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Abstract

Ferromagnetic lattice spin systems can be expressed

as gases of random walks interacting via a soft core repulsion.
By using a mixed spin-random walk representation we present a
unified approach to many recently established correlation
inequalities. As an application of these inequalities we
obtain a simple proof of the mass gap for the l{¢4]2 quantum

field model, We alszo astablish new upper bounds on critical

temperatures.



§0. Introduction

In [1] Symanzik introduced a representation which
expressed the ¢i guantum field model as a classical gas of
Brownian paths which interact only when they cross. In
[2,3] and in this paper we have davalnp;d variants of this
formalism which provide a transparent way to establish many
inequalities.

In the first two sections we reconsider Symanzik's formalism.
We prove two identities. The first identity expresses the spin
system as a gas of random walks. In §3 we use this representa-
tion to obtain new upper bounds on critical temperatures. The
sacond identity is a mixed spin-random walk representation.

We combine this identity with chessboard estimates [4]

and Griffiths [5] inegualities for N = 1 or 2 components to
obtain many new and useful results: In §4, we apply this
formalism to show that for a class of classical spin models
whose single spin distribution is monotone decreasing, there
is always exponential decay of correlations. Hence there is
no symmetry breaking. In § 5 we give a new proof of the
Lebowitz inequalities [6] and some generalizations related to
Newman's Gaussian inequalities [7]. The following section re-
derives correlation inequalities recently found by Simon,
Lieb and Rivasseau [8,9,10). The final section of our paper

is devoted to a new and elementary proof of the mass gap for the



weakly coupled l{¢4}2 model. The proof uses only inequalities

of Lieb - Rivasseau type and integration by parts.

We conclude this introduction by remarking that our
results would extend to N » 3 component models once the
Griffiths inequalities are established. Some of our methods
apply to lattice gauge theories. The first steps along
these lines have been made in [3]. For abelian gauge groups,
the technigues of [3] can be combined with the approach of
the present paper to yield new correlation inequalities for
lattice gauge theories. This, however will not be developed

in the present paper.



§l. Random Walks and Matrix Inverses

The prototype for the expansions we are about to discuss
is the following representation for the inverse of the finite

difference Laplacian:

=1 ||.u|
m’-8),, = [ [—— (1.1)
J wii+j Y2v +m

where 4 denotes the finite difference Laplacian associated
with functions on the lattice = ¥ v = ), 2,ee) 3 w 15 a

nearest neighbor random walk of arbitrary length, |wu| , on
] 2

=, starting at i « z" , and ending at j ¢« " : m" >0 .
The finite difference Laplacian, 4 , is defined on
functions on 2" by
(af); = a;4 £03)
]
byjomo=ae A A=
(l.2)

1 if i, j are nearest neighbors in 2"

0 otherwise,

The formula (1.1) is a standard result in the theory of
random walks, however, in order to make this paper sclf con-
tained we will give the easy proof balow.

The Laplacian is associated with nearcst neighbor ferro=-

magnetic interactions. We will give a more general expansion



than (l.l1l) in order to be able to discuss systems with arbi-
trary ferromagnetic two body interactions.

Let J be a matrix such that

J.. = J3.. 20 4f 4 =3

ij ji
{(1.3)
=0 if i =3
i, j are indices that run over a finite set, L , called
the "lattice"™. Let A
As Oy Bg5), Ay % 0 Wi, (1.4)

be a diagonal matrix. The notation in the following lemma is

described below it.

Lemma 1.1:

=nik,w)

k (1.5)

-1
A=J),, = (m J.) o A
ij M:E*j gew - kel

If the right hand side converges absolutely, the matrix

inverse exists and is given by (l1l.5).

Hotation: w 1is a randeom walk on L . This means w 18 an

ordered set of ordered pairs, called "steps" and denoted by s .

W - t‘illiz] ¥ {iz;ia}lltn.;{iﬂ_l;iﬂl H ilfi-i--lin [ 4 L] {l-ﬁ}



ni{k,w) is the number of times «w "hits" k . By definition,

this is the number of elements in {il*iz"‘*‘iﬂ} which are
equal to k . The "length” of w , |w| is N which

is also equal to
ju] = § nik,w Xa7)
k

By convention we shall consider a random walk of length one

to be a single site (which is hit once). Such a random walk

has no steps and an empty product in (1.5) is set equal to

Ona . (These conventions allow (1.5) to be corroct whon 1 =
w2 L+ ) oe=e i1 = 1 , 1H ; j ., (1.8)
Remarks: (i} this lemma contains (l1.l1) as a special case.

fii) the expansion converges ahsolutely if for

soma £ » 1

PR Jij 0 Vi L (1.9)
3

Proof of Leamma 1.l: expand the left hand side of (1.3} in a

Heumann series

=1 =] =1

T SRl B O Wt 7 At R © Pt Pt S

The right hand side of (1.5) is a rewriting of this series.

For example

)
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-1 -1~ -1
(A "IN TTK 7)., o= i X oo aeo X Ty g A
) Bl e Sl !
ilni_iﬂu]
'H{kpﬂj

=J(n J) n i

k
W Sfw 8 kel

where w is summed over all two step random walks of the

form

w = {Iil’iE} - {iz,ij} £ il = i , i3 = 3 , iE e L}

End of proof.

We shall also need a formula, related to lemma 1.1, for
the determinant of & - J . let A be the set of random walks
that begin and end at the same (arbitrary) point. We divide
A into eguivalence classes by letting Wyv Wy € A be equi-
valent whenever by ety have the same steps and the order of
the steps in W is a cyclic permutation of the order of the
steps in By - We call the equivalence classes "random loops".

Single points are not randem loops.

Given a random walk w (or a random loop wn) define

Jﬁ E I J (1.10)

S

Lemma 1.2

g T =1 -n{i,g)
det (A -J) if Li} I;FTE Jﬁ iii ]



all random loops.

7

w is summed over
.

i1f the entries of A

The sum converges absolutely

are sufficiently large in absolute value.

E
a1

1 1

det{a-J}“l = det / det"lil - A

1 1

= det 1

exp{-tr log (1 - A"~ J))

expl | % er(a”l oyk
k=1

= det A T

€ u

SEm

-1 v 1
= det A expl | E _E B
k=1 icl wilisi
|w| =k

J!j .

1?1"[1#—-11].

L

Jje L

We have just used the idea in the proof of lemma 1.1.

tinue with:

1

= det A~ expl] ( n Jg) o

(3.
W Bew je L i

When the determinant of &

lemma 1.2.

We con=

is written out explicitly we obtain



2. Symanzik's 1 r repres a

parts with random walk.

