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Abstract. 

We give a new, elementary proof for the existence of a deconfining 

transition to a massless (QED) phase in the four-dimensional U(1) lattice 

gauge theory and of an intermediate QED phase, accompanied by dynamical 

restoration of local U(1) invariance, in the four dimensional Zmodels, 

with N large. Our methods can also be used to prove the existence of a 

phase transition in the XY model in three or more dimension , in three-

and four-dimensional, abelian Higgs models, and in more general models admit-

ting some local, abelian gauge invariance. 
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§1. Introduction and summary of results. 

In the past five years, there has been considerable progress in the 

understanding of the phase diagram of lattice gauge theories with a discrete 

(abelian, or non-abelian) "unbroken" group of gauge transformations. Among 

such models are 

i) pure lattice gauge theories with a discrete gauge group; 

ii) lattice Higgs models with discrete or continuous gauge groups, 

broken down by the Higgs scalars to a discrete, unbroken subgroup. 

Such models are now known to have a strong coupling ("high temperature") 

phase in which static quarks transforming non-trivially under the center 

of the unbroken group are confined and a weak coupling (or "low temperature") 

phase where static quarks are not confined but magnetic monopoles may be; 

see [1, 2, 3, 4, 5] and [6] for a systematic review and further developments. 

Proofs of these results are based on fairly standard high - and low 

temperature expansions. An excellent review of such expansions [7, 8] along 

with applications to lattice gauge theories can be found in [6] . None of 

these expansion methods require the use of duality transformations, so 

that non-abelian models with discrete, unbroken groups are accessible. The 

applications to the study of Higgs models with continuous gauge groups, 

but discrete unbroken subgroup is somewhat subtle. However, the methods 

developed in [9, 10] , adapted to lattice gauge theories, are in principle 

sufficient to study such models in various, extreme regions of coupling 

constant space; see also [6]. 

As an example, consider a four-dimensional SU(2) Higgs model with 

a system of Higgs scalars which leave only Zunbroken. Let g be the 
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2 
pure gauge coupling constant, β ≡ 1/g2 , and suppose that, in the unitary 

gauge, the interaction between the lattice gauge field, g , and the matter 

fields is given by the action 

- ζR R Σ X(g ) , 
x y 1 xy , 

xy 
(1.1) 

4 
where xy runs through all bonds (nearest neighbor pairs) of Z , 

is the spin 1 character of SU(2) , ζ > 0 is a coupling constant, and 

4 
is the radial component of the Higgs system at the point x  Z 

which is supposed to be ≈ R
o
 > 0 with high probability. 

Presently, those facts which are known rigorously about this model 

can be summarized in the following diagram : 

Fig. 1 

I : Confinement of static quarks in the fundamental representation, [1, 4]. 

II : Confinement of Z2 monopoles, [6]. 
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On the line β = ∞ , the theory reduces to a lattice theory of 

scalar fields decoupled from the gauge fields which has in general a phase 

transition, with a massless, broken symmetry phase for ζ > ζc , [11] . 

It is conjectured that β = β and, more generally that regions I 

and II have a common boundary from (β = β , ζ = ∞ ) to some point P 

which is connected by a line of singularities of e.g. the magnetic string 

tension to (β = ∞ , ζ = ζ
c
) . Moreover, domain I should extend to the 

broken line from P to (β = ∞ , ζ = 0) . 

Among the obstructions which prevent one from proving the above 

conjectures are 

- incomplete knowledge of the pure Z2 theory; 

- the presumed roughening transition in the pure SU(2) theory (see e.g. 

[12]) which appears to make it impossible to extrapolate the high 

temperature expansion for ζ = 0 to arbitrarily large values of β 

The model discussed above may be amusing, but is not really relevant 

for particle physics. More interesting examples would be lattice versions 

of the Georgi-Glashow or the standard (Glashow-) Weinberg-Salam model of 

electro-weak interactions. In these models a new difficulty appears : 

Essentially no powerful, analytical tools are known which would permit 

one to establish the existence of electromagnetic phases with massless 

photons and unconfined, charged leptons. 

Let us consider, for example , the Georgi-Glashow model. In this 

model, the Higgs scalar has isotopic spin 1, and the action describing 

the interactions between the Higgs- and the gauge field is given by 
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(1.2) 

where ϕ is the Higgs field, is the spin 1 representation of SU(2) 

3 
(·,·) is the scalar product on R , ζ > 0 . 

In this example the presumed phase diagram is described in Fig. 2 

below. 

Fig. 2 

In domain I static "leptons" in the fundamental representation of 

SU(2) are confined. This follows from the results of [1, 6] (high tempera 

ture expansions) or from [4] (where correlation inequalities are used). 

When ζ = ∞ the model reduces to the pure U(1) lattice theory. 

One main result of our paper is a new proof and a generalization of a 

result, already established by A. Guth [13] , which asserts that the 

four-dimensional U(1) model has a deconfining transition, i.e. for 

β > βc , static electric charges have only Coulombic interactions, and 
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the photon is massless; see §2. 

Our method of proof is a descendent of a more involved one used 

to establish the existence of the Berezinski-Kosterlitz-Thouless transi-

tion [14] in the two-dimensional rotator model and the Coulomb gas which 

we presented in [15] . In comparison with [15] simplifications arise in 

the analysis of the U(1) model, due to gauge invariance which enforces 

"local neutrality". Our methods have the advantage over [13] of not being 

geared to a special form of the lattice action (the Villain action), and 

they do not involve a cluster expansion, (so that reasonable bounds on 

β
c
 might be obtained). Physically speaking, they consist in showing that 

for large β , static, electric charges are deconfined, because the dynami-

cal magnetic monopoles of the lattice U(1)-model are bound in neutral clusters 

which form a dilute gas. 

On the line β = ∞ , the model reduces to the classical Heisenberg 

model or the three-component lattice g|ϕ|
4
 theory, and the degrees of 

freedom of the gauge field are frozen. These models have a phase transition 

accompanied by spontaneous breaking of 0(3) : For ζ > ζ , global 0(3) c 

invariance is broken, and there exist two massless Goldstone modes. This 

has been proven in [11] . (For two-component rotator models, a new proof 

of this result is given in §4). 

We expect that the critical points β and ζ are connected by 
c c 

a line of critical points above which the theory is in a massless QED phase 

with unconfined electric charge and massive, magnetic monopoles : See 

domain II, Fig.2. In the complement of domain II, and for β < ∞ , magnetic 

monopoles are expected to be massless. For ζ sufficiently small and β 

below
 βroughening (for the pure SU(2) theory) they are expected to 

form a condensate. In this range of parameters electric charge is 
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confined. Since our analysis of the U(1) model involves using a duality 

transformation, it does not extend to the model with ζ < ∞ , in any 
*) 

obvious way. This and the absence of a detailed understanding of the 

presumed roughening transition in the pure SU(2) theory are, at present, 

the obstructions against establishing the conjectured phase diagram described 

above. At least, it is supported by the results in §2 and [11]. 

In §3, we reconsider the Z
N
 models with Villain or Wilson action. 

We show that, in four dimensions and for N large enough, there exist two 

critical values of β , β and β > β (depending on N) , such that 
—c c —c 

for β  (β , β ) the Wilson and the disorder loop have perimeter decay. 
—c c 

Thus there exist intermediate QED phases. This reproduces and extends a 

result of Elitzur et al. [16] . The point of our methods is to avoid using 

self-duality which only holds for the Villain action and to exhibit a 

sequence of transformations of the ZN model which map it to a model with 

unbroken U(1) gauge invariance, provided β  (β
c
,βc) . In other words, 

local U(1) invariance is restored in the intermediate phase . This is the 

analogue of global U(1) restoration in the intermediate phases of the 

two-dimensional Z
N
 models which we described in [15]. 

The phenomenon that the "fixed point theory" of some class of spin 

systems or lattice gauge theories, with respect to suitably chosen renor-

malization transformations, has a larger global or local symmetry than the 

*) 

It is an interesting problem to avoid the use of duality in the analysis 

of the U(1) model, or to translate the methods developed in §2 back into 

the Wilson formulation of that model. 
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original models is presumably a rather general one. It is therefore of 

interest to analyze some examples which exhibit that phenomenon. 

We expect it to occur, for example, in any lattice gauge theory 

with a discrete gauge group H of high order which is a subgroup of some 

Lie group : If G is the smallest Lie group containing H as a subgroup 

then we expect that a pure lattice gauge theory with gauge group H has 

intermediate phases where local G-invariance is restored, in the sense 

that certain correlations behave like ones in a pure gauge theory with 

gauge group G . 

In §4 we reconsider the classical rotator (XY) model in three or 

more dimensions. By duality, the rotator model is equivalent to a statistical 

mechanical model of line defects characterized by integer flux numbers. In 

three dimensions, this model is the ζ → ∞ limit of the non-compact, abelian 

Higgs model, and the line defects correspond to the Abrikosov vortices. 

Our methods permit us to prove that, for a large class of lattice 

actions, the classical XY model in three- or more dimensions has a phase 

transition with long range order, accompanied by spontaneous symmetry 

breaking. By the results of [5] this also implies the existence of a super-

conductor → QED transition in the three-dimensional, abelian Higgs model. 

