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Abstract

Ferromagnetic lattice spin systems can be expressed
as gases of random walks interacting via a soft core repulsion.
By using a mixed spin-random walk representation we present a
unified approach to many recently established correlation
inequalities. As an application of these inequalities we
obtain a simple proof of the mass gap for the l(¢4)2 quantum
field model. We also establish new upper bounds on critical

temperatures.



§0, Introduction

In [1] Symanzik introduced a representation which
expressed the ¢4 quantum field model as a classical gas of
Brownian paths which interact only when they cross. 1In
[2,3] and in this paper we have developéd variants of this
formalism which provide a transparent way to establish many
inequalities.

In the first two sections we reconsider Symanzik's formalism.
We prove two identities. The first identity expresses the spin
system as a gas of random walks. In §3 we use this representa-
tion to obtain new upper bounds on critical temperatures. The
second identity is a mixed spin-random walk representation.

We combine this identity with chessboard estimates [4]

and Griffiths [5] inequalities for N =1 or 2 components to
obtain many new and useful results: In §4, we apply this
formalism to show that for a class of classical spin models
whose single spin distribution is monotone decreasing, there
is always exponential decay of correlations. Hence there is
no symmetry breaking. 1In § 5 we give a new proof of the
Lebowitz inequalities [6] and some generalizations related to
Newman's Gaussian inequalities [7]. The following section re-
derives correlation inequalities recently found by Simon,
Lieb and Rivasseau [8,9,10]. The final section of our paper

is devoted to a new and elementary proof of the mass gap for the



weakly coupled A(¢4)2 model. The proof uses only inequalities

of Lieb - Rivasseau type and integration by parts.

We conclude this introduction by remarking that our
results would extend to N > 3 component models once the
Griffiths inequalities are established. Some of our methods
apply to lattice gauge theories. The first steps along
these lines have been made in [3]. For abelian gauge groups,
the techni@ues of [3] can be combined with the approach of
the present paper to yield new correlation inequalities for
lattice gauge theories. This, however will not be developed

in the present paper.



§1. Random Walks and Matrix Inverses

The prototype for the expansions we are about to discuss
is the following representation for the inverse of the finite
difference Laplacian:

=il Im!

m? - A]. R [ (1.1)
m:i—>j 2v +m

3
I
(=S
i

where A denotes the finite difference Laplacian associated

with functions on the lattice =" s (v=1,2,...) 3 w 1is a

nearest neighbor random walk of arbitrary length, |w| , on
v . . v . g v 2
Z , starting at 1 € Z , and ending at jJ e Z ; m >0

The finite difference Laplacian, A , 1is defined on
functions on %" by
(af); = ) a4 £0)
J
i3
(1.2)
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j are nearest neighbors in Z

0 otherwise.

I

The formula (1.1) is a standard result in the theory of
random walks, however, in order to make this papcr self con-
tained we will give the easy proof below.

The Laplacian is associated with nearcst neighbor ferro-

magnetic interactions. We will give a more general cxpansion



than (1.1) in order to be able to discuss systems with arbi-
trary ferromagnetic two body interactions.

Let J be a matrix such that

(<]
I
o]
v
o
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Hh
=
H
[

(1.3)

i , j are indices that run over a finite set, L , called

the "lattice". Let A
A= Oy 8,00, A =0 ¥i, (1.4)

be a diagonal matrix. The notation in the following lemma is

described below it.

Lemma 1l.1:

-n(k,w)

X (1.5)

(-3t = ¥ (n J) n 2
1 w:i+j sew keL

If the right hand side converges absolutely, the matrix

inverse exists and is given by (1.5).

Notation: ® 1is a random walk on L . This means w 1S an

ordered set of ordered pairs, called "steps" and denoted by s .

o= {(iysi,) s (Ayedg)seeeslig 1odg) ¢ dgseaa,iy € LT (1.6)



n(k,w) 1is the number of times w "hits" k . By definition,
this is the number of elements in {il,iz,...,iN} which are
equal to k . The "length" of w , |w| is N which

is also equal to

lw] =} n(k,w) (1.7)
k

By convention we shall consider a random walk of length one

to be a single site (which is hit once). Such a random walk
has no steps and an empty product in (1.5) is set equal to

one. (These conventions allow (1.5) to be correct when 1 = 7j)

wriojoe=mdii=di, io=3. (1.8)

Remarks: (i) this lemma contains (l1.1) as a special case.

(ii) the expansion converges absolutely if for

some &£ > 1

x| 2 ¢ Z J,. » Vi e L (1.9)
]

Proof of Lemma 1.1l: expand the left hand side of (1.5) in a

Neumann series

1 it Ll DR | =L

T R R P S S T

T

The right hand side of (1.5) is a rewriting of this series.

For example
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where ® 1is summed over all two step random walks of the

form
w = {(11,12) ; (12,13) iy =1, i3 =3, i, € L}

End of proof.

We shall also need a formula, related to lemma 1.1, for
the determinant of A - J . Let A be the set of random walks
that begin and end at the same (arbitrary) point. We divide
A into equivalence classes by letting Wyr wy € A be equi-

valent whenever have the same steps and the order of

wl,mz
the steps in Wy is a cyclic permutation of the order of the
steps in Wy - We call the equivalence classes "random loops".

Single points are not random loops.

Given a random walk w (or a random loop w) define

J = 1n J (1.10)
S
Sew

Lemma 1.2

get(r-0)"t = (a7t exp{] 7 yaTPire),
it g B
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w 1s summed over all random loops. The sum converges absolutely

if the entries of A are sufficiently large in absolute value.

Proof:

det(A—J)—l = det ﬁ-l det-l(l - A-l J)

1

det A-l exp{-tr log (1 - A ~ J)}

. I l':'n(j:w)}
jeL J

We have just used the idea in the proof of lemma 1.1. We con-

tinue with:

= det A—l exp{) ( 1 Jg) 1 Afn(j'ﬂ)}

W Sew des?

i~

When the determinant of A is written out explicitly we obtain

lemma 1.2.



2. Symanzik's polymer representation and integration by

parts with random walk.

The hamiltonian for our lattice spin system is

H = - % si“) J . g{e) (2.1)
i;jGL (I:l’to.'N :] J
o labels the components of our vector-valued spins §i = (Siu))

J 1is ferromagnetic. We impose the conditions:
=J.. 20 if i =23, =0 if i = j (2.2)

g
1] J1

The unnormalized expectation corresponding to our hamiltonian

is given by

- (o) 2, -H

[F] = J R d S 9 (§i) e F (2.3)
1;&

where F (the "observable") is a function of the spins.

