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Abstract.

We develop a unified approach, based on Araki's relative entropy
concept, to proving absence of spontaneous breaking of continuous, internal
symmetries and translation invariance in two-dimensional statistical-
mechanical systems. More precisely, we show that, under rather general assump-
tions on the interactions, all equilibrium states of a two—dimensional system
have all the symmetries, compact internal and spatial, of the dynamics,
except possibly rotation invariance. (Rotation invariance remains unbroken
if connected correlations decay more rapidly than the inverse square distance).
We also prove that two-dimensional systems with a non-compact internal symme-

try group, like anharmonic crystals, do typically not have Gibbs states.



1. Introduction and main results.

It is well known that continuous symmetries of two-dimensional
statistical mechanical systems or two-space-time-dimensional quantum field
theories cannot, in general, be broken spontaneously (except in systems
with interactions of very long range). Mathematical proofs of this fact have
been known for quite a long time : They have appeared in work of Mermin and
Wagner [1] concerning quantum spin systems on a two-dimensional lattice, of
Mermin [2] concerning classical lattice spin systems, and in [3] where clas-
sical particle systems have been analyzed. For related results concerning
quantum field theory, see [4], [5] . In [1] and [2] it is shown that the
spontaneous magnetization vanishes and in [3] , that the density of particles
is constant, thus excluding the existence of crystalline order. Physical
background material as well as the mathematical outline of the proofs are
very well explained in [6] . The basic tool is Bogoliubov's inequality, which
was used for the first time, in this context, by Hohenberg in his study of
the Bose gas [7] . (A rigorous proof was later published in [8]). Using
Bogoliubov's inequality Fisher and Jasnow [9] proved clustering properties
of the two-point function and, consequently, that the order parameter vanishes.
Mc Bryan and Spencer obtained a better decay for the two-point function of
classical spin systems, using new techniques [10]1) . Shlosman generalized
their work to the case of a compact connected Lie group [11]. (The extension

of [2] to this general situation was given by Vuillermot and Romerio [12]).

In the current context of statistical mechanics, Garrison, Wong and

: 2 . . .
Morisson [13] ) were the first to prove a result about the invariance of the states

1) Their arguments can be extended to quantum spin systems.

2) We thank J. Bricmont for pointing out this reference.



of the system. Their argument employs Bogoliubov's inequality and the algebraic

approach to statistical mechanics. They discussed the internal and the spatial
symmetries of the system. Using a rather different approach, Dobrushin and
Shlosman [14], and later Shlosman [15], proved that all equilibrium states
are G-invariant in the case of classical spin systems, where G 1is a compact
connected Lie group. In the context of relativistic quantum field theory

this result was anticipated (somewhat implicitly) in [4], Recently the
results in [14] were rederived and generalized in [16]. Since the new proof
appearing in [16] is simpler, technically, it turned out to be possible to

obtain optimal results for some class of spin systems. At the same time,

Simon and Sokal [17] proved some related as well as different results. They
proposed a rigorous version of the entropy versus energy argument which

captures one of the basic principles of statistical physics.

In this paper we present another approach to the problem, inspired
by [16] and [18]. The basic physical idea can be found already in [19] . In
section 2, we show that (tempered) Gibbs states of particle systems are

translation-invariant for a large class of potentials. In section 3, we

prove that all KMS-states of a quantum spin system are G-invariant, where

G 1is as above. This is in particular the case for the Heisenberg model. Our
method can be used to extend the results of [16] to lattice systems of
genuinely unbounded spins in two dimensions, when the internal symmetry

group is a compact connected Lie group G . On the other hand, if the internal
symmetry group G 1is a noncompact connected Lie group, as in the case of

the harmonic crystal, it is impossible to construct Gibbs states. Dobrushin
and Shlosman proved such results in [20], and in section 4, we derive similar
results for a larger class of spin systems. Let us mention the interesting

paper [21] of Jona-Lasinio, Pierini and Vulpiani, where this problem is



discussed. We also derive results similar to those obtained by Brascamp, Lieb
and Lebowitz in [22]. They used Bogoliubov's inequality to prove the diver-

gence of some moments of the spins in the thermodynamic limit.

Throughout this paper, our main method is the same. We do therefore
not repeat all steps for each case in detail. Our proof of Theorem 1 which
establishes translation invariance of the Gibbs state in a class of classical

particle systems is the most complete one.

Our basic strategy is the following : We make use of the fact that

two-dimensional systems support large fluctuations of finite energy. For

example, it is possible to rotate all spins by a fixed amount on an arbitrarily
large area without paying more than a finite (actually arbitrarily small)
amount of energy independent of the area. It suffices to allow for a large
transition region on which the spins are "rotated smoothly", i.e. on which

the amount by which the spins are rotated decreases from a constant to the
identity as the outer boundary of the transition region is approached. It is

at this point where the continuous character of the symmetry group enters.

This is the basic physics.

In more mathematical terms, starting from a Gibbs state, P , of
some system with a continuous symmetry group, e.g. some spin system, we are
able to construct perturbed states, Pn ,n=1,2,3,..., which are obtained
from P by rotating spins in a region of diameter « n and satisfy the

following two requirements :

i) The relative entropy, S(Pn/P) of Pn with respect to P is

defined by

S(P_/P) = g<H_-H> g = k1)l

P ]



i.e. it is proportional to the expected value in the state P of the

difference between the perturbed and the originalHamilton function. The require-
ment is that S(Pn/P) be bounded uniformly in n . A simple application of
Jensen's inequality (in the case of classical systems) then shows that P

and any limit of (Pn) cannot be mutually singular ("orthogonal').

ii) All spins in a region, ﬂn , say a disk of radius n centered
at the origin, have been turned upside down. Restricted to An - Pn coin-

cides with P , the Gibbs state obtaind by turning all spins upside down.

