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Abstract.

We give a new, elementary proof for the existence of a deconfining
transition to a massless (QED) phase in the four-dimensional U(l) lattice
gauge theory and of an intermediate QED phase, accompanied by dynamical
restoration of local U(l) 1invariance, in the four dimensional EZN models,
with N large. Our methods can also be used to prove the existence of a
phase transition in the XY model in three or more dimension, in three-
and four-dimensional, abelian Higgs models, and in more general models admit-

ting some local, abelian gauge invariance.



§1. Introduction and summary of results.

In the past five years, there has been considerable progress in the
understanding of the phase diagram of lattice gauge theories with a discrete
(abelian, or non-abelian) ''unbroken'" group of gauge transformations. Among

such models are

i) pure lattice gauge theories with a discrete gauge group;

ii) lattice Higgs models with discrete or continuous gauge groups,

broken down by the Higgs scalars to a discrete, unbroken subgroup.

Such models are now known to have a strong coupling ("high temperature')
phase in which static quarks transforming non-trivially under the center
of the unbroken group are confined and a weak coupling (or "low temperature")
phase where static quarks are not confined but magnetic monopoles may be;

see [1,2,3,4,5] and [6] for a systematic review and further developments.

Proofs of these results are based on fairly standard high - and low
temperature expansions. An excellent review of such expansions [7,8] along
with applications to lattice gauge theories can be found in [6] . None of
these expansion methods require the use of duality transformations, so
that non-abelian models with discrete, unbroken groups are accessible. The
applications to the study of Higgs models with continuous gauge groups,
but discrete unbroken subgroup is somewhat subtle. However, the methods
developed in [9,10] , adapted to lattice gauge theories, are in principle
sufficient to study such models in various, extreme regions of coupling

constant space; see also [6].

As an example, consider a four-dimensional SU(2) Higgs model with

a system of Higgs scalars which leave only 22 unbroken. Let g be the



pure gauge coupling constant, B = 1/g2 , and suppose that, in the unitary
gauge, the interaction between the lattice gauge field, g , and the matter
fields is given by the action

- RRT oy (g0, (1.1)

Y xy

4

where xy runs through all bonds (nearest neighbor pairs) of Z |, X1

is the spin 1 character of SU(2) , £ > 0O 1is a coupling constant, and
Rx is the radial component of the Higgs system at the point x €224

which is supposed to be ﬁiﬂb > 0 with high probability.

Pregently, those facts which are known rigorously about this model

can be summarized in the following diagram :

N pure Z, theory
g = B B
\ II
\
\ scalar lattice
A theory (without
P~ _ gauge fields)
N et
N 4
I \ h ¢
N
A
N
\
A Y
H hY
i ————p
pure SU(2) theory B =e
Fig. 1
I : Confinement of static quarks in the fundamental representation,[1,4].

II : Confinement of Z., monopoles, [6].



On the line B = « , the theory reduces to a lattice theory of
scalar fields decoupled from the gauge fields which has in general a phase

transition, with a massless, broken symmetry phase for ¢ > L, [11]

It is conjectured that B = B and, more generally that regions I
and II have a common boundary from (B = B, =) to some point P
which is connected by a line of singularities of e.g. the magnetic string
tension to (B =w , ¢ = gc) . Moreover, domain I should extend to the

broken line from P to (8 =w , ¢ = 0)

Among the obstructions which prevent one from proving the above

conjectures are

- incomplete knowledge of the pure Z._, theory;

2
- the presumed roughening transition in the pure SU(2) theory (see e.g.
[ 12]) which appears to make it impossible to extrapolate the high

temperature expansion for r = 0 to arbitrarily large values of R

The model discussed above may be amusing, but is not really relevant
for particle physics. More interesting examples would be lattice versions
of the Georgi-Glashow or the standard (Glashow=) Weinberg-Salam model of
electro-weak interactions. In these models a new difficulty appears
Essentially no powerful, analytical tools are known which would permit
one to establish the existence of electromagnetic phases with massless

photons and unconfined, charged leptons.

Let us consider, for example , the Georgi-Glashow model. In this
model, the Higgs scalar has isotopic spin 1, and the action describing

the interactions between the Higgs- and the gauge field is given by



-z L (¢ ,D,(g Do) (1.2)
Xy x 1xy’ Ty

where ¢ 1is the Higgs field, D1 is the spin 1 representation of SU(2) ,

(+,*) 1is the scalar product on IR3 y £ >0.

In this example the presumed phase diagram is described in Fig. 2

below.
c A
pure U(l) theory
C-w‘
classical Heisenberg
- model (or g|¢|4
1% lattice theory)
I
i > 8

0

8=m

Fig. 2

In domain I static "leptons'" in the fundamental representation of
SU(2) are confined. This follows from the results of [1,6] (high tempera-

ture expansions) or from [4] (where correlation inequalities are used).

When r = » the model reduces to the pure U(l) lattice theory.
One main result of our paper is a new proof and a generalization of a
result, already established by A. Guth [13] , which asserts that the

four-dimensional U(l) model has a deconfining tramsition, i.e. for

g > Bc , static electric charges have only Coulombic interactions, and



the photon is massless; see §2.

Our method of proof is a descendent of a more involved one used
to establish the existence of the Berezinski-Kosterlitz-Thouless transi-
tion [14] in the two-dimensional rotator model and the Coulomb gas which
we presented in [15] . In comparison with [15] simplifications arise in
the analysis of the U(l) model, due to gauge invariance which enforces
"local neutrality". Our methods have the advantage over [13] of not being
geared to a special form of the lattice action (the Villain action), and
they do not involve a cluster expansion, (so that reasonable bounds on
Bc might be obtained). Physically speaking, they consist in showing that
for large B , static, electric charges are deconfined, because the dynami-

cal magnetic monopoles of the lattice U(l)-model are bound in neutral clusters

which form a dilute gas.

On the line B = » , the model reduces to the classical Heisenberg
model or the three-component lattice g|¢|4 theory, and the degrees of
freedom of the gauge field are frozen. These models have a phase transition
accompanied by spontaneous breaking of 0(3) : For ¢ > T o global 0(3)
invariance is broken, and there exist two massless Goldstone modes. This
has been proven in [11]. (For two-component rotator models, a new proof

of this result is given in §4).

We expect that the critical points Bc and ¢, are connected by
a line of critical points above which the theory is in a massless QED phase
with unconfined electric charge and massive, magnetic monopoles : See
domain II, Fig.2. In the complement of domain II, and for B8 < = , magnetic
monopoles are expected to be massless. For ¢ sufficiently small and ¢

below B (for the pure SU(2) theory) they are expected to

roughening

form a condensate. In this range of parameters electric charge is



confined. Since our analysis of the U(l) model involves using a duality
transformation, it does not extend to the model with 7 < » , in any
obvious way. *) This and the absence of a detailed understanding of the
presumed roughening transition in the pure SU(2) theory are, at present,
the obstructions against establishing the conjectured phase diagram described
above. At least, it is supported by the results in §2 and [11].

In §3, we reconsider the :EN models with Villain or Wilson action.
We show that, in four dimensions and for N large enough, there exist two
critical values of B , §t and E; > Ec (depending on N) , such that
for B € (gc,éé) the Wilson and the disorder loop have perimeter decay.
Thus there exist intermediate QED phases. This reproduces and extends a
result of Elitzur et al. [16] . The point of our methods is to avoid using
self-duality which only holds for the Villain action and to exhibit a
sequence of transformations of the EZN model which map it to a model with
unbroken U(l) gauge invariance, provided B8 € (EC’EE) . In other words,
local U(l) invariance is restored in the intermediate phase .This is the

analogue of global U(l) restoration in the intermediate phases of the

two-dimensional ZN models which we described in [15].

The phenomenon that the '""fixed point theory" of some class of spin
systems or lattice gauge theories, with respect to suitably chosen renor-

malization transformations, has a larger global or local symmetry than the

*)

It is an interesting problem to avoid the use of duality in the analysis
of the U(l1) model, or to translate the methods developed in §2 back into

the Wilson formulation of that model.



original models is presumably a rather general one. It is therefore of

interest to analyze some examples which exhibit that phenomenon.

We expect it to occur, for example, in any lattice gauge theory
with a discrete gauge group H of high order which is a subgroup of some
Lie group : If G 1is the smallest Lie group containing H as a subgroup
then we expect that a pure lattice gauge theory with gauge group H has
intermediate phases where local G-invariance is restored, in the sense
that certain correlations behave like ones in a pure gauge theory with

gauge group G .

In §4 we reconsider the classical rotator (XY) model in three or
more dimensions. By duality, the rotator model is equivalent to a statistical
mechanical model of line defects characterized by integer flux numbers. In
three dimensions, this model is the ¢ + « limit of the non-compact, abelian

Higgs model, and the line defects correspond to the Abrikosov vortices.

Our methods permit us to prove that, for a large class of lattice
actions, the classical XY model in three— or more dimensions has a phase
transition with long range order, accompanied by spontaneous symmetry
breaking. By the results of [5] this also implies the existence of a super-
conductor - QED transition in the three-dimensional, abelian Higgs model.
(In the superconducting phase, vortices have a small activity and form a
dilute gas, the photon is massive and there is no confinement of fractionally
charged, static sources. In the QED phase, vortices condense, the photon
is massless, and fractionally charged sources are confined by a logarithmic
potential. These results were proven in [5], assuming the results of [15]

and of §4 of the present paper, by using correlation inequalities).
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We conclude this introduction by establishing some notation :
Let G be a compact gauge group. With each link (nearest neighbor pair) xy
in a simple, cubic lattice ZZD we associate an element gxy of G . The
a priori distribution of gxy is given by normalized Haar measure, dgxy ’
on G . Let A be some finite region in zP , and let x be some unitary

or orthogonal character of G , typically the character of the fundamental

representation of G , (assumed here to be a matrix group).

Following Wilson [1], the action of a lattice theory in region A

is defined by

AB(gA) =-81I

Re ){(g ) ’ (1.3)
op
pcA

where B = lfg2 is the inverse square of the gauge coupling constant, p

denotes a unit lattice square (plaquette) in A , g, is a short hand
for {gxy}xyzﬁ , and
g, = Mg - (1.4)
P yycap X

Here 19 denotes a path-ordered product. The Euclidean functional measure

of the lattice theory in A 1is given by

-1 _AB(gﬁ)

8, A e n dg (1.5)

d = Z
uB(gn) o By

More generally, de is defined by

-1
du,(g,) =2 Teg,(g,)n dg s (1.6)
Il S N O M

where ws is some positive class function on G , i.e.

-1
wB(h gh) wB(g) .
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For example, ¢, may be the heat kernel on G in which case the model

B

is called the Villain approximation. In this paper, we primarily study the

Villain approximation to the U(l) model and the XY model, except in

§3, where we study Wilson's form of the Z _ lattice gauge theory in four

N
dimensions. This restriction is not inherent in our methods but is imposed
for technical (mainly notational) convenience. The techniques introduced

in §6 and Appendix B of [15] permit us to extend all results of the present

paper to the models with Wilson action. (This is an advantage of our methods

over the ones in [13]).

