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Abstract.

We discuss symmetry breaking order parameters, e.g. <@ > , in gauge
theories with Higgs scalars, ¢ , in suitable gauges. We show that, typically,
<@> =0 . A complete set of gauge-invariant, observable composite fields for
such theories, local ones and ones localized near strings (paths) is constructed.
We then examine the validity of standard perturbation theory, based on assuming
that <p> # 0 , and reformulate it in terms of our gauge-invariant fields and
without assuming that <> # O . Finally, we classify classical field confi-
gurations with non-trivial topology ("defects") in such theories and propose

a defect-gas approach to predict their effects.



Introduction

The continuum formulation based on perturbation methods and

the lattice (Wilson) formulation(1)

of gauge quantum field theo-
ries seemingly lead to contradictory results, in particular when
applied to Higgs models, since in the Wilson formulation all the
gauge-dependent Green's functions vanish and there cannot be spon-
taneous symmetry breaking(z). These conflicting pictures are re-
examined in Sect. 1; the differences between the two formulations
disappear if a gauge fixing is introduced on the lattice (Sect.2).
We then investigate the existence of a'gymmetry breaking order
parameter"in Higgs models. The Higgs expectation value < ¢ >
is shown to vanish in the temporal gauge,and,more generally, the
gauge~invariant two-point function of the Higgs field is shown to
have an exponential decay (Sect. 3). 1In Sect. 4, the vanishing
of < ¢ > is shown to be a disorder effect induced by "defects",
i.é. by field configurations with non-trivial topology (instan-
tons, etc.).

The above results necessitate a change in the usual
treatment of the Higgs phenomenon, in the continuum formulation.
It is shown that a complete description of the Higgs phenomenon
in terms of gauge-invariant fields is always possible;(in parti-
cular,the physical states and the mass spectrum can be obtained
by using only gauge-invariant fields). This description does not
rely on the existence of a symmetry breaking order parameter, but
only on the existence of a non-trivial orbit minimizing the Higgs

potential. The mass matrix of the standard (perturbative) formu-

lation is reproduced when one neglects the quantum fluctuations



of the Higgs fields. The existence and construction of the com-
plete set of gauge-invariant fields is obtained as a general
group-theoretical result. No assumption is therefore required
about the Higgs representation or about the non-existence of phase
transitions between the Higgs-and the confinement regimes (Sects.
5, 6).

In Sect. 7, we discuss the validity of a perturbative expan-
sion in the presence of defects. It is argued that the defect
density is asymptotically zero when g + 0 ,and a perturbation
expansion of the functional integral for gauge-invariant Green's
functions is asymptotic and coincides with the standard perturba-
tion theory based on a non-zero order parameter g =<¢ > .
Furthermore, the Green's functions of gauge-invariant fields re-
duce to the Green's functions of the corresponding gauge-dependent
fields of the standard formulation when the Higgs quantum fluctua-
tions are much smaller than the radius of the minimizing orbit.
Finally some typical features of defect gases and some physical effects of defects

are sketched.



1. Gauge-invariant description of gauge quantum field

theories.

By definition, a gauge theory is a quantum field
theory with a gauge group acting as a local symmetry
group. Conventionally, it is formulated in terms of
fields which transform non-trivially under the action
of local gauge transformations. However, there is an

important physical constraint: All observable quantities

are required to be gauge-invariant. Therefore, it must

be possible to describe the entire physical contents of

a gauge quantum field theory in terms of gauge-invariant

(possibly non-local) fields.

A possible approach towards implementing this prog-

program consists of formulating gauge theories on the

lattice in terms of a manifestly gauge-invariant action, as

proposed by Wilson(1). In Wilson's approach the only

non-vanishing Green's functions are those which are in-
variant under all local gauge transformations. In parti-
cular, in a lattice theory with Higgs fields, the expec-
tation value, < ¢ > , of the scalar field ¢ vanishes,
and it is impossible to have a spontaneous breaking of
the gauge group(z). At first sight, this obscures the
interpretation of the lattice theories in terms of con-
ventional wisdom(B) concerning theories like QED, the
Higgs model or grand-unified theories, and connections
with standard perturbation theory are no longer evident.
One of the main purposes of this paper is to compare

the gauge-invariant lattice formulation with the conven-

tional one and to clarify those connections.



The conventional approach to gauge quantum field
theory does not automatically realize a manifestly gauge-
invariant formulation of gauge theories, since it in-
volves gauge fixing and the use of gauge-dependent fields
and their Green's functions in an essential way. In
fact, gauge fixing and gauge-dependent Green's functions
are the basic building blocks of the perturbative expan-
sion and the calculation of S-matrix elements in terms of
Feynman diagrams. Implicit in the standard approach is
the classification of the physical states in terms of
their transformation properties under constant gauge
transformations. In the light of the remarks made at the
beginning it is difficult to understand the physical
meaning of a gauge group which acts trivially on all the
observables, so that states related by a gauge transform-
ation are not physically distinguishable.

The rdle of gauge-dependent Green's functions appears
particularly puzzling in the conventional treatment of
the Higgs mechanism in terms of the gauge-dependent order
parameter < ¢ > .

The resolution of this puzzle is somewhat important
if one wants to understand whether a gauge-invariant
order parameter exists and whether the Higgs mechanism
is accompanied by some sort of phase transition and
"symmetry breaking", without relying on semi-classical
and perturbative arguments. (In perturbation theory,

the order parameter < ¢ > is put in "by hand", as



suggested by the classical Higgs potential, but there is
really no guarantee that "symmetry breaking" occurs in
a non-perturbative treatment).

A non-perturbative approach to the Higgs phenomenon
is important in order to achieve a better understanding
of physical problems like gauge hierachies, generation of
fermion masses (which, in the conventional approach, de-
pend on the value of the gauge-dependent order parameter
< ¢ > ), the occurrence of very different mass scales,
the existence of elementary particles associated with the

Higgs field, etc.



2. Can the Higgs phenomenon be characterized by a symmetry
breaking local order parameter?

In order to discuss the problems mentioned in Section 1
we use the formulation of (gauge) quantum field theory in
terms of Euclidean functional integrals. We shall usually
think of a regularization of these functional integrals by
means of a lattice cutoff, i.e. we adopt Wilson's strate-
gy(1), and we think of the continuum theory as a scaling
limit of the infinite volume lattice theory (the existence
of that limit being assumed or taken for granteda)). Since
we do not want to rely on perturbation theory, the lattice
regularization appears particularly attractive.

In order to understand the formal relation between
lattice gauge theories and the usual (Faddeev-Popov) conti-

4)

nuum formulation( we start with a few well known comments
on gauge fixing in lattice theories.