(In the superconducting phase, vortices have a small activity and form a 

dilute gas, the photon is massive and there is no confinement of fractionally 

charged, static sources. In the QED phase, vortices condense, the photon 

is massless, and fractionally charged sources are confined by a logarithmic 

potential. These results were proven in [5], assuming the results of [15] 

and of §4 of the present paper, by using correlation inequalities). 
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We conclude this introduction by establishing some notation : 

Let G be a compact gauge group. With each link (nearest neighbor pair) xy 

in a simple, cubic lattice ZD we associate an element g of G . The 
xy 

a priori distribution of g is given by normalized Haar measure, dgxy , 

on G . Let Λ be some finite region in ZD , and let χ be some unitary 

or orthogonal character of G , typically the character of the fundamental 

representation of G , (assumed here to be a matrix group). 

Following Wilson [1], the action of a lattice theory in region A 

is defined by 

(1.3) 

where β = 1/g2 is the inverse square of the gauge coupling constant, p 

denotes a unit lattice square (plaquette) in Λ , gΛ is a short hand 

for {g } , , and xy xyΛ 

(1.4) 

Here ∏↑ denotes a path-ordered product. The Euclidean functional measure 

of the lattice theory in Λ is given by 

(1.5) 

More generally, dµβ is defined by 
β 

(1.6) 

where φ is some positive class function on G , i.e, 
β 

φβ(h- 1gh) = φ
β
(g) . 
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For example, φ may be the heat kernel on G in which case the model 
β 

is called the Villain approximation. In this paper, we primarily study the 

Villain approximation to the U(1) model and the XY model, except in 

§3, where we study Wilson's form of the ZN lattice gauge theory in four 

dimensions. This restriction is not inherent in our methods but is imposed 

for technical (mainly notational) convenience. The techniques introduced 

in §6 and Appendix B of [15] permit us to extend all results of the present 

paper to the models with Wilson action. (This is an advantage of our methods 

over the ones in [13]). 

Our criterion for confinement (or deconfinement) of static sources 

is the usual Wilson criterion. We are aware of the shortcomings of this 

criterion. Instead, we could use the slightly more general criterion dis-

cussed in [5] which is correct in the limit of infinitely heavy "quarks". 

This would merely result in a slight complication of notations but does 

not alter our results. (It is an interesting open problem, not studied in 

this paper, to introduce a confinement criterion which is valid in theories 

with dynamical quarks of small mass). 

Let L ≡ LL×T be a rectangular loop in a lattice plane, with sides 

of length L and T . Let 

(1.7) 

where χ is some character of G . 
ο 

Consider the expectation 

<W(L)>
Λ
(β) = ∫ W(L)dµ

β
(g
Λ
) , L  Λ . (1.8) 
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Let < - > (β) ≡ lim < - > (β) denote the vacuum functional in the 
Λ 

ΛZ 
thermodynamic limit. (Some limit always exists by compactness ) . The 

"quark-anti-quark" potential is defined by 

(1.9) 

(For a more accurate definition see [5]). Quarks transforming under a 

representation of G with character χo are expected to be permanently 

confined if 

V
o
(L) diverges to +∞ , as L (1.10) 

This is possible only if χ
o
 is non-trivial on the center of G , [18] . 

Moreover, 

V (L)  const. L , 
o 

(1.11) 

for arbitrary G, χ, χ
o

, [19]. 

If 

(1.12) 

"quarks" are expected to be deconfined, and physical states transforming 

non-trivially under the action of global gauge transformations corresponding 

to certain elements in the center of G are expected to exist. While this 

conclusion is correct in a pure lattice gauge theory without dynamical 

quarks it is wrong in theories with dynamical quarks in which (1.12) is 

valid in general, although quarks may be permanently confined. In order 

*) In the abelian case, the existence of the limit follows from [17]. 
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to establish the existence of a QED phase in the four-dimensional U(1) 

model one should therefore really also establish the masslessness of the 

photon; see §2. 

For (1.12) to hold it suffices that 

(1.13) 

for some Λ-independent constant d , provided Λ is large enough. 

Inequality (1.13) is proven in the next section for the U(1) 

model in four dimensions, at large values of β 

Apart from the behaviour of the Wilson loop expectation, 

<W(L) > (β) , we are also interested in the behaviour of the expectation 

value of the disorder loop, D , in the state <—>(β) . In four dimensions 

D is defined as follows : One chooses a loop, L , in a coordinate plane 

of the lattice ( Z4)* , dual to Z4 . Let Σ be an arbitrary set of 

plaquettes bounded by L , i.e. ∂Σ = L , and let 

Σ* = {p Z4 : p* Σ} (1.14) 

Then 

(1.15) 

where z is an arbitrary, non-trivial element in the center of G . It 

has been shown in [5] that in the four-dimensional Villain approximation 

to the U(1) model 

(1.16) 
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for all β < ∞ . This can also be shown for the U(1) model with Wilson 

action by using the method of real translations (§§ 5-7 of [15]) and 

Jensen's inequality. Thus, in the U(1) model, the disorder loop has 

always perimeter decay, i.e. static magnetic monopoles are never confined 

In §3 we show that, for sufficiently large N , the ZN models 

with Wilson action have an intermediate phase (for β  (β , β ) , with —c c 

0 < β < β < ∞) in which both inequalities, (1.13) and (1.15), hold. 
—c c 

(It follows from standard high temperature expansions that (1.13) fails 

for small β and (1.15) for large β , for every N < ∞) . 

In §4 we extend the concepts and results described above to a 

general class of abelian models, "hyper gauge theories", which includes 

the rotator model. We determine the (lower) critical dimension of these models. 
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§2. The transition in the four-dimensional U(1)-model. 

2.1. In this section we establish the existence of a transition to a 

deconfining, massless phase in the four-dimensional, compact U(1) lattice 

gauge theory. Previous work concerning this model is contained in [1, 20, 5] 

and, in particular in [13]. (See also [6] for a review of [13]). 

The basic ideas of our method which evolved from [20] and [15] are 

as follows : 

i) Use of Fourier transformation in the angular variables of the compact 

U(1) model : Transformation to the non-compact, dual model. 

ii) Application of a sequence of renormalization transformations to the 

dual model which map it to a neighborhood of the Gaussian model which 

describes free, non-compact electromagnetism. Our transformations represent 

a simplified version of the ones used in the two-dimensional Coulomb gas, 

in order to establish the existence of the Kosterlitz-Thouless transition 

[15]. The simplifications arise as a consequence of gauge invariance. 

iii) Change of field variables in the renormalized dual models (real trans-

lations; see §§ 5-7 of [15]) and application of Jensen’s inequality to 

establish a lower bound on the Wilson loop expectation, i.e. the disorder 

loop expectation of the dual model, with perimeter decay. (This proves 

(1.13)). 

2.2. We explain our methods in terms of the Villain approximation to the 

U(1) model, but with some analytical complications taken into account 

(see §6 and Appendix B of [15]) our methods and results extend to a large 

class of U(1) models with other actions, in particular the Wilson action, 
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as well. 

In this and the following sections we use the notation 

to denote the elements of (subgroups of) U(1) . We adopt the usual 

convention 

θ = -θ 
yx xy 

(2.1) 

The a priori distribution of θ is given by the Lebesgue measure, 
xy 

dθ , on the unit circle. Let Λ be a finite, rectangular array of 
xy 

4 
sites in Z , and θ. = {θ } , , as in §1. We define 

Λ xy xyΛ 

(2.2) 

This is the heat kernel on the unit circle appearing in the definition 

of the Villain approximation. 

The purpose of this section is to elucidate the properties of the 

following distribution, (the Euclidean functional measure for compact QED 

on the lattice) : 

(2.3) 

where 

(∂p is the boundary of a plaquette p  Λ) , and 

(2.4) 
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The standard Wilson loop is defined by 

(2.5) 

where L is as in §1, and we assume it to lie in the 0-1 lattice plane. 

More generally, let 

We now define 

(2.6) 

Existence of the limit is a standard consequence of Ginibre's inequalities 

[17], (for the models with Wilson's and with Villain action [21]). By a 

standard high temperature expansion (see e.g. [1]) or by using Simon's 

correlation inequalities [22, 23] one shows that, for β sufficiently 

small, 

0 < <Wm (L)>(β)  exp[-c(m, β)L.T] 

with c(1 , β) ≈ lnβ- 1 , as β → 0 . 

(2.7) 

In the following, we propose to give a simple proof of the statement 

that, for β large enough, 

<W
m
(L)>(β)  exp[-d(m, β)(L+T)] , (2.8) 

for some finite constant d(m, β) . 
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For reasons of simplicity of the exposition we concentrate on the 

model with Villain action and m = 1 , but using some results in [15] it 

is not challenging to extend our arguments to the general case. 