The hamiltonian for our lattice spin system is

(a)

53

(a)
si“ J

=
i
]

B[

1,§=L a=l,cee N i1

a labels the components of our vector-valued spins g

J is ferromagnetic. We impose the conditions:

Jij = in x D if i =3, =0 if i= 3

{2.1)

{2.2)

The unnormalized expectation corresponding to our hamiltonian

is given by

[F] = ‘ n asle gitgii e Hp
i

i
o

(2.3)

where F (the "observable"™) is a function of the spins.

The normalized expectation is

<F> = [F)/2

(2.4)

where 2 = [1l] is the "partition function". The single =pin

distributions which are described by the smooth functions a;

are assumed to fall off faster than exponentially, i.c.

ct

giltl e 0 as £ +» =

(2.5)



for all c© and all i . We make this strong assumption
solely to avoid uninteresting technical problems. Once we
have achieved our estimates we shall relax it by taking

suitable limits in those estimates.

The polymer repréesentation.

Following Symanzik, [l], we shall show that our lattice
spin systems can be rewritten in terms of a gas of “random
loops™ or polymers. Our integration by parts formula is pre-
sented second because it is a mixture of this representation
and the spin representation. However most of our results
rely on the integration by parts formula so this section can
be skipped if the reader wishes.

We substitute into the partition function, 2 , according

to

-ia. E?

g;].:nj} e J 1aa (2.6)

&2
9;(83) ‘ j

T
r is the contour Im a = -3 where 1 is chosen suffi-
ciently large, positive, that lemmas 1.1, 1.2 will bc appli-
cable to AI - J . gla) is the analytic continuation of
the pourier transform of g . It exists by virtue of our
assumption (2.5).

We obtain
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+9
= e — . 8 .
exp [ g a, j] (2.7)

-
The S5 integrals are gaussian and can be evaluated:

_HN
2= 146, da; det 2 (21a-3) (2.8)
r i
where 2ia - J is the matrix
Elﬂk dkt - Jkl : kK, L el {2.9)

We use lemma 1.2 to represent the determinant:

. -n/2
Z = da . 2ia, -
JP n dag gj{njl{ u]l
i
. e:p[% TJ q (2ia y gl (2.10)
o ¥y 7

We expand the exponential and write the result as

S TR
t= 1 At '3 ) expl-Uluyreensun )] (2.11)

rl"l:' L_I!liti-i;ﬂfn

whare

"n‘l;?-]].- = w |1i,|n:

eup[—u[gl,...,gnil n [r dai gi[ni}{Iiaii

i

B

(2.12)

ﬂtii'fll'!!r?n} n{ir‘fl}+--!+ n{i-ll_\l_ln} +
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{2.11) displays the partition function for our lattice spin
system as a partition funection for a system of interacting
random loops or "polymers”. We show, below, that exp - U is
real and positive.

We can repeat this derivation for ([P) , an unnormal-
ized expectation of a polynomial in the spins. The step
analogous to the gaussian integration in going from (2.7) to

(2.B) uses

- -£ {ﬂ-} {ﬂ} -
J n as; exp(-3 ¥ 5. My, Ei ) B(S)

i i,§.0 ~d
N
2 1 . ] =1 i
= det “[Mlexpl(s |} M ) P‘ {2.1%)
£ 5,30 asi“’ i3 ;s;“l 20

where M = 2ja - J . The exponential of the differential
operator is defined by its power series which is truncated
when acting on a polynomial. We shall not prove this fairly
well known formula for the moments of a gaussian integral.

By expanding H-l using lemma 1.1 and continuing as before
for 7 we obtain a polymer representation for (F] and
then, by dividing through by % . for «P> . To e¢xpross the
result we introduce:

i 8" :
ﬂ{ul;uzr--qpup:l - R {'i'] 1

E n!
n=0 [

_‘l.l!ll-f‘w

* E“F['uhﬂl:-llrtﬂnllﬂlrttlﬂﬂpn (2.14])
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for p=1,2,... . [It is useful te note that 3{u1,¢;..wplfﬂ

is a correlation function for the polymer gas.|

Theorem 2.1 (Symanzik):

af? glol el sm I Zlugoeneru) /2
1. 2 EP llll.r-!l-fhlp
P=1;2,.--. . yreeeoby are summed over all random walks

that begin and end at lattice sites in {11""’12p! in such

a way that 'il""*ilp} is partitioned into disjoint pairs,

onea for each of ”1""'”p .

Remark: exp - U is real and positive because in (2.14) we

can substitute

(2i2)7" = — 1 ; J gPml g (2ia)E 4, (2.15)

and fFind that

" tn-l

—— g(2t) dt (2.186)
o fn=13!

l da gla)(z2ia) " = I
I

in can be fractional).

Integration by Parts .

We are going to elaborate on the following well known

formula:

nds, exp(=% J s, M, 8,) 8 F
lil oy 143

j' "k
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- J 2 ds; expl-% igj S; Myy Sy E"; 35, (2.17)
{(Until we reach the end of our discussion we will treat
scalar spins for simplicity). The real part of M is posi-
tive definite. To cobtain an anologue of this formula for
our spin systems (which are non gaussian) we proceed as
before by substituting into ISiF] the representation (2.6).
If the a integrals are deferred, the S5 integrals become
gaussian and (2.17) can be applied with M chosen to he the

matrix

M= 2ia - J {Eiﬂj Ejk - ijl (2.18)

wia obtain

. -%H
[§, F] = l nda. g.la.) I ndas, e * .
i rg 3 3 5 3
2. B =1 aF
. - L 2ia - J —_— 2.19
expi-i E a, ) '}:E{ a ki 5, ( )

We axpand (2ia - J}-l uging lemma 1.1 and interchange the

sum over «w with the a , § integrals:

; . o=ni(d,m)
= J J J nda. g.la.)(2ia )" .
k wtisk “Jpr 5 37313 ]
-%H o 2. aF
. l g ﬂSj e expl=-i % ay Ej] 33; (2.20)

How we do the a integrals using
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J da gla) (2ia) " e g (8% + 2t} dt (2.21)

-iag® _ [* _¢*d
o (n-1)1

which can easily be cbtained with the help of (2.15), (2.18).

We obtain

Theorem 2.2.

