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Abstract 

Ferromagnetic lattice spin systems can be expressed 

as gases of random walks interacting via a soft core repulsion. 

By using a mixed spin-random walk representation we present a 

unified approach to many recently established correlation 

inequalities. As an application of these inequalities we 

4 
obtain a simple proof of the mass gap for the λ (φ4 )2 quantum 

field model. We also establish new upper bounds on critical 

temperatures. 
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§ Ο. Introduction 

In [1] Symanzik introduced a representation which 

expressed the φ4 quantum field model as a classical gas of 

Brownian paths which interact only when they cross. In 

[2,3] and in this paper we have developed variants of this 

formalism which provide a transparent way to establish many 

inequalities. 

In the first two sections we reconsider Symanzik's formalism. 

We prove two identities. The first identity expresses the spin 

system as a gas of random walks. In §3 we use this representa-

tion to obtain new upper bounds on critical temperatures. The 

second identity is a mixed spin-random walk representation. 

We combine this identity with chessboard estimates [4] 

and Griffiths [5] inequalities for N = 1 or 2 components to 

obtain many new and useful results : In §4, we apply this 

formalism to show that for a class of classical spin models 

whose single spin distribution is monotone decreasing, there 

is always exponential decay of correlations. Hence there is 

no symmetry breaking. In § 5 we give a new proof of the 

Lebowitz inequalities [6] and some generalizations related to 

Newman's Gaussian inequalities [7]. The following section re-

derives correlation inequalities recently found by Simon, 

Lieb and Rivasseau [ 8, 9, 10] . The final section of our paper 

is devoted to a new and elementary proof of the mass gap for the 
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weakly coupled λ(φ4)2 model. The proof uses only inequalities 

of Lieb - Rivasseau type and integration by parts. 

We conclude this introduction by remarking that our 

results would extend to N ≥3 component models once the 

Griffiths inequalities are established. Some of our methods 

apply to lattice gauge theories. The first steps along 

these lines have been made in [3]. For abelian gauge groups, 

the techniques of [3] can be combined with the approach of 

the present paper to yield new correlation inequalities for 

lattice gauge theories. This, however will not be developed 

in the present paper. 
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§1. Random Walks and Matrix Inverses 

The prototype for the expansions we are about to discuss 

is the following representation for the inverse of the finite 

difference Laplacian : 

(1.1) 

where Δ denotes the finite difference Laplacian associated 

with functions on the lattice ZZV , (v = 1,2,...) ; ω is a 

nearest neighbor random walk of arbitrary length, |ω| , on 

ZZV , starting at i ϵ ZZv , and ending at j ϵ ZZv ; m2 > 0 . 

The finite difference Laplacian, Δ , is defined on 

functions on ZZV by 

Aij =-2v if i = j 

(1.2) 

= 1 if i , j are nearest neighbors in ZZV 

= 0 otherwise. 

The formula (1.1) is a standard result in the theory of 

random walks, however, in order to make this paper self con-

tained we will give the easy proof below. 

The Laplacian is associated with nearest neighbor ferro-

magnetic interactions. We will give a more general expansion 
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than (1.1) in order to be able to discuss systems with arbi-

trary ferromagnetic two body interactions. 

Let J be a matrix such that 

Jij = Jji ≥ 0 if 1 ≠ j 

= 0 if i = j 

(1.3) 

i , j are indices that run over a finite set, L , called 

the "lattice". Let A 

Λ ≡ (λj δij), λi ≠ 0 Vi , (1.4) 

be a diagonal matrix. The notation in the following lemma is 

described below it. 

Lemma 1.1 : 

(1.5) 

If the right hand side converges absolutely, the matrix 

inverse exists and is given by (1.5). 

Notation : ω is a random walk on L . This means ω is an 

ordered set of ordered pairs, called "steps" and denoted by s . 

ω {(i1,i2) , (i2,i3),...,(iN-1,iN) : i1,...,iN ϵ L} (1.6) 
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n(k, w) is the number of times ω "hits" k . By definition, 

this is the number of elements in {i1,,...,iN} which are 

equal to k . The "length" of ω , |ω| is N which 

is also equal to 

(1.7) 

By convention we shall consider a random walk of length one 

to be a single site (which is hit once). Such a random walk 

has no steps and an empty product in (1.5) is set equal to 

one. (These conventions allow (1.5) to be correct when i = j) 

ω : i → j <—> i1 = i , iN = j . (1.8) 

Remarks: (i) this lemma contains (1.1) as a special case. 

(ii) the expansion converges absolutely if for 

some ξ > 1 

(1.9) 

Proof of Lemma 1.1 : expand the left hand side of (1.5) in a 

Neumann series 

(A-J)-1 = Λ-1 + A JA-1 + A JA-1 JA-1 +... 

The right hand side of (1.5) is a rewriting of this series. 

For example 



6 

where ω is summed over all two step random walks of the 

form 

w = { (i1 , i2) , (i2 , i3) : i1 = i , i3 = j , i2 ϵ L } 

End of proof. 

We shall also need a formula, related to lemma 1.1, for 

the determinant of Λ - J . Let A be the set of random walks 

that begin and end at the same (arbitrary) point. We divide 

A into equivalence classes by letting ω1, w2 ϵ A be equi-

valent whenever ω1, w2 have the same steps and the order of 

the steps in ω2 is a cyclic permutation of the order of the 

steps in w1 . We call the equivalence classes "random loops". 

