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l. Im this note we sketch some ideas in the proofs of the results descri-
bed in the abstract : triviality and approach to the critical point of lhpﬁ
theories and non-linear o-models in dimension d ) 4 . The one-component

non=linear o-model on a lattice is the usual Ising model, the two-component

model is the classical rotor.

Dur main results are related to some prior results of Alzenman : L

b
(see also 5y for some previous ideas on triviality). Our methods of proof,
i

based on rafs. 4.3 are, however, different from and complementary to his

and yield some complementary information. They involve combining

i) Symanzik's representation of scalar field theories as models of inter-

acting random walks or “polymer chainsg" 4 ; Bee 336 for further developments ;
e i P 5 7

ii) spinm wava theory, in the form of infrared bounds i

iii) Ginibre's correlation inequalities - .

In one-and two-component limiﬁ theories and o-models on the
lactice we escablish an infinice Ffamily of new inequalities for each n-
point correlation = (or Euclidean Green's) function, n = &4,6,8B,..., which
express it in terms of the two-point function, i.e. the renormalized propa-
gator, and the inverse temperature (field stremgth), B , but thare is no
explicit dependence on bare masses and charges. Those inequalities imply

that, in the contimuum limit, each n-point function approaches the n-point
function of a (generalized) free field with the same two-point functionm,

provideml o 2y & .

For simplicity, we only consider the four-point function of the one-
component mode] in zero magnetic field. Details of our arguments and exten-
sions of our results to more general models (including ones in & magnetic field)

will be pregented elsewhere.
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2. Let Ei denote the d-dimensional, simple hypercubic lattice with
lattice spacing a measured in physical units, e.g. cm, and ranging over the
interval (0,1] . At each site jE€ E‘-i there is attached a real-valued

spin-or lattice field variable, @ . with a priori distribution

e Tl

where dy., is Lebesgue measure, and A = 3{a) , u= pla) and ¢ = gla)

i

are arbitrary functions of a with Ada) >0 . If we set

u= k", e=28* , R0 , (2)

and let A tend to += we obtain an Ising spin of length R .

The Hamiltom fumetion, or lattice actiom, of the models is defined by

H(g) == I @ @, . (3)
(3"
vhere L ranges over all pairs, (jj') , of nearest neighbors inm Ef: .

Gi')
The equilibrium state, or Euclidean vacuum functional, of the system at inverse

temperature £ is given by the measure

1)

PR g dro) ; (4)

i

where 2 is the usual partition function, and B=f@(a)is some positive function

du, (@) = 2 le

of a to be specified later. The correlatiom - , or Euclidean Green's func-

tions are the moments of d“ﬂ.l y Laly
<P ... P> = fp ... p du (P .1} (5)
Xy X g,a xl :n g,a

The distance, |x-y| , between two sites, x and y , of .E: is measured

in physical units, i.e. lattice unita sulciplied by a . We may choose

1) Mathematically, these quantities are defined as limits of corresponding quan-
tities in a finite region, A , of zd , A8 h; E‘" . The existence of the
limit follows from correlationm imqufitin 8, 12,



!

a=a = 2™ [em] n=0,1,2,... ,

go that E: = Ei s for m<mn, If a=1 we sgshall drop the subscript

m n
"a" . The two-point function in momentum space is given by

d _ik+j

S R T
where k = {kl,...,kd]l » = nfa g ku. € %a , @=1,...,d . It is shown in ?
that

0< <P <M E(k)e '1[.;(;}&21 - (1)
<<} B,a = "g,a [ "

2=d 2
where C(a) = B(a) a . Here HEl i is the long range order (spontaneous

magnatization squared), and the second term on the r.h.s. of (7) is the spin

wave contribution. From (7) and correlation inequalities one may derive

l:l'l:'l'.'l.pu'l.p::l- p: ;[2 + e, c{;]'l |:||:|:?""'i Y

B,a = "8,a 2 3 i

for some finite constant, €4 independent of £ and a ; see ’ . From (7)

or (8) we conclude that

<pip > =+ const., a8 a+0 , for all x ,

o x B,a
(9)
unless 0 <gla) £ £ ®:E- 1, for all a>0 .
In a theory with infinite field strength renormalization, i.e.
dim [@] # d—gﬂ (a -+ 0) :
(10)
lim £{a) = O .
a+0

as follows from (8) .

