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Abstract. 

We develop a unified approach, based on Araki’s relative entropy 

concept, to proving absence of spontaneous breaking of continuous, internal 

symmetries and translation invariance in two-dimensional statistical-

mechanical systems. More precisely, we show that, under rather general assump-

tions on the interactions, all equilibrium states of a two-dimensional system 

have all the symmetries, compact internal and spatial, of the dynamics, 

except possibly rotation invariance. (Rotation invariance remains unbroken 

if connected correlations decay more rapidly than the inverse square distance). 

We also prove that two-dimensional systems with a non-compact internal symme-

try group, like anharmonic crystals, do typically not have Gibbs states. 
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1 · Introduction and main results. 

It is well known that continuous symmetries of two-dimensional 

statistical mechanical systems or two-space-time-dimensional quantum field 

theories cannot, in general, be broken spontaneously (except in systems 

with interactions of very long range). Mathematical proofs of this fact have 

been known for quite a long time : They have appeared in work of Mermin and 

Wagner [1] concerning quantum spin systems on a two-dimensional lattice, of 

Mermin [2] concerning classical lattice spin systems, and in [3] where clas-

sical particle systems have been analyzed. For related results concerning 

quantum field theory, see [4], [5] . In [1] and [2] it is shown that the 

spontaneous magnetization vanishes and in [3] , that the density of particles 

is constant, thus excluding the existence of crystalline order. Physical 

background material as well as the mathematical outline of the proofs are 

very well explained in [6] . The basic tool is Bogoliubov's inequality, which 

was used for the first time, in this context, by Hohenberg in his study of 

the Bose gas [7] . (A rigorous proof was later published in [8]). Using 

Bogoliubov's inequality Fisher and Jasnow [9] proved clustering properties 

of the two-point function and, consequently, that the order parameter vanishes. 

Mc Bryan and Spencer obtained a better decay for the two-point function of 

classical spin systems, using new techniques [10]1) . Shlosman generalized 

their work to the case of a compact connected Lie group [11]. (The extension 

of [2] to this general situation was given by Vuillermot and Romerio [12]). 

In the current context of statistical mechanics, Garrison, Wong and 

2) 
Morisson [13]2) were the first to prove a result about the invariance of the states 

1) Their arguments can be extended to quantum spin systems. 

2) We thank J. Bricmont for pointing out this reference. 



- 4 -

of the system. Their argument employs Bogoliubov’s inequality and the algebraic 

approach to statistical mechanics. They discussed the internal and the spatial 

symmetries of the system. Using a rather different approach, Dobrushin and 

Shlosman [14], and later Shlosman [15], proved that all equilibrium states 

are G-invariant in the case of classical spin systems, where G is a compact 

connected Lie group. In the context of relativistic quantum field theory 

this result was anticipated (somewhat implicitly) in [4], Recently the 

results in [14] were rederived and generalized in [16]. Since the new proof 

appearing in [16] is simpler, technically, it turned out to be possible to 

obtain optimal results for some class of spin systems. At the same time, 

Simon and Sokal [17] proved some related as well as different results. They 

proposed a rigorous version of the entropy versus energy argument which 

captures one of the basic principles of statistical physics. 

In this paper we present another approach to the problem, inspired 

by [16] and [18]. The basic physical idea can be found already in [19] . In 

section 2, we show that (tempered) Gibbs states of particle systems are 

translation-invariant for a large class of potentials. In section 3, we 

prove that all KMS-states of a quantum spin system are G-invariant, where 

G is as above. This is in particular the case for the Heisenberg model. Our 

method can be used to extend the results of [16] to lattice systems of 

genuinely unbounded spins in two dimensions, when the internal symmetry 

group is a compact connected Lie group G . On the other hand, if the internal 

symmetry group G is a noncompact connected Lie group, as in the case of 

the harmonic crystal, it is impossible to construct Gibbs states. Dobrushin 

and Shlosman proved such results in [20], and in section 4, we derive similar 

results for a larger class of spin systems. Let us mention the interesting 

paper [21] of Jona-Lasinio, Pierini and Vulpiani, where this problem is 
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discussed. We also derive results similar to those obtained by Brascamp, Lieb 

and Lebowitz in [22]. They used Bogoliubov's inequality to prove the diver-

gence of some moments of the spins in the thermodynamic limit. 

Throughout this paper, our main method is the same. We do therefore 

not repeat all steps for each case in detail. Our proof of Theorem 1 which 

establishes translation invariance of the Gibbs state in a class of classical 

particle systems is the most complete one. 

