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Abstract.

We discuss symmetry breaking order parameters, e.g. < > , in gauge
theories with Higgs scalars, @ , in suitable gauges. We show that, typically,
apr> = 0 ., A complete set of gauge=invariant, observable composite fields for
such theories, local ones and ones localized near strings (paths) is constructed.
We then examine the validity of standard perturbation theory, based on assuming
that «<p> # 0 , and reformulate it in terms of our gauge-invariant fields and
vithout assuming that <p> 4 0 . Finally, we classify classical field confi-
gurations with non-trivial topology ("defects") in such theories and propose

a defect-gas approach to predict their effects.



Introduction

The continuum formulation based on perturbation methods and

the lattice (Wilson) :I:‘4:||1.'1|'|.1.11-:1'!:i«\':n:'l“1|

of gauge guantum field theo-
ries seemingly lead to contradictory results, in particular when
applied to Higgs models, since in the Wilson formulation all the
gauge-dependent Green's functions vanish and there cannot be spon-
tanecus symmetry brankingig}. These conflicting pictures are re-
axamined in Sect. 1; the differences between the two formulations
disappear if a gauge fixing is introduced on the lattice (Sect.2).
We then investigate the existence of a 'a:.rmtry breaking order
pﬂrnmeter.in Higgs models. The Higgs expectation valua < ¢ >
is shown to vanish in the temporal gauge,and,more generally, the
gauge-invariant two-point function of the Higgs field is shown to
have an exponential decay (Sect. 3). In Sect. 4, the vanishing
of <¢ > is shown to be a disorder effect induced by "defects®,
i.e. by field configurations with non-trivial topolegy (instan-
tons,; etc.).

The above results necessitate a change in the usual
treatment of the Higgs phenomenon, in the continuum formulation.
It is shown that a complete description of the Higgs phenomencn
in terms of gauge-invariant fields is always possible;(in parti-
cular, the physical states and the mass spectrum can be obtained
by using only gauge-invariant fields). This description does not
rely on the existence of a symmetry breaking order parameter, but
only on the existence of a non-trivial orbit minimizing the Higgs
potential. The mass matrix of the standard (perturbative) formu-

lation is reproduced when one neglects the quantum fluctuations



of the Higgs fields. The existence and construction of the com-
plete set of gauge-invariant fields is obtained as a general
group-theoretical result. WNo assumption is therefore reguired
about the Higgs representation or about the non-existence of phase
transitions between the Higgs-and the confinement regimes (Sects.
S, 6).

In Sect. 7, we discuss the validity of a perturbative expan-
sion in the presence of defects. It is argued that the defect
density is asymptotically zero when g + 0 ; and a perturbation
expansion of the functional integral for gauge-invariant Green's
functions is asymptotic and coincides with the standard perturba-
tion theory based on a non-zero order parameter p= <o >,
Furthermore, the Green's functions of gauge-invariant fields re-
duce to the Green's functions of the corresponding gauge-dependent
fields of the standard formulation when the Higgs guantum fluctua-

tions are much smaller than the radius of the minimizing orbit.

Finally some typical features of defect gases and some physical effects of defects

are sketched.



1. Gauge-invariant description of gauge guantum field
theories.

By definition, a gauge theory is a gquantum field
theory with a gauge group acting as a local symmetry
group. Conventionally, it is formulated in terms of
fields which transform non-trivially under the action
of local gauge transformations. However, there is an

important physical constraint: All observable guantities

are required to be gauge-invariant. Therefore, it must

be possible to describe the entire physical contents of

a gauge gquantum field theory in terms of gauge-invariant

{possibly non-local) filelds.

A possible approach towards implementing this prog-
program consists of formulating gauge theories on the

lattice in terms of a manifestly gauge-invariant action, as

1
proposed by Hilsﬂnt ], In Wilson's approach the only

non-vanishing Green's functions are those which are in-
variant under all local gauge transformations. In parti-
cular, in a lattice theory with Higgs fields, the expec-
tation value, < ¢ > , of the scalar field ¢ vanishes,
and it is impossible to have a spontanecus breaking of
the gauge grnuptz}. At first sight,; this obscures the
interpretation of the lattice theories in terms of con-
vaentional wisdum[3} concerning theories like QED, the
Higgs model or grand-unified theories, and connections
with standard perturbation theory are no longer evident.
One of the main purposes of this paper is to compare

the gauge-invariant lattice formulation with the conven-

tional one and to clarify those connections.



The conventional approach to gauge gquantum field
theory does not automatically realize a manifestly gauge-
invariant formulation of gauge theories, since Lt in-
volves gauge fixing and the use of gauge-dependent fields
and their Green's functions in an essential way. In
fact, gauge fixing and gauge-dependent Green's functions
are the basic building blocks of the perturbative expan-
sion and the calculation of S-matrix elements in terms of
Feynman diagrams. Implicit in the standard approach is
the classification of the physical states in terms of
their transformation properties under constant gauge
transformations. In the light of the remarks made at the
beginning it is difficult to understand the physical
meaning of a gauge group which acts trivially on all the
observables, so that states related by a gauge transform-
ation are not physically distinguishable.

The r&le of gauge-dependent Green's functions appears
particularly puzzling in the conventional treatment of
the Higgs mechanism in terms of the gauge-dependent order
parameter < ¢ > ,

The resolution of this puzzle is somewhat important
if one wants to understand whether a gauge-invariant
order parameter exists and whether the Higgs mechanism
is accompanied by some sort of phase transition and
"symmetry breaking", without relying on semi-classical

and perturbative arguments. (In perturbation theory,

the order parameter < ¢ » is put in "by hand", as



suggested by the classical Higgs potential, but there is
really no guarantee that "symmetry breaking® occurs in
a non-perturbative treatment).

A non-perturbative approach to the Higgs phenomenon
is important in order to achieve a better understanding
of physical problems like gauge hierachies, generation of
fermion masses (which, in the conventional approach, de-
pend on the value of the gauge-dependent order parameter
< ¢ - ), the occurrence of very different mass scales,

the existence of elementary particles associated with the

Higgs field, etc.



2. Can the Higgs phenomenon be characterized by a symmetry
breaking local order parameter?

In order to discuss the problems mentioned im Section 1
we use the formulation of (gauge) guantum field theory in
terms of Euclidean functional integrals. We shall usually
think of a regularization of these functional integrals by
maans of a lattice cutoff, i.e. we adopt Wilson's strate-
gyt1}, and we think of the continuum theory as a scaling
limit of the infinite volume lattice theory (the existence
of that limit being assumed or taken for q:ﬂntﬂda}}* Since
wie do not want to rely on perturbation theory, the lattice
regularization appears particularly attractive.

In order to understand the formal relation between
lattice gauge theories and the usual (Faddeev-Popov) conti-

(4) we start with a few well known comments

nuum formulation
on gauge fixing in lattice theories.

The functional measure of a lattice theory is given by
-1 _pA(x)
df&f‘r_} - e d;
where y is a family of lattice fields, including a lattice
gauge field, dy 4is their apriori distribution, and A is
a gauge-invariant action without gauge fixing terms. In
this case the measure dp is well known to be invariant

under local gauge transformations (irrespectively of what

boundary conditions are used to construct the infinite
volume limit). This entails the vanishing of gauge-
dependent Green's functinnaiz}:

For any gauge transformation, g = g(x), localized

inside the lattice region V,



dpy, ()= dp, (3F) = dpy (x)

(where ¢ indicates a cholce of boundary conditions) so
that for any function A of the Efields ¥ localized
inside V

'{A}vﬁ = j.-.t,u,m (x) ﬂfF}IJiﬁE:: (x) Alx)
= J:ipﬂﬂffgn)fﬁ?f;ljiﬁ 'i*ﬂﬁizi;:

Thus, in this approach, gauge-dependent Green's functions
which play a basic r8le in the standard formulation of
continuum gauge guantum field thﬂﬂri&ﬂbj are actually zero.
As emphasized by Faddeev and Pﬂpﬂ¥{4] a gauge fixing
appears necessary in the continuum formulation. In order
to compare it with the lattice formulation it is desirable
to study gauge fixing for lattice theories, as well. The
basic property of a gauge fixing F is to modify the
functional integral in such a way that expectation values
of gauge-invariant functions of the field variables ¥
remain unchanged, so that the physical contents of the
theory is unaffected. Thus, if E."F'A is replaced by
=-pA F in the expression for duy the condition statad

above is equivalent to
3
J‘-:Td"-;{?ﬁ}F = 1
This is essentially the Faddeev-Popov condition, with F

standing for the product of a gauge fixing times the

Faddeev-Popov determinant. The latter can be represented



in terms of an integral over Faddeev-Popov ghosts, but that
representation is not particularly useful ocutside pertur-
bation theory. {533{5] for a discussion of gauge fixing
in lattice theories.)