The normalized expectation is
<F> = [F]/2 (2.4)

where Z = [1l] is the "partition function". The single spin
distributions which are described by the smooth functions 95

are assumed to fall off faster than exponentially, i.e.

g; (t) et s 0 as t » o (2.5)



for all ¢ and all i . We make this strong assumption
solely to avoid uninteresting technical problems. Once we
have achieved our estimates we shall relax it by taking

suitable limits in those estimates.

The polymer representation.

Following Symanzik, [1], we shall show that our lattice
spin systems can be rewritten in terms of a gas of "random
loops" or polymers. Our integration by parts formula is pre-
sented second because it is a mixture of this representation
and the spin representation. However most of our results
rely on the integration by parts formula so this section can
be skipped if the reader wishes.

We substitute into the partition function, 2 , according

to
§2 —iaj §§
. (S5) = g.(a.) e da, 2.6
g, (53) Ir gupas 3 (2.6)
I 1is the contour Im a = =) where ) 1is chosen suffi-

ciently large, positive, that lemmas 1.1, 1.2 will bc appli-
cable to AI - J . g(a) 1is the analytic continuation of
the Fourier transform of g . It exists by virtue of our
assumption (2.5).

We obtain

Z = JF il g.(ai) dai J 1 d§i .

i
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. exp[-H - i ] ay s2) (2.7)
3 J

-
The S integrals are gaussian and can be evaluated:

N
Z = [ I é.(a.) da. det 2 [2ia - J] (2.8)
. 2191 i
' 1
where 2ia - J 1is the matrix
2ia, § - J i k , 2 e L (2.9)

We use lemma 1.2 to represent the determinant:

n . -N/2
= . g.(a.) (2ia. .
Z Jr ? da] gj(aj)( 1aj)
. exp[¥ ) J 1 (2ia y B Utau), (2.10)
£ w ¢ A &

We expand the exponential and write the result as

n
) ) exp [-U(wysevvrw)] (2.11)

w e e e g
__lr f_'n

_ vy 1 N
Z2 = nEO nl! (2

where

-n(i'[ill’---f[:\']n)

[1H]

n JF dai éi(ai)(ziai)

exp[-U(w;,e.cpu )] ;

! ; N
n(1,91)+...+ n(l,yn) t 3 (2.12)

n(irf_’flf---rtfn)
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(2.11) displays the partition function for our lattice spin
system as a partition function for a system of interacting
random loops or "polymers". We show, below, that exp - U is
real and positive.

We can repeat this derivation for [P] , an unnormal-
ized expectation of a polynomial in the spins. The step
analogous to the gaussian integration in going from (2.7) to
(2.8) uses

= 1 (a)
ds; exp(-3 y S;

."_"\
- =

M, | si“)) P (S)

i,3,0 13
N
= det 2[M]exp(% ) ?u) Mi? "_%ET) p (2.13)
i,3,0 38, J 38 d=0
i j =
where M = 2ia - J . The exponential of the differential

operator is defined by its power series which is truncated

when acting on a polynomial. We shall not prove this fairly

well known formula for the moments of a gaussian integral.

By expanding M_l using lemma 1.1 and continuing as before

for 2 we obtain a polymer representation for [P] and

then, by dividing through by 2 , for <P> . To express the

result we introduce:

1 y° )
2

n!
0 Wyreeerw

1
18

Z(mlfwz,...,mp)

n
n

= eXp["U(@lr---riilnrwl:---:wp)] (2.14)
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for p=1,2,... . [It is useful to note that z(ml,...,mp)/z

is a correlation function for the polymer gas.]

Theorem 2.1 (Symanzik):

(o) o (a) (a) . _
‘(Sil Si2 . Siz > = z Z(wlgooo;wp)/z
P ml,...,wp
p=1,2,.... ml,...,wp are summed over all random walks
that begin and end at lattice sites in {il,...,izp} in such
a way that {il""’i2p} is partitioned into disjoint pairs,
one for each of wl,...,mp .

Remark: exp - U 1is real and positive because in (2.14) we

can substitute

N N 1 ® .n-1 -(2ia)t
and find that
~ .. -n = 0l

(n can be fractional).

Integration by Parts.

We are going to elaborate on the following well known

formula:

m dS, exp(-% ) S, M,. S.) S, _F
I i 1 i,5 + 1373 k
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- J mas; exp(-5 ] s, M. s, fut 2F (2.17)

i i3 13 737 § ke 35
(Until we reach the end of our discussion we will treat
scalar spins for simplicity). The real part of M 1is posi-
tive definite. To obtain an anologue of this formula for
our spin systems (which are non gaussian) we proceed as
before by substituting into [SiF] the representation (2.6).
If the a integrals are deferred, the S integrals become
gaussian and (2.17) can be applied with M chosen to be the

matrix

M= 2ia - T = (2iay Sy - Ty (2.18)
we obtain
(s, F] = J n da. §.(a.) J ndas, e
i Fjjjjjj ’
. exp(-i % ay s§) £{2ia -t fgi (2.19)

We expand (2ia - J)-l using lemma 1.1 and interchange the

sum over ® with the a , S integrals:

_ ~ . -n(jrm)
=0 ) I, f n da, gj(aj)(Zlaj) .

K w:isk rj
P
.| noas. e exp(-i | a. s%) 2 (2.20)
3 "

Now we do the a integrals using
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n-1

ol ®
n _-ias” _ I t g(sz+2t)dt (2.21)
0

J da g(a) (2ia) e -7

which can easily be obtained with the help of (2.15), (2.16).

We obtain

Theorem 2.2.

Define measures dvn on [0,«) by

dvn(t) = §(t) dt if n =0
il .
=T£—":—l'—)—!dt 3 T ) == ] S s (2.22)

To each random walk, ® , on L assign the product measure

11

dVNIE) n dv m)(ti) (2.23)

ieL n(i,

then for any i ¢eL , o¢=1,2,...,N

(o) _ 3F
[s; ° F] = E }j I, J de(g)hy] (2.24)
] w:il~] 9S.
] <t
where
[(*)], = J I g.(§?+2t.) ag, e ™ (4 (2.25)
t i 1 i i ! ’

and F 1is any polynomial in the spins.
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§3. Estimates on the critical temperature

We consider classical N component rotators in the
"infinite volume limit". Thus, we assume the lattice L is
a finite subset of an infinite translation invariant lattice,
L, , of points in R’ . The simple cubic lattice z" is

an example but other geometries are acceptable. We suppose

the coupling matrix J 1is translation invariant, i.e.,

= (J,.) = (J,. . .
J (:LJ) ( !1‘]|) (3.1)

besides enjoying its usual properties, see (2.2). We set

N
H, = =% ] ) si(“) Iy sjf“)

-H
. i (a) 2 L
[(+)], = f noods, 5(§i e “(-)

(>0 = [()1 /2., 2z, = (1] (3.2)

and we define the (or:an) infinite volume limit by

<F> = 1lim <F>L (3.3)
LAL
where F 1is an observable depending on finitely many spins.
In (3.3) it may be necessary to pass to a subsequence to
obtain existence of a limit. We shall shortly be presenting
estimates which are uniform in L which guarantee such

compactness.
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Define the coupling strength J by
J= ) J.. (3.4)

[By translation invariance J is independent of i] . By
definition the critical coupling 3& is the supremum over
values of J for which the two point function <S£a} Sga)>
tends to zero exponentially fast in [i-j| as |i-3j| » « .