Our basic strategy is the following : We make use of the fact that 

two-dimensional systems support large fluctuations of finite energy. For 

example, it is possible to rotate all spins by a fixed amount on an arbitrarily 

large area without paying more than a finite (actually arbitrarily small) 

amount of energy independent of the area. It suffices to allow for a large 

transition region on which the spins are "rotated smoothly", i.e. on which 

the amount by which the spins are rotated decreases from a constant to the 

identity as the outer boundary of the transition region is approached. It is 

at this point where the continuous character of the symmetry group enters. 

This is the basic physics. 

In more mathematical terms, starting from a Gibbs state, P , of 

some system with a continuous symmetry group, e.g. some spin system, we are 

able to construct perturbed states, Pn , n = 1,2,3,..., which are obtained 

from P by rotating spins in a region of diameter  n and satisfy the 

following two requirements : 

i) The relative entropy, S(Pn/P) of Pn with respect to P is 

defined by 

S(P
n
/P) = β<Ηn-Η>

ρ
 , β = (kT) -1 , 
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i.e. it is proportional to the expected value in the state P of the 

difference between the perturbed and the original Hamilton function. The require-

ment is that S(P
n
/P) be bounded uniformly in n . A simple application of 

Jensen's inequality (in the case of classical systems) then shows that P 

and any limit of (Pn ) cannot be mutually singular ("orthogonal"). 

ii) All spins in a region, n, say a disk of radius n centered 

at the origin, have been turned upside down. Restricted to n, Pn coin-

cides with P , the Gibbs state obtaind by turning all spins upside down. 

The conclusion is that, because of i), the relative entropy of P 

with respect to P is finite, and this implies, as remarked, that P = P , 

(provided P is an extremal state, i.e. a pure phase). 

The use of relative entropy as a means of comparing different Gibbs 

states of some system was pioneered by Araki who applied it to prove uniqueness 

of KMS states in one-dimensional quantum spin system [18] . Our use of that 

concept provides a unified treatment of problems related to uniqueness of 

equilibrium states and absence of symmetry breaking. The method is not 

restricted to systems with a continuous symmetry group, contrary to the 

approach based on Bogoliubov's inequality. 
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2. Two-dimensional systems of classical particles. 

2.1. Notations, basic concepts. 

We consider two-dimensional systems of classical particles in 

2 . 
X = 2 . The configuration space is defined as the set Ω of all finite 

or countable subsets, ω , of X such that ω ∩ V is finite, for any 

bounded subset V of X . Alternatively, we may define Ω as the set of 

all Radon measures of the form 

where ω is as above and ε is the Dirac measure at x . We shall use 

both interpretations of Ω . We thus have the two equivalent notations 

and ∫ ω(dx) f (x) 

We use the shorthand for ω ∩ Λ, Λ a subset of X and write ωμ 

instead of ω  μ , ω and μ  Ω · The Lebesgue measure on X is denoted 

by λ and Λ = X \ Λ · 

For any bounded subset, Λ , introduce the counting variable 

Ν(Λ) (ω) = ω(Λ) = |ω ∩ Λ| 

For any Borel subset V , let 

F(V) = σ{Ν(Λ) : Λ  V , Λ bounded} 

be the σ-algebra of all events in V generated by the random variables 

Ν(Λ) . Let F = F(X) . There is exactly one probability measure on (Ω, F), , 

namely the Poisson point process π with intensity measure z·λ , such that, 

for arbitrary, pairwise disjoint, bounded sets Λ1,...,Λn , the random 
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variables Ν(Λ1),..., Ν(Λn) are independent and have expected values 

zλ (1),...,zλ(Λn) . Here z is the activity of the particles. Thus π 

describes an ideal gas of particles or a gas at inverse temperature β = 0. 

If V is a bounded subset and f a nonnegative, F(V)-measurable function 

we have the explicit formula 

We now assume that, at finite temperature, the particles interact via 

a two-body translation-invariant potential. The potential energy of a confi-

guration a = {x,y} consisting of a particle at x and a particle at y is 

given by 

Ø(α) = Ø(x-y) = Ø(y-x) (2.2) 

Assumption A. The function Ø : 2 →  is bounded below and 

a) Ø is stable : there exists a positive number B such that for any finite 

configuration ω (i.e. ω(Χ) < ∞) 

b) Ø is regular : there exists a positive number d , and a positive mono-

tone decreasing function, φ , on + such that 

| Ø (x) | ≤ φ(|x|) » |x| ≥ d, 

and 

Let A be any bounded subset of X . The energy of a configuration, 

n , of particles in A (i.e. η  ) , given some boundary condition 
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ω  Ω, is formally 