The functional measure of a lattice theory is given by
-1 g A(x)

where ¥ 1is a family of lattice fields, including a lattice

gauge field, dyx 1is their apriori distribution, and A is

a gauge-invariant action without gauge fixing terms. 1In

this case the measure dp 1is well known to be invariant

under local gauge transformations (irrespectively of what

boundary conditions are used to construct the infinite
volume limit). This entails the vanishing of gauge-
dependent Green's functions(z):

For any gauge transformation, g = g(x), localized

inside the lattice region V,



dpy, (1) = dp, (23) = dpy 1)

(where o0 indicates a choice of boundary conditions) so
that for any function A of the fields ¥ 1localized
inside V

(A)V)g- = jd.p.v)c_()c) A(x)=_[d,,ufj; (x) A(x)
= dem (x) A%(/() = <A%>V ;

Thus, in this approach, gauge-dependent Green's functions
which play a basic rdle in the standard formulation of
continuum gauge quantum field theoriesb) are actually zero.
As emphasized by Faddeev and Popov(4) a gauge fixing
appears necessary in the continuum formulation. In order
to compare it with the lattice formulation it is desirable
to study gauge fixing for lattice theories, as well. The
basic property of a gauge fixing F is to modify the
functional integral in such a way that expectation values
of gauge-invariant functions of the field variables ¥
remain unchanged, so that the physical contents of the
theory is unaffected. Thus, if e-ﬁA is replaced by
e'.'pAF~ in the expression for du the condition stated

above is equivalent to
| =9
Mdg F? - 1
This is essentially the Faddeev-Popov condition, with F

standing for the product of a gauge fixing times the

Faddeev-Popov determinant. The latter can be represented



in terms of an integral over Faddeev-Popov ghosts, but that
representation is not particularly useful outside pertur-
bation theory. (See(s) for a discussion of gauge fixing
in lattice theories.)

In most of the following we use only gauge fixings
with the following two additional propertiesc): a) F |is
a local function, and b) F 1is invariant under global
(constant) gauge transformations.

As examples of gauge fixings on the lattice satisfy-

ing a) and b) we mention:

n F=T1 S(% . ) with 4 the gauge field on the
b S Xy X+<g Xy
" i y ] 1 ~1
lattice (formally %x3 =P Q""P[‘% 5‘ Ah(x)dxr‘J) and e
a unit vector in the time direction, which reproduces the

5)

temporal gauge on the lattice( , and

i e
2 Feopg 2 T (g, 8,0} leezsa Ly
F_.yup{_ %j&x Z(B”A‘; (x) )2} as the lattice spacing a - Q)
corresponds to the §& -gauges.

The lattice formulation with gauge fixing makes it

possible to discuss non-perturbative effects in the conti-
nuum formulation. In particular, one may now answer the
question of the existence of a symmetry breaking local
order parameter (< ¢ > # 0) as a possible caracterization
of the Higgs phenomenon, once the gauge has been fixed.
Since now the value of < ¢ > depends in general on the
boundary conditions, the question is whether the gauge
fixing gives rise to a sufficiently strong coupling with

the boundary. We remark that the relevance of such an
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analysis for the continuum theory relies on the assumption
that the Euclidean continuum theory (in a pure phase) can
be obtained as a scaling limit of the infinite volume
lattice theory. We also note that the above general stra-
tegy makes use of the analytic continuation of the correla-
tion functions from Euclidean to Minkowski space, a property
which is not under control for some gauges, (because of lack
of positivity), except for gauge-invariant Green's functions.

In the next Section we will prove the vanishing of
< ¢ > in the temporal gauge. We shall actually prove a more
general result, namely the exponential decay of the gauge

invariant two point function of the Higgs field.

In Section 4 the vanishing of < ¢ > is shown to be a
disorder effect induced by non-perturbative,defect-like field

configurations;(instantons, vortices etc.).



1

3. Vanishing of < ¢ > in the temporal gauge and exponential

decay of the gauge-invariant two-point function of the

Higgs field.

Before dealing with the temporal gauge we will first in-
troduce a change of variables which worksin the general case
and which simplifies the analysis of the gauge-invariant two-
point function of the Higgs field. As a matter of fact, we
will deduce the vanishing of < ¢ > in the temporal gauge
from the exponential decay of that gauge-invariant two-point

function.

i) Exponential decay of the gauge-invariant two-point function.
The analysis will be done on a lattice with fixed spacing

a. The Higgs field ¢(x) can be written as

px)y= R(£ )z, (3.1)

b

where R denotes the Higgs representation, hx is an element

of the gauge group G and rx is a point of the section of

the orbits of the gauge group in the Higgs field representation.

R may be reducible and it may contain orbits with non-trivial

residual group. Clearly, given ¢ (x), eq. (3.1) does not unique-

ly determine hx; nevertheless one can show that the functional

measure can be expressed in terms of the wvariables hx, r. and

the gauge field variables gu(x). Now gu(x) can be written

in terms of hx and the gauge—invariant variables ¢ ' .
-1

g,u(x)s ff;‘):,mc-t-\'.}I~ = f’x 'L}u,x -E'“e (o)

=
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and one can replace the old variables hx' rx, gu(x) by

the new variables Ru < Ty and g,(x). Independence
r

and completeness of the new variables follow from the

equations

TI f}o(x+%&,) = Ex T

-1

f , (3.3)

0, x+me, g

-1

f, = (TN g (xamen) g (e, " o,

where hB denotes the value of hx at the boundary of the
lattice volume (wB = R(hB)rB). In terms of the new variables

the Faddeev-Popov condition for F(¢,q)
é -Erdxx F(Xx(%‘)J Xx(tp))=1 )
(Xx denoting a gauge transformation), becomes

S T ax, F (ﬁ}“x,‘(q), ) =1. (3.5)
G

" / =it . " s
Putting xr = X %ofx) qu.c, and using the invariance

of the measure

Tax - Tax.
( T dg, ) ?(f, g ) =1, (3.6)

We can now write the expectation value of a gauge-invariant

we get

variable A as
A= Z (T due T at Thgeo A 150

E)IZ ( ‘R(‘e ) ,H.c ) (3.7)
e ®
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where xr(€)= }P(%) is the plaquette character. The
gauge-invariance of A implies that A 1is independent of

g, and therefore by eq. (3.7) the integration over g, is

trivial

-1 >
(Aye Z (TapeyTar, A e Pa%®
px |

X

i ¢ BZ.- (e R ) e, )

(3.8)

Then, for fixed , the correlation functionsof the gauge

invariant variable Eu x are given by
r

ST R A Sﬂaﬁcnﬂ al -E\—Aeﬁ.x

Mot AR
ez
ﬂFf"q 50 ef‘a X CP B xr({) CP A,x C?-”R[‘E)t,ﬁ) Zii-l
-1 y (D)
S 11} dp () T al @ A

v, %

VHpM, %

-1 -1

Z X, 8 e, 4
Cﬁrvgp;“ CILK,R(E,”‘ ’L"*‘")gﬂ— dﬁﬂ el?’vﬁu, ’.L‘.K e, v, x+ ¢y, .,u,x).

(3.9)
P Z (Zx;R( ) ne!, 2 ¢
[ %4 T ks e

where I 1is the sum over the plaquettes not containing bonds

Py

in the uy direction. For convenience, we call horizontal
planes the subsets of the lattice points with fixed

components {x; xu = const}. In the last integral, for fixed

rxa Rv < (v # u), there is no coupling between different
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horizontal planes. Furthermore,we notice that our expectat-
ion values are of the form
‘fdﬁfﬂ_fd%(?Jf(?) »
with (3.10)
[dpe) fdv, () =1
Then,defining Zx = IdV‘ (%) p we can rewrite the above
integral (310) as

fape Z, [ 27 v, ¢4) £0q) = [diion [450y) 50y)

with

n

Javey) <1, Vx,

1= faio [47 () = Jage)

Coming back to eq. (3.9), with this normalization we obtain

(3.11)

H

an expression of the form

Jd#({’vw’t)e’z jZ 4y ({r) _f({?ﬂ).—..-

pra st evﬂq. ) {""a“‘; L

=fdﬁ(‘e"ﬁ"’t)fd%v?rm(fﬁ) J((ﬂu) d

with diyi, dV satisfying egs. (3.11).

