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Abstract : 

It is shown that one-and two-component λ|φ|4 théories and non-

linear o-models in five or more dimensions approach free, or generalized 

free fields in the continuum (scaling) limit, and that in four dimensions 

there îs no family of λ|φ|4 théories to which renormalized perturbation 

theory is asymptotic. Some critical exponents for the lattice théories in 

five or more dimensions are shown to be mean field. The main tools are 

Symanzik’s polymer représentation of scalar field théories and correlation 

inequalities. 
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1. In this note we sketch sonie ideas in the proofs of the results descri-

bed in the abstract : triviality and approach to the critical point of λ|φ|4 

theories and non-linear σ-models in dimension d >(=) 4 . The one-component 

non-linear σ-model on a lattice is the usual Ising model, the two-component 

model is the classical rotor. 

Our main results are related to some prior results of Aizenman ; 

(see also 2,3 for some previous ideas on triviality). Our methods of proof, 

based on refs. 4,5 are, however, different from and complementary to his 

and yield some complementary information. They involve combining 

i) Symanzik's representation of scalar field theories as models of inter-

acting random walks or "polymer chains" 4 ; see for further developments ; 

ii) spin wave theory, in the form of infrared bounds 7 ; 

8 iii) Ginibre’s correlation inequalities 

In one-and two-component λ |φ|4 theories and σ-models on the 

lattice we establish an infinite family of new inequalities for each n-

point correlation - (or Euclidean Green's) function, η = 4,6,8,..., which 

express it in terms of the two-point function, i.e. the renormalized propa-

gator, and the inverse temperature (field strength), β, but there is no 

explicit dependence on bare masses and charges. Those inequalities imply 

that, in the continuum limit, each n-point function approaches the n-point 

function of a (generalized) free field with the same two-point function, 

provided d 4 . 

For simplicity, we only consider the four-point function of the one-

component mode] in zero magnetic field. Details of our arguments and exten-

sions of our results to more general models (including ones in a magnetic field) 

will be presented elsewhere. 
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2. Let Zda denote the d-dimensional, simple hypercubic lattice with 

lattice spacing a measured in physical units, e.g. cm, and ranging over the 

interval (0,1] . At each site j ϵ Zda there is attached a real-valued 

spin-or lattice field variable, φj , with a priori distribution 

(D 

where dφj is Lebesgue measure, and λ = λ(a) , μ = μ(a) and ε = ε(a) 

are arbitrary functions of a with λ(a) > 0 . If we set 

(2) 

and let λ tend to + ∞ we obtain an Ising spin of length R . 

The Hamilton function, or lattice action, of the models is defined by 

H (φ)jj' = - Σ φj φj, (3) 

where Σ(jj') ranges over all pairs, (jj’) , of nearest neighbors in Zda . 

The equilibrium State, or Euclidean vacuum functional, of the System at inverse 

température β is given by the measure 

(4) 

where Z is the usual partition function, and β = β(a)is some positive function 

of a to be specified later. The correlation - , or Euclidean Green's func-

tions are the moments of dμ Ba, i.e. 

(5) 

The distance, |x—y | , between two sites, x and y , of Zda is measured 

in physical units, i.e. lattice units multiplied by a . We may choose 

1) Mathematically, these quantifies arc defined as limite of corresponding quan-
tifies in a finite region, A , of Zda , as Λ / Zda . The existence of the 
limit follows from correlation inequalities 8, 12. 
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a = an ≡ 2 -n [cm] , n = 0, l, 2,... , 

so that dam  dan , for m < n . If a = 1 we shall drop the subscript 

"a" . The two-point function in momentum space is given by 

(6) 

where k = (k1,...,kd) , - π/a  k  π/a, α = l,...,d . It is shown in 

that 

(7) 

where Ϛ(a) ≡ β(a) a . Here M2β,a is the long range order (spontaneous 

magnetization squared), and the second term on the r.h.s. of (7) is the spin 

wave contribution. From (7) and correlation inequalities one may derive 

(8) 

for some finite constant, cd , independent of β and a ; see . From (7) 

or (8) we conclude that 

→ const., as a 0 , for all x, 

(9) 

unless 0 < Ϛ(a)  ζ e=8. 1, for all a > 0 

In a theory with infinite field strength renormalization, i.e. 

dim [φ] # d-2/2 (a → 0), 

(10) 

as follows from (8) . 