In most of the following we use only gauge f£ixings
with the following two additional prnp&rtiesc}: a) F i=s
a local function, and b) F is invariant under global
(constant) gauge transformations.

As examples of gauge fixings on the lattice satisfy-

ing a) and b) we mention:

13 F = U “‘3,,:“-.,} with %U the gauge field on the
- F

lattice (formally t&a:.; E‘L"P[‘%i AP“-};{;-#-]} and e,

a unit wvector in the time direction, which reproduces the

temporal gauge on the lattiEE{S}; and

=1
2 FeuptZT{M (g, 9, ..} , (formally
F_q.“.P{_é—j'LF.a %[_3";&;“1}"} as the lattice spacing a—- Q)
corresponds to the & -gauges.

The lattice formulation with gauge fixing makes it

possible to discuss non-perturbative affects in the conti-
nuum formulation. In particular, one may now answer the
guestion of the existence of a symmetry breaking local
order parameter (- ¢ -~ # 0) as a possible caracterization
of the Higgs phenomenon, once the gauge has been fixed.
Since now the value of < ¢ > depends in general on the
boundary conditions, the question is whether the gauge
fixing gives rise to a sufficiently strong coupling with

the boundary. We remark that the relevance of such an
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analysis for the continuum theory relies on the assumption
that the Euclidean continuum theory (in a pure phase) can
be obtained as a scaling limit of the infinite wvolume
lattice theory. We also note that the above general stra-
tegy makes use of the analytic continuation of the correla-
tion functions from Euclidean to Minkowski space, a property
which is not under control for some gauges, (because of lack
of positivity), except for gauge-invariant Green's functions.

In the next Section we will prove the vanishing of
< ¢ 2 in the temporal gauge. We shall actually prove a more
general result, namely the exponential decay of the gauge
invariant two point function of the Higgs field.

In Section 4 the vanishing of < ¢ - is shown to be a
disorder effect induced by non-perturbative,defect-like field

:ﬂnflguritluna;tinstantuns. vortices etc.).
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3. Vanishing of <¢ > in the temporal gauge and exponential

decay of the gauge-invariant two-point function of the
Higgs field.

Before dealing with the temporal gauge we will first in-
troduce a change of variables which worksin the general case
and which simplifies the analysis of the gauge-invariant two-
point function of the Higgs field. As a matter of fact, we
will deduce the vanishing of <¢ > in the temporal gauge
from the exponential decay of that gauge-invariant two-point

function.

i) Exponential decay of the gauge-invariant two-point function.
The analysis will be done on a lattice with fixed spacing
a. The Higgs field w(x) can be written as

pix)= R(L )2 (3.1)

L

where R denotes the Higgs representation, h: is an element

of the gauge group G and . is a point of the section of

the orbits of the gauge group in the Higgs field representation.
R may be reducible and it may contain orbits with non=trivial
residual group. Clearly, given v(x), egq. (3.1) does not unigue-
ly determine hu; nevertheless one can show that the functional
measure can be expressed in terms of the variables hﬂ; x, and
the gauge field variables g"{ul. Mow qu{x} can be written

in terms of h“ and the gauge-invariant variables lu 3

r

K+ &

L O £, '{}u 4 ) (3.2)
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and one can replace the old variables hx' rx* gutxl by

the new variables tu 2 Hy and g,i{x). Independence
r
and completeness of the new variables follow from the
equations
-1
ne = 3.3
-E,Lr ‘}_f’“ '} E:: TI 'En, X4NE, ﬂ‘a ’ ! J

1

'r\.‘ = (-Er g..{:'-nm.}) {‘E (-I.I E_},“H’_-T \ (3.4)

where hB denotes the value of hx at the boundary of the

lattice volume (¢ _ = R{hB}rn]. In terms of the new variables

B
the Faddeev-Popov condition for Fi¢.q)

§Tax, Fx(a), x(e))=1,
G
l:xx denoting a gauge transformation), becomes
5.];[.1:!‘ ?{:Eh,‘xﬂfi}],tl)=1 . (3.5)
G

-1
’
Putting x# & ’):l ﬂ;[:ﬁ} ‘,I:”_ and using the invariance

of the measure

‘Ij-diﬁi = IIlli}; ¥
_[; T;[ dg (x) F(EJ q..[‘x},ra] =1, (3.6)

We can now write the expectation value of a gauge-=invariant

wi gat

variable A as

{AY = Z'{ST“F if-‘-f*ﬂIE at Irdq_f:w A EFE‘“’*”}.

(3.7}
3 pf}%’t {tu:m‘{ft,l]turt#)
F
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where IE f{]t ‘IE fg} is the plagquette character. The
gauge-invariance of A implies that A 1is independent of
g, and therefore by eqg. (3.7) the integration ocver g, is
trivial

~4 z £
Ay Z [TapeyTae, A e P25
fo,m

(3.8)
ef z. (R, )

Then, for fixed u JIthe correlation functiomsof the gauge
invariant wvariable Lurx are given by

¥ 4 { , TT ducry 11 -:tf £
< oo T L SR EI“' S % ]Hﬁ -lr:ll-wE %

8Zp X, () B'Z (e R, ), )
i."i:q . e IE'I-I.,i.-_ [ | S < e i, ]wh

§ (¢)
i STT.:iI,u{t‘}-iT d € e B‘;:Iﬂ!

¥
Vi, X

AN TN B
'f.ﬁ TR {-: T,HE"] L )j‘r[' AEF’- E_Frﬂl, ef-l, S Taxet, p }

' /i (3.9}
e F’ ; (tﬂR( } ti-t 'E - -E :
,"".-'?:t Fﬂ- B

where E is the sum over the plagquettes not containing bonds
F
L
in the p directlion. For convenience, we call horizontal
planas the subsets of the lattice points with fixed u
components {x; xu = const}. In the last integral, for fixed

ree & . (v# ), there is no coupling between different
¥
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horizontal planes. Furthermore,we notice that ocur expectat-

ion values are of the form

J-#'E‘t-tfl:l v fnl;]ff';-}
with (3.10)
(dpe) [dv, (4)

Then,defining Z‘E Id'l". f:&] ' we can rewrite the above
integral (310) as

[dpe Z, (Z av,(3) £ty) = [dfieg [a3ey) £05) ’

with -
[dvty) =1, Vx

1= [afi [d7(y) = Jage)

Coming back to eg. (3.9), with this normalization we obtain

(3.11)

an expression of the form

far () & JZ (L) f(L,)=
".J ,”‘, vim, L

“Jai ) [45, ) f(4)

with 4§, dV satisfying egs. (3.11).

The last integral is therefore the expectation value
of a product of bond variables on a lattice, with coupling
only along horizontal planes. Variables belonging to dif-
ferent planes are therefore statistically independent. In

conclusion, if the points x,... . in eg. (3.9) belong to

1
different planes

SAPEEE  T < TR TR < N

¥ Me%y AT Po¥m AV
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Now < t" " > a3 is analegous to a magnetization at

finite temperature (if £, B"' are flnite},anﬂ one can prove
that

{<E“\,’ﬁ [59{‘1, (3.12)
3

LT
uniformly in the variables F.u’u. .

Therefore
L¥ o n
<'Er:=1"'{ﬁaﬁ.>l ¢ B [d4f =6 (3.13)

ht1, bes X belonging to different horizontal planes

(k) # (X)), ¥ 4,3 )

)
M
Equ. (3.13) also holds when & is replaced by R(L) , where R is any

representation different from the trivial one. To simplify notations, we shall

omit the symbol R in the following.

