ON THE ABSENCE OF SPONTANEOUDS SYMMETRY BREAKING AND OF

CRYSTALLINE ORDERING IN TWO-DIMENSIONAL SYSTEMS

Jiirg FROHLICH! Charles PFISTER®

Institut des Hautes Etudes Sclientifiques

35, route de Chartres, F-91440 Bures-sur-Yvette

5 Département de Mathématiques, Ecole Polytechnique

Fédérale, 61, av. de Cour, CH-1007 Lausanne

Institut des Hautes Etudes Scientifiques

35, route de Chartres
91440 Bures=sur=Yvette (France)

IHES/P/BL/31



Abstract.

We develop a unified approach, based on Araki's relative entropy
concept, to proving absence of spontanecus breaking of continuous, internal
symmetries and translation invariance in two-dimensional statistical-
mechanical systems. More precisely, we show that, under rather general assump=
tions on the interactions, all equilibrium states of a two-dimensional system
have all the symmetries, compact internmal and spatial, of the dynamics,
except pessibly rotation invariance. (Rotationm invariance remains unbroken
if connected correlations decay more rapidly tham the inverse square distance).
We also prove that two-dimensional systems with a non-compact internal symme-

try group, like anharmonic crystals, do typically not have Gibbs states.



1. Introduction and main results.

It is well known that continuous symmetries of two-dimensional
gtatistical mechanical systems or two-space-time-dimensional quantum field
theories cannot, in general, be broken spontaneocusly (except in systems
with interactions of very long range). Mathematical proofs of this fact have
been kmown for quite a long time : They have appeared inm work of Mermin and
Wagner [1] concerning quantum spin systems on a two-dimensional lattice, of
Mermin [2] concerning classical lattice spin systems, and in [3] where clas-
sical particle systems have been analyzed. For related results concerning
quantum field theory, see [4], [3] . In [1] and [2] it is shown that the
spontaneous magnetization vanishes and in [3] , that the density of particles
is constant, thus excluding the existence of erystalline order. Physical
background material as well as the mathematical outline of the proofs are
very well explained in [6] . The basic tool is Bogoliubov's inequality, which
was used for the first time, in this context, by Hohenberg in his study of
the Bose gas [7] . (A rigorous proof was later published in [B]). Using
Bogoliubov's imequality Fisher and Jasnow [9] proved clustering properties
of the two=point function and, consequently, that the order parameter vanishes.
Mc Bryam and Spencer obtained a better decay for the two-point function of
classical spin systems, using new techniques |:!1:l]1"I . Shlosman generalized
their work to the case of a compact connected Lie group [11). (The extension

of [Z] to this general situation was given by Vuillermot and Romerio [12]).

In the current context of statistical mechanics, Garrison, Wong and

i 2) : . .
Morisson [11]) were Che First te prove a result about the invariance of the states

1) Their arguments can be extended to quantum spin systems,

2) We thank J. Bricmont for pointing out this reference.



of the system. Their argument employs Bogoliubow's inequality and the algebraic
approach to statistical mechanics. They discussed the internal and the spatial
symmetries of the system. Using a rather different approach, Dobrushin and
Shlosman [14], and later Shlosman [15], proved that all equilibrium states
are G-invariant in the case of classical spin systems, where G is a compact
connected Lie group. In the context of relativistic quantum field theory

this result was anticipated (somewhat implicictly) im [4&]. Recently the
results in [14) were rederived and gemeralized in [16]. Since the new proof
appearing in [16] is simpler, techmically, it turned out to be possible to

obtain optimal results for some class of spin systems. At the same time,

Simon and Sokal [17] proved some related as well as different results. They
proposed a rigorous version of the entropy versus energy argument which

captures one of the basic principles of statistical phvsics.

In this paper we present another approach to the problem, inspired
by [16] and [18]. The basic physical idea can be found already in [19] . Im
section 2, we show that (tempered) Gibbs states of particle systems are

translation=invariant for a large class of potentials. In section 3, we

prove that all EMS-states of & quantum spin system are G-invariant, where

G is as above. This is in particular the case for the Heisenberg model. Our
method can be used to extend the results of [16] to lattice systems of
genuinely unbounded spins in two dimensions, when the internal symmetry

group is a compact connected Lie group G . On the other hand, if the internal
symoetry group G 1is a noncompact connected Lie group, as in the case of

the harmonic crystal, it is impossible to construct Gibbs states. Dobrushin
and Shlosman proved such results in [20], and in section &4, we derive similar
results for a larger class of spin systems. Let us mention the interesting

paper [21] of Jona-Lasinio, Pierini and Vulpiani, where this problem is



discussed. We also derive results similar to those obtained by Brascamp, Lieb
and Lebowitz in [22]. They used Bogoliubov's inequality te prove the diver-

gence of some moments of the spins in the thermodynamic limic.

Throughout this paper, our main method is the same. We do therefore
not repeat all steps for each case in detail. Our proof of Theorem 1 which
establishes translation invariance of the Gibbs state in a class of classical

particle systems is the most complete one.

Our basic strategy is the following : We make use of the fact that

two-dimensional systems support large fluctuations of finite energy. For

example, it is possible to rotate all spins by a fixed amount on an arbitrarily
large area without paying more than a finite (actually arbitrarily small)
amount of energy independent of the area. It suffices to allow for a large
transition region on which the spins are “"rotated smoothly"™, i.e. on which

the amount by which the spins are rotated decreases from a constant to the
identity as the outer boundary of the transition regiom is approached. It is

at this point where the continuous character of the symmetry group enters.

This is the basic phvsics.