2.3. We now pause for a digression on exterior difference calculus. 

Let c denote an oriented unit k-cell in a simple, hypercubic 
k 

lattice ZD . Let a be a k-form, i.e. 

a : ck → α(ck)  K , (2.9) 

where K is a ring, (K =Z , R or C ) , and α(ck) = 0 , except for 

finitely many c . We let c denote the same k-cell as c , but 
k k k 

with orientation reversed, and require that 

a(ck) = -a(ck) (2.10) 

Given an oriented (k+1)-cell , ck+1 , we define 

(2.11) 

Here it is assumed that the orientation of some c  ∂c is the one 
k k+1 

prescribed by the orientation of , and (2.10) is enforced. Let 

ck-1 be an oriented (k-1)-cell. We set 

(2.12) 

assuming again that the orientations of the are matched to the 

one of ck-1 and (2.10) is enforced. Clearly, da is a (k+1)-form, 

while δα is a (k-1)-form. One verifies easily that 

ddα ■ 0 (2.13) 
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For, 

Now, with each appearing in some ∂ck+2 ck appears in the same 

∂C
K+

2 , too. Thus, by (2.10), the r.s. vanishes. Given arbitrary k-forms 

a and β , we set 

(2.14) 

where a and β are arbitrary k-forms, and Σ' extends over all posi-

tively oriented k-cells. One has 

(β,dα) = (δβ,α) , (2.15) 

where a is an arbitrary k-form and β an arbitrary (k+1)-form. This 

identity is a consequence of "summation by parts" : 

By (2.13) and (2.15), 

δδβ = 0 , (2.16) 

for any k-form β . 
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One may finally introduce a discrete version of the Hodge * opera-

tion. Given a k-cell ck Ì ZD , let c* , denote the (D-k)-cell in the 
k D-k 

D * 
dual lattice (Z ) passing through ck and with orientation chosen 

such that it matches the orientation of ck . Given some k-form a , 

we define a (D-k)-form *α by 

(*“)(CD-k) = “(Ck) ‘ 
(2.17) 

It is easy to see that 

*d*α = δα (2.18) 

For 

We will need the following 

Lemma 1. (Poincaré) 

Let α be a k-form with values in K(=Z, R, C) such that 

δα = 0 . Then there exists a (k+1)-form β with values in K such that 

α = δβ 

Moreover β can be chosen such that supp β is contained in the smallest 

hypercube Ω containing supp α , and max|β(c -)| ≤ Σ' lα(ck)! 
a k+1 k ck supp a 
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Remark. Similar statements hold with δ replaced by d . They can be 

obtained from Lemma 1 by using the * operation. The proof of Lemma 1 is 

quite elementary and is not given here. 

2.4. Next, we calculate the Fourier transform of the measure du (θ) 
Λ 

A 

introduced in (2.3), (2.4). Let φ (n) denote the n Fourier coefficient 
β 

of φ (θ) . First, we reexpress the partition function. Using (2.15), we 
β 

obtain 

(2.19) 

where L() is the number of links (oriented bonds) in Λ . For 

as in (2.2), 

- -(1/2β)η2 φ (n) - ce , 
p 

(2.20) 

for some positive constant c . 

Thus 

Z = (2π)L(A) C
P()

Z , where 
Λ 

(2.21) 

and P() is the number of plaquettes in A . 
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Since δη = Ο , 

η = δm , (2.22) 

for some 3-form m , and the support of m can be chosen to lie within 

Λ . See Lemma 1. Now, 

m = *α , (2.23) 

where a is a 1-form on Λ* , the dual of A . Thus 

η = *dα (2.24) 

We note that a is not uniquely determined by n : If η = *dα' then 

4 * . 
a’ = α+dy , for some scalar function γ on (Z ) . Next, using (2.24), 

(2.25) 

* 
where p is the plaquette dual to p . Hence 

(2.26) 

where [a] denotes the equivalence class {α': α' = α+dy , supp dy Ì A*} , 

and Σ indicates that only one configuration per equivalence class 
[α] 

is retained in the summation. 

Next, we compute the Fourier (duality) transform of <W(L)>(β) · 

Let Σ be the rectangle in the 01-lattice plane whose boundary is the 
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loop L . The discrete version of Stokes' theorem says 

where all plaquettes p Ì Σ have the same orientation as L . Thus 

The nth Fourier coefficient of φβ (θ)eiθ is φ (n-1). Thus, as in 
P 

(2.19), we obtain 

(2.27) 

As in (2.23) - (2.26) , 

(2.28) 

where dμ(α) is the discrete measure on the space of equivalence classes, 

[a] , which assigns to [α] the weight 

(2.29) 
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↔*
Λ
(β) denotes expectations in this measure, and D∂∑ is the disorder 

A 

operator defined by 

(2.30) 

More generally, 

(2.31) 

for any choice of φβ 

2.5. We now analyze the non-compact, Gaussian U(1) lattice model, 

(non-compact lattice QED). First, we consider the (infrared) regularized 

Gaussian measure 

(2.32) 

where da is the Lebesgue measure on R, α - 0 , for xy c Λ*, ε >0 

is an (infrared-) regulator mass, and N, ε is a normalization factor 

chosen such that ʃdμ0 (α) =

 1 · 

Let Π* denote the orthogonal (with respect to (·,·)) projection 

onto the space of 1-forms with support in Λ* . Let V be the 

inverse, on the space of 1-forms with support in Λ , of Πn*(6d+e) . 

Clearly, dμ° is the Gaussian measure with mean zero and covariance 

V, . Thus 

∫du° (α) eiα(μ) - e (2.33) 
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for any 1-form μ with supp μ Ì Λ . Here 

α(μ) ≡ (α, μ)* = Σ a μ . 

[Note if * = (Z4)* 

Vε = (1+ε-
 1
dδ)(-Δ+ε)

 1
 , 

where -Δ = dδ+δd , because (δd+ε)(1+ε- 1dδ) = -Δ+ε+ε 1δddδ = -Δ+ε , 

by (2.13).] 

When ε tends to 0 the r.s. of (2.33) tends to 0 on all of those 

1-forms μ with supp μ Ì * and (dμ,dμ)* = 0 , i.e. μ = dv , for 

some function v . Since {μ:δμ = 0 , supp μ c A*} is orthogonal to 

{μ:dμ = 0 , supp μ C *} , 

(2.34) 

Here is the inverse, on the space of 1-forms 

{μ:δμ = 0 , supp μ Ì *} , of N*δd . On that subspace 

ΠΛ*δάμ = ΠA
*(dδ+δd)pμ = -Δ

Λ
μ , 

where Δ is the finite difference Laplacean with 0 Dirichlet data on 

the outer boundary of * , so that 

(μ,νμ)* = (μ,(-Δ) 1μ)* if δμ = 0 . (2.35) 

We denote by dμ°(α) the measure on the space of equivalence classes, 

[α] = {α':dα,=dα} , determined by 
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∫ dμ°(α)e
ia(

μ
)
 =

 e

-(β/2)(μ,(-Δ
Λ
)-1Λ)

Λ
* (2.36) 

for all 1-forms μ , with δμ = 0 . 

2.6. We now reexpress the discrete measure dμ introduced in (2.28), 

(2.29) in terms of dμ° by inserting the constraints 

where is the normalization factor for which = 1 . We now 

apply the Poisson summation formula : 

(2.37) 

∞ 
Let {z } , be a sequence of numbers such that 2 Σ -, z = 1 . 

(A specific such sequence will be chosen later). Then 

(2.38) 

(2.39) 

By (2.37) and (2.38) , 

(2.40) 
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We now need some definitions : 

A current distribution (or - density) ρ is a mapping from the set B 

of directed bonds (links) to 2π Z , of finite support. An ensemble E is a 

family of current densities, ρ , with the properties that 

supp ρ Ì Λ* , for all p  E 

supp ρ  supp ρ' = Ø , for all ρ and ρ' 

in E with ρ ≠ ρ' 

A k-ensemble, Ek , is an ensemble with the property that 

dist (ρ , ρ' ) > 2k/2 , k = 0,1,2,..., 

where dist(ρ, ρ') denotes the Euclidean distance between supp ρ and 

supp ρ' . Finally, let α(ρ) = Σ’ α ρ 

Lemma 2. 

where γ ranges over some finite index set, each E is a 1-ensemble 

and 

i) c > 0 , for all γ ; 

where N1(supp ρ) is the number of links within distance < 1 of the 

support of ρ . 
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Proof. 

Lemma 2 is a simple special case of Lemma 2.2 in [15] . For this 

reason we only present a sketch of the proof. (The reader will find it 

easy to supply the details). The proof follows by successive applications 

of the identity 

[1+K1 cos(α(ρ1))][1+K2 cos(α(ρ2))] 

= 1/3[1+3K1cos(α(p1))]+1/3[1+3K2cos(α(p2))] 

+ 1/6[1+3K1K2cos(α(ρ1-ρ2))] 

+ 1/6[1+3K1K2cos(α(ρ1+ρ2))] 

(2.42) 

First (2.42) is applied to any two factors, 

(1+z cos(q a )), (1+z cos(q , ,,α , ,)) , in 

(2.43) 

for which dist(xy,x'y') = 0 . The r.s. of (2.42) is, for each such pair 

of factors, inserted in I* , and the result is expanded as a sum of 

products. After a finite number of such expansion steps one obtains 

(2.44) 

where {Eλ } is some family of ensembles, and by (2.42) each c. is the 

product of a power of 1/3 and a power of 1/6. If all E are 1-ensembles, 

no further applications of (2.42) are necessary, and (2.41) is proven. 

If however some ensembles Eλ1 ,Eλ2,... are not 1-ensembles, yet, 
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one applies (2.42) to any pair of factors [1+K' (p1)cos (α(ρ1) ) ] , 

[1+K' (ρ
2
)cos(α(ρ2)) ] , with the property that ρ1,ρ

2
 are in Ελ. , for some 

i , and dist(p1,p2) < 1 , the r.s. of (2.42) is inserted on the r.s. of 

(2.44) and expanded as a sum of products for all i = 1,2,... . Since Λ* 

is finite, the combinatorial expansion described here terminates after 

finitely many applications of (2.42), (when all resulting ensembles are 

1-ensembles), and (2.41) follows. 