By using the definitions (3.1), (3.2), we have

£ Y > _TT 4
%%, k] LR F‘* P

(3.14)

la"'n""‘l o ‘}‘“'} fﬁ

Hence, the gauge invariant two=-point function of the Higgs
field becomes

--"".-'-'|-1 o = n- ‘E

<Ay Ching )y Ry AR ?

To compute the above expectation value we fix a direction

{(3.15)

¥ such that the number of uj = y on the r.h.s. of eq. (3.15)
is greater than |y - x|/4. We consider only strings with

a fraction of "regular links"™ (in the direction u) greater

‘than some fixed number a; a link in the direction p 1is

regular if no other link in the direction p lies in the

same horizontal plane (with respect to the direction up).
Under these conditions we have

MOY=<TE o7 =[aE (g, )[4 (2)

g )

v “ I ) g
fd't"ﬂia'l- {{P'} M({"'ﬂ"“ {'f Jh
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= [di [45(Ea) M (4

- u
ERE St ﬁ>";f‘f“3 "J)
where we have separated the integration over regular
(1°%9) ana 'non-regular" (1) links.

Hence
1<TTe, Sl e fap (@) I > w. g
N T mx i)

(3.16)
g-: -4 | /4a o | g B] Ix-4| /4a

Thus the gauge invariant two-point function has an expo-
nential decay; in particular,one cannot build from it a gauge-
invariant order parameter.

We remark that this statement is at least formally stable under
taking the continuum limit. 1In fact,in this case one can show

that the string (3.15) becomes the string of a massive vector
2 =y i
field with mass M= <% >,

i1) Vanishing of < v 2 1in the temporal gauge.

The above formalism becomes very simple in the temporal
gauge because the gauge fixing restricts g,(x) = 1, and the
expectation values of gauge independent variables are easy
to discuss since one is left only with integration over
gauge independent variables (the integration over g, (x)
being trivial). The gauge dependent order parameter
< h# > wvanishes in this gauge as can be easily seen by

using eq. (3.4)

'E.: = .]I ﬁa{“ eme, ) £E (T,E 'Ena n-n!.)

1
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and the previous (gauge-invariant) result on the expectation

value of 1V { In fact, applying eq. (3.18)

- ol !Eﬂ:}ﬂ”l"}i /4a

o, HemE,

HE[ ff‘sr":‘}i %

to a string connecting h“ with hB in the time direction
one gets the exponential decoupling of hx from the boundary
value hB*

We remark that the gauge freedom left by the gauge fixing
gy(x) = 1 (i.e. the freedom of making gauge transformations
independent of time) disappears as soon as one specifies the
(euclidean) boundary condition ¢ = ﬂB. Therafore, one cannot
simply appeal to the above gauge freedom to conclude that

P R L

More general results on the vanishing of expectations of gauge-dependent
operators, based on a4 technique in statistical mechanics, due to Dobrushin and

Ehlosman, will be discussed elsewhere.
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4. HRestauration of symmetry as a disorder effect induced

by configurations with non-trivial topology.

In this section we show that under general assumptions
the vanishing of < ¢ > can be understood as a disorder effect
(*restauration of symmetry") induced by non-perturbative field
configqurations with non-trivial topology. Such configurations
will be called "defects®™ in analogy to defects in ordered systems.
By "defects" we mean classical field configurations which in some
gsense dominate the functional integral. (On the lattice the same
r&le is played by configurations approximating defect configura-
tlans-nf the continuum theory; see Sect.7). A general analysis
of defects and their uses in an approximate evaluation of function-
al integrals in Higgs models 1s contalned in Section 7.

We now give an argument showing that topological defects
may cause < ¢ > to vanish. Our argument only involves "point
defects”, i.e. instantons, but the contributions of other types
of defects (vortices; magnetic flux lines) increase the disorder.
Since disorder effects caused by instantons increase with the
instanton density p 'it is enough to consideralow density
approximation. Actually, in Higgs models,the instanton size
is essentially bounded by the scale appearing whenever the Higgs
potential has a non-trivial minimum; in turn this is related to
the existence of dimensional terms in the effective Higgs po-
tential (e.g. the "mass" term). As a consequence one expects
the instanton density p to be finite and of the order of

-c/g?
m; e ? + Where I1lt_1 is a typical mass parameter occurring
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in the Higgs potential. The smallness of the instanton sice

and their low density make it plausible that one may neglect the interact-
ions between (anti)instantons. This is actually all what 1is

needed for the following argument (a more general and more

abstract argument will be presented at the end of this Section).

Under the hypothesis discussed above one can prove that neces-

sarily <¢ >= 0. In fact

- -5¢(
()Y = £ ‘-_l"’“f e IHff‘ 2

(4.1)
as o -5, (X,Y)
w !y YdXaY
z 1%1&_.:! {“’l} (n. 1) ‘S & {:‘rf’.}}i{,‘f /
=S () const, V'
where £ = Sd‘ft- 8 —+ 0 as the (lattice) volume
V + =, 5:‘1 iz the classical value of the action for con-

figurations corresponding to n, instantons localized in

{3:1. i xn...} = X and to n_ antinstantons localized in
'[h’1r +e- ¥} £ ¥, s0 that

SH (X 'Y) = (Me+n ) S, . (4.2)
One can evaluate < ¢ > X, ¥ approximately as follows:

First, note that in a Higgs thecry the (anti-)instanton
has a finite scale size t:U{m;}. Thus it occuples a space-
time volume o t* (See Sect. 7.4).

We now consider an instanton configuration with instantons
at positions X and anti-instantons at positions ¥. Suppose
¥ is a space-time point separated from {X,¥} by a distance
d 2r. Then the gauge field has the form of a pure gauge

(apart from a contribution which decays rapidly in d). i.e.
I'I+ o l'-l- 3 |'I+ :
A(dem i g (x) I g (x)a(n g (x) U (x))
i=1 *i je1 Yi =1 ¥ i=1 %
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Thus
M, ..
{‘Fm}:{,f = -E: Efftﬂr"_f:ﬂ ];T FE'? (%ﬂ*_fn}) P, . (4.4)

where Ew is the representation of the gauge group G under
which the Higgs scalar transforms, and v, = const. is a
minimam of the Higgs potential.
How
=] q E-J
Ve A § AR (g eo)le1-3x8, (4.5)
weV, [u-x12% . ST
for some & > 0, uniformly in V, for V large enough. (Since
=
5‘{13 is a function of x-u the average is actually over
¥x-u and E wvanishes except for small boundary effects).

If we now insert (4.4) and (4.5) in (4.1) we obtain

!‘:tf’lfﬂ}l £ Z;‘ 5 {“*”..{t!}rn E—[H*i-h_‘:l S, |, MetH.
"

'Il"'ﬂ._qﬂ

> ]:(1- %)E + ‘1% ]“’*h‘ I <, Il , (4.6)

where

Z o3 gt OIS ne

Vo owaem e ’

As V = =, the r.s. of (4.8) clearly tends toc 0, for arbitrary

M and any £ < 1. This completes cur argument.

Remarks. a) In the above argqument the lattice cutoff avoids
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ultraviolet divergences, but the conclusions are expected to
remain true in the continuum limit for asymptotically free
theories. B) The above result can be easily generalized to
show that if B is any field variable which has no component
invariant under global gauge transformations, its expectation
value vanishes, i.e. the global gauge symmetry qrnupte' G
is”nnt. bruk&n': y¥) It is important to stress that the above

2
result is different from the E-DDG result{ t since the

action integrals on which the two results are based are very
different,and in fact globally gauge-invariant Green's
functions can here be non-zero even if they are not locally
gauge-invariant, whereas they vanish in the E-DDG case; §)
when confronted with the standard (perturbative) approach to
gauge symmetry breaking, the above result shows that there
are non-perturbative effects, which "restore the global sym-
metry” (a somewhat misleading expression) and therefore,
strietly speaking, the standard perturbation expansion based
on a non-zerc order parameter is not really justified.

Az a consequence, oven when confronted with very de-
finite and practical questions, like that of laying down a
sound framework for calculating the physical properties of a

£
Higgs theﬂr?{ d

« one is led back to the general problems
raiszsed in Sect. 1, namely the ones of finding a gauge in-
variant characterization ©f the physical phenomena exhibited

by a gauge gq.f.t.
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5. Gaqu-lnuurinnt description.