The connected four-point, or Ursell function is defined by 
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(11) 

where Σ ranges over all pairings, P , of {1,2,3,4} 

P 
We can now state one of our main, new inequalities. Suppose that 

|xi - xj|  δ, for 1 # j, 

for some arbitrarily small, but positive δ . Then 

(12) 

where z ranges over da , | z - zf | = |z - z"| = a, and 

E(β, a)  const. β(a)2 a2 - d . 

The upper bound in (12) is the Lebowitz inequality , the lower 

bound is our new inequality. It is only useful if Mβ,a. ≡ 0 ; (if Μβ,a # 0 

other inequalities, discussed elsewhere, must be used). 

3. We now show that, in d >(=) 4 dimensions, 

(13) 

provided |xi-xj |  δ > 0 , for i # j , (i.e. at non-coinciding arguments), 

and Μβ,a ≡ 0 . 

We recall that some limit of all correlation functions of the λφ4 

lattice theories, as → 0, can always be constructed by using correlation 
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inequalities and a compactness argument ; see and references given there. 

The limiting correlation functions can be analytically continued in the time 

variables from the Euclidean region to the Minkowski region. It then follows 

from (13) that the connected four-point Wightman distribution in the limit 

a = 0 vanishes. (In fact, our inequalities can be used to show that all 

connected 2n-point Wightman distributions vanish, for n = 2,3,...) Thus the 

theory is a free, or generalized free field. 

Next, we State the renormalization conditions, which permit us to prove 

(13) in d  5 dimensions 2) . We choose λ(a) , μ(a) and β(a) such that 

0 < ζ(a) ≡ β(a)a2 -d  1 ; see (9) , 

Mβ,a ≡ 0 , and 
β, a 

(14) 

for x = ze1, 0 < z < 1 , where e1 is the unit vector in the 1-direction 

of EEd. for all choices of λ(a) , μ(a) and 

β(a) compatible with (9) and with Mβ,a ≡ 0 then the field of the limiting 

theory vanishes identically, an uninteresting case). It is known that, in two 

and three dimensions, λ(a) , μ(a) and β(a) can be chosen such that con-

dition (14) holds, and, for sufficiently small, bare coupling, 

lim u(4)β,a (x1,.. . ,x4) # 0 . See
 12, 13,

 (also 9,14 for some recent results) . 

It appears that when d  4 there is no complete proof of the compatibility 

of condition (14), although there are some partial results 2,14 and, for 

d  5 , a proof seems accessible, due to the absence of infrared divergences. 

By (12) and the definition of Ϛ(a) 

2) We work with renormalized, rather than bare fields ; see Sect. 7 . 
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(15) 

Using (8) and (14) one sees that 

(16) 

where ∑< ranges over all z with 

distIcm](z’ixl x4}) 5 1 

and is a finite constant (for δ > 0) . 

Moreover, one can show that 

E(β, a)  C’δ δ(a) ad-2 (17) 

Finally 

(18) 

where Σ> ranges over all z with 

dist[cm] (z, {x1, ... , x4})  1 

and C" , C"' are uniform constants. Inequality (18) follows from (8), (14) 

(combined with physical positivity) and the fact that for d  5 
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Thus, for d  5 and arbitrary δ > 0, (12) and (16) — (18) yield 

for finite constants and k', which, together with (9), proves (13). 

In four dimensions, the bounds (16) and (17) are still useful, but (18) 

must be improved. This requires a condition on the propagator < φx φy > β,a 

which is stronger than (14), namely, for |x-y | >1 

(19) 

for some constants ε ϵ (0,1) (arbitrarily small) and k < ∞ independent of 

a. In the limit a = 0 , inequality (19) follows from the Kallen-Lehmann 

representation with ε  d-2 , if lim < φx φy > β,a is Euclidean invariant. 

By (8), (14) and (19) 

(20) 

with p e.= g. (4-3 ϵ) (4-2ϵ)-1 < 1, d = 4. 

