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Abstract :

It is shown that one-and two-component A|w|4 theories and non-
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inequalities.

Institut des Hautes Etudes Scientifiques
35, route de Chartres
91440 - Bures-sur-Yvette (France)

IHES/P/81/41



1. In this note we sketch some ideas in the proofs of the results descri-
bed in the abstract : triviality and approach to the critical point of khpﬁ
theories and non-linear o¢-models in dimension d (;) 4 . The one-component
non-linear o-model on a lattice is the usual Ising model, the two-component

model is the classical rotor.

Our main results are related to some prior results of Aizenman 1 .
2 : . SRR
(see also e for some previous ideas on triviality). Our methods of proof,
4,5 . s
based on refs. ’ are, however, different from and complementary to his

and yield some complementary information. They involve combining

i) Symanzik's representation of scalar field theories as models of inter-

acting random walks or "polymer chains" 4 ; see L for further developments
ii) spin wave theory, in the form of infrared bounds g )
iii) Ginibre's correlation inequalities 8 -

In one-and two-component l|tp|4 theories and o-models on the
lattice we establish an infinite family of new inequalities for each n-
point correlation - (or Euclidean Green's) function, n = 4,6,8,..., which
express it in terms of the two-point function, i.e. the renormalized propa-
gator, and the inverse temperature (field strength), B , but there is no

explicit dependence on bare masses and charges. Those inequalities imply

that, in the continuum limit, each n-point function approaches the n-point
function of a (generalized) free field with the same two-point function,

provided d (;) 4 .

For simplicity, we only consider the four-point function of the one-
component model in zero magnetic field. Details of our arguments and exten-
sions of our results to more general models (including ones in a magnetic field)

will be presented elsewhere.
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2. Let Zg denote the d-dimensional, simple hypercubic lattice with
lattice spacing a measured in physical units, e.g. cm, and ranging over the
interval (0,1] . At each site j € ZZ: there is attached a real-valued

spin-or lattice field variable, ¢3 , with a priori distribution

. A Aer 2
_dk(cpj) exp [- 7 0 * 5 0 el dwj 8 (1)

where d¢3 is Lebesgue measure, and X = 3a) , u= u(a) and e = e(a)

are arbitrary functions of a with A(a) > 0 . If we set
w= k> , =28 , R>0 , (2)

and let A tend to +« we obtain an Ising spin of length R .

The Hamilton function, or lattice action, of the models is defined by

H(p) = - I P @51 , 3)
(3i")
where z ranges over all pairs, (jj') , of nearest neighbors in Zg .

(i"
The equilibrium state, or Euclidean vacuum functional, of the system at inverse

temperature B 1is given by the measure

-1 _-gH(®) 1Y)

T dk(wj) . (4)

du
B ]

a(tp) = 7

»

where Z 1is the usual partition function, and B=B(a)is some positive function

of a to be specified later. The correlation - , or Euclidean Green's func-

tions are the moments of dp e
B,a
< q& cen q& >B - j ¢& v w& du a(wo . 2 (5)
1 n 1 n B

The distance, ]x—y| , between two sites, x and y , of Zi: is measured

in physical units, i.e. lattice units multiplied by a . We may choose

1) Mathematically, these quantities are defined as limits of corresponding quan-
tities in a finite region, A , of zd | as .-\{ z: . The existence of the
limit follows from correlation inequafities 8, 12,
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a=a = 2% [em] , n=0,1,2,... ,
d d .
so that Za c Za , for m<«<n. If a=1 we shall drop the subscript
m n
"a" . The two-point function in momentum space is given by
< low |5, o -}J; a” e o>, (6)

where k = (kl""’kd) , - m/ag ka < 7a , @=1,...,d . It is shown in

that
INY 2 *2re 12y "1
0 < <|ok)| %,a S Mg 800+ 7 [«a)k”] . (7)

where ¢(a) = B(a) az—d . Here is the long range order (spontaneous

MB,a

magnetization squared), and the second term on the r.h.s. of (7) is the spin

wave contribution. From (7) and correlation inequalities one may derive

2 -1
0<<wowx> <M +cy z(a)

[x[Z-d
B,a = B,a

,d> 3, (8)

for some finite constant, cq independent of B and a ; see s . From (7)

or (8) we conclude that

<o >B,a — const., as a-~+ 0, for all x ,

(9
unless 0 <¢g(a) < & €:8- 1, for all a> 0 )
In a theory with infinite field strength renormalization, i.e.
amlol # 2 @r0
(10)
lim z(a) = 0 .
a*0

as follows from (8) .