According to the general philosophy discussed at the
beginning, namely that all the physical states of the
theory should be described in a gauge-invariant way, it
is natural to look for a description in terms of gauge-
invariant field operators in the sense that:

i) neutral states (i.e. states without superselected
charges) are obtained by applying gauge-invariant
field operators to the vacuum;

ii} charged states labelled by charges obeying a local
Gauss law are obtained from neutral states by remov-
ing one charge to infinity.

In the simple 5U(2) gauge model with Higgs fields ¢ and

fermions % in the fundamental representation this pro-

gram is implemented by using the fields

32, 9F Crw)
T Sy T O l:';, (twr)
‘F: 5;‘_ €. e . F—'Fr ("W ) (5.
¢ @, (* e ")
T €ap Yy (" ¥ )

11""# & (' Hi'ggs Fnr[f:r: o J

1)
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whera Enﬂ are the matrix elements of l_? L]

7) 8)

Remark. Independently, Banks and Rabinovic ' and 't Hooft
have recently also proposed to use such invariant fields.

Notice that the fields introduced in (3.1) are in-
variant under local gauge transformations. They are there-
fore local quantum fields (i.e. they are expected to obey
local commutativity). They reduce to the standard, gauge-
dependent fields if one expands them around qui)= ﬁL = rengl,
The fields defined in (5.1) are sufficient to obtain a com-
plete description of the physics of the theory, since they
separate field configurations which are not gauge-eguivalent
(i.e. related by a local gauge transformation).

We emphasize that the equivalence of the gauge-invariant
description we are about to develop and the standard approach
is a dynamical problem involving a careful analysis of the
existence of a locally effective order parameter (playing the
rhle of < ¢ > in the old approach). While the relation
between the two approaches appears to be relatively simple
in models where the Higgs scalar has only one orbit under
the action of G (up to equivalence), their equivalence

may fail, partially. in more complicated theories. See

Section 7,

5.1. Existence and completeness of the gauge-invariant fields.
The existence of a gauge=invariant description based
on gauge-invariant fields in the general case is the result
of the discussion which follows.
Let the Higgs field transform under a representation

¥
tation of G under which a given set of fields ¢ (e.q.

R of a (gauge) group G; Rw be an irreducible represen-
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fermions, vector bosons etc.) transform. To simplify the
notation, here and in the following we use the same symbol

R to denote a representation of the gauge group and the
corresponding representation space. The aim of the Theorem
below is to show that a gauge-invariant description is al-
ways possible in the sense that there is a correspondence
between the standard gauge dependent fields ¢ and the
"gauge-invariant” ones. This is obtained by making reference
to a specific orbit {¢} 4in the representation Hw, such
that the "gauge-invariant" fields, when restricted to the
point ¥ = ¢, coincide with the gauge dependent fields

of the standard approach with < ¢ > = ¥. In the applications
that we will discuss such an orbit will be a minimum of the
Higgs potential. We denote by G{ﬁ} the (abstract) "resi-
dual®” group of (¢} g}+ As it will be clear in the following,
the r8le of the orbit {¢} is only that of choosing between
different parametrizations of the same (gauge-=invariant)

kinamntius,{seu howaver the remarks after Part II).

THEOREM. Part I. h) If G,= is trivial there is a linear

{e}
correspondence between the fields of H¢ and the linear

space of G=invariant [(composite) fields ﬁh@:-w which are

polynomials in the Higgs scalars and linear in the fields

v which transform under R‘+ The correspondence is ona

to one modulo fields of the same form which vanish on
{e}. -
If G- # identity, in the standard description the

physical content of the representation H“I can only be
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described modulo transformations of GF' In the string lan-
guage this amounts to describe the physical content of H*
in terms of G.-invariant strings. The result of the follow-

¢
ing Parts II, III is that there is a one-to-one correspondence

between the Ga- nvariant strings of the standard formulation
and the G-invariant strings which are linear in ¢ and poly-
——_

nomial in the Higgs field . The above correspondence can

be obtained by first noting that in the standard picture the
physical content of R; is described by projecting onto

irreducible Ga-repres&ntatiunn contained in R¢+
such projections are constructed by fixing a point v in

Concretely,

the orbit {¢} and by correspondingly decomposing RIIP into
subspaces carrying an irreducible representation of the
stability group GE of ¥. The corresponding projections

will be denoted by Pii The analogue of the gauge-covariant

v
fields (P (e(x)) of Part I is now given by covariant pro-

jections Pl¢):
P(R,(3)¢)= R (3) Ple) R7¢q) . (5.2)

In order to provide an acceptable kinematics, at least at
the classical level, such covariant projections should be
defined, continuous and non-vanishing almost everywhere.
For the purpose of gquantization it is actually required
that they be polynomials in ¥ , so that composite fields

built out of them make sense after gquantization.

THEOREM. Part II. To any Garinvariant irreducible pro-
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jection E; of E* there corresponds a G-covariant

polynomial projection of R‘. i.e. a projection-valued

polynomial, P(¥), which has the property (5.2), coincides

with Pi when restricted to ¢ = E and is irreducible

in the sense that on the orbit % € {¢} it cannot be

written as the sum of two G-covariant projections.

The converse is obvious, i.e. any G-covariant pro-

jection, which is non-vanishing and irreducible for

¢ € {¢}, for each fixed ¢ € [E}I defines a projection
P
i

onto an irreducible representation of Gw contalined

R L
v

=

F

Remark. 5Since a critical orbit has in general a larger
residual group than those of the neighbour orbits, the
corresponding set of projections is smaller than that ob-
tained by using a neighbour orbit and therefore the kine-
matical descriptions based on a critical orbit involve

a smaller number of fields. This is because on critical
orbits some linear combinations of covariant polynomials
vanish. Whether a description based on critical orbits

is convenient is a problem strictly related to the dynamics

of (non-abelian) gauge theories.

THEQREM. Part III. By using the G-covariant projections

of Part IT and the G-invariant fields of Part I one can

replace the original (gauge dependent) fields ¥ = {wl,mw )
il

of !-'l.l'lI by a set of fields,one for each representation of

the residuval group Glﬁl contained in R*_ Each of the
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new fields is a linear function of the old onaz with

coefficients which are polynomials in v and either it

is invariant under local gauge transformations or it

transforms under a representation of G equivalent to

Rw. In the string language this means that cone can

replace each G?-invarlant string of the standard picture

by a G-invariant string.
Trivial representations of G{E} are replaced by

fields invariant under local gauge transformations, whereas
(fields belonging to) each nen-trivial representation of
G{E} is replaced by (fields belonging to) a representation
of G equivalent to Rﬁ. The explicit construction of these
fields is the following: for each fixed ¥, i) the trivial

irreducible QF.-representatiuns contained in R give rise,

according to Part II. to G-covariant nnEHdimensiinal pro-
jections, which are actually projections onto G-covariant
vectors Vi(w), (see also the proof of Part I), and

(Viwd, ¥} 4is the required invariant field; ii) each G-
covariant projection P{F}cnrrﬂapﬂnding to a non-trivial,
irreducible representation of Gw (contained in Rw];
when applied to the original fields ¥ = (%, et ) of

Hq.-’ yields the field P@¥ = ¥(v) which transforms under

R .
v

It is worthwhile to note the following advantages of
the description. The identification of the "physical"

fields in the old picture is based on the choice of a
point ¥ in the orbit {5}* i.e. on a local order para-

meter. On the contrary, the new fields depend cnly on
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the orbit, no local parameter being neaded for their
identification. In particular, in the case in which

the residual group is the identity ("total breaking™

case) the new fields are gauge-invariant, and they are

in one-to-one correspondence with the physical one-particle
spectrum (associated with the representation R). This
new description also provides a solution of the problem
raised in Section 2: Although < ¢ > =0 (more generally,
although only Green's functions invariant under global
gauge transformations can be non-vanishing, even after
gauge fixing, i.e. no "symmetry breaking®, in the standard
language), there are in general no G-multiplets. The ab-
sence of G-multiplets can be explained by the circumstance
that physical particles are coupled to the vacuum by fields
not related to each other by the action of global gauge
transformations.