In more mathematical terms, starting from a Gibbs state, P , of
some system with a continuous symmetry group, e.g. some spin system, we are
able to construct perturbed states, Fn s 0™ 1,2,3,..., which are obtained
from P by rotating spins in a region of diameter « n and satisfy the

following two requirements :

i} The relative entropy, SIFHIF} of F“ with respect to P is

defined by

- =1
E{P“!P} - ﬂﬂHﬂ'Hh  B= (kI ",

P



i.e. it is proportional to the expected value in the state P of the

difference between the perturbed and the original Hamilton function. The require-
ment is that S(P /P) be bounded uniformly in n . A simple application of
Jensen's inequality (im the case of classical systems) then shows that P

and any limit of {Fn} cannot be mutually singular ("orthogonal®).

ii) All spins in a region, hn ; say a disk of radius n centered
at the origin, have been turned upside down. Restricted to A s Pﬂ coin=

cides with P , the Cibbs state obtaind by turning all spins upside down.

The conclusion is that, because of i), the relative entropy of P
with respect to P is finite, and this implies, as remarked, that P = P

{(provided P is an extremal state, i.e. a pure phase).

The use of relative entropy as a means of comparing different Gibbs
states of some system was ploneered by Arakl whe applied it to prove unlquencss
of KMS states in one-dimensional quantum spin system [18] . Our use of that
concept provides a unified treatment of problems related te uniquencss of
equilibrium states and absence of symmetry breaking. The method is not
restricted to systems with a continuous symmetry group, contrary to the

approach based on Bogoliubov's inequality.



2. Two-dimensional systems of classical particles.

2.1. Notations, basic concepts.

We consider two-dimensional systems of classical particles in
X -HHE . The configuration space is defined as the set [ of all finite
or countable subsets, w , of X such that w N V is finite, for amy
bounded subset ¥V of X . Alternatively, we may define I as the set of
all Radon measures of the form

L E

x
®Ew

where w 1is as above and €, is the Dirac measure at x . We shall use

both interpretations of @I . We thus have the two equivalent notations

EE(x) and [ w(dx)f(x) .
¥Es

We use the shorthand w, for w N A , A a subset of X and write wu

A

instead of & Yy y+ w and u € 0 . The Lebesgue measure on X is denoted

by a2 and A= X~ A
For any bounded subsec, A , introduce the counting variable

NEA) (w) = w(A) = |w n A

For any Borel subset V , let

F(V) = ofN{A) : Ac V , A bounded}

be the g-algebra of all events im ¥V generated by the random variables
B{A) . Lec F = F(X) . There is exactly one probability measure on (0,F) .
namely the Poisson point process w» with intensity measure =z+34 , such thar,

for arbitrary, pairwise disjoint, bounded mets nl,....n“ + the random



variables thl}....,Hihn} are independent and have expected values
al[ﬂl}.....:lihn} . Here 2z 1is the activity of the particles. Thus =
describes an ideal gas of particles or a gas at inverse temperature £ = O .
If Vv is a bounded subset and f a nommegative, F(V)-measurable function

wi have the explicit formula

- &
[ widu)E(w) = e f =F I G PR TCE I EICE PP )

We now assume Chat, at finite temperature,the particles interact via
a4 two-body translation-invariant potential. The potential energy of a confi=-
guration a = {x,y¥] consisting of a particle at x and a particle at y 1is

given by

#la) = §{x=y) = $(y=-x) (2.2)

Assumption A. The function 4: B° + R is bounded below and

a) 4 is stable : there exists a positive number B such that for any finite

configuration w (i.e. w(X) <« =)

Eala) > =Bu(X)

[ =]

b) ¢ is regular : there exists a positive number d , and a positive mono-

tone deueaning function, @ , on E* such that

let)| < wllx]) o |x| >4,

and

J teplcdde < = .
0

Let A be any bounded subset of X . The energy of a configuration,

n , of particles in A (i.e. n e A) , given some boundary condition



w € B, is formally

Hﬂ{n1w} = L $(a) (2.13)

In particular, for each x € X we put
Hix|w) = HI{E:1H} (2.4)

which is the energy of a particle at x given the configuration w . (The

particle at x may or may not belong to «» ). We define the Gibbs distribu-

tion of a system confined to A , given some boundary condition w , as the

proebability measure on {ﬂ.g{ﬂ)} whose Radon-Nikodym density with respect

to the restriction of = to E{ﬂl is

=1
P (n|w) = Z(Alw) * exp(-BH, (n]u)) (2.5)
where E{h|m} is a mormalization factor (partition function)

=zi (A
e MM < 2(alw) = fridn) expl-giy(nle)) .
Formula (2.5) is melninafui whenever, for a given w , (2.3) is defined
for all pe A , dnd E{ﬁ[u] < w , This is in particular the case for the
class of configurations corresponding to the following subset ﬂ_ = 0
Let A be the family of disks centered at the origin with radius n ,
neEN ,

Ay, = (xEX: x| <n)

Let

hy = lw €02 wlA) < ¥a(A) , ¥nEN)
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Then

f = U (2.6)
T Nzl E

Defipition [23] . A Gibbs state P is a probability measure on (0,F) such

that, for all bounded sets A , (2.5) is well-defined for P-almost all
w , and the conditional probability of P with respect to Efi} is given

by the CGibbs distributiom im A .

This section is largely inspired by chapter 1 of [24] to vhich we

refer the reader for additional information. See also [25] .

2.2. The main result on particle systems.

In order to state and prove our main result we need some additional

assumptions on the potential ¢4 .