Single points are not random loops. 

Given a random walk ω (or a random loop ω) define 

(1.10) 

Lemma 1.2 



7 

ω is summed over all random loops. The sum converges absolutely 

if the entries of Λ are sufficiently large in absolute value. 

Proof : 

det(A-J)-1 = det Λ-1 det-1(l - Λ-1 J) 

= det Λ-1 exp{-tr log (1 - Λ-1 J)} 

We have just used the idea in the proof of lemma 1.1. We con-

tinue with: 

When the determinant of Λ is written out explicitly we obtain 

lemma 1.2. 



8 

2. Symanzik's polymer representation and integration by 

parts with random walk. 

The hamiltonian for our lattice spin system is 

(2.1) 

a labels the components of our vector-valued spins = (Si/(a)) 

J is ferromagnetic. We impose the conditions: 

Jij = Jij ≥ 0 if i ≠ j , = 0 if i = j (2.2) 

The unnormalized expectation corresponding to our hamiltonian 

is given by 

(2.3) 

where F (the "observable") is a function of the spins. 

The normalized expectation is 

<F> ≡ [F]/Z (2.4) 

where Z = [1] is the "partition function". The single spin 

distributions which are described by the smooth functions gi 

are assumed to fall off faster than exponentially, i.e. 

gi.(t) ect → 0 as t → ∞ (2.5) 
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for all c and all i . We make this strong assumption 

solely to avoid uninteresting technical problems. Once we 

have achieved our estimates we shall relax it by taking 

suitable limits in those estimates. 

The polymer representation. 

Following Symanzik, [1], we shall show that our lattice 

spin systems can be rewritten in terms of a gas of "random 

loops" or polymers. Our integration by parts formula is pre-

sented second because it is a mixture of this representation 

and the spin representation. However most of our results 

rely on the integration by parts formula so this section can 

be skipped if the reader wishes. 

We substitute into the partition function, Z , according 

to 

(2.6) 

Γ is the contour Im a = -λ where λ is chosen suffi-

ciently large, positive, that lemmas 1.1, 1.2 will be appli-

cable to λI - J . g(a) is the analytic continuation of 

the Fourier transform of g . It exists by virtue of our 

assumption (2.5). 

We obtain 
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(2.7) 

The S integrals are gaussian and can be evaluated: 

Z = ∫ Π gi(ai) dai det 2 [2ia - J] (2.8) 

where 2ia - J is the matrix 

2iak 6
k)l - Jk* ; k - * e L (2.9) 

We use lemma 1.2 to represent the determinant: 

. exp[N/2 Σ J w π (2ia l ) _n ( l, w ] (2.10) 

We expand the exponential and write the result as 

(2.11) 

where 

(2.12) 
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(2.11) displays the partition function for our lattice spin 

system as a partition function for a system of interacting 

random loops or "polymers". We show, below, that exp - U is 

real and positive. 

We can repeat this derivation for [P] , an unnormal-

ized expectation of a polynomial in the spins. The step 

analogous to the gaussian integration in going from (2.7) to 

(2.8) uses 

(2.13) 

where M = 2ia - J . The exponential of the differential 

operator is defined by its power series which is truncated 

when acting on a polynomial. We shall not prove this fairly 

well known formula for the moments of a gaussian integral. 

By expanding Μ-1 using lemma 1.1 and continuing as before 

for Z we obtain a polymer representation for [P] and 

then, by dividing through by Z , for <P> . To express the 

result we introduce: 

. exp [- U(ω1,···,ωn, w1, ···, wp) )] (2.14) 
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for p = 1 , 2 , . . . . [It is useful to note that Z(ω1, ,..., ωp )/Z 

is a correlation function for the polymer gas.] 

Theorem 2.1 (Symanzik): 

p = 1 , 2,... ω. ,…, ωp are summed over all random walks 

that begin and end at lattice sites in {i1,...,i2p } in such 

a way that {i1,...,i2p } is partitioned into disjoint pairs, 

one for each of ω1,,...,ω
η

 . 

Remark : exp - U is real and positive because in (2.14) we 

can substitute 

(2.15) 

and find that 

(2.16) 

(n can be fractional). 

Integration by Parts . 

We are going to elaborate on the following well known 

formula : 
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(2.17) 

(Until we reach the end of our discussion we will treat 

scalar spins for simplicity). The real part of M is posi-

tive definite. To obtain an anologue of this formula for 

our spin systems (which are non gaussian) we proceed as 

before by substituting into [SiF] the representation (2.6). 

If the a integrals are deferred, the S integrals become 

gaussian and (2.17) can be applied with M chosen to be the 

matrix 

(2.18) 

we obtain 

(2.19) 

We expand (2ia - J)-1 using lemma 1.1 and interchange the 

sum over ω with the a , S integrals: 

(2.20) 

Now we do the a integrals using 
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(2.21) 

which can easily be obtained with the help of (2.15), (2.16). 

We obtain 

Theorem 2.2. 