The connected four-point, or Ursell function is definmed by



{i}

Ug al®preee®y) =< @ A % 7 ta

1 27374
{11)
- <@ 9 >
‘Hn rm B,a “P(3) "P(4)B.a

where E ranges over all pairings, P , of {1,2,3,4) .
P

We can now state one of our main, new inequalities. Suppose that
|:1:i_-::j|3 § , for i9j "

for some arbitrarily small, but positive & . Them

(&) _
0 > uE,nhl""'Ii} > E[l] I I?{l] E-.
(12)
i a< <P,n > +E{B,a)
Prp 2y B Kp ) e TBaa SOy 7B
where =z ranges over EZ: , |z=z'| =|z=2"| = a , and
E(8,a) < const. gta)? 2™ |
The upper bound in (12) is che Lebowitz inequality i , the lower
bound is our new inequality. It is only useful if HE & w0 ; (if HE 2 ¢ 0
L] L]
other inequalities, discussed elsewhere, must be used).
3. We now show that, in d {3] 4 dimensions,
Lim u'?) (x,.00,%,) =0 ; (13)

"Iﬂ ‘Ei
provided I:i-le *&>0 , for i#j, (i.e. at non-coinciding arguments),

and M =m0 .
B,a

We recall that some limit of all correlation functione of the m"

lattice theories, ag a =+ 0 , can alvays be constructed by using correlation



T

inequalities and a compactness argument ; see ’ and references given there.
The limiting correlation functions can be analytically continued in the time
variables from the Euclidean region to the Minkowski region. It them follows
from (13) that the connected four-point Wightman distribution in the limit

a = 0 wanishes. (In fact, our inequalities can be used to show that all
connected Zn-point Wightman distributions vanish, for n = 2,3,...) Thus the

theory is a free, or generalized free field.

Next, we state the renormalization conditions, which permit us te prove

(13) in 4 4 5 dineniluu:ztﬂb choose A{a) , pla) and Ela) such that

0 < L(a) = ﬁ{a‘.laz_'d <1 ; see (8) , ‘F

I-'[ﬂ 4 w0 i and (14)
¥

L]

E .
0« lim ":"pa“’: }E.n < gup € @ i

= o¥ 5,8
a=+ a ¥

for % = 28, , 0¢< z<«1 , whara & ia the unit vector in tha 1-direction

of !-d . (If lim < o > =0 , for all choices of Afa) , u(a) and
a0 o g,a
E{a) compatible with (9) and with HEl .E D then the field of the limiting
L]

theory vanishes identically, an uninteresting case). It is known that, in two
and three dimensions, Afa) , pi(a) and Bla) can be chosen such that con=

dition (14) holds, and, for sufficiently small, bare coupling,

lim u{n]{: gesssX,) 0 . Sea 12,13 i {.lthlﬁ for some recent results).
a -+ Bya” 1 4

Lt appears that wvhen d > & there is no complete proof of the compatibility
of condition (14), although there are some parctial results 5,16 and, for

d »5 , a proof seems accessible, due to the absence of infrared divergences.
By (12) and the definition of r(a)

u;fihl.“i.:ﬁ'_l 2 -:{1}1 td"ﬁ T ;d

<y )
ziz', 2" Ty *

Y 5
g.a

) We work with renormalized, rather then bare fields; wee Sect. 7 .
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. Py > < P P > < P - + E(8,a)
i TV T L T R (15)
Using (8) and (14) one sees that
d@ rf ate O g0 O >
z;z',z" m‘?{l] B (2) .2
(16)
. g g > < i > C, < = .
wl?{j.:l I H.8 11‘;‘?{4} B.a = L
vhere T ranges over all z with
di.t[:ulta’{“l""‘lﬁ:} < 1 .
and Cy is a finite constant (for & > Q) .
Moreover, one cam show that
E(B,a) = Eé c(a) o2 ‘ (17}
Finally
w? £ alep Pz *g.0< Pp? *8.a
z;5" 5" *p(1) g ) "
s (18)