The last integral is therefore the expectation value
of a product of bond variables on a lattice, with coupling
only along horizontal planes. Variables belonging to dif-
ferent planes are therefore statistically independent. 1In
conclusion, if the points x,... xn in eq. (3.9) belong to

1
different planes

{4 >=..j<fm>d oKL S ag

[ %a Mo % ] e S 17
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Now < & > _. 1is analogous to a magnetization at
H,X dv

finite temperature (if B, B' are finite)’and one can prove

that

[<€ Ié@<’l, (3.12)

‘Vﬁﬂ
uniformly in the variables Ru#u' r.

Therefore
n

<Ay A >l € BT faR =67 (313

(x1, oot xn belonging to different horizontal planes
(x.) ¥ i,j ).
)U# T ']

Equ. (3.13) also holds when £ is replaced by R(2) , where R 1is any
representation different from the trivial one. To simplify notations, we shall

omit the symbol R in the following.

By using the definitions (3.1), (3.2), we have
IR R % ..fi £ =TI
(3.14)
Hence, the gauge invariant two-point function of the Higgs

field becomes

"’0-1 (me?) = < 7;‘- {)u’.‘x- > At

?
To compute the above expectation value we fix a direction

¢  such that the number of uj = p on the r.h.s. of eq. (3.15)

is greater than |y - x|/4. We consider only strings with

a fraction of "regular links" (in the direction u) greater

‘than some fixed number o; a link in the direction p 1is

regular if no other link in the direction u 1lies in the

same horizontal plane (with respect to the direction u).
Under these conditions we have

S <?fﬂs»“a'>=fdﬁ({w’t)fd% 1({%;*)

Vip)

fds @) M(4, €, 1™)

Lyuot I Vs !

-\u'} 3‘ K,J"’ Xj-l-CF;_ % a F’j;xj. ’
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= [dE fav(g,) M( Cyip ¢, <J2%>N((u~3 ") )

where we have separated the integration over regular

]
(25%9) and 'non-regular' (2) links.

Hence
~ ~ 7 M
[<?£h‘,%g M éSdf‘ _gdv (¢,5) TT 1< ef‘*“ >‘*""({uﬁ't) l fs 16)

g% ¥ | /4 a i &g 6] [x-4 [ /4a
Thus the gauge invariant two-point function has an expo-
nential decay; in particular,one cannot build from it a gauge-
invariant order parameter. |
We remark that this statement is at least formally stable under
taking the continuum limit. 1In fact,in this case one can show

that the string (3.15{4becomes the string of a massive vector
2 / 2
field with mass M =ﬁ(5 <, V.

ii) Vanishing of < ¢ > 1in the temporal gauge.

The above formalism becomes very simple in the temporal
gauge because the gauge fixing restricts g,(x) = 1, and the
expectation values of gauge independent variables are easy
to discuss since one is left only with integration over
gauge independent variables (the integration over g, (x)
being trivial). The gauge dependent order parameter

< h > vanishes in this gauge as can be easily seen by
X

using eq. (3.4)

‘Kx = T‘I %o("*“e") ﬁg (T,E leo, x+*ne.)
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and the previous (gauge-invariant) result on the expectation

value of 1U 4 . In fact, applying eq. (3.16)
"

0, X+m¢,
-..o<]€0 9}5[!“‘}\{/4,(1,
|[<TT 4L S £ e K
. F_’X.
¢ 3’7
to a string connecting hx with hB in the time direction
one gets the exponential decoupling of hx from the boundary
value h_.
B
We remark that the gauge freedom left by the gauge fixing
ge(x) =1 (i.e. the freedom of making gauge transformations
independent of time) disappears as soon as one specifies the
(euclidean) boundary condition ¢ = ¢_. Therefore, one cannot

B
simply appeal to the above gauge freedom to conclude that

<§0> =0.d)

More general results on the vanishing of expectations of gauge-dependent
operators, based on a technique in statistical mechanics, due to Dobrushin and

Shlosman, will be discussed elsewhere.
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4. Restauration of symmetry as a disorder effect induced

by configurations with non-trivial topology.

In this section we show that under general assumptions
the vanishing of < ¢ > can be understood as a disorder effect
("restauration of symmetry") induced by non-perturbative field
configurations with non-trivial topology. Such configurations
will be called "defects" in analogy to defects in ordered systems.
By "defects" we mean classical field configurations which in some
sense dominate the functional integral. (On the lattice the same
r6le is played by configurations approximating defect configura-
tions-of the continuum theory; see Sect.7). A general analysis
of defects and their uses in an approximate evaluation of function-
al integrals in Higgs models is contained in Section 7.

We now give an argument showing that topological defects
may cause < ¢ > to vanish. Our argument only involves "point
defects", i.e. instantons, but the contributions of other types
of defects (vortices, magnetic flux lines) increase the disorder.
Since disorder effects caused by instantons increase with the
instanton density »p 'it is enough to consideralow density
approximation. Actually, in Higgs models, the instanton size
is essentially bounded by the scale appearing whenever the Higgs
potential has a non-trivial minimum; in turn this is related to
the existence of dimensional terms in the effective Higgs po-
tential (e.g. the "mass" term). As a consequence one expects
the instgnton density p to be finite and of the order of

" -c/g

mH e , Where mH is a typical mass parameter occurring
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in the Higgs potential. The smallness of the instanton siee

and their low density make it plausible that one may neglect the interact-
ions between (anti)instantons. This is actually all what is

needed for the following argument (a more general and more

abstract argument will_ be presented at the end of this Section).

Under the hypothesis discussed above one can prove that neces-

sarily < ¢ > = 0. In fact

- - S(¢)
Coy = 2 [dg e ¢ =

(4.1)
-1 g - -1 - Sd CXJY)
Z ,,Z,.,._.o (m 1Y (n 1) §dXaY e <owd
-S{(y) onst. V
where Z.=_ Saltf e o ecns — 0 as the (lattice) volume

V > o, Scl is the classical value of the action for con-
figurations corresponding to n, instantons localized in

(x1, .+. X ) = X and to n_ antinstantons localized in

= Y, so that
S, (XY) = (my+m ) S .

One can evaluate < ¢ > X

<
-

-

|

(4.2)

v approximately as follows:

First, note that in a Higgs theory the (anti-)instanton
has a finite scale size T = O(‘m:).Thus it occupies a space-
time volume V =~ et (See Sect. 7.4).

We now consider an instanton configuration with instantons
at positions X and anti-instantons at positions Y. Suppose
X 1is a space-time point separated from {X,Y} by a distance
d 2»r. Then the gauge field has the form of a pure gauge

(apart from a contribution which decays rapidly in d), i.e.

n n n n
+ - - +

AX)wm 8, (x) T g (x) 3 (71 E—l(x) Il g;l(x))
i=1 i j=1 Vi =1 Y i=1 *1
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Thus

<‘P(*)>XY Tr Q (% Cx)) r Q (63- (x)) P, (4.4)

)
(=t

where Rw is the representation of the gauge group G under
which the Higgs scalar transforms, and ¢, = const. is a
minimum of the Higgs potential.
Now
V"' HS du.fz(% Cx))“éd-Sa%, (4.5)
uevilu-xl>t
for some 6 > 0, uniformly in V, for V 1large enough. (Since
Q“(x) is a function of x-u the average is actually over
x-u and & vanishes except for small boundary effects).