Define measures dvn on [0, ∞) by 

dvn (t) ≡ δ(t) dt if n = 0 

(2.22) 

To each random walk, ω , on L assign the product measure 

(2.23) 

then for any i ϵ L , α = 1 , 2, . . . ,N 

(2.24) 

where 

(2.25) 

and F is any polynomial in the spins. 
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§3. Estimates on the critical temperature 

We consider classical N component rotators in the 

"infinite volume limit". Thus, we assume the lattice L is 

a finite subset of an infinite translation invariant lattice, 

L∞ , of points in IRV . The simple cubic lattice ZZV is 

an example but other geometries are acceptable. We suppose 

the coupling matrix J is translation invariant, i.e., 

J = (Jij ) = (J | i-j|) (3.1) 

besides enjoying its usual properties, see (2.2). We set 

<(.) >L ≡ [(.)]L/ZL ' ZL ≡ [1]L (3.2) 

and we define the (or : an) infinite volume limit by 

(3.3) 

where F is an observable depending on finitely many spins. 

In (3.3) it may be necessary to pass to a subsequence to 

obtain existence of a limit. We shall shortly be presenting 

estimates which are uniform in L which guarantee such 

compactness. 
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Define the coupling strength J by 

(3.4) 

[By translation invariance J is independent of i] . By 

definition the critical coupling J
c
 is the supremum over 

values of J for which the two point function <s|a^ > 

tends to zero exponentially fast in |i-j| as | i — j | -> ∞ 

The following theorem is an improvement of a mean field 

theory bound due to Simon and Aizenman and Simon [8,11]. 

Theorem 3.1 

(i) For an N - component classical rotator 

J ≥ N (3.5) 

(ii) If the lattice is simple cubic in v dimensions 

and Jij = B ≥ 0 if i and j are nearest neighbors, zero 

otherwise, we can improve (3.5) to 

(3.6) 

The first part of this theorem is due to Aizenman and Simon 

[8,11]. It says that the mean field theory prediction is a 

lower bound. We will present a proof of this theorem using 

Symanzik's representation. It should be pointed out that 
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Symanzik's polymer representation is really just a good way 

of organizing the conventional expansion in terms of graphs 

and so we are really not doing anything very different from 

the graphical methods used by Simon and Aizenman ,, although our 

method potentially gives a somewhat stronger result; see (3.8), (3.9) and (3.12). 

Proof of Theorem 3.1 : 

We shall show that if 

(3.7) 

then 

(3.8) 

uniformly in i,j ϵ L and L , and the r.s. of (3.8) tends to 0 , as 

|i-j| → ∞ . More precisely, if (3.7) holds and 

for some m = 0,1,2,... then 

(3.9) 

uniformly in L . 

For, by (3.8) and Fourier transformation 

where 
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Since Jij > Ο , 

J(k) < J(O) = J . 

Thus, by (3.7), 

(1-N -1J(k))-1 

is a bounded, continuous function of k . This proves that 

tends to 0 , as | i-j | → ∞ 

If Σ/j | i-j | 2mJij < ∞ 

then J(k) is 2m times continuously differentiable. The same is true for 

(1-N -1J(k))-1 , provided (3.7) holds. Therefore (3.9) follows. Part (i) 

clearly follows from (3.8). 

By Theorem 2.1 and a simple approximation argument, 

(3.10) 

Note that the r.s. of (3.10) is manifestly positive, since U(ω1,..., ωn ,ω) 

is real and J > 0 . 

We calculate exp[-U] using (2.12), (2.16) and find 

(3.11) 
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By comparing this with the corresponding evaluation of 

exp - [U(ω1,...,ωn)] — which is the same as (3.10) except 

that n(i,ω) is omitted — we find 

(3. 12) 

When this bound is substituted into the expression (2.9) for 

the two point function, the factor of Z can be cancelled 

out (see (2.11)) yielding 

(3.13 ) 

Each factor is less than N -n (k, w)
 so

 (3.12) is less than 

(3.14 ) 

See (1.10). 

If in (3.14) one drops the restriction that ω lie within L (as 

opposed to ) one can resum the series over ω and obtains 

(3.15) 

This completes the proof of (3.8) and of part (i) . 
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To obtain part (ii) we return to (3.12) and substitute 

in our special form for J : 

(3.16) 

where ||ω|| is the number of steps of ω . 

As in part (i) we enlarged the sum over random walks to all 

ω starting at i of length greater than or equal to |i - j| . 

In addition ω is understood to be a nearest neighbor random 

walk. At each step ω has 2v choices of nearest neighbors 

to hop to. For each of these possibilities the weight in the 

sum in (3.16) is less than or equal to BN . We can do better 

than this by noting that if ω steps back to the site it just 

left, then according to (3.16) the weight is less than or 

equal to (B/2)(N/2 +1)-1 because then the site is visited 

twice and this is the factor associated by (3.16) to the 

second visit. Thus if 

(3.17) 

we can dominate (3.16) by a geometric series just as in (3.15) 

and conclude exponential decay for the two point function. 

This means that the critical temperature Bc
 obeys 

Bc
N(2v - 1) +

 BC
(N + 2)-1 > 1 (3.18) 

and this is the same as (3.6). End of proof of theorem. 
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§4. Mass Generation in Spin Systems With Monotone Decreasing 

Single Spin Distributions 

In this section we combine the random walk expansion 

(Theorem 2.2) with reflection (or Osterwalder-Schrader) posi-

tivity, in the form of chessboard estimates and a spectral 

representation of the two spin correlation, in order to 

exhibit a mass gap in a class of spin systems with decreasing 

single spin distributions. The requirement of reflection 

positivity places strong restrictions on the two spin 

couplings, J , and the boundary conditions imposed on the 

system; see e.g. [4]. In order to avoid technicalities which 

would obscure the basic simplicity of our arguments, we only 

consider periodic b.c. and nearest neighbor couplings, 

although our results hold under rather more general hypotheses. 

