THE PHASE TRANSITION IN THE ONE-DIMENSIONAL ISING MODEL

WITH l/r2 INTERACTION ENERGY

by

Jiirg FROHLICH' and Thomas SPENCER>**

1 7 . o
Institut des Hautes Etudes Scientifiques,

35, route de Chartres, F-91440 Bures-sur-Yvette, France

2Courant Institute of Mathematical Sciences,

New York University, 251 Mercer Street, New York, N.Y. 10012, U.S.A.

Abstract.

We prove the existence of a spontaneous magnetization at low temperature

for the one dimensional Ising Model with l/r2 interaction energy.

Institut des Hautes Etudes Scientifiques
35 route de Chartres
91440 Bures-sur-Yvette (France)

IHES/P/81/51

*
Supported in part by NSF Grant DMR 81-00417



§1. Introduction, basic ideas and main results.

It has been known for some time that the one-dimensional Ising model
exhibits a phase transition when the forces are sufficiently long range. If

the interaction energy is given by

I(=§) = I(x) z_c[in 2n(|r|+~3)]

r + 1
then there is a spontaneous magnetization at low temperature. This result
is due to Dyson [2,4] and was obtained by comparison to a hierarchical model.

On the other hand if

. -1/2 ¥
lim [2n(N)] I J(@)r — 0
N n=1]
Rogers and Thompson [7] showed that the spontaneous magnetization vanishes

for all temperatures. The same result is expected if the exponent 1/2 is

replaced by 1. See [3,8] for other related results.

In this paper we establish a phase transition when J(r) = 1/r2
This is a borderline case which has been discussed by Anderson and Yuval [1]
in connection with the Kondo problem. Thouless has also studied this model
and predicted a discontinuity in the spontaneous magnetization as a function
of temperature - the Thouless effect [10] . Simon and Sokal [9] have rigorously

established this discontinuity assuming
i) there is a spontaneous magnetization, for Bg= 'T—l large, and

ii) the spin-spin correlation < O Uy > (B) - <o, > (B)2 has a uniform

power fall off for B > Bc

Some time ago Dyson established the Thouless effect in a hierarchical model



[4].

We shall apply an energy-entropy argument similar to the one we deve-
loped for the two-dimensional Coulomb gas [5] to establish the existence of
a spontaneous magnetization for the 1/r2 model at low temperature,

T = B_l < < 1 , thus establishing 1i) above. The simplest form of this

argument is due to Landau and Lifshitz [6]. In order to explain their idea

we first set up our notation. Let

— .—- -2 —
HL(U) = I li-j] Q1 cioj) (1.1)
1<J

denote the energy of a configuration, o = {cri}i €z ° of Ising spins

o, = +1 . We impose the boundary condition

o =1, for il 21,

where 2L 1is the length of a finite subsystem, and we shall let L tend
to = ., It is convenient to introduce the lattice Z* of nearest neighbor
bonds, b = (i,i+l) , i € Z . (Note that Z* ~ Z +1/2 if we identify b

by its mid point).

Each configuration o of spins completely specifies a subset

—
1]

= T(o) Z*L , where Z*L =zZ* n [-L,L] , which is the set of spin flips,

ber iff 2y = 0,0:41 = -1

Note that our choice of boundary conditions implies that the cardinality

of T(o) (i.e. the number of spin flips in T(¢)) 1is even. Conversely,

each even subset T < Zf of spin flips determines a unique

configuration ¢ = o(I') of spins. Subsets of a configuration



I of spin flips are denoted by vy, y' s Y s Ygs ane - Given some yc T ,
let b_(y) be the smallest and b+(y) the largest bond belonging to y |,
and let d(y) be the diameter of y , i.e. the total number of bonds of Z*
lieing between the left endpoint of b_(y) and the right end point of b+(y)

(It is assumed that Z* 1is equipped with its natural order).