Our criterion for confinement (or deconfinement) of static sources
is the usual Wilson criterion. We are aware of the shortcomings of this
criterion. Instead, we could use the slightly more general criterion dis-
cussed in [5] which is correct in the limit of infinitely heavy '"quarks".
This would merely result in a slight complication of notations but does
not alter our results. (It is an interesting open problem, not studied in
this paper, to introduce a confinement criterion which is valid in theories

with dynamical quarks of small mass).

Let L = LLxT be a rectangular loop in a lattice plane, with sides

of length L and T . Let
Wil = x (1€ By’ * (1.7)
xyclL
where Xo is some character of G .

Consider the expectation

<W(L)>A(B) = | W(L)de(gA) s, Lecn . (1.8)
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Let <->(Bg) = lim <—->A(3) denote the vacuum functional in the

d
thermodynamic limit. (Some limit always exists by compactness ') . The

"quark-anti-quark'' potential is defined by

v (L) = %:2 . -,}- Log (L, ,)>(8) (1.9)

(For a more accurate definition see [5]). Quarks transforming under a

representation of G with character Xo are expected to be permanently

confined if

VO(L) diverges to +» , as L + = (1.10)

This is possible only if Xe is non-trivial on the center of G , [18] .

Moreover,
VO(L) < const. L , (1.11)
for arbitrary GsXs Xy [19].

If

lim VO(L) < w (1.12)

Lo

"quarks" are expected to be deconfined, and physical states transforming
non-trivially under the action of global gauge transformations corresponding
to certain elements in the center of G are expected to exist. While this
conclusion is correct in a pure lattice gauge theory without dynamical
quarks it is wrong in theories with dynamical quarks in which (1.12) is

valid in general, although quarks may be permanently confined. In order

*) 1In the abelian case, the existence of the limit follows from [17].
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to establish the existence of a QED phase in the four-dimensional U(1)
model one should therefore really also establish the masslessness of the

photon; see §2.
For (1.12) to hold it suffices that
<W(LLXT)>A(B) > exp[-d(L+T)] , (1.13)
for some A-independent constant d , provided A is large enough.

Inequality (1.13) is proven in the next section for the U(1)

model in four dimensions, at large values of B .

Apart from the behaviour of the Wilson loop expectation,
<W(L) >(B) , we are also interested in the behaviour of the expectation
value of the disorder loop, D , in the state <>(g) . In four dimensions
D is defined as follows : One chooses a loop, L , in a coordinate plane
of the lattice (24)* , dual to Zz' . Let I be an arbitrary set of

plaquettes bounded by [ , i.e. 3L =L , and let

5* = {p ez p¥c 1} (1.14)

Then

D> = ngz* (0g(85,2) /g (8 ))duy(g)) (1.15)

where 2z 1s an arbitrary, non-trivial element in the center of G . It
has been shown in [5] that in the four-dimensional Villain approximation

to the U(l) model

<D, >(B) > exp[-6(L+T)] , (1.16)
LxT
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for all B < » , This can also be shown for the U(l) model with Wilson
action by using the method of real translations (§§ 5-7 of [15]) and
Jensen's inequality. Thus, in the U(l) model, the disorder loop has
always perimeter decay, i.e. static magnetic monopoles are never confined

In §3 we show that, for sufficiently large N , the ZZN models

with Wilson action have an intermediate phase (for B € (EC,EL) , with

0 < Ec < Bc < ©) 1in which both inequalities, (1.13) and (1.15), hold.
(It follows from standard high temperature expansions that (1.13) fails

for small B and (1.15) for large B , for every N < =),

In §4 we extend the concepts and results described above to a
general class of abelian models, "hyper gauge theories", which includes

the rotator model. We determine the (lower) critical dimension of these models.
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§2. The transition in the four-dimensional U(l)-model.

2.1. 1In this section we establish the existence of a tramsition to a
deconfining, massless phase in the four-dimensional, compact U(l) lattice
gauge theory. Previous work concerning this model is contained in [1,20,5]

and, in particular in [13]. (See also [6] for a reviewof [13]).

The basic ideas of our method which evolved from [20] and [15] are

as follows :

i) Use of Fourier transformation in the angular variables of the compact

U(l) model : Transformation to the non-compact, dual model.

ii) Application of a sequence of renormalization transformations to the
dual model which map it to a neighborhood of the Gaussian model which
describes free, non-compact electromagnetism. Our transformations represent
a simplified version of the ones used in the two-dimensional Coulomb gas,
in order to establish the existence of the Kosterlitz-Thouless transition

[15]. The simplifications arise as a consequence of gauge invariance.

iii) Change of field variables in the renormalized dual models (real trans-
lations; see §§ 5-7 of [15]) and application of Jensen's inequality to
establish a lower bound on the Wilson loop expectation, i.e. the disorder
loop expectation of the dual model, with perimeter decay. (This proves

(1.13)).

2.2. We explain our methods in terms of the Villain approximation to the
U(l) model, but with some analytical complications taken into account
(see §6 and Appendix B of [15]) our methods and results extend to a large

class of U(l) models with other actions, in particular the Wilson action,
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as well.

In this and the following sections we use the notation

iﬁxy
gxy =e ’ exy € [_“s") ’

to denote the elements of (subgroups of) U(l) . We adopt the usual

convention

p = -0 . (2.1)

The a priori distribution of exy is given by the Lebesgue measure,
dﬁxy , on the unit circle. Let A be a finite, rectangular array of

sites in 24 ,and 6, = {6 } , as in §1. We define

A Xy xych

©,(0) = T expl-(8/2)(6+2m)%] , 8 € [-m,m) . (2.2)
B nE ZZ

This is the heat kernel on the unit circle appearing in the definition

of the Villain approximation.

The purpose of this section is to elucidate the properties of the
following distribution, (the Euclidean functional measure for compact QED

on the lattice)

-1
duB(BA) ZA I ws(dep) Il dex ’ (2.3)

pcA xy<A y

where

deg = z Bx ’
Xyc<ap y

(op isthe boundary of a plaquette p < A) , and

z, = [ ne,(de ) n de s (2.4)
A pch B P ye A xy
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The standard Wilson loop is defined by

i8
W(L) = T e XV (2.5)
xycl

where L is as in §1, and we assume it to lie in the O0-1 1lattice plane.

More generally, let

im®@
W =1mne ¥, w .=w.
- xyclL

We now define

<W_(L)>,(8) = S W (Ddug(8,) , and

) (2.6)

<W (L)>(B) = 1lim , <W (L)>, (B)
m A724 m A

/

Existence of the limit is a standard consequence of Ginibre's inequalities
[17], (for the models with Wilson's and with Villain action [21]). By a
standard high temperature expansion (see e.g. [1]) or by using Simon's
correlation inequalities [22,23] one shows that, for B sufficiently

small,

0 < <Ww (L)>(B) g exp[-c(m,B)L-T] ,

) (2.7)
with c(l,B) ~ Rnﬁwl , a8 B+ 0 .

J

In the following, we propose to give a simple proof of the statement

that, for B 1large enough,

<w_(D)>(8)

v

exp[-d(m,B) (L+T)] , (2.8)

for some finite constant d(m,B) .
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For reasons of simplicity of the exposition we concentrate on the

model with Villain action and m = 1 , but using some results in [15] it

is not challenging to extend our arguments to the general case.

2.3. We now pause for a digression on exterior difference calculus.

Let € denote an oriented unit k-cell in a simple, hypercubic

lattice ZD . Let o be a k-form, i.e.

a:c - a(ck) €EK , (2.9)

where K is a ring, (K=Z ,R or € ) , and a(ck) = 0 , except for

finitely many C * We let c; denote the same k-cell as o but
with orientation reversed, and require that
a(ck) = —a(ck) . (2.10)
Given an oriented (k+1)-cell , Crs1 > Ve define
(da)(ck+1) = . Cgc a(ck) . (2.11)
k k+l
Here it is assumed that the orientation of some ¢, < 3¢ is the one

k k+1

prescribed by the orientation of Cral ? and (2.10) is enforced. Let

ck_1 be an oriented (k-1)=cell. We set
(ﬁu)(ckwl) = . -3c23c ale,) 5 (2.12)
k'K k-1

assuming again that the orientations of the ack's are matched to the

one of and (2.10) is enforced. Clearly, da is a (k+1)-form,

“k-1

while 6a 1is a (k-1)-form. One verifies easily that

dda = 0 . (2.13)



- 19 -

For,

d(da) (c, ,,) = z ( I a(ck)) .

ck+lcack+2 ckcack+1

k+2

Now, with each ¢, appearing in some appears in the same

K %Ce2 * S
3ck+2 » too. Thus, by (2.10), the r.s. vanishes. Given arbitrary k-forms

o and B , we set

(@,8) = T a(c)Ble,) » (2.14)

“k

where a and B are arbitrary k-forms, and I' extends over all posi-

tively oriented k-cells. One has

(B,da) = (8B,a) (2.15)

where o 1is an arbitrary k-form and B an arbitrary (k+l)-form. This

identity is a consequence of "summation by parts' :

(8,da) = £ Blc,, 1) (da) (ep,;)
c
k+l

=3 ( I B(ck+1)u(ck))
k1 €1 %41

=3 ( b gB(c, ..))a(c,)
; Kk+1 K
°k  Ck+1’ %ke1™k
= (8B,a)
By (2.13) and (2.15),
868 =0 (2.16)

for any k-form 8 .
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One may finally introduce a discrete version of the Hodge % opera-

tion. Given a k-cell ck CZZD , let c5~k denote the (D-k)-cell in the
dual lattice (ZZD)* passing through and with orientation chosen
such that it matches the orientation of ck . Given some k-form o ,
we define a (D-k)-form xo by
* —

(*u)(cD_k) = a(ck) . (2.17)
It is easy to see that

*dxa = Sa - (2.18)

For

(xdxa) (¢, ;) = (dxa) (e}, 1)

= L (xa) (c*_.)
c* cack Dk
D-k D-k+1

.gc u(ck)
Sk’ 2k Ck-1

= (sa) (e, ;)

We will need the following

Lemma 1. (Poincaré)

Let o be a k=form with values in K(=Z, IR, T) such that

o = 0 . Then there exists a (k+l)-form g with values in K such that
a = 6B

Moreover R can be chosen such that supp B 1s contained in the smallest

hypercube Q containing supp o , and max[B(ck+1)| < z' Ia(ck)I

ck€ Supp a
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Remark. Similar statements hold with § replaced by d . They can be
obtained from Lemma 1 by using the * operation. The proof of Lemma 1 is

quite elementary and is not given here.

2.4, Next, we calculate the Fourier transform of the measure de(eﬂ)
introduced in (2.3), (2.4). Let @B(n) denote the nth Fourier coefficient
of ms(e) . First, we reexpress the partition function. Using (2.15), we

obtain

Zy = [ ne,(de ) 1 dg
A
pcn B P xyen O
. in_(de)
=[{n{ £ @ m)) P Pyg dg
Pch 0 € Z B P xyeh Y
X ie (60
- b I qén ) | e XV y dex
n={n } _,Pch P' “xyen Y
P< (2.19)
L -~
= en*® 5 g ORI
n:én=0 pch P

where L(A) 1is the number of links (oriented bonds) in A . For o

B
as in (2.2),
~ '(]./.'?.B)n2
wB(n) = ce . (2.20)
for some positive constant c .
Thus
Z = (Zﬂ)L(ﬁ) cP(A)Z , where
A A
(2.21)
_ 2
Zy= I n o~ 1/200W,
n: n=0 pch

and P(A) 1is the number of plaquettes in A .