The conclusion is that, because of i), the relative entropy of P
with respect to P 1is finite, and this implies, as remarked, that P = P,

(provided P is an extremal state, i.e. a pure phase).

The use of relative entropy as a means of comparing different Gibbs
states of some system was pioneered by Araki who applied it to prove uniqueness
of KMS states in one-dimensional quantum spin system [18] . Our use of that
concept provides a unified treatment of problems related to uniqueness of
equilibrium states and absence of symmetry breaking. The method is not
restricted to systems with a continuous symmetry group, contrary to the

approach based on Bogoliubov's inequality.



2. Two-dimensional systems of classical particles.

2.1. Notations, basic concepts.

We consider two-dimensional systems of classical particles in
X =]R2 . The configuration space is defined as the set § of all finite
or countable subsets, w , of X such that w NV 1is finite, for any
bounded subset V of X . Alternatively, we may define  as the set of
all Radon measures of the form

L e
XEw X

where w 1is as above and € is the Dirac measure at x . We shall use

both interpretations of Q . We thus have the two equivalent notations

L f(x) and [ w(dx)f(x) .

XEw

We use the shorthand Wy for w N A, A a subset of X and write wp
instead of y Yy u s w and y € Q . The Lebesgue measure on X is denoted

by » and A =X~ A
For any bounded subset, A , introduce the counting variable

N(VD) (@ = w(@) = |un A

For any Borel subset V , let

E(V) = og{N(A) : he V, A bounded}

be the ¢-algebra of all events in V generated by the random variables

N(A) . Let F = F(X) . There is exactly one probability measure on (2,F) ,

namely the Poisson point process g with intensity measure z-A , such that,

for arbitrary,pairwise disjoint, bounded sets A ..,An , the random

1 o



variables N(Al),...,N(ﬁn) are independent and have expected values
zA(nl),...,zA(An) . Here z 1is the activity of the particles. Thus
describes an ideal gas of particles or a gas at inverse temperature B = 0 .
If V 1is a bounded subset and f a nonnegative, F(V)-measurable function

we have the explicit formula

n
r 2 f Mdx)) .o A(dx D E({x 50 enx 1)
s o

n-o n

= )

I m(dw) f(w) = e—zR(V)

=1

We now assume that, at finite temperature, the particles interact via
a two-body translation-invariant potential. The potential energy of a confi-
guration a = {x,y} consisting of a particle at x and a particle at y is

given by
¢(a) = ¢(x-y) = ¢(y-x) (2.2)

Assumption A. The function ¢:ZR2 +IR 1is bounded below and

a) ¢ 1is stable : there exists a positive number B such that for any finite

configuration o (i.e. w(X) < «)

L ¢(a) > -Buw(X)

ocw

b) ¢ 1is regular : there exists a positive number d , and a positive mono-

. . +
tone decreasing function, ¢ , on R such that

6| <o(x]) , |x| >4,

and

oo

[ te(t)dt < » .
0

Let A be any bounded subset of X . The energy of a configuration,

n , of particles in A (i.e. n < A) , given some boundary condition



w € Q, is formally

Hy(lw) = I ¢() (2-3)
o

an # 0

In particular, for each x € X we put

H(xlm) = Hx(exlm) (2.4)

which is the energy of a particle at x given the configuration w . (The

particle at x may or may not belong to w ). We define the Gibbs distribu-

tion of a system confined to A , given some boundary condition w , as the

probability measure on (2,F(A)) whose Radon-Nikodym density with respect

to the restriction of m to F(A) 1is

=1
P, (n|w) = z(hlw) ~ exp(-BH, (n|w)) (2.5)
where Z(A|w) is a normalization factor (partition function)

=zA(A
it < Z(A|w) = [w(dn) exp(-BHﬁ(n|w)) .

Formula (2.5) is meaningful whenever, for a given w , (2.3) is defined
for all n<e A, and Z(Alw) <« . This is in particular the case for the
class of configurations corresponding to the following subset Q < Q :
Let ﬁn be the family of disks centered at the origin with radius n ,

n €N ,

—
]

{(x € X : [x‘ < n}
Let

Oy = lw € wl) <N(A), VneEN}
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Then

Q = U @ (2.6)

Definition [23] . A Gibbs state P 1is a probability measure on (2,F) such

that, for all bounded sets A, (2.5) is well-defined for P-almost all
w , and the conditional probability of P with respect to E(ﬁ) is given

by the Gibbs distribution in A .

This section is largely inspired by chapter 1 of [24] to which we

refer the reader for additional information. See also [25] .

2.2. The main result on particle systems.

In order to state and prove our main result we need some additional

assumptions on the potential ¢ .

Assumption B. ¢ 1is a twice continuously differentiable function (except at

0€ER? ) .

