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Abatract.

We give a new, elementary proof for the existence of a deconfining
transition to a massless (QED) phase in the four-dimensional U(l) lattice
gauge theory and of an intermediate QED phase, accompanied by dynamical
restoration of local U(l) invariance, in the four dimensional Z, models,
with N large. Qur methods can &lsc be used to prove the existence of a
phase transition in the XY model in three or more dimension, in three-

and four-dimensional, abelian Higgs models, and in more general models admit-

ting some local, abelian gauge invariance.



§1. Introduction and sussmary of results.

In the past five years, there has been considerable progress in the
understanding of the phase diagram of lattice gauge theories with a discrete
(abelian, or non—abelian) "unbroken” group of gauge transformations. Among

such models are

i) pure lattice gauge theories with a discrete gauge group;

ii) lattice Higgs models with discrete or continuous gauge groups,

broken down by the Higgs scalars to a discrete, unbroken subgroup.

Such models are now known to have a strong coupling ("high temperatura"]
phase in which static quarks transforming non-trivially under the center
of the unbroken group are confined and a weak coupling (or "low temperatura”)
phase where static quarks are not confined but magnetic monopoles may be;

see [1,2,3,4,5] and [6] for a systematic review and further developments.

Proofs of these results are based on fairly standard high - and low
temperature expansions. An excellent review of such expansions [7,8] along
with applications to lattice gauge theories can be found in [6] . None of
these expansion methods require the use of duality transformations, so
that non-abelian models with discrete, unbroken groups are accessible. The
applications to the study of Higgs models with continuous gauge groups,
but discrete unbroken subgroup is somewhat subtle. However, the methods
developed in [9,10] , adapted to lattice gauge theories, are in principle
sufficient to study such models in various, extreme regions of coupling

constant space; see also [6].

As an example, consider a four-dimensional 5U(2) Higgs model with

a system of Higgs scalars which leave only Z, unbroken. Let g be the



pure gauge coupling constant, @ = 1.|"g2 , and suppose that, in the unitary
gauge, the interaction between the lattice gauge field, g , and the matter

fields is given by the action

- ‘R:Ry :t! xlt;w:l . {1.1)

where xy runs through all bonds (mearest neighbor pairs) of Elﬁ . ¥y

is the spin 1 character of S5U(2) , £ > 0 is a coupling constant, and
1: is the radial component of the Higgs system at the point x EEIlL

which is supposed to be = Hn > 0 with high probability.

Pregently, those facts which are known rigorously about this model

can be summarized in the following diagram :

M pure Z, theory
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. pure SU{2) theory e
Fig. 1
1 : Confinement of static quarks in the fundamental representation,([1,4]).

11 : Confinement of Rz monopoles, [6].



On the line g = = , the theory reduces to a lattice theory of
scalar fields decoupled from the gauge fields which has in general a phase

transition, with a massless, broken symmetry phase for [ > Lo v [11]) .

It is conjectured that f = E and, more generally that regions I
and II have a common boundary from (f = B,C=®) o some point P
which is connected by a line of singularities of e.g. the magnetic string
tension to (B == , ¢ = ;E} . Moreover, domain I should extend to the

broken line from P to (= w , ¢ =0) .

Among the obstructions which prevent one from proving the above

conjectures are

= incomplete knowledge of the pure Ez theory;
= the presumed roughening transition in the pure SU(2) theory (see ec.g.
[ 12]) which appears to make it impossible to extrapolate the high

temperature expansion for ¢ = 0 to arbitrarily large values of & .

The model discussed above may be amusing, but is not really relevant
for particle physics. More interesting examples would be latctice versions
of the Georgi-Glashow or the standard (Glashow=) Weinberg=Salam model of
electro-weak interactions. In these models a new difficulty appears :
Essentially no powerful, analytical tools are known which would permit
one to establish the existence of electromagnetic phases with massless

photons and unconfined, charged leptons.

Lat us consider, for example , the Georgi-Glashow model. In this
model, the Higgs scalar has isotopic #pin 1, and the action describing

the interactions between the Higgs- and the gauge field is given by



-::i “:‘nl{%:r“r} v {1.2)

where ¢ is the Higgs field, Dl is the spin 1 representation of SU(2) ,

{*s*) is the scalar product on !ta i

In this example the presumed phase diagram is described in Fig. 2

below.
L
pure U{l) theory
Bﬂ
c = om
R b !
LY classical Helsenberg
T
el model (or g|¢|ﬁ
e lattice theory)
I
| > 8
o =
Fig. 2

In domain I static "leptons" in the fundamental representation of
SU(2) are confined. This follows from the results of [1,6] (high tempera-

ture expansions) or from [4] (where correlation inegualities are used).

Whéen ¢ = » the model reduces to the pure U(l) lattice theory.
One main result of our paper is a nev proof and a generalization of a
result, already established by A. Guth [13] , which asserts that the

four-dimensional U(l) model has a deconfining tramsition, i.e. for

B > E'r: , statie electric charges have only Coulombic interactions, and



the photon is massless; see §2.

Our method of proof is a descendent of a more involved one used
to establish the existence of the Berezinski-Kosterlitz-Thouless transi-
tion [14] in the two-dimensional rotator model and the Coulomb gas which
we presented in [15] . In comparison with [15] simplifications arise in
the analysis of the U(l) model, due to gauge invariance which enforces
"local neutrality”. Our methods have the advantage over [13] of not being
geared to a special form of the lattice action (the Villain action), and
they do not involve a cluster expansion, (so that reasonable bounds on
B_ might be obtained). Physically speaking, they consist in showing that

for large B , static, electric charges are deconfined, because the dynami-

cal magnetic monopoles of the lattice U(l)-medel are hound in neutral clusts

which form a dilute gas.

On the line B = = , the model reduces to the classical Helsenberg
model or the three-component lattice g;[.i[‘:F theory, and the degrees of
freedom of the gauge field are frozen. These models have a phase transition
accompanied by spontaneous breaking of 0(3) : For o > Ce global 0(3)
invariance is broken, and there exist two massless Goldstone modes. This
has been proven in [11]. (For two-component rotator models, & new proof

of this result is given in §4).

We axpect that the critical points E= and G, are connected by
a4 line of critical points above which the theory is in a masaless QED phase
with unconfined alectric charge and massive, magnetic monopoles @ Soee
domain II, Fig.2. In the comploment of domain II, and for B < = , magneti
monopoles are expected to be massless. For ¢ sufficiently small and

bhelow 4]

scitinbing (for the pure SU(2) theory) they are expocted to

form a condensate. In this range of parameters electric charge i«



confined. Since our analysis of the U({l) model involves using a duality
transformation, it does not extend to the model with [ < = , in any

obvious way. * This and the absence of a detailed understanding of the
presumed roughening transition in the pure SU(2) theory are, at present,
the obstructions against establishing the conjectured phase diagram described

above. At least, it is supported by the results im §2 and [11].

In $3, we reconsider the Z;H models with Villain or Wilson actionm.
We show that, in four dimensions and for N large enough, there exist two
eritical values of § , 8 and E; > B, (depending on N) , such that
for B E {EE.E;} the Wilson and the disorder loop have perimeter decay.
Thus there exist intermediate QED phases. This reproduces and extends a
result of Elitzur et al. [16] . The point of our methods is to avoid using
gelf-duality which only holds for the Villain action and to exhibit a

sequence of transformations of the Z, wmodel which map it to a model with

]
unbroken U({l) pauge invariamce, provided g € {Eﬂ.ﬁ;} « In other words,
local U(l) invariance is restored in the intermediate phase .This is the

analogue of global U{l) restoration in the intermediate phasuvs of the

two~dimengional !;H models which we described in [15].

The phenomenon that the "fixed point theory" of some class of spin
systems or lattice gauge theories, with respect te suitably chosen renor-

malization transformations, has a larger global or lecal symmetry than the

*)
It is an interesting problem to avoid the use of duality in the analysis

of the U(l) medel, or to translate the methods developed in §2 back into

the Wilson formulation of that model.



original models is presumably a rather general ome. It is therefore of

interest to analyze some examples which exhibit that phenomenomn.

We expect it to occur, for example, in any lattice gauge theory
with a discrete gauge group H of high order which is a subgroup of some
Lie group : If G is the smallest Lie group containing H as a subgroup
then we expect that a pure lattice gauge theory with gauge group H has
intermediate phases where local G-invariance is restored, in the sense

that certain correlations behave like ones in a pure gauge theory with

gauge group G .

In §4 we reconsider the classical rotator (XY) model in three or
more dimensions. By duality, the rotator model is equivalent to a statistical
mechanical model of line defects characterized by integer flux numbers. Im
three dimensions, this model is the [ + = limit of the non-compact, abeliam

Higgs model, and the line defects correspond to the Abrikosov vortices.

Our methods permit us to prove that, for a large class of lattice
actions, the classical XY model in three- or more dimensions has a phase
transition with long range order, accompanied by spontaneous symmetry
breaking. By the results of [5] this also implies the existence of a super-
conductor -+ QED transition in the three-dimensional, abelian Higgs model.
{In the superconducting phase, vortices have a small activity and form a
dilute gas, the photon is massive and there is no confinement of fractionally
charged, static sources. In the QED phase, vortices condense, the photon
is massless, and fractionally charged sources are confined by a legarithmic
potential. These results were proven in [5], assuming the results of [15]

and of §4 of the present paper, by using correlation inequalities).
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We conclude this introduction by establishing some nmotatiom 3
Let G be a compact gauge group. With each link (nearest neighbor pair) xy
in a simple, cubic lattice Z" we associate an element Byy of G . The
a priori distribution of By is given by normalized Haar measure, dg!! '
on G . Let A be some finite regiom in z° » and let y be some unitary
or orthogonal character of G , typically the character of the fundamental

representation of G , (assumed here to be a matrix group).

Following Wilsonm [1], the action of a lattice theery in region A

where B = l.l’g.2 is the inverse square of the gauge coupling constant, p

denotes a unit lattice square (plaquette) in A !‘h is a short hand
f » and
or {E!ﬂ'] =
g A% s (1.4)
d
P xveap Xy

Here 1% denotes a path-ordered product. The Euclidean functional measure

of the lattice theory im A is given by

o Ag(Ey)

dug(gy) =2, , @

n dg (1.5)
xych

More generally, duE is defined by

n dg ' (1.6)

-1
duaighi z -

neg (g, )
Bl p:hqiﬂ ap

where i

A is some positive class functiom on G , i.e.

-1
u:rﬂih gh) = wE{s]
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For example, ¢, may be the heat kernel on G in which case the model

B
is called the Villain approximation. In this paper, we primarily study the

Villain approximation to the U({l) model and the XY model, except in

§3, vhere we study Wilson's form of the Z_, lattice gauge theory in four

M
dimensions. This restriction is not inherent in our methods but 1s imposed
for technical (mainly notatiomal) convenience. The techniques introduced

in §6 and Appendix B of [15] permit us to extend all results of the present

paper to the models with Wilsom action. (This is an advantage of our methods

over the ones in [13]).

Our eriterion for confimement (or deconfimement) of static sources
is the usual Wilson criterion. We are aware of the shortcomings of this
eriterion. Instead, we could use the slightly more general criterion dis-
cussed in [5] which is correct in the limit of infinitely heavy "quarks".
This would merely result in & slight complication of notations but does
not alter our results. (It is an interesting open problem, not studied in
this paper, to introduce a confinement criterion which is valid in theories

with dynamical quarks of small mass).