Since én =0,

for some 3-form m , and the

A . See Lemma 1. Now,

. *
where o 1is a l-form on A

We note that «

a' = a+dy , for some scalar . Next, using (2.24),
(,n) = In2= I (xda) = I (da)’, (2.25)
pcA pcA P pcA P
= (dao,da) .
’ ﬁ*
where p* is the plaquette dual to p . Hence
-(1/28) (n,n
ZA _ 5 e ( ) (n,n)
n: én=0
-(1/28) (do,d
_ . . (1/28) (da,da) (2.26)
[a]:aXYEZZ
where [a] denotes the equivalence class {a': a' = a+dy , supp dy c ¥y,
and I 1indicates that only one configuration per equivalence class
[a]

is retained in the summation.

is not uniquely determined by n
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Sm

(2.22)

support of m can be chosen to lie within

= xa (2.23)
, the dual of A . Thus
= xdo . (2.24)
: If n = xda' then

function Yy on Qza)*

Next, we compute the Fourier (duality) transform of <W(L)>A(B) .

Let

I be the rectangle in the Ol-lattice plane whose boundary is the
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loop L . The discrete version of Stokes' theorem says
ie i(de)
W) = 19 e ¥ =1 e P
xycL pcl
where all plaquettes p < I have the same orientation as L . Thus
1 i(de)
<W(L)>, (B) =Z, [TMy,(de ) e P 1 de__ .
A A R P A Xy
pcA pcE Xy

The nth Fourier coefficient of (pB(G)elB is &B(n-l). Thus, as in

(2.19), we obtain

WL, 8) = 2, em M g 1 ) .
n:én=0 pci~r P

. I qinp*l)} .

pcs
= - 2 (1/g)n_-1/28
= znl{ P pe (/280 oo P } (2.27)
n:én=0 pcA pct
As in (2.23) - (2.26) ,
<W(L)>A(B) = [ dun(a)Daz(a)
(2.28)

11

*
<DBE>A(B) ’

where dpﬂ(a) is the discrete measure on the space of equivalence classes,

[a] , which assigns to [a] the weight

-1 ‘(1/28) (dasda) A%

ZA e ’ (2.29)
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¢—>:(B) denotes expectations in this measure, and DBZ is the disorder

operator defined by

(I/B) (dﬂ) * -
D..(a) = Ne p*"1/28 (2.30)
oL
pcE
More generally,
0g((da)_,-1)
<W(L)>, (B) = < 1 ———EF——>*(p) , (2.31)
pcl wB((du)p*)
for any choice of wﬂ .
2.5. We now analyze the non-compact, Gaussian U(l) lattice model,

(non-compact lattice QED). First, we consider the (infrared) regularized

Gaussian measure

d”i (o) = N1 o= (1/28) {(dasda)yte(asa) 3 -

AlS
(2.32)
. II d(l 3
xych* XY
where duxy is the Lebesgue measure on Im,axy =0, for xy & A*, € >0
is an (infrared-) regulator mass, and NA . is a normalization factor
]

chosen such that fdui E(u) =1,
]

Let Hﬂ* denote the orthogonal (with respect to (*,*)) projection

onto the space of 1-forms with support in A* . Let VA . be the
»

inverse, on the space of l-forms with support in A* , of HA*(6d+e)

o : . . .
Clearly, duA . 1s the Gaussian measure with mean zero and covariance
’

Vﬁ,E . Thus

. ~(8/2) (u,V, W)
fad (@ e - e L (2.33)
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for any 1-form u with supp u S 2* . Here

= Y . o=
a(u) = (a,u) xyCA*uxyuxy

[Note if A* = (zZ%*

v_ - (1+e Lds) (-a+e)” L

where -A = d8+8d , because (8d+e)(l+e 1) = -Ate+e 16ddS = ~Ate ,

by (2.13).]

When € tends to O the r.s. 0f(2.33) tends to O on all of those
l-forms w with supp u < A* and (du,du)A* 0, i.e. p=4dv , for
some function v . Since {p:ép = 0 , suppu < A*} is orthogonal to
{uzdu = 0 , suppu < A*} ,

o~ (B/2) (W, V) 1) g, if 8w =0

lin [ & (e *® - (2.34)

+ g .
€0 0 , otherwise.

Here VA is the inverse, on the space of 1-forms

{u:dp = 0, supp u = A¥} , of HA*Gd . On that subspace

]'[Mtﬁdu = I[h*(d6+6d)u = —Ahu s

where ﬁA is the finite difference Laplacean with O Dirichlet data on

the outer boundary of A*¥ , so that
V) g = G (=87 1), if u=0 (2.35)
»UAM g A e U . : '

We denote by dui(a) the measure on the space of equivalence classes,

[a] = {a':da'"=da} , determined by
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. _ P |
I dui(a)ela(U) = e (B’z) (u,( ﬂﬂ) U)ﬁ* : (2.36)
for all l1-forms yu , with 6&u =0 .

2.6. We now reexpress the discrete measure duA introduced in (2.28),

(2.29) in terms of dui by inserting the constraints

o €Z , for all xy c A*

Xy
duy(@ =55 T {1 8@ _-q! )} ,
xych* ! €z
Xy
where EA is the normalization factor for which duA(a) =1 . We now

apply the Poisson summation formula :

oo

b §(a. =q' ) =1+2 I cos(q o ) . (2.37)
' Xy Xy =1 Xy Xy
quez (2m) qu 1
Let {z }w be a sequence of numbers such that 2 g z-1 =1.
q°q=1 (2ﬁ)_1q=1 q
(A specific such sequence will be chosen later). Then
(=] (=] -1
1+2 ¢ cos(q_a_ )= I 2z~ (l4z_ cos(q_a ))
-1 . Xy xy -1 .4 q Xy Xy
(2m) qu 1 (2m) qu 1 “xy Xy
(2.38)
Let a2 {ag) oty = 1 22 L (2.39)
y a XycA* qu
By (2.37) and (2.38) ,
Edu(a) = c 1 (l+4z_ cos(q _a ))dp°(a) (2.40)
ATA q q KXy qu Xy Xy A
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We now need some definitions :

A current distribution (or - density) p is a mapping from the set B

of directed bonds (links) to 2nZ , of finite support. An ensemble E

family of current densities, p , with the properties that
suppp € A* , for all p € E

supp p N supp p' =@ , for all p and p'

in E with p # p' .
A  k-ensemble, Ek , is an ensemble with the property that
dist(p,0") 3 22, k = 0,1,2,...,

where dist(p,p') denotes the Euclidean distance between supp p and

supp p' . Finally, let a(p) = ' axy pxy i
Xy

Lemma 2.

I (1+z_ cos(q a ))
xych* Xy Xy xy

=Tc I 1[1+K(p)605(a(p))] ’

Y
€E
Y P y

o . 1 ER
where y ranges over some finite index set, each EY is a l-ensemble

and

i) cY >0, for all vy ;

Nl(supp p)
ii) 0 < K(p) <3 1l zl
Xycsuppp

N
Xy

where Nl(supp p) 1is the number of links within distance < 1 of the

support of p

is

a
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Proof.

Lemma 2 is a simple special case of Lemma 2.2 in [15] . For this
reason we only present a sketch of the proof. (The reader will find it
easy to supply the details). The proof follows by successive applications

of the identity
[1+K1 cos(a(pl))][l-l-K2 cos(u(pz))]

= 1/3[1+3K1cos(a(pl))]+1/3[1+3K2cos(a(pz))]

(2.42)
+ 1/6[1+3K1K2cos(a(pl—pz))]

+ 1/6[1+3K1K2cos(u(p1+p2))]

First (2.42) is applied to any two factors,

1+ , (1+
( zq cos(quaxy)) ( zq L

COS(qx.y,,a et
Xy X'y

X'y

I..= 1n (l+z_  cos(q _a )) (2.43)
*
A xych* qu Xy xy

for which dist(xy,x'y') = 0 . The r.s. of (2.42) is, for each such pair

of factors, inserted in Iﬁ* , and the result is expanded as a sum of

products. After a finite number of such expansion steps one obtains

I,==IZc, I [1+4K"(p)cos(alp))] , (2.44)
A o€t

where {EA} is some family of ensembles, and by (2.42) each ) is the

product of a power of 1/3 and a power of 1/6. If all EA are l-ensembles,

no further applications of (2.42) are necessary, and (2.41) is proven.

If however some ensembles El ’EA »s++. are not l-ensembles, yet,
1 "2
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one applies (2.42) to any pair of factors [1+K'(pl)cos(a(pl))] .
[1+K'(p2)cos(u(p2))] , with the property that p,sp, are in Eli , for some
i, and dist(pl,pz) <1, the r.s. of (2.42) is inserted on the r.s. of
(2.44) and expanded as a sum of products for all i = 1,2,... . Since A*

is finite, the combinatorial expansion described here terminates after

finitely many applications of (2.42), (when all resulting ensembles are

l-ensembles), and (2.41) follows.

We now check i) and ii) in Lemma 2. If a current density p has

been obtained by pairing p, and Py in the sense of identity (2.42),

1
e.g. p = p1 + p2 , then

K(p) = 3K(91)K(02)

If p = pa , a=1,2, i.e. one of the first two terms on the r.s. of

(2.42) has been retained,
K(p,) > K(p) = 3K(p ) -
> 1 . ‘s
Thus, given some p € EY , for some Yy , one easily verifies that

K(p) = 3n(p) I z[D

K (2.45)
Xycsupp p | Xy

where n(p) 1s the number of applications of (2.42) that were necessary

to obtain p . A minute of reflection shows that

n(p) < N, (suppe)

which establishes ii); (see also §2 of [15]). Finally, c, is clearly

of the form
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n m
e, = (1/3) Yare) ¥,

where nY and m, are the following positive integers : The total
number of times (2.42) has been applied in the inductive construction of
Eois nY+mY , and n, times one of the first two terms on the r.s.

of (2.42) has been retained, whereas mY times one of the second two

terms has been retained. This yields 1i). u

Remarks.

1) Combining (2.40) and (2.41) one obtains

5y Gy (@) =1 d T [1R(p)eos (alp)) 1duy (o) (2.46)
Y eEN

where {Ni} is a family of l-ensembles, and dY >0, for all y .

Moreover, K(p) still satisfies 1i) of Lemma 2.

Since any two current densities Py and Py # Py in some Ni
satisfy dist(pl,pz) > v2 , we conclude that, for each subensemble
il 1
EES N
Y“~T Y

f T4 K(p)eos(a(p))duy(a) =0
OEIEY

unless &6p = 0, for all p € Ei , for all y . This follows from
(2.34) and (2.36). Thus all factors on the r.s. of (2.46) labelled by

some current density p for which &p # O may be omitted. Therefore

£y du (@) = 2d 1, [1+K(p)cos (alp)) Jdu, (o) (2.47)
A v ToeN A
%

Gp=0
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2) For the study of more general lattice gauge theories it is interesting
to note that Lemma 2 can be generalized by replacing l-ensembles by
k-ensembles, k = 2,3,..., on the r.s. of (2.41). In ii) the exponent
Nl(suppp) must then be replaced by a quantity Nk(suppo) , the definition of
which along with upper bounds can easily be inferred from Theorem 2.1,

and Lemma 2.2 of [15] . The resulting combinatorial scheme can be used,

for example, to give a simple, new form of the high - and (in the discrete
case) low temperature expansion for the expectation of the Wilson (or
disorder) loop in lattice gauge theories with interactions of finite

range. This permits us to prove, in particular, that any pure lattice

gauge theory with a discrete (abelian or non-abelian) gauge group and
interactions of finite range does not confine static quarks if B is large

enough. This extends the result in [2] .