(For an analysis of general two spin couplings, J , compat-

ible with reflection positivity, see [4]). Thus, the lattice, 

L , is a simple cubic lattice wrapped on a torus, 

L = ZZ 2N
1
 ··· ZZ 2Nv ' (4.1) 

where Ν1,…, Νv are finite integers, and 

1 , if | i - j| = l 

Jij = 

0 , otherwise 

(4.2) 
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We only study the behavior of the two spin correlation, 

<Si/
(a)

 S
j(a)

 > , a = 1,...,N , where N = 1 , 2 , 3,... is the 

number of components of a classical spin, S , but our 

methods have an obvious extension to higher spin correlations. 

The Hamilton function of the spin systems considered in 

this section is given by 

(4.3) 

where Δij . ≡ Jij - 2v δij , and ε > 0 . (4.4) 

Clearly, Δ ≡ ΔL is the finite difference Laplacean with 

periodic b.c., and the term proportional to ε serves as an 

infrared (long distance) regulator which is to be removed at 

the end of our subsequent estimates, (i.e. ε → 0) . The 

unnormalized expectation of our system in finite volume is 

defined by 

(4.5) 

where dSi is the Lebesgue measure on IRN , and g is a 

monotone decreasing function on [0, ∞) . The equilibrium 

expectation at inverse temperature B for the system confined 

to L is given by 
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(4.6) 

where ΖL(ɛ) is the partition function, and 

(4.7) 

is the equilibrium expectation in the thermodynamic limit, 

and with the infrared regulator removed. The quantities 

[-]L,t/(ɛ) ' <->L,t(ɛ)
 and

 ZL,t(ɛ)
 are defined in the same way, but 

with g (S2/i) replaced by g(S2/i+2ti) , 0 ≤ ti < ∞ , for all i 

For couplings, J , as in (4.2), periodic b.c. at the 

boundary of L , see (4.1), and H(ɛ) given by (4.3), reflec-

tion positivity holds, and consequently one obtains the fol-

lowing chessboard estimate (see [12]) : 

(4.8) 

with |L| ≡ (2N1 )...(2N
v

) . We define 

(4.9) 

Then (4.8) yields 

Lemma 4.1. 
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We will now pause to outline the idea underlying this 

section. It is to combine Lemma 4.1 with 

which comes from Theorem 2.2. We bound the ratio of partition 

functions on the right hand side using lemma 4.1, whereupon 

the t integrals become independent. (See the definition 

of dvw(t) in Theorem 2.2). Each t integral has the form 

either : 

or : 

depending on whether the random walk hits the associated site 

n > 1 times or no (n = 0) times. 

If the single spin distribution g(s2/i) is monotone 

decreasing, then 

and by a straightforward calculation each t integral is 

less then or equal to 1/(2νβ) . If we impose a slightly 
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stronger condition than monotonicity on g(S2) , then we 

can improve this to 

and then each t integral with n ≠ 0 is less than or equal 

to ξ/(2νβ) with ξ < 1 . By combining the representation 

for the two point function with lemma 4.1 and this estimate we 

obtain 

using the fact that in getting from i to j the random 

walk ω must hit at least |i — j| sites giving at least 

|i-j| factors of ξ . The quantity in round brackets is, 

by (1.1), the matrix inverse of -Δ . 

This bound is actually divergent if the lattice is 2 

or less dimensional because the inverse of -Λ does not 

exist. If the lattice is more than 2- dimensional it 

exhibits exponential decay of the two point function. 

We will now go through this argument in more detail. 

Our main result is Theorem 4.4. We will show by means of a 

spectral representation of the two point function that the 

difficulty in two or less dimensions, alluded to above, can 

be circumvented. This is the purpose of lemmas 4.2, 4.3, 

given below. 
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We now turn to the spectral representation of the two -

spin correlation: We single out one axis of the lattice L , 

e.g. the v-axis. Vectors in a plane perpendicular to that 

axis are denoted by j , k , etc. Let <-> (ɛ) be a thermo-

dynamic limit of the states <->L(ɛ) . Clearly <-> (ɛ) is 

translation invariant. We may thus define the partial 

Fourier transform 

Lemma 4.2. [4] 

If <s
i(a) sj(a)

> (ɛ) tends to 0 , as | i - j | ∞ then 

t|-1 , (4.10) 

where dP(.,k) is a positive measure, for all k , 

- π ≤ k μ ≤ π, μ = 1 , . . . , ν -1 , and 

supp dρ ( ·, K) C [-1,1] . (4.11) 

Moreover 

(4.12) 
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Remarks : 1. Representation (4.10) is a fairly straight-

forward consequence of reflection positivity and the spectral 

theorem; see [4]. For the couplings J defined in (4.2), 

supp dp ( · ,k) C [0,1] (4.13) 

which follows from the positivity of the transfer matrix of 

these spin systems. By Fourier transformation in t we 

obtain from (4.10) 