The connected four-point, or Ursell function is defined by



(4)
u, ’(x x)=<wwww>
B X)Xy Xy'X, B,a
(11)
= E-<m @, > <@ q& >
P P(l) P(2) B,a P(3) "P(4)B,a
where I ranges over all pairings, P , of {1,2,3,4} .

E

We can now state one of our main, new inequalities. Suppose that

x.-x.| > &§ , for 1i¢# j ,
i%jl =

for some arbitrarily small, but positive & . Then

0 (4)(x1,...,x ) > -B(a) I <o

(12)
T 9 @ <@, n@, +E(8,a)
2" xp () 805 Brp 3y %2 Tha %4y Bea
where 2z ranges over Z: s |z=2'| =|z=2"| = a , and
E(8,a) < const. p(a)? a?™d .
The upper bound in (12) is the Lebowitz inequality = , the lower
bound is our new inequality. It is only useful if MB a = 0 ; (if MB a £ 0
other inequalities, discussed elsewhere, must be used).
3. We now show that, in d (3) 4 dimensions,
lim u( ) (x x,) =0 (13)
a0 g,a g RGO 2 ’

provided |xi-xj! >8>0 , for i# j, (i.e. at non-coinciding arguments),

and MB,& =0 .

We recall that some limit of all correlation functions of the lwﬁ

lattice theories, as a 0, can always be constructed by using correlation
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inequalities and a compactness argument ; see S and references given there.
The limiting correlation functions can be analytically continued in the time
variables from the Euclidean region to the Minkowski region. It then follows
from (13) that the connected four-point Wightman distribution in the limit

a = 0 vanishes. (In fact, our inequalities can be used to show that all
connected 2n-point Wightman distributions vanish, for n = 2,3,...) Thus the

theory is a free, or generalized free field.

Next, we state the renormalization conditions, which permit us to prove

(13) in d 25 dimensionszlwe choose A(a) , p(a) and B(a) such that

0 < g(a) = |3(a)az—d <1 ; see (9) ,

14
MB,a =0 |, and (14)
0< lim <@.@ > < sup< Q@ > < o
a+0 0'x B,a a o'x B,a

for x = ze; , 0< z< 1 , where e is the unit vector in the l-direction

of Kid . (If lim< @@ > =0 , for all choices of A(a) , p(a) and
a0 o'x B,a
B(a) compatible with (9) and with M =0 then the field of the limiting

B,a

theory vanishes identically, an uninteresting case). It is known that, in two
and three dimensions, A(a) , up(a) and B(a) can be chosen such that con-

dition (14) holds, and, for sufficiently small, bare coupling,

lim u(a)(x yeeesX,) ¥ 0 . See 12,13 . (alsJ%14 for some recent results).
250 B,a 1 4

It appears that when d > 4 there is no complete proof of the compatibility
of condition (14), although there are some partial results 25k and, for

d > 5, a proof seems accessible, due to the absence of infrared divergences.
By (12) and the definition of z(a)

(4) 2 d-4 d
uB,a(xl""’x4) >-z(a)” a b a

<@
z;z',z" *p(1)

@ >3,a.