Define measures dun on [0, =) EE

ﬂﬂn[t] g 5[t} dt 1f n =0
tnul
El—n—_mﬂt if n=1,2;.:. (2.22)

To each random walk, « , on L assign the product measure

dv () = n dv (.} {(2.23)
(T icL n{i,e) 1
then for any i ¢ L , a=1,2,...,N
(a) iF
I8y F] = E _E Ca, J dumtg}[f—Tzf] {2.24)
j wsi-+j 35,
] <t
where
= = 2 -H.
[( leE E [ I gii§1-+2tii dgi e {+) {2.25)

and F is any polynomial in the spins.
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§3., Estimates on the critical temperature

We consider classical N component rotators in the

"infinite volume limit®". Thus, we assume the lattice L is
a finite subset of an infinite translation invariant lattice,
L, +» of points in ®’ . The simple cubic lattice zY is
an example but other geometries are acceptable. We suppose

the coupling matrix J is translation invariant, i.e.,
J = (J, = [(Ji, 1) {3.1)
Wyy) li-31

besides enjoying its usual properties, see (2.2). We set

) ’f (&) la)
H £ -y slel 5 g
L i,jeL am1 + 13 3
[(+)], = f n o as!® us‘i-na-H‘-;.;
L el i i
(o3> ® [()], /8. ., %, = (1], (1.2}

and we define the {or:an) infinite wvolume limit by

<F> = lim <Fr, {(3.3)
LAL
where F is an observable depending on finitely many spins.
In (3.3) it may be necessary to pass to a subseguence to
obtain existence of a limit. We shall shortly be presenting

estimates which are uniform in L which guarantee such

compactness,
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Dafine the coupling strength J by

g § 4 (3.4)
jeL 1)

[By translation invariance J is independent of i] . By
definition the critical coupling 3; is the supremum over
values of J for which the two point function <5£“J 5;“!:
tends to zero exponentially fast in |i-j| as |i-§| » = .
The following theorem is an improvement of a mean field

theory bound due to Simon and Aizenman and Simon [8,11].

Theoram 3.1

(i) Fer an HN- component classical rotator

(3.5)

|
w
=

(ii) If the lattice is simple cubic in v dimensions

and Jij =g 0 if 1 529 j are nearest neighbors, zero

atherwise, we can improve (3.3) to

-1
N 1
o 2 3 - wom) 3:5)

Tha f£irst part of this theoram is due to Alizenman and Simon
[8,11]. It says that the mean field theory prediction is a
lower bound. We will present a proof of this theorem using

Symanzik's representation. It should be pointed out that
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Symanzik's polymer representation is really just a good way
of organizing the conventional expansion in terms of graphs
and so we are really not doing anything very different from

the graphical methods used by Simon and Aizenman , although our

method potentially gives a somewhat stronger result; see (3.8), (3.9) and (3.12).

Proof of Theorem 3.1 :

We shall show that if

JEE J., <N (3.7)
i 5
J
then
@) @) 1 s I |
0< ﬂﬂi Sj }L < % (1=K J}ij § (3.8)

uniformly in i,jE L and L , and the r.s. of (3.8) tends te 0 , as

|i-j| + = . More precisely, if (3.7) holds and

; |i-j|1'1i. cm

i J
for some m = 0,1,2,... then
I |i.j|EII <sf“} Eﬁuj? < const. <* , (3.9)
j BiTSE

uniformly in L .
For, by (3.8) and Fourier transformation

(e},

0 ¢ s\ s RN PP AP LU s P Pt WA

<l
S L R

where

Sk) = £ o ke (-3);
i

ij
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Sioce J.. >0 ,
1] =
J(k) £ 3(0) =T

Thus, by (3.7),
a3t
is a bounded, continuous function of k . This proves that

-y 1n7?
i3

tends to 0 , as [i-j| + =
If r |i-31%%,, <=
j )

then iikj is I2m times continucusly differentiable. The same is true for
a-v"Y5an™ , provided (3.7) holds. Therefore (3.9) follows. Part (i)

clearly follows from (3.B).
By Theorem 2.1 and a simple approximation argument,

(a) (a), _ -1 ., 1 ,N,nm
<8; Bj L “=§*j J Z L T fiﬁ .
(3.10)

= E m[*ﬂ:ﬂli”u'ﬂn.ﬂ}]
W g we pid
L ~y

Hote that the r.s. of (3.10) is manifestly positive, since “ﬂﬂl""ﬂﬂn‘“]

iz real and Ju 0.

We calculate expl(=U] wusing (2.12), (2.16) and find

-'J'.'I.Ei.l.u ' EEEN L _.'!'nl‘,i.u:l
~] T
“P{'“{E 'EEER ] -ﬂ}] L n 2-
RRRRRE {€L
(3.11)

Ty e pg)) + aCh,0)-1)117



19

By comparing this with the corresponding evaluation of
axp -[u{wl,...,gn}] — which is the same as (3.10) except

that nfi,s) is omitted — we find

-nli,n)
li.u”'i n .2' ! &
iew

ﬂ(’iq-l) (E+nti }-1) = expl- U( ) {3.12)
2 2 "W 2 FR - F ll":'l-l'"'i"illn &

When this bound is substituted into the expression (2.9) for

exp “[ul¥1l---fﬁn

the two point function, the factor of 2 can be cancelled
out (see (2.11)) yielding

=nik,w)
<% s;“:'sl_ s [ a0 g g (3.13)
wiiv+d ¥ kew S(z+1)...(z+nilk,u) -1)
22 2
. -nik,w)
Each factor is less than N g0 (3.12) is less than
1 1
- - nAg Jg) (3.4

wil+] Sew

See (l.10).

If in {(3.14) one drops the restriction that w lie withim L (as

opposed te L_ ) one can resum the series over w and obtains
1 =-1..=1
Sy O d (3.15)

This completes the proof of (3.8) and of part (i) .
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To obtain part (ii) we return to (3.12) and substitute

in our special form for J :

[

{a m
<5 gy, g/2)" 1
= =3 2 m§|i-j| willull=m kew

=1
» [;_l(g'l'l)!--(;;""nlkiﬂlﬁ}-l)] ] {3-15]

vhere ||w|| is the oumber of steps of w .
As in part (i) we enlarged the sum over random walks to all

w gtarting at i of length greater than or equal to |i=-j| .
In addition ¥ is understood to be a nearest neighbor random
walk. At each step « has 2v choices of nearest neighbors
to hop to. For each of these possibilities the weight in the
sum in (3.16) is less than or egual to EN . We can do better
than this by noting that if w© steps back to the site it just
left, then according to (3.16) the weight is less than or
equal to {EEZIIHHE-+I}"1 because then the site is visited
twice and this is the factor associated by (3.16) to the
second visit. Thus if

-1
(v -1) + (8/2)(5+1) = a <1 (3.179

we can dominate (3.16) by a geometric series just as in (3.15)
and conclude exponential decay for the two point function.