P ANT I A change of variables.

Our purpose is now to start estimating

W(L)>,(B) = i du, (0D (o)

see 2.4, (2.28)-(2.31), by making use of equ. (2.47) for duﬂ(a) and

changing variables
a>a+ T , (2.48)

where T 1is a 1-form defined as follows : Let o be the 2-form given
by
1, p= (p*)*€ ¢

0(p*) =

0 , otherwise
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where I 1is the rectangle defined in 2.4, with 3 =L . (If A is

large enough, I < A and dist(Z,3A) > 0) . We set

= -aailo , (2.50)

where Aﬁ is the finite difference Laplacean with O Dirichlet data on

*
the outer boundary of A introduced in 2.5. Clearly

__ -1 _ -1 -1
Hhtd'r = A*dﬁﬂh o = (d(’i'l'ﬁd)ﬂﬁﬁ U+HA*GdAA o]

=0-g, with (2.51)

- -1
EA = HA*GdﬂA o

Under this change of variables,

-(1/8B) (da,dt) ,* -(1/28) (dT,dT) , %
dui(a) > dui(a)e N e A

=(1/8) (da) 4 _
- dui(a) Me p*e 1/28
pEL

. e(1/8)(c.eﬂ)e-(1/26)(en.sh)

. (2.52)

This follows from the definition of dui(a) , see 2.5, (2.32) - (2.34) and

of T by using the fact that (du,en)jh =0 .

By (2.30)

(1/B) (da) -1/28 (1/8) (dt)
Daz(a) > 1 {e % e p*}
PEZ (2.53)

=(1/8) (0,€,) (1/8) (da)
= e Mone p* 1/28
pEL

Combining (2.52) and (2.53) we get
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_(1/28) (EA’SA) o

Daz(a)dui(u) > e duj(@) . (2.54)
Finally,
I [1+K(p)cos(a(p))] = N [1+K(p)cos(a(p)+t(p))] (2.55)
pENl DGNI
Y )
§p=0 §p=0

Since 8§p =0, p = Spp , where up is a 2-form with up(p*) € 2n1Z ,
for all p*¥ < A* , and supp N c Qp € A* ; see 2.3, Lemma 1. Thus,

using (2.51) we see that

T(D) = (dT»up)ﬁ* = (U’UD)-(Ef\’pp)I\* ’ (2.56)

so that by (2.49) and the periodicity of the cosine
cos(a(p)+t(p)) = cos(a(p)"(eﬁ,up)h*) . (2.57)
Combining representation (2.47) of duA(G) with (2.54) - (2.57) we obtain

L —(28) (e poe )
ML), (8) = 2, e Mg g

A Y
Y (2.58)
S [1+K(p)cos (a(p)=(e ) ) Jdu (@)
p€EN
Y
§p=0
where
Z, =rd [T [1+K(p)cos(alp))]di®(a) . (2.59)
A Y 1 A
L peNY

S§p=0
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2.8. The renormalization transformation.

In this section we propose to renormalize the current densities

o, p>p , and activities K(p) , K(p) > z(B,p) , in such a way that

[ 1 [1+K(p)c05(a(p)-ep)]dui(a)

1
“peN
"=y

§p=0

= [ 1 [1+2(8,p)cos (a(p)-8 ) 1du} (@) ,
1 P
pENY

§p=0
with z(s,E) <<1 , for B sufficiently large. Here ep( =0 or
(SA’up)A*) are real phases. Given some current density p € Ni , 1t is
easy to see that we can choose a subset %} of links in supp p with
the property that two different links in Bp do not belong to a common

plaquette and that

-

L e

2 2

1" 2 cllell > (2.61)

xy€B
P

Xy

where ||p ”g = Ip , p=1,2,3,..., and c 1is a purely geometri-

xylpxy

cal constant, namely
_l .
¢ =card{b':b' # b, b' € 9p for some p with 23p 3 b}
= 18 , in four dimensions (2.62)

Since diSt(pl’DZ) > ¥2 , for two current densities P and Py # Py

in some ensemble Nt , the choice of Bp , for a given current density

p € Ni » can be made independently of all other current densities in

Ni in such a way that (2.61) holds.



_35..

Our renormalization transformation is based on the following simple

identity

Lemma 3.

Let Xy < A* , and let G(a) be a function which does not depend

on o . Then
Xy

ipa
fe ™ Gla)du;(a)
9 _ (2.63)
=(B/n_ o ~ipa
=e ¥ e e)a’() ,
where —_ (1/nxy)(6da)xy T Oy o
and nxy = card{p*:p* c N* , 3p* 3 xy}
= 6 , in dimension 4 ,
(unless xy belongs to the boundary of A¥)
Remark. It is important to note that E;y is independent of axy and
that n < 6 , so that
Xy =
“(8/0, 00" (376952
e Y o<e ‘ (2.64)

Proof.

In the following, all formal calculations hold rigorously if
dui(u) is first replaced by dui €(a) . Since the existence of the limit
]
€ + 0 does not pose any problem (for finite A) , that regularization

is omitted right away.
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Our proof relies on explicitly integrating over uxy » using

the following obvious equation for duz(a)

'(1/26)(da)§*

o —
duh(a) = dp‘ﬂw(xy) (@ 1 e daxy (2.65)
p*
Xy€ dp*¥ch*

where dphu(xy)(a) is a finite measure independent of Oy By changing

variables,

Oy™ Oyy + l(B/nxy)p ’

we obtain

~(1/28) (o), i

[s)
I I e e xydaxy
IP*JxXy
. 2 .
-(1/2 d +
S on e (1/28) (( a)p* 1(B/nxy)p) elpaxy .
OP*3xy
2
-(g/n_ dp
. e Xy daxy
2 . -1
. (s/nxy)p . 1nxyo[(6da)xy nxyaxy] . A
~(1/26) (o),
. I n e da,xy .

op*Ixy

By combining (2.65) and (2.66) we obtain

ipa
fe Ye(a)du(a)
A
(2.67)

2 -
‘(B/nxy)p -ipa,

=e fe 5. G(u)du:(u)
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We set an = supp P --»B.p and define a renormalized current density

) by the equation

a(p) = I o p
xy€~B Xy xy
e (2.68)
= I a p + )} a p
xy€B ¥ ¥ yyeB VXY
P P
for an arbitrary l-form a , with supp a € A* . Furthermore,
- C s
z(8,p) = K(p)expl-8 I n_ _p ] (2.69)
xy€EB v xy
P
By (2.61), (2.62) and (2.64),
z2(B,p) < K(D)exp[‘(6/108)||p]]§] . (2.70)

Corollary 4.

zy=Td [, [1+2(8,p)cos(a(p))Jdiy (@) ,
Y pEN,

S§p=0

-1 _(1/25)(€h'€ﬂ)

W(L)>,(B) =2, e i dYI 1 1[1+z(B.p)
N
pE Y
Sp=0

. cos(u(a)—(eh,up)ﬂ*)]dui(a)

Proof.
We apply the following obvious identities :

i(a(p)-6) =i(a(p)-6 )
COS(a(p)—Bp) =1/2 e P+ 1/2 e P
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whence

m ,[1+K(p)cos(a(p)-6 )]
pEN P

.
iog(p)(a(p)-6 )
= 5 £ I (1/2)K(p) e P

1
E, g N, {o()=t1} | p€E

LA 0€E
y

where the first sum extends over all subensembles Ei = N# :

+1 -8 Fie +i +1
i(a(p) p) 8 ip

1px ax
e = e N e y Xy Il
€B €~B
Xy 5 Xy 0

(s ]
Xy XYy

We then use Lemma 3 to successively integrate out

; lc(o)pxyaxy

n e
peEi xy€B,

for all Ei c Ni and all {o(p)} . Since dist(pl,pz) > V2  for arbitrary
. 1 . P 1

P1sP, in NY with CH # Py » and by our definition of Bp , PE NY .

the hypotheses of Lemma 3 remain valid after an arbitrary number n = 0,1,2,...

of integrations. When all integrations in each term have been carried out

the above identities are applied in reverse, with a(p) replaced by a(p)

and K(p) replaced by z(B,E) ) -

2.9. Estimates on z(BlE) .

We recall that

N, (supp )
0 < K(p) < 3 Il ZI

| s (2.?1)
XycCsuppp

Py

where {zq} is a sequence with the property that
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by 2;1 =1/2 ; (2.72)

(2m) lg=1

see 2.5, [(2.37), (2.38) and Lemma 2] . We now choose this sequence expli-

citly, for example as follows :
z = e ~ (2.73)

where Bo is that positive constant for which (2.72) holds. A simple,

geometric estimate on Nl(supp p) then yields

0 <K(p) < T e = W : (2.74)
Xycsupp o

for some finite constant Bl .
Combining (2.74) with (2.70) we obtain
0 < z(B,0) < exp[(Bl-B/108)|lp||§] . (2.75)
Thus, if B8 > 108 Bl (a fairly large number, alas)

z(8,p) < 1 , so that

[1+2(8,p)cos(a(p)-0 )] 2 0 , for all p €N .  (2.76)

=< =

Moreover, under the same condition,

z(B,p) < exp[%(sl-sfloﬂ)ﬂ pllgl .

(2:77)
. exp[%(ﬁl-B/lOB)L(p)] ’



- 40 -
where L(p) (2 |[p”§) is the number of links in the support of o

2.10. Lower bound on <N(L)>A(B) with perimeter decay.

It follows from (2.76) that for sufficiently large B8

T [1+2(8,0)cos (a(p)) 1duy (@) (2.78)
D€Ni

Sp=0

is a positive measure. This permits us to apply Jensen's inequality to

derive a lower bound on <H(L)>A(B) . Let <> 1 denote the normalized
N
expectation corresponding to (2.78). Y

We shall make use of the following simple estimate :

z cos gf(cos 6-1)+ z sinq sin 9]
1+z cos a

1+z cos(a-8) (1+z cos a) [1 +

22 %9?2
(1+z cos a) eE(a’e)eO(a’e)e -

nv

where

E(as8) = (l+z cos a)_lz cos a(cos 6-1) ,

and

0(a,8) (1+z cos a)-lz sin o sin 8 .

This inequality follows from Taylor's theorem with remainder, applied to
the function log(l+x) , along with elementary estimates on trigonometric

functions.