(4.14) 

with k = (k,kv ) . The infrared bound proven in [13] guarantees 

that 

(4.15) 

The upper bound (4.12) then follows from (4.14), (4.15) and 

(4.13) by noticing that 

2. We define the inverse correlation length (mass gap) 

m ( B , ε) by 
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(4.16) 

Suppose now that for some m(B) 

m( B, ε) > m( B) > 0 (4.17) 

for all ε > 0 . Then we claim that 

supp dp ( · , k) C [0 ,e- m(B)] , 

for almost all k . This follows directly from (4.10) and 

(4.13). Thus, using (4.12), 

and, by Lemma 4.2, 

(4.18) 

uniformly in ε . By a suitable choice of the v-axis, 

|t| ≥ 1/√v dist((j,0) , (m,t)) . Therefore we obtain from (4.18) 

by taking ε -> 0 
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(4.19) 

Lemma 4.3. 

If for all ε > 0 and for constants Κ(ε) < ∞ and 

z < 1 , z independent of ε , 

(4.20) 

provided N1,..., Νv are sufficiently large (depending on 

i , j and ε) then inequalities (4.18) and (4.19) hold. 

Proof. 

Under the hypotheses of Lemma 4.3, in particular (4.20), 

we find 

≥ ln 1/z > 0 , 

uniformly in ε . This being (4.17), we are done. ■ 

We are now prepared for the first main result of this 

section. 

Theorem 4.4. 

If for ɛ > 0 sufficiently small and L large enough 

ZL(ɛ) (t) (defined in (4.9)) is monotone decreasing in 

t ϵ [ 0 ∞) , and 
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(4.21) 

in particular there is no long range order and no symmetry 

breaking in the two spin correlation. 

Remarks. 1. When N = 1 , (4.21) implies that all con-

nected correlations fall off exponentially, with decay rate 

> C2 . This follows by using FKG inequalities, [14]. 

2. Let A = (a1,..., an) , X = (j1,···,jn) , and 

SA/X = II Sj/m (am) . Let X + a = (j1 + a,...,jn + a) . Suppose 

now that there exists some a ϵ {1,.,.,Ν} which occurs an 

odd number of times in A and B . Then, under the hypoth-

eses of Theorem 4.1, 

(4.22) 

The proof of (4.22) is a straightforward extension of our 

proof of (4.21) which is given below. 

3. We shall show that the hypotheses of Theorem 4.1 are 

true if, for example, 
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(a) 

g(S2) = 

1 , | S | < R , 

0 , |S| > R . 

For N = 1 , this result is already contained in [15]. 

(b) g(S2) is strictly monotone decreasing, and 

g(S2)|S|n dS < ∞ , 

for some η > 0 ; e.g. g (S2 ) = (1+ |S|2) , with α > N , 

(when v > 3 , strict monotonicity suffices). 

(c) v ≥ 3 ; g monotone decreasing, with 

These results are essentially best possible, because if g 

were positive and constant the model is a massless Gaussian 

whose spin-spin correlation does not have exponential decay. 

Proof of Theorem 4.4. 

If we combine the random walk expansion (Theorem 2.2) 

with the chessboard estimate (Lemma 4.1) we obtain the fol-

lowing upper bound on the two spin correlation 

(4.23) 

where 
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The factor exp[-(2v+ ϵ) Bt] has appeared, because the diagonal 

part of the Hamiltonian Η(ϵ) , see (4.3), must be treated as 

one factor of the single spin distribution in Theorem 2.2. We 

now claim that 

is monotone decreasing in n , and (4.24) 

ρL
(ε)

(1) ≤ Z < 1 , 

if ε is so small and L so large that the hypotheses of 

Theorem 4.4 hold. In this case 

(4.25) 

We have used the fact that each ω starting at i and ending 

at j must visit at least |i — j| different lattice sides at 

least once which by (4.24) yields the factor (pL(ɛ) (1))|i-j| . 

By Lemma 1 

(4.26) 
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where Δ is the finite difference Laplacean with periodic b.c. 

at the boundary of L . Thus, using (4.24) 

with and z < 1 . By Lemma 4.3, 

with m(B) ≡ ln 1/z > 0 . This reduces the proof of Theorem 

4.1 to the 

Proof of (4.24) : 

By rescaling the t variable we see that 

with z (t) = zL(ɛ) (t/B(2v + ɛ)) .
 The measure 

is a probability measure. By hypothesis, zL(ɛ) (t) is monotone 

decreasing, and zL(ɛ) (0) = 1 . Thus z(t) is monotone 

decreasing and bounded above by 1. We now extend the definition 

of dPn (t) to arbitrary real values of n ≥ 1 . In order to 

prove the first part of (4.24) it then suffices to show that 
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The l.s. can be rewritten as 

dP
n
(t) dPn(t') [log t- log t']]z(t) - z(t')] 

which is negative, since log t is monotone increasing, and 

z (t) is monotone decreasing. Finally, the inequality 

follows immediately from the definition of z(t) and the 

hypotheses of Theorem 4.1, provided ε is small enough and 

L large enough. This completes our proof of (4.24) and of 

Theorem 4.1. I 

Remarks. If g is a monotone decreasing function on [0, ∞) 

then 
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with 

(4.27) 

is clearly monotone decreasing in t . In order to find 

examples of single spin distributions, g , for which the 

hypotheses of Theorem 4.1 are true, it therefore suffices to 

choose g to be monotone decreasing and then show that, for 

ε small and L large 

ZL(ɛ)
 (t) = z0 < 1 ' ≥ t0 ' 

(4.28) 

for some t0 < ∞ . 