This means that the critical temperature E¢ obeys

BN(2v - 1) + a:unz':'l x 1 (3.18)

and this is the same as (3.6). End of proof of theorocm.
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i4. Mass Generation in Spin Systems With Monotone Decreasing

Single Spin Distributions

In this section we combine the random walk expansion
(Theorem 2.2) with reflection (or Osterwalder-Schrader) posi-
tivity, in the form of chessboard estimates and a spectral
representation of the twoe spin correlation, in order to
exhibit a mass gap in a class of spin systems with decreasing
single spin distributions. The requirement of reflection
positivity places strong restrictions on the two spin
couplings, J , and the boundary conditions imposed on the
system; see e€.9. [4]. In order to avoid technicalities which
would obscure the basic simplicity of our arguments, we only
conslder periocdic b.c. and nearest neighbor couplings,
although our results hold under rather more general hypothescs.
(For an analysis of general two spin couplings, J , compat-
ible with reflection positivity, see [4]). Thus, the lattice,

L, is a simple cubic lattice wrapped on a torus,

L = EEH]_ i e EEH ¥ (4.1}
w
where le--”Hu are finite integers, and
1, if |i=-3j] =1
J,, = (4.2)

1]
0 , otharwise
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We only study the behavior of the two spin correlation,
csi‘“:' sj"“:':- , a=1,...,N, where N=1,2,3,... is the
number of components of a classical spin, £ , but our
methods have an obvious extension to higher spin correlations.

The Hamilton function of the spin systems considered in

this section is given by

(e) _ _ {a) _ {a)
H s -~k u-;,...,ﬂ Ei [nij E ﬁij]sj
i,j¢L
z =% (8, (8, =) B) (4.3)
whera aij g Jlj - 2w Eij F nqd e » 0 . (4.4)
Clearly, 4 = & is the finite difference Laplacean with

L
periodic b.c., and the term proportional to © serves as an

infrared (long distance) regulator which is to be removed at
the end of our subsequent estimates, (i.e. ¢ = 0) . The
unnormalized expectation of our system in finite volume is

defined by

_anle)

-1} J el n g(8)ad, , (4.5)
iel

where dﬁi is the Lebesgue measure on ZEHf and g is a

monotone decreasing function on [0,w) . The equilibrium

expectation at inverse temperature 5 for the system confined

to L is given by
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canb€) o oy i) o iE)
L z | ]L IEL ' (4.6)
where zi“ is the partition function, and

<> 2 lim lim <-»

34 (4.7)
rul LAR

is the equilibrium expectation in the thermodynamic limit,

and with the infrared regulator removed. The guantities

[hIifl . :-:éfi and Eifi are defined in the same way, but

with ‘gtﬁi:- replaced by g(§+2t.) , 0 St, < =, forall i.
For couplings, J , as in (4.2), periodic b.c. at the

boundary of L , see (4.1), and !-IH:| given by (4.3), reflec-

tion positivity holds, and consequently one obtains the fol-

lowing chessboard estimate (see [12]):

I1f|1.|

{e) [e)
z = i[85 . {4.8)
L.t = .1 Letity
with |L]| = (2N,)... (2N ) . We define
(e) t (e} {e),1/|L]|
EL (£) = [EL,gatsz 1 [ (4.9)

Then (4.8) vields

Lemma 4.1.
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We will now pause to outline the idea underlying this

section. It is to combine Lemma 4.1 with

< (a) {u]>ll:]' = l T ( n Enlk;u}) Jdelt.:l .

uli+j kel

-{2vte) Bt _(e) ,, ()
s N e A 7B
keL Sl

which comes from Theorem 2.2. We bound the ratio of partition
functions on the right hand side using lemma 4.1, whereupon
the t integrals become independent. (See the definition

of dum[E} in Theorem 2.2). Each ¢t integral has the form
either:

= n-1
[ Tﬁ:TTT e L2v+e) BE {c}[t} dt with nz=1

Qar:

J & (£) o= (2v+el Bt

zl‘_”n-.; dt  (n = 0)
Q

depending on whather the random walk hits the associated site
nzl times or no (n = 0) times.

If the single spin distribution g{ﬁf} is monotone
decreasing, then

{:]Itl £ 4

and by a straightforward calculation each t integral is

less then or equal to 1/(2vA) . If we impose a slightly
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stronger condition than monotonicity on g!gz] ¢ then we
can improve this to

1im 1lim ° :EEJ{:} < 1

eN0 LAZ L
and then each t integral with n = 0 is less than or equal
to Ef(2ve) with € < 1 . By combining the representation
for the two point function with lemma 4.1 and this estimate we

ocbtain

<l b (% L. .8 tilﬂn{k'ul) !9l
wil+]) kel

using the fact that in getting from i to j the random

walk « must hit at least |i-j| sites giving at least

li-j| factors of £ . The guantity in round brackets is,

by (l1.1), the matrix inverse of -&

This bound is actually divergent if the lattice is 2
or less dimensional because the inverse of -5 does not
exist. If the lattice is more than 2- dimensional it
exhibits exponential decay of the two point function.

We will now go through this argument in more detail.
Our main result is Theorem 4.4. We will show by means of a
gspectral representation of the two point function that the
difficulty in two or less dimensions, alluded to abowve, can
be circumvented. This is the purpose of lemmas 4.2, 4.3,

given below.
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We now turn to the spectral representation of the two -
spin correlation: We single out one axis of the lattice L ,
e.g. the v-axis. Vectors in a plane perpendicular to that
axis are denoted by 3 ; k r eBtoc. Let :-:{E} be a thermo-
dynamic limit of the states :-:itl . Clearly AL L) BT
translation invariant. We may thus define the partial

Fourier transform

() i,0) 5190 g, ot

" zeﬂtﬁ-ﬁ} (sle)  sla) Mo
| (3,00 (m,t)

L]

Lemma 4.2.[4)

If *Sinl qulhtt} tends to 0 , as |i-j| + = then

s (k,0) s (&, 0909 - I doa, By 2l%1°1

(4.10)
(A}
where ﬂnl',ﬂa is a positive measure, for all k ,
u‘l:kﬂi'ﬂ, unlriiilu-l-ﬂ
supp dpl=,k) & [-1,1] . (4.11)

Moreover

dp (3, %) 1—:*- < 4/8 (4.12)
(L)
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Remarks: 1. Representation (4.10) is a fairly straight-
forward consequence of reflection positivity and the spectral

theorem; see [4]. For the couplings J defined in (4.2),
supp do (+,k) £ [0,1] (4.13)
which follows from the positivity of the transfer matrix of

these spin systems. By Fourier transformation in t we

obtain from (4.10)

. (e) - 32
(ls“‘:'~:1:}||2 = ] dp (A,k) i A ; (4.14)
AfL+A" = 2X cnsku}
with k = Ii,hu] « The infrared bound proven in [13] guarantees
that

(2-2cosk 1§50 |2 (4.15)

|4
=
"

The upper bound (4.12) then follows from (4.14), (4.15) and
(4.13) by noticing that