Let L =L o be a rectangular loop in a lattice plane, with sides

of length L and T . Let

W(L) = x"{::l:-:f:’ 5“} " (1.7}

where Ko is some character of G .
Consider the expectation

dH{L}bn(ﬁ} z [ H{L}duginﬂ} ;s Lk . (1.8)
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Let c=>»[g) = lim {_-}ﬁ{E} denote the vacuum functionmal in the

d
A
thermodynamic limit. (Some limit always exists by Enunltlneaa-j] « The

"quark-anti-quark" potential is defined by

v (L) = :i.n -z Log (L, o) >(8) (1.9)

(For a more accurate definition see [5]). Quarks transforming under a
representation of G with character X, dre expected to be permanently

confined if

?QELJ diverges to += | a8 L -+ = {1.10)

This is possible only if Xy is mon-trivial on the center of G , [18] .

Moreover,
?ﬂEL} < comst. L , (1.11)
for arbitrary GokaXys [19].

If

lim ?n{L} < m (1.12)

Lo

"quarks" are expected to be deconfined, and physical states transforming
non-trivially under the action of global gauge transformations corresponding
to certain elements in the center of G are expected to exist. While this
conclusion is correct inm a pure lattice gauge theory without dynamical
quarks it is wrong in theories with dynamical quarks in which (1.12) is

valid in general, although quarks may be permanently confined. In order

*) In the abeliam case, the existence of the limit follows from [17].



= =

to establish the existence of a QED phase in the four-dimensional U{l)
model one should therefore really also establish the masslessness of the

photon; see §Z.
For (1.12) te hold it suffices that
<WL, 0>, (8) > exp[-d(L+T}] , (1.13)
for some A-independent constant d , provided A is large enough.

Inequalicy (1.13) is proven in the next section for the U(l)

model in four dimensions, at large values of g .

Apart from the behaviour of the Wilson loop expectation,
<W(L) »(B) , we are also interested in the behaviour of the expectation
value of the disorder loop, D , in the state «>(g) . In four dimensions
D is defined as follows : One chooses a loop, [ , in a coordinate planc
of the lattice {Eﬁ}' s dual to E‘.# - Let I be an arbitrary set of

plaquecttes boynded by L[| , i.e. 3 = [ , and lec

g2 = (pcZ’ : p% 1) (1.14)

Then

<0;> = J'Fﬂﬁ, (g (B3, 2) /0 (B ) dug (B (1.15)

where z is an arbitrary, non-trivial element in the center of © . It
has been shown in [5] that in the four-dimensional Villain approximation

to the U(l) model

{DL >(8) z exp[-4(L+T)] , {1.16)
L=T
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for all B <= ., This can also be shown for the U(l) model with Wilson
action by using the method of real translations (§§ 5-7 of [15]) and
Jensen's inequality. Thus, in the U{1l) model, the disorder loop has

always perimeter decay, i.e. static magnetic monopoles are never confined

In §3 we show that, for sufficiently large N , the EH models
with Wileon action have an intermediate phase (for £ E {EE.E;] » with
0<g <B <= invhich both inequalities, (1.13) and (1.15), hold.
(It follows from standard high temperature expansions that (1.13) fails

for small § and (1.15) for large B , for every N < =),

In §4 we extend the concepts anmd results described above to a
general class of abelian models, "hyper gauge theoriea", which includes

the rotator model. We determine the (lower) eritical dimension of these models.
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§2. The transition in the four-dimensional U(l)-model.

2.1. In this section we establish the existence of a transition to a
deconfining, massless phase in the four-dimensional, compact U(1l) lattice
gauge theory. Previous work concerning this model is contained in [1,20,5]

and, in particular in [13). (See also [6] for a reviewof [13]).

The basic ideas of our method which evolved from [20] and [15] are

as follows :

i) Use of Fourier transformation in the angular variables of the compact

U({l) model : Transformation to the non-compact, dual model.

ii) Application of a sequence of renormalization transformations to the
dual model which map it to a neighborhood of the Gaussian model which
describes free, non-compact electromagnetisem. Our transformations represent
a gimplified version of the ones used in the two-dimensional Coulomb gas,
in order to establish the existence of the Kosterlitz=Thouless transition

[15]). The simplifications arise as a consequence of gauge invariance.

iii) Change of field variables in the renormalized dual models (real trans-
lations; see §§ 5-7 of [15]) and application of Jenmsen's inequality to
establish a lower bound on the Wilson loop expectatiom, i.e. the disorder
loop expectation of the dual model, with perimeter decay. (This proves

{1.13)).

2.2. We explain our methods in terms of the Villain approximation to the
U{l) model, but with some analytical complications taken into account
(see §6 and Appendix B of [15]) our methods and results extend to a large

class of U(l) models with other actions, in particular the Wilson action,
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as well.

In this and the following sections we use the notationm

ie
g, " 2o By € [727)

to denote the elements of (subgroups of) U(l) . We adopt the usual

convention

i} = = i 2.1
" - (2.1)

The a priori distribution of ny is given by the Lebesgue measure,
dé ; on the unit circle. Let A be a finite, rectangular array of

& i .
gites in Z , and ﬂ.ﬂ. - {EH"IFJ'I- , a8 in §1. We define

@ (8) = I expl-(8/2) (0+21m)°] , 0 € [~w,¥) . (2.2)
nE I

This is the heat kernel on the unit circle appearing in the definition

of the Villain approximation.

The purpose of this section is to elucidate the properties of the
following distribution, (the Euclidean functional measure for compact QED

on the laccice) :

-1

du(o)=2." mede) n do_ , (2.3)
B8 A B i P W
whara
dg = L @ ¥
P oxycap ¥

{(3p isthe boundary of a plaquette p < A) , and

Z,= [Ny (de )n de ; (2.4)
A ph & Py X
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The standard Wilsom loop is defined by

i8
Wly= © e ¥ | (2.5)
xycl

where L is as in §1, and we assume it to lie in the O=1 lattice plane.

More generally, let
W)= 1 e 0w
xyel

We now define

-:H-{L}:h{ﬂj - | H‘m{llduﬁfﬂﬂl » and

) (2.6)

<H_(LY>(8) = lim , <W {L)> (B)

/
Existence of the limit is a standard consequence of Ginibre's inequalities

[17], (for the models with Wilsen's and with Villain action [21]). By a
standard high temperature expansion (see e.g. [1]) or by using Simon's
correlation inequalities [22,23) one shows that, for B sufficiently

small,

0z < (L)>(g) g exp[-c(m,p)L-T] |,

) ({2.7)
with e{l,a) m j,'n.ﬂ-l ; a8 B + 0 .

s
In the following, we propose to give a simple proof of the statement

that, for B large enough,

W (L)>(8) 3 exp[=d{m,3) (L+T)] , (2.8)

for some finite constamt d{m,g) .
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For reasons of simplicity of the exposition we concentrate on the
model with Villain action and m = 1 , but using some results in [15] it

is not challenging to extend our arguments to the general case.

2.3. We now pause for a digression on gxterior difference calculus.

Lat th denote an oriented unit k-cell in a simple, hypercubic

lattice zfu . Let a be a k=form, i.a.

a i Ek - nfuk} EEK ., (2.9}

where K is a ring, (K=Z ,BR or € ) , and “{':kj = 0 , except for
finitely many Cp We let t; denote the same k-cell as Cp * but

with orientation reversed, and require that
u{ck] - -u{uk} . (2:10)

Given an oriented (k+l)=-cell , =h+1 » we define

(da)(c, ..} = L afe, ) . (2.11)
k+l k
Ef=a:k+1

Here it is assumed that the orientation of some € ::a:k+1 is the one

prescribed by the orientation of Crel * and (2.10) is enforced. Let

¢k~1 be an oriented (k=1)=cell. We set
(adle, _,) = . 'EH:E:H: afe,) o (2.12)
k™K k-1

assuming again that the orientations of the ﬂtk*i are matched to the
one of €y and {(2.10) is enforced. Clearly, da is a (k+#l)-form,

while da is & (k-l)-form. Ome verifies easily that

dda = 0 . (2.13)
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For,

didu]{ﬂt+2} = I { £ u{ck}} -

Cpa1=pa G

Now, with each cy appearing in some ath*! ¥ nh appears in the same
ack*z , too. Thus, by (2.10), the r.s. vanishes. Given arbitrary k-forms

a and B , we get

'
(a,B) = L uiﬂkiﬂfﬁk} 1 (2.14)
c
k

where a and B are arbitrary k-forms, and I' extends over all posi-

tively oriented k-cells. One has

(Byda) = (&B,a) (2.15)

where a is an arbitrary k=form and B an arbitrary (k+#l)-form. This

identity is a consequence of "summation by parts" :
(8.da) = E B:ck+1]{dn}{:k*l}
k+l

= r { & ﬁz:h+15“{¢k33
Crrl G %

z : { L] fac g =k+l }u{ck]
k k+l™ " kel
= (GBIE} .
8dg = 0 (2.16)

for any k=-form @ .



One may finally introduce a discrete version of the Hodge #» opera-

tion. Given a k-cell :kr-“ﬂn . let Eﬁ-k

dual lattice {ED}- passing through ¢

denote the (D-k)-cell in the

and with orientation chosen

k
such that it matches the orientation of ) - Given some k-form a ,
we define a (D-k)-form sa by

i-u}{:;_k} =ale) . (2.17)

It is easy to see that

wduen = fa i (2.18)
For
(#dwa) (e, _,) = (dea)(ep . ..}
= I Cwa) (c® )
c®  c3ce -k
D=k D=k+1
= I u{th]
epiie 3

We will need the following

Lemma 1. (Poincaré)
Let a be a k-form with values in K(=Z, R, €) such that
fa = 0 . Then there exists a (k+l)=form g with values inmn K such that

a™ &8 .

Moreover £ can be chosen such that supp § is contained in the smallest

hypercube “& containing supp a , and m;glg{;k+lj| < EE* |u{¢k}|
e, € supp a
k
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Remark. Similar statements hold with & replaced by d . They can be
obtained from Lemma 1 by using the * operation. The proof of Lemma 1 is

quite elementary and is not given here.

2.4. HNext, we caleulate the Fourier transform of the measure dHE{Eﬁ}

introduced in (2.3}, (2.4). Let Eh{u} denote the uth Fourier coefficient
of wh{E) . First, we reexpress the partition function. Using (2.15), ve

aobtain

3, = d d
Z, Jpghq:ai 8) :“:.c.q Oy
~ in (da)
=fn{ z wﬂfn}e" Py de
peA B € Z P xyeh
. ig_ (&n)
- I ngn) [ e ¥ *¥ ag
nefn_} _peht P xyep =
P A (2.19)

- 20" pom
n:én=0 pop® P

where L{A) is the number of links [oriented bonds) im A . Far i

(]
as in (2.2),
: -(1/28)n’
mﬂ{n] - ce (2.20)
for some positive constant ¢ .
Thus
Eﬁ - [!w}L{HJ nP{ﬂ’En » where
(2.21)
2
zh o y = .-{lfiﬂ}np )
n: én=0 pch

and P{A) 1is the number of plaguettes im A .
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Since dén =0 ,

n=fa , (2.22)

for some 3-form m , and the support of m can be chosen to lie within

& & See Lemma 1. How,

m= sz, (2.23)
where a is a l-form on A"  the dual of A . Thus
o= s«da {(2.24)

We note that a is not uniquely determined by n : If n = sda" then

a' = g+tdy , for some scalar function y om -ﬁﬁ]. . Next, using (2.24),

2

{n,n) = I nP = [ l[-:dn}: = £ {du}z‘ {2.15)
peh pch pen P
- tdﬂrd“}ﬁ. '
where p' is the plaguette dual to p . Hence

={1/2 !