P> < @ >
Xp(3y * Bl z Xp(gy B8

" d 2-d 2-d "
'EE I: a Ez-ﬂPu_}l |=1Pl‘.3}| "".'E"| "

where ranges over all =z with
di.t[nw] {:,[11,...,;ﬁ}} > 1 .
and C" , C" are uniform constants. Inequality (18) follows from (B), (14)

{combined with physical positivity) and the fact that for d> 5

S T Lo LS

z
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Thus, for d > 5 and arbitrary & > 0 , (12) and (16)-(18) yield
Q0 = utijill,...,xi} > = n&"ﬁfhﬁ cla) +k"),

for finite constants kﬁ and k', which, together with (9), proves (13).

In four dimensions, the bounds (16) and (17) are still useful, but (18)
must be improved. This requires a condition on the propagator < ¢ g >

Xy B8
which is stronger than (14), namely, for Ix-:,ri *]

< a® %, skEyI a9

for some constants g € (0,1) (arbitrarily small) and k <= independent of
a . In the limit a = 0 , inequalicy (19) follows from the Killen-Lehmann
representation with ¢ > d-2 , if lim < 00, > 5 is Euclidean invariant.

a0
By (B), (14) and (19)

x%y “g,a = ’ £20)

with p "% (-30)(4=2¢)"" <1 ,d=4.
Thus, by (19) and (20)

>

i d
tia) L a < g > wes € 4P, >
z;z',z" “&?{1} Bl :‘H:Pf#} E.a

i (21)
< c’#‘ t{l}t'ﬂ E)
Thus, at non-coinciding arguments,
tim w{e,x) =0, (22)
a+0 b
provided
lim g(a) = © : (23)
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We now recall that if renormalized perturbation theory were asymptotic for
the coefficients in the Callan-Symanzik equation then
: 2
(lim <y > Jlx-y|" » #, as y+ 2 (24)
=40 e ¥ B.a E

for small values of the renormalized coupling constant, g , defined e.g. by

g = E{ﬁj I-I E-ﬁ '

wheras

E{¢} = lim u{ﬁ}lﬂ.:.y.:} :

X,¥,2 s+ Ot

= F lim « »
% X a+ o E.a '

and E 1is the correlation length of the limiting theory : . By (B), (24)

holds only if
lim r(a) =0 ’
a-+0
which implles triviality, i.e. (22). This, however, contradicts the asymptoti-

city of perturbation theory. Thus, in four dimensions, there does not exist

any family of Auﬁ theories with the property that renormalized perturbation
theory is asymptotic to the coefficients in the Callan-Symanzik equation, and
any 1¢¢ theory with infinite field strength rencrmalization, i.e. non-

canonical ultraviolet dimension, is trivial.

If lim c(a) = L>a ,
-+

i.e. dim fipp] = 1 , the limiting theory cannot be Euclidean - and scale -

invariant, unless it is a free field. This is a general theorem, due to Pohl-
1

meyer ? (extending the Federbush-Johnson theorem to the massless case). Thus,

a non-trivial Au& theory would have to be asymptotically free. This possi-

bility is presumably ruled out by an inequality which sharpens (15), (sve mect. b,

inequalities (486) and (47), and [5]. but there is, to date, no complete proof.
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&, Next, we summarize some results on cricical exponents for the Ising -

d

and the lqll# models on the lattice Ed- Z a1

» & >5 . Similar results
have been found independently by Aizenman X . Previously, Sokal already
proved that the specific heat of these models in five or more dimensions is

finite 17 .

We fix 3 and yp and study the behaviour of the correlations when
O Bt 3 where ﬁc is the inverse of the critical temperature. (It is shown

in ' that §_ <= , for d 3 3). We define

x{B) = i < wu >, . (susceptibilicy) . (25)

2,18

It is shown in that

we)# = , as  BFE,

One new result is the following : In five or more dimensions , for the Ising

model or the 1qﬁ lattice theory,

X8 ~ (88", as A (26)

¢ L]

i.e. the eritical expoment, y , of y(g) takes its mean field value y = 1 .