(2.3) 

In particular, for each x  X we put 

Η(x|ω) = Ηx (εx |ω) (2.4) 

which is the energy of a particle at x given the configuration ω . (The 

particle at x may or may not belong to ω ). We define the Gibbs distribu-

tion of a system confined to , given some boundary condition ω , as the 

probability measure on (Ω, F(Λ)) whose Radon-Nikodym density with respect 

to the restriction of π to F() is 

Ρ
Λ
(η|ω) = Ζ(Λ|ω)

 -1
 εxρ(-βΗ

Λ
(η|ω)) (2.5) 

where Ζ(Λ|ω) is a normalization factor (partition function) 

e-zλ(Λ) ≤ Z(Λ|ω) = ∫π(dn) exp(-βΗΛ(η|ω)) 

Formula (2.5) is meaningful whenever, for a given ω , (2.3) is defined 

for all η  Λ , and Ζ([ω) < ∞ . This is in particular the case for the 

class of configurations corresponding to the following subset Ω  Ω 

Let n be the family of disks centered at the origin with radius n , 

n   , 

 = {x  X : |x| ≤ n} 

Let 

ΩN = {ω  Ω : ω(Λn) ≤ Νλ(Λn) ,  n  } 
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Then 

(2.6) 

Definition [23] . A Gibbs state P is a probability measure on (Ω, F) such 

that, for all bounded sets Λ , (2.5) is well-defined for P-almost all 

ω , and the conditional probability of P with respect to F() is given 

by the Gibbs distribution in Λ . 

This section is largely inspired by chapter 1 of [24] to which we 

refer the reader for additional information. See also [25] . 

2.2. The main result on particle systems. 

In order to state and prove our main result we need some additional 

assumptions on the potential Ø . 

Assumption B. Ø is a twice continuously differentiable function (except at 

0  2 ) . 

Let a  2 be a unit vector, |a| =1 . Let 0 < ε < 1 be given 

and t  . We define on 2 

We may regard Ψ as a potential and define 

ψ (α) = ψ (x-y) 

for any configuration a = {x,y} ; see (2.2). Moreover we introduce, for 

ω  Ω (see (2.4)) , 
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(2.7) 

Assumption C. There exists 0 < ε < 1 such that ψε , interpreted as a 

potential, is 

stable : 

with 0 < B < ∞, ω  Ω and ω(Χ) < ∞ 

Let a  2 . The translation Ta on X is defined as 

x Ta x = x+a 

This transformation induces a transformation on Ω, also denoted by Ta : 

ω → Ta ω 

with 

Ta ω(h) = ∫ω(dx)h (x+a), (2.8) 

h being a measurable function on X . Let P be a Gibbs state. TaP is 

defined by d(T P)(ω) = dP(T a ω) . We say that P is translation invariant 

if P = Ta P, for all a  2. 

Theorem 1. Let P be an extremal Gibbs state for a particle system on 2 

with activity z, inverse temperature β and with two-body potential 

satisfying assumptions A, B and C . If 

a) there exists a constant K < ∞ such that for any bounded subset 

Λ of 2 

∫ P(dω)N(Λ)(ω)  Κλ(Λ) , 
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b) there exists a constant C < ∞ such that for all x  X 

then P is translation-invariant. 

Remarks. 

1) The assumption that P be extremal is no loss of generality, because 

a Gibbs state satisfying a) and b) has a decomposition into extremal Gibbs 

stateshaving the same properties almost surely. 

2) This result can be extended to some systems consisting of several species 

of particles, e.g. ones with charge interacting via a smooth two-body potential. 

In the corollary below we discuss a specific class of two-body 

potentials for which hypotheses a) and b) of Theorem 1 can be verified. Our 

result involves the notions of superstability and tempered Gibbs state for 

which we refer the reader to Ruelle's paper [25]. Let Ø be some potential 

and let Ø+ , Ø- denote the positive part, the negative part of Ø, respec-

tively, so that Ø = Ø - Ø and |Ø| = Ø + Ø .We define Η|Ø|(x|ω) and 

ΗØ- (x|ω) as in (2.4). 

Corollary. Let Ø be a superstable potential satisfying hypotheses A,B 

and C above. Assume, moreover, that 

for some finite constant C independent of x and ω . Then all tempered 

Gibbs states are translation-invariant. 