Thus, by Jensen's inequality,



—L &1 —

J 1 [1+2(8,p)cos (a(p)-8 )]duy (@)

1
EN
. Y
§p=0
- <E(a(p),ﬁp)>Nl
> Z Il {e Y .
=\t 1
Yy pEN (2.79)
Y
§p=0
— — 2 2
= <0(a(p),ep)> 1 -2(z(B,p)/1-2(B,P)) Bp
. e NY e }
But <0(a(5),9p)> L = 0, since 0 is odd in o , while <—> 1 is even
N
Y Y

in o , and

E@),0 )> , < 1/2 ZB0) g2
P N I-Z(Blp) P

1 -
Y
We now set

2
z

G-ﬂz

= = ...z_
Bp - (eﬁ,up)ﬁ* and y(z) = 1/2 T * 2

By combining Corollary 4 with inequality (2.79) we obtain the lower bound

- 2
-(1/28)(Eﬂ,sn) =y(z(B,p))6
<H(L)>, (8) z e {tAr, m, e °} . (2.80)
vy N pé€EN
Y Y
§p=0
where 0 <), =d (Z ,/2) , and 2Z is the total mass of the measure
N N N
Y Y Y
(2.78). By Corollary 4,
le-l. (2.81)
N
Y

Next, by Lemma 1, sect. 2.3, and the definition of up_,see (2.56), sect. 2.7,
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|epj = I(eﬂ’up)h | < pgg: lsﬁ(p)|m:x|up(p)|card(Qp) . (2.82)

For each p € Ni , we now choose a plaquette p(p) containing a link in
supp p and such that p(pl) # p(pz) , for any two current densities

CH # Py in Ni . By the definition of ﬂp (see Lemma 1, sect. 2.3),

le,)(@)=€, (p(p)) |

max|e, (p)| <le\(p(p))]-[1 + max
PEQ lp-p®@)] 2 eLe) e, ()]

for some geometrical comnstant c .

We now recall definition (2.51), sect. 2.7, of € - From that
definition it follows that

le, (P)=€, (P (p)) |
max : B < const.L(p)3 (2.83)

lp-p(p)| < c-L(p) le, ((P)) |

Moreover by Lemma 1, sect. 2.3,

max|u @] < lloll; = llell; (2.84)
P

Finally,
card(Qp) < const.L(p)4 (2.85)

(an elementary isoperimetric inequality). Let c(B) = 1/2(81—8/108) . We

choose B so large that
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2
— @ llell; _
2(8,0) < e 2 ge®BLP) 5 (2.86)

for some § > 0 , for all p € Ni and all y ; see (2.77), sect. 2.9.

We then derive from (2.82) - (2.86) that

—e® o Il

— 2 4
Y(Z(B,p))ep const.{e ”p||2

na

] e_c(B)L(p)L(o)M}Ieﬁ(p(o))l2

a® e, N |? (2.87)

A

for some finite constant d(B) .

By (2.80), (2.81) and (2.87),

v

<W(D)>, (8) 2 expl-{(1/28)+d(8) }(e e ,) ]

(2.88)

exp[-(1/28') (e,,e,)]
with 8' = 1/2((1/28)+d(8)) " .

The r.s. of (2.88) is a Gaussian expectation value of Daz(a) : see

(2.54), sect. 2.7. Recalling the definition (2.51), sect. 2.7, of €p o

we observe that
(aﬁ,eﬂ) < const. (L+T) ,
as Azt .

This completes our proof of perimeter decay of <W(L)>(B) , for
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sufficiently large 8

This result can be extended to the compact U(l) model on 24 with
Wilson's action by combining the present techniques with an adaptation of
Appendix B, Lemma 4.3 and of the methods in §6 of ref. [15] to the U(1l)
gauge theory. Since, due to the analytical subtleties of modified Bessel
functions, the details are rather lengthy but fairly uninteresting we do not
wish to present them here.(The reader familiar with [15] will have no problems

to supply them; see also §3).

2.11. Masslessness of the photon for large B .

We finally prove a result which we believe is new and somewhat impor-

tant.

The lattice approximation of the electromagnetic field strength is
given by

-3 (9 -1 =
1(36 wB)(dep)wB(dep) , for the U(l)-model

with Villain action

o = (2.89)
P
ig sin(dep) , for Wilson's U(1l)-model .
We propose to show that, for large B , the two-point (more
precisely : two-plaquette) correlation of Qp cannot have summable

("integrable") fall-off. This proves that the large B phase of the compact

U(1) model is massless, i.e. the photon is massless, for sufficiently

large B .

As in previous sections, we only present the proof for the Villain

approximation to the compact U(l) model. Most of our arguments extend,
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however, to a general class of actions, and we believe that the result is

a general feature of the U(l) models in the weak coupling regime.

The observable corresponding to %, , after a duality transformation,
is (da)p* . It is therefore enough to estimate the behaviour of the two-
. . 2 . . : .
point functions, <|a(u)|“>(B) , where u is an arbitrary l-form satisfying

Sy = 0 . We propose to prove that

N -1 2 -1

B" (u, (=8) "w) < <la(u)|">(B) £ B(u,(-2) "w) , (2.90)
for some function PB'"(B) < B which diverges to +» , as B »> =

Let (du)uu denote the yv-component of the curl of o (the field

N\

strength), and let (da)uv denote its Fourier transform. By Fourier trans-

formation, (2.90) provides a lower and an upper bound on
N 2
<[ (do) () [*>(B)

N\
in terms of an expectation value of 1(da)uv(k)|2 in the Gaussian measure
dp°(a) with charge g2 = S”l . (B")_1 , respectively. These Gaussian

expectations are well known to be discontinuous at k = 0 :

. /\ N
Lim @)  ®)]%°@®) =0
|k|-0 m
| (2.91)
S— PN
o <[ @) w56 ™ >0 .
[k|-0 /

N\
Thus, <|(du)uu(k)]2>(8) is discontinuous at k = 0 . As a consequence,

<(du)uv(p)(da)uv(p')>(8)
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cannot have summable fall-off, as dist(p,p') > . (Here p and p' are

two arbitrary plaquettes parallel to the wpv-lattice plane, and

(da) () = (da) ) .

This proves our contention. (See also [21] for more details concerning

a similar argument for dipole gases).

Next, we note that, by polarization, it suffices to prove (2.90) for

real-valued l1-forms, u , with ép =0, i.e.

8wy (-0 M) < <a>(8) < BGu, (- M) (2.92)
with B" as in (2.90), u real.

A stronger version of (2.92) is

2 .
exp[ E._QE_ (us (-4) 1u)]

<« (g) (2.93)

A

2

expl &2 w071,

A

for arbitrary real ¢ and real u , with &y = 0 . By expanding (2.93)
in powers of ¢ , subtracting 1, dividing by 82 and taking the limit

e =0, (2.92) follows.

Finally, it is clearly enough to prove (2.93) in an arbitrary,

finite region A , replacing (-A) : by Vy s and < —>(B) by 4—>h(s) .
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2.12. Proof of (2.93) in finite volume.

We fix a real 1-form u , with &8p = O and such that supp u 1is

in the interior of A* . We then define a l-form, T , by
T = eBV,u > (2.94)

where VA is the Green's function of HA*Gd . Next, by (2.47), sect. 2.6

a, [14K (p) cos (a(p)) 1du] ()

D
Y ent
=%y

§p=

We now change variables,
a > att
with Tt given by (2.94).

By (2.52) and (2.55), sect. 2.7,

duﬁ(a) > duA(a+r)

-(1/6)(da,dr)ﬁ* “(1/28)(dT.dT)A*
= e e ] (2.95)

cE I A T [1K(p)eos alp)+dr(y NI (@)
Y e ’ '
P Y
S§p=0

with éup =p , for all o

Moreover,

eea(u) N eea(u) EET(u)
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We now observe that

= (IIB)(dG!dT)A* e EG(U) ’
- (1/28)@t,d0) 4 = = = (1) , and (2.96)
T(u) = eB(u,V 1) .

Therefore

2
(E 3/2)(U,VRU) -1

<e€“(“)>ﬁca) _ £ {$ 4.1}, (2.97)
where
INORNE . [1+K(p)cos(a(p)+dt(up))]dui(a) . (2.98)
pENY
8p=0

Since dui(a) and cos(a(p)) are of positive type in o , and K(p) > 0 ,

for all p , we immediately conclude that

*)
0) . (2.99)

mn

IY(T) < IY(T

Since

0)

m
[

£dl (t (2.100)
Y Y

¥

the upper bound in (2.93) follows from (2.97) and (2.99), by letting

A,2224 .

Finally, we establish a lower bound on IY(T) . This is achieved by

using the results in sects. 2.8-2.10, with

*) This part of the argument does not obviously extend to Wilson's form
of the U(l) model and. has to be replaced by a more complicated, direct

one.
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Bp = dT(up) R (dup =p) .

By (2.79) and 2.80), sect. 2.10,

-Y(z(B,"E))es
1.(t) > 2 p T e >
Y vy N 1
Y DENY

§p=0

for sufficiently large B8 , where

A = E d Z
Nl A Ty N1
Y Y
z 1= f 1 [1+z(B,p)cos a(p)] dui(a) s
NY QeN1
Y
§p=0
and
v(z) ¢ 4z , for z < 1/2 ; (2.102)

see (2.78) - (2.80), sect. 2.10.
By (2.77)

2(8,p) < exp[‘%(ﬁl_BflOS)llpngl -
(2.103)

D [%(Bl-BIIOS)L(p)] ,

where Bl is a finite constant, and L(p) 1is the number of links in

supp p , provided

g > 108 Bl .
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Next, using Lemma 1, sect. 2.3, one finds

Lan]
"

= |dT(Np)| s Ezg [(dt)p|'||p|h card(Qp)
P (2.104)

.

< max I(dr)p p”% . const.L(p)4

€Q
P P

see also (2.82).

We now fix a plaquette, P, > and a positive integer L . We must
estimate the cardinality of the set, N (pO,L) , of current distributions
T

defined by

1 . = =
N (p L) = {o € NY : max |(dr)pi |(dI)P | ,L(p) = L}

€Q
P 0 o

(2.105)
=g P, < Qp » L(p) =L} .

Clearly, the length of the edges of Qp , for some p satisfying L(p) =1L ,

is bounded by L . Thus the support of every p with the properties

L(p) =L and Qp >p,

is contained in a cube with edges of length at most 2L .

Given a cube, Q , with edges of length 2L , the maximal number
of current distributions {pj} c Ni with disjoint supports, all contained

in Q@ , and L(pj) =L, for all j , is bounded by

420 /L = 64 13 . (2.106)

Thus, for B so large that ﬁ = 1/2(31-8/108) >0,
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D ¥(z(8,0))0
€N, (p_,L)
<la@o, |? lloll5 const.L® y(z(8,0))
° QEN (PO,L)
T
2 11 -BL 2 :§”°“§
< |(d1)_ |° const.L™" e max (“p”2 e
= po 0
2
< const.§_l|(d1) |2 L11 e-BL
Hence
Iz Y(2(8,5))6
L=4 pENT(pO’L)
~1 2 . T 11 -BL
< const.B |(dt) |“{: L e
P, Ledi (2.107)

A

2
c(s)l(dT)p

o ?

for some function c¢(B) which tends to 0 , as B + = , exponentially fast.

(We have used that Nr(po’L) =@¢ , for L < 4) .

If we now insert (2.106) into (2.101) we find

~c(8) ||ax]| 2
I (1) > e LAy
Y Yy N
2 Y
-c(ﬁ)||dTH2

=e

By (2.97) ,

(c8/2) (w,v ) —e(® | dr|

e e

= (8

nv

e26/201-2¢(8)8] (u,V,u)

= g 3

where we have used (2.96).
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This completes our proof of the basic lower bound (2.93) in finite

volume and thus of the masslessness of the photon for large B8

Remarks.

