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Abstract. 

We discuss symmetry breaking order parameters, e.g. <φ > , in gauge 

theories with Higgs scalars, φ , in suitable gauges. We show that, typically, 

<φ> = 0 . A complete set of gauge-invariant, observable composite fields for 

such theories, local ones and ones localized near strings (paths) is constructed. 

We then examine the validity of standard perturbation theory, based on assuming 

that <φ> ≠ 0 , and reformulate it in terms of our gauge-invariant fields and 

without assuming that <φ> ≠ 0 . Finally, we classify classical field confi-

gurations with non-trivial topology ("defects") in such theories and propose 

a defect-gas approach to predict their effects. 
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Introduction 

The continuum formulation based on perturbation methods and 

the lattice (Wilson) formulation(1) of gauge quantum field theo-

ries seemingly lead to contradictory results, in particular when 

applied to Higgs models, since in the Wilson formulation all the 

gauge-dependent Green's functions vanish and there cannot be spon 

taneous symmetry breaking(2). These conflicting pictures are re-

examined in Sect. 1 ; the differences between the two formulations 

disappear if a gauge fixing is introduced on the lattice (Sect.2) 

We then investigate the existence of a "symmetry breaking order 

parameter"in Higgs models. The Higgs expectation value < φ > 

is shown to vanish in the temporal gauge,and,more generally,the 

gauge-invariant two-point function of the Higgs field is shown to 

have an exponential decay (Sect. 3). In Sect. 4, the vanishing 

of < φ > is shown to be a disorder effect induced by "defects", 

i.e. by field configurations with non-trivial topology (instan-

tons, etc.). 

The above results necessitate a change in the usual 

treatment of the Higgs phenomenon, in the continuum formulation. 

It is shown that a complete description of the Higgs phenomenon 

in terms of gauge-invariant fields is always possible;(in parti-

cular, the physical states and the mass spectrum can be obtained 

by using only gauge-invariant fields). This description does not 

rely on the existence of a symmetry breaking order parameter, but 

only on the existence of a non-trivial orbit minimizing the Higgs 

potential. The mass matrix of the standard (perturbative) formu-

lation is reproduced when one neglects the quantum fluctuations 
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of the Higgs fields. The existence and construction of the com-

plete set of gauge-invariant fields is obtained as a general 

group-theoretical result. No assumption is therefore required 

about the Higgs representation or about the non-existence of phase 

transitions between the Higgs-and the confinement regimes (Sects. 

5, 6) . 

In Sect. 7, we discuss the validity of a perturbative expan-

sion in the presence of defects. It is argued that the defect 

density is asymptotically zero when g → 0 , and a perturbation 

expansion of the functional integral for gauge-invariant Green's 

functions is asymptotic and coincides with the standard perturba-

tion theory based on a non-zero order parameter φ = < φ > . 

Furthermore, the Green's functions of gauge-invariant fields re-

duce to the Green's functions of the corresponding gauge-dependent 

fields of the standard formulation when the Higgs quantum fluctua-

tions are much smaller than the radius of the minimizing orbit. 

Finally some typical features of defect gases and some physical effects of defects 

are sketched. 
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1. Gauge-invariant description of gauge quantum field 

theories. 

By definition, a gauge theory is a quantum field 

theory with a gauge group acting as a local symmetry 

group. Conventionally, it is formulated in terms of 

fields which transform non-trivially under the action 

of local gauge transformations. However, there is an 

important physical constraint: All observable quantities 

are required to be gauge-invariant. Therefore, it must 

be possible to describe the entire physical contents of 

a gauge quantum field theory in terms of gauge-invariant 

(possibly non-local) fields. 

A possible approach towards implementing this prog-

program consists of formulating gauge theories on the 

lattice in terms of a manifestly gauge-invariant action, as 

proposed by Wilson(1). In Wilson's approach the only 

non-vanishing Green's functions are those which are in-

variant under all local gauge transformations. In parti-

cular, in a lattice theory with Higgs fields, the expec-

tation value, < φ > , of the scalar field φ vanishes, 

and it is impossible to have a spontaneous breaking of 

the gauge group(2). At first sight, this obscures the 

interpretation of the lattice theories in terms of con-

ventional wisdom(3) concerning theories like QED, the 

Higgs model or grand-unified theories, and connections 

with standard perturbation theory are no longer evident. 

One of the main purposes of this paper is to compare 

the gauge-invariant lattice formulation with the conven-

tional one and to clarify those connections. 
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The conventional approach to gauge quantum field 

theory does not automatically realize a manifestly gauge-

invariant formulation of gauge theories, since it in-

volves gauge fixing and the use of gauge-dependent fields 

and their Green's functions in an essential way. In 

fact, gauge fixing and gauge-dependent Green's functions 

are the basic building blocks of the perturbative expan-

sion and the calculation of S-matrix elements in terms of 

Feynman diagrams. Implicit in the standard approach is 

the classification of the physical states in terms of 

their transformation properties under constant gauge 

transformations. In the light of the remarks made at the 

beginning it is difficult to understand the physical 

meaning of a gauge group which acts trivially on all the 

observables, so that states related by a gauge transform-

ation are not physically distinguishable. 

The rôle of gauge-dependent Green's functions appears 

particularly puzzling in the conventional treatment of 

the Higgs mechanism in terms of the gauge-dependent order 

parameter < φ > . 

The resolution of this puzzle is somewhat important 

if one wants to understand whether a gauge-invariant 

order parameter exists and whether the Higgs mechanism 

is accompanied by some sort of phase transition and 

"symmetry breaking", without relying on semi-classical 

and perturbative arguments. (In perturbation theory, 

the order parameter < φ > is put in "by hand", as 
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suggested by the classical Higgs potential, but there is 

really no guarantee that "symmetry breaking" occurs in 

a non-perturbative treatment). 

A non-perturbative approach to the Higgs phenomenon 

is important in order to achieve a better understanding 

of physical problems like gauge hierachies, generation of 

fermion masses (which, in the conventional approach, de-

pend on the value of the gauge-dependent order parameter 

< φ > ), the occurrence of very different mass scales, 

the existence of elementary particles associated with the 

Higgs field, etc. 
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2. Can the Higgs phenomenon be characterized by a symmetry 
breaking local order parameter? 

In order to discuss the problems mentioned in Section 1 

we use the formulation of (gauge) quantum field theory in 

terms of Euclidean functional integrals. We shall usually 

think of a regularization of these functional integrals by 

means of a lattice cutoff, i.e. we adopt Wilson's strate-

gy(1) , and we think of the continuum theory as a scaling 

limit of the infinite volume lattice theory (the existence 

of that limit being assumed or taken for granteda)). Since 

we do not want to rely on perturbation theory, the lattice 

regularization appears particularly attractive. 

In order to understand the formal relation between 

lattice gauge theories and the usual (Faddeev-Popov) conti-

nuum formulation(4) we start with a few well known comments 

on gauge fixing in lattice theories. 

The functional measure of a lattice theory is given by 

where χ is a family of lattice fields, including a lattice 

gauge field, dX is their apriori distribution, and A is 

a gauge-invariant action without gauge fixing terms. In 

this case the measure dµ is well known to be invariant 

under local gauge transformations (irrespectively of what 

boundary conditions are used to construct the infinite 

volume limit). This entails the vanishing of gauge-

dependent Green's functions(2) : 

For any gauge transformation, g = g (x), localized 

inside the lattice region V, 
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dµV,o(xg)=dµV,o(xg) 

(where σ indicates a choice of boundary conditions) so 

that for any function A of the fields χ localized 

inside V 

Thus, in this approach, gauge-dependent Green's functions 

which play a basic rôle in the standard formulation of 

continuum gauge quantum field theoriesb) are actually zero. 