Proof. Our proof is based on the work of Ruelle,[25]. Since one can always 
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decompose a tempered Gibbs state into tempered extremal Gibbs states, it 

suffices to consider an extremal Gibbs state and to verify for it the 

hypotheses a) and b) of Theorem 1. Hypothesis a) follows from the tempered-

ness of P , and hypothesis b) is verified as follows : 

Thus we must prove that 

∫P (dω) exp (2βHØ-(x|ω)) < ∞ 

This, however, is done in the proof of a), Proposition 5.2 of [25]. 

Remarks. 

1) The condition 

is mild. It is satisfied by "most" potentials for which A,B and C hold. 

In particulier, this is true for all potentials of Lennard-Jones type; see 

Proposition 1.4 in [25]. 

2) Our results can be extended to systems of several species of particles 

with interactions including many body potentials. 

2.3. Proof of Theorem 1. 

It is sufficient to prove the theorem for |a|  1 . Let a be 

fixed and let P = T-1 P . We want to prove that Pa and P are equivalent 
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by showing that for any F()-measurable subsets A  fi and A = Ω \ Α , 

Λ bounded, 

(2.9) 

and 

(2.10) 

where 0 < K < ∞ is independent of A, A and Λ. We obtain these 

inequalities by constructing a sequence of transformations (Tn ) on X 

such that 

Tn x = x+a = Ta x, x  Λ 

Tnx = x, x  Λpn 

where = {x  X : |x| ≤ n} , n  , and 0 < p is suitably large. 

As in (2.8) we define a transformation on Ω inducing a transformation 

of measures on (Ω, F) . We set 

We then show that the relative entropy 

(2.11) 

is bounded by a constant K independent of n . If n is large enough so 

that n , then (2.9) is bounded by (2.11). This follows by using 

Jensen's inequality. The other inequality, (2.10), is proved in the same 

way. 

Let u be a non-negative, smooth, monotone decreasing function 

on IR with the properties 
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u(x) = 1 , x ≤ 1 and u(x) = 0 , x ≥ p, 

for some p , moreover 

|du/dx| ≤ ε, 0 < ε < 1. 

We define 

Tn : x → x+a.u (|x|/n), n ≥ 1 

Tn is a smooth function from X into X . It is one-to-one because 

|u( | x | ) - u(|y|)| ≤ ε | | x | - |y|| ≤ ε | x-y | 

Let as above . 

Lemma 2.1. Pn is absolutely continuous with respect to P . Let 

Λ ≡ Λpn and T = Tn . Then 

where JT(x) is the Jacobian of the transformation T . 

Proof. Let V be a bounded subset, V  Λ . Let h be F(V)-measurable, 

∫Pn (dm)h(uO = /P(dω)h(T -1ω) = 

because P is a Gibbs state. 
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∫π(dη) exp (-βΗV(η | ω) ) h (Τ
 1

η) = 

exp(-βHv({x1,...,xn}|ω)) (2.12) 

Changing variables, xi → Txi, in (2.12) yields the following integrand 

on the r.h.s. of (2.12) : 

We multiply and divide this last expression by 

exp(-βHV({x1,...,xn }|ω)) 

To complete the proof we notice that 

and 

Lemma 2.2. Let Τ ≡ T , and let T be the transformation defined by 

replacing a by -a in the definition of T . Let P = Τ-1 P . 

There exists a constant 0 < K < ∞ independent of n such that 

S(Pn | P) < K , S(Pn |P) ≤ K 
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Proof. We introduce a duplication of the system and consider the probability 

measures P  P and Pn  Pn on Ω x Ω .We compute 

(2.13) 

= S(Pn | p) + S(Pn| P) 

We first bound in (2.13) the terms 

(2.14) 

Let  = Λpn \ n, (Λpn = Λ). We have 

with α(Λ) > 0 indicating that α ∩ Λ # . 

Let α = {x, y} and let 

Using Taylor's formula for |t| ≤ 1 we get 

 (Tα) - f (1) = f (0) + f' (0) + 1/2 f'' () 

and 

(Τα) = f(-l) = f(0) - f'(0) + 1/2 f"() 

with 0 ≤ |θ|, || ≤ 1 · Since f(0) = (α) , we see that only the terms 

f"(θ) and f''(θ) contribute to (2.13). Since 
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we have 

Let ψ = ψε 

Therefore we obtain the following bound for the contribution of (2.14) to (2.13) 

(2.15) 

The first term in (2.15) is bounded by 

for, λ() = O(n2) , and ψ is stable. The second term of (2.15) can be 

written as 

(2.16) 

with χ(·) the characteristic function of the set  . The proof is 

completed by using 

Lemma 2.3 [26] . If P is a Gibbs state, Λ a bounded subset, z the 

activity, then 
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Using this lemma we see that (2.16) is bounded above by a constant. 