1) Using correlation inequalities [17, 24] one derives from the results
in this section the existence of massless, deconfining phases in all D-di-
mensional U(l) gauge theories with D > 4 . Alternatively, a direct proof
can be given by using a duality transformation and a straightforward modi-

fication of the techniques developed in this section. See also [15] and §4.

2) It appears that the techniques of this section along with connections
between the four-dimensional, dual U(l) theory and bond percolation are
useful to study the scaling limits for large B (ordinary, free QED) and

for BB

erit (massive, confining QED). Our ideas and some results on

bond percolation suggest that the latter theory might be a non-trivial,

confining version of QED.
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§3. QED phases in the four-dimensional EZN lattice gauge theories, for

large N .

] o In this section we prove inequalities (1.13) and (1.15), i.e.

(M) a

WL p)> 7 (B) 2 expl-d(1+m)]
(3.1)

<D >(N)(B) > exp[-6(L+T)] ,

LxT

for the four-dimensional ZZN models, for all

B> B ;. (U()) (3.2)
(the critical value of B for the U(l) model), and all

N > N(B) , (3.3)

where N(B) 1is an integer-valued function of B which diverges to +»

as B > o , Here < >(N)(B) is the infinite volume state of the EZN model

at "temperature" B-l - gz . It follows that for

N > Nc , with Nc < N(Bcrit.(u(l)) < (3.4)

there exist EC(N) and Bc(N) , with

B, (N) <B (N) <=, and B (N) <8 (u(r)) , (3.5)

crit.
such that for

§C(N) < B < ﬁC(N)

both inequalities in (3.1) hold.
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A standard high temperature expansion shows that <W(L)>(N)(B) has
area decay, for sufficiently small B (depending on N), and a low tempera-
ture expansion (or a high temperature expansion applied to the dual model)

(N)

can be used to prove that <DL> (B) has area decay when B 1is sufficiently

large (depending on N )

Thus, for N > Nc , the Z _  models have a "quark" confining high

N
temperature phase and a "magnetic monopole" confining low temperature phase,
separated by an open interval, (EC(N),EE(N)), of QED phases. It is believed

that N =5 .
c

For the Villain approximation of the Zy models this result follows
from [13] by using self-duality and correlation inequalities, as shown in

[16].

We reconsider the EN models for the following reasons

1) Our method will not rely on self-duality. This permits us to analyze
a large class of actions, including Wilson's action, and to exhibit inter-

mediate QED phases in D-dimensional Z _ lattice gauge theories for

N

arbitrary D > 4 .

2) Our methods involve a renormalization transformation which maps some

class of ZZN expectations in the intermediate QED phase onto expectations

in a model with local U(l) gauge invariance. (This is the phenomenon

described in sect.l).

3.2. We consider a family of models interpolating between the U(1l)- and
a EN model. Let duB(B) denote the infinite volume limit of the measures
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-1 Bcos(dep)
=2 it n d
(3.6)
4
de = LI 8 s, ACcZ ,
P Xy<op Xy

which correspond to the four-dimensional U(l)-model with Wilson action in a
finite region A . Instead, we could define d”B(eh) to be the finite

volume functional measure of the Villain model by replacing exp B cos(dep)

oo

by I expl- -g-(dep+21rn)2] . In both cases the limit A r"ZZ4 exists, thanks
n=-o

to Ginibre's inequalities [17].

We now define

_ h cos(N8 )
aupe) = @p TN eme aug0) (3.7)
’ xy<A
where
2m
E(h) = (%; f eh cos(NB)de) 1 . and
o
(3.8)
h h cos(Nex )
zg p = 2:A£(h)e Y dug(e) .
X

Clearly, dug(ﬁﬁ) approaches the Eudlidean functional measure of the ZZN
model in a finite region A with free b.c. , as h =+ «.(Actually b.c. turn

out to be quite irrelevant in our analysis : We could replace duB(G) by
d“s(en) in (3.7) and (3.8) which would merely slightly complicate notations

in subsequent formulas).

Let <—>(B) denote the U(l) expectation, and <—bn(8,h) the
one determined by the measure (3.7). By Ginibre's inequality [17],

<W(LLKT)>A(B,h) is monotone increasing in A and in h , so that

WLy D>, (B,h) > WL )>(B)
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for arbitrary A 524 » h >0, and

w(l, 0>™ @) = Lim, lim <wW(Ly, 0>, (8,h)

LxT A ZE b

Lim (L) (50

Thus, for 8 > B_ .. (o)) ,

(L, 0> @)

nv

<W(L, _..)>(B,h)

LxT

v

WL )>(B) (3.9)

v

exp[-d(L+T)]

which proves the first inequality in (3.1).

3.3. We now turn to the analysis of the expectation value of the disorder

operator and propose to establish perimeter decay for sufficiently small B

We closely follow the scheme developed in sects. 2.4 through 2.10.

The first step consists in using the Fourier expansion

£(h)exp{h cos(NB8)}= 1+ E A(q)cos(gNB) , (3.10)
q=1
where
O
A(q) = — | exp h cos(N®) cos(qN6)de .
o
Clearly

0<X(q) <2, and A(q) 2 , as h > = , (3.11)

Let {z(q)} be a sequence of positive numbers with the property that
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[+ <]

I t@ =1,
q=1 (3.12)

€q 1

e.g. t(q) =ce s (c€'<€— ) »

for some € > 0 chosen later.

Then

oo

1+ I X(q)cos(gNe)

q=1
- (3.13)
= 1 C(q)_1(1+z cos(qNB)) ,
N gN
q=1
with
0 <z g = T@A@ < 2e tefd . (3.14)
With (3.7) this yields the following expression for the functional
measure of the ZN model in finite volume
h h -1
d = (Z I d - 315
us(eﬂ) ( B.A) (6,) uB(e) ( )
where
I(6,) = c I (l+z cos(q__Ne_)) , (3.16)
A a, Y xyeh quy Xy Xy
and = {q__} c =1 g )t
) Xy xye)’ a, e qu :

xXycA

We now redefine a current distribution, p , to be a function on the

set, B , of directed bonds in ) with values in NZ , of finite support.
A l-ensemble, El , is a family of current distributions, p , with the
properties

supp p < A , for all p € El ’

(3.17)
dist(p,p') ; /i_
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for all p and p' in El with p # p' . See Sect. 2.6. Repeating the

combinatorial expansion of sect. 2.6, see Lemma 2 and (2.46), we obtain

I(e,) ==& d m (1+K(p)cosb(p)) (3.18)

Y 1
EN
e Y

where 6(p) =¥ 6_p
Xy Xy xy
is a l-ensemble, and

. s . 1
, Y ranges over a finite index set, each NY

i) d >0, for all y ,
Y (3.19)

N, (supp o)
ii) 0 <K(p) < 3 i 2|

Xy<supp P

|-

ny

(We recall that Nl(supp p) 1is the number of bonds within distance <1

of suppp) .

Since the measure duB(B) is invariant under U(l) gauge trans-

formations, we can impose the condition

§p =0 , (3.20)

as long as we only want to compute expectations of gauge-invariant obser-

vables in the measure dd;(eﬁ) .

3.4. Next, we discuss the expectation value of the disorder operator

DL . We choose the definition of D , for 0 < h S, such that
LxT LL><T
for h =0 (U(l) model) and h = « (ZN model) it agrees with the one

proposed in (1.14). Thus

_ h cos(N6 )
@f > = @ DT 1 e A
LxT ’ xyc<A

(3.21)

. g exp B[cos(d&p+¢5)-cos(dep)]dp8(e) ,
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where

/
2ng/N , for p* € L ,

(3.22)

0 , otherwise,

0

£g=1,2,...,N-1 , and I 1is the rectangular array of plaquettes in the

0-1 plane bounded by LLXT .

£ h -1
<D > (B,h) = (Z_ ,) {zd_ .
LLxT A B, A Y Y

. [ 1 [1+K(p)cosb(p)] . (3.23)

1
eN
2 Y

§p=0

. g exp B[cos(d8p+¢$)-cos(d8p)]duB(G)

In each term on the r.s. of (3.23) we make a real change of variables
8 > 0 + T ’ (3.24)
where 1 1is the l-form determined by
1

T=6A @, (3.25)

with ¢ given by (3.22). (We are repeating here the change of variables

already used in sect. 2.7). Now, notice that
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=1
d = (déa "o
( T)p ( )p
= < - (sda"tg) (3.26)
P P
— +
—@p EP ’

By definition of © ,

2nE/N , for =xy € LLxT ’

*(dm)xy - W (3.27)

0 , otherwise.

Hence

where d is the distance between p and LLXT .

Inserting (3.24) - (3.26) into the r.s. of (3.23) we find, using

the periodicity of the cosine and Lemma 1, sect. 2.3,

h -1
<D > (B,h) = (2 ) rdlI (e), (3.28)
LLxT A ByA y YY

where

1 (e) =) 1 [14K(p) cos(8(p)+e(u )] .
Y 1 p
p€NY

$0=0 (3.29)

. R(do+e)duy (0)

and
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R(de+e) = g exp B[cos(d9p+drp+¢b) - cos(dep)]
= g exp B[cos(d6p+ep) - cos(dﬁp)] . (3.30)

(We have used (3.26), the fact that up takes values in NZ and the

periodicity of the cosine to get rid of ¢ ) .

3ai5 Next, we must perform the renormalization transformation. It is a

straightforward variant of the one described in sect. 2.8. (We draw on

some ideas from §4 of [15] .)

Given any current distribution p in a l-ensemble, Ni , we choose
a set of links Bp contained in supp p , with the property that two

different links in Bp do not belong to a common plaquette and such that

e, | 2 /18yl (3.31)
xyEBp Xy 1

see (2.62), sect. 2.8. Since

for any two distributions CPELDS in Ni » Py ¥ Py s the choice of Bp

only depends on p but is independent of Ni ~ {p} , and there is no

plaquette containing a link of Bp and a link of BD, , for any p' € N# .

Our renormalization transformation consists of integrating out all

variables

{sxy . XY € Bp

1
p € NY}
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As in the proof of Lemma 3, sect. 2.8, one sees that this can be reduced

to evaluating the integrals

ip 6 RBcos(de +e )
S )= Je Xy xy it e P P gp .
Xy Xy
p:dpoxy

xy € Bp SpEE Ni . This is achieved by performing a complex translation,

(see also Lemma 4.3 of [15] ) . Under this change of variables,

e C"pxy e6B(coshu-—1)I elpxyexy

S(pxy
(3.32)
Bcos(dB +e )
. I ig(a3de +e ) e P P de_
p: 3poxy P P y
where
ig(a3de) = e‘B(cosha—l) eB[CDS(d9+1a)-c03(de)] (3.33)
Using the identity
cos (p+ia)-cos @ = cos @ (cosha-1)-ising sinha ,
one sees that
naxliglas)] g1 . (3.34)

Thus, the optimal choice of o« in (3.32) apparently corresponds to minimizing
- + -
LU 68 (cosha~-1)

For our purposes it suffices to choose
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hence

-ap
e

xy  6B(cosha-1) ECIB_COIDKYI s (3.35)

A

where <, and ¢, are finite constants.