2

max (2-2cosk } < 4l1+0)7 7,

v/ 2_
*Iﬁkust 1+ zhcnﬂkv

2. We define the inverse correlation length (mass gap)

mi{g.c) by
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(e)
mig,e}) 2 lim = % in (51{:] Eiu} >

bt (0,0) “(0,t)
(4.16)
= lim - = tn [ l ds O,y lEl-2
T
(k) (n)
Suppose now that for some m(g)
m(B,e) X2 m(g) > O (4.17)

for all ¢ > 0 . Then we claim that
supp dp (-,Kk) € [ﬂ,a-miﬂi]

for almost all K . This follows directly from (4.10) and

(4.13). Thus, using (4.12),

v de00,K) £ 4
(i) g(l-e

-m!rs!]I
and, by Lemma 4.2,

(e) (e)
{a) (o)
Gio.0) Sio, 1::->

[ |

@ ae s

{mrtl
(4.18)
-m(glt

< 4e e

- Atl_e TH{E-}]
uniformly in ¢ . By a suitable choice of the v-axis,
It] & % dist((3,0) , (m,t)) . Therefore we obtain from (4.18)

v

by taking e =+ 0
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{a) o(a) 4 =(m(g) /o) |i=1|
G 5D ——— S0 . (4.19)

Lamma 4.3.

If for all ¢ » 0 and for constants Kile) = = and

£ <1, z independent of e ,

fa) . la)N\(e) |i-3]
G 8% 5 Kee) = ; (4.20)

provided Hl""*Hu are sufficiently large (depending on

i, j and ¢) then inegqualities (4.18) and (4.19]) hold.

Proof .

Under the hypotheses of Lemma 4.3, in particular (4.20),

we find
(e)
- 1 {a) (a)
m{,c) = tf’: =T <5{u,u: S(0,t)
glnlfz >0 ,
uniformly in ¢ . This being (4.17), we are done. [ |

We are now prepared for the first main result of this

section.

Theorem 4.4.

If for ¢ » 0 sufficiently small and 1. large enough

:ic’{t} (defined in (4.9)) is monotone decreasing in

t + [0,=] , H-“-]
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for all t for some finite ¢t then

n ¥
G sy < e Fagli=d] 513
1 8% 2=9 , :

in particular there is no long range order and no symmetry

breaking in the two spin correlation.

Remarks. l. When N =1 , (4.21) implies that all con-
nected correlations fall off exponentially, with decay rate

b
=

Cy o This follows by using FKG inegualities, [14].

2- Lat h- [ﬂlpriilﬂn] ¥ H m {jljlllfjn} ¥ ﬂ-nd

Sﬁ n {um}
= | 5, . Let X +a= (j, +a,...,]_+a) . Suppose
X pel  In 1 n

now that there exists some o ¢ (l,...,8} which occurs an
odd number of times in A and B . Then, under the hypoth-

eses of Theorem 4.1,

=C.d

P B D:cx,ve 2

X “Y+a t4.22)

The proof of (4.22) is a straightforward extension of our

proof of (4.21) which is given below.

3. We shall show that the hypotheses of Theorem 4.1 are

true if, for example,
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(a) 1 |B] & R,
g(g?) =
0., |5 =R .

For N =1, this result is already contained in [15].

(b) gfﬁzi is strictly monotone decreasing, and

[9®18" as < -,

L1

for some n > 0 ; e.qg. g[ﬁz} = tl-b|§|z} , with a = N

(when v 2 3 , strict monotonicity suffices).

(e} w2 3 ; g monotone decreasing, with

0<g = lim a3 < qt0) £ gy < =
HE®

These results are essentially best possible, because if g
were positive and constant the model is a massless Gaussian

whose spin-spin correlation does not have exponential decay.

Proof of Theorem 4.4.

If we combine the random walk expansion (Theorem 2.2)
with the chessboard estimate (Lemma 4.1) we obtain the fol-

lowing upper bound on the two spin correlation

) la) 1
P Eiu>=ﬁ ) m ﬁn""“]'zﬁﬂ (nik,w)) » (4.23)

where
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fed: s ;I £l 2yeelpt

(el
z, m=nr" z. (t)de .

0
The factor exp([-(2v t+c)Bt] has appeared, because the diagonal
part of the Hamiltonian J.'ih:I y Bee (4.3), must be treated as
one factor of the single spin distribution in Theorem 2.2. We

now claim that

{2v+e)™ g" =£ﬂ{n: pll_”{nj

is monotone decreasing in n , and (4.24)

(e)

i g sl

if ¢ is so small and L so large that the hypotheses of

Theorem 4.4 hold. In this case

(a) (alN(e) o 1 “nik,wu) .
g1 -8 = 1 n (2v +e)
3 ] ]>" = B u:i+y keL
2 [PEE}llH 1131 (4.25)

We have used the fact that sach « starting at i and ending
at j must visit at least |[i-j| different lattice sides at
least once which by (4.24) yields the factor tpiE][lJIIiFjl

By Lemma 1

I ono(2v+)Pikew) o -thﬁ ; (4.26)

wild+] k
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where AL is the finite difference Laplacean with periodic b.c.

at the boundary of L . Thus, using (4.24)

(a) . lai (c) | i=3 |
G 5 5 & Kle) z i

with K(e) = sup % Ec-—ﬂLlI% , and =z <« 1 . By Lemma 4.3,
i,3
(@) lad(e) 4 - (m(B)/¥v)|i-9|
1im 5. 5. f= - a ]
L-"E"<:' j B“_Emm}}

with mig) = ¢n 1/2z » 0 . This reduces the proof of Theorem

4.1 to the

Proof of (4.24):

By rescaling the ¢t variable we sce that

s n-l . -
Bt (n) = J =TT © £ Ziv)ae
0

with z(t) = zﬁsj{tfﬂflu+cl] « The measure

n=1

; E =t
dPn{t} = m a dt

is a probability measure. By hypothesis, zﬁc}[t] is monotone
decreasing, and :itiiu] =1, Thus z(t) is monotone
decreasing and bounded above by 1. We now extend the definition
of dP“{t} to arbitrary real values of n : 1 . In order Lo

prove the first part of (4.24) it then suffices to show that
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a "
& | ey 3o

- J dP_(t) logt z(t) - ] dp_(t) logt

. I dr_(t) z(t}

S
=

The l.8. can bée rewritten as
J dp_(t) dP_(t')[log t-logt']lz(t) -z(t")]

which is negative, since logt is monotone increasing, and
z(t) is monotone decreasing. Finally, the ineguality

pi*’{ll - l e Zit)de 5 2 < 1

follows immediately from the definition of z(t) and the
hypotheses of Theorem 4.1, provided ¢ is small enough and
L large enough. This completes our proof of (4.24) and of

Theorem 4.1. [ |

Remarks. If g is a monotone decreasing function on [0,=)

then

ied /L

(e) = (e)
(€) = IIL,tFEL ] -

o)
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with

_ale)
g L) =|EEI-I

2
Lt ® i q{§j+2t}d§ , (4.27)

jeL )

is clearly monotone decreasing in t . 1In order to find
examples of single spin distributions, g , for which the
hypotheses of Theorem 4.1 are true, it therefore suffices to
choose g to be monotone decreasing and then show that, for

¢ small and L large

{lﬂ =
zL t) = zu  dop B tﬂ i (4.28)
for some 1;1:.l < =,
Examples.
(a) 1, |12 <nr
g(3?) =
0 , otherwise.