(5ee also 1}.
The proof involves deriving a lower and an upper bound, = IIEJE ; for

g% ¥(B) , by using the Lebowitz inequality and the new inequality (15), or
1,14

related inequalities in . Combining these inequalities with an argument,

due to Glimm and Jaffe !h, one obtains (under slightly more restrictive hypo-

theses on the coupling constants)
3 =2
355(8) © ~2(p) ; (27)

for B < Ba and B. = 8 small. Here £(8) is the correlation length
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(inverse physical mass), and Z(B) is the strength of the one particle pole

in -:q;#& >3 o At zero spatial momentum.

We conjecture that
Z(g) 32, >0 \ (28)

for g < Ec s in d > 5 dimensions. This would imply

§6) ~ 60 V2,

which is the mean field result.

Conjecture (28) is a stronger form of the conjecture that
n=0 , for d>5 , (29)

where n is the critical exponent defined by

2=d-n
=8
<98 > o const. |x=y|

In 13 we propose a strategy for proving (29) , but there is no

complete proof. The proofs of (26) and (27) are straightforward consequences

(4) 15

of the lower and upper bounds om u 8 and are given in .

5. We now describe some of the ideas which go into the proof of the basic

lower bound (12) on uéﬁ}

tation of the correlation functions of a lattice 1mﬁ theory or an Ising
5,6

« We start by recalling the random walk represen-—

model developed in which is inspired by Symanzik's work 4 . Without loss

of generality wve may set a =1 .

We define
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S(a)ds if na=0

dp (8) =
" n=1

..n..ﬂl'x[u _:I'.'l:ld.l if nwl1,2,3...,

vhere is the characteristic fumction of the positive half axis.

X[0,=)
Let w be a random walk starting at some site x in z%  and ending at
another site ¥y . Let nj{u} be the number of visits of & at some site

j .« He define

dp _(t) I_Iii dnnj {m:tj] . (30}

Let iu] be the total number of nearest-neighbor steps made by w . We note
that
~(2dB+m?) e

dPluzt) = glul 1 e 14,

(c,)
i d

ﬂj (w)

is the random walk analogue of the Wiener measure conditioned on random walks
with killing rate m starting at % and ending at y . The variable tj

is the total amount of time spent by o at site j .

We now define a t-dependent partition function

Z(e) = | o BHIw) 2 g{m]:".'+ ztj)r.’mj ; (31)
vhere ;{f.pzj = d—iuﬂl y see (1) . Furthermore

sty w B 5 o | (32)
Then

Ly B alel g d_(t) =(t) . (33)
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If A=0, u=-(2dfm") ve find

-IIEdE-In!h:.
z(t) = 0 & d ¥
|

so that

< 9P

2,-1
O Pgam0 = L J dPGese) = (-paem) o,

H:I'i':f
where & is the finite difference Laplacean. As expected, this is the two-

point function of the free (Caussian) lattice field with mass —&- .
For the four-point function one finds

1:;[l Blﬂll*h]

1*¥2

uéijill!"'lxﬁ] - I

1 2
Jdo (tT)de (t°):
P uw e | w2

(34)

o Leeter?y - 2elyaiedy)

P
where E ranges over all walks Wy and Wy s with Wy % li'{l} - ti"{i}'

W, i
Wy T Xpeqy “*Epuy Formulas (31)-(34), along with many applications, can be
found in ° .

We now define

. At
z{t) =1 e J z(cr) : (35)
b
If we write £n ;.i.'l:lﬂ:z'_l as an integral over derivatives im 1:l and tz
and use Ginibre's inequality e to estimate the integrand we obtain 15
deleey > 2l 2t . (36)

By combining (34)-(36) we obtain the lower bound

|y [+ ]u, |
U{ﬁlfil.*i+,lﬁ} 3 E EF E 1 :

b f oy (ehyzcely
P ul.uz

(37)

) - R ¥ 1.2
dp"‘i“ yz(t”) [exp(=2A ? '{1‘13 1]
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Note that if j € Wy t; =0 ., i.g. the r.h.g8. of (37) vanishes, unless

wy M ow, L (38)