We now define

i(de(u )+E(up)) .
F(p;db+e) = 5 e P

. I I i,(a_ 3d6 +e_ ) + (3.36)
B
xyC£p p: Ip=xy . PP
=i(de(u )+e(u ))
1 THdelu)elyy (o
7 e I 1 18( axy,d8p+ep) .

xyB  p:opaxy

By (3.33), F(p;db+e) 1is a real-valued function of 6 which, by (3.34),
is bounded in modulus by 1 and, for € =0 , is even in 6 . Furthermore,

we define

c,8-¢_lo__|
K(p) T e 1 ottxy

"YCBp (3.37)

z(B,p)

A

K(p)exp(1/18)[c;BL(p)-c_|lo]l,]

By repeating the arguments used in the proof of Corollary 4, sect. 2.8,

and making use of (3.31) - (3.33), (3.36) and (3.37) we obtain

I(e) = [T [142(8,0)F(p;dere)] .

1
eN
P Y

§0=0 (3.38)

. R(d8+e)du8(9) .
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3.6. The lower bound for IY(E) -

We now estimate z(B,p) and then prove a lower bound on IY(E)
which will establish our main result, the perimeter decay of the expectation
value (3.28) of the disorder operator, Df , for N > N(B) and all

LxT
finite values of B

From the upper bound (3.37) on z(B,p) we derive, using inequalities

(3.14) (bound on qu) and (3.19) (bound on K(p)) ,

z(B,p)

A

K(p)exp(1/18)[CIBL(D)'Collp”l]

A

explc, (B)L(p)=(cyN-¢) (1/N) [l ]

for some function cz(B) < c13+c4 and some finite constants c3 > 0 and

c4 . It follows from the fact that a current distribution takes values

in NZ that

amllell; 2 L) »
so that if N > 1 + e/c3
z(8,p) s expl(c,(B)-csML(p)-c,[lo|l;] (3.40)

for some positive constants c5 and c6 . (Given B and N , one may

now optimize in the choice of € ; see (3.12)).

for some constant c_ < » ,

Thus 1f N > clB + s -

z(B,p) <1,
and

z(Byp) 0 , as N> o, (3.41)
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exponentially fast, for arbitrary B < = .

We now analyze the dependence on Ep of the integrand on the right
side of expression (3.38) for IY(e) . For this purpose we rewrite the

factors 1+z(B,p)F(p;d6+e) , namely
1+z(B,p)F(p;db6+e) = [1+z(B,p)F(p;do)]

Z(S,p){F(p;d9+6)~F(p;d6)})
1+z(B,p)F(p;d6) ’

. exp n(1 +

and apply Taylor's theorem with remainder to the functions 2n(l+x) and

F(p,d6+e) - F(p,d6) . This yields

1+z(B,p)F(p;do+e) = [1+z(B,p)F(p;de)]

(3.42)
. exp Op(e;de)exp Rp(e;de) -
where
. -9 . . z(B,p)
0, (e3d8) = o5 F(p3do+de) [, _g 15208, ) F (5 d6) (3.43)

which is an odd function of 8 , because F(p;d8) 1is even in 6 , and

cq0y = - L[ t-z(B,0){F(p;do+e)-F(p;de)} | 2
Eo T+z(8,p)F(p;d0)

2
3
z(B,p) F(p;d6+Xe) |, _
an2 A=s

, (3.44)

+
[

1+z(B,p)F(p;d6)

for some numbers t and s 1in the interval (0,1) . By inspecting the
explicit expression (3.36) for F(p;df+ie) and estimating the first and

second derivative in A one shows quite easily that
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|Rp(e;d6)| < kp(E)zz(B,p) ,
where (3.45)
k (e) = C{Ie(up)l + BL(p) max lep!} ;
p € supp p
for some finite constant C , provided N 1is chosen so large that
z(B,p) < 1/2 , for all p € Ni and all y . (By (3.40) this is the case

for all sufficiently large N ).

Furthermore, from definition (3.30) of R(d6+e) , sect. 3.4, and

Taylor's theorem with remainder we derive

R(do+e) = 0(€3d8)  R(e;de)

. (3.46)
where O0(e;d6) is an odd function of © , and
\

_ 2
R(e,d®) = & R(dep)ep ’
P )
(3.47)

with |R(dep)| < B/2 .

We now insert the right sides of (3.42) and (3.46) into (3.38) and subse-
quently apply estimates (3.45) and (3.47). This yields the following lower

bound on IY(E) .

-8/2) ||¢ || :
Iy(e) > e I [exp -kp(s) z(B,p)] .
pENl
i (3.48)
§p=0
r -0 (e3;de) _.. .
N ll+z(s.p)F(o;de)Je P 0y, (o)
peNi '

§p=0
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Since 1 [1+z(B,p)F(p;d9)]duB(8) is an even, positive measure in 6
1
EN
. Y
§p=0

if N 1is so large that =z(B,p) <1 , for all p € Ni and all Y |,

while I Op(e;dﬁ) and O0(e;d6) are odd functions of 6 , Jensen's
i
eN
"=y
Sp=0

inequality finally yields

—(e/z)netfg ,
O {n expl-k (e)72(8,0)13-1 (0)  (3.49)

1
EN
"%y

§p=0

We now estimate kp(e)

Using Lemma 1, sect. 2.3, we obtain

k (€) C{|e(up)|+BL(p) max |e_|}

p€supp p ©

na

C(const.{lp”lL(p)4+BL(p)) max |e

| »
P
pEQD

na

4
C Bllp” L(p) . max [g | ,
1 1
peq <

see (2.104), sect. 2.11, so that by repeating the arguments leading to
(2.105) and (2.106) and inserting the upper bound (3.40) on z(B,p) we

find
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$ k (e)%z(8,0)
1 o]

EN
Z Y
P=0 2 -06”0”1
scpmax (ollfe & h .
1
OENY
o =(c,(B)=c.N)L
coroutte 2 T el
L=4
2
é C(BsN)IIEHZ ’ (3-50)

for some function c¢(B,N) which tends to 0, as N =+ o , exponentially

fast, for each B < w=.

vt We now return to our basic identity (3.28) for the expectation
value of the disorder operator and insert the lower bounds (3.49) and (3.50).

This yields

<nf >y (8:1) = T2 1 (e)/1 (0)
It Y (3.51)
2 expl-{(8/2+e (8, }|[¢]|2]
where
_ b -1 )
AY = (ZB’A) dYIY(D) , hence ¢ AY 1,
and
IY(S) = [ 1 [1+z(B,p)F(p;de+e)]
pENi
soes (3.52)

. R(dB+e)duB(B) .

By (3.22) and (3.25), (3.26)

chi > const.(E/N)z(L+T) . (3.53)
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Thus, for arbitrary h <« and A ::24 5

2
<DE >A(3,h) > e-const.B(E/N) (L+T) , (3.54)
xT

L

v

for each B <« and N > N(B) , for some function N(B) < = , (with
N(BY /'« , as B A« ) . This completes our proof of the lower bounds

in (3.1).

Remarks.

1) The main results of this section are identities (3.51) and (3.52), the

bounds (3.49) and (3.50) and the final inequality (3.54).

2) Identities (3.51) and (3.52) relate <DL >A(B’h) to (a convex combi-
LxT
nation of) expectation values of an observable, somewhat analogous to the

disorder operator, in the measures

1001 T [1+z(8,0)F(0;d6)ldu, (8)
Y 1 B
pEN
Sp=0

(3.55)

which correspond to lattice gauge theories invariant under U(1l) gauge

transformations. (The observable is defined as the substitution

dgw» do+e |,

to be compared with definition (1.14) of disorder operators. It can be

viewed as a renormalized disorder operator).

The same comments apply to <W(LLXT)>A(B‘h) , but we do not wish
to present the appropriate renormalization transformations for this

expectation in the present paper. (See however [15] for the solution
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of a similar problem concerning correlations of fractional charges in a

two-dimensional Coulomb gas).

3) The techniques presented in this section can be extended to ZN gauge

theories in dimension > 3 .
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§4. Transitions in classical XY models and "hyper gauge theories"

4.1, In this section we comment on the phase diagram of a general class
of U(l) lattice models and their duals which are natural generalizations
of the XY model and the U(l) 1lattice gauge theory. They are of some
interest for the statistical mechanics of defect gases. For the group Z

2

such a class of models (generalizations of the Ising model and the 222

lattice gauge theory) were first studied by Wegner in his basic paper [25].

As a byproduct we obtain results on the phase transition in three-
or higher dimensional classical XY models, and, by combining the results
of this section and of [15] with correlation inequalities [17,24], some
of the essential features of the phase diagram of abelian Higgs lattice

theories in three and four dimensions can be established; see [5].

Thus, for the classical XY model [11] and the Villain approximation
in three- or more dimensions we find a proof of existence of a phase transi-
tion, accompanied by spontaneous breaking of U(l) and the appearance of
a Goldstone excitation, and for the Higgs models we conclude the existence

of a superconductor - QED transition, [5].

4.2. Definition of models.

A rank-k U(l) lattice theory is defined as follows : The configu-

rations of a rank-k U(l) lattice theory are functions

0t c b olc) € sl 4.1)

“k

defined on k-cells, C in .'ED with values in the unit circle, identified

with [-m,m) , and with the property that
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8(c,) = —6(c;) . (4.2)

where Ck is the same k-cell as Ck but with reversed orientation;

see sect. 2.3.

We set

d%ck+1) = Cgc 6(c,) (4.3)
‘i kel
where the orientation of is the one prescribed by the orientation of
Ck+1 -

Let @y be a function on Sl of positive type, e.g.

expBcos 6 ,

Pg(8) = (4.4)

r expl- %(a+21r9,)2]

Q==c0

The vacuum functional (equilibrium state) of a rank-k U(l) lattice theory
with inverse square coupling (inverse temperature) B in a finite region

A CZD is given by

ol
dug(e) =7° ;ps(de(ck+l)) Tcﬁde(ck) 5 (4.5)
“k+1< "
where 'ZB A is the usual partition function.
o

We propose to derive the phase diagram and the lower critical

dimension, Dc , of rank-k U(l) 1lattice theories. We claim that
DC = k+3 (4.6)

except for k = 0 (XY model) where
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D =2 ; see [15].
c

A natural observable to analyze is the following : Let Sk be some closed,

. . . D .
oriented surface built out of k-cells in Z . We define

1m6(ck)
W (s) = I e (4.7)
m k c. S
k 'k
and
W (80> (B) = [ du (8 )W (S)) . (4.8)
Hm is the analogue of the Wegner-Wilson loop. Let Ek+1 be a bounded,

(k+1)-dimensional region in ZP built out of oriented (k+l)-cells with

boundary 32k+1 = Sk . By (4.2) and (4.7)

imde(e, .)
) k+1
Wm(Sk) = I e (4.9)

Cra1%TK41

Note that, for k > 1, duB(BA) and wm(Sk) are invariant under the

gauge transformations

e(ck) (X8 e(ck) + dw(ck) ,

(4.10)
dm(ck) = pX w(c
k-1

k-l) s
where ® 1s an arbitrary function defined on the (k-1)-cells in EZD

with values in S1

When k = 0 , i.e. for the classical XY model, Sk=0 = {x,y} ,

(two sites in ZZD) .

im(6 -0 ) imde
W (S) = e XY a g e LA (4.11)

bEEl
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where 21 is a line of oriented links joining x to y , and gauge

invariance is replaced by invariance under the global symmetry

6, >0 +u , € [-m,m) . (4.12)

For the XY model , D_ = 2 ; see [15].