As emphasized by Faddeev and Popov(4) a gauge fixing 

appears necessary in the continuum formulation. In order 

to compare it with the lattice formulation it is desirable 

to study gauge fixing for lattice theories, as well. The 

basic property of a gauge fixing F is to modify the 

functional integral in such a way that expectation values 

of gauge-invariant functions of the field variables χ 

remain unchanged, so that the physical contents of the 

theory is unaffected. Thus, if e-BA is replaced by 

e-BA F in the expression for dµ the condition stated 

above is equivalent to 

This is essentially the Faddeev-Popov condition, with F 

standing for the product of a gauge fixing times the 

Faddeev-Popov determinant. The latter can be represented 
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in terms of an integral over Faddeev-Popov ghosts, but that 

representation is not particularly useful outside pertur-

bation theory. (See(5) for a discussion of gauge fixing 

in lattice theories.) 

In most of the following we use only gauge fixings 

with the following two additional propertiesc) : a) F is 

a local function, and b) F is invariant under global 

(constant) gauge transformations. 

As examples of gauge fixings on the lattice satisfy-

ing a) and b) we mention: 

1) F = TTSU,
 xte

 ) with g the gauge field on the 

lattice (formally and e 

a unit vector in the time direction, which reproduces the 

temporal gauge on the lattice(5), and 

2) , (formally 

as the lattice spacing a → 0 ) 

corresponds to the ξ-gauges. 

The lattice formulation with gauge fixing makes it 

possible to discuss non-perturbative effects in the conti-

nuum formulation. In particular, one may now answer the 

question of the existence of a symmetry breaking local 

order parameter (< φ > ≠ 0) as a possible caracterization 

of the Higgs phenomenon, once the gauge has been fixed. 

Since now the value of < φ > depends in general on the 

boundary conditions, the question is whether the gauge 

fixing gives rise to a sufficiently strong coupling with 

the boundary. We remark that the relevance of such an 
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analysis for the continuum theory relies on the assumption 

that the Euclidean continuum theory (in a pure phase) can 

be obtained as a scaling limit of the infinite volume 

lattice theory. We also note that the above general stra-

tegy makes use of the analytic continuation of the correla-

tion functions from Euclidean to Minkowski space, a property 

which is not under control for some gauges,(because of lack 

of positivity), except for gauge-invariant Green's functions. 

In the next Section we will prove the vanishing of 

< φ > in the temporal gauge. We shall actually prove a more 

general result, namely the exponential decay of the gauge 

invariant two point function of the Higgs field. 

In Section 4 the vanishing of < φ > is shown to be a 

disorder effect induced by non-perturbative,defect-like field 

configurations;(instantons, vortices etc.). 
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3. Vanishing of < φ > in the temporal gauge and exponential 

decay of the gauge-invariant two-point function of the 

Higgs field. 

Before dealing with the temporal gauge we will first in-

troduce a change of variables which works in the general case 

and which simplifies the analysis of the gauge-invariant two-

point function of the Higgs field. As a matter of fact, we 

will deduce the vanishing of < φ > in the temporal gauge 

from the exponential decay of that gauge-invariant two-point 

function. 

i) Exponential decay of the gauge-invariant two-point function. 

The analysis will be done on a lattice with fixed spacing 

a,. The Higgs field φ (x) can be written as 

<f(x) = , (3.1) 

where R denotes the Higgs representation, hx is an element 

of the gauge group G and r
x
 is a point of the section of 

the orbits of the gauge group in the Higgs field representation. 

R may be reducible and it may contain orbits with non-trivial 

residual group. Clearly, given φ(x), eq. (3.1) does not unique-

ly determine hx ; nevertheless one can show that the functional 

measure can be expressed in terms of the variables hx , rx and 

the gauge field variables gµ (x). Now gµ (x) can be written 

in terms of h and the gauge—invariant variables ℓ : 

(3.2) 
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and one can replace the old variables hx' rx ' gµ (x) by 

the new variables ℓ , rx and g0(x). Independence 

and completeness of the new variables follow from the 

equations 

(3.3) 

(3.4) 

where hB denotes the value of hx at the boundary of the 

lattice volume (φ = R(hB ) rB ). In terms of the new variables 

the Faddeev-Popov condition for F(φ,g) 

(χ denoting a gauge transformation), becomes 

(3.5) 

Putting and using the invariance 

or the measure 

we get 

(3.6) 

We can now write the expectation value of a gauge-invariant 

variable A as 

(3.7) 
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where Xp (ℓ)
=

 Xp (g) is the Plaquette character. The 

gauge-invariance of A implies that A is independent of 

g0 and therefore by eq. (3.7) the integration over g
0
 is 

trivial 

(3.8) 

Then, for fixed μ , the correlation functions of the gauge 

invariant variable ℓ are given by 

(3.9) 

where Σ is the sum over the plaquettes not containing bonds 

in the μ direction. For convenience, we call horizontal 

planes the subsets of the lattice points with fixed μ 

components {x; xµ = const}. In the last integral, for fixed 

rx' ℓv (v ≠ μ), there is no coupling between different 
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horizontal planes. Furthermore,we notice that our expectat-

ion values are of the form 

with (3.10) 

Then, defining Ζ
χ
5 (y) , we can rewrite the above 

integral (3.1 0) as 

with 

(3.11) 

Coming back to eq. (3.9), with this normalization we obtain 

an expression of the form 

with dμ, dv satisfying eqs. (3.11). 

The last integral is therefore the expectation value 

of a product of bond variables on a lattice, with coupling 

only along horizontal planes. Variables belonging to dif-

ferent planes are therefore statistically independent. In 

conclusion, if the points x1 ... xn in eq. (3.9) belong to 

different planes 
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Now < ℓ > dv is analogous to a magnetization at 
μ, x dv 

finite temperature (if B, B' are finite)and one can prove 

that 

(3.12) 

uniformly in the variables 

Therefore 

(3.13) 

(x1, ... x belonging to different horizontal planes 

(Χi)u ≠ (Χj)u ' v i, j )· 
Equ. (3.13) also holds when ℓ is replaced by R(ℓ) , where R is any 

representation different from the trivial one. To simplify notations, we shall 

omit the symbol R in the following. 

By using the definitions (3.1), (3.2), we have 

(3.14) 
Hence, the gauge invariant two-point function of the Higgs 

field becomes 
(3.15) 

To compute the above expectation value we fix a direction 

y such that the number of μ
j

 = μ on the r. h. s. of eq. (3.15) 

is greater than |y - x|/4. We consider only strings with 

a fraction of "regular links" (in the direction μ) greater 

than some fixed number a; a link in the direction μ is 

regular if no other link in the direction μ lies in the 

same horizontal plane (with respect to the direction μ). 

Under these conditions we have 
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where we have separated the integration over regular 

) and non-regular (ℓ) links. 

Hence 

(3.16) 

Thus the gauge invariant two-point function has an expo-

nential decay; in particular,one cannot build from it a gauge-

invariant order parameter. 