2, = z ok f28)(n,n)

s dn=0
r E—{Iflﬁltdu.dui (2.26)

i [u]:u}lFEE

where [a)] denotes the equivalence class f{a': a' = a+dy , supp dy = A%y .
and E indicates that only onme configuracion per equivalence class

[a]

is retained in the summation.

Next, we compute the Fourier (duality) transform of ﬂH{L]:ﬁEEI .

Let I be the rectangle in the Ol-lattice plane whose boundary is the
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loop L . The discrete version of Stokes' theorem says

is i{de)
WLy =19 e ¥aq e LA
xy=l p<L

where all plaquettes pc< I have the same orientation as L . Thus

W(L)>, (8) = 7% [ 1 @ (de ) M 1w
= (B) = & Il @ 8 e ®
A i i B 1] n:.-:ﬂ.:q"

th

The n Fourier coefficient of thﬂ}nla is ab{"'11+ Thus, as in

({2.19), we obtain

WL, (8 = 2 en M ¢ 1 dn) .
n:én=0 pt~k P

L]

« 1 gln =1)} "
oz P
g L 2 {(1/p)n -1/28
- zﬁlf £ B Bhaka LY P } (2.27)
n:én=0 ph p=t
As in (2.23) - (2.26) ,
dH{L]*hEBJ - I duh{niﬂagin}
(2,28)
_ .
& {naﬂhﬁtaj i

where duh[u} is the discrete measure on the space of equivalence classes,

[a] . which assigns to [a] the weight

_, =(1/28) (da,da)
inle i (2.29)
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ﬁ-b:{E] denotes expectations in this measure, and HE: is the disorder

operator defined by

(1/8)(da) . _
D,.(a) = Ne Pl (2.30)
pcL
More generally,
o, ((da) ,-1)
<WH(L)>, (B) = < W i >*(8) (2.31)

Pl ‘-II'BHdn}IP,.]'

for any choice of wh .

2.5. We now analyze the non-compact, Gaussian U(l) lattice model,

(non-compact lattice QED). First, we consider the (infrared) regularized

Gaussian measurs

d’ (a) = N E_{lfzﬂ}[fd“*dﬂaF+ﬁEﬂ1ﬂ]ﬂ.}
Aye M
{2.32)
. T da
xyche =

where du!? is the Lebesgue measure on :Hha:? =0, for xy ¢ A%, e >0

is an (infrared=) regulator mass, and Hh 2 is a normalization factor
L]

chosen such that  [du) [ =1,

Let Hh? denote the orthogonal (with respect to (-,*)) projectiom

onto the space of l-forms with support in A" . Let ﬂﬁ . be the
L]

inverse, on the space of l-forms with support in A* , of n,e(dd+e) .

Clearly,; du:: . is the Gaussian measure with mean zero and covariance
L]

v = Th
M oy

;[Eﬂl’l Em\'ﬁ‘:u]r

Idui,ﬂiu} ol | : (2.39)
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for any l-form u with supp € A* . Here

alu) = {u,u?ﬁ. - I;.-::ﬁ'u”u“

[Hote if A* - {Izﬁi'

Vo= (e de) (are)

vhara -4 = d§+8d , because (8d+c)(l+e 1d8) = -Atcte L4ddd = =8te ,

by (2.13).]

When ¢ tends to 0 the r.s. of (2.33) tends to 0 on all of those
l-forms u with supp ¥ E_h' and idu,du}h. =0, i,e. w=4dv , for
some function v . Since {p:dp = 0 , suppy = A*} is orthogonal to

{uidp = 0 , suppp € A*}

l-tﬂifi}{urvh“}h-| if Gp=0

lim J duﬁ

0 :‘“}‘inip} - (2.34)
Ct

0 , otherwise.

Here \FA is the inverse, on the space of l-forms

{utdy = 0 , supp wu € A*} , of 0, .84 . On that subspace

_ﬂl#

Mygldu = T, (dé+ddlu = =a,u ,

where by is the finite difference Laplacean with O Dirichlet data on

the outer boundary of A* , so that
=1 .
(aVyud g = Gual=8)) "Wy, if Su=0 . (2.35)

We denote by ﬂuiiu} the measure on the space of equivalence classes,

[a] = {a":da'=da} , determined by
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=]
[ &u:(u}ein(”} - e WBI2)(u,(-8,) "u),y . (2.36)

for all 1-forms u , with d&uy =0 .

2.6. We now reexpress the discrete measure Epﬂ introduced in (2.28),

(2.29) in terma of du: by inserting the constraints

a EZ , for all xyc A*
=y

-1

duy ()= By

mn{r & _-qg"')d),

whers Eﬂ is the normalization factor for which duﬂ{u} = 1 . We now

apply the Poisson sumsation formula :

E (a_=-q' ) =1+ 2 [ cna{q: a ) . (2.37)
' xy xY =1 ¥ Xy
Q' EZ (29) "q_ =1

ul be a sequence of numbers such that 2 I -1 =-1
(A specific such sequence will be chosen later). Then

Let (= =1,

=1
1+2 E cos{q a )= I 2 (l1#z  coslg o }}
tlﬂ'iq“-l [h}-lq_’.’-l q:;.r ql:.r 'le? xy
{2.38)
2 - -1
Let q = {qu} ._,:q I || ‘Iz ; (2.39)

By (2.37) and (2.38) ,

sdyfa) =fc g (lez_ cos(g _a ))dy"(a) (2.40)
AA q 1 xyci® q:y i h
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We now need some definitions :

A current distribution (or - density) p is a mapping from the set B

of directed bonds (links) to 2s% , of finite support. An ensemble E

family of current densities, p , with the properties that
suppp € A* , for all p EE

supp p N supp p" = @ , for all p ond p'

in E with p # ' .

A k-ensemble, Et ¢ 18 an ensemble with the property that

dist(p,p') > 2% | k = 0,1,2,...,
vhere dist(p,p') denotes the Euclidean distance between supp p and

supp p' . Finally, let alp) = ' a_ p__ .
! xy XV RY

Lemma 2.

n (l+z_  cos( })
xych* ey . q*Fn“?

= Le 0,[l+K(p)eos(alp))] .,
oy
pEET

vhere y ranges over some finite index set, each E; is a l-engemble

and

i) :? » 0, for all y ;

N, (supp p)
i1) 0 < K(p) =1 {1 =|
RYySHUppp

III!,I'

where Hl{Iupp p) is the number of links within distance < 1 of the

support of o .

is

a
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Lemma 2 is a simple special case of Lemma 2.2 in [15] . Por this
reason we only present a sketch of the proof. (The reader will find it

easy to supply the details). The proof follows by successive applications

of the identity
[1+K, tﬂlﬂu(pl}}][1+xz :alﬂutpzill

= lf3[1+331¢uu{n{pl}}]+133[l*llzﬂuaﬂu{pzl}l

(2.42)
. lfﬁ[1+3:1!1nul{utnlﬂpziJ]
+ 1/6[1+3K, K cos(a(p +0,))]
First (2.42) is applied to any two factors,
{1'=q1?=ul{qxru:?}}' {l*qu.r.cn‘{qxf?¢inxryf}1 ¢y IO
Iﬂ‘ | n (l#z coa(g o J) (2.43)

g i Xy Xy

for which dist{xy,x'y') = 0 . The r.s. of (2.42) is, for each such pair
of factors, inserted in Lie » and the result is expanded as a sum of

products. After a finite number of such expansion steps one obtains

Ia=CLec, I _[1+K' (p)cos(alp))] , (2.44)
E
o5,

where {El} is some family of ensembles, and by (2.42) each €, is the
product of a power of 1/3 and a power of 1/6. If all EJL are l-ensembles,

no further applicacions of (2.42) are necessary, and (2.4l) is proven.

1f however some ensembles Ei 'Ei. yaes Are not l-ensembles, yet,
1 "2
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one applies (2.42) to any pair of factors [1+H'{nl}:uatu{pllll .
[1+E'(nzﬁcul{u{pzljl » with the property that p,.p, 4are in EAi , for some
i , and dilttpl,pzl < 1, the r.s. of (2.42) is inserted on the r.s. of
(2.44) and expanded as a sum of products for all i = 1,2,... . Since A*

is finite, the combinatorial expansion described here terminates after

finitely many applications of (2.42), (when all resulting ensembles are

l-ensembles), and (2.41) follows.

We now check i) and ii) in Lemma 2. If a current density p has
been obtained by pairing Py and Py 4 in the sense of identity (2.42),

e.g. P =Py - Py v then
K(p) = 3E{ul}R{ﬂ2} .

Ifp = pn s a=1.2 i.e. one of the first two terms on the r.s. of

{2.42) has been retained,
K{Fn} + Ki{p) = 3K{ﬂuj !
Thus, given some p € Ei ; for some vy , one easily verifies that

(2.45)

K@) = 3" g K

xy—aupp p

where ni{p) is the number of applications of (2.42) that were necessary

to obtain p . A minute of reflection shows that

n(p) < HIIHUppP}

which establishes ii); (see also §2 of [15]). Finally, €, is clearly

of the form



n
e, = (1/3) T{lfﬁ]‘T ,

where nT and m, are the following positive integers : The total

number of times (2.42) has been applied in the inductive construction of

El is nT+nT , and n, times one of the first two terms on the

Cala

of {(2.42) has been retained, whereas mT times one of the second two

terms has been retained. This yields i).

Remarks.

1) Combining (2.40) and (2.41) one obtains

+dyla) = £ 4 1 III*EEplcnu{n{pllldu:fu} :
Y nEHT

)

where {H:] is a family of l-ensembles, and dT » 0 ., for all ¥

Moreover, Ki{p) still satisfies 1i) of Lomma 2.

Since any two current densities By and By ¥ By in some

satisfy &inttpl.pz} > vZ , we conclude that, for each subensemble

E E:Hl '
Tl |

f M, Kip)cos(al(p))du,(a) = 0 ,
DEE‘F

unless &p = 0 , for all p € Ei » for all vy . This follows from

(2.46)

(2.34) and (2.36). Thus all factors on the r.s. of (2.46) labelled by

gsome current density p for vhich &p # 0 may be omitted. Therefore

2o du @ =zd 0 ll*EﬁplcﬂlEuEn]}]ﬂuhn{ul .
A y o
¥
LTV

(2.47)
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2) For the study of more general lattice gauge theories it is interesting
to note that Lemma 2 can be generalized by replacing l-ensembles by
k-ensembles, k = 2,3,..., on the r.s. of (2.41). In ii) the exponent
Hltsuppp} must then be replaced by a quantity Hkinuppﬂ} y the definition of
which along with upper bounds can easily be inferred from Theorem 2.1,

and Lemma 2.2 of [15] . The resulting combinatorial scheme can be used,

for example, to give a simple, new form of the high - and (in the discrete
case) low temperature expansion for the expectation of the Wilson {(or
disorder) leoop in lattice gauge theories with interactions of finite

range. This permits us to prove, in particular, that any pure lattice
gauge theory with a discrete (abelian or non-abelian) gauge group and
interactions of finite range does not confine static quarks if £ is large

encugh. This extends the result in [2] .