The basic energy-entropy argument may now be described as follows

Consider the elementary configurations, T = {b ,b } © Z*, whose energy is
-+

given by
=2
H(T) = 4 z ]1-J| > Cl ¢n d(r) ,
i<b_
b_<3<b+
for some positive constant C, . Here, 1 < b means that, i 1is smaller than

or equal to the left end point of b, i > b means that i is larger than
or equal to the right end point of b . [For the reader familiar with [5]
we note that H(T') 1is proportional to the electrostatic energy, with respect

to the two-dimensional Coulomb potential, of a dipole of length d(I') in

the plane]. The entropy of the class of elementary configurations T with
diameter d(I') = £ 1is 2-1 , because there are 2-1 such configurations
for which L =1 . In the approximation in which only elementary configura-

tions are included one concludes that for C]B >3

L  -C,B &n2
1
7 <1-00>E(B)_<_ I e 1

=2

(2-"'1) < 1,2 )
uniformly in L , hence

+ .
<0, > (B) = :12-.0

. :(H)> 0.

0
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+ . . Al
[Here < ->L(B) denotes the expectation in the equilibrium state of the model
at inverse temperature B with boundary conditions ci=-+l , for |i| > L

The limit L -+ < exists, by correlation inequalities [11] ].

The above argument is similar to the Peierls argument for the two-
dimensional Ising model. To make it rigorous, we must consider general confi-
gurations of spin flips. This makes our rigorous energy-entropy arguments

somewhat involved.

We now establish some further notation and definitions. Each configu-

ration I of spin flips is partitioned into disjoint subsets Yo Ygsenes

called "primitive" (or "connected") contours in such a way that the following

condition D (D for '"distance'") holds

a) Each ) is even, U o= r , and
a>1

YanYalzﬂ)u#a'

b) distCB;E,); M [min(d(ya) , d(ﬁx'))]3/2 , for a # a'. (1.2)

c) If y 1is a subset of some Yo (called a "constituent'" of ya)

satisfying the inequality

2M d(\r)y2 (1.3)

v

dlst(Y,Ya'“Y)
then card (y) is odd, [we say that y 1is charged] , for all «

In b) and c) of condition D, M 1is a constant independent of T and vy ,

to be chosen later.

In order to establish the existence of a partition of each configura-
tion I into primitive contours {Yl,yz,...} satisfying condition D ,
we choose the finest partition {Ya}a 1.2 of T satisfying a) and
——— e = e— =, LB

b). Then <¢) is automatically fulfilled (see also Sect. 2 of [5]). The

uniqueness of {Ya} will not concern us- we arbitrarily assign to each T



an arbitrary, but fixed partition satisfying condition D . We briefly
comment on the construction of {Yu} in the appendix. [For readers familiar
with [5] we note that the Y, correspond to the neutral multipoles, or
molecules, p , introduced in Sect. 2 of [5]. Charges in the Ising model
studied here are defined modulo 2 - even, odd. Thus, each Y, can be inter-

preted as a neutral molecule of spin flips].

Condition b) ensures that neutral molecules, Y, o are far separated,

and hence their total energy is nearly additive, 1i.e.

H(YalJYau) ~ H(Ya) + H(Ya') y o # al

[Recall that in the nearest neighbor Ising model the energies of disjoint

contours are exactly additive]. In Sect. 4 we show

Theorem A. Let T < ZE be an arbitrary configuration of spin flips,

and let vy be a primitive contour of I . Then

SH(I';T~y) = H(T) - H(I'~Y)

(1.4)
H(y) (l-const. M_l(inM)B) .

nv

for M sufficiently large.

Property c) in condition D is our primitivity (or connectivity)
condition and will be crucial in the energy estimates, (i.e. in the proofs

of Theorem B , below, and Theorem 2.2).