We remark that this statement is at least formally stable under 

taking the continuum limit. In fact,in this case one can show 

that the string (3.15) becomes the string of a massive vector 

field with mass M s|3 p < r > · 

ii) Vanishing of < φ > in the temporal gauge. 

The above formalism becomes very simple in the temporal 

gauge because the gauge fixing restricts g
0
(x) = 1 , and the 

expectation values of gauge independent variables are easy 

to discuss since one is left only with integration over 

gauge independent variables (the integration over g
0
(x) 

being trivial). The gauge dependent order parameter 

< h > vanishes in this gauge as can be easily seen by 

using eq. (3.4) 
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and the previous (gauge-invariant) result on the expectation 

value of π ℓ
o
 In fact, applying eq. (3.16) 

to a string connecting hx with hB in the time direction 

one gets the exponential decoupling of h from the boundary 

value hB. 

We remark that the gauge freedom left by the gauge fixing 

g0(x) = 1 (i.e. the freedom of making gauge transformations 

independent of time) disappears as soon as one specifies the 

(euclidean) boundary condition φ = φB . Therefore, one cannot 

simply appeal to the above gauge freedom to conclude that 

< φ > = 0.d) 

More general results on the vanishing of expectations of gauge-dependent 

operators, based on a technique in statistical mechanics, due to Dobrushin and 

Shlosman, will be discussed elsewhere. 
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4. Restauration of symmetry as a disorder effect induced 

by configurations with non-trivial topology. 

In this section we show that under general assumptions 

the vanishing of < φ > can be understood as a disorder effect 

("restauration of symmetry") induced by non-perturbative field 

configurations with non-trivial topology. Such configurations 

will be called "defects" in analogy to defects in ordered systems. 

By "defects" we mean classical field configurations which in some 

sense dominate the functional integral. (On the lattice the same 

rôle is played by configurations approximating defect configura-

tions of the continuum theory; see Sect.7). A general analysis 

of defects and their uses in an approximate evaluation of function-

al integrals in Higgs models is contained in Section 7. 

We now give an argument showing that topological defects 

may cause < φ > to vanish. Our argument only involves "point 

defects", i.e. instantons, but the contributions of other types 

of defects (vortices, magnetic flux lines) increase the disorder. 

Since disorder effects caused by instantons increase with the 

instanton density p, it is enough to consideralow density 

approximation. Actually, in Higgs models,the instanton size 

is essentially bounded by the scale appearing whenever the Higgs 

potential has a non-trivial minimum; in turn this is related to 

the existence of dimensional terms in the effective Higgs po-

tential (e.g. the "mass" term). As a consequence one expects 

the instanton density p to be finite and of the order of 

m4

H

 e , where m
H is a typical mass parameter occurring 
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in the Higgs potential. The smallness of the instanton size 

and their low density make it plausibls that one may naglect the intaract-

ions between (anti)instantons. This is actually all what is 

needed for the following argument (a more general and more 

abstract argument will be presented at the end of this Section). 

Under the hypothesis discussed above one can prove that neces-

sarily < φ > = 0. In fact 

(4.1) 

where as the (lattice) volume 

V → , Scl is the classical value of the action for con-
cl 

figurations corresponding to n+ instantons localized in + 
(x,, ... x ) = X and to n antinstantons localized in 1 n+ 

(Y1' ··· y ) ≡ Y, so that 

(X,Y) = (n
+

+n
-

) So . (4.2) 

One can evaluate < > approximately as follows: X ,Y 
First, note that in a Higgs theory the (anti-)instanton 

has a finite scale size = 0(wi^ ). Thus it occupies a space-

time volume v = r4 (See Sect. 7.4). 

We now consider an instanton configuration with instantons 

at positions X and anti-instantons at positions Y. Suppose 

x is a space-time point separated from {X,Y} by a distance 

d >>r. Then the gauge field has the form of a pure gauge 

(apart from a contribution which decays rapidly in d), i.e. 
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Thus 

(4.4) 

where is the representation of the gauge group G under 

which the Higgs scalar transforms, and <pQ = const, is a 

minimum of the Higgs potential. 

Now 

(4.5) 

for some δ > 0, uniformly in V, for V large enough. (Since 

gu(x) is a function of x-u the average is actually over 

x-u and ξ vanishes except for small boundary effects). 

If we now insert (4.4) and (4.5) in (4.1) we obtain 

(4.6) 

where 

As V → ∞, the r.s. of (4.6) clearly tends to 0, for arbitrary 

η and any ξ < 1. This completes our argument. 

Remarks. a) In the above argument the lattice cutoff avoids 
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ultraviolet divergences, but the conclusions are expected to 

remain true in the continuum limit for asymptotically free 

theories. B) The above result can be easily generalized to 

show that if B is any field variable which has no component 

invariant under global gauge transformations, its expectation 

value vanishes, i.e. the global gauge symmetry group(e) G 

is"not broken"; γ) It is important to stress that the above 

result is different from the E-DDG result(2), since the 

action integrals on which the two results are based are very 

different,and in fact globally gauge-invariant Green's 

functions can here be non-zero even if they are not locally 

gauge-invariant, whereas they vanish in the E-DDG case; δ) 

when confronted with the standard (perturbative) approach to 

gauge symmetry breaking, the above result shows that there 

are non-perturbative effects, which "restore the global sym-

metry" (a somewhat misleading expression) and therefore, 

strictly speaking, the standard perturbation expansion based 

on a non-zero order parameter is not really justified. 

As a consequence, even when confronted with very de-

finite and practical questions, like that of laying down a 

sound framework for calculating the physical properties of a 

Higgs theory(f), one is led back to the general problems 

raised in Sect. 1, namely the ones of finding a gauge in-

variant characterization of the physical phenomena exhibited 

by a gauge q. f. t. 
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5. Gauge-invariant description. 

According to the general philosophy discussed at the 

beginning, namely that all the physical states of the 

theory should be described in a gauge-invariant way, it 

is natural to look for a description in terms of gauge-

invariant field operators in the sense that: 

i) neutral states (i.e. states without superselected 

charges) are obtained by applying gauge-invariant 

field operators to the vacuum; 

ii) charged states labelled by charges obeying a local 

Gauss law are obtained from neutral states by remov-

ing one charge to infinity. 

In the simple SU (2) gauge model with Higgs fields y and 

fermions ψ in the fundamental representation this pro-

gram is implemented by using the fields 

(5. 1) 
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where εaB are the matrix elements of 

Remark. Independently, Banks and Rabinovic 7) and 't Hooft 8) 

have recently also proposed to use such invariant fields. 

Notice that the fields introduced in (3. 1) are in-

variant under local gauge transformations. They are there-

fore local quantum fields (i.e. they are expected to obey 

local commutativity). They reduce to the standard, gauge-

dependent fields if one expands them around cp^ (xO = ga = con st · 

The fields defined in (5. 1) are sufficient to obtain a com-

plete description of the physics of the theory, since they 

separate field configurations which are not gauge-equivalent 

(i.e. related by a local gauge transformation). 

We emphasize that the equivalence of the gauge-invariant 

description we are about to develop and the standard approach 

is a dynamical problem involving a careful analysis of the 

existence of a locally effective order parameter (playing the 

rôle of < φ > in the old approach). While the relation 

between the two approaches appears to be relatively simple 

in models where the Higgs scalar has only one orbit under 

the action of G (up to equivalence), their equivalence 

may fail, partially, in more complicated theories. See 

Section 7, 

5. 1. Existence and completeness of the gauge-invariant fields. 