If we now insert (4.4) and (4.5) in (4.1) we obtain

l<cf’(>'~)>l Z Z (“*1.)"(,’[-!)-' e—-(“.o.*“’l_) So v)‘h_-vn__

N, am, 20

LM
L(1- _\_“;_)g * "1'\1;' ]n Lo, Il (4.6)

where

0 . o + ‘ +
Zv i Z o(%‘”!) (“—-1-)1 < (o205, VTL*- L O

As V » =, the r.s. of (4.6) clearly tends to 0, for arbitrary

n and any £ < 1. This completes our argument.

Remarks. a) In the above argument the lattice cutoff avoids
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ultraviolet divergences, but the conclusions are expected to
remain true in the continuum limit for asymptotically free
theories. B) The above result can be easily generalized to
show that if B 1is any field variable which has no component
invariant under global gauge transformations, its expectation

e
value vanishes, i.e. the global gauge symmetry group( ) G

[ ]
is'not broken; y) It is important to stress that the above

2)

result is different from the E-DDG result( s Since the

action integrals on which the two results are based are very
different,and in fact globally gauge-invariant Green's
functions can here be non-zero even if they are not locally
gauge-invariant, whereas they vanish in the E-DDG case; §)
when confronted with the standard (perturbative) approach to
gauge symmetry breaking, the above result shows that there
are non-perturbative effects, which "restore the global sym-
metry" (a somewhat misleading expression) and therefore,
strictly speaking, the standard perturbation expansion based
on a non-zero order parameter is not really justified.

As a consequence, even when confronted with very de-
finite and practical questions, like that of laying down a
sound framework for calculating the physical properties of a
Higgs theory(f), one is led back to the general problems
raised in Sect. 1, namely the ones of finding a gauge in-
variant characterization ©0f the physical phenomena exhibited

by a gauge qg.f.t.
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5. Gauge-invariant description.

According to the general philosophy discussed at the
beginning, namely that all the physical states of the
theory should be described in a gauge-invariant way, it
is natural to look for a description in terms of gauge-
invariant field operators in the sense that:

i) neutral states (i.e. states without superselected
charges) are obtained by applying gauge-invariant
field operators to the vacuum;

ii) charged states labelled by charges obeying a local
Gauss law are obtained from neutral states by remov-
ing one charge to infinity.

In the simple SU(2) gauge model with Higgs fields ¢ and

fermions Y in the fundamental representation this pro-

gram is implemented by using the fields

*

- —
¢ T g, -FN

¥ = " rie
o
CFF; {5{ é“nﬁ cPod Fﬁy
¢
(f’ €

A
()
(W)

¢ o)

(")

(" Hl'ggs [30 rticle . )

(5.1)



( ) “
where € are the matrix elements of | ¢ 1] .
aB l.-1 0)

7 8
Remark. Independently, Banks and Rabinovic ) and 't Hooft )

have recently also proposed to use such invariant fields.

Notice that the fields introduced in (3.1) are in-
varjiant under local gauge transformations. They are there-
fore local quantum fields (i.e. they are expected to obey
local commutativity). They reduce to the standard, gauge-
dependent fields if one expands them around ¢ )= @, = const,
The fields defined in (5.1) are sufficient to obtain a com-
plete description of the physics of the theory, since they
separate field configurations which are not gauge-equivalent
(i.e. related by a local gauge transformation).

We emphasize that the equivalence of the gauge-invariant
description we are about to develop and the standard approach
is a dynamical problem involving a careful analysis of the
existence of a locally effective order parameter (playing the
rdle of < ¢ > in the o0ld approach). While the relation
between the two approaches appears to be relatively simple
in models where the Higgs scalar has only one orbit under
the action of G (up to equivalence), their equivalence
may fail, partially, in more complicated theories. See

Section 7,

1. Extstence and completeness of the gauge-invariant fields.
The existence of a gauge-invariant description based
on gauge-invariant fields in the general case is the result
of the discussion which follows.
Let the Higgs field transform under a representation
Rw of a (gauge) group G; R be an irreducible represen-

b

tation of G under which a given set of fields Yy (e.qg.
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fermions, vector bosons etc.) transform. To simplify the
notation, here and in the following we use the same symbol

R to denote a representation of the gauge group and the
corresponding representation space. The aim of the Theorem
below is to show that a gauge-invariant description is al-
ways possible in the sense that there is a correspondence
between the standard gauge dependent fields ¢ and the
"gauge-invariant" ones. This is obtained by making reference
to a specific orbit {5} in the representation R@, such
that the "gauge-invariant" fields, when restricted to the
point ¢ = 5, coincide with the gauge dependent fields ¥

of the standard approach,with < ¢ > = ¢. 1In the applications
that we will discuss such an orbit will be a minimum of the

Higgs potential. We denote by G the (abstract) "resi-

{p}
dual" group of {¢} g)_ As it will be clear in the following,
the rdle of the orbit {¢} is only that of choosing between
different parametrizations of the same (gauge-invariant)

kinematics’(see however the remarks after Part II).

THEOREM. Part I. h) If G;- is trivial there is a linear

{¢}

correspondence between the fields of R and the linear

|

space of G-invariant (composite) fields (P(¢)+y which are

polynomials in the Higgs scalars and linear in the fields

¢y which transform under R¢. The correspondence is one
to one modulo fields of the same form which vanish on

{¢}.

-

If G{E} # identity, in the standard description the

physical content of the representation R can only be

¥
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described modulo transformations of Gﬁ' In the string lan-
guage this amounts to describe the physical content of Rw
in terms of G.-invariant strings. The result of the follow-

¢

ing Parts II, III is that there is a one-to-one correspondence

between the Gﬁ—invariant strings of the standard formulation

and the G-invariant strings which are linear in { and poly-

nomial in the Higgs field ¢. The above correspondence can

be obtained by first noting that in the standard picture the

physical content of R is described by projecting onto

irreducible Ga—repreSZntations contained in Rw. Concretely,
such projections are constructed by fixing a point ¢ in

the orbit {5} and by correspondingly decomposing Rw into
subspaces carrying an irreducible representation of the
stability group G¢ of 9. The corresponding projections
will be denoted by P;. The analogue of the gauge-covariant

fields (?(w(x)) of Part I is now given by covariant pro-

jections P (¢):
P( QCP(%)CP) = Rq} () Ple) R:(%) : (5.2)

In order to provide an acceptable kinematics, at least at
the classical level, such covariant projections should be
defined, continuous and non-vanishing almost everywhere.
For the purpose of quantization it is actually required
that they be polynomials in ¢ , so that composite fields

built out of them make sense after quantization.

THEOREM. Part II. To any Gﬁ—invariant irreducible pro-
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i .
jection P of R there corresponds a G-covariant
v = v

polvnomial projection of Rw, i.e. a projection-valued

polynomial, P(y), which has the property (5.2), coincides

with P$ when restricted to ¢ = ¢ and is irreducible

in the sense that on the orbit ¢ € {¢} it cannot be

written as the sum of two G-covariant projections.

