'n(γ) , 

|[i,j] n γ] is odd. Thus xγ(i,j) = 1 , It is then easy to show that 

(2.11) 

for each D . It follows from the definition of I ' (γ) and D that the 
η n n 

sets 

D (I') , I' E Ι'(γ) , n = 1,2,3,... 
n n 

are disjoint. By (2.10) and (2.11) 

> ½ Ν'(γ) -
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§3. The equivalence of N and Ν' . 

Theorem 3.1. There is a constant C independent of M such that 

Ν'(γ) < Ν(γ) < C(lnM)2 Ν'(γ) , (3.1) 

for any finite subset γ C Z* . 

Proof. Define I" = I ~ I'' , and set 
n n n 

f(n) = [2/3(n-b-2)] , 

where 2M Ξ 2° . We claim that if n is such that 2f(n) < d(y) - so that 

I, (γ) contains at least two intervals - then 
f (n) 

i- ,/2lI£(„)Wl + N’f(n)W 

(3.3) 
< 1/2 Nf(n)(γ) +

 Ν'f
(η)

(γ) , 

where N (γ) = Il (γ)| , N'(γ) = |I'(γ) | . We note that if n is such that 
η n n n 

2f(
n

) > d(y) then, by the definition of In(γ) , = 0 , so (3.3) hold 

trivially. We shall iterate (3.3) to obtain (3.1). To establish our claim, 

let I. be an interval in I". (γ) . By the definition of I", . there 
1 f(n) f(n) 

existe an interval in (Ύ) such that 

3/2 f (n) 
dist(I],I2) < 2M 2 

< 2b 2n-b-2 = 2n-2 

Hence I
1
 and I can be covered by a single interval of length 2n 

Also if I1 , I2 and belong to I"f(n) (γ) and are such that 
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3/2f (n) 
dist (Ii ,I2) < 2M 2 , i = 1,3 then I1

 UI
2 u 13 can be covered by 

a single interval of length 2Π , provided M is large enough. Thus at most 

½|I", (γ) | intervals of I (Y) suffice to cover all the intervals in 
2 1 f(η) n 

I'' (γ) , and (3.3) follows. 
f (n) 

Let 6 Ξ b-2 . Clearly, (3.3) can be applied only if 

f (n) = [ 2/2 (n-δ) ] > 0 , i.e. n> δ . (3.4) 

For each n we now iterate (3.3) l(n) times, where l Ξ l(n) is the maxi-

mal number for which 

fl(n)(n) > 0 . 

Here f denotes the m-fold composition of f with itself. This yields 

(3.5) 

Here we have used the fact that |γ| >Νn(γ) , for all n . Now, we make 

two elementary assertions which are easily checked (see Sect. 3 of [5] for 

details) : 

0 

Un) > 

0, 0 < n < n 
— — o 

[(ln
2
(3/2))

 1
 · ln

2
(n/n

Q
)] , otherwise 

(3.6) 

3 
n Ξ 2(3/2+δ) < const. ln M O 2 — 

where 
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2) Let 

S . Ξ {n|fm(n) = j} . 

Then 

|s .| < 6(3/2)m . 
m, J 

(3,7) 

By (3.5) 

where 

with 1 < p =
 (ln2

 3/2) 1 < 2 . Here, we have used (3.6). The bound on F 

follows by summing over n with fm(n) = j fixed and using (3.7), i.e. 

Remark. Theorem 3.1, (3.1) and Theorem 2.2, (2.7) clearly imply the lower 

-2 
bound on Η(γi) stated in Theorem B, (1.8), with E = const.(lnM) 
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§4. Interaction energy : the proof of Theorem A. 

Let Γ be an arbitrary even configuration of spin flips, and let 

{Ύ2. ..) be a partition of Γ into primitive contours satisfying 

condition D, Sect. 1. We set 

and specify γ by the positions 2,.... of all spin flips contained 

in γ , where the sites ik belong to Ζ* , and ik < i
k +

 1 , k = 1,2,3,... . 