2.7. A change of variables.

OQur purpose is now to start estimating

fH{LI?AfE} = [ dy, (a)D, (a) ,

see 2.4, (2.28)-(2.31), by making use of equ. (2.47) for duﬁ{a} and

changing variables
@ =+ o+t , (2.48)

where T is a l-form defined as follows : Let o be the 2=-form given
by
1, p=(p**E L

alp*) =
0 , otharwise



i kL

where [ is the rectangle defined im 2.4, with 3I = L . (If A is

large enough, L[ < A and dist(E,3A) > 0) . We set

O T (2.50)

where A, is the finite difference Laplacean with O Dirichlet data on

&
the outer boundary of A introduced in 2.5. Clearly

~ -1 -1 -1
ﬂh.ul‘r - “ﬂ."dﬁ'ﬁn g = ={dd+4d) hﬁ-h l.'l+1'lh:ﬁd-ﬁﬁ g
= o=, , with (2.51)
e, =L e8da o
A )| A -

Under this change of wariables,

=(1/8) (da,dt) ,» =(1/2B)(d7,dr)
dui{n} - du:{n}c A e A*

o =(1/8) (da} ,
= duﬂ{nj Mmae
pEL

(1/8) (oye,) =(1/28) (e ae,)
L

o M (2.52)

This follows from the definition of :Iu:{[:} , Bee 2.5, (2.32) = (2.34) and

of 1 by using the fact that {ﬂu,gn}nl =0 .

By (2.30)

(1/p) (da)_, -1/28 (1/B)(d7)_,
“ar{“} + 0 {e P e LA

PEL (2.53)

-(1/8)(o,e,)  (1/8)(da)
=g I =

pEL

p* 1/28

Combining (2.52) and (2.53) we get
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~(1/28)(ep0ey)

numdu:m + 8 du,(a) . (2.54)
'Pi.tu'l..'l.h
!'Il [1+k{p)cos(alp))] = TIl [1+K(p)cos(ale) +t(p))] (2.55)
FEHT pEH*
Sp=0 Sp=0

Bince fp =0 , p = ﬁup ; where My is a 2-form with pﬁl{p“'} E 2n ,
for all p* <= A* , and supp by Eﬂn c A* ; see 2.3, Lemma 1. Thus,

using (2.51) we see that
tlp) = (dr,u )y = {n.un}-tth.un}h, . (2.56)
so that by (2.49) and the periodicity of the cosine
cos(alp)+rip)) = cos(alp)=(e,on )y (2.57)
Combining representation (2.47) of duﬂ{u} with (2.54) - (2.57) we obtain

a1 ~(1/28)(eg0e))
W)=, () = 2,' o A e

A T
L2 (2.58)
“f B [1+K(p)cosale)=(cyon ) o) Jdugla)
pEN
T
fp=0
where
3],. =cd [n [l-*I{l:I}EDll:n{p.'-'Hdubl:u} . (2.59)
T 1 I
¥ pEN

¥
dp=0



2.8, The renormalization transformation.

In this section we propose Lo renormalize the current densities

g ,p+*p , and activicies K(p) . Ki(p) -+ z(8,p) , in such a way that

J m [4K(p)cos(a(p)-8 ) 1du] ()

1
N
pE o

Sp=0

= [ 1 [+z(g,p)con(a(p)=6 ) lduy(a) ,
1
pEHT
Gp=0

with =z{B,p) <<1 , for B sufficiently large. Here ﬁp{ = 0 or
{;h,pp}h_J are real phases. Civen some current density pe€ H; s it is
easy to see that we can choose a subset %ﬁ of links in supp p with
the property that two different links im ﬁg do not belong to a common

plaquette and that

o 2 2
logyl” 2 cllvlly (2.61)
(=]
P P : -
vhere ||o ”F = Ele |t »p=1,2,3,..., and e is a purely geometri
xy
cal conatant, namely

xy

c I =card(b':b" ¥ b , b' € 3p for some p with 3ap 3 b}

= 18 , in four dimensions (2.62)

Since dilt{pl.p:} > ¥2 , for two current densities CH and Py ¥ By
in some ensemble H: , the choice of Eh s for a given current density

p E Hi , can be made independently of all other current densities in

ufr in such & way that (2.61) holde.
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Our renormalization transformation is based on the following simple

identity

Lemma 3.

Let xy < A* , and let G(a) be a function which does not depend

on « Then
Txy

LR
[e ™ 6(a)dy](a)

2 e (2.63)
=(B/mn_ Jp =ipa
i e Yema ,
where ™ flfnxy]fﬁdulxr Rl
and "ny = card{p*:p* c A* , p* 3 xy)

= 6 , in dimension 4 ,
(unless =xy belongs to the boundary of A*) .

Remark. It is important to note that ;;F is independent of nxy and

that n!? < & , so that

2
“(Blnge"  ~(ar63e”

e (2.64)

Proof.

In the following, all formal calculations hold rigorously if
dui{u} is first replaced by du: (@) . Since the existence of the limit
Ll
¢t + 0 does not pose any problem {(for finite A) , that regularization

is omitted right away.



ODur proof relies on explicitly integrating over uﬁ? y Using

the following obvious equation for ﬂu:{u} H

; -(1/28) (da) 2y
duh{nl - dph___“ﬂfu]' n e dﬂ':qr {2.65)
p*
XyEdp*ch*
where dpﬁu{lyﬁtu] is a finite measure independent of u:? « By changing
variables,
. + i(ﬂfn:r}p .

we obtain

]
-(lll'lﬂl{du}p., lpa,

I i @ e ydu:F
Ap*IxY
2 2
=(1/28)((da) . +i(g/mn_)p)" ipa
=/ 1 e p* Xy g W
Ip*Ixy
2
-{g/fn__)
. 8 xy © da
Xy
2 =1
- - {E‘rnﬂjp e 1“]3-;'[{5"“1:3 “::’uw] = {11 E‘ﬁ'}
-(1/28) (do) 2,
“ [ P dﬂ. &
3P*Ixy o

By combining (2.65) and (2.66) we obtain

ip e~
[e Eiﬂduﬁlul
(2.67)

(gf “lp

-ipa,
= e fe xy Gladdu (a) .
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We set ﬁﬁp S supp 0 ~ Bb and define a renormalized current density

? by the equation

e (2.68)

for an arbitrary l-form a , with supp a € A* . Furthermore,

12

z(8,0) = K(p)expl-8 & n_p’ 1] (2.69)
Xy Xy
xyEB,
By (2.61), (2.62) and (2.64),
2(8,0) £ K(odexpl-(8/108) || o]l 3] . (2.70)
Corollary 4.
s i, [1+2(8,0)ec0s (a(a)) Iduj(a) ,
) B ¥
Sp=0
_y =(1/28) (e, .k} =
W(L)>,(8) = 2, o VNpaf 1 s,
¥ 1
pEN
i
Sp=0
+ cosla(@)=(e,um ) )4 Jduy (a)
Proof .

We apply the following obvious identities :

i{alp)-0_) =ifa{p)-0 )
cns{u{p]-ﬂpj - 1/2 e P+ 172 a e



whence

n lll*ﬂinicutfu{n}-&n}]

ﬂE”T

ig(p)(alp)=-0_)
u L I I A/2)K() e :

E g N, lolo)=s1} | pEE

i | T €E
I:I'I'

where the first sum extends over all subensembles El-E H: -

+ip @ +#ip a
P g X q . WXy

:jfﬂ; xyE~B

+ilalp)=-0 ) Fie
@ e - g

p

We then use Lemma 3 to successively integrate out

iolplp a
n n e A

pEEi !FEEﬂ

for all E; = H; and all {ofp)] . Since dlat{pl.pz} > /2  for arbitrary

1
" in N
+] n .

P1ePa

i 1
i with £y ¢ Py o and by our definition of Bﬂ , BE H? "

the hypotheses of Lemma 3 remain wvalid after an arbitrary number n = 0,1,2,...

of integrations. When all imtegrations in each term have been carried out
the above identities are applied in reverse, with aflp) replaced by a(p)

and Ki(p) replaced by =z(B,0) . L

2.9, Estimates on :ngal .

We recall that

N, (supp p)
0 < Kip) < 3 nooz,

I B EEi?l..l
XYCEUpPRR

xy

where {tq] is a sequence with the property that
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£ =;1 - 12 (2.72)

(2v) Lg=1

see 2.5, [(2.37), (2.38) and Lemma 2] . We now choose this sequence expli-

citly, for example as follows :
E =g z (2.73)

where En is that positive constant for which (2.72) holds. A simple,

geometric estimate on Hl{-upp 0) then yields

B, 1o |2
0 <K(p) £ I s : (2.74)
XyCSUpp o

for some finite constant ﬂl i
Combining (2.74) with (2.70) we obtain
0 < z(8,0) £ expl(s,-8/108) || o [I5] . (2.75)

Thus, if @ > 108 By (a fairly large number, alas)

z(B,p) < 1 , so that

[1+I{Ei;}:nt{u{a}-ﬁn}] >0 , for all p € n: (2.76)
Moreover, under the sase condition,
- 1 2
z(Bsp) g explz(8,-8/108) [ p 5] -
{2.77)

; n:p{%lﬂ]'ﬂflﬂﬂihfu}] .
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where Lip) {i flp“i} is the number of links in the support of o

2.10. Lower bound on fwflirnfﬂl with perimeter decay.

It follows from (2.76) that for sufficiently large 8

i [1+=ta.5':rm-tut3:r}ldu:£u} (2.78)
1
PEH}
dp=0

is a positive measure. This permits us to apply Jensen's imequality to

derive a lower bound on ﬂH{L}?h{EJ - Let <> denote the normalized
N
expectation corresponding to (2.78). L

We shall make use of the following simple estimate :

z cos afcos f-1)+ z sina sin H]

14z cos{a-8) = (l+z cos a) [1 + 1+z cos a

262762
> (l+z cos a) eE{u'ﬂ]aD{u'EJt e

where

E{a,8) = (l+z cos u}-lz cos afces 8-1) ,
and

0fa,8) = (1+z cos nl_lz sin a sin 8

This inequality followe from Taylor's theorem with remainder, applied to
the function log(l+x) , along with elementary estimates on trigonometric

functions.

Thus, by Jensen's inequalicty,
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[ 1 [1+2(8,p)cos(a(p)-8 ) )duj (a)
1

€N
DT

dp=0
. rztutEE.ap}:Hl
> 2 n fe T e
=\ |
Y pEHT (2.79)

dp=0

- <0(a(p),0 )> , -2(z(8,p)/1-2(,5))° o7
] Hl ]
. B Y & }

But <0(a(p),8 )> , =0 , since O is odd in a , while <« is sven
p HI Hl
in a , and ¥ ¥
<E(@),0 )> , 2 1/2 LT
PN 1-z(g,p) P
¥
We now set
= ( )., and y(z) = 1/2 23—+ 2 s
Hp Ennlﬂn i Y 1-z {l_ﬂi

By combining Corollary & with inequality (2.79) we obtain the lower bound

~(1/26) (¢, ut,) ~(z(8,5))8>
ML)>, (8) 3 e (ZA, B, = P} . (2.80)
A "I"” pEN
T T
Sp=0

where O 5 A g § dTEE

N
H'l' H"F T

]fsh] v and 2, is the total mass of the measure

(2.78). By Corollary &,
N Rl (2.81)

Next, by Lemma 1, sect. 2.3, and the definition of “p 8ee (2,56), sect. 2.7,



le | = ltepund, | 5 u;: |En{p}[m:!]uniril| card(n ) .  (2.82)
o

For each p E H': s we now choose a plaquette p{p) containing a link in
supp ¢ and such that p{nl} ¥ p{nz} , for any two current densities

Py ¢ Py in H: . By the definition of np {see Lemma 1, sect. 2.3),

Ich[p}—chl{r{n}.‘l | i

H1|fn{p}| :Is,‘tpm::[-n + max
ped, lp=p@0)| 2 eLle) e, (pte))|

for some geometrical constant c© .