Now we estimate the probability that o, = -1 in terms of our primitive

contours
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T e xO(I')

L PSR P

7 <=9 > ~BH. (1) o)
e

where T ranges over all allowed configurations, and XO(F) = 0N

cO(T) =1, xo(T) =1 if oO(T) = -] : Here UO(F) is the value of the
spin 4 in the configuration T . Note that if {Ya} are the primitive
contours of T then XO(F) = 0 unless there is some contour ¢ separating
0 from #L. . Given a set vy of spin flips, let I(y) € R denote the
interval spanned by the end points of vy . Thus xO(F) = 0 , unless

0 € I(yu) , for some o . Let o =1 label the primitive contour of minimal

diameter enclosing O . Then by Theorem A

~B/DH(y)) - BH(Tey,)
b e e
: )
0EI(y
5 <l-o_ f(ﬁ) < 1

5 o = BH(D
T

‘(B/Z)H(Yl)
< I e (1.6)
Y
OEI(YI)

if M 1is chosen sufficiently large; see (1.4).

The last inequality follows because, given any I , T ~ Y4 also appears
in the denominator. To estimate the sum over Y, we need rather involved

energy-entropy arguments similar to those in [5] .

In order to estimate the energy and entropy of primitive contours vy,

. n
we introduce a sequence of length scales, 2 , n=0,1,2,... . Let



n = [9.112 d(y)]+1,

where [x] 1is the integer part of a non-negative number x . For every

n

A

n_ o let Nn(y) be the minimum number of open intervals of length 2
needed to cover vy . For n > nO we set Nn(y) =0 . We define

=]

T N _(y) . (1.7)
n=0 1

N(y)

The quantity N(y) measures both, the energy of a primitive contour vy
and the entropy of the family of all primitive contours, Y , such that

0 € I(y) and N(y) takes some given value.

Our principal estimates on the energy and entropy of primitive contours

may now be stated as follows.

Theorem B. Let {Ya}a-] 2 3 be a partitioning of a configuration T
Tleeygdy e

of spin flips into primitive contours satisfying condition D . There exists

a constant € > O 1independent of T such that for M sufficiently large

H(T) - BT~y ) > 3 H(y) > eN(v) , (1.8)

for every a .

Theorem C. Let CL(R) be the collection of subsets vy < 22’{ such that

N(y) <R, R=1,2,3,... , and O € I(y) . There exists a constant C2

independent of R and L such that

CZR
card CL(R) < e . (1.9)



Theorems B and C permit us to estimate the sum on the right side

of (1.6) uniformly in L :

. ‘BEN(TI)
- < l=0g >L < z e
OEI (Yl)
CZ(R+1)
<z PR e
R>1
<1, for g » 1 |

uniformly in L . Thus we have proved

mn

<0, >+(B) m = lim < o, >£ ® >0, (1.10)

for B > 1.

Next, we show that m=0 , for small £ . This actually follows from
the results in [12] . Here, we sketch a proof based on Simon's inequality
[13] in a form given in [14] : Let Io denote the interval [-20,20] .
20=(LI,2,3,... . Let j ¢ Io . Then in the thermodynamic limit (L=« , the

existence of which follows from [11])

+ o : =2 +
S0y 2 (B) <8 iél <0,0, > B) |i-k| “ < 095 ®) , (1.11)
s}
k€10

(e} M .o . . .
where <.+> (B) 1is the equilibrium state at inverse temperature B with

boundary conditions o = 0 when ]n[ > Ro . Since <000i>0(8) <SR GV

implies that for sufficiently small B8

<cooj>+ ®) — 0, as |j| = = ; (1.12)
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e

see [13] . (Choose e.g. IO = {0} . Then (1.12) holds if g <(z [|i| %) .

i#0
For more details we refer to [13] and Sect. 3 of [14]) . By the Griffiths
inequality [11]
+ =2 =2
<000j > (B) 2 tanh(p|j | ) ~pglil i (1.13)
Next, let BC be the supremum over all those R for which

<cooj >+(B) < const. |j[-E . (1.14)

for some € > 0 . Let B < Bc . In (1.11) we may choose

[-lil,l%l] . It then follows from (1.11) and (1.14) by iteration

Io E Io(J) 2

that

<cocj >+(B) < €(B) Ij[-z s (1.15)

for some finite constant C(f) . Thus, for B8 < Bc
+ N .
<ojo. > (B [j| T, as |5 =