Thus, by (19) and (20) 

(21) 

Thus, at non-coinciding arguments, 

(22) 

provided 

(23) 
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We now recall that if renormalized perturbation theory were asymptotic for 

the coefficients in the Callan-Symanzik equation then 

(24) 

for small values of the renormalized coupling constant, g , defined e.g. by 

g = u-(4) x-2 ξ-4 

where 

and ξ îs the correlation length of the limiting theory 9. By (8), (24) 

holds only if 

which implies triviality, i.e. (22). This, however, contradicts the asymptoti-

city of perturbation theory. Thus, in four dimensions, there does not exist 

any family of λφ4 theories with the property that renormalized perturbation 

theory is asymptotic to the coefficients in the Callan-Symanzik equation, and 

any λφ44 theory with infinite field strength renormalization, i.e. non-

canonical ultraviolet dimension, is trivial. 

If 

i.e. dim [φ] = 1 , the limiting theory cannot be Euclidean - and scale -

invariant, unless it is a free field. This is a general theorem, due to Pohl-

meyer 16 (extending the Federbush-Johnson theorem to the massless case). Thus, 

a non-trivial λφ44 theory would have to be asymptotically free. This possi-

bility is presumably ruled out by an inequality which sharpens (15), (see sect. 6, 

inequalities (46) and (47), and 15), but there is, to date, no complete proof. 
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4. Next, we summarize some results on critical exponents for the Ising -

and the λφ4 models on the lattice d = d a=1 , d  5. Similar results 

have been found independently by Aizenman 1. Previously, Sokal already 

proved that the specifie heat of these models in five or more dimensions is 

finite17. 

We fix λ and μ and study the behaviour of the correlations when 

β β
C
 , where βc is the inverse of the critical temperature. (It is shown 

in 7 that βc < ∞, for d  3). We define 

χ(β) = Σx < φ
ο
φ
χ
 > β, (susceptibility) . (25) 

It is shown in 2,18 that 

One new resuit is the following : In five or more dimensions, for the Ising 

model or the λφ4 lattice theory, 

(26) 

i.e. the critical exponent, γ , of χ(β) takes its mean field value γ = 1 

(See also 1). 

The proof involves deriving a lower and an upper bound,  χ(β)2, for 

∂/∂β χ(β) , by using the Lebowitz inequality and the new inequality (15), or 

related mequalities in 1,14 . Combining these inequalities with an argument 

due to Glimm and Jaffe , one obtains (under slightly more restrictive hypo-

thèses on the coupling constants) 

(27) 

for β < βc and βC -β small. Here ξ(β) is the correlation length 
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(inverse physical mass), and Z(β) is the strength of the one particle pole 

in < φx φy> β, at zero spatial momentum. 

We conjecture that 

Z(β)  Z0 > 0, (28) 

for β < βc, in d  5 dimensions. This would imply 

which is the mean field resuit. 

Conjecture (28) is a stronger form of the conjecture that 

η = 0 , for d  5 , (29) 

where η is the critical exponent defined by 

In 15 we propose a strategy for proving (29) , but there is no 

complete proof. The proofs of (26) and (27) are straightforward consequences 

of the lower and upper bounds on u(4)β and are given in 15 . 

5. We now describe some of the ideas which go into the proof of the basic 

lower bound (12) on u(4)β . We start by recalling the random walk represen-

tation of the correlation functions of a lattice λφ4 theory or an Ising 

model developed in 5,6 which is inspired by Symanzik’s work . Without loss 

of generality we may set a = 1 . 

We define 
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where x[0, ∞) is the characteristic function of the positive half axis. 

Let ω be a random walk starting at some site x in d and ending at 

another site y . Let ηj(ω) (ω) be the number of visits of ω at some site 

j . We define 

(30) 

Let | ω | be the total number of nearest-neighbor steps made by ω . We note 

that 

is the random walk analogue of the Wiener measure conditioned on random walks 

with killing rate m starting at x and ending at y . The variable tj 

is the total amount of time spent by ω at site j . 

We now define a t-dependent partition function 

(31) 

where see (1) . Furthermore 

(32) 

Then 

(33) 
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If λ = 0, μ = - (2dβ+m2) we find 

so that 

where Δ is the finite difference Laplacean. As expected, this is the two-

point function of the free (Gaussian) lattice field with mass 

For the four-point function one finds 

(34) 

where ΣP ranges over all walks ω1 and ω2 , with ω1 : xP(1) → xP(2), 

ω2 : xP(3) →XP(4) Formulas (31) — (34) , along with many applications, can be 

found in . 