We define W(y,T') to be (-1) x interaction energy between γ and 

Γ' which is given by 

-W(γ,Γ') = Η(Γ) - Η(Γ') - H(γ) (4.1) 

Using (2.9) and (4.1) we see that 

(4.2) 

Theorem 4.1. If Γ =γ U γ U γ U . . . satisfies condition D, Sect. 1, then 

there is a constant independent of M such that 

0 < W(γ,Γ’) < C3M- 1 lnM · L(γ) 
(4.3) 

where L(γ) is the logarithmic length of γ defined in (2.1), and M is 

the constant appearing in condition D, (1.2) and (1.3) · 
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Remark. By (2.2) and Theorem 3.1, 

L(γ) _< Ν(γ) £ C(£nM)2 N'(γ) 

Thus by Theorem 2.2. 

C
2
M
- 1

ln M · L(γ) < 2C
3
C M- (lnM)

3 Η(γ) 

Using (4.1) we conclude that 

Η(Γ’) +Η(γ) -Η(Γ) < const.M- 1(lnΜ)3Η(γ) , 

i. e. 

δΗ(γ U Γ' ; Γ') = Η(Γ) -Η(Γ’) 

-1 3 
> Η(γ)(1-const.Μ (lnΜ) ) , 

Hence Theorem A is proven, and this yields the upper bound on 1/2 Η(γi) 

in Theorem B, (1.8), provided M is large enough. 

Proof of Theorem 4.1. Let Ik denote the interval [ik,ik+1] , where 

{ik}k=1 2, 3,...
 defines γ . Note that by (1.2) if n Ik # 0 , for 

sonie α > 2 then I (γ ) C I1 ; [see condition D, b). We recall that 

Ι(γα) C R is the interval spanned by the endpoints of γ ] . In order to 

bound W we define for each k three sets of pairs (i,j) of sites, A 
K 

Bk and , where 

Ak = {(i,j) i € I(Y ) , for some γ such that 
a a 

Ι(γα) C Tk ’ and ^ * Xk} ’ 
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Bk = {(i,j)| i € Ik
 and j E Ι(γ

α
) , 

C 
for sonie γ such that I (γ ) C Ik } 

α α k 

Ck = {(i, j) |i € Ik and j E Ι(γ
α

) , with 

3/2 
dist(j,I, ) > Md(γ)3/2 , for some γ such that 

k' α 

I(γα) = Ik} (4.4) 

[The sets C
k
 deal with the events where Ι(γ ) => I . Hence by (1.2) 
K. α' k 
3/2 3/2 

d(γ ) > Md(γ) 3/2 and dist(y
α
,γ) > Md(γ) ] , 

We define 

where χx is the characteristic function of the corresponding set defined 
X 

above, X = Ak,Bk,Ck . 

Now, we claim that 

(4.5) 

Clearly the left side of (4.5) vanishes if both i and j belong to Ik , 

for some k , since then [i,j] n y = 0 which is an even set. Similarly if 

both i and j are contained in the complement of Ι(γ) the left side of 

(4.5) vanishes. Thus we may suppose that i € I , for some k , and j E Ik 

Now, suppose that the right side of (4.5) vanishes. Then the conditions 

i 0 Ι(γ ) , for all γ C I 
α a k 
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and 

α = 2,3, . .. , and (4.6) 

dist(j,I
k

) < Md(
Y
)
3/2 

must all be fulfilled simultaneously. We now observe that if n [i,j] 

then (4.6) and (1.2) imply C [i,j] . Thus we conclude that |Γ' n [i,j]| 

is even, hence the left side of (4.5) vanishes, and our claim is established. 

In order to prove (4.3) it suffices therefore to show that 

(4.,7) 

for X
k

 = A
k

 , B
k
 , Ck and all k . For convenience suppose = 0 , ik+1 = l 

First, we consider the case where Xk = Ck . We bound the sum over i on 

the left side of (4.7) by d(γ) times the maximum over i € I which is 

less than 

(4.8) 

For the case Xk = we define U
r

 to be the union of all intervals I(γ ) 

such that 

γ c I
k
 and 2r < d(γ ) < 2r+1 α k a — 

By (1.2) (condition D,b)) such intervals are sparse 
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dist[{Ο,l}, I(γ
α
)] >. Μ2

3r/2 

dist [I(γ
α
),I(γ

α'
 ) ] Μ2

3r/2
 , (4.9) 

for α # α' . Using these inequalities, we can bound the left side of (4,7) 

by 

<_ const. Μ- 1 lnl . (4.10) 

The factor of 2 in the first line of (4.10) takes care of a similar sum 

ranging over 0 < i< l < j . 