In the case of a non-trivial residual group, Gg’ the
fields neutral with respect to GEF of the standard
formalism can be replaced by gauge-invariant fields as in
the previous case. The problems of a gauge-invariant
description of the multiplets transforming non trivially
under Gﬂ in the standard picture is now (via Part III
of the above Theorem) reduced to the construction of
gauge=invariant fields out of the covariant fields
¥i(¥). This problem has very little to do with the features
of the Higgs phenomenon but is the familiar problem of

giving a manifestly gauge-invariant description of theories
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with “unbroken groups” like QED, QCD etc. This is usual-
ly done by using fields localized on "strings". Here, we
may construct such fields out of each covariant field
¥{¢v) constructed in Part III of the above Theorem. In-
deed, let ¥(y¢) and Yﬁ¢] be two covariant fields trans-
forming undfr the same representation H# of G. Then we
form the field

V(o) P(exp [ AR AE") | Ule)(y)

which is localized on the path ("string™) T:y connecting

two points x and vw. Such fields are balieved to be sult-
able for the construction of states carrying a superselected
charge by taking the limit y + =, When implemented rigorously,
this strategy would completely solve the problem mentioned

at the beginning, namely the possibility of obtaining all

the physical states associated to a g.q.f.t. in terms of
gauge-invariant fields which are local or localized on strings.

The picture advocated in the above Theorem also sheds
light on the problem mentioned in Sect. 2, namely the re-
lation between the gauge-invariant formulation and the stan-
dard gauge-dependent approach. In fact, by fixing a point
v = ¢ on the orbit, the new fields introduced above raeduce
exactly to the fields of the standard picture usually con-
structed in terms of a vacuum expactation value <y > = ¢.
Thus, the réle of the local order parameter ¢ in the
standard picture appears merely as a way of fixing a system

of local coordinates, with the result that the physical
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degrees of freedom are described by multiplets of fields which,
since they depend on such a coordinate system in field space,
are gauge-dependent. That r8le of the parameter ¢ (of the
standard picture) is also in agreement with the reaultm that

thera is no phase transition between the confinement and the Higgs regime.

5.2. An example: SU(2) = U(1)

To illustrate the gauge-=invariant formulation advocated above
wa consider the following example
EXAMPLE: The S5U0U(2) = U(1) model

The standard approach is based on the use of the following

gauge dependent [ields:

(complex) Higgs field ¢= (EF") transforming as {!i R )
. ?.
vector meson field WF " - |:'1 ) Y= 0)
- EF" L ] {ﬂ', .T- 'Ei' :.I
?L L1 " '1 ‘l‘r' - -1-
lepton fields q-'L 2 (‘5:.) {1 / :'I
- q*F‘ LE = " {DJ ‘TI"EJ

(1]
The theory is based on {g7 = ¢ -(E] . with a U(1) residual

group gnerated by the "electric charge” G = '{; - % ;e
Our formulation is based on the following fields

a) gauge=invariant fields (corresponding to the electrically
neutral fields): 5

* = T w
i} M ?L‘q: ﬂ'c!: F;d +* }":.. Fi"‘"' f With ®H a normalization
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constant and '}.“ 11_ arbitrary constantes which can be

chosen in such a way that the mass matrix is diagonal.
= i B

When « = ¢ such fields reduce to A F° = }-1 FJ'“-' .

1 B
i1y L N f oy -M({P ti-} which reduces to ¥, (neutrino)
114) N cf’q! i ¥ ¢ (Higgs neutral
field)

b) gauge-covariant fields in terms of which one may construct

the SU(2) = U{1) 4invariant bilocal fields or strings:

N @, cF"w , which reduces to T
Wh= fl ’ ~ EE ’
% ¥ 1 2
M‘-PH‘JEI-‘-"F fqa;_ascEFH#}j n F’-": + & I'-*: ’
Ne o ¢ (FageRi), - Ele- e

5.3. 4 gauge-invariant expression: the masa matrix

The gauge=invariant formulation and the absence of a symmetry
breaking local order parameter indicate that the occurrence of
different masses should be explained in terms of different gauge-
invariant fields (or strings). It may be worthwhile to verify
this fact explicitly. For concreteness we consider the fermion
mass matrix and in order to avoid unnecessary complications due
ko strings we restrict to the case of trivial residual group
(total symmetry breaking). In the standard gauge dependent
approach,fermion masses arise through the Yukawa coupling with

the Higgs field, of the form
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_ £
¥ Lo 9,
with T denoting suitable gauge-invariant coupling matrices, by

substituting for v a non-vanishing expectation value EE = Lopy
£

My= T <.

Here the existence of a non-vanishing order parameter < ¢ >

seems to play a crucial rfle. Actually, it is not difficult to
write the Higgs=fermion Yukawa coupling in terms of the fields
of the gauge invariant formulation. In the case of trivial re-

B8idual group, the G-invariant projections Pi [¢) are of the form

.
L

P*E (¢) = Ulifw) G’:f:rj*

L
with |:P L'qv::l a G-covariant vector,and the gauge-invariant fields
L i,
1E fq} are glven by 'ﬂ; flr:l L[-'F . By using the completeness, with a

suitable normalization , Z lfr:' = E'P , and the orthogonality
L]
of the projections Pi,. we easily obtain

= t T i £
q’-lq'[!- [:F ":f! E;% [ﬁawf)(ﬁi {PI:] Pu:p. ¢

5 : b ot i ad
=& (L )T W
AN YOR KON NORION S
Y% gt
How, the operator
L4 ' . £
M%= Go) Qo) T, o,

is invariant under local gauge transformations and its vacuunm
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expectation (which may therefore be non-vanishing) defines a mass
matrix for the ga.uge-invatial}rt fields "vl"itl.r-':l . Clearly, when
¥ o= -F the mass matrix <' qulf}'} reduces exactly to the mass
matrix of the corresponding gauge dependent fields of the stand-
ard formulation.

For example; in the SU(2) = U(1) model with breaking
leaving a U0(1) residual group the G-covariant projections may

be written in the form
‘ . ¢ *
P‘FEEP}I = {P‘({P} Ci; (‘F) 3

with {fiﬂiﬂ a vector which is G-covariant module U(1) trans-
formations (this feature is actually common to all models where
the residual group is U(1)). The Higgs-fermion Yukawa coupling
involves two different representations (a left doublet and a
right singlet) and clearly only the projectors corresponding to
the left doublet are non trivial

¢ te)= Ng, ‘T:fwﬁ-”f.ﬁ: , N= <95

The mass matrix then takes the following form

CMU@)> = NF <ql8l gy = £ <qart,

(M (@)Y = Nf ey b @, 9=0
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A similar analysis can be done for the mass matrix of the vector

bosons .

The above discussion should make clear that the crucial

feature of the Higgs phenomenon is not the existence of a symmetry

breaking local order parameter, but rather the existence of a
minimizing orbit {¢} with a residual group smaller than G.

5.4. Ceomplementarity principle and phase diagrams.
The theorems discussed in this section show that the descrip-

tion of the Higgs phenomenon in terms of gauge-=invariant fields

11) &) 1)1

(symmetric picture), advocated as an alternative formu-

lation when the Higgs fields are in the fundamental representa-
tion, is actually possible in the general case and indeed required
by the occurrence of non-perturbative effects which prevent the
existence of a symmetry breaking local order parameter. On the
other hand., the so called Higgs picture even if useful from a
pragmatic point of view is not defendable on general grounds.