We now check i) and ii) in Lemma 2. If a current density p has 

been obtained by pairing ρ1 and ρ2 , in the sense of identity (2.42), 

e.g. ρ = ρ1 ± ρ2 , then 

K(ρ) = 3K(ρ1)K(ρ2) . 

If ρ = ρ , a = 1, 2 , i.e. one of the first two terms on the r.s. of 

(2.42) has been retained, 

K(ρ
a
) → K(ρ) = 3K(ρ

a
) . 

Thus, given some ρ  E1 , for some γ , one easily verifies that 

K(ρ) = 3
n(
ρ
)

 Π Z, | , (2.45) 

where n(p) is the number of applications of (2.42) that were necessary 

to obtain ρ . A minute of reflection shows that 

n(ρ) < N (supp ρ) 

which establishes ii); (see also §2 of [15]). Finally, cγ is clearly 

of the form 
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c
y
 = (1/3)

 Y
(l/6)

 γ
 , 

where and are the following positive integers : The total 

number of times (2.42) has been applied in the inductive construction of 

is n +m , and n times one of the first two terms on the r.s. 

of (2.42) has been retained, whereas my times one of the second two 

terms has been retained. This yields i). ■ 

Remarks. 

1) Combining (2.40) and (2.41) one obtains 

(2.46) 

where {N1} is a family of 1-ensembles, and d > 0 , for all γ 

Moreover, K(ρ) still satisfies ii) of Lemma 2. 

Since any two current densities and ρ2 ≠ ρ1 in some 

satisfy dist (ρ1, ρ2) > V2 , we conclude that, for each subensemble 

E1 Ì N1 , 

unless δρ = 0 , for all p E1 , for all γ . This follows from 

(2.34) and (2.36). Thus all factors on the r.s. of (2.46) labelled by 

some current density p for which δρ ≠ 0 may be omitted. Therefore 

(2.47) 
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2) For the study of more general lattice gauge theories it is interesting 

to note that Lemma 2 can be generalized by replacing 1-ensembles by 

k-ensembles, k = 2, 3,..., on the r.s. of (2.41). In ii) the exponent 

N1(supp ρ) must then be replaced by a quantity Nk(supp ρ) , the definition of 

which along with upper bounds can easily be inferred from Theorem 2.1, 

and Lemma 2.2 of [15] . The resulting combinatorial scheme can be used, 

for example, to give a simple, new form of the high - and (in the discrete 

case) low temperature expansion for the expectation of the Wilson (or 

disorder) loop in lattice gauge theories with interactions of finite 

range. This permits us to prove, in particular, that any pure lattice 

gauge theory with a discrete (abelian or non-abelian) gauge group and 

interactions of finite range does not confine static quarks if β is large 

enough. This extends the result in [2] . 

2.7. A change of variables. 

Our purpose is now to start estimating 

<W(L)>
A
(β) = J dyA(α)D∂E(α) , 

see 2.4, (2.28)-(2.31), by making use of equ. (2.47) for dμA(α) and 

changing variables 

α → α + τ , (2.48) 

where τ is a 1-form defined as follows : Let σ be the 2-form given 

by 

σ (p*) 

1 , P = (p*)* Σ 

0 , otherwise 
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where Σ is the rectangle defined in 2.4, with ∂Σ = L . (If A is 

large enough, Σ C A and dist (∑, ∂A) >0) .We set 

τ= -δΔ
Λ
1σ , (2.50) 

where is the finite difference Laplacean with 0 Dirichlet data on 

the outer boundary of A introduced in 2.5. Clearly 

(2.51) 

Under this change of variables, 

(2.52) 

This follows from the definition of dμ0 (α) , see 2.5, (2.32) - (2.34) and 

of τ by using the fact that (dα, ε)^* = 0 . 

By (2.30) 

(2.53) 

Combining (2.52) and (2.53) we get 
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(2.54) 

Finally, 

(2.55) 

Since δρ = 0 , ρ = δμρ , where μ
ρ
 is a 2-form with μρ(ρ*)  2π Z , 

for all p* C Λ* , and supp C Ω Ì Λ* ; see 2.3, Lemma 1. Thus, 

using (2.51) we see that 

τ(ρ) = (dτ, μρ)Λ* = (σ,μρ)-(εΛ,μρ)Λ* (2.56) 

so that by (2.49) and the periodicity of the cosine 

cos(α(p)+T (ρ)) = cos(α(p)-(εA, μρ)Λ*) . (2.57) 

Combining representation (2.47) of dμΛ(α) with (2.54) - (2.57) we obtain 

(2.58) 

where 

(2.59) 
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2.8. The renormalization transformation. 

In this section we propose to renormalize the current densities 

ρ , p -> p , and activities K(p) , K(p) -> z(β,ρ) , in such a way that 

with z(B,p) <<1 , for β sufficiently large. Here 0p ( =0 or 

(εA,ιιp ) A*) are real phases. Given some current density p € N , it is 
Λ p A* γ 

easy to see that we can choose a subset Bp of links in supp p with 

the property that two different links in Bp do not belong to a common 

plaquette and that 

(2.61) 

where ||p||p
 Ξ Σ |pxy |p,p = 1,2,3,..., and c is a purely geometri-
p xy xy 

cal constant, namely 

c- 1 = card{b':b' # b , b’ E 3p for some p with 3p 3b} 

= 18 , in four dimensions (2.62) 

Since dist(p1, p2) > V2 , for two current densities p1 and p2 # p1 

in some ensemble , the choice of , for a given current density 

p E N1 , can be made independently of all other current densities in 

in such a way that (2.61) holds. 
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Our renormalization transformation is based on the following simple 

identity 

Lemma 3. 

Let xy C Λ* , and let G(a) be a function which does not depend 

on a . Then 

(2.63) 

where a = (1/n ) (ada) - a , 

and n = card{p*:p* c: A* , 9p* 3 xy} 

= 6 , in dimension 4 , 

(unless xy belongs to the boundary of A*) . 

Remark. It is important to note that a is independent of a and 

that η < 6 , so that 

(2.64) 

Proof. 

In the following, all formal calculations hold rigorously if 

dp°(a) is first replaced by d(α) . Since the existence of the limit 

ε 1 0 does not pose any problem (for finite Λ) , that regularization 

is omitted right away. 
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Our proof relies on explicitly integrating over a , using 

the following obvious equation for dp°(a) : 

(2.65) 

where dpA^ (xy (a) is a finite measure independent of α
χy

 . By changing 

variables, 

α-> a + i(β/η )p , 

we obtain 

(2.66) 

By combining (2.65) and (2.66) we obtain 

(2.67) 
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We set ~ B = supp P ~ B. and define a renormalized current density 

p by the equation 

(2.68) 

for an arbitrary 1-form a , with supp a c Λ* . Furthermore, 

(2.69) 

By (2.61), (2.62) and (2.64), 

z (B,p) < K(p)exp[-(B/108) Il p II · (2.70) 

Corollary 4. 

Proof. 

We apply the following obvious identities : 

cos(a(p)-0 ) = 1/2 e P + 1/2 e p 
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whence 

where the first sum extends over all subensembles E1 N ; 

We then use Lemma 3 to successively integrate out 

for all E1 N and all {σ(ρ)} . Since dist(p..,p2) > V2 for arbitrary 

1 2 γ 1 2 ρ γ 

the hypotheses of Lemma 3 remain valid after an arbitrary number n = 0, 1, 2,. 

of integrations. When all integrations in each term have been carried out 

the above identities are applied in reverse, with a(p) replaced by a(p) 

and K(p) replaced by z(β,ρ) . ■ 

2.9. Estimates on z(B,p) . 

We recall that 

(2.71) 

where {zq} is a sequence with the property that 
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(2.72) 

see 2.5, [(2.37), (2.38) and Lemma 2] .We now choose this sequence expli-

citly, for example as follows : 

(2.73) 

where βo is that positive constant for which (2.72) holds. A simple, 

geometric estimate on N1(supp p) then yields 

(2.74) 

for some finite constant β1 . 

Combining (2.74) with (2.70) we obtain 

0 < z(β,ρ) < exp [ (β1—β/108) || p ||2] . (2.75) 

Thus, if β > 108 β1 (a fairly large number, alas) 

z(β,p) < 1 , so that 

[l+z(β,p)cos(α(ρ)-θ )] > 0 , for all p  N1 (2.76) 

Moreover, under the same condition, 

(2.77) 
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where L(p) (< || p || 2) is the number of links in the support of p 

2.10. Lower bound on <W(L)>(β) with perimeter decay. 

It follows from (2.76) that for sufficiently large β 

(2.78) 

is a positive measure. This permits us to apply Jensen's inequality to 

derive a lower bound on <W(L)>(β) . Let ↔ 1 denote the normalized 

expectation corresponding to (2.78). 

We shall make use of the following simple estimate : 

where 

Ε(α,θ) = (1+z cos a) cos a(cos θ-1) , 

and 

0(α,θ) = (1+z cos a) z sin a sin θ 

This inequality follows from Taylor's theorem with remainder, applied to 

the function log(1+x) , along with elementary estimates on trigonometric 

functions. 

Thus, by Jensen's inequality, 
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(2.79) 

But since 0 is odd in a , while ↔ 1 is even 

in a , and 

We now set 

By combining Corollary 4 with inequality (2.79) we obtain the lower bound 

, (2.80) 

where and Z 1 is the total mass of the measure 

(2.78). By Corollary 4, 

(2.81) 

Next, by Lemma 1, sect. 2.3, and the definition of μ , see (2.56), sect. 2.7, 
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(2.82) 

For each p E , we now choose a plaquette p(p) containing a link in 

supp p and such that p(p1) ≠ p(p2) ’ for any two current densities 

ρ1 ≠ ρ2
 the

 definition Ω
ρ

 (see Lemma 1, sect. 2.3), 

for some geometrical constant c . 