Examples. 

(a) 

g(S2) = 

1 , |s|2 < R 

0 , otherwise. 

In this example 
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≡ {1 - 2t/R)Ν|L|/2
Ζ

’ (t) . 

Thus 

where <->L(ɛ) (t) is the expectation <->L (ε) , with B 

replaced by 3(l-2t/R) . By the infrared bound [13] 

Since supp g = {S : |s| < R) , 

and 

Thus 

(4.30) 
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hence, using (4.29), 

(4.31) 

Thus, for all 0 < ε < 1 , R < ∞ , there exists some 

t1 < R/2 such that 

for t > t1 , with upper bounds on a/at log zL(ɛ) (t) which 

are uniform in ε ϵ (0,1] and in L . From this (4.28) 

follows. 

(b) g(S2) is strictly monotone decreasing, 

and [ g(S
2

) |S|
n
 dS < ∞ , for some η > 0 . (4.32) 

In this example the verification of (4.28), and hence of the 

hypotheses of Theorem 4.1, proceeds again by estimating 

a/at log ZL (ɛ) (t) . For ε > 0 and L bounded, it is immediate 

to verify that 

with 
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Thus it suffices to show that 

(4.33) 

for some interval of values of t of positive measure. Since 

g' (x) < 0 , for all x ϵ [0,∞) , (4.33) can fail only if 

|S0| = ∞ , almost surely, in the limit L → ZZV , ɛ → 0 . 

This possibility can be excluded if 

(4.34) 

for some η > 0 and some constant Ct which is finite for 

all t < ∞ . Using the chessboard estimate [12] we find 

By definition of Η(ɛ) , see (4.3) and (4.4), 

Thus 

(4.35) 
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By (4.32), the r.s. of (4.35) is finite for all t < ∞ , 

with a bound which is uniform in L and ε . This yields 

(4.28). 

Remark. In dimension v ≥ 3 condition (4.32) is superfluous, 

i.e. (4.28) holds for every strictly monotone decreasing g . 

For, by (4.24) through (4.26) 

hence 

(4.36) 

which implies (4.34) with n = 2 and ≤ C < ∞ indepen-

dent of t , provided v ≥ 3 . 

(c) v ≥ 3 ; g a monotone decreasing function, with 

(4.37) 

As in examples (a) and (b) we must verify (4.28) : Given t , 

let 

g
T
(S2) = (l-T)g(S2) + τ g(S2 + 2t), and 

(4.38) 
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Then 

(4.39) 

where <->L(ɛ) (τ) is the finite volume expectation defined in 

(4.6) with g replaced by g T · By (4.37) we have, for t > 0 , 

(4.40) 

if R1 < |S0 | < R2 , for some positive constants 6 and 

R1 < R2 , (depending on t) . We define 

Χ(£) 

1 ' R1 ≤ |S0| ≤ R2 

0 , otherwise 

Then 

(4.41) 

Therefore the proof of (4.28), as L → ZZV and ɛ → 0 , is 

complete if we can prove that 

<x(
S0

)>L(ε) (t) > c > ο , (4.42) 

for L large, ε small and t large enough. We now claim 

that if conversely 
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then (4.43) 

for all a ϵ IRN , for all ε ≥ 0 , L C ZZV . Consequently, 

= ∞ , almost surely. However, in v ≥ 3 dimensions, 
0 — 

i.e. is finite, almost surely, when ε > 0 and L is 

large enough. Therefore 

for some a ε IRN and, by (4.43) , 

From this we conclude that 

for t > 0 . By (4.25) and (4.26) 
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with 

Thus, we are left with proving (4.43). We start by noticing 

that the measures 

are quasi-invariant under the substitution 

→ S0 + a ' a ϵ IRN ' 

with a Radon-Nikodym derivative, pa(S) , given by 

(4.44) 

We now show that for all p < ∞ 

(4.45) 

for some finite constant independent of ɛ and L . 

First, we note that 
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(g
T
(S0 +a)2)/g

T
(S2/0))3p <

(g0
/g∞)3p < ∞ -

for all p < ∞ and all τ and t . Second, 

< exp(9ρ2 βa2/2) , 

by Gaussian domination [13]. Finally, using the chessboard 

estimate [12] 

(4.46) 

where ZL(ɛ)(τ,a) is given by (4.38), but with gτ (S2/j) 

replaced by gτ((S2 +3pa)
2

) , for all j . (To prove (4.46) 

one first applies the chessboard estimate and then changes 

variables, → Sj + 3pa , j ϵ L , using the invariance 

of (S,ΔL S) under that change of variables). It is easy to 

see that the second factor on the r.s. of (4.46) is bounded 

by g0/g∞ . This completes our proof of (4.45). In order to 

prove (4.43), we note that 

<x(S0 - a)>
L(e)

 (T) = <x<S0>Pa(S)>L(e)
 (T) 

< (<X(
S0

)>L
(e)

 (T))
1/q

(<pa(S)
p
>L
(
ɛ

)

 (τ)
 1/p 
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with 1/p + 1/q = 1 , and we have used (4.45). 