The following theorem is an improvement of a mean field

theory bound due to Simon and Aizenman and Simon [8,11].

Theorem 3.1

(i) For an N=- component classical rotator

Sl
v
A

(3.5)

(ii) If the lattice is simple cubic in v dimensions

and Jij =g 20 if i and j are nearest neighbors, zero

otherwise, we can improve (3.5) to

=L
N 1
02 75 (- wo o) (250)

The first part of this theorem is due to Aizenman and Simon
[8,11]. It says that the mean field theory prediction is a
lower bound. We will present a proof of this theorem using

Symanzik's representation. It should be pointed out that
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Symanzik's polymer representation is really just a good way
of organizing the conventional expansion in terms of graphs
and so we are really not doing anything very different from
the graphical methods used by Simon and Aizenman, although our

method potentially gives a somewhat stronger result; see (3.8), (3.9) and (3.12).

Proof of Theorem 3.1 :

We shall show that if

J = z_ Jij <N (3.7)
J
then
@) @) j PR R |
0< <Si sj >L§__ N (1-N J)ij , (3.8)

uniformly in i,j€ L and L , and the r.s. of (3.8) tends to 0 , as

|i—j] + o , More precisely, if (3.7) holds and

E‘ li"jlzm']ij i ’
]

for some m = 0,1,2,... then

5 1i_j|2m <S£a) S§u)> < const. < ® (3.9)

J

L

uniformly in L .

For, by (3.8) and Fourier transformation

< «g(@) (@) 1,1 e’ o ® dke(i-]) , =14, . =1V
05«8, 87> 2§ G J'_ﬂ I_“e (1-N "J(k) d k ,
where
fky = £ ()
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Since J.. >0 ,
ij =

Thus, by (3.7),
(1-N )t
is a bounded, continuous function of k . This proves that

a-x"1571
ij

tends to 0 , as |i-j| +» .

If L |i—j|2mJij < o

then J(k) is 2m times continuously differentiable. The same is true for
a-NFant, provided (3.7) holds. Therefore (3.9) follows. Part (i)

clearly follows from (3.8).

By Theorem 2.1 and a simple approximation argument,

s g®, o 5 o5 g1 g Ly
i ] L s .o W n! "2
wil¥] n=o0
(3.10)
. Z exp['U(iﬂ‘l’o-.,'%,W)]

w L m
~L? " A

Note that the r.s. of (3.10) is manifestly positive, since U(ml""*gn’m)

~

is real and Jm >0.

We calculate exp[=U] wusing (2.12), (2.16) and find

“n(i,W 000050 )-n(i,w)
exp[-Ule,...,Hn,m)] = I 2 1 ko
i€L
(3.11)

c [@Cggseeeom) * ali0)-1107
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By comparing this with the corresponding evaluation of

exp —[U(Ql,...,gn)] — which is the same as (3.10) except
that n(i,w) is omitted — we find
-n(i,o)
exp _[U([_.\_Jlg..-,li.'nn;m)]ﬁ ']-[ 2 .
lew

=i
[§(§+1).,.(§+n(i,m) —1)] - expl= Ulwyrecerop)] (3.12)

When this bound is substituted into the expression (2.9) for
the two point function, the factor of 2Z can be cancelled

out (see (2.11)) yielding

<si(°‘) sf‘”»L D R 2 5 (3.13)
J w:isj Y kew 5(54-1)...(E-Fn(kpw) -1)
Each factor is less than N*n(k'w) so (3.12) is less than
1 1
< N E I (ﬁ JS) (3.14 )

wsal "'j Sew

See (1.10).

If in (3.14) one drops the restriction that w lie within L (as

opposed to L_ ) one can resum the series over w and obtains

(1-N "J).. (3.15)

This completes the proof of (3.8) and of part (i) .
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To obtain part (ii) we return to (3.12) and substitute

in our special form for J :

(a) o(a) 1 m
<S, S. > S = (g/2) Z
1o 2 m§|i-j| w:]|wl|=n kew

-1
. [§(§+1)...(§-+n(k,m) -1)] , (3.16)

where |lw|| is the number of steps of w .

As in part (i) we enlarged the sum over random walks to all

w starting at i of length greater than or equal to [i-3j]| .
In addition ®w is understood to be a nearest neighbor random
walk. At each step ® has 2v choices of nearest neighbors
to hop to. For each of these possibilities the weight in the
sum in (3.16) is less than or equal to BN . We can do better
than this by noting that if w steps back to the site it just
left, then according to (3.16) the weight is less than or

1 because then the site is visited

equal to (B/2) (N/2+1)
twice and this is the factor associated by (3.16) to the
second visit. Thus if

N -1
BN(2v - 1) + (3/2)(5'*1)

]

a < 1 (3.17)

we can dominate (3.16) by a geometric series just as in (3.15)
and conclude exponential decay for the two point function.