2 . .
Let a €ER" be a unit vector, |a] =1 . Let 0<e <1 be given

and t € R . We define on IR2

d2 2
we(x) =  sup sup —5 ¢ (x+ta) |x|

a: t: dt

la] =1 |t|<e]x]
We may regard wg as a potential and define

we(a) = ¢€(x-y)

for any configuration o = {x,y} ; see (2.2). Moreover we introduce, for

w € Q (see (2.4)) ,
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H¢ (x|lw) = Iy (x-y) (2.7)
€ yE€w €

y#x

Assumption C. There exists O < € < 1 such that we , interpreted as a

potential, is

stable : Yy (a) 3_—ﬁb(x)
ocw ©

with 0<B <o, w€Q and w(X) <
Let a €]R2 . The translation Ta on X 1is defined as

X >T x = x+ta
a
This transformation induces a transformation on @ , also denoted by Ta :

w>Tw
a

with
T w(h) = [ w(dx)h(x+a) , (2.8)

h being a measurable function on X . Let P be a Gibbs state. TaP is

defined by d(TaP)(m) = dP(Tam) . We say that P 1is translation invariant

if P = TaP , for all a €]R2 .

Theorem 1. Let P be an extremal Gibbs state for a particle system on ]R2

with activity 2z , inverse temperature B and with two-body potential

satisfying assumptions A,B and C . If

a) there exists a constant K < » such that for any bounded subset

[ P(dwIN(A) (w) £ KA(A)
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b) there exists a constant C < « such that for all x € X

I P(dw)HIIJ (xIm)exp(—BH(x|m)) <C

£

then P 1s translation-invariant.

Remarks.

1) The assumption that P be extremal is no loss of generality, because
a Gibbs state satisfying a) and b) has a decomposition into extremal Gibbs

stateshaving the same properties almost surely.

2) This result can be extended to some systems consisting of several species

of particles, e.g. ones with charge interacting via a smooth two-body potential.

In the corollary below we discuss a specific class of two-body
potentials for which hypotheses a) and b) of Theorem 1 can be verified. Our
result involves the notions of superstability and tempered Gibbs state for
which we refer the reader to Ruelle's paper [25]. Let ¢ be some potential
and let ¢+, ¢- denote the positive part, the negative part of ¢ , respec-—
tively, so that ¢ = ¢+—¢~ and |¢[ = ¢++¢— . We define H|¢|(x|w) and

H¢_(x|m) as in (2.4).

Corollary. Let ¢ be a superstable potential satisfying hypotheses A,B

and C above. Assume, moreover, that

Hlp (xlm) exp (-BH

|(K||’.ﬂ)) = c ,
€

| ¢

for some finite constant C independent of x and w . Then all tempered

Gibbs states are translation-invariant.

Proof. Our proof is based on the work of Ruelle,[25]. Since one can always
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decompose a tempered Gibbs state into tempered extremal Gibbs states, it
suffices to consider an extremal Gibbs state and to verify for it the
hypotheses a) and b) of Theorem 1. Hypothesis a) follows from the tempered-

ness of P , and hypothesis b) is verified as follows

H, (x|w) exp(-BH(x|w))
€

H (x|w) exp(-gH
Ve

I¢|(x|w)) exp(28H¢_(x|m))

A

C exp(26H¢_(x|m))
Thus we must prove that
[ P(dw) exp(28H¢_(x|m)) < @
This, however, is done in the proof of a), Proposition 5.2 of [25].

Remarks.
1) The condition

HW (x]w) exp (-pH
€

o] &l <€

is mild. It is satisfied by "most" potentials for which A,B and C hold.
In particulier, this is true for all potentials of Lennard-Jones type; see

Proposition 1.4 in [25].

2) Our results can be extended to systems of several species of particles

with interactions including many body potentials.

2.3. Proof of Theorem 1.

It is sufficient to prove the theorem for |a| < 1 . Let a be

fixed and let Pa = T;IP_. We want to prove that Pa and P are equivalent
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by showing that for any E(A)~measurab1e subsets Ac  and AS = QNA 8

A bounded,
P_(A) e . P (&%)
0 < -(P(A) 1ogA§TXT— + P(A7) log ——-?T—J <K (2.9)
P(A7)
and
P (A) c P(A%)
0 < -(P_(A) log + P (A7) log — <9< K (2.10)
- a P (A) a c,/—
a P_(A7)
a
where O < K < » is independent of A , A and A . We obtain these

inequalities by constructing a sequence of transformations (Tn) on X

such that
Tx=xta=Tx , x €A

Tnx = x , x €& hpn

where A = {x €X:|x| <n} , n€EN, and O < p 1is suitably large.
As in (2.8) we define a transformation Tn on Q 1inducing a transformation

of measures on (Q,g) . We set

We then show that the relative entropy

dp
0 < S(2_|P) = - P(dw) log 5(w) <K (2.11)

is bounded by a constant K independent of n . If n 1is large enough so
that AD:DA , then (2.9) is bounded by (2.11). This follows by using
Jensen's inequality. The other inequality, (2.10), is proved in the same

way.

Let u be a non-negative, smooth, monotone decreasing function

+ . .
on IR with the properties
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u(x) =1, x<1 and u(x) =0, x>p,
for some p , moreover
|%§ <e 5 0<e<l.
We define

Tn ! X > x+a-u CLEL) S TN B

Tn is a smooth function from X 1into X . It is one-to-one because
lu(lx]) = u(lyDl<e [[x] - |y]] < elxy]
Let P = TwlP , as above .
n n

Lemma 2.1. Pn is absolutely continuous with respect to P . Let

1

A=A and T =T . Then
pn T BE e

dp
F W = T I exp B(H, () |0)-H, (Tw, |w))

dp waﬂ

where JT(x) is the Jacobian of the transformation T .