The contribution of the Jacobians is estimated in the same way as the first 

term in (2.15). Thus lemma 2.2 is proved, and this implies the bounds (2.9), 

(2.10). Therefore P and Pa are equivalent. The proof of Theorem 1 is 

now completed by appealing to the following 

Lemma 2.4 [27]. If P and Pa are equivalent, and P is extremal, then 

P = Pa 

It remains to prove Lemma 2.3, which is a special case of Theorem 2 in [26]. 

Proof of Lemma 2.3. 

Since x0   

(2.17) 
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Moreover, 

(2.18) 

Using (2.17) and (2.18) 

Summing over n and integrating over ω we get 

We close this section with : 

A remark concerning the breaking of rotation invariance. 

The methods developed in this section can also be used to study 

the absence of breaking of rotation invariance in classical particle systems 

with rotation-invariant, superstable two-body potentials, (with properties 
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analogous to the ones required in assumptions A through C above). 

It turns out, however, that the breaking of rotation-invariance, 

i.e. directional ordering, is possible, in principle, in two-dimensional 

systems with connected correlations which do not fall off more rapidly than 

the inverse square distance (so that there is some divergent "susceptibility"). 

Let Α(ω) and Β(ω) be some bounded F-measurable functions of 

ω . We define 

<A>p = ∫P(dω)A(ω), and 

<A;B>p Ξ <A°B>p - <A>p <B>p , 

where P is some tempered Gibbs state of the system. Next, we define a 

space-dependent rotation, . Then 

where 

is a smooth function vanishing outside Λpn . Let Pa ≡ Ta P be defined 

as above. Let A be some F(V)-measurable function of ω , where V is 

a compact subset of IR2 .We choose n so large that V  n. By definition 

We propose to show that 
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as n → ∞, provided certain connected correlations have sufficiently 

rapid decrease. Since Ta is a constant rotation, Ta , on V it 

suffices to show that 

(2.19) 

as n → ∞, and this will imply the rotation invariance of <A>p · 

A straightforward variant of Lemma 2.1 permits us to find an 

explicit expression for which allows us then to calculate d/dα (DPα/dP) (^p“) 

explicitly. From that expression we infer that, under fairly obvious 

hypotheses on the gradient of the two-body potential, (2.19) holds if 

(2.20) 

provided dist(x,V)  d, dist(y,V)  d . Here ρx (ω) = ω{x}, is the 

’’coordinate function". A typical choice of Α(ω) would be, for example, 

Α(ω) = ρx1 ρx2, x1 # x2. 

A related discussion of the absence of breaking of rotation - (and trans-

lation) invariance, based on the BBGKY hierarchy, has recently appeared 

in very interesting papers by Gruber and Martin [28]. 
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3. Quantum Spin Systems. 

3.1. Notations, basic concepts, main results. 

We consider quantum lattice systems on Z2 . These systems are 

described in detail in chapters 2 and 7 of [29]. See also [30]. The 

C*-algebra A associated with such systems has the following local structure: 

for each x  Z2 Α
χ
 is a subalgebra of A which is isomorphic to the 

algebra of all bounded, linear operators Β(IΗ) on a fixed3finite-dimensional 

Hilbert space H . The subalgebras Α
χ
 and A commute elementwise, for 

x # y . Let Λ be a subset of Z2 . Then Α(Λ) is the norm closure of the 

algebra generated by {Α
χ

 : x  Λ}. In particular A is the norm closure 

of A(Z2 ) . A quantum lattice system is specified by prescribing an inter-

action potential. For simplicity we consider only two-body translation-inva-

riant potentials, but our methods extend to more general interactions : 

with each two-element subset, X , of Z2 we associate a selfadjomt operator, 

(Χ) , in A(X) such that 

The Hamiltonian operator, U(Λ) , which determines the dynamics of the system 

confined to a finite region Λ of the lattice is defined by 

Under our assumptions on the interaction potential  , it is known that, 

for all a  A and t  R , 
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exists and defines a strongly continuous one-parameter group of automorphisms 

of A ; see e.g. [29]. That group describes the time-evolution of the 

observables of the system in the thermodynamic limit. 

Let G be a compact, connected Lie group, and let g → V(g) be 

a unitary representation of G on H which obviously determines a represen-

tation of G as a group of automorphisms of B(IH) , 

a → V(g)aV(g)* , a  B(IH) . 

We suppose that the map 

g → V(g)aV(g)* , a  B(IH), 

is continuous for each a  B(IH) . (This is automatic when dim Ή < ∞) . 