This means that the critical temperature Bc obeys

B N(2v -1) + BC(N+2)'1 > 1 (3.18)

and this is the same as (3.6). End of proof of theorem.
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§4. Mass Generation in Spin Systems With Monotone Decreasing

Single Spin Distributions

In this section we combine the random walk expansion
(Theorem 2.2) with reflection (or Osterwalder-Schrader) posi-
tivity, in the form of chessboard estimates and a spectral
representation of the two spin correlation, in order to
exhibit a mass gap in a class of spin systems with decreasing
single spin distributions. The requirement of reflection
positivity places strong restrictions on the two spin
couplings, J , and the boundary conditions imposed on the
system; see e.g. [4]. 1In order to avoid technicalities which
would obscure the basic simplicity of our arguments, we only
consider periodic b.c. and nearest neighbor couplings,
although our results hold under rather more general hypotheses.
(For an analysis of general two spin couplings, J , compat-

ible with reflection positivity, see [4]). Thus, the lattice,

L , 1is a simple cubic lattice wrapped on a torus,
L=ZZ2N ZZZN ’ (4.1)
1 v
where Nl""'Nv are finite integers, and
1, if [i-j] =1
Jis = (4.2)

0 , otherwise
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We only study the behavior of the two spin correlation,
<Sgu) SSa))
| 3
number of components of a classical spin, 3 , but our

, a=1,...,N, where N=1,2,3,... 1is the

methods have an obvious extension to higher spin correlations.
The Hamilton function of the spin systems considered in

this section is given by

(e) (o) (a)
H = = S. Aes = §..)5.
= =% G=§,...,N i ( ij "¢ 13) 3
i,jelL
= -5 (3,(a,-)3) (4.3)
where A..=J.. -2vés.., and € > 0 . (4.4)
ij ij ij .

Clearly, A = aL is the finite difference Laplacean with
périodic b.c., and the term proportional to € serves as an
infrared (long distance) regulator which is to be removed at
the end of our subsequent estimates, (i.e. € = 0) . The

unnormalized expectation of our system in finite volume is

defined by

()

(e) _ -BH 2
-1, = f -8 m g(§i)ds:L , (4.5)

ielL

where d§i is the Lebesgue measure on nﬁq, and g 1is a
monotone decreasing function on [0,») . The equilibrium
expectation at inverse temperature g for the system confined

to L is given by
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c>fed g le)gle) (4.6)

Z(E)

L is the partition function, and

where

<=> = lim lim <—>I(f’ (4.7)
en0 LAZZ

is the equilibrium expectation in the thermodynamic limit,

and with the infrared regulator removed. The quantities

_1 (e) _. (e) (e) : .
( ]L:E r<TLLe and 2z % are defined in the same way, but
with g(gi) replaced by g(§§-+2ti) , 0% ti < » , for all i .

For couplings, J , as in (4.2), periodic b.c. at the
boundary of L , see (4.1), and H{g) given by (4.3), reflec-
tion positivity holds, and consequently one obtains the fol-

lowing chessboard estimate (see [12]):

(e) o (e) 1/|L
Zp g = T [zI”tEt ] L] ' (4.8)
~ meL ~~m
with |L]| = (2N;)...(2N)) . We define
(¢) _ g (€) (e),1/|L]
z, (t) = [ZL',SEt/ZL ] (4.9)

Then (4.8) vyields

Lemma 4.1.
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We will now pause to outline the idea underlying this

section. It is to combine Lemma 4.1 with

(a) o (a)\(e) 1 n(k,w)
s{®) g == ¥ (ns ')Idv(t).
<l ] >L B w:i+j VkelL wo

(e)
Lfg

(e)

-(2v+e) Bt
€ I

. I
kel

Z /2
which comes from Theorem 2.2. We bound the ratio of partition
functions on the right hand side using lemma 4.1, whereupon
the t integrals become independent. (See the definition
of dum(t) in Theorem 2.2). Each t integral has the form

either:

J“ 2L L (2v+e) Bt
———— 8
0

(n-1)1! Zﬁe}(t) dt with n 21

or:

e-(2u+e)8t zée)(t) at (n = 0)

J s (t)
0

depending on whether the random walk hits the associated site
n =1 times or no (n = 0) times.
If the single spin distribution g(gi) is monotone

decreasing, then
(e)
z; () = 1

and by a straightforward calculation each t integral is

less then or equal to 1/(2vB) . If we impose a slightly
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stronger condition than monotonicity on g(§2) , then we

can improve this to

(e)

lim lim v % (eNN<l

eNO LAZ
and then each t integral with n # 0 1is less than or equal
to £/(2vR) with & < 1 . By combining the representation
for the two point function with lemma 4.1 and this estimate we

obtain

<Si(a) S§G)>S (% ! oo {_2}\7) ' ) E|i-j| )
w:1l+] kel

using the fact that in getting from i to j the random

walk o must hit at least |i-j| sites giving at least

|]i -j| factors of & . The quantity in round brackets is,

by (1.1), the matrix inverse of -A .

This bound is actually divergent if the lattice is 2
or less dimensional because the inverse of -5 does not
exist. If the lattice is more than 2- dimensional it
exhibits exponential decay of the two point function.

We will now go through this argument in more detail.
Our main result is Theorem 4.4. We will show by means of a
spectral representation of the two point function that the
difficulty in two or less dimensions, alluded to above, can
be circumvented. This is the purpose of lemmas 4.2, 4.3,

given below.
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We now turn to the spectral representation of the two -
spin correlation: We single out one axis of the lattice L ,
e.g. the v-axis. Vectors in a plane perpendicular to that

axis are denoted by 3 ’ k , etc. Let <—>(€) be a thermo-

dynamic limit of the states <->£E) . Clearly <=5 (€) is
translation invariant. We may thus define the partial

Fourier transform

<§(a) &,0) s (]_E,t)>(5)

J ik (G-M) (@) gl@) He)

3 3,0 @,
Lemma 4.2.[4]
BEC <S;a) Sgu)>(€) tends to 0 , as |i-j| » » then
(%, 0) é(“)tfc’,t)ye} = I otk Al®Th L w0

(A)

5
where de(-+,k) is a positive measure, for all k ,

_Hék T, U=1:---;U-1,and
supp dp(+,K) ¢ [-1,1] . (4.11)
Moreover

dp (r,k) T < 4/ (4.12)
(A)
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Remarks: 1. Representation (4.10) is a fairly straight-
forward consequence of reflection positivity and the spectral

theorem; see [4]. For the couplings J defined in (4.2),
supp dp (+,k) & [0,1] (4.13)

which follows from the positivity of the transfer matrix of
these spin systems. By Fourier transformation in t we

obtain from (4.10)

2
= Jdpu,i) —— , (4.14)

A(1+12-21 coskv)

(e)

s ) |2

with k = (i,kv) . The infrared bound proven in [13] guarantees
that

(e) _
<87t (4.15)

S (a) 2
(2-2cosk |5 1) %D
The upper bound (4.12) then follows from (4.14), (4.15) and

(4.13) by noticing that

max  (2-2cosk ) < 41+ 2

-r<k <7 A 1+A2-2Acosk
v v

2. We define the inverse correlation length (mass gap)

m(g,e) by
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lim - = &n <S(a) S(a) >(E)

m(B,e) =
P (0,0) “(0,t)
(4.16)
= lim - % 2n J J dp(A,E)Altl-l
to>oo
(k) ()
Suppose now that for some m(B)
m(Bg,e) 2 m(g) > 0O (4.17)

for all € > 0 . Then we claim that

supp dp (+,%) € [0,e™(B)]

for almost all k . This follows directly from (4.10) and

(4.13). Thus, using (4.12),

A

=1 =
by do(2,k) < 4
J . -m(B)

and, by Lemma 4.2,

1A

(€) (e)
<?(a) s >‘€ s <?E3)0) 0, t;> E

(] 0) (m:t)
4e-m(6)t/ _
2 (1-e m(B))

uniformly in ¢ . By a suitable choice of the v-axis,

|t| 2 L aist((3,0) , (M,t)) . Therefore we obtain from (4.18)

v

(4.18)

A

by taking e » 0
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(a) «(a) 4 - (m(B)//V) |i-3|
S. S. < - e . (4.19)
s ] >_B(l-em(8))

Lemma 4.3.