Assumption B. 4 1is a twice continuously differentiable function (except at
2

CER )

Let a ETBF be a unit vector, |a|] =1 . Let O <c <1 be given
and t €ER ., We define on Hz
2

p (x) = sup Bsup —éi-¢{1+La] | x
E de

2
|
a: t:

lal = 1 |ef<e]x|

We may regard *: as a potential and define

#ciu} = tsix-y}

for any configuration o = {x,¥} ; see (2.2). Moreover we introduce, for

weE 0 (see (2.4)) ,
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B (x|w) = Iy (x-y) (2.7)
#'c vEw c
y#x

Assumption C. There exists 0 < ¢ <« 1 such that ¥ , interpreted as a

L

potential, is

stable : L ¢ (a) 3_-5&(1]
oo ©

with 0 <B<wm, wWER and w(X) <= .,
Let 2 EB® . The translation T on X is defined as

K =+ Tax = W+a
This transformation induces a transformation on 0 , also denoted by T ¢

w =+ T w
a

with
Tau{h} = I widxlh{x+a) , (2.8)

h being a measurable functiom onm X . Let P be a Gibbs state. THP is
defined by ﬂ{TaP}{u} - dP{Tlu} . We say that P is translation invariant

if P=TP, for all 2 ER®

Theorem 1. Let F be an extremal Gibbs state for a particle system on naz

with activity z , inverse temperature £ and with two-body potential

satisfying assumptions A,B and C . If

a) there exists a constant K < = such that for any bounded subset

| POdadNCA) () < KA(A)
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b) there exists a constant C < = guch that for all = € X

J P{ﬂulﬂ* (x|u)exp(-BH(x|w)) < €

E

them P is translation=invariant.

Resarks.

1} The assumption that P be extremal is no loss of generality, because
a Gibbs state satisfying a) and b) has a decomposition into extremal Gibbs

gtates having the same properties almost surely.

2) This result can be extended to some systems consisting of several species

of particles, e.g. ones with charge interacting via a smooth two-body potential.

In the corollary below we discuss a specific class of two-body
potentiale for which hypotheses a) and b) of Theorem 1 can be verified. Our
result invoelves the notions of superstability and tempered Gibbs state for
vhich we refer the reader to Ruelle's paper [25]. Let ¢ be some potential
and let i+. i- denote the positive part, the negative part of ¢ , respec-
tively, so that § = ¢+-¢_ and |¢| = +++¢- . We define Hliltxlm} and

H*_IEIW} as in (2.4).

Corollary. Let 4 be a superstable potential satisfying hypotheses A,B

and C above. Assume, moreover, that

H¢ {x|w) exp(-gH
E

|¢|f!|h}}] z': ¥

for some finite constant C independent of x and w . Then all tempered

Gibbs states are translation=invariant.

Proof. Our proof is based on the work of Ruelle,[25]. Since one can always
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decompose a tempered Gibbs state into tempered extremal Gibbs states, it
suffices to consider an extremal Gibbs state and to verify for it the
hypotheses 4) and b) of Theorem 1. Hypothesis a) follows from the tempered-

ness of P , and hypothesis b) is verified as follows :

H, (x]w) exp(-BH(x|u))
£

= Hi {x|w) exp(-8H

: [*lixlu]} ::;{I£H+_E:|u]]

<c e:p[!ﬂﬂ‘_txlull
Thus we must prove that
J Bldw) exp{IEH*_{x[mll < m
This, however, is done in the proof of a), Propesition 5.2 of [25].

Remarks.
1) The condition

H, (x|w) arpf-E!-I“[E:}mH < C

E

is mild. It is satisfied by "most” potentials for which A,B and C hold.

In particulier, this is true for all potentials of Lennard-Jones type; soe

Proposition 1.4 in [25].

2) Our results can be extended to systems of several species of particles

with interactions including many body potentials.

2.3. Proof of Theorem 1.

It is sufficient to prove the theorem for |a| 5 1 . Let a be

fixed and let IE". = T‘I'I?‘ » We want to prove that P. and P are equivalent
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by showing that for any F(A)-measurable subsets A< @ and A° = a~a ,

A  bounded,
P_(A) . P_(A%) :
0 < =(P(A) log ot P(A7) log ) 2 K (2.9
EAA P{AT)
and
[~
0 < =(P () log ':'L:%j' + PIIAE} log P—“hi—}}i K (2.10)
a P (A
a

where 0 < K ¢ ®» ig independent of A , A" and A . We obtain these

inequalities by constructing a sequence of transformations [Tn] on X

such that

Thx = wég = T‘x y XE ﬂn

’I'n:q:-:-: - :I.'LPTI

where |II.“ = {x E X % |:u:| <m} , nEN, and O < p 1is suitably large.
Ag in (2.B) we define a transformation Tn on i inducing a transformation

of seagures on m,E} . We set

We then show that the relative entropy

dp
0 < S(P_|P) = - [ P(dw) log -(w) < K (2.12)

is bounded by a constant K independent of n . If n 1is large enough so
that .'.n::.'. » then (2.9) is bounded by (2.11). This follows by using
Jensen's inequality. The other inequality, (2.10), is proved in the same

Way.

Let u be a non-negative, smooth, monotone decreasing function

+* - .
on IR with the properties



_1"5-"-

ufx) = 1 , x<1 and ui(x) =0, x>p,

for some p , mOTreover

}%Ei g 5 OGtgel

We define

W
=

Tn I+ X+E Y flalﬁ » OO

Tn is a smooth Functlion from X inte X . It is one-to-one because

i

lutl=]y = wtlyDl< e |Ix] = l¥ll = clx-vl
Let P = TFIP  as above .
n 11

Lemma 2.1. P 1is absolutely continuous with respect to P . Let

AZA and T =2 'rn « Then

JELL

4P

75 (w) = 1 3y exp B, Guy )t (T )
A

whare JTIK} is the Jacobian of the tramsformatiom T .