Since Β(IΗ)  Α
χ

 , we obtain, for each x  Z2, a strongly continuous repre-

sentation of G by automorphisms of A , which we denote by yx(g) · 

Furthermore, we define 

where Λ is an arbitrary, finite subset of Z2 , and a  Α(Λ) . By 

continuity, this determines a representation γ(·) of G as a group of 

automorphisms of A . Let φ be a state on A . Then the state φg, 

g  G , is defined by 

φg (a) = φ(γ (g) (a) ) , a  A 

A state φ is G-invariant if φg = φ ,  g  G . 
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Theorem 2. In the situation described above, and if for all X = {x,y}  Z2 

a) ||(Χ)|| ≤ c|x-y|-4 for some constant c, 

b) γ(g)((X)) = (Χ) ,  g  G, 

then all αt - KMS states of the system are G-invariant. 

Remarks : 1) This result extends to more general potentials,  , with 

manybody interactions of "short range", (sufficiently rapid fall-off of 

||  (X) || in diam(X) , [30]). 

2) This result is best possible, since there exist two-dimensional 

systems with a continuous symmetry group, G , and two—body interactions, 

 , with 

||({x,y})|| ≈ C | x-y| -4+ε, 

ε > 0 arbitrarily small, for which spontaneous breaking of G is known 

to occur, [31], [32] . 

3) The absence of spontaneous breaking of continuous symmetries 

in two-dimensional systems with short range interactions does not exclude 

the existence of phase transitions (non-uniqueness of the Gibbs state) in 

such systems. An example of such a transition, in the classical case, has 

been constructed by Schlosman [33] . 

4) For mathematical background used in the proof of Theorem 2 we 

refer the reader to the work of Araki, [34], [35] . 
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3.2. Proof of Theorem 2. 

Since each αt-KMS state has a unique decomposition as a direct 

integral of extremal αt-KMS states, it is sufficient to prove the theorem 

for extremal KMS states. Moreover, it is clearly sufficient to only 

consider closed one parameter subgroups H of G . Since G is compact 

H  R/Z = S1 . Furthermore, we consider only potentials,  (X) , such that 

(3.1) 

The general case is obtained as in [16]. Let φ be an extremal KMS state 

(at inverse temperature β = 1 ), and let g be a fixed element of H . 

Since H  S , it can be parametrized by the numbers in [0,1) . Let 

(L) = {x = (x1, x2) z2 ||χ1| _L , | x2 | ≤ L } 

For each L , we are going to construct a family of states, ψL , on A 

such that 

ѱL(a) = φg (a) ,  a  A((L)) (3.2) 

and 

S(ѱL|φ) ≤ K ≤ ∞, uniformly in L, (3.3) 

where S(ѱL |φ) is the relative entropy of the two states defined by 

Here ΔѱL, φ is the relative modular operator of the states ψL and φ 

For properties of S(.|·) see [36,18] . Using the monotonicity property 

of S(.|.) , the fact that the restrictions of ψL and φg to A((L)) 

coincide and lemmas 2 and 3 of [18] we obtain that φg = φ . The ideas of 
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the proof of this last statement are the same as those in the classical 

case : From (3.3) we deduce that φ and φg are quasiequivalent (which 

corresponds to equivalence of measures in the abelian case), and therefore 

since φ is extremal, φ = φg, as in the classical case. 

Let (L) be fixed. Let τ
+
 be the automorphism of A defined by 

where 

g
x
 = g , x  (L) 

We define τ_ by replacing g by -g . We introduce 

ѱL(a) = ψ
+
 (a) = φ(τ

+
 (a) ) , a  A 

and 

ѱ_(a) = φ(τ_(a)) , a  A 

Let (IHφ, Ωφ,πφ) be the GNS representation associated with the 

algebra A and the state φ . We also denote by φ the extension of the 

state to the von Neumann algebra M = πφ (A)'' . Since φ is a KMS state 

on A > its extension to M is a positive, faithful, normal state on Μ , 

and the theory of relative hamiltonians holds [37] . Let 

and 
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Note that h and h± are in A . 

We now consider local perturbations, φh, h  A, of the state φ 

which (loosely speaking) are defined as follows : Let Δ ≡ eH be the 

modular operator associated with φ . Here -H is a renormalized version 

of the formal Hamilton operator limZ2 U() on Hφ. The perturbed state, 

φh, is defined by 

It is not very hard to verify that φh satisfies the KMS condition for 

the automorphism group, αh, given by 

Lemma 3.1. The states ѱ± satisfy 

ѱ± = φh-h ± 

Proof. Since φ is KMS it satisfies the Gibbs condition of Araki [35]. 