Proof. Let V be a bounded subset, V> A . Let h be E(V)—measurable.
[ P_(d)h(w) = [P(dw)h(T 'w) =
1 =
J P(dw) 75y Jr(@n) exp(-8Hy(n[w)h(T I

because P 1s a Gibbs state.
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Jm(dn) exp(—BHv(nlw))h(T_ln) =

n

e-zA(V) L %T f nA(dxl)...h(dxn)h(Thlxl,...,quxn) 5
n>o (V)
exp(-BHv({xl,...,xn}lw)) (2.12)

Changing variables, X, > Txi , in (2.12) yields the following integrand

on the r.h.s. of (2.12) :

n
h(xl,...,xn) .H

) JT(xi) exp(-BHV({Txl,...,Txn}lm))

We multiply and divide this last expression by

exp(-BHv({xl,...,xn}|m))

To complete the proof we notice that

and

Hv(wv|m) - Hv(valw) - Hh(wﬁ|w) - HA(TmhIM)

Lemma 2.2. Let T =T , and let T be the transformation defined by

replacing a by =-a in the definition of Tn . Let ﬁn = T-IP .

There exists a constant O < K < « independent of n such that

S(_|P) <K , S(P [P) <K
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Proof. We introduce a duplication of the system and consider the probability

measures P & P and Pn @f‘n on Q X Q . We compute

R d(p @ ?n)
S(P_ ®Pn|P ®P) = - [P(dw)P(dw')log R (w,0") =
(2.13)
= S(P |P) + S(P_|P)
We first bound in (2.13) the terms
B(Hﬂ('ﬁuhlw) - HA(mA|m) + Hﬁ(TmA|w) = Hﬁ(wﬂlw)) (2.14)
Let } = Apﬂxnn , (Apn = A) . We have
H (To, |w) - HA(wh|m) = I (e(T)-¢(a)) ,

acw:a(A)>0

with a(l) > 0 indicating that a N X #0 .

Let o = {x,y} and let
£() = ¢ Gyt (w D -ucd2ly))
Using Taylor's formula for |t <1l we get

£(1) = £(0) + £'(0) + % £ ()

¢ (Ta)

and

¢(iu) f(-1) = £(0) - £'(0) + % f"(é)

with 0 < |g] » |6|_<_1 . Since £f(0) = ¢(a) , we see that only the terms

f"(g) and f“(a) contribute to (2.13). Since

’

1
w2l - uddhy < ¢ Ly
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we have

£1(0) < v_(x-y) S’

z  Yla) = pX Hw(xlw) - I V(o)

acCw x€Ew o Cw

- A A
a(A) >0

Therefore we obtain the following bound for the contribution of (2.14) to (2.13)

B2 [ P (- T y(a) +

o< wy
A

8S? [ p@w)

x€wA

H¢(X|M) (2.15)

The first term in (2.15) is bounded by

€2‘E o~ 20
B 5 J P(dw)N(A) (w) < K'e"B
n
for, AT = 0(n2) » and | 1is stable. The second term of (2.15) can be

written as

2
8= [ P(dw) [ x ()H, (x]|w)w(dx) (2.16)
n2 XN v

f A

with xx(*) the characteristic function of the set A . The proof is

completed by using

Lemma 2.3 [26] . If P 1is a Gibbs state, A a bounded subset, z the

activity, then
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[ P(dw) [ x, ®H, (x|w)w(dx) =
Q x AV

-BH(x|w)

z | K(dx)xh(x) f Hw(xlm)e P (dw)
Q

X
Using this lemma we see that (2.16) is bounded above by a constant.
The contribution of the Jacobians is estimated in the same way as the first
term in (2.15). Thus lemma 2.2 is proved, and this implies the bounds (2.9),
(2.10). Therefore P and Pa are equivalent. The proof of Theorem 1 is

now completed by appealing to the following

Lemma 2.4 [27]. If P and Pa are equivalent, and P 1is extremal, then

It remains to prove Lemma 2.3, which is a special case of Theorem 2 in [26].

Proof of Lemma 2.3.

‘BH(KOIw)
z Ixh(dxo)xﬂ(xo) IQP(dm)Hw(xolw)e =

[ a@ax )e™ W) peay) —1—
A © Q Z(A]w)
Zn+1
nEO = I(ﬁ)n A(dxl)...k(dxn)Hw(xolxl,...,xn,wiﬂ
e-BH(xo[xlf""xn’wK)E_BHA(Xl’""xnlwi)

Since xo € A

H(xo[xl,...,xn,mij + Hﬁ(xl’...’xnlm—) =

S5 ?
Hﬂ(xo’xl’ axn|WE) (_.17)
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Moreover,
Hw(x0|x0,x1,...,xn,wiq = H¢(x0|x1,...,xn,mi) (2.18)

Using (2.17) and (2.18)

;}T}[\)\(dxo)f RYCRIRRYCOR WO ERPCINT I

n)

-eKP(“BH(XOIX --sxn,wH)EXP(—BHA(xl,...,xn|wK)

1’

1
= (n-l-l) 'E-;l-.;'l)—! J-(A)n+1 l(dxo) . .l(dxn)eXP(‘BHA(XO,xl, con ,xnlwI))

- Hw(xolxoxl...xn,mi)

1
g I - l(dxo)... A(dxn)( t H (xilxo...xn,mii) :

() x, €0 ¥
exp(—BHﬁ(xo...xn|w10)

Summing over n and integrating over wy we get

I P(dw) I x, (x)H (xlm)m(dx)
Y X A ¥

We close this section with :

A remark concerning the breaking of rotation invariance.