Proof. Let VYV be a bounded subset, V>3 A . Lat h be g[?}-utllurlh1u+
J P (du)h(e) = [RAIN(T 'w) =
J PG rrsy Jr@n) exp(-shtnlw)h(r )

because P is a Gibbs state.
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[(dn) exp(-BH, (a|@))h(T 'n) =

1]

=24 (V) z =1 -1

e E = [  A(de,)...A{dx Ih{T %,,:..,T %) .
A0 n! W}n 1 n 1 n
t:p{-m;i,t{:l,...,:n}[un (2.1)

Changing variables, x o+ Ty inm (2.12) yields the following integrand

on the r.h.s. of (2.12) ;:

n
h{:l....,:n,'i n .l,rfxi} e:p{-ﬂﬂv{{'l':l.-u.'l':n”u}}

i=]

We multiply and divide this last expression by
i:P{-HHvE{:11---.:n}|u)) .

To complete the proof we notice that

n

n Jo(=x) = nm J.(x)

T R § ¥ &
xiE A

and

<
<
E

Hv{']'u‘,|u'.| = Hﬂimhh} - Hﬁ(Tuﬁhu]I

T“ s and let T be the transformation defined by

replacing a by -a in the definition of T . Let P =i 'p .

There exists a constant 0 < K < = independent of n such that

S(P_|P} <K , S(P |P) <K
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Proof. We introduce a duplication of the system and consider the probability

measures P & P and l’n "] En on 0 % . We compute

d(p & B )
- a3 ' n_n " o
E(Pn & P“|P @P) = - [P(du)P(du')log iFEE (wyw')
(2.13)
- 5{?ﬂ| P) + s{rn|P]
We first bound in (2.13) the terms
E{Hﬂf'ﬁn“w} = Hnl'.u“u]' + B, (T, |w) - th'.uhlu:l} (2.14)
Let J = ﬂpn"ﬁ_ﬂ.n i '[.H.Fn = A} . We have
H (T, |) = B (u, |e) = I (#({Ta)=#{a)) ,
A A ATA acwiali)=0
with a(i) > 0 indicating that a N i F .
Let @ = {x,¥} and let
£(8) = ¢ Gemyrar (Eh-u 2y
Using Taylor's formula for |t] <1 we getr
$(Ta) = £(1) = £(0) + £'(0) + 3 £'(6)
and
¢(Ta) = £(-1) = £(0) - £'(0) + 3 £"(B)
with 0 < |8] » |8] <1 . Since £(0) = 4(a) , we see that only the terms

f"(g) and f“{;] contribute to (2.13). Since

ueltly - wellthy < e 1 ey
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we hawve

£ (8) j_#tilfrlfﬁiz

T gla) = I H¢L:|u} - L wla)
acu xEw e e

A A
a(f) >0

Therefore we obtain the following bound for the contributiom of (2.14) to (2.13)
B(ﬁ]z J P(dw) (- T y(a)) +
ﬂﬂ-l.:.hx'

Ell:%:-2 J P(duw) & H (x|w) (2.15)

¥
:Eu“

The first term in (2.15) is bounded by
o]
8 55E [ PN () < K'e’E
n

for, AME) = Dtuzl , and § is stable. The second term of (2.15) can be

written as

Tl

B [ P(dw) [ x ()M, (x]|w)wldx) (2.16)
nz fl XN v

A

with rxi*i the characteristic function of the set A . The proof is

completed by using

Lemma 2.3 [26] . If P is a Gibbs state, A a bounded subset, z the

o o

accivity, then




= ]G =

| P(dw) | xh{x}H*{:|u}u{dI} -
7 X

g ] A(dx)y, (x) | H#t:|m}t—ﬁutu|u;
X 0

P{dw)

Using this lemma we see that (2.16) is bounded above by a constant.
The contribution of the Jacobiane is estimated in the same way as the first
term in (2.15). Thus lemma 2.2 is proved, and this implies the bounds (2.9),
(2.10). Therefore P and Pa are equivalent. The proof of Theorem 1 is

now completed by appealing to the following

Lemma 2.4 [27]. If P and P_ are equivalent, and P is extremal, then

=]

It remains to prove Lemma 2.3, which is a special case of Theorem 2 in [26].

Proof of Lemma 2.3.

'Bﬂiln|u1
z Ixf{d“n}xht“u} jﬂPIdu}H*E:u|m]E =
J sax ye =M | Pldw) 1 :
s f 2 (A |w)
=n+1
nfu = j{h}n Aid‘l}"'Aid:njﬂﬂtxnlil'""In’uia

_Hntlﬂlilf""l

wo) <BH, (%, 5.000%_ |us)
a el e b bR L

n

Since !q € A

H{I‘D1xl". rl-!“l-'.ﬂi} + Hh[':lluuullnlmxj =

Hﬂ{lﬂ.kl.;;+.:n]uﬁ} {2.[?}
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Moresover,

Hﬁtan:n'xl""'"n'uiﬁ = H*(Hulnl....,:n,uiﬁ (2.18)

Using (2.17) and (2.18)

1
J.ET {1{“ﬁ} _F nl{d:l]+++ifd“n}"*{1nill+l W s |IIII}

X
() -

.u:p{-ﬂH{:ﬂ[:l....,:n.miﬁexp{nﬂﬂﬁ{xl,...,unluiﬁ
m (ol) st ] A(dx ) ... A(dx Yexp(-8H, (x_,x 2 s -
P ey Y (™ i ™ (N Ll R ™ L
,H*{‘J{ﬁlzuxlnuxumrﬁl
e e | Adx )ooo Aldx (T H (x; [x_..ox 05))
(n+1)! {n}"+l (1 n ’iEﬁ [ e S - n
enp{*BHA{un...:JuE}]

Susming over n and integrating over wy we get

jﬂP{du] leﬁ{:]H*{ulmlm[dx}

We close this section with :

A remark cﬂncernina Ethie hreakiﬂg of rotationm invariance.