If for all ¢ > 0 and for constants K(eg) < «» and

z <1 , 2z independent of ¢ ,

(a) (a)\(e) |i-7|
K 550" < k(o) = , (4.20)

provided Nl""'Nv are sufficiently large (depending on

i, j and e€) then inequalities (4.18) and (4.19) hold.

Proof.

Under the hypotheses of Lemma 4.3, in particular (4.20),

we find
(e)
PR (a) (a)
m(B,e) = iiz £ 4n <$(0'0) S$(0,t)
2 1ln 1/z > 0 ,
uniformly in ¢ . This being (4.17), we are done. ]

We are now prepared for the first main result of this

section.

Theorem 4.4.

If for e > 0 sufficiently small and L large enough

zltf) (t) (defined in (4.9)) is monotome decreasing in

t t [Of'”) ] and
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for some finite t then

(@) ()N < =¢,p|i-3]
s 53 Dic e , (4.21)

in particular there is no long range order and no symmetry

breaking in the two spin correlation.

Remarks. 1. When N =1, (4.21) implies that all con-

nected correlations fall off exponentially, with decay rate

2 ¢,y - This follows by using FKG inequalities, [14].
2. Let A = (alf...,un) I X = (jlpo-a,jn) ’ and
A n (um)
S, = I S. . Let X +a-= (j,+a,...,j_+a) . Suppose
X m=1 m 1 n

now that there exists some o ¢ {1l,...,N} which occurs an
odd number of times in A and B . Then, under the hypoth-
eses of Theorem 4.1,
-c,a
A _B < 2
<SX So,a) < C(X,YV)e : (4.22)
The proof of (4.22) is a straightforward extension of our

proof of (4.21) which is given below.

3. We shall show that the hypotheses of Theorem 4.1 are

true if, for example,
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(a) 1
g(8%) =

o, |8 >R

’ |§1

A
s

For N =1, this result is already contained in [15].

(b) g(gz) is strictly monotone decreasing, and

f g(8%) 13" ds < = ,

1

-
for some n > 0 ; e.g. g(8%) = (1+(%|%) , with a > N

(when v 2 3 , strict monotonicity suffices).

—
Q
—
<
v
W

-

g monotone decreasing, with

0<g_ = lim g(&%) < g(0) =

-3
|S|r>uo

go(m.

These results are essentially best possible, because if g
were positive and constant the model is a massless Gaussian

whose spin-spin correlation does not have exponential decay.

Proof of Theorem 4.4.

If we combine the random walk expansion (Theorem 2.2)
with the chessboard estimate (Lemma 4.1) we obtain the fol-

lowing upper bound on the two spin correlation

1
<Sia) S:!la)> =8 ) I Bn(k'w)ZE.E)(n(k,w)) ' (4.23)
w:i-)-j kel

where
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zﬁe)(n) =

> n-1
J (nt“““"‘-l): o™ (2vrelbt 21(,5)‘”‘“ .
0

The factor exp[-(2v +e)Bt] has appeared, because the diagonal
(e)

part of the Hamiltonian H , see (4.3), must be treated as
one factor of the single spin distribution in Theorem 2.2. We

now claim that

(2v +¢) g™ 21(.5) (n) (¢) (n)

"
o]
)

is monotone decreasing in n , and (4.24)

pi) gz <1,
if e 1is so small and L so large that the hypotheses of

Theorem 4.4 hold. In this case

(a) ~(a)N(e) < 1 -n(k,w) .
S, S. <= 7 T (2v +¢€)
< J >L = B ,:isj kel

) (pﬁe)(l)) li-3] (4.25)

We have used the fact that each w starting at i and ending
at j must visit at least |i-j| different lattice sides at
least once which by (4.24) yields the factor (pés)(l)]li_j[
By Lemma 1

z n (2u_+‘)—n(k,w) = (e=A

w:i*j k

-1

L)lj ] (4.26)
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where AL is the finite difference Laplacean with periodic b.c.

at the boundary of L . Thus, using (4.24)
(@) ()N (e) |i-3 |
Gy s >.° < Kie) 2

with K(e) = sup 1 (e-aL)li , and z < 1 . By Lemma 4.3,

T
lim <Si(u) Sj(a} L(.E) < 4—m(s) e-(m(B)/»/u)]J_--_”
LAz’ B(l-e )
with m(g) = ¢n 1/z > 0 . This reduces the proof of Theorem
4.1 to the

Proof of (4.24):

By rescaling the t variable we see that

tn—-l SO
PLE)(H) = J TETTITT e z(t)dt ,

0

with z(t) = zée)(t/ﬁ(zu+e)) . The measure

n-1
t o =
TBfTETT-e dt

I

dPn(t) =

is a probability measure. By hypothesis, zﬁc)(t) is monotone
decreasing, and zﬁE)(O) =1 . Thus z(t) is monotone
decreasing and bounded above by 1. We now extend the definition
of dPn(t) to arbitrary real values of n > 1 . In order to

prove the first part of (4.24) it then suffices to show that
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a -
an J dp_(t) z(t)

]

J dPn(t) log t z(t) - J dPn(t) log t

. J ap_(t) z (t)

A
o

The l.s. can be rewritten as
J dp_(t) dpn(t')[logt-logt-}]i(t) -z(t")]

which is negative, since 1logt 1is monotone increasing, and

z(t) 1is monotone decreasing. Finally, the inequality
PéE)(l) = J et z(t)at £z < 1
0

follows immediately from the definition of z(t) and the
hypotheses of Theorem 4.1, provided ¢ 1is small enough and
L large enough. This completes our proof of (4.24) and of

Theorem 4.1. 8

Remarks. If g is a monotone decreasing function on [0,«)

then

(e) . (e). /1T

(e) -
ZL (t) - [ZL,t/ZL ] ]
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with

(e)
(e) -BH 2
: J e i g(§j+2t)d§j , (4.27)

jeL

+
1]

is clearly monotone decreasing in t . In order to find
examples of single spin distributions, g , for which the
hypotheses of Theorem 4.1 are true, it therefore suffices to
choose g to be monotone decreasing and then show that, for

e small and L 1large

zﬁe)(t) A zy < 1, t2 to , (4.28)
for some tO < ®
Examples.
(a) 1, |3|% <R

g(8%)

0 , otherwise.