2)

We work with renormalized, rather than bare fields; see Sect. 7 .
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> < > + E(B,
<le:lPxP(2)>B,a< leP(3)(Dz 8,a (pz"wxP(A) 8,a (B,a)
(15)
Using (8) and (14) one sees that
g(a) 1< ad < 0 ©, >, o< 0,10, >
z3;z',z" Xp(D) Bs P(2) Bg,a
(le)
o > < C, <™
< ‘pxP(s)(pz >g,a < l'pz"(pxp(a) B,a = °§ ’
where f"ranges over all =z with
dist[cm](z’{xl’a-.’x4}) : 1 ]
and CG is a finite constant (for & > 0) .
Moreover, one can show that
E8,2) g ¢} z(a) a7 : (17)
Finally
2 > d
z(a) z a < @ ®, > < 0.9 - S
z;z',z" xP(l) z B,a z xP(2) B,a
<@ < P (18)

® > >
XP(B) z B,a z xP(4) B,a

" d - 2-d - 2-d m
<C i a° |z xP(1)| | z xP(3)| < C ;

where g ranges over all =z with
dlst[cm] (z,{xl,...,xa}) > 1 ,
and C" , C" = are uniform constants. Inequality (18) follows from (8), (14)

(combined with physical positivity) and the fact that for d > 5

4 |z-x|2—

z

4 ey < el <o
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Thus, for d > 5 and arbitrary 6 >0 , (12) and (16)-(18) yield

v

0 u(A)(xl,...,XA) - ad_t'(k6 t(a) +k'),

for finite constants kG and k', which, together with (9), proves (13).

In four dimensions, the bounds (16) and (17) are still useful, but (18)
must be improved. This requires a condition on the propagator < (DiD >

Xy B,a
which is stronger than (14), namely, for |x~y| >1

< Q0 > £l_1|c|x--y{ . (19)

Bs

for some constants ¢ € (0,1) (arbitrarily small) and k <« independent of

a . In the limit a = 0 , inequality (19) follows from the Kidllen-Lehmann

representation with ¢ > d-2 , if lim <@ @ > is Euclidean invariant.
w0 *) Ba

By (8), (14) and (19)

=P 17 |,_,|~2P~e(1l-p)
0< < O >, o S z(a) ¥ k [x=y | , (20)

with p %8 (4-3e)(4-2¢) <1 , d =4 .
Thus, by (19) and (20)

t;(a.)2 E> ad < @

z3z',2" XP(l)wZ >B;a e (pz"‘p P(zl) >B!a
- (21)
< ¢’ @ :
Thus, at non-coinciding arguments,
lim (4)(x1, cax) =0, (22)
a*0
provided

lim z(a) = 0O . (23)
a0 :
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We now recall that if renormalized perturbation theory were asymptotic for

the coefficients in the Callan-Symanzik equation then

i 2
(;_];E 0, >B’a)-|x—y| > 4w, as y>+x |, (24)

for small values of the renormalized coupling constant, g , defined e.g. by

—(4) -2 -4
g = u( ) X £ ’
where
3(4) = 7 lim u(éi(O,x,y,z) "
X,¥,z a0 B»

X =L lim < ¢b¢% >

x a0 8,a ’

and ¢ 1is the correlation length of the limiting theory & . By (8), (24)
holds only if

lim C(a) = 0 ’

a-»0
which implies triviality, i.e. (22). This, however, contradicts the asymptoti-

city of perturbation theory. Thus, in four dimensions, there does not exist

any family of Ama theories with the property that renormalized perturbation
theory is asymptotic to the coefficients in the Callan-Symanzik equation, and
any Awi theory with infinite field strength renormalization, i.e. non-

canonical ultraviolet dimension, is trivial.

If lim z(a) = >0 ,
a-0

i.e. dim [yp] =1, the limiting theory cannot be Euclidean - and scale -

invariant, unless it is a free field. This is a general theorem, due to Pohl-
16 .

meyer (extending the Federbush-Johnson theorem to the massless case). Thus,

a non-trivial Ami theory would have to be asymptotically free. This possi-

bility is presumably ruled out by an inequality which sharpens (15), (sce sect. 6,

inequalities (46) and (47), and ]5), but there is, to date, no complete proof.
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4. Next, we summarize some results on critical exponents for the Ising -
d .

and the Mp4 models on the lattice Zd- Za=1

» d >5 . Similar results
have been found independently by Aizenman . . Previously, Sokal already
proved that the specific heat of these models in five or more dimensions is
finite = >

We fix A and yu and study the behaviour of the correlations when

BB, » where B, is the inverse of the critical temperature. (It is shown

in L that Bc <o , for d > 3). We define

x(B) = i < @0 >8 , (susceptibility) . (25)

2,18

It is shown in that

x(B) 7 = » as BB

c
One new result is the following : In five or more dimensions , for the Ising

model or the Aqﬁ lattice theory,

(8 ~ B -)""  , as psAe. (26)

c

i.e. the critical exponent, y , of y(B) takes its mean field value y =1 .