The methods developed in this section can also be used te study

the absence of breaking of rotation invariance in classical particle systems

with rotation-invariant, superstable two-body potentials, (with properties




= 21 =

analogous to the ones required in assumptions A through C above).

It turns out, however, that the breaking of rotation-invariance,

i.e. directional ordering, is possible, in principle, in two-dimensional

systems with connected correlations which do not fall off more rapidly than

the inverse square distance (go that there is some divergent "susceptibilicy").

Let Af{w) and B{w) be some bounded F-measurable functions of

W . We define
ﬂth = [P(dw)A(u) , and

:A;B:P = <A:B>= = zhAs_ =B

P P FP°

where P is some Ctempered Gibbs state of the system. Next, we define a
X
space-dependent rotation, Tn « Lot x = [ 1) . Then

LA Xa

cos E{x} X, + ninlﬂfx} x

x 1 2
1)
~ 2 -sin a(x) X + cos alx) x,
where
E{EJE—'huu{J%ll v a0,
is a smooth function vanishing outside hpn . Let Pq z TuP be defined
as above. Let A be some F(V)-measurable function of w , where V is

a compact subset of E; . We choose mn so large that V c:hn . By definition

I?E{dmlﬁ[m] = [P(du) A(T )

We propose te show that
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[ B (de)A(w) = [P(dw)Alw)

a5 n -+ = , provided certain connected correlations have sufficiently

rapid decrease. Since Th is a constant rotatiom, Tu  om W it

suffices to show that

d
= I?EEdw}&{m}Fn_ﬂ -0 , (2.19)

a8 n-+= , and this will imply the rotation invariance of {ﬁ}F N

A straightforward variant of Lemma 2.l permits us te find an
dP, 4 4P
explicit expression for ﬁﬁx‘ which allows us then to calculate % {Eﬁzﬁ

explicitly. From that expression we infer that, under fairly obvious

hypotheses on the gradient of the two-body potential, (2.19) holds if

<Ajp >, < 0(1/d°)

P
(2.20)

< 0(1/d%)

d’_ﬁ.;p!pybp

provided dist(x,V) 2d , dist(y,V) 2 d . Here px{u] E W) is the

"eoordinate function". A typical choice of A(w) would be, for example,

Aluw) = By @

b Ry POEL
1 1 2

s

A related discussion of the absence of breaking of rotationm - (and trans-
lation) invariance, based on the BBGKY hierarchy, has recently appeared

in very interesting papers by Gruber and Martin [28].
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3. Quantum Spin Svstems.

3.1. Notations, basic concepts, main results.

We consider quantum lattice systems on EE « These systems are
described in detail in chapters 2 and 7 of [29]. See also [30]. The
c*-algebra A associated with such systems has the following local structure:
for each x EEE .ﬂl is a subalgebra of A which is isomorphic to the
algebra of all bounded, linear operators B{H) on a fixed,finite-dimensional
Hilbert space M . The subalgebras A; and Ay commute elementwise, for
x ¢y . Let A be a subset of EI « Then A(A) is the norm closure of the
algebra generated by {Ax t x €E Al. In particular A is the norm closure
of .ﬁ.{i'?..zi . A quantum lattice system is specified by prescribing am imter-
action potential. For simplicity we consider only two-body tramslation-imva-
riant potentials, but our methods extend to more general interactions :
with each two-element subset, X , of Eﬂz we assocliate a selfadjoint operator,

4(X) , imn A(X) such that

flel = £ [letxd]] <=
Koo

The Hamiltomian operator, U(A) , which determines the dynamics of the system

confined to a finite region A of the lattice is defined by

Ua) = & ¢(X)
=N

Under our assumptions on the interaction potential &, it is known that,

for all a€ A and t ER ,

a (a) = Llim, it UM, =it DOA)

R Az
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exists and defines a strongly continuous one-parameter group of automorphisms
of A ; see e.g. [29]. That group describes the time-evolution of the

observables of the system in the thermodynamic limit.

Let G be a compact, connected Lie group, and let g - V(g) be
a unitary representation of G on H which obviously determines a represen-

tation of © as a group of automorphisms of B{H) ,
a+ Viglavig)* , a€B@) .

We suppose that the map

g+ Viglav(g)®* , a2 € B@®) ,

is continuous for each a € B(H) . (This is automatic when dim M <™ ) .
Since B(H) ~ A:-: » Wwe obtain, for each x t-::'L*".z » @ strongly continuous repre-
sentation of € by automorphisms of A , which we denote by T:\‘.{s] i

Furthermore, we define

y(gia) = (@ v_(g))(a)
xEn *

where A& Is an arbitrary, finite subset of EE » and a € A(A) . By
continuity, this determines a representation y(:) of G as a group of
automorphisms of A . Let ¢ be a state on A . Then the state :pg z

BEG, is defined by

RPE(-HI' = ply(g)(a)) , a €A .

A gtate o ig C=invariant if wﬁ =p . YEEDG .
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Theorem 2. In the situation described above, and if for all X = {x,v] EEE

ay |lex)|| < Ell'ri_ﬁ for some constant c ,

b) v(g)(e(X)) = ¢(X) ,YgREG,

then all ut-EHE states of the system are G-invariant.