We now recall definition (2.51), sect. 2.7, of . From that 

definition it follows that 

(2.83) 

Moreover by Lemma 1, sect. 2.3, 

max|µ
ρ
 (p)| < ||ρ|| 1 < || ρ|| 2 

p 

(2.84) 

Finally, 

4 
card(Ωρ) < const.L(ρ) (2.85) 

(an elementary isoperimetric inequality). Let c(β) ≡ 1/2(β1-β/108) . We 

choose β so large that 



- 43 -

(2.86) 

for some δ > 0 , for all p  and all γ ; see (2.77), sect. 2.9. 

We then derive from (2.82) - (2.86) that 

(2.87) 

for some finite constant d(β) . 

By (2.80), (2.81) and (2.87), 

< W(L)>(β) > exp[-{(1/2β)+d(β)}(εΛ,εΛ)] 

= exp[-(l/2β')(εΛ,εΛ)] ; 

(2.88) 

with β' = 1/2((l/2β)+d(β))_1 . 

The r.s. of (2.88) is a Gaussian expectation value of D
∂Σ

(a) ; see 

(2.54), sect. 2.7. Recalling the definition (2.51), sect. 2.7, of εΛ , 

we observe that 

(εΛ,εΛ) < const.(L+T) , 

as Λ/Z 

This completes our proof of perimeter decay of <W(L)>(β) , for 
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sufficiently large β 

This result can be extended to the compact U(1) model on  with 

Wilson's action by combining the present techniques with an adaptation of 

Appendix B, Lemma 4.3 and of the methods in §6 of ref. [15] to the U(1) 

gauge theory. Since, due to the analytical subtleties of modified Bessel 

functions, the details are rather lengthy but fairly uninteresting we do not 

wish to present them here.(The reader familiar with [15] will have no problems 

to supply them; see also §3). 

2.11. Masslessness of the photon for large β 

We finally prove a result which we believe is new and somewhat impor-

tant . 

The lattice approximation of the electromagnetic field strength is 

given by 

Φp 

-i (∂ φ
0
)(dθ )φ (dθ ) , for the U(1)-model 

with Villain action 

iβ sin(dθ ) , for Wilson's U(1)-model · 

(2.89) 

We propose to show that, for large β , the two-point (more 

precisely : two-plaquette) correlation of Φp cannot have summable 

("integrable") fall-off. This proves that the large β phase of the compact 

U(1) model is massless, i.e. the photon is massless, for sufficiently 

large β . 

As in previous sections, we only present the proof for the Villain 

approximation to the compact U(1) model. Most of our arguments extend, 
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however, to a general class of actions, and we believe that the result is 

a general feature of the U(1) models in the weak coupling regime. 

The observable corresponding to Φρ , after a duality transformation, 

is (dα)p* . It is therefore enough to estimate the behaviour of the two-

point functions, <|α(μ)| >(β) , where μ is an arbitrary 1-form satisfying 

δμ = 0 . We propose to prove that 

β"(μ,(-Δ) 1µ) < <|α(μ)|2>(β) < β(μ,(-Δ) -1µ) , (2.90) 

for some function β" (β) < β which diverges to +∞ , as β→∞ 

Let (dα) denote the μν-component of the curl of a (the field 

strength), and let (d°α) uv denote its Fourier transform. By Fourier trans-

formation, (2.90) provides a lower and an upper bound on 

<| (da)
uv

(k) |
2
>(β) 

in terms of an expectation value of |(da)
uv

(k)|2 in the Gaussian measure 

dp (α) with charge g = β , (β") , respectively. These Gaussian 

expectations are well known to be discontinuous at k = 0 : 

(2.91) 

Thus, <|(da)
uv

(k)|2 >(β) is discontinuous at k = 0 . As a consequence, 

<(da)uv (p)(da)uv(p')>(β) 



- 46 -

cannot have summable fall-off, as dist(p,p') → ∞ . (Here p and p' are 

two arbitrary plaquettes parallel to the μν-lattice plane, and 

(da) (p) = (da)
p
*) . 

This proves our contention. (See also [21] for more details concerning 

a similar argument for dipole gases). 

Next, we note that, by polarization, it suffices to prove (2.90) for 

real-valued 1-forms, μ , with δμ = 0 , i.e. 

β''(μ,(-Δ) -1μ) < <α(μ)
2
>(β) < β(μ,(-Δ)

 -1μ) , (2.92) 

with β" as in (2.90), μ real. 

A stronger version of (2.92) is 

(2.93) 

for arbitrary real ε and real μ , with δμ = 0 . By expanding (2.93) 

in powers of ε , subtracting 1, dividing by ε and taking the limit 

ε = 0 , (2.92) follows. 

Finally, it is clearly enough to prove (2.93) in an arbitrary, 

finite region Λ , replacing (-Δ)
 -1

 by , and < —>(β) by <—>Λ(β) · 
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2.12. Proof of (2.93) in finite volume. 

We fix a real 1-form μ , with δµ = 0 and such that supp μ is 

in the interior of Λ* . We then define a 1-form, τ , by 

τ = εβνΛμ , (2.94) 

where is the Green’s function of πΛ*δd . Next, by (2.47), sect. 2.6 

We now change variables, 

α → α+τ , 

with τ given by (2.94). 

By (2.52) and (2.55), sect. 2.7, 

(2.95) 

with δμρ = p , for all p 

Moreover, 

εα(μ) εα(μ) ετ(μ) 
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We now observe that 

- (1/β)(da,dτ)Λ* = - εα(μ) , 

(2.96) 

Therefore 

<e εα(µ)>Λ (β) = e(εβ/2)(µ,vΛµ)ΞΛ {Σ dγ Iγ (τ)} , (2.97) 

where 

(2.98) 

Since dµ°(a) and cos(a(p)) are of positive type in a , and K(p) > 0 , 

for all p , we immediately conclude that 

Iγ(τ) < Iγ (τ ≡ 0) . (2.99) 

Since 

Σ d I (τ ≡ 0) ≡ ΞΛ , (2.100) 

the upper bound in (2.93) follows from (2.97) and (2.99), by letting 

Λ∕ . 

Finally, we establish a lower bound on Iγ(τ) · This is achieved by 

using the results in sects. 2.8-2.10, with 

*) This part of the argument does not obviously extend to Wilson’s form 

of the U(l) model and has to be replaced by a more complicated, direct 

one. 
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θρ
 = dτ(µ

p
) , (dµ

p
 = ρ) . 

By (2.79) and 2.80), sect. 2.10, 

for sufficiently large β , where 

and 

γ(z) < 4z , for z < 1/2 ; (2.102) 

see (2.78) - (2.80), sect. 2.10. 

By (2.77) 

(2.103) 

where β
1
 is a finite constant, and L(p) is the number of links in 

supp p , provided 

β > 108 β
1
 . 
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Next, using Lemma 1, sect. 2.3, one finds 

(2.104) 

see also (2.82). 

We now fix a plaquette, p
o
 , and a positive integer L . We must 

estimate the cardinality of the set, N (p ,L) , of current distributions 

defined by 

 {p : p  Ω , L(p) = L} 
(2.105) 

Clearly, the length of the edges of Ωp , for some p satisfying L(p) = L 

is bounded by L . Thus the support of every p with the properties 

L(p) = L and Ω  p 

is contained in a cube with edges of length at most 2L . 

Given a cube, Ω , with edges of length 2L , the maximal number 

of current distributions {p
j

}  N
1
 with disjoint supports, all contained 

in Ω , and L(p
j

) = L , for all j , is bounded by 

4(2L)4/L = 64 L3 . 

Thus, for β so large that β ≡ 1/2(β1-β/108) > 0 , 

(2.106) 
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Hence 

(2.107) 

for some function c(β) which tends to 0 , as β → ∞ , exponentially fast. 

(We have used that N (p ,L) =  , for L < 4) . 

If we now insert (2.106) into (2.101) we find 

Iγ(τ) > e-c(β)||dτ||2 Σ λ 

=e-c(β)||dτ||2 || dτ| |2 

By (2.97) , 

<eεα(µ) > Λ(β)>e(ε2β/2)(μ,νΛ μ) -e -c(β)||dτ||2 

ε
2
β/2[1-2c(β)β](μ,ν

Λ
μ) 

where we have used (2.96). 
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This completes our proof of the basic lower bound (2.93) in finite 

volume and thus of the masslessness of the photon for large 3 

Remarks. 

1) Using correlation inequalities [17, 24] one derives from the results 

in this section the existence of massless, deconfining phases in all D-di-

mensional U(1) gauge theories with D > 4 . Alternatively, a direct proof 

can be given by using a duality transformation and a straightforward modi-

fication of the techniques developed in this section. See also [15] and §4. 

2) It appears that the techniques of this section along with connections 

between the four-dimensional, dual U(1) theory and bond percolation are 

useful to study the scaling limits for large β (ordinary, free QED) and 

for β/ βcrit (massive, confining QED). Our ideas and some results on 

bond percolation suggest that the latter theory might be a non-trivial, 

confining version of QED. 
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§3. QED phases in the four-dimensional 
N
 lattice gauge theories, for 

large N . 