If =(t) = 0 exp [-IdE:j] a term on the r.h.s. of (37) corresponding to

a given P 1is proportional to the probability that a standard random

walk w ! IPfl]' —P:”n and a walk w, lﬂﬂ —rxﬂn intersect.
It is well known that, in the scaling limit (a - 0) , that probability

19

vanishes in four or more dimensions. This fact together with represen-

tation (37) represent the basic intuition behind the proof of the vanishing

(4)

B,a

lower bound in (12) we pust resum the r.h.s. of (37). From (37) and (38)

of u in the limit a =+ 0 . In order to make it precise and derive the

wa obtain

g |+ ]u,|
u;ﬁjixl,...,xﬁ} > =L EE g 1 .

ﬂlul-uzﬁiiriuiiﬂ}l-
P Mlgu

2
oo, (hes, @ 2D 2t
1
By the exclusion-inclusion principle,

xﬂul.uz by Nu, $61)

. o L oyl T 1)
nl XUMpstg Tug W wgd iFpae sy
ﬂ-l =1|+1|$n
z. ¥z
i (39)
Im+1 {-11“’1
3 nr_l U ’ N X€o,myt 0 N g 305,.08)) ,
1*=** %y
zii:j

for mw 0, 1l,2,..+ &
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If we sat m = 0 wa obtain

lua |+ w, |
E"’l L B8

(4) F
(% oead. ) =2 E
IIE Il I.ﬁ - P :Ezi ,ullui

p o

(40}

[ dp (ehyaely: fap (eHa(ed) .
| b

Hext, if =z € {11.12.:3.1“ we decompose Wy i=1,2, into two paths

u.i P Xpryy = % h-fll t g'— Xo(zy * with (zz') € wy
(41)

u.i § IP{]} — D-I; H :"-5{“  with (zz™) € iy

and then sum independently over mi ’ “5 s ' ,8" , u'l' ’ ""'II . In this summa-

tion we overcount the terms on the r.h.s. of (40) and therefore obtain a

further lower bound on ué“ « (A separate, but straightforwvard analysis is

required when z € {:1.-”.:“ ; but the corresponding contribution vanishes

when a + 0). We now use the following identity : Let w':x =z ,

+¥ , with (zz') nearest neighbors. Then

glo' [+]d"[+1

E Jdp 4 gm0 (t) z(r)
m'l*mu w'efzz')ey"
- g I Blm‘l*l""“] Jdp (%) dp W(t") 2(t"+t™)
il IU“ . -
- B< g, :-Euc ms.mf :-ﬂ+ (42)

B IE 3 Hjlﬁ']*‘ld'l‘deulttlldn““{tn} El{t'*t".’l‘t{'—"}lit"}],
[
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where yw'e(zz')ey" is the path obtained by composing w"' , (zz') and

w" . We define a t-dependent two-point function y

I-EH ()

< 0@, > (0) = z(ey”! | 00, T g{m]?u:j‘.umj

]

= nf.l:.'!'1 E EIHI Idguil} z(s+t) (43}

wi

Using (43), the second term on the r.h.s. of (42) can be resummed to yield

g I ﬁ]u11+|ml1 lrd,pu,r{;‘}dpul,(:“}[:[t'+r_"':|---:|'.[t'}I‘.It“:l']

L
h

|ull ' '
=8 L 87 [ do i (eN2(t)< 0 0 > (t)-<o 0, >] .
By Ginibre's inequality 8

<9 P > (t') g < v, *g ' (44)

for t' >0 . Thus the second term on the r.h.s. of (42) is negative.