We point out that the existence and structure of & com—
plete set of gauge—-invariant fields have been proved in this
section as a general group-thecretical result,and our
construction does not require any conjecture about the dynamics.
In this sense, the results discussed above may be regarded as a
proof of the so called complementarity principle. They also put
the symmetric picture in a sharper perspective. The condition
of the Higgs field belonging to the fundamental representation
does not seem to play a crucial r8le; the group-thecretical proof

presanted below shows that the important feature permitting to construct

local, gauge-invariant fields is rather the
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triviality of the residual group defined by the minimizing orbit.
[Except for the simple 5U(2Z) case this property is not guaran-
tead hé the condition that the Higgs field is in the fundamental
representation, unless a somewhat artificial duplication is used.)
Actually also in the discussion of phase diagrams in gauge theo-
ries the relevant feature is the structure of the residual group.
In conclusion, in both the Higgs and the confinement regime,
a complete description is provided by the "gauge-invariant®™ fields
introduced above on the basis of group theoretical :esultﬁ,inde-
pendently of whether the dynamical behaviour of the theory does
or does not exhibit a phase transition between the Higgs and the
confinement region, depending on the structure of the residual
group. A phase transition is likely to occur when the Higgs
representation has more thaﬁ one orbit and additional parameters

are needed to describe the phase diagram.
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6. Proof of the Theorem

LEMMA. Let {¢} be an orbit of a representation RH of

a _compact Lie group G, (¢} = (¢ = HHiqla. g € G}; then
any function F(¢) defined on the orbit {¢} and trans-

forming under a representation R of G (briefly R-co-

variant):
F(R () ¢) = R@y) Flg),

is the restriction to that orbit of an R-covariant poly-

nomial .

Proof. Let Ve be the vector space of the functions on

the orbit (¢}, which transform under R. Since G is a

Lie group, vR iz a space of continuous functions on

{¢}. This follows from
|F(e) - Fle) | =101 Reaw) Flenl,

where 944 is chosen in such a way that ¥, = 9,9, and

2 . F1- vR has At most

dimension egqual to the dimension of the representation

such that g12 + identity when ¥

R, since an R-covariant function is completely determined
by its value on a fixed point ¢ € (¢}.

Since the orblit is a compact space, by the Stone-
Weierstrass theorem each element of vR can be uniformly
approximated by polynomials P (¥} restricted to {el).

Actually, the Recovariant polynomials are sufficicnt
for the approximation. In fact, Lf Pntwl = Flp) on the

orbit {¢], the R-covariant polynomials
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R “d -
P (q) = (v (&) idﬁ_ Rtg) B (R.(3)0) , Vl(G)xfaqg ,
G
also converge to F(¢) on {¢} since

[P, ) - F )| = 10wt} (g (R'5) B.CR, (9)) - F ) | £
G
& |(vt ce))” I&"% R [2, (R, @)e)-F (R (3)¢)]

¢ sup |[B(g)-Fle)|—> 0.

g6 {3}
Eince UH is finite dimensional and obviously contains
the wvector space I?J of R-covariant polynomials restrict-

E
ed to {¢]}, (the elements of U‘E are actually the egui-

valence classes with respect to the property of being equal
on {¢}),.the two vector spaces must coincide.

Proof of THEOREM. Part I. = jdentity) °

G_
(62
Any G-invariant local field; constructed in terms of

¥ € RH and linear in ¢ €ER is of the form of a scalar
product (Fil¢), ¥) with Fiy) transforming under R.
Therefore, by fixing a point ¢ of the orbit, the above
invariant yields a definite component of R. Conversely,
let us fix a (normalized) vector ui € R. For any point
v € {¢l, since G{;} is the identity, there is exactly

one element gﬂ € G such that

R (9)8 =9



38

Clearly if ¢' = RH{hhn, then gﬂ, = h qw. We then define

F(q)= R(g,)v, .
Thus
F( EH{{}q:j - E(ggﬂ{{”}vi - E{-E_ﬂ?} V. =
= RR)R(g )v. = R(R) F(e),

i.e. F(y) transforms under the representation R. By the
above Lemma Fly) 1is the restriction of a polynomial -ﬁf?}

to the orbit (¢} and ((F(e), ¥) 4is a G-invariant local
field which reduces to ﬁi = 1#1, ) when ¢ = .

Proof of Part II. !G{;} ¥ identity)

Given a G-covariant irreducible projection Piy), for
each fixed E, P{E] is a projection which is invariant under
the subgroup GF C G which leaves ¢ stable.

To see the irreducibility of P(y) we note that if
P{;} can be written as a sum of two GE-lnuariant project=
ions: Pily) = P1 + Pz. then if we prove (see below) that
any G;-invarlant projection can be obtained by putting
¥ = ¢ in a (suitable) G-covariant projection P(y), we
would have P(¢) = 1=1:Eh + pzq..'u] with P,(¢) and P, ()
G-covariant projections. G-covariance implies P(y) =
B le) + Bl0), for any ¥ € {¢}, contrary to the irre-
ducibility of Piv).

We now prove that to any G.-invariant projection

7

P one can associate a G-covariant projection P(¢) such

that P = P(p). In fact, each point ¢ € (¢} defines an
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eguivalence class {gﬂl of elements of G through the

egquation
Ry(a)g =« W gelq,].
Then, if 90 9, = |9¢| one has
R, (3,'9,)% =R, (4R (5,)¢= R (5 )¢ =7,
i.e.

'ﬂﬂ: ‘ G; A [‘}?It l}‘-’r G‘-I’ ’

{this means that lqw] is a (right) coset of Gﬁ}'
Moreover, if ¢' = RH[hJ¢. the class qu.] consists
of the set of solutions g of the eguation

R, @ ¢ =R (R)g=R &) R (q,)7 =
ERH{ﬁgTﬁﬁ, H“;?{[ﬂ?]’

so0 that

MT*‘] =L U G’; =£ [’ﬁq.]' (6.1)

Thus, given a G;-imruriant projection P we now define
for any ¢ € {¢} the projection

P(¢) = R(g) P R"¢3), gelg,].

Note that P(p) is well defined, since if B.+ B~ € [g.] ., then
i 1t By F LBy

=
91 gz GE and

R(q,)P R¥(g,) = R(q,) R(q;'q,)P R(q'q,)R'0q,) =
= R(q,) P R%y,).
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By eg. (6.1), for any h € G,

P(R, (%) ¢) = R(Rg )P R™(Rgq,)-R(2) Plq) R'R),

i.e. P(y¥) transforms covariantly under G. By the above
Lemma P(y) 13 the restriction of a projection-valued
polynomial ﬁ“{w] to the orbit ({v¢}.

Proof of Part III.

The construction follows immediately from the proofs
of Parts I, II.



a1

7. Defects and perturbation expansion

The purpose of this Section is to discuss effectrof "defects"
on the validity of perturbation theory for
gauge-invariant correlation functions as an asymptotic expansion.
The drawback of the standard perturbation expansion for gauge
dependent functions is indicated. The results of the standard
approach are recovered in perturbation theory through the use of

the gauge-=invariant fields introduced in Sect. 5.

7.1. Perturbation expansion for gauge-invariant correlation

funetions

We recall that in order to develop a perturbation expansion
in terms of Feynman diagrams one has to introduce a gauge fixing
F. As usual we suppose that the Higgs potential defines a
{unique) orbit of absolute minima. Each point v of such an
orbit gives rise to a field configuration which minimizes the
action and defines a perturbation theory as an expansion around
that configuration. Thus for each point ¥ one has the stand-
ard perturbation theory based on <y > = " {(which is,order
by order, finite as a consequence of the renormalizability of the
chosen gauge) . However, since in general the boundary conditions
do not single out a point ¢ of the orbit {except for special
gauge fixings) all the points ¢ € {¢} are on equal footing and
they must all be considered in the perturbative expansion of the
functional integral, in accordance with the fact that there is
no order parameter (see Sects. 3, 4). Such a "degeneracy" does
not play any rdle for the expectation value of a gauge-invariant

operator A, since in any order n of the perturbation expansion
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{m) {w) "
A 5 (A) = ;
< >F;-? <3 >5Fnﬁ A %p o -

where g denotes a global gauge transformation.
This equation follows from the fact that the Feynman propagators

depend on E. in a covariant way.

It is worthwhile to stress that the non-existence of an
order parameter (< ¢ > = 0, see Sects. 3, 4) does not affect the
form of the perturbation expansion for gauge-invariant correlation

functions which is exactly the same as the one built on a "symme-

try breaking parameter® < ¢ > = ¢. The asymptotic validity of

the formal expansion is discussed in the next two subsectlions.