The converse is obvious, i.e. any G-covariant pro-

jection, which is non-vanishing and irreducible for

¢ € {¢}, for each fixed ¢ € {5}' defines a projection

P onto an irreducible representation of Gw contained

Rw.

5
fo I 1

Remark. Since a critical orbit has in general a larger
residual group than those of the neighbour orbits, the
corresponding set of projections is smaller than that ob-
tained by using a neighbour orbit and therefore the kine-
matical descriptions based on a critical orbit involve

a smaller number of fields. This is because on critical
orbits some linear combinations of covariant polynomials
vanish. Whether a description based on critical orbits

is convenient is a problem strictly related to the dynamics

of (non-abelian) gauge theories.

THEOREM. Part III. By using the G-covariant projections

of Part II and the G-invariant fields of Part I one can

replace the original (gauge dependent) fields VY = (wl,mwn)

of R¢ by a set of fields,one for each representation of

the residual group G{;} contained in R¢' Each of the
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new fields is a linear function of the old ones with

coefficients which are polynomials in ¢ and either it

is invariant under local gauge transformations or it

transforms under a representation of G equivalent to

R . In the string language this means that one can

v

replace each Gw-invariant string of the standard picture

by a G-invariant string.

Trivial representations of G{&} are replaced by
fields invariant under local gauge transformations, whereas
(fields belonging to) each non-trivial representation of

G is replaced by (fields belonging to) a representation

oi¢}G equivalent to Rw. The explicit construction of these
fields is the following: for each ﬁixed ¥, i) the trivial
irreducible Gﬁ -representations contained in Rw give rise,
according to Part II, to G-covariant one-dimensional pro-
jections, which are actually projections onto G-covariant
vectors V(¢), (see also the proof of Part I), and

(V(¢), ¥) 1is the required invariant field; ii) each G-
covariant projection P(p)corresponding to a non-trivial,
irreducible representation of GW (contained in Rw),

when applied to the original fields VY = (wl,mwn) of

Rw, yields the field P@V¥ = Y(¢) which transforms under

R

It is worthwhile to note the following advantages of

the description. The identification of the "physical"

fields in the old picture is based on the choice of a
point ¥ in the orbit {¢}, i.e. on a local order para-

meter. On the contrary, the new fields depend only on
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the orbit, no local parameter being needed for their
identification. In particular, in the case in which

the residual group is the identity ("total breaking"

case) the new fields are gauge-invariant, and they are

in one-to-one correspondence with the physical one-particle
spectrum (associated with the representation R). This

new description also provides a solution of the problem
raised in Section 2: Although < ¢ > = 0 (more generally,
although only Green's functions invariant under global
gauge transformations can be non-vanishing, even after
gauge fixing, i.e. no "symmetry breaking", in the standard
language) , there are in general no G-multiplets. The ab-
sence of G-multiplets can be explained by the circumstance
that physical particles are coupled to the vacuum by fields
not related to each other by the action of global gauge
transformations.

In the case of a non-trivial residual group, Gw, the
fields neutral with respect to Gw of the standard
formalism can be replaced by gauge-invariant fields as in
the previous case. The problems of a gauge-invariant
description of the multiplets transforming non trivially
under G¢ in the standard picture is now (via Part III
of the above Theorem) reduced to the construction of
gauge-invariant fields out of the covariant fields
¥(¢). This problem has very little to do with the features

of the Higgs phenomenon but is the familiar problem of

giving a manifestly gauge-~invariant description of theories
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with "unbroken groups" like QED, QCD etc. This is usual-
ly done by using fields localized on "strings". Here, we
may construct such fields out of each covariant field

¥Y(¢) constructed in Part III of the above Theorem. In-
deed, let VY(¢) and Tkw} be two covariant fields trans-
forming under the same representation R of G. Then we

. v
form the field

V()@ P (oxp [ A8 2E") , Ylelly)

which is localized on the path ("string") ny connecting

two points x and y. Such fields are believed to be suit-
able for the construction of states carrying a superselected
charge by taking the limit y + «». When implemented rigorously,
this strategy would completely solve the problem mentioned

at the beginning, namely the possibility of obtaining all

the physical states associated to a g.q.f.t. in terms of
gauge-invariant fields which are local or localized on strings.

" The picture advocated in the above Theorem also sheds
light on the problem mentioned in Sect. 2, namely the re-
lation between the gauge-invariant formulation and the stan-
dard gauge-dependent approach. 1In fact, by fixing a point
Y = 5 on the orbit, the new fields introduced above reduce
exactly to the fields of the standard picture usually con-
structed in terms of a vacuum expactation value < g > = ¢.
Thus, the rdle of the local order parameter ¢ in the

standard picture appears merely as a way of fixing a system

of local coordinates, with the result that the physical
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degrees of freedom are described by multiplets of fields which,

since they depend on such a coordinate system in field space,

are gauge-dependent. That rdle of the parameter ¢ (of the
(9)

standard picture) is also in agreement with the result that

there is no phase transition between the confinement and the Higgs regime.

5.2. An example: SU(2) x U(1)
To illustrate the gauge-invariant formulation advocated above
we consider the following example

EXAMPLE: The SU(2) x U(1) model

The standard approach is based on the use of the following

gauge dependent fields:

(complex) Higgs field ¢ = (q)*) transforming as " = 1)
L 8
vector meson field \X/f* & " (4 J Y = O)
n BF- 1] 1] ( O) Y= O )
Y,
lepton fields U‘)L = (e:) " & (Jj_ J Ye-1 )
" qlgz C,E n n (O ) Y:—Z)

0
The theory is based on <@ = ¢ '(Eﬁ) , with a U(1) residual

group gnerated by the "electric charge" @ = T; + %Y.
Our formulation is based on the following fields

a) gauge=-invariant fields (corresponding to the electrically
neutral fields}

B

i) N ?& q: d‘cP F )\2, Fl“" , With N a normalization
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constant and 14) lz arbitrary constants which can be
chosen in such a way that the mass matrix is diagonal.

- 3 B
When ¢ = ¢ such fields reduce to )1Fiv + k; FFv

ii) LN ¢, Y = M(L? q/) which reduces to vV, (neutrino)
iii) N ({;*(_? S ¢, (Higgs neutral
field)
b) gauge-covariant fields in terms of which one may construct
the SU(2) x U(1) invariant bilocal fields or strings:
¥ which reduces to e
hlq& @ q’ : )
LPR:: eR " n Q.R J
y 2
- ? 1 ..
NL{JU (.P((r %CSFF‘V)) u ,';w-fi.f';v )
: " 1 . 2
SRS G R E R

5.3. A gauge-=invartant expression: the mass matrix

The gauge-invariant formulation and the absence of a symmetry

breaking local order parameter indicate that the occurrence of

different masses should be explained in terms of different gauge-

invariant fields (or strings). It may be worthwhile to verify
this fact explicitly. For concreteness we consider the fermion

mass matrix and in order to avoid unnecessary complications due

to strings we restrict to the case of trivial residual group

(total symmetry breaking). In the standard gauge dependent
approach,fermion masses arise through the Yukawa coupling with

the Higgs field, of the form
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_ L
Llju LPfi P«(s (P?. 2
with T denoting suitable gauge-invariant coupling matrices, by

substituting for ¢ a non-vanishing expectation value EE =L
14

MPRETEPRRS Ay S

Here the existence of a non-vanishing order parameter < ¢ >

seems to play a crucial rdle. Actually, it is not difficult to
write the Higgs-fermion Yukawa coupling in terms of the fields
of the gauge invariant formulation. In the case of trivial re-

sidual group, the G-invariant projections Pi(lp) are of the form
v L N X
P (qa) = O) (({’) d’ ((f’)
with G) (q;) a G- covarlant vector, and the gauge-invariant fields