Remarks : 1) This result extends to more general potencials, ¢ , with
manybody interactions of "short range", (sufficiently rapid fall-off of

I|#(x)||] inm diam(x), [30]).

2) This result is best possible, since there exist two-dimensional

systems with a continuous symmetry group, G , and two-body interactions,

& , with

o Ctx,y1) || m €|xmy| """,

g » 0 arbitrarily small; for which spontaneocus breaking of ¢ is known

te occur, [31], [32] .

3) The absence of spontaneocus breaking of continuous symmetries
in two-dimensional systems with short range interactions does not exclude
the existence of phase transitions (non-uniquencss of the Gibbs state) im
such systems. An example of such a transitiom, in the classical case, has

been constructed by Schlosman [33]

4) For mathematical background used in the proof of Theorem 2 we

refer the reader to the work of Araki, [34], [35] .
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3.2. Proof of Theorem 2.

Since each ut-KHE state has a4 unique decomposition as a direct
integral of extremal ut“KHE states, it is sufficient te prove the theorem
for extremal KEMS states. Moreover, it is clearly sufficient teo omly
consider closed one parameter subgroups H of © . Since € 1s compact

HER/Z = 51 . Furthermore, we consider only potentials, 4 (X) , such that

£, lecon] [x]* <= (3.1)
xE X

The general case is obtained as in [16). Let © be an extremal KMS state
f{at inverse temperature £ = 1 ), and let g be a fixed element of H .

Since HT Sl s it can be parametrized by the numbers in [0,1) . Let
2
ML) =[x = (x1,xD) Eiﬁz[ I:tl| <L, |x]| <L}

For each L , we are going to construct a family of states, *L' on A

such that
o (a) =g (a) . ¥a€ANL) (3.2)

and

5{¢L|qp:l <K <= , uniformly in L , {3.3)
where S{nﬁLI-.p] is the relative entropy of the two states defimed by

- - (1
E{letﬂ p{log ﬁ#]'-*-li"}

Here A " is the relative modular operator of the states *l.. and @ .
L'l
For properties of 5(-|-)} see [36,18] . Using the monotonicity property

of S(+|+) , the fact that the restrictions of ¥, and i.|:|B to  A{A{L))

coincide and lemmas 2 and 3 of [18] we obtain that mh = 5 ., The ideas of
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the proof of thia last statement are the same as those in the classical
cage : From (3.3) we deduce that @ and 1.05 are quasiequivalent (which
corresponds to equivalence of measures in the abelian case), and therefore

since P is extremal, @ = mﬁ 28 in the elassical case.

Let A{L) be fixed. Let 1, be the automorphism of A defined by

T = & y._(g)
T sEAfaLy %%

where

E " g » x € A(L)

By "!“1-?! g o ox = (%), max(]x |, |x7]) = Lok

We define 71_ by replacing g by -g . We introduce

*L{a} t+{1} = w{r+ta}} ., aEA

and

v_(a) = @o(r_(a)) , a€EA

Let ﬂmﬂ.qﬂ.nw} be the GNS representation associated with the
algebra A and the state @ . We also denote by o the extension of the
gtate to the von Neumann algebra M = tmf.ulu.'.l“ : Since p is a KMS state
on A , its extension to M is a positive, faichful, normal state em M ,

and the theory of relative hamiltonians holds [37] . Let

h = L ${X)
XNAC2LYH @

S ()
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Mote that h and h1 are in A .

We now coensider lecal perturbations, ¢P + h €A, of the state

EH be the

which (locsely speaking) are defined as follows : Let &

modular operator associated with ¢ . Here =-H is a renormalized version

of the formal Hamilton operator 1.‘1:2 Uufn) en H . The perturbed state,
AT v

o , is defined by

Elf!{Hrh]ﬂ 1/2(H+h}

o'(a) = < ,

.Iw{I]l

nl.‘ti b
It is not very hard to verify that l.ﬂh satisfies the KMS condition for

. h e
the automorphism group, a , glven by

al(a) = lim AtU(A)=h), mit(U(A)-h)
t 2
Az

Lemma 3.1. The states ﬁt satisfy

h-h,
o, =9

Proof. Since @ is KMS it satisfies the Gibbs condition of Araki [35].

Therefore the restriction of l.nh ; h = E (X} , to A(A(ZL)) 1is

B HNALZLYS @ h
the normalized trace, and ¢ is 7 -invariant. We denote ¢ by y . Let

M ‘ﬂ‘.(ﬂ‘.[:' be the GNS representation of yx . Let H_‘ be the unique
X
gelfadjoint operator on H:l: with

Hft =0
KX

and
X itﬂx —itHx
lgtut(l}l - g HI{IJE

where uE[-} is the modular automorphism group associated with y . Then
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1/2(H_-h) 1/2(H_-h)

wla) = <e X nx"x"}t X 2>,

. =h i . . . ‘ .
slnce @ =y « Since i 18 'I'+—1'ﬂ.‘|||'ll."l.l.ﬂ|: there exlsts a 1..L'|.'|.1|:I.I."j|' -DPEI-E.tDI.".