In this example

i
(8, (4, -c)B)
(e) l a* L n giE2 4+ 2¢)48,
jeL 1 ]

= (1-2e/mNILI/2 J exp[E(1 - 2¢/R) (8, (4, - €)8)]
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.o qtﬁ}d’é
JeL

3

N|L|/2

= (1= 2t/R) Z'(t)

Thus

3 {e) R T | {e)
5t 109 2T (€)= 5% TET lod S

N -1, Er1 (e)
= ~(1-2t/R) +-E-§;f1—{§,{-nL+E]§J>L () , (4.29)

whare t-*ﬁ”ft:l is the expectation "'"1{.“ . with g
replaced by B8(1-2t/R) . By the infrared bound [13]

1 (e) N
-Gt G ® < gy

Since supp g = {5 : |§| < R} ,
t{jgnlzjitiit} Zc R2 , and
<&%T {§r=-nL §£>£tjit} s 4vR2

Thus

<T117I"§* (-4, + B (e

(4.30)
2 min(er ey ¢ 4VRD +eR%,
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hence, using (4.29),

%1“53:?:]'1} -1 'E ﬁﬁ"' Bec R

(4.31)

+m.i.nl% T=3¢/% * 4d8v R)

Thus, for all 0 <e <1, R <=, there exists some

t1 « B/2 such that
] (e}
Ei-lug:L (€} = 0 ,;

for t » tl s With upper bounds on 5%-1ﬂq zﬁz]it} which
are uniform in ¢ ¢ (0,1) and in L . From this (4.28)

follows.

(b) g(§2] is strictly monotone decreasing,

and I g{§1][§|” 45 .= , for some n , 0 . (4.32)
In this example the verification of (4.28), and hence of the
hypotheses of Thecorem 4.1, proceeds again by estimating
2 logz/*'(t). For ¢ , 0 and L bounded, it is immediate
to verify that

3 (e) , 22 (e}
= logz ' (t) = 2{g" (5] + zt}>L_t <0

with g'(x) = é% gix) .
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Thugs it suffices to show that

2 [e)
lim 1lim (g {§ +2¢) ; (4.33)
:HﬂlleE- <: :ﬁ'

for some interval of values of t of positive measure. BSince
g'(x) <0, for all x ¢« (0,=) , (4.33) can fail only if
| = = , almost surely, in the limit L A z¥ , e™~a0 .

This possibility can be excluded if

1im 1im /3| (e) < c, (4.34)
cwd Loz’ < H>L t

for some n * 0 and some constant Ct which is finite for

all t < = ., Using the chessboard estimate [12]) we find

(e) + 1/l
(e) -BH 2 3 (e)
51D . [[ e : g (85 + 20 |5," dEjIEL,J

By definition of H{c] , see (4.3) and (4.4),

0 <u') ¢ 1/204a+e)( ] |§.j[:’1
jeL

Thus

&Il s [ 9@ r2018]" 8 -

[4.35)
4] b
- (4d+c) 8
' (J g(E +2¢)e 2 uﬁ)'l
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By (4.32), the r.s. of (4.35) is finite for all ¢t < = ,
with a bound which is uniform in L and ¢ . This yields

(4.28).

Remark. In dimension v z 3 condition (4.32) is superfluous,
i.e. (4.28) holds for every strictly monotone decreasing g .

For, by (4.24) through (4.26)

25 (e) L. -1
<|§ﬂ| >Lt|: : HI lI'|IIa-'-':'hl.ll'.| ¢
hence

. & dnfe) <1, ,,-1
i":g Ll;-t;“ < ol >'l-.'l: = 504 (xR

which implies (4.34) with n = 2 and Ct EC <« =» jindepen-

dent of t , provided v z 3 .

(c) v 23:; g a monotone decreasing function, with

0 <9, - lim g(3%) < a(0) gy <. (4.37)
18]+
As in examples {a) and (b) we must verify (4.28): Given ¢t ,

let

H1{§2} - [1-—1]q{§2] + 1 g{ﬁz +2t), and
{(4.38)

() —pnte) 2. .o
EL (1} J o ﬁ” 'Iliéji ﬂﬂj .
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Then

dr = log z'®)

TE L (1)

lnq-zitiit} =
(4.39)

Lo B2 +2e) - gD (1) ar ,

Ot O — s

where f-ritjitl is the finite volume expectation defined in
(4.6) with g replaced by 9, By (4.37) we have, for t » 0 ,

g8 +20)- g8} < - ¢, (4.40)

if £ |§n| < R for some positive constants & and

El 5
Rl < EE  (depending on t) . We define
1, B &l5%]|&R
X(8) = Then
0 , otharwise .
N 2.5 (el = {e)
GE +2ey - 9@V (10 g —eEND T 0 . (4.41)

Therefore the proof of (4.28), as LA~ 2" and w0 , is

complete if we can prove that

te)
GED ) 20, (4.42)

for L large, ¢ small and t large enough. We now claim

that if conversely
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&GEN 0 =0,

then (4.43)
<:{{§ "'ﬂ-:' :E:l' ad ¥

for all a :.EH ;, for all e 20, LS z' . Consequently,

Eﬂ = = , almost surely. However, in v 2 3 dimensions,

e) 1, ..~1
1im  1im CEEX N (1) £ Z(=0)

cwd Lag® - VL il e
i.e. En is finite, almost surely, when ¢ > 0 and L 18

large enough. Therefore

vim lim @, +aD (0 50
twl LAZ.

N

for some a¢R and,; by (4.43);

) (r) :
lim limu <}1§ﬂﬂ}L {t} = 0§ .

<

From this we conclude that

s Im, z, (e <1,
eyl Loz "

for t » 0 . By (4.25) and (4.26)

(a) _fadn(e) _ L. . .=1 _|i-j|
1im 1i 5. 5. £ ={-4).. 2 y
£ Wl L’Q}"<' L B 1]



with

o=
=t le)
o J 2 1im Iim 2 (t } d& = 1

o enDd LA= fg{2u+ ;
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Thus, we are left with proving (4.43). We start by noticing

that the measures

(c)
=gH 2
(t)) "~ e n gTIEj]dEj

jel

Ic!

are gquasi-invariant under the substitution

with a Radon-MNikodym derivative, p;{ﬁ} ¢  given by

'%{2d+c};2 -a:!EG-EI

ﬂ;(g} = e “ .