(For more details, see 5'1#'15]

If wve insert (42) on the r.h.s. of (40), using (41) and (44&), we
Einally obtaim

(4} 2
u tll"ilja-ﬁ E L < @ P L@ L o
B 1 & P Eja’,s" 1?[1} £ B £ IP[E}I B

L P> < p P > + E(B)
Xp(3) ° z' %5 (4) g

where E(8) takes into acecount the correction required when

z E 1“1‘“:"3"hj « This completes our sketch of the proof of (12).
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6. There are various refinements of inequality (12) which we believe might
be important for the analysis of mean-field behaviour in d > 5 dimensions

and of the four-dimensiomal lﬂF theory :

1) By using the upper bound (39) for x{{nll.u1 Pwy ﬂ-mt # @D we obtain
(4)

a lower bound on wu for each choice of m = 0,1,2,..- - Given m , that
lower bound can actually be expressed as a sum over all "skeleton diagrams"
( = Feynman diagrams without any self-energy subdiagrams) of order 2m+l ,

computed according to the following “Feynman rules" :
i) Each propagator is given by the full two-point fumction, < wgmy >

ii) Each vertex corresponds to

2
-8 L 5 &
,‘.l-““-:# GIIE Izﬂ 13:

O 1 "
lﬁi

where XyseeeyX, @TE arguments of propagators attached to the glven vertex

L L1}

which is localized at =z , and 2", z" are nearest neighbors of =z .

These lower bounds appear to be useful in a refined analysis of the
lattice lip: theory or the Ising model in d > 5 dimensions, (with a = 1)

for which all skeleton diagrams are infrared convergent, because the renocr-

malized propagator is square summable ; see (8) .

in

Odd order lower bounds !EE even order upper bounds on ugﬁ}

terms of skeleton diagrams with vertices proportional to the coupling cons-

tant ) have previously been proven in 1% | vor applications, see 14,15

I1I) We now outline another refinement of the basic lower bound (15) on
“;i} which is potentially useful to complete the apalysis of the four-
dimensional kmﬁ theory and to show that it is trivial even if lim C(a) >

a0
We reinstall the lattice spacing, a . First, we recall the lower bound (40)
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(4) d
on u L, l.e
P g ¢ u,l
S T S TN
a Y193
ull'hla':'ﬂ

+f do, (ehateh) [ do, (cDate)
1 2

We orient W, to be directed from Jr.F“] to Xp(2) * Given some fixed
path w, , choose z to be the last point at which Wy intersects Wy
Adhering to the notations introduced in (41) we then obtain

(4)
ual‘{xl,..,:h} =—ﬁ'|i.'. L L

Joad [+ ey | +] 5]
> e Lkt e
L T E T e 10D

¢ XUt (ae) w 0] Nuy = (2}1) fdp, (£")dp (£ 2(E"4e") -

1
Jdp hyze?y . ; (45)
Lk
2
i Iy .o 20
We now appeal to an argument used in (new proof of Lieb's inequality ")

to show that the r.h.s. of (453) can be resummed over ”i and “I Eo

vield
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™
(&) 2
u 'I:: e g ] -B E E K E 5
faml:h 8T et w
a 2
2':|z"=2|=a {4h)
- t LE ),
ﬂﬂtpmwfs_.d wzrﬁuﬁn iz nwzi yz(t”)
wp) . .
vhere < "p!l:"p}l' }Er" ig the two-point function of the theory with Dirichlar
boundary conditions alomg the walk W i.e.
fw,) (u,)
2 “2
< PP > - <
o Tan 11:: w:w? }H.I (t ) "
with
3 if jE€
o "
1 0 othervise .

> g >0 {measured in cm) ,

We expect that, for |1P{1}-='| =

<P ® :-m?} < X (1 _H-quz}
' < og a '
z :Pfl} g;a C

for some constant EE which is independent of & and finite for all
£ >0, and for some r{ul} which is positive for almost all w, , (witl
wh
respect to the weight EE zifdpm {tI} :{ti}} . Although we have no proof
2

(47) the following heuristic considerations suggest that it ought to be v

(wa)
a) If lim ¢{a) * 0 we expect that <@y > behaves qualitatively
a0 ﬂuzl 21 {w ? i
like {-ﬁ. ]I y ! vhere ﬂl 2° js the finite difference Lapla
]

on Eﬁ with zero Dirichlet data imposed on the set of sices visited by

“1 L]

b} In the scaling limit (a +0) the Hausdorff dimension of a typical pa:

is 2 . We therefore expect that
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(wy) (wy) 1
< uﬁlq&?{!] }E.l o~ {-ﬁ‘ }t"IP{E}
_q=xlu,)
e {193 a 1} "z ]