(See also 1).
The proof involves deriving a lower and an upper bound, « X(B)2 , for
é% x(B) , by using the Lebowitz inequality and the new inequality (15), or

related inequalities in L

. Combining these inequalities with an argument,
due to Glimm and Jaffe Zb, one obtains (under slightly more restrictive hypo-

theses on the coupling constants)

0 -2
2858 © ~Z(8) , (27)

for B < B and B. = B small. Here g(B) 1is the correlation length

c
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(inverse physical mass), and Z(B) is the strength of the one particle pole
in <q&g§ >6 , at zero spatial momentum.

We conjecture that
Z(B) 2 Zo >0 ’ (28)

for B < Bc » in d > 5 dimensions. This would imply

(@ ~ B0 2,

which is the mean field result.

Conjecture (28) is a stronger form of the conjecture that
n=0 , for d25 , (29)

where n is the critical exponent defined by

2-d-qn
[~ -
< 00 > s const. |x-y| g

In = we propose a strategy for proving (29) , but there is no

complete proof. The proofs of (26) and (27) are straightforward consequences

of the lower and upper bounds on uﬂ;) and are given in 5.
5. We now describe some of the ideas which go into the proof of the basic

lower bound (12) on u . We start by recalling the random walk represen-

(4)
B

tation of the correlation functions of a lattice Awa theory or an Ising

»

model developed in which is inspired by Symanzik's work 4 . Without loss

of generality we may set a =1 .

We define
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§(s)ds if n=0

dpn(S) =
sn—l

(_n-l)! .X[O’w)(S)ds if n = 1,2,3,... B

where X[0,w) is the characteristic function of the positive half axis.
’W

Let ¢ be a random walk starting at some site x in Zd and ending at

another site y . Let nj(m) be the number of visits of ( at some site

j . We define

: 30
dpm(t) = dpn.(w)(tj) (30)
] J
Let |w| be the total number of nearest-neighbor steps made by ® . We note
that
dP(w;t) = B ? e dpnj(m)(tj)

is the random walk analogue of the Wiener measure conditioned on random walks
with killing rate m starting at x and ending at y . The variable tj

is the total amount of time spent by w at site j .

We now define a t-dependent partition function

z(t) = [ PHE ; s@ 20, (31)
where g({pz)z d;gm) , see (1) . Furthermore

z2(t) « 28 5 o (32)
Then

<o® > = I 8l § 4 20y . (33)
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If A=0, u=-(2d8+n%) we find

- (2dg+m?) ¢,
z(t) =1 e J :
j
so that
<Qo > = 5 [ dP(ust) = (-ga+m®)
X'y B,A=0 ’ Xy ’

WXy

where A 1is the finite difference Laplacean. As expected, this is the two-

point function of the free (Gaussian) lattice field with mass i%r .

For the four-point function one finds

(4) ; plugl+wl 1 2, .
ug (xl,...,x4) I z 8 jdpw (tH)de (t9)

P Wys, 1 wa
(34)

¢ Lz(etet?) - z(ehyz(e?))
P
where . Eu ranges over all walks w : xP(l) -+ xP(Z)’
1’72 . . .
w, * xP(3)-—+xH%). Formulas (31)-(34), along with many applications, can be

found in > .

1 and Wy > with 0y

We now define

, A2
z(t) =T e J z(t) . (35)
j
- o, 1 2 . . A : 1 2
If we write 2n z(t"+t°) as an integral over derivatives in t and t
and use Ginibre's inequality s to estimate the integrand we obtain =
2ehse?y > 2¢eh 2ehy (36)

By combining (34)-(36) we oBtain the lower bound
(4) p_lugl*ley]
uB (xl,...,xa) 2L I B

[ doy, (£h)z (e
P Wy 0y

37)

s dp (tz)z(tz)[exp(-ZA I t%t?)-l]
Wo j J ]
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Note that if j ¢ wy s t} =0, i.e. the r.h.s. of (37) vanishes, unless

w Nuw, #6 . (38)