The existence of a gauge-invariant description based 

on gauge-invariant fields in the general case is the result 

of the discussion which follows. 

Let the Higgs field transform under a representation 

Rg of a (gauge) group G; R^ be an irreducible represen-

tation of G under which a given set of fields ψ (e.g. 
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fermions, vector bosons etc.) transform. To simplify the 

notation, here and in the following we use the same symbol 

R to denote a representation of the gauge group and the 

corresponding representation space. The aim of the Theorem 

below is to show that a gauge-invariant description is al-

ways possible in the sense that there is a correspondence 

between the standard gauge dependent fields ψ and the 

"gauge-invariant" ones. This is obtained by making reference 

to a specific orbit {φ} in the representation , such 

that the "gauge-invariant" fields, when restricted to the 

point φ = φ, coincide with the gauge dependent fields ψ 

of the standard approach,with < φ > = φ. In the applications 

that we will discuss such an orbit will be a minimum of the 

Higgs potential. We denote by G{^.-^} the (abstract) "resi-

dual" group of {φ} g) . As it will be clear in the following, 

the rôle of the orbit {<£} is only that of choosing between 

different parametrizations of the same (gauge-invariant) 

kinematics, (see however the remarks after Part II). 

THEOREM. Part I. h) If G{g} is trivial there is a linear 

correspondence between the fields of R^ and the linear 

space of G-invariant (composite) fields p{φ) ·ψ which are 

polynomials in the Higgs scalars and linear in the fields 

ψ which transform under R^. The correspondence is one 

to one modulo fields of the same form which vanish on 

M. 

If Gj-j ≠ identity, in the standard description the 

physical content of the representation R^ can only be 
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described modulo transformations of G^. In the string lan-

guage this amounts to describe the physical content of 

in terms of Gg -invariant strings. The result of the follow-

ing Parts II, III is that there is a one-to-one correspondence 

between the Gg-invariant strings of the standard formulation 

and the G-invariant strings which are linear in ψ and poly-

nomial in the Higgs field φ. The above correspondence can 

be obtained by first noting that in the standard picture the 

physical content of is described by projecting onto 

irreducible Gg-representations contained in R^. Concretely, 

such projections are constructed by fixing a point φ in 

the orbit [φ] and by correspondingly decomposing R^ into 

subspaces carrying an irreducible representation of the 

stability group G~ of φ. The corresponding projections 

will be denoted by P.i. The analogue of the gauge-covariant 

fields P {φ(x)) of Part I is now given by covariant pro-

jections P(<£): 

( 5.2) 

In order to provide an acceptable kinematics, at least at 

the classical level, such covariant projections should be 

defined, continuous and non-vanishing almost everywhere. 

For the purpose of quantization it is actually required 

that they be polynomials in φ
 f
 so that composite fields 

built out of them make sense after quantization. 

THEOREM. Part II. To any G-invariant irreducible pro-
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jection P^. of there corresponds a G-covariant 

polynomial projection of , i.e. a projection-valued 

polynomial, Ρ{φ), which has the property (5,2), coincides 

with when restricted to φ = φ and is irreducible 

in the sense that on the orbit φ £ {φ} it cannot be 

written as the sum of two G-covariant projections. 

The converse is obvious, i.e. any G-covariant pro-

jection, which is non-vanishing and irreducible for 

φ Є {Ψ), for each fixed φ Є {φ} , defines a projection 

P^ onto an irreducible representation of contained 

in R, . 

Remark. Since a critical orbit has in general a larger 

residual group than those of the neighbour orbits, the 

corresponding set of projections is smaller than that ob-

tained by using a neighbour orbit and therefore the kine-

matical descriptions based on a critical orbit involve 

a smaller number of fields. This is because on critical 

orbits some linear combinations of covariant polynomials 

vanish. Whether a description based on critical orbits 

is convenient is a problem strictly related to the dynamics 

of (non-abelian) gauge theories. 

THEOREM. Part III. By using the G-covariant projections 

of Part II and the G-invariant fields of Part I one can 

replace the original (gauge dependent) fields Ψ = (ψ ,.,.ψ ) 

of R^ by a set of fields,one for each representation of 

the residual group contained in R Each of the 
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new fields is a linear function of the old ones with 

coefficients which are polynomials in φ and either it 

is invariant under local gauge transformations or it 

transforms under a representation of G equivalent to 

RΨ . In the string language this means that one can 

replace each G
φ
-invariant string of the standard picture 

by a G-invariant string. 

Trivial representations of G{φ} are replaced by 

fields invariant under local gauge transformations, whereas 

(fields belonging to) each non-trivial representation of 

G{^ is replaced by (fields belonging to) a representation 

of G equivalent to RΨ . The explicit construction of these 

fields is the following: for each fixed φ, i) the trivial 

irreducible G
φ
 -representations contained in give rise, 

according to Part II, to G-covariant one-dimensional pro-

jections, which are actually projections onto G-covariant 

vectors V (φ) , (see also the proof of Part I), and 

(V(φ) , ψ) is the required invariant field; ii) each G-

covariant projection P(φ) corresponding to a non-trivial, 

irreducible representation of Gφ (contained in Rψ ), 

when applied to the original fields Ψ = (ψ1 ,...ψn ) of 

, yields the field Ρ(φ)ψ ≡ ψ(φ) which transforms under 

R
ψ
 · 

It is worthwhile to note the following advantages of 

the description. The identification of the "physical" 

fields in the old picture is based on the choice of a 

point φ in the orbit {φ}, i.e. on a local order para-

meter. On the contrary, the new fields depend only on 
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the orbit, no local parameter being needed for their 

identification. In particular, in the case in which 

the residual group is the identity ("total breaking" 

case) the new fields are gauge-invariant, and they are 

in one-to-one correspondence with the physical one-particle 

spectrum (associated with the representation R). This 

new description also provides a solution of the problem 

raised in Section 2: Although < φ > = 0 (more generally, 

although only Green's functions invariant under global 

gauge transformations can be non-vanishing, even after 

gauge fixing, i.e. no "symmetry breaking", in the standard 

language), there are in general no G-multiplets. The ab-

sence of G-multiplets can be explained by the circumstance 

that physical particles are coupled to the vacuum by fields 

not related to each other by the action of global gauge 

transformations. 

In the case of a non-trivial residual group, Gφ , the 

fields neutral with respect to Gφ of the standard 

formalism can be replaced by gauge-invariant fields as in 

the previous case. The problems of a gauge-invariant 

description of the multiplets transforming non trivially 

under Gφ in the standard picture is now (via Part III 

of the above Theorem) reduced to the construction of 

gauge-invariant fields out of the covariant fields 

Ψ(φ) . This problem has very little to do with the features 

of the Higgs phenomenon but is the familiar problem of 

giving a manifestly gauge-invariant description of theories 
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with "unbroken groups" like QED, QCD etc. This is usual-

ly done by using fields localized on "strings". Here, we 

may construct such fields out of each covariant field 

Ψ(φ) constructed in Part III of the above Theorem. In-

deed, let Ψ(
φ

) and Ψ'(
φ

) be two covariant fields trans-

forming under the same representation Rψ of G. Then we 

form the field 

which is localized on the path ("string") connecting 

two points x and y. Such fields are believed to be suit-

able for the construction of states carrying a superselected 

charge by taking the limit y → ∞. When implemented rigorously, 

this strategy would completely solve the problem mentioned 

at the beginning, namely the possibility of obtaining all 

the physical states associated to a g.q.f.t. in terms of 

gauge-invariant fields which are local or localized on strings. 