1}_’ are given by 60 (Cr By using the completeness, with a
M g

suitable normallzatlon ' Z G’ = S«f-' p and the orthogonality
i «@ '

i
of the projections P, we easily obtain

P ?Z(PW)( ‘P)an

o< F o(@
v \ — - 2
- ‘% (P.YX Ll}f)(Pjs q/5> Pdfb ?‘:c‘ [:(5 CPe
N Yle) Wite) éf(q») (Pff(cr) l'l; g,

l{}

Now, the operator
M?= & (q) G@ () P“P ?,

is invariant under local gauge transformations and its vacuum




Lic

expectation (which may therefore be non-vanishing) defines a mass
matrix for the gauge-invariapF fields Wé(w). Clearly, when
Y = 5 the mass matrix <'h4&8(Q)‘> reduces exactly to the mass
matrix of the corresponding gauge dependent fields of the stand-
ard formulation.

For example, in the SU(2) x U(1) model with breaking

leaving a U(1) residual group the G-covariant projections may

be written in the form
. ¢ ‘ ¥
J?,,c(_z (@) = G (0 C (o),

with G“(Q) a vector which is G-covariant modulo U(1) trans-
formations (this feature is actually common to all models where
the residual group is U(1)). The Higgs-fermion Yukawa coupling
involves two different representations (a left doublet and a
right singlet) and clearly only the projectors corresponding to

the left doublet are non trivial
A 2 X 2 * -1
d)“ C(P)= NCPd 7 (Y“(LP):'NG«(;} CP@, y ME<CF (P>

The mass matrix then takes the following form

MUY= N <e¥s 0y = § <o*er?,

(M@ = Nf ey g, Lo =0
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A similar analysis can be done for the mass matrix of the vector

bosons.

The above discussion should make clear that the crucial

feature of the Higgs phenomenon is not the existence of a symmetry

breaking local order parameter, but rather the existence of a

minimizing orbit {¢} with a residual group smaller than G.

5.4. Complementarity principle and phase diagrams.
The theorems discussed in this section show that the descrip-

tion of the Higgs phenomenon in terms of gauge-—-invariant fields

11) 6) 7)10)

(symmetric picture), advocated as an alternative formu-

lation when the Higgs fields are in the fundamental representa-
tion, is actually possible in the general case and indeed required
by the occurrence of non-perturbative effects which prevent the
existence of a symmetry breaking local order parameter. On the

other hand, the so called Higgs picture even if useful from a

pragmatic point of view is not defendable on general grounds.

We point out that the existence and structure of a com-
plete set of gauge-invariant fields have been proved in this
section as a general group-theoretical resﬁlt'and our
construction does not require any conjecture about the dynamics.
In this sense, the results discussed above may be regarded as a
proof of the so called complementarity principle. They also put
the symmetric picture in a sharper perspective. The condition
of the Higgs field belonging to the fundamental representation
does not seem to play a crucial rdle; the group-theoretical proof

presented below shows that the important feature permitting to construct

local, gauge-invariant fields is rather the
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triviality of the residual group defined by the minimizing orbit.
(Except for the simple SU(2) case this property is not guaran-
teed bi the condition that the Higgs field is in the fundamental
representation, unless a somewhat artificial duplication is used.)
Actually also in the discussion of phase diagrams in gauge theo-
ries the relevant feature is the structure of the residual group.
In conclusion,in both the Higgs and the confinement regime,
a complete description is provided by the "gauge-invariant" fields
introduced above on the basis of group theoretical results,inde-
pendently of whether the dynamical behaviour of the theory does
or does not exhibit a phase transition between the Higgs and the
confinement region, depending on the structure of the residual
group. A phase transition is likely to occur when the Higgs
representation has more thaﬁ one orbit,and additional parameters

are needed to describe the phase diagram.



6. Proof of the Theorem

LEMMA. Let {¢} be an orbit of a representation R, of

a compact Lie group G, {9} = {¢ = RH(Q)Q, g € G}; then

any function F(¢) defined on the orbit {¢} and trans-

forming under a representation R of G (briefly R-co-

variant) :
F(R, (@) ¢) = R(g) Flq),

is the restriction to that orbit of an R-covariant poly-

nomial.

Proof. Let VR be the vector space of the functions on
the orbit {5}, which transform under R. Since G is a

Lie group, VR is a space of continuous functions on

{¢}. This follows from
| F (o) - Fle) | = 1C1- R Flen],

where is chosen in such a way that ¢ and

2 = 912%9
2 > w1. VR has at most

dimension equal to the dimension of the representation

442
such that 999 identity when ¢

R, since an R-covariant function is completely determined
by its value on a fixed point ¢ € {g}.

Since the orbit is a compact space, by the Stone-
Weierstrass theorem each element of VR can be uniformly
approximated by polynomials Pn(¢) restricted to {¢}.
Actually, the R-covariant polynomials are sufficient
for the approximation. In fact, if Pn(w) + F(p) on the

orbit {g}, the R-covariant polynomials

36
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R , }
P @2 (@) {45 R B (Ry(a)0) | W(G)=fdg,
: G

also converge to F(¢) on {¢} since

D (q) - Fla)| = [(wl(@)Y'l §aq (Reg) BCR, @) e) - F(e) |
G
<|(v )Y jqd% R7(g) [P (R,3)¢)- F (R ()¢)] <

£ e [E;(q)* F(¢)[~+ 0 .
Ge {@}Y
Since VR is finite dimensional and obviously contains
the vector space lﬁi of R-covariant polynomials restrict-
ed to {;}, (the elements of 1)a are actually the equi-
valence classes with respect to the property of being equal

on {5}),the two vector spaces must coincide.

Proof of THEOREM. Part I. = identity)

©e)

Any G-invariant local field, constructed in terms of
g € RH and linear in Y € R is of the form of a scalar
product (F(¢), y) with F(¢) transforming under R.
Therefore, by fixing a point ¢ of the orbit, the above
invariant yields a definite component of R. Conversely,
let us fix a (normalized) vector vi € R. For any point
9 E {5}; since G{a} is the identity, there is exactly

one element gp € G such that

R (3,)% ¢



38

Clearly if ¢' = RH(h)p, then g‘pl = h g¢. We then define

Fle)=R(g,)v, .

Thus

"

F('RH(ﬁﬂcP) = FZ(u%RHﬁL)Q )ME Etcav%q,)\Q in
= RE&IR(g,)v. = R(&) F(e),

i.e. F(y) transforms under the representation R. By the
above Lemma F(¢) 1is the restriction of a polynomial @(?)
to the orbit {¢} and ( @(w). y) 1is a G-invariant local

field which reduces to wi

1

(v., V) when ¢ = 0.