3.1. In this section we prove inequalities (1.13) and (1.15), i.e. 

(3.1) 

for the four-dimensional 2Z„ models, for all 

β > β (U(1)) (3.2) 

(the critical value of β for the U(1) model), and all 

N > N(β) , (3.3) 

where N(β) is an integer-valued function of β which diverges to +∞ , 

as β → ∞ . Here < > (N)(β) is the infinite volume state of the model 

at "temperature" β-1= g2 . It follows that for 

N > N
c

 , with N
c
 < N(β

crit. (U(1)) < ∞ (3.4) 

there exist β (N) and β (N) , with 

B
C

(N) < β
C
(N) < ∞ , and β

c
(N) < β

crit.
(U(1)) , (3.5) 

such that for 

B (N) < β < β (N) 

both inequalities in (3.1) hold. 
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A standard high temperature expansion shows that <W(L)>(N)(β) has 

area decay, for sufficiently small β (depending on N), and a low tempera-

ture expansion (or a high temperature expansion applied to the dual model) 

can be used to prove that <D
L
> (N) (β) has area decay when β is sufficiently 

large (depending on N ) . 

Thus, for N > N
c
 , the N models have a "quark" confining high 

temperature phase and a "magnetic monopole" confining low temperature phase, 

separated by an open interval, (βc, (N),β
C
(N)), of QED phases. It is believed 

that N = 5 . 

For the Villain approximation of the Zmodels this result follows 

from [13] by using self-duality and correlation inequalities, as shown in 

[16]. 

We reconsider the ZN models for the following reasons : 

1) Our method will not rely on self-duality. This permits us to analyze 

a large class of actions, including Wilson's action, and to exhibit inter-

mediate QED phases in D-dimensional ZN lattice gauge theories for 

arbitrary D > 4 . 

2) Our methods involve a renormalization transformation which maps some 

class of ZN expectations in the intermediate QED phase onto expectations 

in a model with local U(1) gauge invariance. (This is the phenomenon 

described in sect. 1). 

3.2. We consider a family of models interpolating between the U(1) - and[ 

a ZN model· Let dµβ(θ) denote the infinite volume limit of the measures 
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(3.6) 

which correspond to the four-dimensional U(1)-model with Wilson action in a 

finite region A . Instead, we could define dµβ(θΛ) to be the finite 

volume functional measure of the Villain model by replacing exp β cos(dθp) 

by Σ exp[- β(dθ +2πη) ] . In both cases the limit Λ / Z4 exists, thanks 

to Ginibre’s inequalities [17]. 

We now define 

where 

(3.7) 

(3.8) 

Clearly, dµh
β
(θΛ) approaches the Eudlidean functional measure of the ZN 

model in a finite region Λ with free b.c. , as h → ∞. (Actually b.c. turn 

out to be quite irrelevant in our analysis : We could replace dµβ(θ) by 

dµβ (θΛ) in (3.7) and (3.8) which would merely slightly complicate notations 

in subsequent formulas). 

Let <—>(β) denote the U(1) expectation, and ↔Λ(β,h) the 

one determined by the measure (3.7). By Ginibre's inequality [17], 

<W(LLxT)>Λ(β,h) is monotone increasing in A and in h , so that 

<W(L
LxT

)>Λ(β'h) > <W(LLxT
)>(β) ’ 
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for arbitrary Λ Z4 , h > 0 , and 

Thus, for β > βcrit . (U(1)) , 

<W(L
LXT

)>
(N)

(β) > <w(L
LxT

)>(β,h) 

> <W(L
LXT

)>(β) 

> exp[-d(L+T)] 

(3.9) 

which proves the first inequality in (3.1). 

3.3. We now turn to the analysis of the expectation value of the disorder 

operator and propose to establish perimeter decay for sufficiently small 3 

We closely follow the scheme developed in sects. 2.4 through 2.10. 

The first step consists in using the Fourier expansion 

(3.10) 

where 

Clearly 

0 < λ (q) < 2 , and λ(q) → 2 , as h → ∞ . (3.11) 

Let {ζ(q)} be a sequence of positive numbers with the property that 
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(3.12) 

e.g. ζ(q) = c
ε
e
εq

 , (cε < ε -1) , 

for some ε > 0 chosen later. 

Then 

(3.13) 

with 

0 < z
qN

 = ζ(q)λ(q) < 2ε
-1

 e
εq (3.14) 

With (3.7) this yields the following expression for the functional 

measure of the Z
N
 model in finite volume 

(3.15) 

where 

(3.16) 

and 

We now redefine a current distribution, p , to be a function on the 

set, B , of directed bonds in A with values in N Z , of finite support. 

A 1-ensemble, E1 , is a family of current distributions, p , with the 

properties 

supp p  Λ , for all p  E
1
 , 

dist(ρ,ρ') > √2 

(3.17) 
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for all p and p' in with ρ ≠ ρ' . See Sect. 2.6. Repeating the 

combinatorial expansion of sect. 2.6, see Lemma 2 and (2.46), we obtain 

(3.18) 

where θ(ρ) ≡ Σ θxy pxy , γ ranges over a finite index set, each N 

is a 1-ensemble, and 

i) dγ > 0 , for all γ , 
(3.19) 

(We recall that N1(supp p) is the number of bonds within distance < 1 

of suppρ) . 

Since the measure dµ β(θ) is invariant under U(1) gauge trans-

formations, we can impose the condition 

δρ = 0 , (3.20) 

as long as we only want to compute expectations of gauge-invariant obser-

vables in the measure dµh(θΛ) 

3.4. Next, we discuss the expectation value of the disorder operator 

DLLXT . We choose the definition of DLLXT , for 0 < h < ∞ , such that 

for h = 0 (U(1) model) and h = ∞ (Z
N
 model) it agrees with the one 

proposed in (1.14). Thus 

(3.21) 

. Π exp β[cos(dθp +φp )-cos(dθp)]dµβ(θ) , 
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where 

φρ Ξ 

2πξ/Ν , for ρ*  Σ , 

0 , otherwise, 

(3.22) 

ξ = 1,2,...,Ν-1 , and Σ is the rectangular array of plaquettes in the 

0-1 plane bounded by L . 

By (3.15), (3.18) and (3.20), 

(3.23) 

. Π exp ß[cos(dθp +φp )-cos(dθp )]dµß(θ) p p ' p ß 

In each term on the r.s. of (3.23) we make a real change of variables 

θ → θ + τ , (3.24) 

where τ is the 1-form determined by 

τ = δΔ-1 φ , (3.25) 

with φ given by (3.22). (We are repeating here the change of variables 

already used in sect. 2.7). Now, notice that 
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(dt)
p
 = (dδΔ-1φ)

p 

= -φ
p

 - (δdΔ- 1φ)
p 

(3.26) 

= "Φ
η
 + ε

η
 > 

By definition of φ , 

: (<1φ) 

2πξ/Ν , for xy € LLxT , 

0 , otherwise. 

(3.27) 

Hence 

D-3 
εp ~ a , 

where d is the distance between p and LLxΤ · 

Inserting (3.24) - (3.26) into the r.s. of (3.23) we find, using 

the periodicity of the cosine and Lemma 1, sect. 2.3, 

(3.28) 

where 

(3.29) 

R(dθ+ε)dµ
ß
(θ) , 

and 
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(3.30) 

(We have used (3.26), the fact that μρ takes values in N ZZ and the 
ρ 

periodicity of the cosine to get rid of φ ) . 

3.5. Next, we must perform the renormalization transformation. It is a 

straightforward variant of the one described in sect. 2.8. (We draw on 

some ideas from § 4 of [15] .) 

Given any current distribution ρ in a 1-ensemble, , we choose 

a set of links B
ρ contained in supp ρ , with the property that two 

different links in B
ρ
 do not belong to a common plaquette and such that 

(3.31) 

see (2.62), sect. 2.8. Since 

dist(ρ1,ρ2) > √2 , 

for any two distributions ρ1 ,ρ2 in Nγ1 , ρ1 ≠ ρ2 , the choice of Bρ 
1 2 2 γ 1 2 ρ 

only depends on ρ but is independent of ~ {p} , and there is no 
γ 

plaquette containing a link of Bρ and a link of Bρ
 ,

 , for any ρ'  N1γ 
ρ ρ γ 

Our renormalization transformation consists of integrating out all 

variables 

{θ xy  Bρ ρN1γ} 
xy : ρ , γ 
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As in the proof of Lemma 3, sect. 2.8, one sees that this can be reduced 

to evaluating the integrals 

xy  B
ρ
 , ρ  N

1

Γ . This is achieved by performing a complex translation, 

θ → θxy + iα ; 

(see also Lemma 4.3 of [15] ) . Under this change of variables, 

S(ρ
xy
 ) = e

-αρxy e6ß(coshα-l)∫ 

(3.32) 

where 

i
ß

 (α ; dθ)= e-ß(cosha-l) eß[cos(dθ+iα)-cos(dθ)] (3.33) 

Using the identity 

cos(φ+iα)-cos φ = cos φ (coshα-l)-isinφ sinhα , 

one sees that 

max|iß(α; .)| < 1 · (3.34) 

Thus, the optimal choice of a in (3.32) apparently corresponds to minimizing 

-αρ
xy

 + 6ß(coshα-l) 

For our purposes it suffices to choose 
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α = αxy -- co sign ρxy 

hence 

e

 aP
xy
 e

66(cosha-l)
 < e

C
l^
 C

o^
P
xy^ (3.35) 

where co and c
1
 are finite constants, 

We now define 

(3.36) 

By (3.33), F(ρ;dθ+ε) is a real-valued function of θ which, by (3.34), 

is bounded in modulus by 1 and, for ε = 0 , is even in θ . Furthermore, 

we define 

(3.37) 

< K(ρ)exp(l/18)[c1ßL(p)-co||ρ || 1] 

By repeating the arguments used in the proof of Corollary 4, sect. 2.8, 

and making use of (3.31) - (3.33), (3.36) and (3.37) we obtain 

(3.38) 

. R(dθ+ε)dµ
ß
(θ) 
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3.6. The lower bound for Iγ (ε) . 