The picture advocated in the above Theorem also sheds 

light on the problem mentioned in Sect. 2, namely the re-

lation between the gauge-invariant formulation and the stan-

dard gauge-dependent approach. In fact, by fixing a point 

φ = φ on the orbit, the new fields introduced above reduce 

exactly to the fields of the standard picture usually con-

structed in terms of a vacuum expactation value < φ > = φ. 

Thus, the rôle of the local order parameter φ in the 

standard picture appears merely as a way of fixing a system 

of local coordinates, with the result that the physical 
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degrees of freedom are described by multiplets of fields which, 

since they depend on such a coordinate system in field space, 

are gauge-dependent. That rôle of the parameter φ (of the 

standard picture) is also in agreement with the result(9) that 

there is no phase transition between the confinement and the Higgs regime. 

5. 2. An example : SU (2) x U (1) 

To illustrate the gauge-invariant formulation advocated above 

we consider the following example 

EXAMPLE: The SU(2) x U (1) model 

The standard approach is based on the use of the following 

gauge dependent fields: 

(complex) Higgs field transforming as ( 1/2 , Y = 1) 

vector meson field Wµ " " ( 1 , Y = 0 ) 

Bµ " (o, Y= 0 ) 

lepton fields ψL = (e ) 
" " Ys'0 

" φ = e 
7g R 

" " (o , Y = - 2) 

The theory is based on with a U (1) residual 

group gnerated by the "electric charge" 

Our formulation is based on the following fields 

a) gauge—invariant fields (corresponding to the electrically 

neutral fields): 

i) , with N a normalization 
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constant and λ1, λ2 arbitrary constants which can be 

chosen in such a way that the mass matrix is diagonal. 

When φ = φ such fields reduce to 

ii) i N φ σ
2
 ψ » which reduces to y

L
 (neutrino) 

iii) " (Higgs neutral 

field) 

b) gauge-covariant fields in terms of which one may construct 

the SU (2) x U (1) invariant bilocal fields or strings: 

N Cf Ip , which reduces to &
L

 , 

V eR , " e
R

 , 

5. 3. A gauge-invariant expression : the mass matrix 

The gauge-invariant formulation and the absence of a symmetry 

breaking local order parameter indicate that the occurrence of 

different masses should be explained in terms of different gauge-

invariant fields (or strings) . It may be worthwhile to verify 

this fact explicitly. For concreteness we consider the fermion 

mass matrix and in order to avoid unnecessary complications due 

to strings we restrict to the case of trivial residual group 

(total symmetry breaking). In the standard gauge dependent 

approach,fermion masses arise through the Yukawa coupling with 

the Higgs field, of the form 
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with Γ denoting suitable gauge-invariant coupling matrices, by 

substituting for φ a non-vanishing expectation value φ = <φ> 

Here the existence of a non-vanishing order parameter < φ > 

seems to play a crucial rôle. Actually, it is not difficult to 

write the Higgs-fermion Yukawa coupling in terms of the fields 

of the gauge invariant formulation. In the case of trivial re-

sidual group, the G-invariant projections Pi(φ) are of the form 

with (P (φ) a G-covariant vector and the gauge-invariant fields 

Vor) are given by By using the completeness, with a 

suitable normalization . and the orthogonality 

of the projections p , we easily obtain 

Now, the operator 

is invariant under local gauge transformations and its vacuum 
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expectation (which may therefore be non-vanishing) defines a mass 

matrix for the gauge-invariant fields Clearly, when 

φ = φ the mass matrix < Mij (φ) > reduces exactly to the mass 

matrix of the corresponding gauge dependent fields of the stand-

ard formulation. 

For example, in the SU(2) x U (1) model with breaking 

leaving a U (1) residual group the G-covariant projections may 

be written in the form 

Pjpte) = 

with (p (φ) a vector which is G-covariant modulo U (1) trans-

formations (this feature is actually common to all models where 

the residual group is U(1)). The Higgs-fermion Yukawa coupling 

involves two different representations (a left doublet and a 

right singlet) and clearly only the projectors corresponding to 

the left doublet are non trivial 

The mass matrix then takes the following form 
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A similar analysis can be done for the mass matrix of the vector 
bosons. 

The above discussion should make clear that the crucial 

feature of the Higgs phenomenon is not the existence of a symmetry 

breaking local order parameter, but rather the existence of a 

minimizing orbit {φ} with a residual group smaller than G. 

5.4. Complementarity principle and phase diagrams. 

The theorems discussed in this section show that the descrip-

tion of the Higgs phenomenon in terms of gauge—invariant fields 

(symmetric picture) , advocated11) 6) 7) 10) as an alternative formu-

lation when the Higgs fields are in the fundamental representa-

tion, is actually possible in the general case and indeed required 

by the occurrence of non-perturbative effects which prevent the 

existence of a symmetry breaking local order parameter. On the 

other hand, the so called Higgs picture even if useful from a 

pragmatic point of view is not defendable on general grounds. 

We point out that the existence and structure of a com-

plete set of gauge—invariant fields have been proved in this 

section as a general group-theoretical result,and our 

construction does not require any conjecture about the dynamics. 

In this sense, the results discussed above may be regarded as a 

proof of the so called complementarity principle. They also put 

the symmetric picture in a sharper perspective. The condition 

of the Higgs field belonging to the fundamental representation 

does not seem to play a crucial rôle; the group-theoretical proof 

presented below shows that the important feature permitting to construct 

local, gauge-invariant fields is rather the 
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triviality of the residual group defined by the minimizing orbit. 

(Except for the simple SU(2) case this property is not guaran-

teed by the condition that the Higgs field is in the fundamental 

representation, unless a somewhat artificial duplication is used.) 

Actually also in the discussion of phase diagrams in gauge theo-

ries the relevant feature is the structure of the residual group. 

In conclusion, in both the Higgs and the confinement regime, 

a complete description is provided by the "gauge-invariant" fields 

introduced above on the basis of group theoretical results/inde-

pendently of whether the dynamical behaviour of the theory does 

or does not exhibit a phase transition between the Higgs and the 

confinement region, depending on the structure of the residual 

group. A phase transition is likely to occur when the Higgs 

representation has more than one orbit,and additional parameters 

are needed to describe the phase diagram. 
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6. Proof of the Theorem 

LEMMA. Let {φ} be an orbit of a representation RH of 

a compact Lie group G, { g} = {φ = R
H
(g)φ , g Є G} ; then 

any function F(φ) defined on the orbit {φ} and trans-

forming under a representation R of G (briefly R-co-

variant): 

F ( R
H
 (g) φ ) = R (g) F(φ), 

is the restriction to that orbit of an R-covariant poly-

nomial. 

R 
the orbit {φ}, which transform under R. Since G is a 

Lie group, VR is a space of continuous functions on 
R 

{φ}. This follows from 

| F(φ1) - F(φ
2
) | = | (1- R(g12)) F(φ1

)| , 

where g12 is chosen in such a way that φ2 = g12φ1 and 

such that g12

 identity when φ22 → φ1 . VR has at most 

dimension equal to the dimension of the representation 

R, since an R-covariant function is completely determined 

by its value on a fixed point φ Є {φ}. 