We now show that for all p ¢ =

(p+:§JP)L (x) <€, .

for some finite constant EP independent of . and

First, we note that

(4.44)

(4.45)

L .
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-+ 3p
th:[§u+u12h’qti§§H :tgnfg_‘aap < .,
for all p <= and all t and ¢t . Second,
<BEP[3|?E 3, -85 - :]>1t.“ (1)
|k|=1
< exp(op® ga%/2) ,

by Gaussian domination [13]. Finally, using the chessboard

estimate [12]

-3pge (B -a)
G 0= e Y i
(d.467
2. %2 . 1/|L]
< % felal fﬁ[zi”h.a:-;zi”ha .
fe) - . . gi
where EL (r,a) is given by (4.38), but with qti j}
replaced by g1uﬁ§+3p5121 , for all j . (To prove (4.4#)

one first applies the chessboard estimate and then changes
variables, Ej - Ej + 3p3 yr J ¢ L , using the invariance

of {§,nL§} under that change of variables). It is easy to
see that the second factor on the r.s. of (4.46) is bounded
by gnfq_ . This completes our proof of (4.45). In order to

prove (4.43),; we note that

8y =@ (1) = &x(B) g (B (1)

B [(K{EHI)IE" {tlll‘fq{(nsﬁlpzit] (e)) P



1/p (e} 1/q
S Cp PGBy " () '
with 1/p + 1/9 = 1 , and we have used (4.45).

This completes the proof of (4.28) for example (c).

44
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§5, Gaussian Inequalities

The Lebowitz inequality (6], originally proven for

Ising models in zero magnetic field, says
Gy 8y 5 505 5y 506, 5D
+ Gy 506 s+ 6 s G 50 (5.1)

In [7], Newman generalized these inegqualities to

&y B s %{si sj)(fa—i;_l) (5.2)

where F 1is a polynomial with positive coefficients. ((5.1)
follows from (5.2) by taking F to be a product of three
spins). He gave (5.2) the name "Gaussian Domination"

because the inequality would be saturated if <+> were

gaussian.
The inequality, (5.1), has been extended, [16], to mudoels
of the form (2.3) with W = 1 components and

=ViE,;)
2 i
giisi} = g {5.3)

where V is even and V''' 2 0 on the positive real axis.
Results for N =2 , 3 , 4 components also exist [17].
We shall rederive and extend these results for N =1 , 2

Our class of models has single spin distributions of the form



i6

2
-£, (8%)
A (5.4)

gifsf} =g

with f£"(t) 2z 0 for t ¢« [0O,=) . This class of single spin
distributions overlaps with but is not identical to the Ellis,
Monroe ,Newman class (5.3). Many well known models such as
Ising models and &4 field theories are in both. Some good
features of our proof are that we obtain the stronger version
of gaussian domination (5.2) and our method is simple and
suggests many variations on the same theme. We will explore
one of these in the next section.

We shall demonstrate that these inequalities are really
a consaquence of Griffiths II inequalities. For N = 2
components, the analogue of these are the Ginibre inegualitics,
[18] ; and s0 our method will also produce gaussian domination
regsults for N = 2 ., The analogous Griffiths-Ginibre type
inequalities are expected but not known to hold for N = 2 ,
80 this is the obstacle to extending our results to N = 2 .,

Let F be a polynomial in 5§ with positive coefficients.

By Theorem 2.2

'<Fi €> = E ) L

Wwii+y

. aF
[ dv_(t) [ﬁ—]t/z (5.5)

]
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(the 2 normalizes ([-] to <->) . Furthermore

Z
Tt
%], -+ e

(Recall that Z, [l]t] . By the Griffiths II inequality

as stated in (5], p. 120
aF
(—351 ¢ is decreasing in t

as can be seen by differentiating with respect to t, « t .

Therefore
Et
z as] 5 <as->t=ﬂ
i t: s K
Ty
- F
- T(fs‘i‘)
and so
Ze
<Ei F> i E E Ju l duu{E‘J “‘E.' '<3_EIE.F_ (5.6)
J Lwiis] b

By taking F = Sj in (5.5) we see that the guantity in
curly brackets is <Ei 5j> and so [(5.6) becomas (5.2). In

this way we obtain the following gaussian domination result:
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Theorem S.1.

EE‘ <{+)> is ferromagnetic {Jij = 0) and has single

.EPin digtributions satisfying (2.5) and

2
9{53] - E-f[s )
with f£"(t) z 0O _on [0,=) , then

Gy s E CH E'j} (‘E;) (5.7

wherea F can be any function of S5 of the form

with each F, being either odd or even and Fi(t) , Fi(t) 20 on [0,=) .

We can allow F to have this more general form because the Griffichs II

inequalities hold for this class of Ffunctions.

Remark. For N = 2 the same methods show that for a =1 , 2

<Eiu1|| E> ” 1E<E1E-:l:l 5;-:)>< aF

al
iEi

provided F is a polynomial in S{“} with positive coeffi-
cients and f is a polynomial with positive coefficients for

tarms of degree greater thanm 1 .
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§6. Application to the Lieb-Rivasseau improvement of Simons

inequality.

We consider the same class of models as in the last sec-

tion:

<=> 2 [=]/]1]
2
£, (24 "
[-1;lneiid§ie“-
i«L
(a) (a)
H=z=5 J s P ; J,., 20
$,3eL i ij "3 i]

and we raguire that exp [-fi} obey (2.5) and

£i(t) = 0 if t z 0 (N = 1)

for 1 - component models , and for two-component modele
£, must be a polynomial whose coefficients for degree greater
than 1 are positive. Furthermora, as in the last section,
the limitation N =1 , 2 comes from not knowing the Griffiths
II - respactively Ginibre - inequalities if N > 2 .

Tha inegquality we are about to state and prove was,
aside from a generalization we have made, obtained by Simon
[8] and improved by Lieb [9] and Rivasseau [10]. The proof
Simon gave was based on the Lebowitz inequality (see section

£). We have simply noted that the gaussian domination result
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we have stated in the last section is sufficiently powerful
to guickly reproduce the improved inequality for N = 1 and
2 by a proof closely resembling Simon's proof.

Define, for 0 any subset of L ,

_ (a) {a)
H = - Y 8 3., 5] (6.1)
1 i,jen i i1 73
a

Corresponding to <-* we have = which is obtained by

replacing L by 0 throughout all definitions.