If 2z(t) =1 exp [-ZdBtj] a term on the r.h.s. of (37) corresponding to
j

a given P 1is proportional to the probability that a standard random

. —— . 3
walk w xP(l) xP(Z) and a walk wy XP(Z) —— xP(3) intersect.
It is well known that, in the scaling limit (a - O0) , that probability

. . . . 19 . .
vanishes in four or more dimensions. This fact together with represen-

tation (37) represent the basic intuition behind the proof of the vanishing

(4)

uB,&

lower bound in (12) we must resum the r.h.s. of (37). From (37) and (38)

of in the limit a — 0 . In order to make it precise and derive the

we obtain

lwg [+]wy|
us(“’(xl....,x4)g-§wzz 8 1 Elupuyt g NuytB)).
12

+ fdo, (tl)dpmz(tz) z(th) z(t?)
1

By the exclusion-inclusion principle,

x({ml,mz :w, N w, #01})

1
S (_l)n-l
= L ol L X({mllmz:mlnsza{zl,..,zn})
n=1 ZseesZy
z.#z,
- (39)
2m+1 (_l)n |
< Z .
o = . z X({wl,mz.mlﬂ Wy B{zl,..,zn}) s
12722y

z.#z.
1 ]

for m=0,1,2,... .
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If we set m = 0 we obtain

la |+, |
u(l')(xl,..,xl‘)z - L ZP ] ! 2 .
8 P zezd Wy 50y
wlﬂm23z

(40)

fdp &bz fap Dz .
“ “2

Next, if 2z ¢ {xl,xz,xs,x4} we decompose Wy i=1,2, into two paths

mi P Xpqy T2 W z'— Xp(2) with (zz') € Wy
(41)

mé P Xpegy T2, Wy z" — Xp(4) with (zz") € Wy

and then sum independently over w! , w), 2',2" , o' , wi . In this summa-
P y 1° 9 1° 9

tion we overcount the terms on the r.h.s. of (40) and therefore obtain a

(4)
g

further lower bound on u (A separate, but straightforward analysis is

required when 2z € {xl,...,xa} , but the corresponding contribution vanishes

when a - 0). We now use the following identity : Let w':x >z ,

w': 2" +y, with (2z') nearest neighbors. Then

s glut el

Y]+l
o | j dpm'ﬂ(zz')nd‘ (t) z(t)

= ||‘..IJ' |+|w"| ) " "
B m'fw" B Idpwu(t ) dpwu(t ) z(t'+t")

< O > + (42)

e %%z g 2’y 8

B I gla'[+1d"] Jdo i (t")dp y(t") [2(t'+t")=z(t")z(t") ],
w ,w
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where 'o(2zz')ow" < is the path obtained by composing ' , (zz') and

. . . 5
w" . We define a t-dependent two-point function

-1 -BH () 2
< 0,0, > (£) = 2(t) [ e 0.0 ;1 8 (042t ) do,

= z(t:)-1 I Blml'fdp (s) z(s+t) (43)
wix+y o

Using (43), the second term on the r.h.s. of (42) can be resummed to yield

wl m"
»

"Ifdpm, (£")de (") [2(t"+£")-z(t")z(t")]
=B i' Blw'lf dpw.(t')Z(t')k ®,0 >s(t')'“°z""x >8] .

By Ginibre's inequality e

L]
<O, > (E) S <e, 0 >, (44)

for t' >0 . Thus the second term on the r.h.s. of (42) is negative.

(For more details, see 5’14’15) .