We now define 

(35) 

If we write ln z(t1+t2) as an integral over derivatives in t1 and t2 

and use Ginibre's inequality to estimate the integrand we obtain 

(36) 

By combining (34)-(36) we obtain the lower bound 

(37) 
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Note that if j  ωi, tij = 0, i.e. the r.h.s. of (37) vanishes, unless 

ω1 ∩ ω2 #  (38) 

If z(t) = Π exp [-2dβt.] a terra on the r.h.s. of (37) corresponding to 

a given P is proportional to the probability that a standard random 

walk ω1 : xp(1) → xP(2) and a walk ω2 : XP(2) → XP(3) intersect. 

It is well known that, in the scaling limit (a → 0) , that probability 

vanishes in four or more dimensions. This fact together with represen-

tation (37) represent the basic intuition behind the proof of the vanishing 

of u(4)β,a in the limit a → 0 . In order to make it precise and derive the 

lower bound in (12) we must resum the r.h.s. of (37). From (37) and (38) 

we obtain 

By the exclusion-inclusion principle, 

X ({ω1, ω2 : ω1
 ∩ ω

2
 # } ) 

(39) 

for m = 0,1,2,... . 
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If we set m = 0 we obtain 

(40) 

Next, if z  {x1, x2 , x3, x4} we decompose ωi = 1,2, into two paths 

(41) 

and then sum independently over ω'1 , ω'2 , z' , z" , ω"1 , ω"2 . In this summa-

tion we overcount the terms on the r.h.s. of (40) and therefore obtain a 

(4) further lower bound on u(4)β . (A separate, but straightforward analysis is 
p 

required when z ϵ {χ1,...,χ4} , but the corresponding contribution vanishes 

when a → 0). We now use the following identity : Let ω' : x → z , 

ω" : z' → y , with (zz’) nearest neighbors. Then 

(42) 
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where ω'ο (zz') οω" is the path obtained by composing ω', (zz') and 

ω" . We define a t-dependent two-point function 

(43) 

Using (43), the second term on the r.h.s. of (42) can be resummed to yield 

By Ginibre's inequality 

< φz, φx> β (t’)  < φz, φx > β, 
(44) 

for t’  0 . Thus the second term on the r.h.s. of (42) is negative. 

(For more details, see 5,14,15). 

If we insert (42) on the r.h.s. of (40), using (41) and (44), we 

finally obtain 

where Ε(β) takes into account the correction required when 

z ϵ { x1, x2, x3, x4}. This completes our sketch of the proof of (12). 
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6. There are various refinements of inequality (12) which we believe might 

be important for the analysis of mean-field behaviour in d  5 dimensions 

and of the four-dimensional λφ4 theory : 

I) By using the upper bound (39) for x{ω1, ω2 : ω1 ∩ ω2 # }) we obtain 

a lower bound on u(4) for each choice of m = 0,1,2,... . Given m, that 

lower bound can actually be expressed as a sum over all "skeleton diagrams" 

( ≡ Feynman diagrams without any self-energy subdiagrams) of order 2m+l , 

computed according to the following "Feynman rules" : 

i) Each propagator is given by the full two-point function, < φx φy > β. 

ii) Each vertex corresponds to 

where χ1,...,χ4 are arguments of propagators attached to the given vertex 

which is localized at z, and z', z" are nearest neighbors of z . 

These lower bounds appear to be useful in a refined analysis of the 

lattice λφ4d, theory or the Ising model in d  5 dimensions, (with a = 1) 

for which all skeleton diagrams are infrared convergent, because the renor-

malized propagator is square summable ; see (8) . 

Odd order lower bounds and even order upper bounds on u(4)β ' in 

terms of skeleton diagrams with vertices proportional to the coupling cons-

tant λ have previously been proven in . For applications, see 14,15. 

II) We now outline another refinement of the basic lower bound (15) on 

u(4)β which is potentially useful to complete the analysis of the four-

dimensional λφ4 theory and to show that it is trivial even if lim a → 0 Ϛ(a) > 0. 

We reinstall the lattice spacing, a . First, we recall the lower bound (40) 
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on i.e. 