We now recall defimition (2.51), sect. 2.7, of Ep - From that

definition it follows that

e, ()=e, (pe)) | 3
max < const.L(p) (2.83)

|p=plp)| < e+Lip) le, (plo})}]

Moreover by Lemma 1, sect. 2.3,

max|u_ ()] = lloll, 5 lell; (2.84)
o l= 2
P
Finally,
:lrdiﬂn} < cunlt.L{pJﬁ (2.85)

(an elementary isoperimetric inequality). Let c(8) = 1/2(2,-2/108) . We

choose B 8o large that
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2
_ =e@®lells
2(8,7) < ¢ 2 JoABLER) o s, (2.86)

for some & * O , for all p E Hi and all ¥ ; see (2.77), sect. 2.9.

We then derive from (2.82) = (2.8B8) that

eyl o |I?

TE=EE.E]1ﬂ§ const.{e . “ﬂllg .

A

. S OLEI )1 i) |2

a8 e, (pte1) |* , (2.87)

L 18

for some finite constant d(8) .

By (2.80), (2.81) and (2.87),

< WiL)>, (8) 2 exp[-{(1/28)+d(B) }(e,,c,)]
(2.88)
= expl-(1/28") (e,,e,)]

with 8' = 1/2((1/28)+d(8)) " .

The r.s. of (2.8B) is a Caussian expectation value of DBI{E} 1]

(2.54), sect. 2.7. Recalling the definitiom (2.51), sect. 2.7, of £,

we observe that
(e,s£,) £ const.(L+T) ,
as Az

This completes our proof of perimeter decay of <W(lL)=(8) , for
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sufficiently large B .

This result can be extended to the compact U{l) model on Eﬁ with

Wilson's action by combining the present techniques with an adaptation of
Appendix B, Lemma 4.3 and of the methods in §6 of ref. [15] to the U(1)

gauge theory. Since, due to the analytical subtleties of modified Bessel
functions, the details are rather lengthy but fairly uninteresting we do not
wish to present them here. (The reader familiar with [15] will have no problems

to supply them; ses also §3).

2.11. Masslessness of the photon for large g

We finally prove a result which we believe is new and somewhat impor=-

cant.
The lattice approximation of the electromagnetic field strength is
given by
tids =1
itz5 tpaltdﬁpl:pﬁidﬂpﬁ , for the U(l)-model
. ] with Villain action (2.89)
-
ig nin{dﬂp} ¢ for Wilson's U(l)-model .
We propose to show that, for large £ , the two-point (more
precisely : two-plagquette) correlation of ‘F cannot have summable

("integrable") fall-off. This proves that the large £ phase of the compact

U(l) model is massless, i.e. the photon is massless, for sufficiently

large B

As in previous sections, we only present the proof for the Villain

approximation to the compact U{l)} model. Most of our arguments extend,
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however, to a general class of actions, and we believe that the result is

a general feature of the U({l) models in the weak coupling regime.

The observable corresponding to iP , after a duality transformation,
is {d“}p* « It is therefore enough to estimate the behaviour of the two-
point functions, fln{u}|2?tﬁ} » where p is an arbitrary l-form satisfying

fuy = 0 . We propose to prove that

" -1 2 =1

B" (uy (=4) “u) £ <|afu}|">(8) < Blu,(-8) ") , (2.90)
for some function B"(B) < 8 which diverges to += , as f + = ,

Let {du)uw denote the uv-component of the curl of a (the field
s
strength), and let td“}uu denote its Fourier transform. By Fourier trans-

formation, (2.90) provides a lower and an upper bound on
N
<| (da) ()| %> (8)

in terms of an expectation value of |f;;}uufk}|= in the Gaussian measure

=1

duu{u] with charge ;2 -3 ", {ﬂ"}_l s respectively. These Gaussian

expectations are well known to be discontinuous at k = O :

; P
U2 o (da) 00|58 = 0
[]+0 -

) (2.91)

s
= tI{duluu{kilz}“[E " >0 .
[k |+0 2

N
Thus, ¢|{du}uu{k}izhtﬁl is discontinuous at k = 0 . As a consequence,

i L -
[du]H“Ep]Edu]Huip )=(B)
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cannot have summable fall-off, as dist(p,p') *= . (Here p and p' are

two arbitrary plaquettes parallel to the pv-lattice plane, and

fﬁtluuipl z {dnJP_J .

This proves our contention. (See also [21] for more details concerning

a8 similar argument for dipole gases).

Hext, we note that, by polarization, it suffices to prove (2.90) for

real-valued l-forms, u , with 6p =0 , i.e.

8" (ua (-8) 1) < <alu)2(8) < B, (-8) ) (2.92)
with B" as in (2.90), u real.

A stronger versiom of (2.92) is

1o, _
expl iiE'“ (s (=8) lu}l

< e300 oy (2.93)

1 -
exp[ -'-:?E (oo -8 "1031

LI

for arbitrary real ¢ and real w ; with du = O . By expanding (2.93)
in powers of € ; subtractinmg 1, dividing by zz and taking the limit

e=0, (2.92) follows.

Finally, it is clearly enough to prove (2.93) in an arbitrary,

finite region A& , replacing t-a}'l by ?h ; and < —>(B) by 1—ﬁhiﬂ} .
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2.12. Proof of (2.93) in finite volume.

We fix a real 1-form u , with &p = 0 and such that supp u 1is

in the interior of A* . We then define a l1-form, 1 , by
T = eBV,u i (2.94)

whera W is the Green's functiom of N, .64 . Mext, by (2.47), sect. 2.5

A n*
(@) =L 4 T [14K()coslao)) i@ -
T pEN
L
dp=0

We now change variables,
a + a¥*t "
with 1 given by (2.94).

By (2.52) and (2.55), sect. 2.7,

ﬂnn{n} + duy (a*r)

—{lfﬂ}{du.dr}ﬁ¢ w{lf!ﬂ}{dt.dtlﬁ-
@ . (2.95)

. 5;1{5 d n [1+K{p)cos(alp)+drly 1) 1du(ad) .
vy ! L o »
pEN
fp=0

with Gup = p , for all p

Moreover,

‘En{ul . Ecu{u] nzr{u}
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¥We now observe that
= {:”IE'} {dl:,d'[}nt S I:ﬁ-{il-:! ¥

- (1/28)@1,d1) = --% r(y) , and (2.96)

t(u) - :ﬂiu.vﬁui '

Therefore
2
(e"B/2)(u,V, 1) _
q.‘“{“];ﬂ{n: i A zﬁl{: 4100} ., (2.97)
¥ ¥y
whera
1?{11 = [m [1+I{nicnlEutp}+df{uullldu:(ﬂ} . (2.98)
1
J:"E-"lL||I
dp=0

Since dui{n] and cos{a{p)) are of positive type in a , and Ki{p) » D ,

for all p , we immediately conclude that

")
o . (2.99)

1
MOFS N

Since

]
L]

(i)} (2.100)

Ed1T (t
Y Y

the upper bound im (2.93) follows from (2.97) and (2.99), by letting

W Al

Finally, we establish a lower bound om I?ft} . This is achieved by

using the results in sects. 2.8-2.10, with

*) This part of the argument does not obviously extend to Wilson's form
of the U(l) model and has to be replaced by a more complicated, direct

one .
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Ep = dTEup} ; {d“p =p) .

By (2.79) and 2.80), sect. 2.10,

N—
-1{={ﬂ,nliap
1. (t) =L & n e N
Y ® 1 1
¥ nEH1
fpm=Q

for sufficiently large g , where

g |
A EE"d2
1= "y %%
"T "T
2= [ [142(8,p)cos a () duj(a) ,
N N
\ § pE '
fp=0
and
v(e) ¢ 42 , for =z < 1/2 ; (2.102)

see (2.78) - (2.80), sect. 2.10.
By (2.77)

2(8:5) 3 exp [ 5(8,-8/108) || oll 3]
(2.103)
. eXp E%EEI"EIIQE}LEHII »

where By is a finite constant, and L{p) is the number of links in

Supp p » provided

B > 108 Bl .



= B0 =

Next, using Lemma 1, sect. 2.3, one Einds

|ap| z |dr{up.'t| < max ||[111;;|F|’|.[1,,||1 card( )

pEﬂﬂ
{2.104)

< max (@) |- lell} - const.Ltp®
PEQ ?

see also (2.82).

We mow fix a plaguette, P, * and a positive integer L . We pust
estimate the cardinality of the set, N (pD.L} s of current distributions
T

defined by

N (p L) = {p € K ; - , -
(P gol) = (o €N ﬁ;: 1tdr}p1 I:dr:PJ L(z) = L}
u]
{2.105)
= {p = Fn = nﬂ ¢ Li{p) = L}

Clearly, the length of the edges of HP y for some p satisfying L{p) = L ,

is bounded by L . Thus the support of every p with the properties

L{p) = L and np = p,

is contained in a cube with edges of length at most 2L .

Given a cube, @ , with edges of length 2L , the maximal number
of current distributions {pj! = Hi with disjoint supports, all contained

in 0 , and Ltan = L, for all j , is bounded by

a2/ = 64 LY . (2.1086)

Thus, for B wso large that E IIEEBI-HIIDE} = 0,
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3 TtacE,Ehma:
ﬂE”T [Pﬁ‘llﬁ}
<l 12z llell? eonse.1® v(z(8,0))
N _(p,L)
_ Bl |12
< | {dr) 12 :uult.Lll @ AL max E"ﬂ||: € 2}
Po llell,

nnnlt-ﬁ-liidr} |E Lll e
Pﬂ

LI

Hence
o

S Tt:iﬂ.E}}a:
L= nEHt{pu.L}

11 .AEL

A

r_nna.t.‘ﬁﬂll{lh}p‘ |2 {E L

Pl {2.107)

LI,

e(®|w@n) |

for some function e(B) which tends to 0 ; as B + = , exponentially fasc.

(We have used that H1{pﬂ,L} =@ , for L < 4) .

If we now insert (2.106) inte (2.101) we find

~c(8) [Jas] 3
I (t) > e LA,
k ¥ !v.r.Ir

v:[E]l|dT|ﬁ
-

By (2.97) ,

eafu)

izzafi}iu-?hul ~c(8)|| dr]| i
< :h{ﬂ} > e e

¢*8/2(1-2¢(8)8]1 (u,V, u)
= g ¥

where we have used (2.96).
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This completes our proof of the basic lower bound (2.93) in finite

volume and thus of the masslessness of the photon for large B .

Remarks.

1) Using correlation inequalities [17, 24] one derives from the results

in this section the existence of massless, deconfining phases in all D=di-
mensional U(l) gauge theories with D z 4 . Alternatively, a direct proof
can be given by using a duality transformation and a straightforward medi-

fication of the techniques developed in this section. See also [15] and §4.