The methods developed in this section can also be used to study

the absence of breaking of rotation invariance in classical particle systems

with rotation-invariant, superstable two-body potentials, (with properties
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analogous to the ones required in assumptions A through C above).

It turns out, however, that the breaking of rotation-invariance,

i.e. directional ordering, is possible, in principle, in two-dimensional

systems with connected correlations which do not fall off more rapidly than

the inverse square distance (so that there is some divergent "susceptibility").

Let A(w) and B(w) be some bounded F-measurable functions of

w . We define
<A>, = JP(dw)A(w) , and
<A;B>_ = <A-B> - <A>_ <B> .

where P 1is some tempered Gibbs state of the system. Next, we define a

X
space—-dependent rotation, Ta . Let x = (xl) . Then
2

~

cos g(x) X, + sin g(x) X,

X
LARS ) -sin 2(){) X, + cos E.'(x) X

1 2

where

g(X)e—'g“'au(llel-) » a >0,

is a smooth function vanishing outside A - Let Pu = TaP be defined

~ i~

as above. Let A be some E(V)—measurable function of w , where V 1is

a compact subset of ]R2 . We choose n so large that V c An . By definition

ng(dw)A(w) = IP(dm)A(Tam)

We propose to show that
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f P (dw)A(w) = [P(dw)A(w)

as n > » , provided certain connected correlations have sufficiently

rapid decrease. Since Ta is a constant rotation, TclL , on V it

~

suffices to show that

d -
Te jg&(dw)A(m)/a=o =0 , (2.19)

as n + » , and this will imply the rotation invariance of <A>P

A straightforward variant of Lemma 2.1 permits us to find an

dPy dPg
explicit expression for I which allows us then to calculate I ﬁﬁ?ﬁ

explicitly. From that expression we infer that, under fairly obvious

hypotheses on the gradient of the two-body potential, (2.19) holds if

2
<Asp_>p < 0(1/d%)

(2.20)

<A;pxpy>P < 0(1/d2)

provided dist(x,V) 2z d , dist(y,V) 2 d . Here px(w) = is the

“{x}

"coordinate function'. A typical choice of A(w) would be, for example,
Alw) =p_p. » %X, #x

X1 Xy 1
A related discussion of the absence of breaking of rotation - (and trans-

lation) invariance, based on the BBGKY hierarchy, has recently appeared

in very interesting papers by Gruber and Martin [28].
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3. Quantum Spin Systems.

3.1. Notations, basic concepts, main results.

We consider quantum lattice systems on EZZ . These systems are
described in detail in chapters 2 and 7 of [29]. See also [30]. The
C*-algebra A associated with such systems has the following local structure:
for each x EIZZ Ax is a subalgebra of A which is isomorphic to the
algebra of all bounded, linear operators B(H) on a fixed,finite-dimensional
Hilbert space H . The subalgebras Ax and Ay commute elementwise, for
x #y . Let A be a subset of 222 . Then A(A) 1is the norm closure of the
algebra generated by {Ax : X € A}. In particular A is the norm closure
of A(ZZZ) . A quantum lattice system is specified by prescribing an inter-
action potential. For simplicity we consider only two-body translation—-inva-
riant potentials, but our methods extend to more general interactions :
with each two-element subset, X , of IEZ we assoclate a selfadjoint operator,

$(X) , in A(X) such that

ol = = [l <=
X30

The Hamiltonian operator, U(A) , which determines the dynamics of the system

confined to a finite region A of the lattice is defined by

U(hd) = & ¢(X)
X=A

Under our assumptions on the interaction potential ¢, it is known that,

for all a €A and t €ER ,

olt U(A)a e-lt U(A)

at(a) = 11m2

ANz
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exists and defines a strongly continuous one-parameter group of automorphisms
of A ; see e.g. [29]. That group describes the time-evolution of the

observables of the system in the thermodynamic limit.

Let G be a compact, connected Lie group, and let g - V(g) be
a unitary representation of G on H which obviously determines a represen-

tation of G as a group of automorphisms of B(H) ,
a > V(glav(g)* , a € B@M)

We suppose that the map
g > V(gav(e)* , a€eBm® ,

is continuous for each a € B(H) . (This is automatic when dim H < « )
Since B(H) ~ Ax , we obtain, for each x GEZZ , a strongly continuous repre-
sentation of G by automorphisms of A , which we denote by Yx(g)

Furthermore, we define

y(g)(a) = (@ v, (8) (a)
xEN

where A is an arbitrary, finite subset of 112 , and a € A(A) . By
continuity, this determines a representation +y(-) of G as a group of
automorphisms of A . Let ¢ be a state on A . Then the state mg ,

g € G, is defined by

wg(a) =pky(g@), acA ‘

A state ¢ 1is G-invariant if wg = ,VgecaG.
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Theorem 2. In the situation described above, and if for all X = {x,y} CEZZ

a) [|¢(X)”_i Clx—y|_4 for some constant c¢ ,

b) y(g)(¢(X)) = ¢(X) , Vg€G,

then all at-KMS states of the system are G-invariant.

Remarks : 1) This result extends to more general potentials, ¢ , with
manybody interactions of "short range', (sufficiently rapid fall-off of

[|¢(X)|| in diam(X), [30]1).