We orient to be directed from xp (1) to xp(2). Given some fixed 

path ω2, choose z to be the last point at which ω1 intersects ω2· 

Adhering to the notations introduced in (41) we then obtain 

(45) 

We now appeal to an argument used in (new proof of Lieb's inequality ) 

to show that the r.h.s. of (45) can be resummed over ω'1 and ω"1 to 

yield 
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(46) 

where is the two-point function of the theory with Dirichlet 

boundary conditions along the walk , i.e. 

with 

t(ω2)j 

t if j € ω2 

0 otherwise 

We expect that, for lxP(2) -z' |  ϵ > 0 (measured in cm) , 

(47) 

for some constant K
£
 which is independent of a and finite for all 

ε > 0 , and for some κ(ω2) which is positive for almost all ω2 , (with 

respect to the weight β |ω2| ∫d0 ω2 (t2) z(t2)). Although we have no proof of 

(47) the following heuristic considerations suggest that it ought to be true 

a) If we expect that behaves qualitatively 

like where Δ(ω2)a is the finite différence Lapla 

on Z
da
 with zero Dirichlet data imposed on the set of sites visited by 

ω2. · 

b) In the scaling limit (a → 0) the Hausdorff dimension of a typical pat 

is 2 . We therefore expect that 
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with
 κ

(ω2) > 0 , almost surely. This bahaviour is expected, since 

|z’-xP(2)|  ε > 0 and dist (z', ω2) xx a 0 . (Our considerations are 

motivated by the analogy with Brownian motion19 ). 

The renormalization condition (19) and inequalities (15), (46) and 

(47) would imply (under suitable assumptions on the behaviour of κ(ω2)) 

that, in four dimensions, 

at non-coinciding arguments even if 

7. We conclude this note by describing some related problems and results, 

(in particular concerning the self-avoiding random walk). 

a) An alternative way of constructing the continuum limit of a lattice field 

theory consists of keeping the lattice spacing, a , fixed and analyzing the 

scaling limit. One then works with bare fields, φ° , introduces a scale 

parameter Θ = 1,2,3,... and chooses functions β(θ) and α(θ) with the 

following properties : 

i) β (Θ ) βc , as (e.g. in such a way that the scaled correlation 

length, θ -1ξ(β(θ)) , remains bounded) ; and 

ü) exists. 

From the infrared bound, i.e. 
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for β  β
C

, d  3, we conclude that 

(48) 

By setting a = ϴ-1, φ
χ
 = α(θ) φ0ϴx this approach is seen to be completely 

equivalent to the one used in this note, where the lattice spacing a tends 

to 0 , distances are kept fixed in physical units, and the renormalized 

9 field, φ , is used. See e.g. . (Our results then yield triviality of the 

scaling limit, Θ → ∞ , in d >(=) 4 dimensions). 

b) If in formulas (33) and (34) one sets 

one obtains the Edwards model of the self-suppressing random walk on the 

lattice. The function 

is a weighted sum over all random walks with self-suppression starting at. x 

ending at y . It corresponds to the two-point function < φ
χ
 φy > β of the 

λφ4 theory. We also define 
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We note that the integrand on the r.h.s. of (49) vanishes, unless ω1 ∩ ω2 # . 

Obviously the function G4g , more precisely 

is the analogue of u(4)β . Since 

inequality (37) is saturated in the present model. Therefore all inequali-

ties previously denved for the connected four-point function, u(4)β, of 

the lattice λφ4 theory extend to G(4)β . (The proof follows directly from 

(37), (39) and the repulsive character of the interaction between different 

random walks). These inequalities are useful in trying to show that 

in five or more dimensions, in the scaling limit, two self-suppressing random 

walks with non-coinciding starting - and ending points do never intersect 

with probability 1. This would follow by showing that G(4)g vanishes in the 

scaling limit. As remarked already, G(4)g satisfies the upper and lower 

bound in (12). The obstruction against completing the proof that G(4)g 

vanishes in the scaling limit is that one does not know for this model that 

Gβ(x,y) satisfies a spin wave upper bound of the form of (8). 

For fixed λ and ξ , let βc be the supremum over all values, of 

β for which Gβ (x,y) has exponential decrease. We conjecture that in three 

or more dimensions 

(50) 
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for some η  0 

If (50) turned out to be true, as expected, then the function α(θ) 

introduced above would satisfy inequality (48), and it would then follow 

from (12) that (at non-coinciding arguments) vanishes in the scaling 

limit, (i.e. two self-suppressing random walks do not intersect), in five 

or more dimensions. 
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