We now estimate z(ß,ρ) and then prove a lower bound on Ιγ(ε) 

which will establish our main result, the perimeter decay of the expectation 

value (3.28) of the disorder operator, DξL , for N > N(ß) and all 

finite values of ß 

From the upper bound (3.37) on z(ß,ρ) we derive, using inequalities 

(3.14) (bound on zqN ) and (3.19) (bound on K(ρ)) , 

z(β,ρ) < K(ρ)exp(l/18)[c1ßL(ρ)-co|| ρ|| 1] 

< exp[c2(ß)L(ρ)-(c3N-ε) (1/N) ||ρ || 

for some function c2(ß) < c1
ß+c4 and some finite constants c

3
 > 0 and 

c
4

 . It follows from the fact that a current distribution takes values 

in N Z that 

(1/N) || ρ || 1 > L(ρ) , 

so that if N > 1 + ε/c3 

z(ß,ρ) < exp[(c
2
(ß)-c

5
N)L(ρ)-c

6
||ρ ||
1

] , (3.40) 

for some positive constants c
5

 and . (Given ß and N , one may 

now optimize in the choice of ε ; see (3.12)). 

Thus if N > c1ß + c7 , for some constant c7 < °° , 

z(ß,ρ) < 1 , 

and 

z(ß,ρ) → 0 , as N → oo , (3.41) 



- 65 -

exponentially fast, for arbitrary ß < °° . 

We now analyze the dependence on of the integrand on the right 

side of expression (3.38) for Ι
γ
(ε) . For this purpose we rewrite the 

factors 1+z(ß,ρ)F(ρ;dθ+ε) , namely 

l+z(ß,ρ) F(ρ;dθ+ε) = [l+z(ß,ρ) F (ρ;dθ)] . 

and apply Taylor's theorem with remainder to the functions ln(l+x) and 

F(ρ,dθ+ε) - F(ρ,dθ) . This yields 

1+z (ß,ρ)F(ρ; dθ+ε) = [l+z(ß,ρ) F (ρ;dθ)] 

. exp Oρ(ε;dθ)exp Rρ(ε;dθ) , 

(3.42) 

where 

(3.43) 

which is an odd function of θ , because F(ρ;dθ) is even in θ , and 

(3.44) 

for some numbers t and s in the interval (0,1) . By inspecting the 

explicit expression (3.36) for F(ρ;dθ+λε) and estimating the first and 

second derivative in λ one shows quite easily that 
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|Rρ(ε;dθ)| < kρ(ε)
2
z(ß,ρ) , 

where (3.45) 

for some finite constant C , provided N is chosen so large that 

z(β,ρ) < 1/2 , for all ρ  N
1
γ and all γ . (By (3.40) this is the case 

for all sufficiently large N ). 

Furthermore, from definition (3.30) of R(dθ+ε) , sect. 3.4, and 

Taylor’s theorem with remainder we derive 

R(d9+e) = e°(e;de)
 e

R(e;d0) ^ 
(3.46) 

where O(ε;dθ) is an odd function of θ , and 

with |R(dθp )| < ß/2 . 

(3.47) 

We now insert the right sides of (3.42) and (3.46) into (3.38) and subse-

quently apply estimates (3.45) and (3.47). This yields the following lower 

bound on Iγ (ε) . 

(3.48) 
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Since Π [l+z(ß,ρ) F (ρ;d0)]dp„(0) is an even, positive measure in θ 

pN1
γ 

δρ=0 

if N is so large that z(β,ρ) < 1 , for all ρ  Nγ1 and all γ , 

while Σ Oρ(ε;dθ) and O(ε;dθ) are odd functions of θ , Jensen's 

ρN1 

δρ=0 

inequality finally yields 

We now estimate kρ (ε) . 

Using Lemma 1, sect. 2.3, we obtain 

see (2.104), sect. 2.11, so that by repeating the arguments leading to 

(2.105) and (2.106) and inserting the upper bound (3.40) on z(β,ρ) we 

find 
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(3.50) 

for some function c(ß,N) which tends to 0, as N → 00 , exponentially 

fast, for each ß < °°. 

3.7. We now return to our basic identity (3.28) for the expectation 

value of the disorder operator and insert the lower bounds (3.49) and (3.50) 

This yields 

(3.51) 

> exp[-{(ß/2)+c(ß,N) }|| ε||
2
2] , 

where 

and 

(3.52) 

R(dθ+ε)dµß (θ) . 

By (3.22) and (3.25), (3.26) 

(3.53) 
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Thus, for arbitrary h < °° and A  ZZ4 , 

(3.54) 

for each ß < 00 and N > N(ß) , for some function N(ß) < 00 , (with 

N(ß) ? oo , as ß 00 ) · This completes our proof of the lower bounds 

in (3.1). 

Remarks. 

1) The main results of this section are identities (3.51) and (3.52), the 

bounds (3.49) and (3.50) and the final inequality (3.54). 

2) Identities (3.51) and (3.52) relate <D
L
 > (ß,h) to (a convex combi-

nation of) expectation values of an observable, somewhat analogous to the 

disorder operator, in the measures 

(3.55) 

which correspond to lattice gauge theories invariant under U(l) gauge 

transformations. (The observable is defined as the substitution 

dθ dθ+ε , 

to be compared with definition (1.14) of disorder operators. It can be 

viewed as a renormalized disorder operator). 

The same comments apply to <W(L
LxT

 )>  (ß,h) , but we do not wish 

to present the appropriate renormalization transformations for this 

expectation in the present paper. (See however [15] for the solution 
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of a similar problem concerning correlations of fractional charges in a 

two-dimensional Coulomb gas). 

3) The techniques presented in this section can be extended to ZNgauge 

theories in dimension > 3 . 
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§4. Transitions in classical XY models and "hyper gauge theories" 

4.1. In this section we comment on the phase diagram of a general class 

of U(l) lattice models and their duals which are natural generalizations 

of the XY model and the U(l) lattice gauge theory. They are of some 

interest for the statistical mechanics of defect gases. For the group Z2 

such a class of models (generalizations of the Ising model and the Z2 

lattice gauge theory) were first studied by Wegner in his basic paper [25]. 

As a byproduct we obtain results on the phase transition in three-

or higher dimensional classical XY models, and, by combining the results 

of this section and of [15] with correlation inequalities [17,24], some 

of the essential features of the phase diagram of abelian Higgs lattice 

theories in three and four dimensions can be established; see [5]. 

Thus, for the classical XY model [ll] and the Villain approximation 

in three- or more dimensions we find a proof of existence of a phase transi-

tion, accompanied by spontaneous breaking of U(l) and the appearance of 

a Goldstone excitation, and for the Higgs models we conclude the existence 

of a superconductor → QED transition, [5]. 

4.2. Definition of models. 

A rank-k U(l) lattice theory is defined as follows : The configu-

rations of a rank-k U(l) lattice theory are functions 

θ : c
kk

i+ θ(c
k

)  S
1 

(4.1) 

defined on k-cells, c
k

 , in ZD with values in the unit circle, identified 

with [-π,π) , and with the property that 
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6(ck} = “0(ck} » 
(4.2) 

where c
k
 is the same k-cell as c

k

 , but with reversed orientation; 

see sect. 2.3. 

We set 

(4.3) 

where the orientation of is the one prescribed by the orientation of 

Ck+1 . 

Let φß be a function on of positive type, e.g. 
ß 

(4.4) 

The vacuum functional (equilibrium state) of a rank-k U(l) lattice theory 

with inverse square coupling (inverse temperature) ß in a finite region 

A ZD is given by 

(4.5) 

where Z
ß,

 is the usual partition function. 

□ 

We propose to derive the phase diagram and the lower critical 

dimension, Dc , of rank-k U(l) lattice theories. We claim that 

Dc = k+3 (4.6) 

except for k = 0 (XY model) where 
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Dc = 2 ; see [15]. 

A natural observable to analyze is the following : Let Sk be some closed, 

oriented surface built out of k-cells in ZD . We define 

(4.7) 

and 

<Wm(Sk)> (ß) Ξ ∫ dµß(θ)Wm(Sk) · (4.8) 

W
m
 is the analogue of the Wegner-Wilson loop. Let Σ

k + 1

 be a bounded, 

(k+1)-dimensional region in ZD built out of oriented (k+l)-cells with 

boundary . By (4.2) and (4.7) 

(4.9) 

Note that, for k > 1 , dµß (θ) and Wm (Sk ) are invariant under the 

gauge transformations 

θ(ck)  θ(ck) + dω)(ck) , 

(4.10) 

where ω is an arbitrary function defined on the (k-l)-cells in ZD 

with values in . 