Therefore the restriction of φh , h = Σ (Χ) , to A((2L)) is 

the normalized trace, and φh is τ±-invariant. We denote φh by χ . Let 

(IHx, Ωx,πx ) be the GNS representation of χ . Let Hx be the unique 

selfadjoint operator on Hx with 

Ηx Ωx = 0 

and 

where σxt(·) is the modular automorphism group associated with χ . Then 
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since φ = χ-h . Since χ is T
+
-invariant there exists a unitary operator, 

U+, on Hx such that 

and 

(3.4) 

By using the Trotter product formula, an analytic continuation of (3.4) 

to imaginary time and 

one sees that 

Therefore 
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Next, we introduce again a duplication of the system and consider 

the two states φ φ and ψ
+
  ψ_ . We compute S (ѱ+  ѱ_|φ  φ) . 

Since 

S (ψ
+
 |φ) = -φ(h-h

+
) 

we have to bound terms like 

(3.5) 

By the invariance of the potential the terms with X  (L) do not 

contribute to (3.5). Using the invariance of the potential 

(3.6) 

with g
x
 = 0 if x  (2L) . Moreover we have 

|gx-gy| ≤ 1/L | x-y|, (3.7) 

and |gx-gy| = 0 if x and y are in (L) . We expand the right-hand 

side of (3.6) : 

-ry(g
x
-gy) (φ(Χ)) = 

(3.8) 

(Αy is some selfadjoint element of Ay) . We get 
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We do the same thing for τ-1_((Χ)) . Using the definition of τ
+
 and τ_ 

(3.1), (3.7) and (3.9) we see that only terms of order 0(1/Lp) , p ≥ 2 , 

contribute to S(φ
+
 φ_ |φ  φ) , that the second-order terms give a finite 

contribution, and that the higher order terms give a contribution of order 

0(1/L) . Therefore we have constructed a family of states ѱL satisfying 

(3.2) and (3.3). This ends the proof. 

Remark. Our proof can be extended to certain quantum lattice systems where 

Α
χ
 is infinite dimensional, and (Χ) is not necessarily bounded. 

We also believe that the results of Section 2 could be extended 

to quantum-mechanical particle systems with Fermi statistics by combining 

the methods of the present section with an extension of Ruelle's work [25] 

to quantum systems, but we have not checked this. 
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4. Non-existence of Gibbs state for two-dimensional harmonic and anharmonic 

crystal. 

4.1. Introduction, main results. 

We consider unbounded spin systems on Z2 . The state space of 

the spin, sx, at x  Z2 is the measure space (R, B, dsx), where B is 

the Borel σ-algebra, and dsx the Lebesgue measure. We use the following 

notations : If  is a subset of Z2, 

and  = Z2 \  . In particular we set 

We define |x| = max{|x1|,|x2|} , for x = (x1,x2)  Z2. The configuration 

space of the system is the measure space (Ω = Πxz2 R, B(Z2), ds). We 

consider only two-body interactions of the type 

x
(sx,sy) = J(x-y) U(sx-sy) 

where X= {x,y} Z2 

Assumption A. U : R → R is 

a) twice continuously differentiable 

b) U(s) = U(-s) 

c) there eixsts a natural number p > 0 and a constant K such 

that 

Assumption B. There exists a constant C such that 
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Let A be a bounded set. We introduce 

(4.1) 

and 

We define the Gibbs distribution in Λ , given the boundary condition s 

in Ω , as the probability measure on (R\B()) whose Radon-Nikodym 

density with respect to ds is 

(4.2) 

This expression is well-defined for all configurations s for which (4.1) 

is defined, for almost all s , and 0 < Z(|s) < ∞ . A probability measure 

P on (Ω,Β(Z2 )) is a Gibbs state if for all bounded sets  (4.2) is 

well-defined for P-almost all s, and the conditional probability of P 

with respect to B() is given by the Gibbs distribution in A 

Theorem 3. If assumptions A and B are satisfied, then there is no 

Gibbs state P such that 

P ( | sx| q ) ≥ C q, q ≥ p 

where is a constant independent of x . 

Remarks. 