From Newman's Gaussian inequality (e.g. [14] , and refs. given there) it
then follows that all connected correlations fall off at least like

1/[distance]2 if B < Bc

If B » 1 one cannot use these arguments, because the correlations
in (1.11) are not connected. It is conceivable, however, that our definition
of primitive contours and Theorems A through C would permit one to prove
convergence of a low temperature expansion for connected correlations if

B > | and M = M(B) 1s chosen conveniently. We pose this as an open problem.

The remainder of our paper is organized as follows. In Sect. 2 we prove
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Theorem C. The proof is quite easy in comparison to its higher dimensional
analogue [5]. This is because we can exploit the natural order of Z* . In
Sect. 2 we also introduce a new measure of vy , N'(y) , which counts the num-

ber of far separated, odd (i.e. "charged") constituents of vy , and we show

that if y satisfies condition D, c), see (1.3), then

H(y) > 1/2 N'(y)

The following section is devoted to proving that N and N' are equivalent,

i.e. that there exists a constant C such that

CN"(y) > N(y) > N'(y) .

These two inequalities and Theorem A yield Theorem B.

In the final section, we show that the interaction energy between a
primitive contour and the remaining contours of an arbitrary configuration
of spin flips is relatively small. Thereby, we establish Theorem A. As shown
above, see (1.6) and (1.8)-(1.10), this will complete our proof of the exis-

tence of a phase transition and spontaneous magnetization at low temperature.



=

§2. Entropy estimate and a lower bound on H(Y)

An arbitrary collection of spin flips vy < 2{ may be specified by
an increasing sequence of integers {ik}k“] 9 , ik < ik+l . We define
“lyLlyann

the logarithmic length, L(y) , of Yy by

L(y) = E {[an, (i, ,=1i,)] +1} (2.1)
LE1RD R 2l

Lemma 2.1. For any collection of spin flips y < Z¥

L
N(Y) > L(y) , (2.2)
where N(y) is defined by (1.7).
Proof. We define
Ye = [£n2(1k+l—ik)] , k=1,2,... . (2.3)

Let Ig(y) be a minimal collection of open intervals of length 2 needed
to cover vy . By minimal, we mean that Ig(y) contains the smallest possible

number of intervals, i.e.

card IR(Y) = NR(Y) .

see (1.7). For every 1§ = O,...,Rk . IE(Y) necessarily contains an interval
covering ik which does not cover ik+l . Lemma 2.1 follows by summation over
k . a

Proof of Theorem C., Clearly every vy 1is determined by fixing i] and

specifying £n2(1k+1-ik) . By (2.1) - (2.3) and the assumption N(y) <R ,



we have

L8, +1

A

L(y) <R (2.4)

There are less than 287 ways of specifying (in order) integers g 1>

which satisfy (2.4). [In fact it is easy to see that there are precisely

ZL_] ways of choosing a sequence of integers n > 1 such that an =1L].
2, +1
Furthermore, there are less than 2 integers z > | such that
[anz] = Ek , since
L L +1
k
2 <z <2

Thus we conclude that there are less than

T, L, +1
L BN O e(2R+I)£n2

collections of spin flips y with L(y) < N(y) <R and with il fixed.
If we require that O € I(y) then there are fewer than d(y) possible

choices for i] and thus Theorem B follows after noting that

aGy) < 2L(Y) < eR.2n2
Now, we turn to the definition of N'(y) . Let I;(Y) be the subcollec-
tion of intervals, 1I' , of length 2™ contained in In(Y) (defined in the

proof of Lemma 2.1) which are isolated in the sense that

3n/2 b+3n/2

dist(I',I) > 2M 2 =2 , (2.5)

for all I € Iéy) , I # 1" . If In(y) consists of a single interval we set

I;(Y) = @ . We define
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N'() = |y[ + 2 [T
n>1