2) 1t appears that the technigues of this sectionm along with connmections
betwean the four-dimensional, dual U({l) theory and bond percolation are
useful to study the scaling limits for large @ (ordinary, frees QED) and

for B/ B (massive, confining QED). Our ideas and some results on

crit.

bond percolation suggest that the latter theory might be a non-trivial,

confining version of QED.
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§3. QED phases in the four-dimensional EH lattice gauge theories, for

large N .

3.1. In this section we prove inequalities (1.13) and (1.15), i.e.

N

(3.1)

<0 ?{H}IB} 2 expl=6(L+T)] ,

Lsr

for the four-dimensional EEH models, for all

B> ﬂtrit‘iuil]] (3.2)
(the critical value of £ for the U(l) model), and all

N > N(B) , (3.3)

where N(BE) is an integer-valued function of B which diverges to +=
LY

a8 f + = , Here (8) is the infinite volume state of the ¥, modal

at "temperature” @ - = 32 . It follows that for

N> N, vith N g N(B__.. (U(1) <= (3.4)

erit.

thare exist Etfﬂi and E;{H} , with

8,00 <E (M) <=, and 8 (N) <8

i, O (35)

such that for
gﬂ{ﬂl £ B € gﬂ{u}

both inequalities in (3.1) hold.
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A standard high temperature expansion shows that -:H{L}}{H}{B} has
area decay, for sufficiently small B (depending om M), and a low tempera-
ture expansion (or a high temperature expansion applied to the dual model)
can be used to prove that -fDL:- {H}{B} has area decay when £ 1is sufficiently

large (depending on N ) .

Thus, for N = Ht + the Z, models have a "quark" confining high

N
temperature phase and a "magnetic monopole" confining low temperature phase,
separated by an open interval, {l_aﬂﬂ-l} .E= {§)), of QED phases. It is believed
that N = 5 .

c

For the Villain approximation of the E.H models this result follows

from [13] by using self-duality and correlation inequalities, as shown in

[16].
We reconsider the RH models for the following reasons :

1) Our method will not rely on self-duality. This permits us to analyze
a large class of actions, including Wilson's action, and to exhibit inter-

mediate QED phases in D-dimensional EH lactice gauge theories for

arbitrary D = &4 .

2) Our methods involve a renormalization transformation which maps some

class of .'E'.H expectations in the intermediate QED phase onto expectations

in 4 model with local U(l) gauge invariance. (This is the phenomenon

desceribed in sect.l).

3.2. We consider a family of models interpolating between the U(l)- and

a Z, model. Let d.uﬂl_'a] denote the infinite volume limit of the measures
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-1 Btﬂl{dﬂp} .
dp (8,) = Z e n d0__
BT A E-ﬂp:h xyeh
(3.6)
déd = L E“. h'I:E'-i.
xy=ap

which correspond to the four-dimensional U{l)-model with Wilsen action in a
finite region A . Instead, we could define duaﬂﬂh] to be the finite
volume functional measure of the Villain model by replacing expB nna{dﬂpl
by '-.E expl- %{dﬂpﬂm}il . In both cases the limit A -"'Ef' exists, thanks

-

to Ginibre's inequalities [17].

We now define

h cos(N@é )
n glh)e A dug(8) (3.7)
:y:ﬁ

h
B

=1

awh(e,) = (@ )

where
2n
E(h) = i%; f Eh :ua{HH}dH} 1 o
o

) (3.8)
h cos(NB )
h = f 0 EMe Y du, (9) .

Zz
ﬂ- xj:h J

Clearly, du:{En} approaches the Eudlidean functional measure of the E;H
model in a finite region A with free b.c. , a8 h <+ =.(Actually b.c. turn
out to be quite irrelevant in our analysis : We could replace duEEE] by

duH{E in (3.7) and (3.8) which would merely slightly complicate motations

",
in subsequent formulas).

Let “=»(B) denote the U(l) expectation, and fnhﬂiﬁ,hl the

one determined by the measure (3.7). By Ginibre's inequalicy [17],

. ; ; : ;
{H{LL“T.rn{E.h] is monotone increasing in A and in h , so that
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for arbitrary A EE" » h>0, and

(N}
WL, I>"7(B) = 1i lim <W(L __)> (B,h)
L=T hﬂﬁ;ﬁ h;: L=T" A

lim <W(L, )>(8,h) .
b fuer

Thus, for § > E:tit.{ufl}} '

ity 0> (8)

LR

WL, p)>(8,h)

ny

tHElL!TIJ{HI (3.9}

| B

exp[-d(L+T)]

which proves the first inequality in (3.1).

3.3. We now turn to the analysis of the expectation value of the disorder

operator and propose to establish perimeter decay for sufficiently small £

We closely follow the scheme developed in sects. 2.4 through 2.10.

The first step consists in using the Fourier expansion

E{h)exp{h cos(N8)}= 1+ I i{q)cos(gNE) , (3.10)
q=1
where
Elh an
A(g) = -{-l | exp h cos(N8) cos(qNe)ds .
o
Clearly

0<afg) <2, and A(g) +2 , 88 h+=, (3.11)

Let {c{q)} be a sequence of positive numbers with the property that
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I ) i1,
q=1 (3.12)

e.g- ciq) = cﬂth ’ {:E"E-ll ’

for some € * 0 chosen later.

Then
1+ E Al(q)cos(gNa)
q=1
- £3.13)
= E ;{qlr1{1+:qucnltqﬂﬂ}1 ;
=1
q
with
=1 £q
0 < an = £{qli{q) < 2c e = (3.14)
With (3.7) this yields the following expression for the functional
measure of the I;H model in finite volume
PR S |
duﬂ(ﬂh} {zﬂ.h} I{HAIJUE{EJ ' {3.15)
where
I, ) = e N (l+4z, cos{q HNo_)) , (3.16)
A a, I xpeh Nq,. Xy XY
=1
nd = ¥
& q - {qﬂlm cqn - :I[!':n{,{q”r:l

We now redefine a current distribution, p , to be a function on the

set, B , of directed bonds in A with values in NZ , of finite support.

| 2 - . . -
A l-ensemble, E , is a family of current distributions, p , with the

properties

supp p € A , for all p € El '
(3.17)
dist(p,p') 3 /2
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for all p and p' inm EI with p # p' . See Bect. 2.6. Repeating the

combinatorial expansion of sect. 2.6, see Lemma 2 and (2.46), we obtain

I{Eh} =Id 0 (1+K(plecosbip)) . (3.18)
¥ THEHL
T
where #@(p) = :r EIT“#! ’
is a l-ensemble, and

¥ ranges over a8 finite index set, each H:

i) d =0, for all ¥y ,
¥ (3.19)
Hliuupp p)
ii) 0 <K(p) <3 m 2|
Xy=Supp P

p

#

(We recall that Hltlupp p) is the number of bonds within distance <1

of suppp) .

Since the measure dnﬂiﬂ} is invariant under U(l) gauge trans-

formations, we can lmpose the condition

fp =0 {3.20)
as long as we only want to compute expectations of gauge-invariant obser-

vablas in the measurs dJ;{ﬁﬂj ;

3.4. Hext, we discuss the expectation value of the disorder operator

y - Lo’

for h =0 (U(l) model) and h = = {IZH model) it agrees with the one

. We choose the definitiom of D for 0 <h &= , such that

proposed in (1.14). Thus

< h cos(N8_ )
LI n gh)e ¥y
xyeh

h

& =
<D ?h{ﬂuhl EEB,A

Lier

(3.21)

= : exp B[cun{dﬁp*ubl*cﬂi{dﬁpi]dnaiﬂi '
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where

xE/R , for Pp*EE ,

(3.22)

0 , othervise,

E=1,2444+,8-1 , and I is the rectangular array of plaquettes in the

0-1 plane bounded by L . .

By (3.15), (3.18) and (3.20),

{z 4

& - R

L=T Y
. ] m [1#K{p)cosBip)] . (1.23)
unzh'fr

dp=0

n B di - dé ) ldu (8
. exp Blcos( F+“$} cos ( p}l ug (8)

In each term oo the v.8. of (3.23) we make a real change of variables

B +8  +7x . (3.24)
Where 1 1is the l-form determined by

vesle, (3.25)

with @ given by (3.22). (We are repeating here the change of variables

already vsed im sect. 2.7). Now, notice that
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{drlp (déa Hﬂp

=1
= =p - (8da '@ 3.26
5 ( }P (3.26)

By definition of ¥ ,

mE/N , for =xy E LL#T P

dw) = o (3.27)

0 , otherwise.

Hence

where d is the distance between p and LLtT .

Inserting (3.24) - (3.286) into the r.s. of (3.23) we find, using
the periodicity of the cosine and Lemma 1, sect. 2.3,
h }-1

>, (8/b) = (2 £dl (), (3.28)

=0
LT BsAT

L

where
T.Ged =) 0 [1+K{p) cos(e(pl*e(u ))]
Y Hl L&)
pe ¥
500 (3.29)

£l Ecdﬂ*ﬂjduﬂ[ﬁ] "

and
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R{de+e) = : BXp E[nnlidﬂp*dtp+¢p} = nns{dﬂp]]

= I; exp E[cun{dﬁp*cpl - nnuidﬂpl] . (3.30)

(We have used (3.26), the fact that |.1':|l takes values in HZ and the

periodicity of the cosine to get rid of ¢ ) .

3. 5. Hext, we must perform the renormalization transformation. It is a

straightforward variant of the one described in sect. 2.8. (We draw on

some ideas from §4 of [15) .)

Given any current distribution p in a l-ensemble, H': ; we choose
a set of links ED contained in supp p , with the property that two

different links in Eﬁ do not belong to a common plaquette and such that

L prfl z III.I'IB‘.I|||:||1 . (3.31)
b

see (2.62), sect. 2.8. S5ince
dilt{ﬂl.nzl z 7 ,

for any two distributions P03 in H: » By ¢ Py the choice of Eﬂ

only depends on p but is independent of H: ~ {p} , and there is no

1

plaquette containing a link of Eﬂ and & link of Eﬂ_ , for any p' € H"r .

Our renormalization transformation consists of integrating out all

variables

1
] EB
{IzH“ n.pEH*r}
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As in the proof of Lemma 3, sect. 2.8, one sees that this can be reduced

te evaluating the integrals

ip 8 fecos(dd +c )
5{“113 z fa ¥ ¥ n e PP oge
plipoxy =y

xy £ Eﬂ i pE H: . This is achieved by performing a complex translation,

(see also Lemma 4.3 of [15] ) . Under this change of wvariables,

- L] H
Sip ) = e up:r Eﬁﬁ{cnahn-l]I elﬂ:r X
=y
(3.32)
Bcui{dﬂp+:p}
. n i (a;de_+c ) e de
P Ipoxy b = xy
where
iglaido) = o Bicosha~1) _8lcos(d8+ia)-cos (do)] (3.33)
Using the identity
cos(pria)=-cos 9 = cos P (cosha-1)-ising sinha ,
one gees that
mexlighait g1 - (3.34)

Thus, the optimal choice of a im (3.32) apparently corresponds to minimizing
'uuly + B8 (cosha=1)

For our purposes it suffices to choose
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a = ﬂ.ﬂ = ['.n ‘ip ﬂ“r_

hence
-ap e B=c_le__|
. P (3.35)

Xy tﬁﬁt’:nahn-l}

whars :n and :l are finite constants.