7.2. Standard perturbation expanstion for gauge dependent
gorrelation functions
According to the discussion given in 7.1, since by Sects.
3, 4 the boundary conditions do not destroy the invariance
under global gauge transformations, the perturbative expansion
of the functional integral for gauge dependent correlation funec-
tions leads to a group average of the various perturbation ex-
pansions labelled by the wvarious points ¢ of the orbit. This
leads to the wanishing of all correlation functions without a
component invariant under global gauge transformations (Sects. 3, 4) . Clear-
ly, this conclusion differs from the one based on the standard
perturbation expansion. We recall that the latter is based on a

single fixed point ; of a minimizing orbit, with the implicit

(unjustified) assumption that there is "symmetry breaking”,with

<p >myp, Actually, breaking only occurs when there
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is no coupling to the gauge fields, (g = 0).However, since for any g # O
<w > T 0, one has lim <¢ > = 0. In other words the limit
g+=0 leads to a mixed g*0 phase of the scalar theory (without
gauge fields). One should therefore expand arcund the mixed,
symmetric phase, rather than around the pure ones. One is thus

led to a phase diagram of the following type

'
P

& ¥

-i‘..-a--_ e T L .....l,..? F{g."-

with a eritical point on the g=0 axis but no line of critical points

emerging from ﬁ; (Fig. 1) above which there is a non-zero <> .

In conclusion,; the standard perturbation expansion cannot

be asymptotic to gauge-dependent correlation functions.

7.3. Relationa between the perturbation expanaton of gauge-
invariant correlation functions and the standard pertur-
bation expansion of gauge-dependent correlationes.

As advocated in Sect. 5 the "gauge-invariant" fields intro-
duced there should provide a complete gauge-invariant description
of the theory. We show here that there is a simple relation be-

tween the correlation functions of the gauge-invariant fields

constructed in Sect. 5 and the corresponding gauge-dependent ones

calculated in the standard perturbation expansion. This relation
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is based on the results of Sect. 5 and the discussion in the
present section.

For simplicity, we consider the case of neutral fields *1
in the standard, gauge-dependent formulation. They correspond

to gauge-invariant fields of the form

NG®w@ ¢ N'= 1G,

in the sense that

ke
NE e y=14y,;. (7.2)
We then consider the correlation function for the gauge-invariant
fields ﬁn‘r = N @ (). (T By the above discussion

we expect that its perturbation expansion (with gauge fixing F)
based on one fixed point ¢ is asymptotic and does not depend

on F and on ;.

Putting l.T"TLf[t}}: ﬂ."c{@] + ﬂ{]}llf{p{r.]'j we have

L N " ] -
&l A”}{; = (10 10en) { @<y, .y o
' ¢ " Fg
N1 _ ;!1.3}
+ .:Z; Fe). .- C(a) <...00.. a&....@w“.‘%‘f
K N=k .

Thus, by eq. (7.2) the first term is exactly the correlation
function of the standard gauge-dependent field *i calculated
in the gauge F in the perturbation expansion based on a fixed
point ¥. The other terms are dominated by terms of the form

(<o O8L. ¢ ... &P g 2

S —— e e

1@%). .. K& )l
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and therefore they are small if the Higgs radius is much bigger
than the mean (perturbative) fluctuations; the standard pertur-
bation expansion is recovered approximately for those "gauges"®
in which that is guaranteed (the gquantum fluctuations aleng the
orbit strongly depend on the gauge fixing). Clearly, the renor-
malization procedure plays an important réle in establishing the
validity of this property. The renormalizability of the pertur-
bation expansion (7.3) for the Green's functions of the "compos-

ite” fields A, is expected to hold for asymptotically free

i
theories.

7-4. Field configurations with non-trivial topology (defects)

in Higge models

In this Section we will discuss a classification of field
configqurations with non-trivial topology in Higgs models, in
terms of homotopy groups. The point of such an analysis is that it
allows to discuss the existence of defects, without a detailed
knowledge of the dynamics of the solutions of classical (euclid-
ean) Equatiﬂn5512] Reviews of topological methods suitable
for the classification of defects in ordered material media can
be found in Refs.[131114].

The idea is that a description of the configurations on
which the functional measure is concentrated can be done by look-

ing at the space of local parameters where the field variables

take values with highest probability (determined by the function-
al measure). This means that a typical field configuration will
take values in that parameter space in (some regiom R which
covers) a large fraction of the space-time volume,and, due to
the presence of the kinetic term in the action integral, it will
be a continuous function there. This is true in one-dimensional

models and can be justified in higher dimensions at lvast when
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suitable smearing and ultraviclet cutoffs are introduced. When
restricted to R such field configurations are the exact analogue
of the local order parameter used in the classification of defects
in ordered media . The continuous deformability of one configu-
ration into another gives rise to a natural topology in this con-
figuration space and topclogical defects are then characterized by
homotopy classes. Clearly such structures may arise only when
the region R has a non trivial topology.

We first classify defects in pure Yang-Mills models. Since

the action integral vanishes only for pure gauge configurations

Aﬁfu} = ff!‘.ﬁ o 4&), (7.4)

the probability distribution; induced by the functional measure
on AF [I] is peaked on pure gauge configurations and on small
oscillations around them. The local parameter space can then be
taken as the space of functions g(x), taking values in G.

The topologically simplest regions R, on which a field
configuration Au may behave as a pure gauge ofr a small oscil-

lation around it, gives rise to the following defects.

1) Point defecta

Whnen R is topolegically equivalent te R" - {0}, the non-
trivial homotopy classes of g(x) are given by w;(G}] and they
identify point defects. For G compact, simple and simply con-

nected =,(G) = 2, % the group of integers. Field configura-
tions having the topology of a point defect and u}th finite action

are called instantons.
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2) Eine defectes

They arise when R is topologically equivalent to
R*" = {line}. The homotopy classes of the g's are now elements
of w3(G). Por any Lie group w,{G) = 0, so that there are no

line defects in pure Yang-Mills Theories without matter fields

3) PDefects of dimension two (vortices)

They are classified by -IEEH:} , where G is the universal covering group

of G and K a discrete subgroup of G (typically its center). The exact

gequence (13,14)

0= nlrE} + nliﬁm +u_(K) + rn{E} = 0

implies

" @GR = v (K) =K

An example is given by the 't Hooft vortices in pure Yang-Mills

theory. (8,12)

4) Defects of dimension three (vall-defects)

They are classified by m,(G), which is zerc for any connect-

ed group G: in general =, counts the number of connected com-
ponents of G.
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¥e now turn to the more general case when also Higgs fields
are present. The probability distribution for w(x) 4is peaked on
the orbit {E]f {or the orbits), which minimizes the Higgs poten-
tial. The kinetic term [Duw}2 gives rise to a non-trivial re-
lation between the Higgs parameter space and the Au parameter
space, so that,in general,one must consider configurations for
AP other than those of pure gauge. In the following, for simpli-
city we will consider the case when G acts transitively on the
orbit {¢}. The parameter space can then be taken to be charac-
terized by {¢i(x) = HH{g{x]]E, g(x) continuous modulo H, H =
residual group of ¥: Au{:] such that Duw{x] = 0}. Clearly the
condition nhw =0 on Aﬁ is equivalent to the vanishing of
Guu in all group directions other than those of H. A particular
case of such configurations are those of the form

A, =q't02. 960, @= R(a®)G,
with g9 continuous, and clearly the corresponding defects are
those classified before.

When AL+ & 2.9  the defects may be classified in terms
of the local order parameter (x), taking values in G/H. (If
there is more than one orbit, v(x) takes values in (G/H,)V
(G/H )V ... )

1') Peoint defects

They are classified by w,(G/H). As a consequence of the
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exact seguence

Z=x(6) » x,(G/H) » m(H) =0,
one concludes that #,(G/H) is a subgroup of w,(G). Therefore
such defects arise from configurations with hu = q_liug; with

g continuous; they have already been classified.

2') Line defects

They are classified by w;(G/H). For all simply connected
Lie groups G the exact sequence

0= K (G)> n,(G/H) » =, (H) > %, (G) =0
implies

7, (G/H) = ® (H).

If G 1is not simply connected one may use its universal covering
group G.

A well known example of such defects is given by the 't Hooft=-

Polyakov monopole;(in R it is a line defect!)