Here |S| denotes the cardinality of the set S . Let T be an arbitrary
configuration of spin flips, and let Yy < I' be an arbitrary primitive
contour in a partition of I into primitive contours satisfying condition
D, Sect. I. Then by (1.3) I' Ny 1is charged for any I' € IA(Y) . More
precisely, |I' N y| 1is odd. Thus |I;(Y)| is a lower bound for the number
of charged blocks of spin flips (i.e. ones containing an odd number of spin
flips) on a scale 2" . The following theorem shows that N'(y) 1is a natural

measure of the energy, H(y) , of vy .

Theorem 2.2. If T satisfies (1.3) (condition D,c)) then

1

H(y) > 5 N () . (2.7)
Proof. Note that for any configuration T of spin flips, Uioj = -1 if
and only if

|[i,j1 n 1| is odd (2.8)

Let xr(i,j) =1 if (2.8) holds and xr(i,j) = 0 otherwise. Then

A2 S
H(D) = 2 2 [i-] 7 x (L) - (2.9)
i<j
Now, let T be given by vy . If in (2.9) we consider the subsum for which

|i—j[ = 1 we have

i35 G5 = vl (2.10)
gl
i<]
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. . . . . .
Next, let In be an interval in In(Y) and In+l an interval in In+l(Y)

covering I; . We may then choose I such that I; and In+ are

n+1 1

centered at the same point which we may for convenience suppose to be the

origin. Let

Dn = Dn(In) = {1’J| 1 <0 < i [T LR | € In+lNIn}

]

If i and j belong to D~ then, by the definition of I&(Y)

l[i,j] n y[ is odd. Thus xy(i,j) = 1 . It is then easy to show that

2 2 Ii-jl'zxY(i.j) =2 1 |i-j| > 12, (2.11)
i,j€D_ i,j€D '
i<j i<j

for each Dn . It follows from the definition of I;(Y) and Dn that the

sets

Dn(I') Y S I;(Y) ,n=1,2,3,...

are disjoint. By (2.10) and (2.11)

HGy) > 2]y] +2 £ & y li-5]"%
n>1 I'€l’ (y) 1i,j€D (I')
i<j
[
> 5 N (y) . =
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§3. The equivalence of N and N'

Theorem 3.1. There is a constant C independent of M such that

N'(y) < N(y) < cenm)? N'(y) (3.1)

for any finite subset y < Z* .

Proof. Define I" =1 ~1', and set
n n n

f(n) = L%(n-b-Z)] R

b

where 2M = 2 . We claim that if n 1is such that Zf(n)

< d(y) - so that

If(n)(y) contains at least two intervals - then

N < 17218 SO+ N ()
(3.3)
S U2 Ne oy O + Ny (),
where Nn(Y) = |In(Y)I y N;(Y) z II;(Y)I . We note that if n 1is such that

Zf(n) > d(y) then, by the definition of In(y) 5 Nn(Y) =0, so (3.3) holds

trivially. We shall iterate (3.3) to obtain (3.1). To establish our claim,

. . " . L} L n
let I be an interval in If(n)(Y) . By the definition of If(n) there
exists an interval 12 in If(n)(Y) such that
—g- f(n)
dist(Il,Iz) < 2M 2

pb ,nb=2 _ 2

1A

Hence I, and I, can be covered by a single interval of length 2

Also if I I, and I, belong to I"(n)(y) and are such that

1’ 72 3 i3
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3
—Q-f(n)

dist(Ii,I ) < 2M 2 , 1i=1,3 then I vl I. can be covered by

2 Y %3

a single interval of length 2" , provided M 1is large enough. Thus at most

_%|I;(n)(7) |  intervals of In(y) suffice to cover all the intervals in
If(n)(Y) , and (3.3) follows.
Let § = b=2 . Clearly, (3.3) can be applied only if

O

£m) = [$@9] 20, ie. n> (3.4)

For each n we now iterate (3.3) 2(n) times, where ¢ = 2(n) 1s the maxi-

mal number for which
My s 0.