1) If maxsR |d2/ds2 U(s)| ≤ k ≤ ∞, then there is no Gibbs state. In particular 

this is the case for the harmonic crystal, since U(s) = s2 .In the 

anharmonic case, U(s) = s , there is no Gibbs state with finite second moment. 
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2) In the class of models considered, the potential energy U(.) is 

IR-invariant. G = R is the internal symmetry group. This is an example 

of a non-compact, connected Lie group. It acts on the state space for a 

spin (R,B) · It is possible to consider more general classes of G-inva-

riant potentials, where G is a non-compact, connected Lie group acting on 

a very general state space (see [20]). 

There is another way to express the results, which makes a connection 

with [22]. Let us fix a boundary condition and choose a sequence of 

bounded sets Λn, Λn ↑ Z2, so that 

(4.3) 

are well-defined for all n. Let <|s0|q>n be the expected value of 

|s
o
|q with respect to the probability measure (4.3). For example we can 

take U(s) = s2 or s4, sx = 0 for all x  Z2, and n = (x:|x| < n} . 

Theorem 4. If assumptions A and B are satisfied for some p > 0 , then 

for q > p . If A is satisfied with p = 0 , then 

for all q > 0 . In particular, this holds for the harmonic crystal. 
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4.2 Proofs of Theorems 3 and 4 

Proof of Theorem 3 

Let P be a Gibbs state such that 

supxZ2 P(|sx|P) ≤ C < ∞ (4.4) 

We define for all L  IN 

Let t  R be fixed and 

(4.5) 

We define a transformation Tt on Ω (depending on L) by setting 

(Tt- s)x = sx + axL(t) (4.6) 

Let Pt be the probability defined by 

Lemma 4.1. Pt is absolutely continuous with respect to P and 

with L = (x € Z2 : |x| ≤ L} 
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Proof. This follows from the fact that P is a Gibbs state; see equ. (4.2). 

We now introduce a duplicate system and consider the probability 

measures P  P and P
t
  P-t on Ω x Ω where P-t = T-tP . The relative 

entropy is given by 

Lemma 4.2. Let P be a Gibbs state such that (4.4) holds. Then one can 

choose L = L(t) in (4.6) such that 

o ≤ S(pt  P-t |P  P) ≤ 1 

Proof. The proof is like that of Lemma 2.2. Let X = {x,y} . 

(4.7) 

In formula (4.7) |θ| ≤ |t| . Using (4.4) we get 

where Cm are constants independent of x and y . Therefore 

S(Pt  P
-t

|P  P) is bounded by 
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(4.8) 

For |y| > |x| we have that 

Thus (4.8) is smaller than 

(4.9) 

Therefore, for any fixed t , we can find L = L(t) so that (4.9) is 

smaller than one. 

Let v be the probability measure which is the projection, on 

the state space of the spin at x = 0 , of the Gibbs state P . Likewise, 

let vt be the projection of Pt on this state space. If h is a measura-

ble function on IR , then 

∫h(s)v
t
(ds) = ∫h(s-t)v(ds) (4.10) 

Let A  IR and A = R \ A . Using Jensen's inequality and Lemma 4.2 we get 



- 38 -

uniformly in t . Let I be a, finite interval of R such that v(I) = δ > 0 . 

Then νt(Ι)_ε(δ)>0 uniformly in t , But then (4.10) is incompatible with 

the fact that v is a probability measure. 

Proof of Theorem 4 

Let us suppose first that assumption A is satisfied with p > 0 , 

and assume temporarily that 

Then we can find a subsequence of bounded sets, denoted again by , 

such that 

<|sx|P>n ≤ C < ∞ (4.11) 

with C independent of n and x . Let t be fixed. We can prove Lemma 4.2 

with P replaced by <.>n if n is large enough. Let μn be the projection 

of <.>n on the state space of the spin at x = 0 . Let A  R, A = R \ A, 

At = {x : x+t  A} . For n large enough 

(4.12) 

by Lemma 4.2 and Jensen's inequality, as above. Since p > 0 and (4.11) 

holds, we obtain, using Tschebyscheff's inequality, 

μ
n
({x: |x| ≥ λ}) ≤ (4.13) 

Using (4.12) with A = {x:|x| ≤ λ} we can find an ε > 0 so that, for 

λ > λ0 and n large enough, 
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μn (At) ≥ ε 

Now we choose t = 2λ and get a contradiction with (4.13) if λ and n 

are large enough. 

The case p = 0 is simpler, since we can prove Lemma 4.2 for 

any sequence . Then we repeat the above proof with q > p instead 

of p . 

Remark. 

It is an interesting open problem to prove that 

< |sx|2 >n ≤ const. < ∞, 

uniformly in n, for the anharmonic crystal, with U satisfying Assumption 

A with p > 0 and J nearest neighbor, in d_3 dimensions; see also 

[22]. 
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