In this example

S
1

2
i g(gj-+2t)d§j

g -
(E) B J e'z_(gr (ﬂL E)g)
JeL

-2t/ 2 [ expia - 2e/0) 3, (o - )8
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2 ->
i g(§j)dsj

jeL
- (1 -2t/ NIEI/250 (4
Thus
) (e) _ 9 1 (e)
ot log zL (t) = 5t 15 log zL,t
= Na-2e/m)7t 4 EGEE, (-, + 08D ) (1) (4.29)
R CAVEA R L ’ :

where <—>£€)(t) is the expectation <—>£E) , with g

replaced by B8(1-2t/R) . By the infrared bound [13]

_ 1 (e) < —-—N——'—'—
<&ET (E,aL§£>L (t) = B(1-2t/R)

Since supp g = {$ : |§] < R},

e{I3,12){) (t) ¢ c®? , ana
G @-op 3D < avr?

Thus

Srar s oy + 8D 2 (o)

N 9 5 (4.30)
< mln(B{l__2t Ry ! 4VvRY) + ¢ R°,
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hence, using (4.29),

P (¢) _N 1
3 10927, (B < tx Toogm t BeR

(4.31)

1

. N
+ mln(ﬁ- 'i-:—z—mz- , 4B8v R)

Thus, for all 0 < € < l, R < o , there exists some

t, < R/2 such that

1

3 ()
3E logzL (t) <0,

for t > tl , with upper bounds on g% log'z£6)(t) which
are uniform in € ¢ (0,1] and in L . From this (4.28)

follows.

(b) g(§2) is strictly monotone decreasing,

and J g(§2)[§|n as <o , for some , , 0 . (4.32)
In this example the verification of (4.28), and hence of the

hypotheses of Theorem 4.1, proceeds again by estimating

g% logzée)(t). For € - 0 and L bounded, it is immediate

to verify that
9 (8) = ] 2 ) (E)
3E logz ®) (8) = 2{g" BF + 26D 5 < o

with g'(x) = é% ()
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Thus it suffices to show that

. . 2 (e)
1im 1im {g' (3% + 2t) <0, (4.33)
ew0 Laz” < 0 | 1%

for some interval of values of t of positive measure. Since
g'(x) <0, for all x e [0,») , (4.33) can fail only if
|§0| = » , almost surely, in the limit L2 Z" , &0 .

This possibility can be excluded if

: T N\(e) <
L Lim, 1D 5 o

for some n > 0 and some constant Ct which is finite for

all t < » . Using the chessboard estimate [12] we find

(e) 1/|L|
n\(€e) -BH *2 % n T (e)
<|§0| Log U e I]I g (8 +2t) |§j| dsj/zL't]

By definition of H(a) , see (4.3) and (4.4),

0 < H®) < 1/2(4a+¢) ( 5 o15.1% .
jern,  J

Thus

L,t =

B 2
-5 (4d+¢) 8
. (f g(32 +2t)e 2 dé.)'l

{3, 1™ J g (&2 +2¢) || ad -

(4.35)
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t < » ,

By (4.32), the r.s. of (4.35) is finite for all
This yields

with a bound which is uniform in L and ¢ .
(4.28).

condition (4.32) is superfluous,

Remark. In dimension v 2 3
i.e. (4.28) holds for every strictly monotone decreasing g .
For, by (4.24) through (4.26)
2 (a) . -1
<|§ | e 8( AL+E)00 !
hence
2\ (e) <« l -1
tim lim |85 £ p-0) (4.36)
ey0 LﬁZ
= 2 and Ct 2 C < =« indepen-

which implies (4.34) with n

v 2 3.

dent of t , provided

a monotone decreasing function, with

(¢c) v233: g

1im  g(3%) < 9(0) 9y < * - (4.37)

0 <g, -
3]

(b) we must verify (4.28) Given t ,

As in examples (a) and

let

2 4 2t), and

9.(8% = 1-09@@%) + 1 g3
(4.38)

()

| (e)
-(RH 2 ¥
L (1) J e o, (éj) as; .

z
Je L
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Then

dr o8 log ZéE)(t)

log zée)(t) = 5T

o—r

(4.39)

1
J a2 +20) - g B2 (1) ax
0

where <“>£€)(T) is the finite volume expectation defined in

(4.6) with g replaced by g, - By (4.37) we have, for t > 0 ,

g(§§-+2t)- g(gg) < -8, (4.40)
if R, ¢ |§0| < R, , for some positive constants ¢ and
Rl < Rz , (depending on t) . We define

1. R]_ 2 lgb | < Rz
X(8) = Then
0 , otherwise
2 _ 2\ (€) _ (¢)
GEh+20) - @)% (0 ¢ -s&E MDY (0 . (4.41)

Therefore the proof of (4.28), as L 2 ZV and e w0 , is

complete if we can prove that

GE D zer0, (4.42)

for L 1large, ¢ small and t large enough. We now claim

that if conversely
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&B D =0,

then (4.43)

<&@, -a e =0,

for all a e:mN , for all €20, L & z’ . Consequently,

§ = » , almost surely. However, in v > 3 dimensions,
0 —

lim 1im K82 (1) < 20107 < -,

ew0 LAZ

i.e. §O is finite, almost surely, when ¢ > 0 and L is

large enough. Therefore
lim lim {X (8, +'$)>I£E) (t) > 0
ew0 LAZ

for some a e ]RN and, by (4.43),

1im 1im &XE D) (1) 5 0
w0 LAZ' < 0>1’

From this we conclude that

lim 1lim zéE)(t) <1,
ey0 LAZ

for t > 0 . By (4.25) and (4.26)

: . (a) L (a)\(e)
lim 11 S S.
e w0 L?;ﬁ <'1 ] L

-1 [i-3

1
< B( Mij
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with

""t e (S)
z < I e lim lim zp (t/g(2v+g)) dt < 1
0

ew0 LAx

Thus, we are left with proving (4.43). We start by noticing

that the measures

_an (€)
leBH

(e) = 2
(zp " (1)) i gT(§j)dS.

jeL ]

are quasi-invariant under the substitution

with a Radon-Nikodym derivative, pg(g) , given by

—%(2d+e)32 -e (3,3)

o;(g) = e e .
(4.44)
. RN
+ exp|B { (Sk—SO) - a §2
|k|=1 9. (5p)
We now show that for all p <« «
P\(e)
<‘3§(§) )LE (t) < Cp ' (4.45)

for some finite constant Cp independent of ¢ and L .