Finally, we consider the case where Xk = Bk . The left side of (4.7) 

is then bounded by a sum of two terms, denoted by E1 and Σ2 , where 

is the sum over all j € Ι(γα) , for all γ for which dist(I(γ ),[0,l]) > Ml , 

and Σ2 is the sum over all j € Ι(γ ) , for all γ for which 

dist(I(γ ),[0,l]) < Ml . Thus 

(4.11) 

Next, we bound Σ2 . Let U' be the union of all intervals I(γ ) such that 2 r α 

Ι(γ
α

) C [-Ml,-M2
3r/2] and 2Γ < d(γ ) < 2

Γ+1 , 



- 24 -

2 
where r < [2/3 ln2 l] . Then Σ2 is bounded by 

<_ const. Μ- 1ln M(lnl+1) . (4.12) 

The argument leading to this bound is very similar to the one used in (4.10). 

Inequality (4.7) follows from (4.8), (4.10), (4.11) and (4.12). With 

(4.5) this completes the proof of Theorem 4.1. 
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Appendix. 

In this appendix, we sketch the construction of a partition of an 

arbitrary, even configuration Γ C Z* of spin flips into primitive contours 
L 

{Γ } . in such a way that condition D, Sect. 1, is satisfied. The 
α α=1,2,3,... 

construction proceeds inductively over a sequence of length scales 2n , 

n = 0, 1,2, «. . . 

On scale 2 we first group adjacent spin flips (i.e. ones separated 

by a distance of 2°) in pairs, in an arbitrary way. This yields a partition 

of Γ into subsets {φ°} , where each φ° consists of a single 
y μ=1,2,3,.,. μ 

spin flip or a nearest neighbor pair of spin flips. Next, we regroup adjacent 

subsets, φ° , φ°, (i.e. dist(φ°,φ°,) = 2°) in pairs, in an arbitrary way 

For finite L , finitely many sweeps of pairing operations suffice to provide 

us with a partition of Γ into subsets {γ°} with the property 
α α = 

that dist(γ°,γ° ,) >2° , for α # α' . For every γ° we define 
a a a 

We define 

is even, and , for α φ α' } , 

and inductively, 

is even, 

for 

Finally, we set 

(A. 1 ) 
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It is easy to check that condition D is satisfied for P° and that 

dist(γ,γ') Md(γ), for all γ E P , γ' E Γ ~ P° . 

k 
We now suppose that on scale 2k , after k induction steps, we have 

arrived at a partition of Γ with the following properties : 

where P
k
 = {γ } satisfies condition D, and 
k α a=1,2,3,... 

k 
for all γ E P

k
 , γk E Γ ~ P

k
 . Moreover 

α K µ k 

k le 
for γ , γk in Γ ~ P

k
 , μ # v . 

µ v k 

In order to do the induction step, i.e. increase the distance scale 

k k+1 k 
from 2k to 2k+1 , we regroup the subsets {γK } 2 3 into pairs 

y µ=1,2,3,··. 

le le le · 
= γ

µ u γv , in an arbitrary way, but subject to the rule that 

for two subsets forming a pair. For finite L , finitely many sweeps of such 

pairing operations suffice to partition Γ ~ Pk into new, larger subsets 

k+ 1 
{γk+1 } , 2. 3 , with the property that 

µ µ= 1 , 2 , 3,... 

, for y # v . (A.2) 

Let k+1 _ s i k+1 k+l 3/2} , fi Let γ = {j dist(j ,γk+1 ) < Md(γk+1 )3/2 } . We define 
y y µ 



- 27 -

is even, , for µ # v} , 

and inductively 

is even, 

, for 

Then we define 

(this union is finite for L < °°), and 

p = P u Pk+1 
k+1 k 

k+ 1 
By (A. 2), Γ ~ Pk+1 - φ if k is such that 2 > L , i.e. the induction 

terminates after finitely many steps when L < 00 . It is straightforward to 

check that Poo(=Pk, for k >_ [ln2L] + l) is a partition of Γ satisfying condi-

tion D. For more details concerning a closely related, but more difficult 

problem see Sect. 2 of [5]. 
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