U , om H such that
* X

U*ixl[a}li: - ¥ (1,8

and
PtH itH
x

= X
u+nx = ﬂxr U.E e U+ (3.4)

By using the Trotter product formula, an analytic continuation of (3.4)

to imaginary time and
* -1
ubhU =1 "(h) =h,

one sees that

1/2(H -h) 1/2(H -h*}

U:w 5I.I“r - g

Therefore

¢, (a) = ot (a)) =

1/2 (8, ~h) « L/2(H -h)
e ﬂx*”+'x{"]"+“ q >e

1/2{H -h} lfifﬂx'h]
“U e ﬂx.txia] 2 ﬂx » -

IIEEHIHH+1 IIEfo-h_'_l

<g g =

i .n [(a)e
X' xi X

+ +
-h | b

+
e M@ s @ @) =™ ()



Next, we introduce again a duplication of the aystem and consider
the two states @@y and § @y . We compute S5(y @ v lo@e) .

Since

S(v, |@) = ~w(h-h )
we have to bound terms like

o T (0 - s0n +
XNA(2L)¢ @

o I {100 - 4(x)) (3.5)
WAZLYE @

By the invariance of the potential the terms with X < A(L) do not

contribute to (3.5). Using the invariance of the potential

00 = v (e ) G0N (3.6)

with g, ™ 0 if x € A(2L) . Moreover we have

1
leg8,l < Ixvl (3.7)

and |g:'g?| =0 if x and y are inm A(L) . We expand the right-hand
side of (3.5) @

rrtgx-gr}iﬁix}] -

i(g -g JA -iflg =g JA 3.
Elti: s?} T (g, s?] v (3.8)

I{.ﬂ? is some selfadjoint element of AI:I"} . We get

Ty (B8 ) (6 (X)) = 400) +

2
. i 2
liﬂt-sr}[l"F:*{H}] 'l'T {E:-ET} IA-:'I’[&?.*{E}]] * s
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We do the same thing for r:lii[H}} » Using the definition of T, and t_

(3.1), (3.7) and (3.9) we see that only terms of order ﬂtj;} s P2,
contribute to S{p, @y |¢ &¢) , that the second-order l:::u give a finite
contribution, and that the higher order terms give a contribution of erder
Df%} » Therefore we have constructed a family of states YL satisfying

£3.2) and (3.3). This ends the proof.

Remark. Our proof can be extended to certain quantum lattice systems where

Ax is infinite dimensional, and $(X) is not necessarily bounded.

We also believe that the results of Section 2 could be extended
to quantum-mechanical particle systems with Fermi statistics by combining
the methods of the present section with an extension of Ruelle's work [25]

to quantum systems, but we have not checked this.
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&. Non-existence of Gibbs state for two-dimensional harmonic and anharmonic

crystal.

4.1. Introduction, main results.

We consider unbounded spin systems on EE + The state space of
the spin, s, at x €z’ is the measure space (R,B,ds ) , where B is

the Borel op-algebra, and -hH the Lebesgue measure. We use the following

notations : If A is a subset of EI » B(A) = T B, s, = {s! rx € A) .
XEA
ds, = Nds  and A lEz'\- A « In particular we set s = &
A X = 2 -
xEA 1, 2 1 2 ; & ik
We define [x| = max{|x |,|x"|} , for x = (x ,x") € &2

. The configuration

space of the system is the measure space (0 = 1 EI! ¥ Efﬂil.ﬂ_n_} « He
x€ Z
consider only two-body interactions of the type

'l'“{s“.s?} = J{x=y) lJ{sx'—u?}l

where X = {x,y] cz? .

Assumption A. U :R -+R is

a) twice continucusly differentiable

b) U(s) = U(-s)

€) there eixsts a natural number p >0 and a constant K such

that

2

d P
Uis)| < K

IFs 8)| < K|s]

Assumption B. There exists a constant C such that

_ 2
L Hldtn||x|" <€ <=
w,

, da = |l Edsu'
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Let A& be a bounded set. We introduce

Hh{nhli} - £ -jlhx,u!} ol - ;F if y& A (4.1)

Z(A|8) = [  dsg exp(-8H(s,|8))
| A=

We define the Gibbs distribution imn A , given the boundary condition §

in 1 , as the probability measure on mﬂ',E{h}} whose Radon-Nikodym

density with respect to dsﬁ is

~ P | -
Pn{ﬂhljﬁ = Z{A|8) e:p{ﬂﬂﬂﬂ{an|5}} (4.2)

This expression is well-defined for all configurations & for which (4.1}

iz defined, for almost all Sy s and 0O < Ifﬂli} <w , A probability measure
P on [I.'.I.EIE-E}} is a Gibbs state if for all bounded sets A (4.2) is
well-defined for FP-almost all & , and the conditional probability of P

with respect to g{ﬂh is given by the Gibbs distributiom im A

Theorem 3. If assumptions A and B are satisfied, then there is no

Gibbs state P such that

Pfllxlqj i Gq s Q*>p

where Eq is a constant independent of x .

Remarks.

2

1) If max ]'d
sER ds 5
this is the case for the harmonic crystal, since Uis) = 5" , In the

3 U(s)| < k <= , then there is no Gibbs state. In particular

anharmonic case, U(s) = aﬁ s there is no Gibbs state with finite second moment.



2) In the class of models considered, the potential energy U(-) is
R-invariant. G =R is the internal symmetry group. This is an example
of a non-compact, connected Lie group. It acts on the state space for a
spin (R,B) . It is possible to consider more general classes of G-inwva=
riant potentials, where G is a non-compact, connected Lie group acting on

a very general state space (see [20]).

There is another way to express the results, which makes a connection

with [22]. Let us fix a boundary condition & and choose a sequence of

2

bounded sets ﬂ." i ﬁ“ +Z" , so that

P, (s, |B)ds, (4.3)
[} i ] n

are well-defined for all n . Let fllﬂlqhn be the expected value of

|:n|q with respect to the probability measure (4.3). For example we can

take U(s) =s’ or s ,3 =0 forall x €z, and A= D

u|in].