First, we note that
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3p
>, 2 2
(9, (B +D?) /g 821 9y/9)%F < =,

for all p < » and all 1t and t . Second,

éxp[BpB | )i (§k-§0) . g])é“ (1

k=1

< exp(9p% 8a%/2) ,

by Gaussian domination [13]. Finally, using the chessboard

estimate [12]

~3pBa(§ a)

¢ i)

2 > 2 N 1/|L|
< e9p Be|al /2[Z£E)(T,a)/zl(‘e)('ra '

(4.46)

(e)
L

replaced by gT((§§4—3p5)2) , for all 3 . (To prove (4.46)

where 2 (1,3) is given by (4.38), but with gT(gi)

one first applies the chessboard estimate and then changes
variables, §j > gj + 3pg , J ¢ L , wusing the invariance

of (g,ﬁLg) under that change of variables). It is easy to
see that the second factor on the r.s. of (4.46) is bounded
by go/gm . This completes our proof of (4.45). In order to

prove (4.43), we note that

3y - (1) = Kx(E )0z B (n)

2 (B (o5 B PN (o)) /P



< o1/p (e) 1/q
AR IEN) Mt CI R R
with 1/p + 1/9q = 1 , and we have used (4.45).

This completes the proof of (4.28) for example (c).

44
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§5. Gaussiam Inequalities

The Lebowitz inequality [6], originally proven for

Ising models in zero magnetic field, says
G S5 5, s, )< s, sj.)(sk s,
+ G sk)(sj s+ G, sl><sj sk> (5.1)

In [7], Newman generalized these inequalities to

G5 B JZ(Si S ;,%%) (5.2)

where F 1is a polynomial with positive coefficients. ((5.1)
follows from (5.2) by taking F to be a product of three
spins). He gave (5.2) the name "Gaussian Domination"
because the'inequality would be saturated if <+> were
gaussian.

The inequality, (5.1), has been extended, [16], to models
of the form (2.3) with N = 1 components and

-V(s;)
2, _ i
gi(Si) = e {(5.3)

where V is even and V''' 2 0 on the positive real axis.
Results for N =2 , 3 , 4 components also exist [17].
We shall rederive and extend these results for N =1 , 2

Our class of models has single spin distributions of the form
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=£.1(5.)
25 i

N

with f"(t) 2 0 for t ¢ [0,») . This class of single spin
distributions overlaps with but is not identical to the Ellis,
Monroe ,Newman class (5.3). Many well known models such as
Ising models and ¢4 field theories are in both. Some good
features of our proof are that we obtain the stronger version
of gaussian domination (5.2), and our method is simple and
suggests many variations on the same theme. We will explore
one of these in the next section.
We shall demonstrate that these inequalities are really
a consequence of Griffiths II inequalities. For N = 2
components, the analogue of these are the Ginibre inequalities,
[18], and so our method will also produce gaussian domination
results for N = 2 . The analogous Griffiths-Ginibre type
inequalities are expected but not known to hold for N > 2 ,
so this is the obstacle to extending our results to N > 2 .
Let F be a polynomial in S with positive coefficients.

By Theorem 2.2

JoF
: J dv (t) [E]t/z (5.5)
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(the 2 normalizes [-] to <->) . Furthermore

1 oF Zt oF
z [a'gl -7 Gk

-~

(Recall that Zt = [l]t) . By the Griffiths II inequality

as stated in [5], p. 120

oF . . .
§§;>§ is decreasing in t

as can be seen by differentiating with respect to ti e £t .

Therefore

1 [ sF Zt.. oF

. [EE;]t *E <?§j_>f=°

Zy
-7 G5
and so
el ar
<si F> < § mgﬂ_ J, J av (t) — - g-s-—j—> (5.6)

By taking F = Sj in (5.5) we see that the quantity in
curly brackets is <Si Sj> and so (5.6) becomes (5.2). In

this way we obtain the following gaussian domination result:
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Theorem 5.1.

If <(-)> 1is ferromagnetic (Jij > 0) and has single

spin distributions satisfying (2.5) and

2
g(Sz) _ e—f(S )

with f£"(t) =2 0 on [0,2) , then

<Si F) < § <Si sj> <%> (5.7)

where F can be any function of S of the form

-~

"

with each Fi being either odd or even and Fi(t) . F;(t) >0 on [0,»)

We can allow F to have this more general form because the Griffiths II

inequalities hold for this class of functions.

Remark. For N = 2 the same methods show that for o =1, 2

GRIDEREC SN s
1

s(a)

provided F is a polynomial in with positive coeffi-
cients and f 1is a polynomial with positive coefficients for

terms of degree greater than 1 .
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§6. Application to the Lieb-Rivasseau improvement of Simons

inequality.

We consider the same class of models as in the last sec-

tion:

<=> = [-]1/1[1]
2
-£, (8%)
[-] = J noe * Y a3 e o
iel
Hz =% J s(@) 5 gla) . 5 L9
i,jeL *t 13 3 1]

o

and we require that exp (—fi) obey (2.5) and

f;(t) 2 0 if t 20 (N = 1)

for 1 - component models , and for two-component models

fi must be a polynomial whose coefficients for degree greater
than 1 are positive. Furthermore, as in the last section,
the limitation N =1 , 2 comes from not knowing the Griffiths
II - respectively Ginibre - inequalities if N > 2 .

The inequality we are about to state and prove was,
aside from a generalization we have made, obtained by Simon
[8] and improved by Lieb [9] and Rivasseau [10]. The proof

Simon gave was based on the Lebowitz inequality (see section

5). We have simply noted that the gaussian domination result
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we have stated in the last section is sufficiently powerful

to quickly reproduce the improved inequality for

N =1 and
2 by a proof closely resembling Simon's proof.
Define, for Q@ any subset of L ,
- (o) (a)
H = -% )] 8, J.. S. (6.1)
& i,jef * 3
a

Corresponding to <-> we have <=>g which is obtained by

replacing L by @ throughout all definitions.

Theorem 6.1.