Proof of Part II. # identity)

G,
€@
Given a G-covariant irreducible projection P(y), for

each fixed 5, P(y¢) is a projection which is invariant under
the subgroup G@ C G which leaves 5 stable.
To see the irreducibility of P(¢) we note that if

P(G) can be written as a sum of two Ga—invariant project-

ions: P(yp) = P1 + P2, then if we prove (see below) that

any Gw—invariant projection can be obtained by putting

¢ = ¢ 1in a (suitable) G-covariant projection P(y), we

would have P(p) = P1(6) + Pz(é) with P (¢) and P, (¢)

2
G-covariant projections. G-covariance implies P(p) =

P1(¢) + Pz(w)' for any v € {¢}, contrary to the irre-
ducibility of P(y).

We now prove that to any G$—invariant projection
P one can associate a G-covariant projection P(y) such

that P = P(p). 1In fact, each point ¢ € {¢} defines an
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equivalence class [gwl of elements of G through the

equation )
[ZH ()% = iFE %e[%].
Then, if 9,7 9, € [gw] one has
- — = - -1 —
R,(9,9.)% =R, (4R, (3,)8=R, (4 )¢ = ¢,

§'9, ¢ G e [9,0- % Tg

(this means that [g¢] is a (right) coset of GE)'
Moreover, if ¢' = RH(h)v, the class [gwll consists

of the set of solutions g of the equation
R,@)F=-¢" =R g=R ()R (q)7F =

=Ry (kg)&, Vg 4],
so that

[%,{,:J “{‘%q, Cf; ”E[%,\p]‘ (6.1)

Thus, given a G¢~invariant projection P we now define

for any ¢ € {9} the projection

P(¢) = R(q) P R¥cy), g¢¢lg].

Note that P(9) is well defined, since if 8> 8 € [gw] , then
-1
€ G
g1 g2 = and

R(g,)P R¥q,) = R(a,) R(4]'9,)P R'(5'q, YR (q,) =
= R(g,) P R¥¢q,) .
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By eq. (6.1), for any h € G,

P(R, (&) ¢) = R(%g )P R (8q,)-R(R) Pre) R'R),

i.e. P(¢) transforms covariantly under G. By the above
Lemma P(y) 1is the restriction of a projection-valued

polynomial P) to the orbit {p}.

Proof of Part III.

The construction follows immediately from the proofs

of Parts I, II.
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7. Defects and perturbation expansion

The purpose of this Section is to discuss effectsof "defects"
on the validity of perturbation theory for
gauge-invariant correlation functions as an asymptotic expansion.
The drawback of the standard perturbation expansion for gauge
dependent functions is indicated. The results of the standard
approach are recovered in perturbation theory through the use of

the gauge-invariant fields introduced in Sect. 5.

7.1. Perturbation expansion for gauge-invariant correlation

funections

We recall that in order to develop a perturbation expansion
in terms of Feynman diagrams one has to introduce a gauge fixing
F. As usual we suppose that the Higgs potential defines a
(unique) orbit of absolute minima. Each point ¢ of such an
orbit gives rise to a field configuration which minimizes the
action and defines a perturbation theory as an expansion around

that configuration. Thus for each point one has the stand-

1 61

ard perturbation theory based on < ¢ > = ¢ (which is,order

by order, finite as a consequence of the renormalizability of the
chosen gauge). However, since in general the boundary conditions
do not single out a point ¢ of the orbit (except for special
gauge fixings) all the points ¢ € {¢} are on equal footing and
they must all be considered in the perturbative expansion of the
functional integral, in accordance with the fact that there is

no order parameter (see Sects. 3, 4). Such a "degeneracy" does
not play any rdle for the expectation value of a gauge-invariant

operator A, since in any order n of the perturbation expansion
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(m) m) "~
A = (A) - A _ (7.1)
< >F,¢ Calhoe s = $A% 4s

where g denotes a global gauge transformation.

This equation follows from the fact that the Feynman propagators
depend on 6 in a covariant way.

It is worthwhile to stress that the non-existence of an
order parameter (< ¢ > = 0, see Sects. 3, 4) does not affect the
form of the perturbation expansion for gauge-invariant correlation

functions which is exactly the same as the one built on a "symme-

try breaking parameter" < ¢ > = ¢. The asymptotic validity of

the formal expansion is discussed in the next two subsections.

7.2. Standard perturbation expansion for gauge dependent
correlation functions
According to the discussion given in 7.1, since by Sects.
3, 4 the boundary conditions do not destroy the invariance
under global gauge transformations, the perturbative expansion
of the functional integral for gauge dependent correlation func-
tions leads to a group average of the various perturbation ex-
pansions labelled by the various points 5 of the orbit. This
leads to the vanishing of all correlation functions without a
component invariant under global gauge transformations (Sects. 3, 4) . Clear-
ly, this conclusion differs from the one based on the standard

perturbation expansion. We recall that the latter is based on a

single fixed point ¢ of a minimizing orbit, with the implicit

(unjustified) assumption that there is "symmetry breaking",with

<p > = ;5 Actually, breaking only occurs when there
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is no coupling to the gauge fields, (g = 0).However, since for any g # O
< g > = 0, one has lim <¢ > = 0. In other words the limit
g+0 lgads to a mixed 9 0 phase of the scalar theory (without
gauge fields). One should therefore expand around the mixed,
symmetric phase, rather than around the pure ones. One is thus

led to a phase diagram of the following type
@! A
B, ¥

...%_.;_E__._.._._._ ST — —‘b'% F|g |

with a critical point on the g=0 axis but no line of critical points

emerging from Bé (Fig. 1) above which there is a non-zero <®>

In conclusion, the standard perturbation expansion cannot

be asymptotic to gauge-dependent correlation functions.

7.3. Relations between the perturbation expansion of gauge-
tnvariant correlation functions and the standard pertur-
bation expansion of gauge-dependent correlations.

As advocated in Sect. 5 the "gauge-invariant" fields intro-
duced there should provide a complete gauge-invariant description
of the theory. We show here that there is a simple relation be-

tween the correlation functions of the gauge-invariant fields

constructed in Sect. 5 and the corresponding gauge-dependent ones

calculated in the standard perturbation expansion. This relation
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is based on the results of Sect. 5 and the discussion in the
present section.

For simplicity, we consider the case of neutral fields wi
in the standard, gauge-dependent formulation. They correspond

to gauge-invariant fields of the form

NG ¢, N'= 18l

in the sense that

N O ()=, . (7.2)

We then consider the correlation function for the gauge-invariant
fields A‘: = N G’L.(C{;) ¢ By the above discussion
we expect that its perturbation expansion (with gauge fixing F)
based on one fixed point ¢ is asymptotic and does not depend
on F and on v.

Putting G)c(c?(x)):: (PL(EF) + A(Ptl(({’(x]) we have

(m) N . -1 : )
CAvo AT (IO T @ v, 57
i L L
ﬁft @ ) @ ) (7.3)
¢) ... 0(@) . .. AP.. AC...AC...> .
N K=0 QK LP > é N=-k é >F:‘F

Thus, by eq. (7.2) the first term is exactly the correlation
function of the standard gauge-dependent field ¢i calculated
in the gauge F in the perturbation expansion based on a fixed
point ¢. The other terms are dominated by terms of the form

[ <o 88" ¢ &C ¢ > |

s A

Q% )I. .. (& )l
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and therefore they are small if the Higgs radius is much bigger
than the mean (perturbative) fluctuations; the standard pertur-
bation expansion is recovered approximately for those "gauges"”
in which that is guaranteed (the quantum fluctuations along the
orbit strongly depend on the gauge fixing). Clearly, the renor-
malization procedure plays an important ;Gle in establishing the
validity of this property. The renormalizability of the pertur-
bation expansion (7.3) for the Green's functions of the "compos-
ite" fields Ai is expected to hold for asymptotically free

theories.