2) This result is best possible, since there exist two-dimensional
systems with a continuous symmetry group, G , and two-body interactions,

¢ , with

6 (x,yD) ||~ c|x-y| 4%,

€ > 0 arbitrarily small, for which spontaneous breaking of G 1is known

to occur, [31], [32] .

3) The absence of spontaneous breaking of continuous symmetries
in two-dimensional systems with short range interactions does not exclude
the existence of phase transitions (non-uniqueness of the Gibbs state) in
such systems. An example of such a transition, in the classical case, has

been constructed by Schlosman [33]

4) For mathematical background used in the proof of Theorem 2 we

refer the reader to the work of Araki, [34], [35] .
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3.2. Proof of Theorem 2.

Since each at—KMS state has a unique decomposition as a direct
integral of extremal at-KMS states, it is sufficient to prove the theorem
for extremal KMS states. Moreover, it is clearly sufficient to only
consider closed one parameter subgroups H of G . Since G 1is compact

HE R/ Z = S1 . Furthermore, we consider only potentials, ¢ (X) , such that

£, letto, x| |x|* <= (3.1)
0#x€E ZZ

The general case is obtained as in [16]. Let ¢ be an extremal KMS state

(at inverse temperature B =1 ), and let g be a fixed element of H .

Since H<= S1 , it can be parametrized by the numbers in [0,1) . Let

ALY = {x = (1,x®) eZ?| =} <L, |x°| <L}

For each L , we are going to construct a family of states, wL’ on A

such that
wL(a) = mg(a) , VY a€AWWwW) (3.2)

and

S(¢L|w) <K <w , uniformly in L , (3.3)

where S(¢L[w) is the relative entropy of the two states defined by

S ) = - ©(log A )
o ©(log by 0
Here aw o is the relative modular operator of the states wL and ¢
L’
For properties of S(*|*) see [36,18] . Using the monotonicity property

of S(+|+) , the fact that the restrictions of by and mg to A(A(L))

coincide and lemmas 2 and 3 of [18] we obtain that ¢% = @ . The ideas of
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the proof of this last statement are the same as those in the classical
case : From (3.3) we deduce that ¢ and wg are quasiequivalent (which
corresponds to equivalence of measures in the abelian case), and therefore

since ¢ 1s extremal, ¢ = wg , as in the classical case.

Let A(L) be fixed. Let T, be the automorphism of A defined by

=
]

® y (g)
Y ox€A(L) * X

where

g =g , x € A(L)

X LEE g » X = (xl,xz),max(|x1|,[x2|) = L+k

jus)
I

We define +t_ by replacing g by -g . We introduce

b(@) =¥, () = o(r, () , a€A

and

p_(a) = @(t_(a)) , a€A

Let Gﬁp,nm,n$) be the GNS representation associated with the
algebra A and the state ¢ . We also denote by ¢ the extension of the
state to the von Neumann algebra M = ww(A)" . Since ¢ 1is a KMS state

on A , its extension to M 1is a positive, faithful, normal state on M ,

and the theory of relative hamiltonians holds [37] . Let

h = > $(X)
XNA2L)# @

and

ht =7 (h)
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Note that h and h, are in A .

We now consider local perturbations, mh , h € A, of the state ©®

which (loosely speaking) are defined as follows : Let A = eH be the

modular operator associated with ¢ . Here -H 1is a renormalized version

of the formal Hamilton operator lim2 U(A) on Iﬂp . The perturbed state,
ANZZ
wh , 1s defined by

h 1/2(H+h)
e

@ (a) = < ﬂw,ﬂ (a)ellz(H+h)Q >

¥ ®

. . h Ny e
It is not very hard to verify that ¢  satisfies the KMS condition for

the automorphism group, ah » given by

a:(a) = 1im2 elt(U(h)-h)a e—lt(U(ﬂ)-h)
AAZ
Lemma 3.1. The states y, satisfy
h-h
b, =9 %

Proof. Since ¢ is KMS it satisfies the Gibbs condition of Araki [35].
Therefore the restriction of wh , h = T ¢(X) , to A(A(2L)) is

h XNA(2L)# @ h
the normalized trace, and @ is T+-invariant. We denote ¢ by x . Let

(03} ,Qx,ﬂx) be the GNS representation of yx . Let HX be the unique
X

selfadjoint operator on H with
X

and
s itHX -itH
“x(ct(a)) =e nx(a)e

where cﬁ(-) is the modular automorphism group associated with yx . Then
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1/2(H_-h) 1/2(Hx-h)

X
a) = <e Q ,m (a)e I
@(a) e

X

’ h . . . . . :
since @ = x . Since ¥ 1s Tt _-invariant there exists a unitary operator,

U , on H such that
+ X

U+ﬂx(a)UI = nx(r+a)

and
itHX itHX

By using the Trotter product formula, an analytic continuation of (3.4)

to imaginary time and
* =l
U h U, =T, (h) = h,

one sees that

1/2(H =h) 1/2(H -h )
U:e U =e *

Therefore

v, (@) = o(r, (a)) =

1/2(Hx—h) « 1/2(Hx—h)
<e QX,U+ﬁx(a)U+e Q > =

1/2(H_-h) 1/2(H -h)
* X * X =
<U+e Qx,wx(a)U+e Q >=

1/2(H -h ) 1/2(H -h))
<e X * Q ,m (a)e X+ Q >
X X X

-nt ho-h' —h"
="M@ = @)Y @ =9 " (a)
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Next, we introduce again a duplication of the system and consider
the two states @ & ¢ and ¢’+ ® Y_ . We compute S(lb+ ® tp_llp DY) .