Since the orbit is a compact space, by the Stone-

Weierstrass theorem each element of VR can be uniformly 

approximated by polynomials Pn (φ) restricted to {φ}. 
n 

Actually, the R-covariant polynomials are sufficient 

for the approximation. In fact, if Pn (φ) → F (φ) on the 
n 

orbit {φ}, the R-covariant polynomials 
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also converge to F (φ) on {φ} since 

Since VR is finite dimensional and obviously contains 

the vector space of R-covariant polynomials restrict-

ed to {φ}, (the elements of are actually the equi-

valence classes with respect to the property of being equal 

on {φ}),the two vector spaces must coincide. 

Proof of THEOREM. Part I. (G{φ} = identity) . 

Any G-invariant local field, constructed in terms of 

φ Є RH and linear in ψ Є R is of the form of a scalar H 
product (F(φ), ψ) with F(φ) transforming under R. 

Therefore, by fixing a point φ of the orbit, the above 

invariant yields a definite component of R. Conversely, 

let us fix a (normalized) vector vi Є R. For any point 

φ Є {φ}, since G{φ} is the identity, there is exactly 

one element gφ Є G such that 

£
H

 = c
f\· 
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Clearly if φ' = RH (h)φ , then gφ , = h gφ . We then define 

FO>- ■ 

Thus 

i.e. F(φ) transforms under the representation R. By the 

above Lemma F(φ) is the restriction of a polynomial (Pfcp) 

to the orbit {φ} and ( p (φ) , ψ) is a G-invariant local 

field which reduces to ≡ (iv , ψ) when φ = φ. 

Proof of Part II. (G{φ} ≠ identity) 

Given a G-covariant irreducible projection 'Ρ(φ), for 

each fixed φ, P(φ) is a projection which is invariant under 

the subgroup C G which leaves φ stable. 

To see the irreducibility of P(φ) we note that if 

P(φ) can be written as a sum of two Gφ-invariant project-

ions: P(φ) = P1 + p2' then if we prove (see below) that 

any Gφ-invariant projection can be obtained by putting 

φ = φ in a (suitable) G-covariant projection P(φ), we 

would have P (φ) = P1 (φ) + P2(φ) with P1 (φ) and P2 (φ) 

G-covariant projections. G-covariance implies P(φ) = 

(φ) + P2(φ) , for any φ Є {φ}, contrary to the irre-

ducibility of P(φ). 

We now prove that to any Gφ- invariant projection 

P one can associate a G-covariant projection P(φ) such 

that P = P(φ). In fact, each point φ Є {φ } defines an 
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equivalence class [gφ] of elements of G through the 

equation 

R
H
 W = ? 

iff 

Then, if g1 , g2 Є [gφ ] one has 

i. e. 

&γ\ά 

(this means that [gφ ] is a (right) coset of Gφ) . 

Moreover, if φ ' = RH(h)φ, the class [gφ' ] consists 
Η φ 

of the set of solutions g of the equation 

RH (g) φ fh“ ^ ίζ·) R
H
 (gφ) φ = 

so that 

[g
φ'
] = hgφ Gφ = h [gφ] · (6.1) 

Thus, given a Gφ-invariant projection P we now define 

for any φ Є {φ} the projection 

P(φ) ≡ R (g) p % e
 L -J ■ 

Note that Ρ(φ) is well defined, since if g1, g2 Є [gφ ] , then 

and 
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By eq. (6.1), for any h Є G, 

KR
H
a) <p) = RPo) R*0O, 

i.e. P(φ) transforms covariantly under G. By the above 

Lemma P(φ) is the restriction of a projection-valued 

polynomial (P(φ) to the orbit {φ}. 

Proof of Part III. 

The construction follows immediately from the proofs 

of Parts I, II. 
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7. Defects and perturbation expansion 

The purpose of this Section is to discuss effects of "defects" 

on the validity of perturbation theory for 

gauge-invariant correlation functions as an asymptotic expansion. 

The drawback of the standard perturbation expansion for gauge 

dependent functions is indicated. The results of the standard 

approach are recovered in perturbation theory through the use of 

the gauge-invariant fields introduced in Sect. 5. 

7.1. Perturbation expansion for gauge–invariant correlation 

functions 

We recall that in order to develop a perturbation expansion 

in terms of Feynman diagrams one has to introduce a gauge fixing 

F. As usual we suppose that the Higgs potential defines a 

(unique) orbit of absolute minima. Each point φ of such an 

orbit gives rise to a field configuration which minimizes the 

action and defines a perturbation theory as an expansion around 

that configuration. Thus for each point φ one has the stand-

ard perturbation theory based on < φ > = φ (which is,order 

by order, finite as a consequence of the renormalizability of the 

chosen gauge). However, since in general the boundary conditions 

do not single out a point φ of the orbit (except for special 

gauge fixings) all the points φ Є {φ} are on equal footing and 

they must all be considered in the perturbative expansion of the 

functional integral, in accordance with the fact that there is 

no order parameter (see Sects. 3, 4). Such a "degeneracy" does 

not play any rôle for the expectation value of a gauge-invariant 

operator A, since in any order n of the perturbation expansion 
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(7.1) 

where g denotes a global gauge transformation. 

This equation follows from the fact that the Feynman propagators 

depend on φ in a covariant way. 

It is worthwhile to stress that the non-existence of an 

order parameter (< φ > = 0, see Sects. 3, 4) does not affect the 

form of the perturbation expansion for gauge-invariant correlation 

functions which is exactly the same as the one built on a "symme-

try breaking parameter" < φ > = φ. The asymptotic validity of 

the formal expansion is discussed in the next two subsections. 

7.2. Standard perturbation expansion for gauge dependent 

correlation functions 

According to the discussion given in 7.1, since by Sects. 

3, 4 the boundary conditions do not destroy the invariance 

under global gauge transformations, the perturbative expansion 

of the functional integral for gauge dependent correlation func-

tions leads to a group average of the various perturbation ex-

pansions labelled by the various points φ of the orbit. This 

leads to the vanishing of all correlation functions without a 

component invariant under global gauge transformations (Sects. 3, 4) . Clear-

ly, this conclusion differs from the one based on the standard 

perturbation expansion. We recall that the latter is based on a 

single fixed point φ of a minimizing orbit, with the implicit 

(unjustified) assumption that there is "symmetry breaking", with 

< φ > = φ. Actually, breaking only occurs when there 
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is no coupling to the gauge fields, (g = 0).However, since for any g ≠ 0 

< φ > = 0, one has lim < φ > =0. In other words the limit 

g→0 leads to a mixed phase of the scalar theory (without 

gauge fields). One should therefore expand around the mixed, 

symmetric phase, rather than around the pure ones. One is thus 

led to a phase diagram of the following type 

F.-g.i 

with a critical point on the g = 0 axis but no line of critical points 

emerging from B'c, (Fig. 1) above which there is a non-zero <φ> . 

In conclusion, the standard perturbation expansion cannot 

be asymptotic to gauge-dependent correlation functions. 

7.3. Relations between the perturbation expansion of gauge-

invariant correlation functions and the standard pertur-

bation expansion of gauge-dependent correlations. 