3') Defecte of dimension two
They are classified by =n,(G/H). If G is simply connected
and connected the exact seguence
0 =5, (&)= w (G/H) » W, (L) (G) =0
yvields

I|(GJ’FH~}= TL_,EHJ'.

4') Defects of dimension three
They are classified by n,(G/H). If there is more than one
orbit, say n, w,{(G/H,)V(G/H,)V...) contains at least n ele-

ments corresponding to the n different orbits.
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We remark that in the presence of Higgs fields the action of
point defects in four dimensions depen51$§]a scale parameter and
attains its lower bound for "zero size® . Due to guantum
fluctuations the relevant field configurations will then have a
finite small size of the order of m-1. the typical mass parame-

H
ter occurring in the Higgs potential. This fact has been used in

Sect. 4.

We note that, in a g.q.f.t. with an intrinsic mass scale, like a Higgs
theory, field configurations dominating the Euclidean functional integral can be
expected to be decomposable into a classical field configuration plus a small,
esgentially Gaussian fluctuation field, (in which one will try to expand pertur-

batively). The classical field configuration describes a typical configuration

of a gas of defects classified by homotopy groups, (up to additional, internal

structures), as explained above. Because we consider a g.q.f.t. with intrinsic
mass scale (e.g. depending on a fairly large mass parameter, m, ) , an indivi-

dual defect, Eh  labelled by an element of some kt homotopy group, " *

in d space~time dimenslions has an approximate geometrical locus which is some
{d-k-1)-dimensional, closed, compact surface, Sk . Its mean action, A , is
typically proportional to the area (= const. when k = d-1, = length vhen

k = d-2 , = gurface area when k = d4-3 , ...), |5k| of 8, i.e.

= (k) k
"‘HRJ za -I-[igk] (7.5)
whiere ﬂ.t” depends on the internal structure of the defect, and = is a

typical mass scale. Its entropy is

k
EHR} i u-H|5k| (7.6)
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where o is some (essentially geometrical) constant. Its "chemical potential®,
y (= -in (activity)) , which determines the density (= .;-;“} of this gas

of defects is
u(s) = ((1/gha™-angl]s, | 7.7

This type of defect is dilute i.e. they form a low density gas) and has small

size if

a/gr)a®s » o . (7.8)

When g passes through a eritical wvalue,

) o 0,

c

A transition, characterized by the condemsation of this type of defects, to a

phase of extreme high density is expected to occur.

This can be shown in a class of lattice theories of defects, where one takes
into account interactions between different defects of variable dimension. Those

transitions appear to be most important for the understanding of quark confine-
(8,12)

ment » the existence, or absence, of massive, stable magnetic monopoles

in four-dimensional Higgs theories, the breaking of chiral invariance (related
. {15}}

to a phase transition in Higgs theories with 6G-vacua, at @ and

possibly of gauge hierarchies.

The last three applications (effective actions for defect gases and their
phase diagrams) will be discussed in more detail elsevhere. Here we just want to

point out some theoretical problems of the approach described here :

= classical configurations contributing to the functional integrals contain an

infinite number of defects (the total action and entropy are infinite) of finite
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density. They have therefore no well-defined, prescribed behaviour at spatial
infinity. They have to be analyzed in space-time regions small with respect

to the inverse defect demsity.

= It is then clear that dominant classical configurations do typically mot
correspond to local minima of the global action, but rather to approximate, local
minima of the action density integrated over bounded space-time regions. For this
reason, the fluctuation field has in general zero and negative frequency modes,

80 that non-Gaussian corrections have to be taken into account. This makes quan-

ticative, semiclassical calculations extremely tedious.

= The approach based on interpreting the classical field confliguration as a
configuration of a gas of individual defects with definite chemical potentials
and short ramge EIH >> D!} interactions is only reliable when (7.8) holds, i.e.

at very low denmsities. This makes a reliable, quantitative investigation of e.g.

the condensation of monopoles in this approach impossible. Mevertheless, it
appears promising to study the qualitative features of defect condensation transi-
tions and their physical effects in phencmenclogical (lattice) models of inter-

acting defect gases which are well defined for all values of g .

7.5, Validity of perturbation ezpansion and defects

The previous estimate (see Sect. 4) of the instanton density implies that

in space time regions of aize d the probabilicy of finding a

- dh A z
point defect inside is smaller than ( E:-d-e"l'._:'l#' Cfﬁ‘-""'-ﬂ j‘ L2 “Alq

(C and A*D0 constants). Thus we have

1) reglons of size d<L are essentially "defectfree”. Since
-1  AJat
L = ", ¢ 2 this applies to regions of size

comparable to inverse Higgs masses;
i1} as a function of g, p ™~ A vanishes at the origin (g= 0)
together with all its derivatives, so that p=10, in each

order of the perturbation expansion.
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The above two properties and (7.5) = (7.8) suggest that the non-perturbative effects

originated by defects vanish at g = 0 together with all their

derivatives and are in any case small in regions of size d<=L.
We expect therefore that a) the perturbation expansion is asymp-
totic; b) non=perturbative effects are important only for corre-
lation distances of order 2> L HI‘;I 2 .

The features discussed above seem to have a general charac-
ter. In situations in which the action has more than one mini-

mum and the boundary conditions are not able to fix one of them

the standard perturbation expansion of the functional integral
around one fixed minimum neglects those field configurations
which cannot be regarded as small oscillations around that mini-
num. This iz not correct if the boundary conditions do not fix
khe asymptotic behaviour of the field configurations with non-

zero functional measure. However, for models with exponentially

small defect density, if one considers any fixed space time re-
gion D, the functional measure defined on the field configura-
tions with support in D by "integrating over all the configu-
rations outside D", is essentially concentrated on the "small
oscillations™ around each of the minim; with corrections which
vanish asymptotically together with all its derivatives as gq = 0.
Therefore one expects that a perturbation expansion taking into

account all the minima is asymptotic for correlation functions

inside any fixed region D. Even if the corrections due to non-
zero defect density are exponentially small, they may lead to
very interesting effects like the generation of small masses for
the gauge bosons of the residual group. They are expected to

play a r&le in understanding the occurrence of gauge hierarchies.
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It is important to point out that the above features of the
functional integral are exactly realized in the well known double-
well oscillator model described by the Hamiltonian

H(g)= - o +xts 2g% 4 gx?

Axt
The expansion around one of the minima of the potential is the

expansion in the parameter g. It is known that a) the pertur-

bation expansion for the energy levels is asymptotic and b)
energy levels come in pairs with separation exponentially small
in g (...; En g“"i"ff-':'l = 4 L"" ?I?tan that such non-perturbative ef-
fects are relevant only for correlation times of order 2= L.

We also note that the non-symmetric correlation functions wvanish
{reflection symmetry is not broken) whereas the standard pertur-
bation expansion around one minimum gives a non zero value for

them, so that for non-symmetric correlation functions the ex-

pansion around one minimum cannot be asymptotic.
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FOOTNOTES

It is believed that asymptotic freedom is the crucial

property that entails the existence of the continuum
limit. It has by now become a quite generally accepted
requirement and it is valid (perturbatively) in grand
unified theories where because of the occurrence of

very different scales a non-perturbative understanding

of the Higgs phenomenon becomes a crucial issue.

In particular, conventional perturbation theory in the
continuum limit can only be formulated by introducing
gauge-dependent Green's functions and fixing a gauge,
even if one wants to calculate a gauge-invariant Green's

function.

Most of the gauge fixings used in the literature have
these properties. The 't Hooft non-linear gauge and

the unitary gauge do not satisfy b).

The temporal gauge has been discussed in detail by
G.C. Rossi and M. TEBtﬂ{EI by extensively exploiting
the validity of a Gauss' law. It is not clear to us
whether their argument gives <¢ > =0 when the

boundary conditions are specified.

As emphasized before this group acts non trivially only
on gauge dependent (unobservable) field variables and
its non trivial action is made possible just by the

introduction of a gauge fixing.
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g)
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In particular one is facing the puzzle of understanding
the experimental success of the standard picture, like
in the Glashow-Weinberg-Salam model, for which the

breaking of the global gauge group is crucial.

Technically, G[ﬁ} is the abstract group isomorphic to
the stability group of any point of the orbit {¢}.

All the proofs are postponed to Sect. 6.
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