Here f" denotes the m-fold composition of f with itself. This yields

)
N(y) < I 2""’”N'm (v) + 27N N2
m=1 f (n) f"(n)
E -m+ | 1 -9 (3.5)
< ¥ 2 N CORE S
m=1 f (n)

Here we have used the fact that |Y| 3_Nn(y) , for all n . Now, we make
two elementary assertions which are easily checked (see Sect. 3 of [5] for

details)

1) 0, 0 <n<n
(3.6)

[(£n2(3/2))—] . Enz(n/no)] , otherwise

\

where

n, = 2(%~+6) <const. &n M
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2) Let
s . = {n|f" = j}
" n|f (n) = j
Then
m
|sm’j| < 6(3/2)" . (3.7)
By (3.5)
N(y) = L Nn(\r)
n=0
® _ 2(n) _
< I {2 R(n)lyl-+ T 2 i N'm ()}
n=0 m=1 f (n)
<E|ly| +F © N'(y) < (B+F)N'(y) ,
=1 j
where
- =) = 2
E =32 '\ <mn + E(??)p < const.(LnM) " ,
n= n

(Rn2 3!2)_] < 2 . Here, we have used (3.6). The bound on F

with 1 < p

follows by summing over n with fm(n) = j fixed and using (3.7), i.e.

2 N' (v)
n=0 m=1 fm(n)

| A

-m+ 1
r(z 2™ s_.]) N'(y)
j=0 m=1 S

36 L N'(y)
1=0

| A

n
Remark. Theorem 3.1, (3.1) and Theorem 2.2, (2.7) clearly imply the lower

bound on H(yi) stated in Theorem B, (1.8), with € = const.(QnM)“2 .
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§4. Interaction energy : the proof of Theorem A.

Let T be an arbitrary even configuration of spin flips, and let
{Y’YZ’YB""} be a partition of T 1into primitive contours satisfying

condition D, Sect. 1. We set

r'= u vy
in

and specify <y by the positions {ik} of all spin flips contained

k=1,2,...

in y , where the sites i, belong to Z*, and 1i, < k=1,2,3,....

k k * kel ?

We define W(y,T') to be (=1) x interaction energy between <y and

r' which is given by
=W(y,T') = H(I') = H(T'") - H(y) (4.1)
Using (2.9) and (4.1) we see that

WO =2 8 [i-3] TR0 L) * x (19D - X (D)

i<]
=2 .. -
=4 1 i3] 7%, (G, 3 xpe (1,3) (4.2)
i<j ¥
Theorem 4.1. If T =y Uy,Uy v ... satisfies condition D, Sect. 1, then

there 1s a constant C3 independent of M such that

where L(y) 1is the logarithmic length of y defined in (2.1), and M is

the constant appearing in condition D, (1.2) and (1.3) -
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Remark. By (2.2) and Theorem 3.1,
2
L(y) < N(y) < C(2aM)” N'(¥)
Thus by Theorem 2.2.

c.M 'on M- L(y) < 2C,C M) (enm) H(y)

3 3

Using (4.1) we conclude that

H(T') +H(y) -H(T) < const.M ' (2nM) H(y)

SH(yUT';T")

11

H(T) - H(T")

3_H(Y)(l—const.M_l(RnM)B) >

Hence Theorem A is proven, and this yields the upper bound on 1/2 H(Yi)
in Theorem B, (1.8), provided M 1is large enough.