This completes the proof of (4.28) for example (c). 
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§ 5 . Gaussian Inequalities 

The Lebowitz inequality [6], originally proven for 

Ising models in zero magnetic field, says 

<Si sj sk si> £ <Si SjXSk S1> 

+ <Si SkXSj S1> + <Si SlXSj Sk> (5.1) 

In [7] , Newman generalized these inequalities to 

(5.2) 

where F is a polynomial with positive coefficients. ((5.1) 

follows from (5.2) by taking F to be a product of three 

spins). He gave (5.2) the name "Gaussian Domination" 

because the inequality would be saturated if <·> were 

gaussian. 

The inequality, (5.1), has been extended, [16], to models 

of the form (2.3) with N = 1 components and 

(5.3) 

where V is even and V''' ≥ 0 on the positive real axis. 

Results for N = 2 , 3 , 4 components also exist [17]. 

We shall rederive and extend these results for N = 1 , 2 

Our class of models has single spin distributions of the form 
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(5.4) 

with f" (t) ≥ 0 for t ϵ [0,∞) . This class of single spin 

distributions overlaps with but is not identical to the Ellis, 

Monroe,Newman class (5.3). Many well known models such as 

Ising models and φ4 field theories are in both. Some good 

features of our proof are that we obtain the stronger version 

of gaussian domination (5.2), and our method is simple and 

suggests many variations on the same theme. We will explore 

one of these in the next section. 

We shall demonstrate that these inequalities are really 

a consequence of Griffiths II inequalities. For N = 2 

components, the analogue of these are the Ginibre inequalities 

[18], and so our method will also produce gaussian domination 

results for N = 2 . The analogous Griffiths-Ginibre type 

inequalities are expected but not known to hold for N > 2 , 

so this is the obstacle to extending our results to N > 2 . 

Let F be a polynomial in S with positive coefficients 

By Theorem 2.2 

(5.5) 
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(the Z normalizes [-] to <->) . Furthermore 

(Recall that Zt ≡ [1]t) · By the Griffiths II inequality 

as stated in [5], p. 120 

is decreasing in t 

as can be seen by differentiating with respect to ti ϵ t 

Therefore 

and so 

(5.6) 

By taking F = Sj in (5.5) we see that the quantity in 

curly brackets is
 <Si sj> and so (5.6) becomes (5.2). In 

this way we obtain the following gaussian domination result: 
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Theorem 5.1. 

If <(·)> is ferromagnetic (Jij ≥ 0) and has single 

spin distributions satisfying (2.5) and 

g(s2 ) = e-1(S2) 

with f"(t) ≥ 0 on [0,∞) , then 

(5.7) 

where F can be any function of S of the form 

F = π Fi (Si) 

with each being either odd or even and F'/i (t) , F"/i(t) 0 on [0, ∞) . 

We can allow F to have this more general form because the Griffiths II 

inequalities hold for this class of functions. 

Remark. For N = 2 the same methods show that for α = 1 , 2 

provided F is a polynomial in S(a) with positive coeffi-

cients and f is a polynomial with positive coefficients for 

terms of degree greater than l . 
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§ 6. Application to the Lieb-Rivasseau improvement of Simons 

inequality. 

We consider the same class of models as in the last sec-

tion: 

<-> ≡ [-]/[1] 

and we require that exp (-fi) obey (2.5) and 

f"/i(t) >0 if t ≥ 0 (N = 1) 

for 1 - component models , and for two-component model· 

fi must be a polynomial whose coefficients for degree greater 

than 1 are positive. Furthermore, as in the last section, 

the limitation N = 1 , 2 comes from not knowing the Griffiths 

II - respectively Ginibre - inequalities if N > 2 . 

The inequality we are about to state and prove was, 

aside from a generalization we have made, obtained by Simon 

[8] and improved by Lieb [9] and Rivasseau [10]. The proof 

Simon gave was based on the Lebowitz inequality (see section 

5). We have simply noted that the gaussian domination result 
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we have stated in the last section is sufficiently powerful 

to quickly reproduce the improved inequality for N = 1 and 

2 by a proof closely resembling Simon's proof. 

Define, for Ω any subset of L , 

(6.1) 

Corresponding to <-> we have <->Ω which is obtained by 

replacing L by Ω throughout all definitions. 

Theorem 6.1. 

Let i be a site in L and let Ω c L contain i . 

Suppose F is a polynomial in the a component of the 

spins which is independent of the spins in Ω , then 

Proof. 

We define a new Hamiltonian HaΩ be setting to zero all 

Jij.. coefficients for which i ϵ Ω , j ϵ Ω , i.e. 

ΗaΩ ≡ ΗΩ + HL~Ω 

and we define a corresponding expectation <->aΩ . In terms 

of this we can write the standard expectation as follows 
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<-> = <-φ>aΩ /<Φ> 

(6.2) 

By the gaussian domination result, Theorem 3.1, with F 

replaced by ΡΦ , we obtain (leaving off a superscripts) 

<S
i F

> = <S
i F
 F Φ>aΩ /< Φ >aΩ 

Now use 

and note in the result that by (6.2) 

<F S
k Φ>aΩ/<Φ>aΩ = < F Sk> ; <Si Sj>aΩ = <Si Sj)Ω 

Theorem 6.1 is proved. 