We now define

i{dﬂ{vD}*E(ﬂD}}
Flpidbec) = 5 e

: i n i (a ;d8 +c ) + (3.36)
xTEﬂD P dpomy E'xy P P
=i (do{u_)+e(u_))
% e P ¢ I il iB{-u:T:d&P*:PI 2
xyB  piipmy

By (3.33), Fip;dé+c) 1is a real-valued function of 8 which, by (3.34),
is bounded in modulus by 1 and, for ¢ 2 0 ; is even in & . Furthermore,
we define

Elﬂ':n[p:y[

g(B,p) T E(p) N1 e
xys, (3.37)

A

K(p)exp(1/18)[c BL(p)-c_|loll,]

By repeating the arguments used in the proof of Corollary &, sect. 2.8,

and making uee of (3.31) = (3.33), (3.36) and (3.37) we obtain

IT{t} = [0 [lez(8,p)F(p;dasc)] .

(3.38)

. Eldﬂ*tlduaﬂﬂi
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3.6. The lower bound for I¥{£} ;

We now estimate z(f,p) and then prove a lower bound on I?{E]
which will establish our main result, the perimeter decay of the expecration
value (3.28) of the disorder operator, DE » For N > N(E) and all
L

»T
finite values of @ .

From the upper bound (3.37) on =z(E,p) we derive, using inequalities

(3.14) (bound on lqﬂl and (3.19) (bound on K(p)) ,

e(B.p)

L =%

K(p)exp(1/18) [e,BL(p)-c || ol ]

LI

exple, (B)L(p)-(e M) (1/NM) ||l ]

for some function c,(B) g ¢ f+c, and some finite constants c, > 0 and

€y It follows from the fact that a current distribution takes values

in NZ rchat

li1hi}||p|[1 > Lip)
so that if N > 1 + zfcs
z{B.p) = 'IF[fﬂsz]'ﬁsﬂlL{ﬂ}'ﬁﬁuﬂ||1] ’ {3.40)

for some positive constants €q and cﬁ « (Given £ and N , one may

now optimize in the choice of ¢ ; see (3.12)).

Thus if H = :13 * nT , for some consCant c? £ om

z(B.p) €1,

g(B.p) »0 , a8 N=+= (3.41)
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exponentially fast, for arbitrary @ < = .

We now analyze the dependence on EP of the integrand on the right
side of expression (3.38) for ITEE} . For this purpose we rewrite the

factors l+z(8,p)F(p;dé+c) , namely

l+z(B,2)F(p;dBee) = [Ll+z(B,p)F(p;d®)]

z(B,p) (Flp;dase)- r{p,den
- exp Il TR, ) Flp3d0) '

and apply Taylor's theorem with remainder to the functions in(l+x) and

F(p,d8+c) - F(p,d@) . This yields

1+z(8,p)F (p;dose) = [1+z(B.p)F(p;:de)]

(3.42)
. BXp Dﬂftidﬁiexp Eptz;dﬁl .
where
0,(cid0) = 3¢ Flosdonad |, Lo° TrrhoFteTan) P

which is an odd function of 8 , because F(p;dé) is even in & , and

da} = - 1| E-z(8,p)(F(psde+e)-F(p;de))
“p{tldal 2 ( 1+z(8,p)F(p;dd)

2
2(8,p) —y F(psdosre) |,
dh

{1.44)

i =
i

l+z(B,p)F(p;de)

for some numbers ¢t and s in the interval (0,1) . By inspecting the
explicit expression (3.36) for Fip;da+ic) and estimating the first and

second derivative in A one shows quite easily that
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2
[zb{c,eull <k (€)72(B,0) ,
where {3.45)
tp{:l B E[|E{up}1 + BL(p) max |e [} ,
pE supp o
for some finite constant C , provided N is chosen so large that
g(B,p) < 1/2 , for all p € Hi and all vy . (By (3.40) this is the case

for all sufficiently large N ).

Furthermore, from definition (3.30) of R{dé+e) , sect. 3.4, and

Taylor's theores with remainder we derive

O(e:da) en(n;dﬁ}

R(dB+e) = & . {(3.46)

where O(c;d8) is an odd function of @ , and

p!
R(g,dd) = T REdEP}c: F
P )
(3.47)
with IntdaPJI 82 .

We now insert the right sides of (3.42) and (3.48) into (3.38) and subse-
quently apply estimates (3.45) and (3.47). This yields the following lower

bound on I (e) .
¥

~(8/2) |e]|2

I (&) > @ n [i::p =k EE}EI{ﬂ.p]] 4
¥ 1 (4]
pEN
Y {3.48)
Sp=0
=0 {c;d8) £
. fn 1[I*ﬂﬂ-.ﬂ}l’l’p:dﬂJl ¢ 03400, (o)

|:~|El'ml\‘r

fp=0
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Since o Il+:{ﬂ,n]P{u:dﬂjlduE{&} is an even, positive measure in @
1
EN
d ¥
p=0
if N is so large that =z(B.p) <1 , for all p E H: and all v ,

while I 0 (e;d8) and O(e;d8) are odd functions of & , Jensen's
1
pEH?
fp=0
inequalicy finally yields

-(8/2)||e|2 3
I e (0 expl-ic (€)22(8,0) 1)1 () (3.49)

1

EN
e
dp=0

We now estimate kp{:] "

Using Lemma 1, sect. 2.3, we obtain

kﬂ[:l ¢{|£Eup]f+EL{n} max 1cp]}

pEsupp p

L 1.

ﬂtcnn::i||nHlLfn}ﬁfﬂLfnll max [e_| »
pER ?

A

i
€8]l o]l Lta? —pén“: legl
gee (2.104), sect. 2.1l, so that by repeating the arguments leading to
(2.105) and (2.106) and inserting the upper bound (3.40) on z(B.p) we
find



£k (e)%z(B.p)

P P
nEHT
om0 2 "‘:',Ellnlll
5 C8 max ([lo]l] e
1
o
- =(c, (B)-c N)L
coroutte T T kel
L=4
<c@mlell? . (3.50)

for some functiom c{8,N) which tends to O, ags N + = , exponentially

fast, for each E < =,

3.7. We now return to our basic identicty (3.28) for the expectation
value of the disorder operator and insert the lower bounds (3.49) and (3.50).

This yields

£ -
<D = (B,h) = l"r TT[:HTTID}

R |
. Y (3.51)
2 expl-{(8/2+c(8, M)} ]|e]I7]
where
3. 3 (2 Y laT (), henca L A =1
Y Ba A Y ¥ . ¥ g
and
I (e)= [ 1 [lez(8,p)F(p;de+e)]
Y 1
ﬂEH~Ir

. Efdﬂ*s]dllﬂﬂl .

By (3.22) and (3.23), (3.26)

”t": > const. (£/H)2 (L+T) . (3.53)
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Thus, for arbitrary h <= and A CE'!" .

2 2
T R s (3.54)

it

for each B <= and N * NH(B) , for some functiom MN(B) < = , (with
N(B) # = , as B =) . This completes our proof of the lower bounds

in (3.1).

Hemarks.

1) The main results of this sectionm are identities (3.51) and (3.52), the

bounds (3.49) and (3.50) and the final inequality (3.54).

2} Identities (3.51) and (3.52) relate fDL *h(E*h} te (a convex combi-

LxT
nation of) expectation values of an cbservable, somewhat analogous to the

disorder operator, in the measures

1 (07" 1 [1+2(8,0)F(p;de))d, (8)
1
oEN
fp=0

(3.55)

which correspond to lattice gauge theories invariant under U(l} gauge

transformations. (The observable is defined as the substitution

dg—s di+c

to be compared with definition (l1.l14) of disorder operators. It can be

viewed as a renormalized disorder operater).

The same comments apply te <W({L {B,h} , but we do not wish

L1

to present the appropriate renormalization transformations for this

expectation in the present paper. (See however [15) for the soelution
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of a similar problem concerning correlations of fractional charges in a

two-dimensional Coulomb gas).

3) The techniques presented in this section can be extended to E‘.H gauge

theories in dimension >3.
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§4., Transitions in classical XY wmodels and "hyper gauge theories"

4,1. In this section we comment on the phase diagram of a general class
of U(l) lattice models and their duals which are natural generalizations
of the XY model and the U({l) lattice gauge theory. They are of some
interest for the statistical mechanics of defect gases. For the group Eﬂz
such a class of models (generalizations of the Ising model and the 112

lattice gauge theory) were first studied by Wegner im his basic paper [25].

As a byproduct we obtain results on the phase transition in three-
or higher dimensional classical XY models, and, by combining the results
of this section and of [15] with correlation inequalities [17,24], some
of the essential features of the phase diagram of abelianm Higgs lattice

theories in three and four dimensions can be established: see [5].

Thus, for the classical XY model [11) and the Villain approximation
in three- or more dimensions we find a proof of existence of a phase transi-
tion, accompanied by spontaneous breaking of U(l) and the appearance of
a Goldstone excitation, and for the Higgs models we conclude the existence

of a superconductor - QED transition, [5].

4.2. Definition of models.

A rank=k U{l) lattice theory is dafined as follows : The configu-

rations of a rank-k U{l) lattice theory are functions

1

B i F+ E{ck} ES (4.1)

“k

defined on k-cells, ey in 2° with values in the unit circle, identified

with [-w,7) , and with the property that
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B(c,) = -E{c;} = (4.2)

whare c: is the same k-cell as e but with reversed orientation:;

see sect. 2.3.

We set

dﬂhk&lj = E ﬂ{:k} {4.3)

W]

where the orientation of Sy is the one prescribed by the orientation of

C N

k+1
Let Pg be a function on El of positive type, e.g.

expBcos 8 ,
wﬂiﬁ] - (4.4)

£ expl- S(e+202)7)

flm—m

The vacuum functional (equilibrium state) of a rank-k U(1) lattice theory
with inverse square coupling (inverse temperature) £ in a finite region

A 1:E'.n is given by

1
T, 0 wlde(c, )0 dofe) , (4.5)

:h+lcﬂ ckcﬂ

ﬂuaiﬂﬁl
wvhere Tﬁ A is the usual partition functiom.

We propose to derive the phase diagram and the lower critical

dimension, Bc s of rank-k U({1l)} lactice theories. We claim that
I]c = k+3 {4.6)

except for k =0 (XY model) where
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I'.I'|= = 2 : gea [15]).

A natural observable to analyze is the following : Let 5, be some closed,
oriented surface built out of k=cells im ED + We define

inﬂ{ct.'l
Ni{(s5)= 1 e (4.7)
m k
S

W (5,)>,(8) = ] dug (8,0 (S} . (4.8)

H- is the analogue of the Wegner-Wilson loop. Let Lel be a bounded,
(k+l)-dimensional region in ED built out of oriented (k+#l)-cells with

boundary &L - 5

kel ¢ By (4.2) and (4.7)

indey,)
Wmfﬁk} = n @

1t 1™ k1

Mote that, for k > 1 , duﬂiﬁn} and H-{Ek} are invariant under the

(4.9)

Rauge trans formations

olc,) b alc,) +dule,) ,

{4.10)
du'l: :' - T m{': s l 1]
& nk_lcai:k k-1

where w is an arbitrary function defined on the (k=1)=-cells in ED

with values in 51

When k = 0 , i.e. for the classical XY model, sk-ﬂ = {x.v} ,

(two sites in EE} .

im(0 -0 ) imdo
Ws)me XV e e L (4.11)

b'EI'.l
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vhere [, is a line of oriented links joining x to ¥y , and gauge

invariance is replaced by invariance under the global symmetry
E: - E=+w ;s WE [=wu) . (4.12)
For the XY model , Dc = 2 : gee [15]).