Proof of Theorem 4.1. Let I denote the interval

K , wWhere

[ik’ik+l]
{ik}k=l,2,3,_.. defines vy . Note that by (1.2) if Yo NI # ¢ , for
some a > 2 then I(Yu) c Ik ; [see condition D, b). We recall that

I(Yu) < R is the interval spanned by the endpoints of Ya] . In order to
bound W we define for each k three sets of pairs (i,j) of sites, Ak‘

Bk and Ck , where

Ak = {(1,J)|l € I(Yu) , for some Y, such that

I(Ya) c Ik , and j € Ik} >
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Bk = {(1,3)[ i€ Ik and j € [(Yu) .
c
for some e such that I(Ya) c Ik}
Ck = {(1,3)[1 € Ik and j € I(Ya) , with

dist(j,Ik) > Md(y)y2 , for some i such that

I(Ya) o Ik} (4.4)

[The sets €, deal with the events where I(Ya) > I, . Hence by (1.2)

k
aty) > ma)?? 302y

k
and dist(ya,y) > Md(y)

We define
* = + +
where Xx is the characteristic function of the corresponding set defined

above, X = Ak,Bk,Ck .

Now, we claim that
XY(i’j)Xlﬂ(itj) - X.: ]’ll(i)j) "'X: Ft(j)i) - (4.5)

Clearly the left side of (4.5) vanishes if both i1 and j belong to Ik -

for some k , since then [i,j] N y = @ which is an even set. Similarly if
both 1 and j are contained in the complement of TI(y) the left side of

(4.5) vanishes. Thus we may suppose that 1i € Ik , for some k , and j € Ik.

Now, suppose that the right side of (4.5) vanishes. Then the conditions

i¢ I(Ya) , for all Y, © Ik
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and
. c
j € I(Ym) , for all Y, c I, |,

@ =2,3,... , and (4.6)

dist(j,I) < Md(y)>/2
must all be fulfilled simultaneously. We now observe that if Yy nli,jl#¢
then (4.6) and (1.2) imply Y, € [i,j] . Thus we conclude that [r' n [i,j]]

is even, hence the left side of (4.5) vanishes, and our claim is established.
In order to prove (4.3) it suffices therefore to show that

‘E.|i*3'|_2 X

i<j X

(i,§) < const.M_lﬂ.nM.{[2n2(1k+]—ik)] F1} 0 4.7)

for Xk = Ak ,Bk ,Ck and all k . For convenience suppose 1, = o, Lyl = Qe
First, we consider the case where Xk = Ck . We bound the sum over 1 on
the left side of (4.7) by d(y) times the maximum over 1i € Ik which is
less than
=2 t.
d(y)( = 3177 <« =5== (4.8)

3/2 M

je|i] >Md(y)

For the case Xk = Ak we define Ur to be the union of all intervals I(Yq)

such that

Y, © Ik and 27 < d(Ya) :'2r+1

By (1.2) (condition D,b)) such intervals are sparse :
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dist[{0,2},1(v )] > w23t/ 2

aistl1(y),I(v, )] > m2>*/?% (4.9)

for o # o' . Using these inequalities, we can bound the left side of (4.7)

by

2z ¢ |i-j|7? x({ili € u_})
r j<O<i<g

| A

const I I |i|-lx({i|i €Uu_})
r O<i<g g

const. M-lﬂnﬂ I 2r+l 2—3r!2

r

| A

const. M-] nf . (4.10)

| A

The factor of 2 in the first line of (4.10) takes care of a similar sum

ranging over 0 < i<g < j

Finally, we consider the case where Xk = Bk . The left side of (4.7)

is then bounded by a sum of two terms, denoted by El and I, , where El

is the sum over all j € I(Ya) , for all . 8 for which dist(I(Ya),[O,R])jiﬁﬁ,

2
dist(I(Ya),[O,R]) < MZ . Thus

and I is the sum over all j € I(Ya) , for all Yu for which

2,2 I |i~j|_2 < const.M | (4.11)
0<i<y
j<-Mg

Next, we bound 22 . Let U; be the union of all intervals I(Yu) such that

3r/2]

I(y,) < [-M2,-M2 and 27 <dly) < oT*1 ,



- 2% -

where r < [g- ¢n, 2] . Then I, 1is bounded by

=3 " 2
¢ 1=2  orils e vt
2% L li-317% x({jlj € ulbH
r -ML<j<0<i<q
< const. M lan(up) z 271 273/2
r

< const. M 'tn M(2n2+1).