As advocated in Sect. 5 the "gauge-invariant" fields intro-

duced there should provide a complete gauge-invariant description 

of the theory. We show here that there is a simple relation be-

tween the correlation functions of the gauge-invariant fields 

constructed in Sect. 5 and the corresponding gauge-dependent ones 

calculated in the standard perturbation expansion. This relation 
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is based on the results of Sect. 5 and the discussion in the 

present section. 

For simplicity, we consider the case of neutral fields 

in the standard, gauge-dependent formulation. They correspond 

to gauge-invariant fields of the form 

N Pi (φ) Ψ , N-1 ≡ || Pi(φ)|| , 

in the sense that 

N Pi(φ)ψ = ψi. (7.2) 

We then consider the correlation function for the gauge-invariant 

fields A. ≡ N P . By the above discussion 

we expect that its perturbation expansion (with gauge fixing F) 

based on one fixed point φ is asymptotic and does not depend 

on F and on φ. 

Putting we have 

Thus, by eq. (7.2) the first term is exactly the correlation 

function of the standard gauge-dependent field ψi calculated 

in the gauge F in the perturbation expansion based on a fixed 

point φ. The other terms are dominated by terms of the form 
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and therefore they are small if the Higgs radius is much bigger 

than the mean (perturbative) fluctuations; the standard pertur-

bation expansion is recovered approximately for those "gauges" 

in which that is guaranteed (the quantum fluctuations along the 

orbit strongly depend on the gauge fixing). Clearly, the renor-

malization procedure plays an important rôle in establishing the 

validity of this property. The renormalizability of the pertur-

bation expansion (7.3) for the Green's functions of the "compos-

ite" fields is expected to hold for asymptotically free 

theories. 

7.4. Field configurations with non-tvivial topology (defects) 

in Higgs models 

In this Section we will discuss a classification of field 

configurations with non-trivial topology in Higgs models, in 

terms of homotopy groups. The point of such an analysis is that it 

allows to discuss the existence of defects, without a detailed 

knowledge of the dynamics of the solutions of classical (euclid-
(12) 

ean) equations. Reviews of topological methods suitable 

for the classification of defects in ordered material media can 

be found in Refs.[13][14]. 

The idea is that a description of the configurations on 

which the functional measure is concentrated can be done by look 

ing at the space of local parameters where the field variables 

take values with highest probability (determined by the function-

al measure). This means that a typical field configuration will 

take values in that parameter space in (some region R which 

covers) a large fraction of the space-time volume,and, due to 

the presence of the kinetic term in the action integral, it will 

be a continuous function there. This is true in one-dimensional 

models and can be justified in higher dimensions at least when 
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suitable smearing and ultraviolet cutoffs are introduced. When 

restricted to R such field configurations are the exact analogue 

of the local order parameter used in the classification of defects 

in ordered media . The continuous deformability of one configu-

ration into another gives rise to a natural topology in this con-

figuration space, and topological defects are then characterized by 

homotopy classes. Clearly such structures may arise only when 

the region R has a non trivial topology. 

We first classify defects in pure Yang-Mills models. Since 

the action integral vanishes only for pure gauge configurations 

(7.4) 

the probability distribution, induced by the functional measure 

on A (x) is peaked on pure gauge configurations and on small 

oscillations around them. The local parameter space can then be 

taken as the space of functions g(x), taking values in G. 

The topologically simplest regions R, on which a field 

configuration may behave as a pure gauge or a small oscil-

lation around it, gives rise to the following defects. 

1) Point defeats 

When R is topologically equivalent to IR4 – {0}, the non-

trivial homotopy classes of g(x) are given by π3 (G) and they 

identify point defects. For G compact, simple and simply con-

nected π3 (G) = Z, Z the group of integers. Field configura-

tions having the topology of a point defect and with finite action 

are called instantons. 
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2) Line defeats 

They arise when R is topologically equivalent to 

IR4 - {line}. The homotopy classes of the g's are now elements 

of π2 (G) . For any Lie group π
2
 (G) = 0, so that there are no 

line defects in pure Yang-Mills Theories without matter fields 

3) Defeats of dimension two (vortices) 

They are classified by π
1
 (G/K) , where G is the universal covering group 

of G and K a discrete subgroup of G (typically its center). The exact 

(13,14) 
sequence 

0 = π1 (G) → π1 (G/K) → πo (K) → πo (G) = 0 

implies 

π1 (G/K) = πo (K) = K . 

An example is given by the ' t Hooft vortices in pure Yang-Mills 

theory, (8,12) 

4) Defects of dimension three (wall-defects) 

They are classified by π
0
(G), which is zero for any connect-

ed group G; in general π
0
 counts the number of connected com-

ponents of G. 
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We now turn to the more general case when also Higgs fields 

are present. The probability distribution for φ (x) is peaked on 

the orbit {</?}, (or the orbits), which minimizes the Higgs poten-

tial. The kinetic term (D φ) 2 gives rise to a non-trivial re-

lation between the Higgs parameter space and the Aµ parameter 

space, so that,in general, one must consider configurations for 

Aµ other than those of pure gauge. In the following, for simpli-

city we will consider the case when G acts transitively on the 

orbit {<£>}. The parameter space can then be taken to be charac-

terized by {φ(x) = RH (g(x))φ, g(x) continuous modulo H, H ≡ 
H 

residual group of φ ; A (x) such that Dµ φ(x) = 0}. Clearly the 

condition Dµ φ = 0 on A is equivalent to the vanishing of 

G in all group directions other than those of H. A particular 

case of such configurations are those of the form 

φ = R(y*) ) φ , 

with g continuous, and clearly the corresponding defects are 

those classified before. 

When a the defects may be classified in terms 

of the local order parameter φ (x), taking values in G/H. (If 

there is more than one orbit, φ (x) takes values in (G/H1) U 

(G/H2) U ... .) 

1') Point defects 

They are classified by π3 (G/H). AS a consequence of the 
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exact sequence 

Z = π
3
 (G) → π

3
 ( G/H ) → π

2
 ( H ) = 0, 

one concludes that π3 (G/H) is a subgroup of π3
 (G) . Therefore 

such defects arise from configurations with = g-1 1 g, with 

g continuous; they have already been classified. 

2') Line defects 

They are classified by π2(G/H). For all simply connected 

Lie groups G the exact sequence 

0 = π2(G) → π
2
 (G/Η) (H) -7Γ, ca ) = 0 

implies 

π
2
 ( G/Η ) = π1 ( H ) . 

If G is not simply connected one may use its universal covering 

group G. 

A well known example of such defects is given by the 't Hooft-

Polyakov monopole;(in IR4 it is a line defect!) 

3') Defects of dimension two 

They are classified by π1(G/H). If G is simply connected 

and connected the exact sequence 

0 = π1 (G) → π1
 (G/Η) τςίμ)-^, πo (G) = 0 

yields 

π1 ( G/ H ) = π
0
(H) . 

4') Defects of dimension three 

They are classified by π0 (G/H). If there is more than one 

orbit, say η, π0((G/H1)U(G/H2)U...) contains at least n ele-

ments corresponding to the n different orbits. 
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We remark that in the presence of Higgs fields the action of 

point defects in four dimensions depends on a scale parameter and 

attains its lower bound for "zero size"(15) . Due to quantum 

fluctuations the relevant field configurations will then have a 
-1 

finite small size of the order of m
H

 , the typical mass parame-
" H 
ter occurring in the Higgs potential. This fact has been used in 

Sect. 4. 