Theorem 4. If assumptions A and B are satisfied for some p > O , then

BUP,, lim 1n£-:|nl|q'::“ = % m
®E I

for q>p . If A is satisfied with p = 0 , then

lim inf<|s |V = + =
m int<|s, |,

for all q = O . In particular, this holds for the harmonic crystal.
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4.2 Proofs of Theorems 3 and &

Proof of Theorem 3

Let P be a Gibbs scate such that

sup, P(|s_|P) <C <=
EI x

We define for all L EN

& q
F(L) = E T
k=1
Let t EER be fixed and
if == 0
L =1 L 4 2
a(t) = { LF (LY E = if 1< |x] <L
x k
le=| x|
0 if |x| > L

We define a transformation Tt on [ (depending on L) by setting

L
{TL‘EIH -8 + l:[t}

Let Pt be the probability defined by

=1
P (f) = T P(f) = [P(ds)E(T_s)

Lemma &6.1. PI‘. is absolutely continuous with respect to P and

dP

T " o8 T (4e(Tye s )mgls e ))

x ¢ 8

with A, = (= €z x| < L}

(4.4)

(4.5)

(4.6)



Proof. This follows from the fact that P is a Cibbs state; see equ. (4.2).

We now introduce a duplicate system and consider the probability

measures P& P and 4 E!'F_t on Q%0 wvhere P_ =T P . The relative

entropy is given by

d:F'_ﬂ' P
s(e, @P_ [P @P) = - fP(ds)P(ds')log GO 88"

Lemma 4.2, Let P be a Gibbs state such that (4.4) holds. Then one can

chooge L = L{t) in (4%.6) such that

0<S(P @F_[P@P) <1
Proof. The proof is like that of Lemma 2.2. Let X = (x,y] .
&xiT:a'.Tt:T] - jxhxu:{t],u?u;'{t” =
J{:'}f}ll{lx—uri-a:{t}-;:{t]] -

Ix-y) [UGs -8) + ﬁ%—UEul-u¥1{a£{=1"u;{t}I .

[

d
ds

" u{gx-n‘r-lajI_'n::il:}—u;'il:]}z] (4.7

P3| e

In formula (4.7) |o| < |t| . Using (4.4) we get

o2
[P(ds) ]:—z H{EI-EF*E” <

o
P e L
KfP(s) [s,-s +o[® < I ™ = q(le])

where E; are constants independent of x and ¥ . Therefore

S(F, @F_ |P ®FP) is bounded by
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3 | 3(x=y) | (abe)-al ()l €]y =
(x,y} N0 ¢ @ 4
{4.8)
L , TR
Q(le]) £ £ s |J[=—T1|Eﬂiit]-ﬂ (e))
kel x:|x|=k y:|v|>|x !
For |y| » |x| we have cthat
L L =y . ¢
|a(e)-a ()| iJﬁfL FIL)
Thus (4.8) is smaller than
L
S | c
Qe —— & E —sp
(LT kel x:|x|=k |x]
2 ¢ bR 7 8¢
adle)ye e T I = qife])e D (4.9)

(F(L)) k=1

Therefore, for any fixed t , we can Find L = L{t) so that (4.9) is

gmaller than one.

Let v be the probability measure which is the projection, on
the state space of the spim at x = 0 , of the Gibbs atate P . Likewise,
let vy be the projection of PL on this state space. If h is a measura-

ble function on IR ,; then

j'h{ulutfda} = [h{s-t)w(ds) (4.10)

et AcR and A® =TA . Using Jensen's inequality and Lemma 4.2 we get

u: (,ﬁ] W {-I‘-': ':
0 < =(vw(A)log Ay + viA ) log

) E1

viA )
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uniformly inc . Let I be a finite Interval of IR such that (L) = § > 0 .
Then 'utﬂ} > c{8}>0 uniformly in t . But then (4.10) is incompatible with

the fact that v is a probability measure.

Proof of Theorem &

Let us suppose first that assumption A is satisfied with p > 0 ,

and assume temporarily that

1 P
sup, lim inf < |8 |"> < C < =
IEEE g x' ‘n
Then we can find a subsequence of bounded sets, denoted again by A_ ,

such that

P -
<|s |, <€ < (4.11)

with € independent of mn and x . Let t be fixed. We can prove Lemma 4.2
with P replaced by {-:-n if n is large enough. Let My be the projection
of -:-:rn on the state space of the spin at x =0 ., Let ACR , .ﬂt = I~ A,

ﬁt = {x ! x¢t €E A} . For n large enough

by (A . ug (A7)
0=« '{Unfﬁ]lﬂg ?“I:l- * U"{ﬁ Ylog wli E -5 (5.12)

by Lemma 4.2 and Jensen's inequality, as above. Since p > 0 and (4.11)

holds, we obtain, using Tschebyscheff's inequality,

uﬂtl::f:f > 1) i_f% {4.13)

Using (4.12) with A = [xt|x| < i} we can find an ¢ > 0 so that, for

o= i and n large enough,

a



- 39 =

uyld,) 2 ¢

Now we choose €t = 23 and get a contradiction with (4.13) if A% and n

are large enough.

The case p =0 is simpler, since we can prove Lemma 4.2 for
any sequence ﬂ“ « Then we repeat the above proof with g > p instead

of p -

Remark.

It is an interesting open problem to prove that
2
<|s_|"> < comst. <= ,
x u =

uniformly in n , for the anharmonic crystal, with U satisfying Assumption
A with p >0 and J nearest neighbor, in d > 3 dimensions; see also

[22].
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