Let i1 be a site in L and let Q c¢ L

contain 1

Suppose F is a polynomial in the ath component of the

spins §j which is independent of the spins in @ , then

GBI jgg O sj(o‘)>Q T & B

k&Q

Proof.
We define a new Hamiltonian HBQ be setting to zero all

Jij coefficients for which i ¢ 9, j x @, i.e.

and we define a corresponding expectation I

<=> - In terms

of this we can write the standard expectation as follows
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<=> = <—¢>39/4¢>BQ

(6.2)
. (a) (a)
o = exp(% } s; ' J,. S. )
‘ ieq * 13 )
@

o

By the gaussian domination result, Theorem 3.1, with F

replaced by F¢ , we obtain (leaving off « superscripts)
Gy D =Gy By GY
< ]Z<Si Sj>}“2 Sg_j_ (F¢)>;Jsz/<¢>‘asz

Now use

) 30 30 \3Q
<asj (Fo) < s

DI s o

](L
kL

and note in the result that by (6.2)

G Sk KM = G 5k.>’ G Sj>mz = <Si S-]>se

Theorem 6.1 is proved.

Theorem 3.1 applies in the above proof because ¢ can

be approximated by a polynomial with positive coefficients.
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§7. The Mass Gap for (¢4)2

The proof of the mass gap for weakly coupled AP(¢)2
models was first established by a cluster expansion [19].
In this section we shall establish the mass gap for x(¢4)2
using integration by parts (2.17) and Theorem 6.,1. The proof
is simple, moreover one can establish reasonably good values
of A for which the mass gap occurs. On the other hand our
method does not apply to higher degree polynomials, nor does
it yield analyticity in the coupling.

We first consider the A¢4 model on a lattice
) zz CIR2 . The lattice spacing § will later be sent to

zero. For notational purposes we set N =1 . Let A be a

large rectangle containing (0,0) . We define

1
H (¢) = 5 b, ¢,
N IR

and

9567 (3)) = exp(-26% () - s%10% () + 2t %) £ 1)

Thus Jij =1 if |i-j| =6 and i, j e A and Jij =0

otherwise. The Wick order for : ¢4: s is defined with

respect to Gﬁ(x-y) the Green's function of =-A + 1 on the
lattice. The Fourier transform of G° is given by

éé(p) = {25-2[2-cos(dpl)-cos(sp2) + 1}_l
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In the continuum limit & > 0 , G(p) = (p2~+l)_1 which is
the Euclidean free field propagator. The normalized correla-

tions are defined by

{0 ¢ xD, (8,20) =

J $(0) ¢(x) e I q6(¢ (3)) dé(3)
jeA

iy

-H, (¢)
J e L | 96(¢2(j)) d¢ (3)

jen
In the continuum limit this expectation is

[ $(0) ¢ (x) e_AV(¢'A) duA(¢}

[ AV (6, 1) au, (4)

Here duﬂ is the Caussian measure of mean 0 and covariance

(<o, + 1)t

and V(¢,n) = J :¢4(x) :dx . The subscript &
A
on A means that 0 Dirichlet boundary conditions are imposed

on 9A . We now state the main theorem of this section.

Theorem 7.1.

Let < >ﬁ(5,x) be defined as above. There are constants

An >0, m»> 0, C independent of A such that

0
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-m| x|

lim (0) ¢ (x),(8,)) s Ce (7.2)

§+0

whenever 0 < X < A, , x| > 1.

Remarks. Our proof also applies to the two component (¢4)2
model. The exponential clustering of the n point correla-
tions follows from (7.2) and the gaussian inequalities. Hence

we have established a mass gap.

Proof.
Let Q ¢ A be a square centered at the origin with sides

of length £ . By Theorem 6.1

G a0, (8,0 s T (002 (6,088 (20 (), (5,1)

(7.3)
where the sum ranges over z ¢ 2 , 2' ¢ 0 and |z-2z'| =6 .
We shall show that for 0 < A < AO and some 2 >> 1 ,
I G(0e(z)(6,0) <y <1 (7.4)

ZeON

where AO , £ and y are independent of & . As in [ 8]
successive iterations of (7.3) and (7.4) imply exponential
decay of the two point function.

In order to prove (7.4) let z ¢ 32 , then the integration

by parts formula shows that



o5

571G (010 (20D (8,0 = 67168 (0,2)

- 4 62 z <¢(0) :¢3{y) :6> G-ngfy,z) (7.5)
Yef

Now it suffices to show that (7.5) is less than [42]—1 for

any z € 3Q . Suppose that 2z = (%,z ) . Let Gi(x,y) be

2
the Greens function with zero Dirichlet boundary conditions

on the line X, = % + 6 . By the random path expansion,

Theorem 1.1, and the reflection principle we know that

0 < GJ(y,z) < Gj(y,z) = G’ (y-z) - G’ (y-2)

where 1z = (%4-26, zz) is the image of 2z . Hence

_ \ _ i L sinp, §
8 lGi(Y:z) =2 Jelp(y 2) o~ip 6[——6-1—] c° (p) dp. dp
1 2
lp, <6 e (7.6)
-1 8

It is not difficult to show that ¢ G, (y,z) approaches

A G(x,z) as &6 - 0 . Moreover
le

— -'l —
57160 (v,2) < Ke ily-zl e |y-z) 21

IA

(7.6)

Kly-z|"t if |y-z| s1

IA

where K 1is independent of é and 2 . These bounds may be
checked by explicitly calculating the dpl integral using a

contour integral.
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The above inequalities show that the first term on the
right side of (7.5) is bounded by (e—R/z) . To estimate the

second term we again integrate by parts and obtain

2 2. 8 -1.6
122 62 1 oty s ) 6,680,y 876 (v, 2)
yef
(7.7)
2
- 16 X <Fl F, )0 (8,1
where
2 3 5
F, = § Y e (y'): o G (0,y")
. ‘y'eq s a
F,o= 62 1 ey s, 660y, .
YeQ

The first term on the right side of (7.7) is small as A > 0
since <::¢2(y) ;% (6,2) is uniformly bounded as 6 + 0 .
To bound the second term we apply the Schwartz inequality with

respect to the Gaussian measure. Thus

GHEPY NCIEY

) <(F1 F2)2>g(6,)\=0) . <e-2w(¢.m>’g(5,0) |

The right side is bounded, using standard estimates, by Const.
exp[A const 22] for 0 < X < 1 . The partition function 2

is bounded from below using Jensens inequality. Hence we can

fix ¢ large and AO(E) small so that y in (7.4) 1is less

than 1 . End of proof of Theorem 7.1
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