The results of this section concern the models in D > 3 dimensions
which have the property that the dual models are Z (hyper) gauge theories

to which our sethods apply.

The methods of sect. 3 permit us to alsc study rank-k Z -models
in dimension D > k+3 . (They are defined in the obvious way) ! As in
sect. 3 one can prove the existence of intermediate phases, for sufficiently

large N .

4.3. The duality transformation.

Our analysis of rank-k U(l)} theories relles on a duality trans-
formation. Let ;E in} , nEZ , denote the nth Fourier coefficient
k+l

of a function HE (g} omn Sl . By Fourier transformation
|

k+

J now, (dele ) m defe)
Crep=h krl € =h

(4.13)

-k n I?ﬂn

(n( 5
nifn=0 e, ch kel k1l

where each n is a divergence-free, integer-valued (k+l)-form with
support imn A ; see (2.15) and (2.19). Given some integer-valued
(k+l)=form m , supp n = & , there exists an integer-valued (k+2)=form ,

B with



L

nedn, and suppme A . (&5.14)

See Lemma 1, sect. 2.3. ( A is assumed to have trivial homology. The
pultiplicity of solutions, m , of (4.14) is then independent of n . For
details concerning the special case D= 2 , k= 1 see Appendix A of

[15]). We define

= (4.15)

which is a k* = D-k-2 form. Thus

J n @ (déde. M) 1 déle)
I:H_IE.'L ck*l e+l Ekd k
{4.16)
- I n @ ((sda)(e,_.)) ,
[a] e, =A “leel ot
where [ ranges over all equivalence classes of integer-valued
[al]
k*-forms, a , with
n==da , supp a A . (4.17)
Applications.
1) qu+1 - mﬂ s for all Cel = A +» This yields
z, , " T @, ((edad(e, . )) - (4.18)
BsA B k+l
fal = epyy=h
2)
Rl T Rl T
w -
“kel l
uimﬁp g € L=
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with (4.18) this yields

-:wm{st:uﬂm}
{ I i ms({-dnltc mﬂl‘.{#du}{: Yy-m)}
ﬂ.h h*l ksl
[al cki_ll:!r-'zk +1 uﬂk ol
(4.19)

As an example, we consider the rank=k Villain models. One chooses

“’s“} = I Ez'p{“-g' imzujzl .

L==
i.e.
ah{n} = const. E:p['uzfiﬂ] & (4.20)
Then
M _(5,.)>, (B) = e 1 expl- -—Idwﬂc ¥,
% boh lal (e ) *en® >
where
B, €y F {E:*+1}* = 5h+1
wi:k.*l} (45-21)
0 , otherwise
For the three-dimensional Villain model (k=0) we obtain
i(8,78,) §id
‘Hlf5ﬂ}}n{5] = g ’A{E} -t I?hfﬁ] . (4.22)

go that

[:I: n expl- -—{ﬂuﬂp}l:p}l .

{gt.gﬁ}ﬂta} - g

B A
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(-1 , if b Ep":!.l
where pip) = (4.273)

0 , otherwise ,

and I is a path of links, b , (dual to plaquettes for D = 3) joining

1
X Eo ¥ .
Remark. One may also introduce disorder operators, Dgs » for

k-1
rank-k U{l} theories, in analogy with (1.14) and (3.21). It is easy to

ghow that
3 = .
<D >»(B)y =2 (L n_ o ((*da)(c__.)) .
e Pod fa) Cuarl™ B o
icu{ci.} (5.24)
' n tE
crec(as . ) )
For k >0 and {pﬂ as in (4.20)
<p® >, (8) 2 expl-const.vel.(3s, )1 .

W=

This follows from the result for the Gaussian expectation value, by using

the correlation inequalities of [24]. For the Villain model (k=0) ,

'EDE *. (B) is related to the surface tension which vanishes in the thermo-
By A
I

dynamic limit. The asymptotic behaviour for large SD—I ¥ ,IL.FE.B » can be deter-
mined by combining the results of [15] (k=0, D=2} with correlation

inequalities. See [5] for the three-dimensional model.
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4,4, The main results.

We now study the expectation value fﬂmfﬁh}>niﬂ} for a rank-k
Villain model. As in sect. 2.6 we reexpress the dual model in terms of a

Gaussian measure, du:tul , defined, for D-k-2 >1, i.g. D > k+3 , by

expl- S, v,1)] , if 8y =0
i du:{u}ni“‘“J - (4.25)

0 , otherwise ,

where "A is the GCreen'"s functionm of HA‘

When D=k=2 =0 , a is & gcalar lattice field, and du:{qj ig tha

§d , see (2.34), sect. 2.5,

usual Gaussian measure with Dirichlet b.c. at 3A . In this case, the dual
of the rank-k Villain model is isomorphic to a D~dimensional Coulomb gas.
For D=2 this gas is analyzed in [15], where it is shown that it
exhibits a Kosterlitz-Thouless transition. For D > 3 , it is believed that

there are no bulk phase transitions in this gas and that it exhibits

Debye screening [10], for all values of £ . (This is because the Coulomb

potential behaves like dise. D% y for D >3, while in D = 2 it behaves

like log(dist.}). The main result of this section is that vhen
D> k+?

the rank-k Villain model has a massive small # phase in which

dqﬂ(ﬁt}liﬁj < ::p[—cnnlt+vn1{E:+1}] " {4.26)

o
kvl

a4 standard high temperature expansion), and a massless large £ phase

where E:+1 is a minimal region with 35, =S, ; (this follows from

where

:Hm{shlh{B} z E:p[—cnnlt;unt{slil . (4.27)



= T =

The proof of (4.27) is a straightforward variant of the one in sects. 2.4 =

2.10 which we sketch below.

In conclusion, the lower critical dimension is

DE = k+3, for k=1 . [&.28)

4.5. As in sect. 2.6 one shows that, for & rank-k Villain modal,

W5, )>, (8)
_1 -
=2 . 0 (1+2 T . coslqale )} .
Bl et 2m7Mem k Rt

3 Em{du]dui{u} -

where

Ry(da) = 1 expl- %{E{du,lﬂlﬂlﬂ,wﬂ
:k¢=ﬁ*

We now apply the combinatorial expansion of sect. 2.6 to

I{a,) = W (142 E _ cos{gale J) ] (4. 30)
Mo amlgm w

We define a rank-k* current distribution, ¢ , as a function on

{k* 2 D=k=2)=cells in A* with values in 2vZ .

By mimicking the combinatorial scheme of sect. 2.5 we obtain

I{nﬂ} =fd 0 [1+K{plcos alp)] , {4.31)
s A
ﬂEHT

where vy ranges over some finite index set, each Hi is a l-ensemble,



(i.e. dint+fpl,p2} = 2 ; for two distinct rank-k* current distributions

e

1
1 and Py in HT}.und

i) ET >0 ,; for all ¥
N, (supp 2)

ii) 0 <Kf{p) <3 I

z
€, #SSUPP p lotega)|

where Hlﬁ;upp p) 1is the number of k®*-cells within distance % | of suppp .

and

for some constant Hu with the property that

Fi B9 et

Thus

-1
1H-i5k13ﬂ{51 - zﬂg.ﬁ{5 d\‘l i l[ll—ﬂfg}.r_'ul. alp)]
s (4.32)

. R (da)dy}(a)) .

Because of (4.25) we may omit all factors from the right side of (4.32)

for which & # 0, provided D > k+¢3 ., (See [15] for D= 2 , k = 0 ).
Mext, we change variables :

a -+ g%t

where (4.33)

-1
T = 6&5 [1: I

and @ is given by (4.21). Since
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Mo dy = =g with

A* At

(4.34)

ey = =l atd8,

1
A w

we obtain, using Lemma 1, sect. 2.3, and the periocdicity of the cosine,

W (60>, (8) = 2! (zd [n (1K ()cos(alo)ve (5,))] -
T
nEHT

o =0 (4.35)

- dyy(ave )

The renormalization of the right side of (%.35) is performed as in sect. 2.8,

(see also sect. 3.5,and §4 of ref. [15]) . It yields

=]
cﬂmfskl?hiﬂl - ZE_ﬁ{i dT §
« [ 1y [ez(a.p)cos(al@ve, (u ) Jdu}(ave,) ) (4.36)
p A A
pEN
¥
sp=0
where
2
z(B,p) g exp [(c,=d 8)||p||;] expllc,~d, B)L(p)] ,
for g » na:{clfdl.czfdzi . Here L(p) is the number of (k® = D-k-2)-cells

in supp p , and cl.nz,dl and dz are finite, positive constants. A
straightforward variant of the estimates inm sect. 2,10 and of (2.104) - (2.107),

sect. 2.11, yields.

1
c"-{sh]}ﬂtﬂ] : E“FE-' F— {th'Eﬁ'}I L3 {*-33.}
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provided g is sufficiently large. Here

1 _ 1
-i?_ﬁq.d{ﬂ}‘
where d(g) is a finite function which tends te © , as B + =
exponentially fast. See (2.80) and (2.87), (2.BB), sect. 2.10. Finally,
from (4.34) and the fact that the gradient of the Green's function of the

Laplacean, & = =(dé+&d) , decays like, {lfdilt.}n_l s we conclude that

linnfcﬂ+cﬁl < cunnt.vnl(ﬂk} ; {4.39)
Az

for D > 3 . This completes our sketch of the proof of (4.27).

In the example of the three- (or higher) dimensional Villain model

(k = 0) we obtain from (4.38), (4.39) and (4.23)
ﬂ§1-§3:ca] - limb {E;-Eybﬂtﬁ}
Al

> exp[=- Eéf nnnnt.val.{Eﬁ}] _—

= gxp(-C/8) .,
for some finite constant C independent of x and y , provided D > 3

and B is sufficiently large. (The limit hf‘!fn existe, as follows from

Ginibre's inequalities). Inequality (4.40) expresses long range order in

the spin-spin correlation of the Villain model, for sufficiently large
values of & . Thus, in the pure phases obtained by ergodic decomposition

of <—>(B) , the continuous, global U(l) symmetry is broken.

The masslessness of the large @ phases of rank-k Villain models,

with D > k+3 , can be proven by generalizing the techniques developed in
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gects. 2.11 and 2.12 in a straightforward way.

The techmigues of our paper do not depend upon imposing special
b.c. (They apply to a very large class of U(l)-invariant b.c., see e.g.
Appendix A of [15] for a discussion of such b.c. for the two-dimensional,
classical XY meodel). None of our estimates relies on translation invariance.
Using the tools in §§6 and 7 and Appendices B and C of [15], we can extend

our results te a falirly large class of functioms, W

g in particular

whiﬂ} = axp B cos B .

These are definite advantages over the methods of [11] which rely
on translation invariance and reflection positivity. (Those methods do,
however, permit one to analyze spin systems with non=abelian symmetry groups
for which no useful notion of duality exists, such as the classical Heisenberg

model).

We believe that our methods ought to be useful for the analysis of the
quantum mechanical XY model, models of interacting Bose gases and

statistical mechanical models of defects and dislocations in ordered media.
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