Since
S, |®) = =p(h-h))

we have to bound terms like

@ I e - (D) +
XNA(2L)# @

o & {t he®) - ¢(0)}) (3.5)
XNA(2L)# @

By the invariance of the potential the terms with X < A(L) do not

contribute to (3.5). Using the invariance of the potential

=il
T, 0(X) = v (g me ) (6(X)) (3.6)

with g, = 0 if x € A(2L) . Moreover we have
1
leg g l < Ixy] (3.7)

and |gx-gy[ =0 if x and y are in A(L) . We expand the right-hand

side of (3.6) :

v, (g,mg,) (4C0) =

(e -2 YA -i(e - .
el(gx gy) o (xye 1(gx gy)Ay (3.8)

(Ay is some selfadjoint element of Ay) . We get

Yy (8,8 ) (6 (X)) = ¢ (X) +

.2
i

(g, 8 )AL 40T + 3 (8,8 ) [ALIALSOT] + ...
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We do the same thing for 1:1(¢(X)) . Using the definition of T, and T_
(3.1), (3.7) and (3.9) we see that only terms of order Ocl;) , P>2,
contribute to SOO+ @)w_lw ® @) , that the second-order te?ms give a finite
contribution, and that the higher order terms give a contribution of order

0(%) . Therefore we have constructed a family of states wL satisfying

(3.2) and (3.3). This ends the proof.

Remark. Our proof can be extended to certain quantum lattice systems where

Ax is infinite dimensional, and ¢(X) 1is not necessarily bounded.

We also believe that the results of Section 2 could be extended
to quantum—mechanical particle systems with Fermi statistics by combining
the methods of the present section with an extension of Ruelle's work [25]

to quantum systems, but we have not checked this.
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4. Non-existence of Gibbs state for two-dimensional harmonic and anharmonic

crystal.

4.1. Introduction, main results.

. . 2
We consider unbounded spin systems on Z~ . The state space of
the spin, s, » at x EEEZ is the measure space Gm,g,dsx) » where B is

the Borel o¢-algebra, and dsx the Lebesgue measure. We use the following

notations : If A 1is a subset of 222 » B(A) = 1T B, s = (sx : x € 0A)
XEA
ds, = N ds_ and A =222\ A . In particular we set s = s , ds = 1 ,ds
A X - 2 — 27 7x
xEA 1 2 1 2 9 /A x€ Z
We define |x| = max{|x |,|x"|[} , for x = (x ,x") € Z“ . The configuration
space of the system is the measure space (Q = T 21R . =B(22),di) . We
x€ Z

consider only two-body interactions of the type
¢X(Sx’sy) = J(x-y) U(Sx—sy)

where X = {x,y} (:2222 .

Assumption A. U:R-+R is

a) twice continuously differentiable

b) U(s) = U(-s)

c) there eixsts a natural number p > O and a constant K such

that

|= u(s)| < K[s|P

d2
ds

Assumption B. There exists a constant C such that

Y 2|.J(x)|[x|2 <C<w
x€ Z
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Let A be a bounded set. We introduce

H s) = , , = 3§ if A 4.1
NERE) Xn.ﬁiﬁd]x(sx s) »8 =8 if y¢ (4.1)

and

Z(A|8) = | ,ds exp(-BH(s,|3))
A A

We define the Gibbs distribution in A , given the boundary condition §

in @ , as the probability measure on GRA,E(ﬁ)) whose Radon-Nikodym

density with respect to dsA is

Ay L R _ .
P, (s, |8 = z(A|8) “exp(-H,(s,|3)) (4.2)

This expression is well-defined for all configurations § for which (4.1)

is defined, for almost all Sy s and 0 < Z(Alé) < ® , A probability measure
P on (9,2(122)) is a Gibbs state if for all bounded sets A (4.2) is
well-defined for P-almost all § , and the conditional probability of P

with respect to g(ﬁ) is given by the Gibbs distribution in A

Theorem 3. If assumptions A and B are satisfied, then there is no

Gibbs state P such that

P(Js %) <c s axp

where Cq is a constant independent of x .

Remarks.

2

d
1) If max [_—E U(s)| <k <« , then there is no Gibbs state. In particular
s€E R ds

o . . 2
this 1s the case for the harmonic crystal, since U(s) = s~ . In the

. 4 . . : o
anharmonic case, U(s) = s , there is no Gibbs state with finite second moment.
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2) 1In the class of models considered, the potential energy U(*) 1is
R-invariant. G =R 1is the internal symmetry group. This is an example

of a non-compact, connected Lie group. It acts on the state space for a
spin (R,B) . It is possible to consider more general classes of G-inva-
riant potentials, where G 1is a non-compact, connected Lie group acting on

a very general state space (see [20]).

There is another way to express the results, which makes a connection

with [22]. Let us fix a boundary condition § and choose a sequence of

bounded sets An . !\n +22 , so that

P 8)ds, (4.3)

a (s |
n n n

are well-defined for all n . Let <|so|q> be the expected value of

|so|q with respect to the probability measure (4.3). For example we can

take U(s) = s or s > -§—x =0 for all x €z’ , and A = {x:|x| < n} .