(4.12)

The argument leading to this bound is very similar to the one used in (4.10).

Inequality (4.7) follows from (4.8), (4.10), (4.11) and (4.12). With

(4.5) this completes the proof of Theorem &4.1.
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Appendix.

In this appendix, we sketch the construction of a partition of an
arbitrary, even configuration T c ZE of spin flips into primitive contours
{v } in such a way that condition D, Sect. 1, is satisfied. The

o'o0=1,2,3,...

7 . . n
construction proceeds inductively over a sequence of length scales 2 ,

nE=m0 N2 e .

On scale 2° we first group adjacent spin flips (i.e. ones separated
by a distance of 2°) in pairs, in an arbitrary way. This yields a partition

. 0 . .
of T 1into subsets , where each ¢  consists of a single
u

0

ot -1,2,3,..

spin flip or a nearest neighbor pair of spin flips. Next, we regroup adjacent
o o . . 0o o 0 . . . .

subsets, wu ,¢m, (i.e. dlst(wu,mu,) = 2") 1in pairs, in an arbitrary way.

For finite L , finitely many sweeps of pairing operations suffice to provide

us with a partition of T into subsets {Yo} with the property
aa=1,2,3,...
. o © o . ) .
that dlSt(Ya,YuJ >2" , for a # a' . For every Y, we define

YO = GGldist (a9 <M a2

We define

00 _ o o . o S 1
P {Yu| |Ya| is even, and e n Y, @, for a#a'l ,

and inductively,

n-1 S
on . ')
P2 (y0[¥0] is evem, yo €T ~U P N0 YD, =0,
=0 a Q
o L ol
for LA ET~UP™), a#al
=0
Finally, we set
P =P° = y PO . A.1)
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It is easy to check that condition D is satisfied for P° and that

/2

o
dist(y,y") E,Hd(Y)3 , forall YEP |,y €r~P°

k . .
We now suppose that on scale 2 , after k 1induction steps, we have

arrived at a partition of T with the following properties :

) K
Sl SR o VR EPET YRR

where Pk = {y } satisfies condition D, and

a o=1,2,3,...

. k 3/2
dlst(va,vu)z_Md(Ya) ’

for all 5 € Pk . YE €T ~ Pk . Moreover

dist(vt,Yt) > 2~ ’

k k .
~ P
for Y, Y, in r ko M Fvo.

In order to do the induction step, i.e. increase the distance scale

from 2k to 2k+1 , we regroup the subsets {Yk} into pairs
p=1,2,3,...
wg = Yt U Yt , in an arbitrary way, but subject to the rule that

diSt(YE,Yi) T

for two subsets forming a pair. For finite L , finitely many sweeps of such

pairing operations suffice to partition T ~ P, into new, larger subsets

k+1 .
{YU }u=]'2’3’... , with the property that

k

dist(yE+l,Y:+]) O o T S, (A.2)

Let yt+} - {j|dist(j,yt+1) < Md(Yk+l)3/2}

. We define
n
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—

k+1
P02 ] L te even, T AT m g, o g
H

and inductively

~1

prtise o {Yk+]| | k+l[ is even, Y Kl E(Dw(P v U prtls 2)) .
u M -
2=0
Yk+l n Yk+l =¢ , for Yk+l ¢ (P. v U Pk+1 Q)}
U v k
=0
Then we define
n=0
(this union is finite for L < «), and
_ k+1
Pk+l = Pk upP
: A k+1 . . .

By (A.2), Pk+l =@ if k 1s such that 2 > L, i.e. the induction

terminates after finitely many steps when L < «» . It is straightforward to
check that P (= Pk’ for k > [ﬁﬂzlﬂ+1)isa partition of I satisfying condi-
tion D. For more details concerning a closely related, but more difficult

problem see Sect. 2 of [5].
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