If we insert (42) on the r.h.s. of (40), using (41) and (44), we

finally obtain

(4) 2
ug (x,,..,%,) 2 -7 I z <@ ©® ><9.,0 - A
B ™ . P z3;z',z" *pa1) 2 . *p(2) .
- <@ © > < @,0 > + E(B)
*p(3) ° 2" %p4) B
where E(B)

takes into account the correction required when

z € {xl,xz,x3,x4} . This completes our sketch of the proof of (12).
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6. There are various refinements of inequality (12) which we believe might
be important for the analysis of mean-field behaviour in d > 5 dimensions

and of the four-dimensional Aqﬁ theory :

I) By using the upper bound (39) for x({uﬁ,wz Py n w, # 0} we obtain
(4)

a lower bound on u for each choice of m = 0,1,2,... . Given m , that
lower bound can actually be expressed as a sum over all "skeleton diagrams"
( = Feynman diagrams without any self-energy subdiagrams) of order 2m+l ,

computed according to the following "Feynman rules" :

i) Each propagator is given by the full two-point function, < “&Qy >B

ii) Each vertex corresponds to

-62 L Qx z 6x z 6x z' 6x z
1 2 3 4

n »

XpseesX,

where X)s+ee,X, are arguments of propagators attached to the given vertex

which is localized at z , and z', z"

are nearest neighbors of z .

These lower bounds appear to be useful in a refined analysis of the
lattice ktqg theory or the Ising model in d > 5 dimensions, (with a = 1)

for which all skeleton diagrams are infrared convergent, because the renor-

malized propagator is square summable ; see (8) .

0dd order lower bounds and even order upper bounds on uéAJ in

terms of skeleton diagrams with vertices proportional to the coupling cons-

tant ) have previously been proven in 14 . For applications, see Sa 2 .

II) We now outline another refinement of the basic lower bound (15) on

4 - " s :
ué ) which is potentially useful to complete the analysis of the four-
dimensional Aw4 theory and to show that it is trivial even if 1lim Z(a) > O.

a0
We reinstall the lattice spacing, a . First, we recall the lower bound (40)
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on éfi y 1€,
P Jugf+|w,]
P zEZa WysW,
mlﬂm23z
f o (ehzehy [ (Dyaeh
w w
1 2
We orient Wy to be directed from xP(l) to xP(2) . Given some fixed
path Wy choose z to be the last point at which 0y intersects Wy -

Adhering to the notations introduced in (41) we then obtain

] [+]a] [+]w,|
sres®y) B BE I z L g 1 L2

. ] n .
232 Wwyswy m2'xP(3)+xP(4)

(4)(x

. x({ml,w 1(z2') o W' ﬂ¢u2= {z}})J'dp ,(t )dp n(t")z(t'+t") "
“1

S, £z : (45)
2

We now appeal to an argument used in 3 (new proof of Lieb's inequality 20)
to show that the r.h.s. of (45) can be resummed over mi and wl to

yield
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|w, |
2
u(é)(x,...,x)>-—82 )'_'d z B .
B,a"l 47 & P z€EZ w
a 2
z':|z'-z|=a (46)
(mz) I ( 2 2\
<P O.> < P, > dp t)z(t)
xP(l) z B,a z xP(Z) B,a wo
(wp) . .
where < 0Py >g o is the two-point function of the theory with Dirichlet
boundary conditions along the walk Wy s i.e.
(,) (,)
< > = 1im < > t
xy B,a tii q&q; g,a ( ) .
with
(wz) t 1E e w,
| s =
] 0 otherwise ,
We expect that, for |xP(2)-z'| >€>0 (measured in cm) ,
(w,) _q ~K(w,)
< (Dz,‘px >B ‘; e Ke(log a 1) 2 ,
P(2) ’
for some constant K_ which is independent of a and finite for all

€ >0, and for some Kﬁuz) which is positive for almost all Wy (witl

w
respect to the weight Bl 2|J'dpm (tz) z(tz)) . Although we have no proof of
2

(47) the following heuristic considerations suggest that it ought to be tru«

(w,)
a) If 1lim z(a) > 0 we expect that ~<wxpy >B i behaves qualitatively
a0 w,) _ " ’
like (-&a 2 )xly , Wwhere A: 2) is the finite difference Laple
»

on Zg with zero Dirichlet data imposed on the set of sites visited by

mzo

b) In the scaling limit (a +0) the Hausdorff dimension of a typical pat’

is 2 . We therefore expect that
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(wz) ( (wz))-].
< @1 > ~ (-A '
z xP(Z) g,a a z ’xP(2)
-« (w,)
~ (log a_l) 2 "

with K(mz) >0 , almost surely. This bahaviour is expected, since
|z'-xP(2)] >€ >0 and dist (z',mz) = a +0 . (Our considerations are

motivated by the analogy with Brownian motion 19).