The results of this section concern the models in D > 3 dimensions
which have the property that the dual models are Z (hyper) gauge theories
to which our methods apply.

The methods of sect. 3 permit us to also study rank-k ZZN-models
in dimension D > k+3 . (They are defined in the obvious way) : As in
sect. 3 one can prove the existence of intermediate phases, for sufficiently

large N .

4.3. The duality transformation.

Our analysis of rank-k U(l) theories relies on a duality trans-

formation. Let qk (n) , n€Z , denote the nth Fourier coefficient
k+1 1

of a function @, (6) on S . By Fourier transformation
k+1

[ 1 ¢ (de(e,,,)) m de(c,)
k+1 k

c
ck+f:h k+1 CE:A
(4.13)
= 3 n o (n(c, . ,))
e c k+1 d
n:&n=0 ck+1Ch k+1

where each n 1is a divergence-free, integer-valued (k+l)-form with
support in A ; see (2.15) and (2.19). Given some integer-valued
(k+1)-form n , supp n< A , there exists an integer-valued (k+2)-form ,

m , with
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n=06m, and supp mc A . (4.14)

See Lemma 1, sect. 2.3. ( A is assumed to have trivial homology. The
multiplicity of solutions, m , of (4.14) is then independent of n . For
details concerning the special case D =2 , k =1 see Appendix A of

[15]). We define
a =% m (4.15)

which is a k* = D-k-2 form. Thus

I @, (de(ck+1)) m de(c,)

c, . .cA k+1 c,ch
k+1 k (4.16)
= 3 I ¢  ((xda)(c,, )
c k+1
[a]l ¢ =h Tktl
where g ranges over all equivalence classes of integer-valued
[a]
k*-forms, o , with
n = xda , supp & A* . (4.17)
Applications.
1) @, = wB , for all Cral c A . This yields
k+1
ZB,A = [E] . i o mB((*da)(ck+1)) . (4.18)
k+1
2)
P > ka1 SN Iy
(p =
Ck+1
im0
e s C c ) .
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with (4.18) this yields

<W_(5,)>, (8)
=t ~ - .
= ZB,A{[&] . £ﬁ~v Q%((*du)(ck+1))c gz ﬁé(*d“)(°k+1) m) }
k+1 “k+1 k+1 Tk+1
(4.19)
As an example, we consider the rank-k Villain models. One chooses
o 8 2
wB(G) = I expl- 5 (6+2m2)°1
i.e.
&B(n) = const. exp[—n2/261 : (4.20)
Then
WS> B = 21 (5 expl- 5(dose) (e, )PT)
’ [a](ck*)*cﬁ*
where
- = * *
™o O = ) S 5
w(c;*+1) = (4.21)
0 , otherwise
For the three-dimensional Villain model (k=0) we obtain
i(ex—ey) g §
<W1(So)>A(B) = <e >A(B) = B¢ y>ﬂ(8) ’ (4.22)

so that

<§;-§y>n(s) =2 {5 1 expl- %E(da+¢ﬂ(?)2] ,

BsA 4] pcA*
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(-1 , if bzp*czl

where o(p) = (4.23)

0 , otherwise ,

and 21 is a path of links, b , (dual to plaquettes for D = 3) joining

X to y.

Remark. One may also introduce disorder operators, Dgs , for
D-k-1
rank-k U(l) theories, in analogy with (1.14) and (3.21). It is easy to

show that
D >, () - '*Z;IA( DT @ ((kda) (e, 1)
“D-k-1 *% [l Ck+l
ia(et,) (4.24)
Il *e
*
(38 1) J

For k >0 and wB as in (4.20)

g
<D, > (B) > exp[-const.vol.(3S_ ., )]
38y oy A = D-k-1

This follows from the result for the Gaussian expectation value, by using

the correlation inequalities of [24]. For the Villain model (k=0)

4D§; >A(B) is related to the surface tension which vanishes in the thermo-

D-1
dynamic limit. The asymptotic behaviour for large SD—l > A}‘?ZD , can be deter-

mined by combining the results of [15] (k=0, D=2) with correlation

inequalities. See [5] for the three-dimensional model.
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4.4, The main results.

We now study the expectation value <wm(sk)>ﬁ(8) for a rank-k
Villain model. As in sect. 2.6 we reexpress the dual model in terms of a

Gaussian measure, duo(u) , defined, for D-k-2 > 1, i.e. D > k+3 , by
A = =

exp[- -g-(u,vﬁu)] , if du=0
[ ad@et*® - (4.25)

0 , otherwise ,

where VA is the Green's function of HA* 6d , see (2.34), sect. 2.5.

When D-k-2 =0 , a 1s a scalar lattice field, and dui(a) is the

usual Gaussian measure with Dirichlet b.c. at dA . In this case, the dual
of the rank-k Villain model is isomorphic to a D-dimensional Coulomb gas.
For D = 2 this gas is analyzed in [15], where it is shown that it

exhibits a Kosterlitz-Thouless transition. For D >3, it is believed that

there are no bulk phase transitions in this gas and that it exhibits

Debye screening [10], for all values of B . (This is because the Coulomb

=D+2

potential behaves like dist. , for D >3, while in D = 2 it behaves

like 1log(dist.)). The main result of this section is that when
D > k+2

the rank-k Villain model has a massive small B phase in which

)
<Wm(Sk)>(B) < expl const.vol(2k+1)] 3 (4.26)
o . . s . - ) -

where Ek+1 1s a minimal region with 32k+1 = Sk ; (this follows from

a standard high temperature expansion), and a massless large B phase

where

<Wm(5k)>(8) 2 exp[-const.vol(sk)] . (4.27)
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The proof of (4.27) is a straightforward variant of the one in sects. 2.4 -

2.10 which we sketch below.
In conclusion, the lower critical dimension is

Dc =k+3, for k>1 . (4.28)

4.5. As in sect. 2.6 one shows that, for a rank-k Villain model,

<W(Sk)>ﬂ(8)

[++]

=1
=2 [ nm {142 ¢ _ cos(qale, 4 )} .
Bh e e 2mlge i+ (4.29)

0
. Rw(da)duh(a) .

where

1
Rw(da) = 1 expl- Eg{z(du.w)+(w.w)}

ck*Cﬁ*

We now apply the combinatorial expansion of sect. 2.6 to

I(a)) = M {142 I _,

cos(qu(cup)} (4.30)
C\ x< ¥ (2m) “q=1

We define a rank-k* current distribution, p , as a function on

(k* = D-k-2)-cells in A* with values in 27 Z .
By mimicking the combinatorial scheme of sect. 2.6 we obtain

I(ah) =z du M [1+K(p)cos alp)] , (4.31)

Y 1
N
=Y

S - 1 .
where vy ranges over some finite index set, each N is a l-ensemble,
Y
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(i.e. dist.(pl,pz) > Y2 , for two distinct rank-k* current distributions
Py and Py in Ni ) , and
i) cY >0 , for all ¥y
N, (supp p)

ii) 0 <K(p) <3 Il
C #SUPP o

»

zlp(ck*)l

where Nl(supp p) 1is the number of k*-cells within distance < 1 of suppp ,

and

for some constant Bo with the property that

2
oo —Bq -
. o © 1/2 .

(2n)_1q =1
Thus

-1
<M (5,.)> (B) = ZB-h{z dfn 1[1+K(p)cos a(p)] .

Ny
pEN, (4.32)

. rzwcda)dui(an .

Because of (4.25) we may omit all factors from the right side of (4.32)

for which & # O , provided D > k+3 . (See [15] for D=2, k = 0 ).
Next, we change variables :

o > att |,

where (4.33)

-1
T = Gﬁﬁ ¢®

and ¢ 1is given by (4.21). Since
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Hﬂ*dt = ~Pte, , with
(4.34)

-1
€y = ~M,48d8, 0

we obtain, using Lemma 1, sect. 2.3, and the periodicity of the cosine,

W (505, (®) = 2 (1 d [ [LRG)cos(alpd e (4 )]
Y
pEZNY

8p =0 (4.35)

. dui(u+eﬂ)}

The renormalization of the right side of (4.35) is performed as in sect. 2.8,

(see also sect. 3.5,and §4 of ref. [15]) . It yields

el
<Wm(3k)>ﬁ(8) = ze’ﬁ{z dY .
Y
. Jom 1 [1+Z(BsE)COS(a(E)+aﬂ(u )]dui(a+eﬂ)} . (4.36)
p€EN P
Y
Sp=0
where
— 2
z(B,p) < exp [(c;=d;B)[|p|[5] expl(c,=d,B)L(P)] ,
for B > max(clldl,czldz) . Here L(p) 1is the number of (k* = D-k-2)-cells

in supp p , and cl,cz,d1 and d2 are finite, positive constants. A
straightforward variant of the estimates in sect. 2.10 and of (2.104) - (2.107),

sect. 2.11, yields.

W (5,)>,(B) > expl- E%T (epoepl (4.38)
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provided B 1is sufficiently large. Here

.
28

1
2p'

+ d(B) ,

where d(B) 1is a finite function which tends to 0 , as B > = ,
exponentially fast. See (2.80) and (2.87), (2.88), sect. 2.10. Finally,
from (4.34) and the fact that the gradient of the Green's function of the

Laplacean, A = -(dé+8d) , decays like, (lldist.)D-l , we conclude that
1imD(Eh’Eﬁ) < const.vol(Sk) . (4.39)
Az

for D > 3 . This completes our sketch of the proof of (4.27).

In the example of the three- (or higher) dimensional Villain model

(k = 0) we obtain from (4.38), (4.39) and (4.23)

<§x.§§>(6) = lim <§x'§§>ﬁ(8)

AP zP

> exp[--"l— const.vol.(S )]
» 28 0 (4.40)
= exp(-C/B) ,

for some finite constant C independent of x and y , provided D >3
and B 1is sufficiently large. (The limit A/ EZD exists, as follows from

Ginibre's inequalities). Inequality (4.40) expresses long range order in

the spin-spin correlation of the Villain model, for sufficiently large
values of B . Thus, in the pure phases obtained by ergodic decomposition

of <—>(B) , the continuous, global U(l) symmetry is broken.

The masslessness of the large B phases of rank-k Villain models,

with D > k+3 , can be proven by generalizing the techniques developed in
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sects. 2.11 and 2.12 in a straightforward way.

The techniques of our paper do not depend upon imposing special
b.c. (They apply to a very large class of U(l)-invariant b.c., see e.g.
Appendix A of [15] for a discussion of such b.c. for the two-dimensional,
classical XY model). None of our estimates relies on translation invariance.
Using the tools in §§6 and 7 and Appendices B and C of [15], we can extend

our results to a fairly large class of functions, ¢, , in particular

B
wB(B) = exp B cos 6 .

These are definite advantages over the methods of [11] which rely
on translation invariance and reflection positivity. (Those methods do,
however, permit one to analyze spin systems with non-abelian symmetry groups
for which no useful notion of duality exists, such as the classical Heisenberg

model).

We believe that our methods ought to be useful for the analysis of the
quantum mechanical XY model, models of interacting Bose gases and

statistical mechanical models of defects and dislocations in ordered media.
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