When k = 0 , i.e. for the classical XY model, SK=O = (x,y} , 

(two sites in ZD) , 

(4.11) 
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where is a line of oriented links joining x to y , and gauge 

invariance is replaced by invariance under the global symmetry 

θx → θx +ω , ω  [-π,π) (4.12) 

For the XY model , Dc = 2 ; see [15]. 

The results of this section concern the models in D > 3 dimensions 

which have the property that the dual models are Z (hyper) gauge theories 

to which our methods apply. 

The methods of sect. 3 permit us to also study rank-k Z
N
-models 

in dimension D > k+3 . (They are defined in the obvious way) : As in 

sect. 3 one can prove the existence of intermediate phases, for sufficiently 

large N . 

4.3. The duality transformation. 

Our analysis of rank-k U(l) theories relies on a duality trans-

formation. Let ψck+1 (n) , n  ZZ , denote the nth Fourier coefficient 

of a function φck+1 (θ) on S1 .By Fourier transformation 

(4.13) 

where each n is a divergence-free, integer-valued (k+l)-form with 

support in A ; see (2.15) and (2.19). Given some integer-valued 

(k+l)-form n , supp n  A , there exists an integer-valued (k+2)-form , 

m , with 
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n = δm , and supp m  Λ (4.14) 

See Lemma 1, sect. 2.3. ( A is assumed to have trivial homology. The 

multiplicity of solutions, m , of (4.14) is then independent of n . For 

details concerning the special case D = 2 , k = 1 see Appendix A of 

[15]). We define 

α = * m (4.15) 

which is a k* Ξ D-k-2 form. Thus 

(4.16) 

where Σ ranges over all equivalence classes of integer-valued 
[α] 

k*-forms, a , with 

n = *dα , supp a  * . (4.17) 

Applications. 

1) φck+1 = φß , for all c
k+1 1
  A . This yields 

Ck+1 ß k+1 

(4.18) 

2) 

φck+1 Ck+1 k+1 

φ
ß
 ’ Ck+1  Λ ~ Σk+1 

imθφß 
φß , Ck+1  Σk . 
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with (4.18) this yields 

(4.19) 

As an example, we consider the rank-k Villain models. One chooses 

φß (θ) = Σool=-00 exp[-ß/2 (θ+2πl)² ] , 

i.e. 

φ
ß
(n) = const. exp[-n² /2ß] (4.20) 

Then 

where 

-m , ck+l - (c*k*+1)*  Σk+1 

0 , otherwise 

(4.21) 

For the three-dimensional Villain model (k=0) we obtain 

(4.22) 

so that 
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where φ(p) = 

-1 , if b Ξ p*  Σ1 

0 , otherwise , 

(4.23) 

and is a path of links, b , (dual to plaquettes for D = 3) joining 

x to y . 

Remark. One may also introduce disorder operators, , for 

rank-k U(l) theories, in analogy with (1.14) and (3.21). It is easy to 

show that 

(4.24) 

For k > 0 and φß as in (4.20) 

This follows from the result for the Gaussian expectation value, by using 

the correlation inequalities of [24]. For the Villain model (k=0) , 

>  (ß) is related to the surface tension which vanishes in the thermo-

dynamic limit. The asymptotic behaviour for large ,  / ZD , can be deter-

mined by combining the results of [15] (k=0, D=2) with correlation 

inequalities. See [5] for the three-dimensional model. 
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4.4. The main results. 

We now study the expectation value <W
m
(Sk)>(ß) for a rank-k 

Villain model. As in sect. 2.6 we reexpress the dual model in terms of a 

Gaussian measure, dµ°(α) , defined, for D-k-2 > 1 , i.e. D > k+3 , by 

0 , otherwise , 

(4.25) 

where is the Green's function of δd , see (2.34), sect. 2.5. 

When D-k-2 = 0 , a is a scalar lattice field, and dµ°(α) is the 

usual Gaussian measure with Dirichlet b.c. at ∂Λ . In this case, the dual 

of the rank-k Villain model is isomorphic to a D-dimensional Coulomb gas. 

For D = 2 this gas is analyzed in [15], where it is shown that it 

exhibits a Kosterlitz-Thouless transition. For D > 3 , it is believed that 

there are no bulk phase transitions in this gas and that it exhibits 

Debye screening [10], for all values of ß . (This is because the Coulomb 

potential behaves like dist. -D+2 , for D > 3 , while in D = 2 it behaves 

like log(dist.)). The main result of this section is that when 

D > k+2 

the rank-k Villain model has a massive small ß phase in which 

<W
m
(Sk)>(ß) < exp[-const.vol(Σ°

K+1
)] , (4.26) 

where ΣK+1 is a minimal region with ∂Σk+1 =
 S

k ; (this follows from 

a standard high temperature expansion), and a massless large ß phase 

where 

<Wm (Sk)>(ß) > exp[-const.vol(S
k
 ) ] (4.27) 
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The proof of (4.27) is a straightforward variant of the one in sects. 2.4 -

2.10 which we sketch below. 

In conclusion, the lower critical dimension is 

D = k+3 , for k > 1 
c 

(4.28) 

4.5. As in sect. 2.6 one shows that, for a rank-k Villain model, 

<W<VV« 

• Rφ (dα) dµo(α) , 

(4.29) 

where 

We now apply the combinatorial expansion of sect. 2.6 to 

(4.30) 

· · · · 
We define a rank-k current distribution, ρ , as a function on 

(k* Ξ D-k-2)-cells in Λ* with values in 2 7π  . 

By mimicking the combinatorial scheme of sect. 2.6 we obtain 

(4.31) 

where γ ranges over some finite index set, each W1 is a 1-ensemble, 
γ 
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(i.e. dist. (ρ
1
, ρ2) ≥ √2 , for two distinct rank-k* current distributions 

and ρ2
 in N

1

x
) ) , and 

i) cγ > O , for all γ 

where N1 (supp ρ) is the number of k*-cells within distance ≤ 1 of suppp , 

and 

for some constant βO with the property that 

Thus 

(4.32) 

Because of (4.25) we may omit all factors from the right side of (4.32) 

for which δρ ≠ 0 , provided D ≥ k+3 . (See [15] for D = 2 , k = 0 ). 

Next, we change variables : 

where 

α → α+τ 

τ = δΔ-1φ 
A 

(4.33) 

and φ is given by (4.21). Since 
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Π *dτ = -φ+ε^ , with 

ε
 

 = -Π *δdΔ-1φ Λ Λ* Λ 

(4.34) 

we obtain, using Lemma 1, sect. 2.3, and the periodicity of the cosine, 

(4.35) 

dµ
o
 (α+ε)} 

The renormalization of the right side of (4.35) is performed as in sect. 2.8, 

(see also sect. 3.5, and §4 of ref. [15]) . It yields 

=
 Ζ

Β!Λ
{Σ dY · 

. ʃ Π
 1 [l+z(g,p)cos(α(ρ)+ε(µρ) )]dµo(α+ε)} , 
ρεN1γ

 Λ ρ Λ A 
γ 

δρ=O 

(4.36) 

where 

z(β,ρ) < exp [ (c
1
-d
1
) || ρ ||2 ] exp[(c2

~d
2
β)L(ρ)] , 

for β > max (c1/d1, c2/d2) . Here L(ρ) is the number of (k* Ξ D-k-2)-cells 

in supp ρ , and c1,c2,d1 and d2 are finite, positive constants. A 

straightforward variant of the estimates in sect. 2.10 and of (2.104) - (2.107), 

sect. 2.11, yields. 

(4.38) 
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provided β is sufficiently large. Here 

where d(β) is a finite function which tends to O , as β → ∞ , 

exponentially fast. See (2.80) and (2.87), (2.88), sect. 2.10. Finally, 

from (4.34) and the fact that the gradient of the Green's function of the 

Laplacean, Δ = -(dδ+δd) , decays like, (1/dist.)D-1 , we conclude that 

(4.39) 

for D ≥ 3 . This completes our sketch of the proof of (4.27). 

In the example of the three- (or higher) dimensional Villain model 

(k = O) we obtain from (4.38), (4.39) and (4.23) 

(4.40) 

= exp(-C/B) , 

for some finite constant C independent of x and y , provided D > 3 

and β is sufficiently large. (The limit / D exists, as follows from 

Ginibre's inequalities). Inequality (4.40) expresses long range order in 

the spin-spin correlation of the Villain model, for sufficiently large 

values of 3 · Thus, in the pure phases obtained by ergodic decomposition 

of <—>(β) , the continuous, global U(l) symmetry is broken. 

The masslessness of the large β phases of rank-k Villain models, 

with D ≥ k+3 , can be proven by generalizing the techniques developed in 
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sects. 2.11 and 2.12 in a straightforward way. 

The techniques of our paper do not depend upon imposing special 

b.c. (They apply to a very large class of U(l)-invariant b.c., see e.g. 

Appendix A of [15] for a discussion of such b.c. for the two-dimensional, 

classical XY model). None of our estimates relies on translation invariance. 

Using the tools in § § 6 and 7 and Appendices B and C of [15], we can extend 

our results to a fairly large class of functions, φβ , in particular 

φβ (Θ) = exp β cos Θ . 

These are definite advantages over the methods of [11] which rely 

on translation invariance and reflection positivity. (Those methods do, 

however, permit one to analyze spin systems with non-abelian symmetry groups 

for which no useful notion of duality exists, such as the classical Heisenberg 

model). 

We believe that our methods ought to be useful for the analysis of the 

quantum mechanical XY model, models of interacting Bose gases and 

statistical mechanical models of defects and dislocations in ordered media. 
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