Theorem 6.1.

Let i be a gsite in L and let @ c L econtain i .

Suppose F is a polynomial in the uth component of the

spins gj which is independent of the spins in @0 , then

<5:Eu] F:) < jEn <Ejt:|:l sjilu.:l)ﬂ ij <5]£u.!- F>

ki

Proof.

We define a new Hamiltonian Han ba setting to zero all

Jij coefficients for which i « 2t , J &k 0, 1i.e.
an _
H = Hﬂ + HLWH
and we define a corresponding expectation <=5 21 . In terms

of this we can write the standard expectation as follows



2l

£=3 = :—@}aﬂjcira”
(6.2}
- (a) (a)
¢ =expl% ] S R e - )
seg + 133
LR
o

By the gaussian domination result, Theorem 3.1, with F

replaced by F¢ , we obtain (leaving off a sSuperscripts)
& D -Gy r DU
SETENAC R D ELO%

Now usa
3 M _ L 0NN
(asj (F#) < s

= 0 s DY

kiL

and note in the result that by (6.2)

GEMD RO MEL G PR O 5;‘)'"" - 5 51'>-..-

Theorem 6.1 is proved.

Theorem 1.1 applies in the above proof because 4+ can

be approximated by a polynomial with positive coefficients.
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4

§7. The Mass Gap for (¢ )

2

The proof of the mass gap for weakly coupled 1Pt¢12
models was first established by a cluster expansion [1%9].
In this section we shall establish the mass gap for 1[1‘12
using integration by parts (2.17) and Theorem 6.1. The proof
is simple, moreover one can establish reasonably good values
of A1 for which the mass gap occurs. ©On the other hand our
method does not apply to higher degree polynomials, nor does
it yield analyticity in the coupling.

We first consider the 1#‘ model on a lattice

& 2 € Hz . The lattice spacing § will later be sent to

zero. For notational purposes wae set N =1 . Let A be a

large rectangle containing (0,0) . We define
B =3 I e 0., 1,35¢hrnsm?
|i-3]=¢ ?
and
g,(62(3)) = expl-242(3) - 2162 (h) + 2z 4t = 1)

Thus Jij w1 if |i-j| =& and i, je A and J,. =0

ij
atherwisa. The Wick order far :gq :|5 ig defined with
raespact to Gﬁ{x-—y} the Green's function of -4 + 1 on the

lattice. The Fourier transform of G° is given by

c*(p) = (267%(2 - cos(sp,)) - cos (s, + 17}
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In the continuum limit & - 0 , é[p} = {pz~P1}'l which is
the Euclidean free field propagator. The normalized correla-

tions are defined by

(o) s (xp, (5,0 =

= 2 .
g, (62(3)) de ()

JHDI six) e
e A

(7.1}

=i, (s} - P
J 2 nog,(¢7(3)) de(j)
Jea

In the continuum limit this expectation is

=AVié.A)

J $(0) #(x) e duﬁ{il

J M AL LY au, (4)

Hero duﬁ is the GCoussian measurc of maan 0 and covarianco

1

(-a,+1)"" and V(e,n) = J 1 ¢%(%) td4x . The subscript A

i
on & means that 0 Dirichlet boundary conditions are imposed

on #4 . We now state the main theorem of this section.

Theorem 7.1.

Lat < :n{&,l} be defined as above. There are constants

Ag ? 0, m=>0, C independent of A such that
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Lim (3(0) ¢(xp,(8,2) 5 C e Mixl (7.2)
a+0

whenever 0 < A < “n"lxli 1.
Remarks. Our proof also applies to the two component tjllz
model. The exponential clustering of the n point correla-

tions follows from (7.2) and the gaussian inequalities. Hence

we have established a mass gap.

Proof.

Let 0 c A be a sguare centered at the origin with sides

of length t . By Theorem 6.1

Goe ), (6,3) < [ {at0rez) (6,0 (20 (x)), 18,2)
(7.3)

where the sum ranges over z ¢ 0 , 2' / 0 and |z —z'I = 5§ .

We shall show that for 0 s ) s A, and some & >> 1,

) (HH}Hz]}ﬂm,n <y <1 (7.4)
zE dfl
where 4. , L and vy are independent of & . As in [ 8]

0
succagsive iterations of (7.3) and (7.4) imply exponential

decay of the two point function.
In order to prove (7.4) let z ¢ a3 , then the integraion

by parts formula shows that
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=1 I
s G0 e z)) (6,0) = 676 (0,2)

-2 § G0 oty 2 D ety (7.5)

¥oil

1

How 1t suffices to show that (7.5) is less than {dl]- for

any =2 £ aft . Supposa that z = {%,31} « Lat Gi[x.y] be
the Greens function with zero Dirichlet boundary conditions
on the line x, = =+ § . By the random path expansion,

1 2
Theorem 1.1, and the reflection principle we know that

0= ﬂg{y,z} 5 Gi:y,a} = Gﬁty-a] - Gﬁiy-;ﬁ

where ; = {%i-li ,221 is the image of =z . Hence
= o —ip .z ] 5inp, &
& 1{:'5 (y,z2) = 2 Eip{y 2) e le:"1 — Gﬁ!p} dp, dp
i & 1 2
PR (7.6)

It is not difficult to show that G-lﬂﬁff,z} approaches

a—ﬂtx.n as § » 0 . Moreover

3:1
a'lc”:nr.z: s ke ¥l¥-2l 44 ly-2] = 1
(7.6)
< H|y-—=|-1 if |y=-z| =1
where K is independent of & and & . These bounds may be

chaecked by explicitly calculating the dpl integral using a

contour integral.
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The above inequalities show that the first term on the

-0/2

right side of (7.5) is bounded by (e ) . To estimate the

second term we again integrate by parts and obtain

Y
123 62 [ oty s D emeh0,y 876 (v,
Yeil

- 16 32 {py ) (8,0)

(7.7)

wharao

Poo=e® T 147ty') g, G0,y
¥Y'eq

o
F,oo=82 [ :147(y):, 8 TGoty,2) .
2 & o
Yell
The first term on the right side of (7.7) is small as A = 0
since <: q.zhr} =2 (§,2) is uniformly bounded as & 4+ 0 .
To bound the second term we apply the Schwartz ineguality with

respect to the Gaussian measure. Thus

(rl o (6,1)

= {3?1 Fi}%>§{ﬁ_h"u} . <&-21vi¢.n€>:¢5r01 I

The right side is bounded,using standard estimates, by Const.
exp[i const 12] for 0 < A £ 1 . The partition function 2

is bounded from below using Jensens inequality. Hence we can

fix ¢ large and hu!th small so that v in (7.4) is less

than 1 . End of proof of Thecrem 7.1
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