Theorem 3.1 applies in the above proof because Φ can 

be approximated by a polynomial with positive coefficients. 
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§7. The Mass Gap for (Φ4 )2 

The proof of the mass gap for weakly coupled λΡ(φ)2 

models was first established by a cluster expansion [19]. 

In this section we shall establish the mass gap for λ(φ4 )2 

using integration by parts (2.17) and Theorem 6.1. The proof 

is simple, moreover one can establish reasonably good values 

of λ for which the mass gap occurs. On the other hand our 

method does not apply to higher degree polynomials, nor does 

it yield analyticity in the coupling. 

We first consider the λφ4 model on a lattice 

δ ZZ2 c IR2 . The lattice spacing δ will later be sent to 

zero. For notational purposes we set N = 1 . Let Λ be a 

large rectangle containing (0,0) . We define 

and 

gδ(Φ
2

 ( j)) = exp{-2φ
2(j) - δ2[φ2(j) + λ : φ4 ( j) :

 δ
 ] } 

Thus Jij..=l if | i - j | = δ and i , j ϵ A and Jij = 0 

otherwise. The Wick order for : φ4 : δ is defined with 

respect to Gδ (x - y) the Green's function of -Δ + 1 on the 

lattice. The Fourier transform of Gδ is given by 

Gδ (p) = {2δ
 -2

[2-cos(δp
1

) - cos (δp2)+ l}-
1 
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In the continuum limit δ → 0 , G(p) = (p2 +1)-1 which is 

the Euclidean free field propagator. The normalized correla-

tions are defined by 

<φ(0) φ(x)>
 Λ

(δ,λ) = 

(7.1) 

In the continuum limit this expectation is 

Here dµ Λ is the Gaussian measure of mean 0 and covariance 

(-ΔΛ +1)-1 and V(φ,Λ) = ∫ : φ4 (x) : dx . The subscript Λ 

on Δ means that 0 Dirichlet boundary conditions are imposed 

on a Λ . We now state the main theorem of this section. 

Theorem 7.1. 

Let < >Λ ( δ, λ) be defined as above. There are constants 

λ0>0, m > 0 , C independent of A such that 
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(7.2) 

whenever 0 ≤ λ ≤ λ0 , |x| ≥ 1 

Remarks. Our proof also applies to the two component (φ4 )2 

model. The exponential clustering of the n point correla-

tions follows from (7.2) and the gaussian inequalities. Hence 

we have established a mass gap. 

Proof 

Let Ω c Λ be a square centered at the origin with sides 

of length A . By Theorem 6.1 

<φ(0)φ(x)>
Λ
(δ,λ) ≤ Σ <φ(0)φ(ζ£>

Ω
(δ,λ)<φ(ζ')Φ(χ)>

Λ
(δ,λ) 

(7.3) 

where the sum ranges over z ϵ Ω , z' ϵ Ω and |z — z '| = δ . 

We shall show that for 0 ≤ λ ≤ λ0 and some l >> 1 , 

(7.4) 

where , l and γ are independent of δ . As in [ 8 ] 

successive iterations of (7.3) and (7.4) imply exponential 

decay of the two point function. 

In order to prove (7.4) let z ϵ aΩ , then the integration 

by parts formula shows that 
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δ
_1

<Φ (0) Φ (z)>Ω
 (δ, λ) = δ- 1Gδ/Ω(0,z) 

(7.5) 

Now it suffices to show that (7.5) is less than [4l]-1 for 

any z ϵ aΩ . Suppose that z = (l/2, z
2) · Let (x,y) be 

the Greens function with zero Dirichlet boundary conditions 

on the line x1 = l/2 + δ . By the random path expansion, 

Theorem 1.1, and the reflection principle we know that 

where 

0 ≤ Gδ/Ω(y,z) ≤ Gδ/l(y,z) = Gδ(y-z) - Gδ(y-z) 

z = (l/2+ 2δ , z2) is the image of z . Hence 

(7.6) 

It is not difficult to show that δ-1 Gδ/l(y,z) approaches 

a/az1G(x,z) as δ → 0 . Moreover 

δ-1 Gδ/l(y,z) ≤ Ke-1½ |y-z| if | y — z | > 1 

(7.6) 

≤ K|Y-Z| -1 if | y - z | ≤ 1 

where K is independent of δ and l . These bounds may be 

checked by explicitly calculating the dp1 integral using a 

contour integral. 



56 

The above inequalities show that the first term on the 

right side of (7.5) is bounded by (e-l/2 ) . To estimate the 

second term we again integrate by parts and obtain 

- « ̂ <F1 F
2X <

6
'
λ) 

(7.7) 

where 

The first term on the right side of (7.7) is small as λ → 0 

since Φ
2
(Υ) : >δ (δ,λ) is uniformly bounded as δ ↓ 0 . 

To bound the second term we apply the Schwartz inequality with 

respect to the Gaussian measure. Thus 

<F1 F2>/6'X) 

The right side is bounded»using standard estimates, by Const. 

exp [λ const l2 ] for 0 ≤ λ ≤ 1 . The partition function Z 

is bounded from below using Jensens inequality. Hence we can 

fix l large and λ0 (l) small so that γ in (7.4) is less 

than 1 . End of proof of Theorem 7.1 
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