with .,-{n.l-z:l >0 , almost surely. This bahaviour is expected, since
z >g >0 and dist (2", m g «0 . [(ur considerations are
Epy! 2 ist (2',u) ( iderati

motivated by the analogy with Brownian motion 19}_

The renormalization condition (19) and inequalities (15), (4&6) and
{(47) would imply (under suitable assumptions on the behaviour of :Euz}}
that, in four dimensions,
1im u“i{:tl,.“,:ﬁ:l - 0 ,
-I."'D El

at non-coinciding arguments, even if lim g(a) > 0 .
a+=0

7. We conclude this note by describing some related problems and results,

{in particular concerning the self-avoiding random walk).

a) An alternative way of constructing the continuum limit of a lattice field
theory consists of keeping the lattice spacing, a , fixed and analyzing the

scaling limit. One then works with bare fields, @® , introduces a scale

parameter @ = 1,2.3,... and chooses funmctiona @B{(8) and aia) with the

following properties :

i) E(E}JFE: , a8 B6A=_ (e.g. in such a way that the scaled correlation

length, B'IE[EI:E}] , Temains bounded); and

i) lima(nic< m:ltﬂ;]? %) = GO exists.

il

From the infrared bound, i.e.
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for B 2 %_.d > 9, we conclude that

af8) > E{d-l}fi . (48)

By setting a = g » 0, = al8) :.u:l , this approach ie seen to be completely
equivalent to the one used in this note, where the lattice spacing a tends
to 0 , distances are kept fixed in physical units, and the remormalized
field, @ , is used. See u.g.g. (Our results then yield triviality of the

scaling limic, 6 + = , in dl:gl.iﬁ dimensions).

b) If in formulas (33) and (34) one sets

2
=EE.=AL,
¢ ]

(t) =1 e
]

glt) = IME

21

one obtains the Edwards model of the self-suppressing random walk on tha

lactice. The functiom

Eﬂ{l'” : u::z-rarﬂlhl j dpu}[;th{::,

is a welghted sum over all random walks with self-suppression starting at

ending at ¥ . It corresponds to the two-point function < 9, u,pr :n-B af the

1¢ﬁ theory. We alse define

(&) : "
i {Illfllxilfi} =
H] ::I.I o j"l

IEl1u=1 [+l

1 !
c Idﬂm{:t Yy (e .

HEIHE"‘ jfi

-Il:tit.
. do (thz, E::zm L
2 L]

1 2
]
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We note that the integrand on the r.h.s. of (49) vanishes, unless w Nu, ¢ @.

Obviously the funccion EE , more precisely

(&) .
E G G, @) e () e ()

(4)

B . Since

is the analogue of u

=2ALELt.E
I |

1.2
! 2 L
t.!.,E“ h?'.,ﬁu ) [e 1]

12 i 2
et R AR YR (60D

#*

inequality (37) is saturated in the present model. Therefore all inequali-
ties previously derived for the connected four-point function, u;‘“. of

the lattice l¢ﬁ theory extend to Géﬁj + (The proof follows directly from
(37}, (39) and the repulsive character of the interaction between different
random walks). These inequalities are useful in trying to show that

in five or more dimensions, in the scaling limit, two self-suppressing random
walks with non-coinciding starting - and ending points do never intersect

with probability 1. This would follow by showing that G ' vanishes in the

scaling limit. As remarked already, Gg“ satisfies the upper and lower
bound im (12). The obstruction against completing the proof that Gg‘“
vanishes in the scaling limit is that one does not know for this model that

Gaiu.yi satisfies a spin wave upper bound of the form of (8).

For fixed 2 and E , let ﬂ= be the supremusm over all values of
B for which 6511.3} has exponential decrease. We conjecture that in three

or more dimensions

GE (x,y) £ const. i:-y[z-d-n . {509
e



-2

for some n*0 .

If (50) turned out to be true, as expected, then the function ald)
introduced above would satisfy inequality (48), and it would then follow
from (12) that -Gé“ (at non-coinciding arguments) vanishes in the scaling
limict, {i.e. two self-suppressing random walks do not intersect), im five

or more dimensions.
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