Theorem 4. If assumptions A and B are satisfied for some p > O , then

sup,, lim inf<|sx[q>n = 4+ o

XE 7ZZ oo

for q>p . If A is satisfied with p = 0, then

lim inf<|s |q> = +
o! “n

N>

for all q > O . In particular, this holds for the harmonic crystal.
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4.2 Proofs of Theorems 3 and 4

Proof of Theorem 3

Let P be a Gibbs state such that

sup P(|s |p) <C<w
xEEEZ x

We define for all L EN

S
F(L) = I T
k=1
Let t €EIR be fixed and
t if x=0
L
a“(t) = { tFl@w) &z & if 1< |x| <L
X k —
k=|x|
0 if |x| > L

We define a transformation Tt on ( (depending on L) by setting
L
= +
(Tt-s—)x Sx ax(t)
Let Pt be the probability defined by

ol |
P (f) = T,P(f) = [P(ds)E(T "s)

Lemma 4.1. Pt is absolutely continuous with respect to P and

dp

t
T = - T Sl . ’
5 (8) = exp( anhi# ¢(¢X( S« tsy) N sy)))
. 2
with A = {x €Z" : |x| <L}

L

(4.4)

(4.5)

(4.6)
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Proof. This follows from the fact that P is a Gibbs state; see equ. (4.2).
]

We now introduce a duplicate system and consider the probability

measures P ® P and Pt @)P_t on { X Q where P_t = T-tP . The relative

entropy is given by
d(e ®P_)
S(P_ @P_ [P ®P) = - [P(ds)P(ds')log —~@ern &8

Lemma 4.2. Let P be a Gibbs state such that (4.4) holds. Then one can

choose L = L(t) in (4.6) such that

0 < S(Pt ®P_t|P®P) <1

Proof. The proof is like that of Lemma 2.2. Let X = {x,y} .

_ L L _
¢X(TtSX’TtSy) = ¢X(5x+ax(t)’sy+ay(t)) e
J(x—y)U(sx-sy+ak(t)-a;(t)) =

Gy [U(s,78.) + 4o Us s ) (a(B)-aj(e)) +

d2

L L 2
E U(sx-5y+e)(ax(t)—ay(t)) ] (4.7)

ro| =

In formula (4.7) |e| < |t| . Using (4.4) we get

d2
[P(ds) |;S—§ U(Sx—sy+9) | <

P P m
KIP(d£)|sx-sy+8| f_mgo Cmt = Q(|t])

where Cm are constants independent of x and y . Therefore

s _® P_ [P ®P) is bounded by
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5 |J(x-y)|(az(t)-aL(t))zQ(|t[) -
{x,y}N A # ¢ =
(4.8)
5 L L, \\2
Q(|t]) = z L 3Gy @ (t)-a (1)
k=1 x:|x|=k y:|y|>|x| y
For |y| > |x| we have that
L, ,_.L |x-y| . t
12,078y < 5T 7o
Thus (4.8) is smaller than
L
Q(|t|)t2 _"_l__f 5 CZ =
(F(L))° k=1 =x:|x|=k |x]
(|e]ye? —E I Q(lee? 2-E (4.9)
’ Fw)® ke € e '

Therefore, for any fixed t , we can find L = L(t) so that (4.9) is

smaller than one.

Let v be the probability measure which is the projection, on
the state space of the spin at x = 0 , of the Gibbs state P . Likewise,
let Ve be the projection of Pt on this state space. If h 1is a measura-

ble function on IR , then

jh(s)ut(ds) = [h(s=t)v(ds) (4.10)

Let AcR and AS =TR\A . Using Jensen's inequality and Lemma 4.2 we get

v (A) v, (AS)

0 < =(v(A)log _5‘(17 + v(AS)log &

) <1,

v(A")
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uniformly in t . Let I be a finite interval of IR such that v(I) =6 >0 .
Then vt(I) > €(8)> 0 uniformly in t . But then (4.10) is incompatible with

the fact that v 1is a probability measure.

Proof of Theorem 4

Let us suppose first that assumption A is satisfied with p > 0 ,
and assume temporarily that

> < (0 < o

|P
n —

sup, lim inf < |s
xEZZ n =

Then we can find a subsequence of bounded sets, denoted again by ﬁn -

such that

BN C o= (4.11)
x <

with C 1independent of n and x . Let t be fixed. We can prove Lemma 4.2
with P replaced by ci=s if n 1is large enough. Let oy be the projection
of <'>n on the state space of the spin at x =0 . Let ACR , AC =R~ A,

At = {x : x+tt € A} . For n large enough

{2
Ha (A c My (A
0 i _(Un(A)IOg ‘-"ﬁn(—A) + UH(A )10g lln(—Ac))i 1 . (4-12)

by Lemma 4.2 and Jensen's inequality, as above. Since p > O and (4.11)
holds, we obtain, using Tschebyscheff's inequality,

G

(4.13)
lp

un({x:|x| > D <

Using (4.12) with A = {x:|x| < A} ve can find an ¢ > O so that, for

A > lo and n large enough,
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un(At) 20

Now we choose t = 2) and get a contradiction with (4.13) if X and n

are large enough.

The case p = 0 1is simpler, since we can prove Lemma 4.2 for
any sequence An . Then we repeat the above proof with q > p instead

of p.

Remark.

It is an interesting open problem to prove that
2
<|s_|">_ < const. < w
x! 'n—

uniformly in n , for the anharmonic crystal, with U satisfying Assumption
A with p >0 and J nearest neighbor, in d > 3 dimensions; see also

[22].
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