The renormalization condition (19) and inequalities (15), (46) and
(47) would imply (under suitable assumptions on the behaviour of K(mz))
that, in four dimensions,

lim u(A)(x

ln ug,a 1,...,x4) = 0 -

at non-coinciding arguments, even if lim z(a) > 0 .
a+0

7. We conclude this note by describing some related problems and results,

(in particular concerning the self-avoiding random walk).

a) An alternative way of constructing the continuum limit of a lattice field
theory consists of keeping the lattice spacing, a , fixed and analyzing the

scaling limit. One then works with bare fields, ©° , introduces a scale

parameter 6 = 1,2,3,... and chooses functions Rg(¢) and o(g) with the

following properties :

i) B(e ))'Bc , a8 0=, (e.g. in such a way that the scaled correlation

length, 8_15(8(9)) s, remains bounded); and

e . 2_ 0 0 -
8" < - i
ii) G}:l.m a(8) (pextpey >B(8) = G(x-y) exists.

From the infrared bound, i.e.



- 2]. =

) -1 2-d
<0, @ > < const. § |x=y| ,

for B < 8. ,d 2 3, we conclude that

5 9(d-z)lz

t (48)

a(e)

By setting a = 8#1 > 0 = a(6) mgx , this approach is seen to be completely

equivalent to the one used in this note, where the lattice spacing a tends
to 0 , distances are kept fixed in physical units, and the renormalized
field, ¢ , is used. See e.g.g. (Our results then yield triviality of the

scaling limit, 6 » « , in d(:)é dimensions).

b) If in formulas (33) and (34) one sets

-gt.—lt?
z(t) ] J

zA,E(t) = q e
]
one obtains the Edwards model of the self-suppressing random walk 2 on the

lattice. The function

G, (x,y) = I Blwl [ dp, (t)z. (t)
P wix-*ry ? 1

is a weighted sum over all random walks with self-suppression starting at x
ending at y . It corresponds to the two-point function < thpy > of the

B
lqﬁ theory. We also define

|wll+|ml1

(4) . = 1 1
Gg @ (x,y3%p,y,) = I B Idpml(t )2y ((t)
e B I 6
87 %25
-212t!t§
2 2 R
. dp (¢ )ZA,E(t ) [e 1]

2
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We note that the integrand on the r.h.s. of (49) vanishes, unless mlntnzﬁ d .

Obviously the function Gg , more precisely

(4) .
g G " 1y, %p(2)3 %P (3) *¥P (4)
is the analogue of uéa) . Since
—212t;t§
z) t:(t‘)z;‘&:(t"’ne I

1 2 1 2
zl’g(t +t") zx,s(t )zx.E(t )

inequality (37) 1is saturated in the present model. Therefore all inequali-

(4)
8 »

the lattice Awﬁ theory extend to Géé) . (The proof follows directly from

ties previously derived for the connected four-point function, u of

(37), (39) and the repulsive character of the interaction between different
random walks). These inequalities are useful in trying to show that
in five or more dimensions, in the scaling limit, two self-suppressing random

walks with non-coinciding starting - and ending points do never intersect

with probability 1. This would follow by showing that Géa) vanishes in the
Gé4) satisfies the upper and lower

(4)

bound in (12). The obstruction against completing the proof that Gg

scaling limit. As remarked already,

vanishes in the scaling limit is that one does not know for this model that

GB(x,y) satisfies a spin wave upper bound of the form of (8).

For fixed X and £ , let Bc be the supremum over all values of
B for which GB(x,y) has exponential decrease. We conjecture that in three

or more dimensions

Gy (x,y) ¢ const. Ix-y|2*d-n , (50)

c
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for some n > [0

If (50) turned out to be true, as expected, then the function a(8)

introduced above would satisfy inequality (48), and it would then follow

(4)
B

limit, (i.e. two self-suppressing random walks do not intersect), in five

from (12) that G (at non-coinciding arguments) vanishes in the scaling

or more dimensions.
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