We note that, in a g.q.f.t. with an intrinsic mass scale, like a Higgs 

theory, field configurations dominating the Euclidean functional integral can be 

expected to be decomposable into a classical field configuration plus a small, 

essentially Gaussian fluctuation field, (in which one will try to expand pertur-

batively). The classical field configuration describes a typical configuration 

of a gas of defects classified by homotopy groups, (up to additional, internal 

structures), as explained above. Because we consider a g.q.f.t. with intrinsic 

mass scale (e.g. depending on a fairly large mass parameter, mH ) , an indivi-

th 
dual defect, δk , labelled by an element of some k homotopy group, , 

in d space-time dimensions has an approximate geometrical locus which is some 

(d-k-1)-dimensional, closed, compact surface, . Its mean action, A , is 

typically proportional to the area (= const, when k = d-1, = length when 

k = d-2 , = surface area when k = d-3 |Sk| of , i.e. 

(7.5) 

where a(k) depends on the internal structure of the defect, and mH is a 

typical mass scale. Its entropy is 

(7.6) 
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where σ is some (essentially geometrical) constant. Its "chemical potential", 

μ (= -ℓn (activity)) , which determines the density of this gas 

of defects is 

(7.7) 

This type of defect is dilute i.e. they form a low density gas) and has small 

size if 

(1/g2)a(k)-o >> 0 . (7.8) 

When g passes through a critical value, 

a transition, characterized by the condensation of this type of defects, to a 

phase of extreme high density is expected to occur. 

This can be shown in a class of lattice theories of defects, where one takes 

into account interactions between different defects of variable dimension. Those 

transitions appear to be most important for the understanding of quark confine-

ment(8, 12), the existence, or absence, of massive, stable magnetic monopoles 

in four-dimensional Higgs theories, the breaking of chiral invariance (related 

to a phase transition in Higgs theories with θ-vacua, at θ = π(16)) and 

possibly of gauge hierarchies. 

The last three applications (effective actions for defect gases and their 

phase diagrams) will be discussed in more detail elsewhere. Here we just want to 

point out some theoretical problems of the approach described here : 

- classical configurations contributing to the functional integrals contain an 

infinite number of defects (the total action and entropy are infinite) of finite 



52 

density. They have therefore no well-defined, prescribed behaviour at spatial 

infinity. They have to be analyzed in space-time regions small with respect 

to the inverse defect density. 

- It is then clear that dominant classical configurations do typically not 

correspond to local minima of the global action, but rather to approximate, local 

minima of the action density integrated over bounded space-time regions. For this 

reason, the fluctuation field has in general zero and negative frequency modes, 

so that non-Gaussian corrections have to be taken into account. This makes quan-

titative, semiclassical calculations extremely tedious. 

- The approach based on interpreting the classical field configuration as a 

configuration of a gas of individual defects with definite chemical potentials 

and short range (mH >> 0!) interactions is only reliable when (7.8) holds, i.e. 

at very low densities. This makes a reliable,quantitative investigation of e.g. 

the condensation of monopoles in this approach impossible. Nevertheless, it 

appears promising to study the qualitative features of defect condensation transi-

tions and their physical effects in phenomenological (lattice) models of inter-

acting defect gases which are well defined for all values of g . 

7.5. Validity of perturbation expansion and defects 

The previous estimate (see Sect. 4) of the instanton density implies that 

in space time regions of size d the probability of finding a 

point defect inside is smaller than C (d/L)4 = C (d mu )4 £< g 
(C and A>0 constants). Thus we have 

i) regions of size d<<L are essentially "defect-free". Since 

this applies to regions of size 

comparable to inverse Higgs masses; 

ii) as a function of g, p ~ L vanishes at the origin (g = 0) 

together with all its derivatives, so that p= 0, in each 

order of the perturbation expansion. 
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The above two properties and (7.5) - (7.8) suggest that the non-perturbative effects 

originated by defects vanish at g = 0 together with all their 

derivatives and are in any case small in regions of size d<<L. 

We expect therefore that a) the perturbation expansion is asymp-

totic; b) non-perturbative effects are important only for corre-

lation distances of order 

The features discussed above seem to have a general charac-

ter. In situations in which the action has more than one mini-

mum and the boundary conditions are not able to fix one of them 

the standard perturbation expansion of the functional integral 

around one fixed minimum neglects those field configurations 

which cannot be regarded as small oscillations around that mini-

mum. This is not correct if the boundary conditions do not fix 

the asymptotic behaviour of the field configurations with non-

zero functional measure. However, for models with exponentially 

small defect density, if one considers any fixed space time re-

gion D, the functional measure defined on the field configura-

tions with support in D by "integrating over all the configu-

rations outside D", is essentially concentrated on the "small 

oscillations" around each of the minima with corrections which 

vanish asymptotically together with all its derivatives as g → 0. 

Therefore one expects that a perturbation expansion taking into 

account all the minima is asymptotic for correlation functions 

inside any fixed region D. Even if the corrections due to non-

zero defect density are exponentially small, they may lead to 

very interesting effects like the generation of small masses for 

the gauge bosons of the residual group. They are expected to 

play a rôle in understanding the occurrence of gauge hierarchies. 
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It is important to point out that the above features of the 

functional integral are exactly realized in the well known double-

well oscillator model described by the Hamiltonian 

The expansion around one of the minima of the potential is the 

expansion in the parameter g. It is known that a) the pertur-

bation expansion for the energy levels is asymptotic and b) 

energy levels come in pairs with separation exponentially small 

in g (17) so that such non-perturbative ef-

fects are relevant only for correlation times of order > L. 

We also note that the non-symmetric correlation functions vanish 

(reflection symmetry is not broken) whereas the standard pertur-

bation expansion around one minimum gives a non zero value for 

them, so that for non-symmetric correlation functions the ex-

pansion around one minimum cannot be asymptotic. 
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FOOTNOTES 

a) It is believed that asymptotic freedom is the crucial 

property that entails the existence of the continuum 

limit. It has by now become a quite generally accepted 

requirement and it is valid (perturbatively) in grand 

unified theories where because of the occurrence of 

very different scales a non-perturbative understanding 

of the Higgs phenomenon becomes a crucial issue. 

b) In particular, conventional perturbation theory in the 

continuum limit can only be formulated by introducing 

gauge-dependent Green's functions and fixing a gauge, 

even if one wants to calculate a gauge-invariant Green's 

function. 

c) Most of the gauge fixings used in the literature have 

these properties. The 't Hooft non-linear gauge and 

the unitary gauge do not satisfy b). 

d) The temporal gauge has been discussed in detail by 

G. C. Rossi and M. Testa(6) by extensively exploiting 

the validity of a Gauss' law. It is not clear to us 

whether their argument gives < φ > = 0 when the 

boundary conditions are specified. 

e) As emphasized before this group acts non trivially only 

on gauge dependent (unobservable) field variables and 

its non trivial action is made possible just by the 

introduction of a gauge fixing. 
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f) In particular one is facing the puzzle of understanding 

the experimental success of the standard picture, like 

in the Glashow-Weinberg-Salam model, for which the 

breaking of the global gauge group is crucial. 

g) Technically, G{φ} is abstract group isomorphic to 

the stability group of any point of the orbit {φ}. 

h) All the proofs are postponed to Sect. 6. 
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