7.4. Field configurations with non-trivial topology (defects)

in Higgs models

In this Section we will discuss a classification of field
configurations with non-trivial topology in Higgs models, in
terms of homotopy groups. The point of such an analysis is that it
allows to discuss the existence of defects, without a detailed
knowledge of the dynamics of the solutions of classical (euclid-
ean) equationsf12) Reviews of topological methods suitable
for the classification of defects in ordered material media can
be found in Refs.[13][14].

The idea is that a description of the configurations on
which the functional measure is concentrated can be done by look-

ing at the space of local parameters where the field variables

take values with highest probability (determined by the function-
al measure). This means that a typical field configuration will
take values in that parameter space in (some region R which
covers) a large fraction of the space-time volume,and, due to
the presence of the kinetic term in the action integral, it will
be a continuous function there. This is true in one-dimensional

models and can be justified in higher dimensions at lcast when
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suitable smearing and ultraviolet cutoffsare introduced. When
restricted to R such field configurations are the exact analogue
of the local order parameter used in the classification of defects
in ordered media . The continuous deformability of one configu-
ration into another gives rise to a natural topology in this con-
figuration space,and topological defects are then characterized by
homotopy classes. Clearly such structures may arise only when
the region R has a non trivial topology.

We first classify defects in pure Yang-Mills models. Since

the action integral vanishes only for pure gauge configurations

A}Jx) = ‘3‘1(*) 3P 9 &), (7.4)

the probability distribution, induced by the functional measure
on AHLQX] is peaked on pure gauge configurations and on small
oscillations around them. The local parameter space can then be
taken as the space of functions g(x), taking values in G.

The topologically simplest regions R, on which a field
configuration Au may behave as a pure gauge or a small oscil-

lation around it, gives rise to the following defects.

1) Point defects
When R is topologically equivalent to R" - {0}, the non-
trivial homotopy classes of g(x) are given by m,;(G) and they

identify point defects. For G compact, simple and simply con-

nected m;3(G) =2, Z the group of integers. Field configqura-

tions having the topology of a point defect and w}th finite action

are called instantons.
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2) Line defects

They arise when R 1is topologically equivalent to
R* - {line}. The homotopy classes of the g's are now elements
of w,(G). For any Lie group m,(G) = 0, so that there are no

line defects in pure Yang-Mills Theories without matter fields

3) Defects of dimension two (vortices)

They are classified by ﬂl(E/K) , where G is the universal covering group

of G and K a discrete subgroup of G (typically its center). The exact

(13,14)
sequence

0 = wl(E) > wl(EIK) + 7 (K) > “o(E) =0

implies

nl(E]K) = ﬂO(K) = K

An example is given by the 't Hooft vortices in pure Yang-Mills

theory. (8,12)

4) Defects of dimension three (wall-defects)
They are classified by m,(G), which is zero for any connect-
ed group G; in general m, counts the number of connected com-

ponents of G.
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We now turn to the more general case when also Higgs fields
are present. The probability distribution for ¢(x) 1is peaked on
the orbit {¢}, (or the orbits), which minimizes the Higgs poten-
tial. The kinetic term (Duw)2 gives rise to a non-trivial re-
lation between the Higgs parameter space and the Au parameter
space, so that,in general,one must consider configurations for
AU other than those of pure gauge. In the following, for simpli-
city we will consider the case when G acts transitively on the
orbit {¢}. The parameter space can then be taken to be charac-
terized by {¢(x) = RH(g(x))a, g(x) continuous modulo H, H =
residual group of 5; Au(xj such that Duwtx) = 0}. Clearly the
condition Dﬂw =0 on A# is equivalent to the vanishing of
Guv in all group directions other than those of H. A particular
case of such configurations are those of the form

An=402.9060, ¢ = R(3)¢,
with g continuous, and clearly the corresponding defects are
those classified before.

When AF3¥ %daﬁ % the defects may be classified in terms
of the local order parameter ¢(x), taking values in G/H. (If

there 1is more than one orbit , v(x) takes values in (G/H;)V

(G/H2)U ... .)

1') Point defects

They are classified by m,(G/H). As a consequence of the
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exact sequence

Z=x,(6) » m(G/H) > m(H) =0,
one concludes that w;(G/H) is a subgroup of w;(G). Therefore
such defects arise from configurations with AU = g-laug, with

g continuous; they have already been classified.

2') Line defects

They are classified by m,(G/H). For all simply connected
Lie groups G the exact sequence

0= 5, (G) > n, (G/H) » =, (H) >, (G) =0
implies

7, (G/H) = m (H).

If G is not simply connected one may use its universal covering
group at

A well known example of such defects is given by the 't Hooft-

Polyakov monopole;(in R" it is a line defect!)

3') Defects of dimension two
They are classified by m,(G/H). If G is simply connected
and connected the exact sequence
0 =, (&) > w (G/H) » T, (H)>» 7, (G) =0
yields
T, (G/H)= T, (H).

4') Defects of dimension three
They are classified by w,(G/H). If there is more than one
orbit, say n, w,((G/H{)Y(G/H;)U...) contains at least n ele-

ments corresponding to the n different orbits.
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We remark that in the presence of Higgs fields the action of
point defects in four dimensions dependigg)a scale parameter and
attains its lower bound for "zero size" . Due to quantum
fluctuations the relevant field configurations will then have a

finite small size of the order of m;1, the typical mass parame-

ter occurring in the Higgs potential. This fact has been used in

Sect. 4.

We note that, in a g.q.f.t. with an intrinsic mass scale, like a Higgs
theory, field configurations dominating the Euclidean functional integral can be
expected to be decomposable into a classical field configuration plus a small,
essentially Gaussian fluctuation field, (in which one will try to expand pertur-
batively). The classical field configuration describes a typical configuration

of a gas of defects classified by homotopy groups, (up to additional, internal

structures), as explained above. Because we consider a g.q.f.t. with intrinsic
mass scale (e.g. depending on a fairly large mass parameter, m. ) , an indivi-
dual defect, Gk , labelled by an element of some kth homotopy group, T 2

in d space-time dimensions has an approximate geometrical locus which is some

(d-k-1)-dimensional, closed, compact surface, Sk . Its mean action, A , is
typically proportional to the area (= const. when k = d-1, = length when

k = d-2 , = surface area when k =d-3, ...), |Skf of Sk y 1.,
= (k) k
AGS) 2 a ‘myls, | (7.5)

(k)

where a depends on the internal structure of the defect, and my is a

typical mass scale. Its entropy is

S(6,) rasomglskl (7.6)
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where o is some (essentially geometrical) constant. Its "chemical potential",
u (= -fn (activity)) , which determines the density (= mg-e_u) of this gas

of defects 1is
u(s) ~ (/gha®-o]s, | (7.7

This type of defect is dilute i.e. they form a low density gas) and has small

size if

(lfgz)a(k)-c >0 . (7.8)

When g passes through a critical value,

RORWACIN

c

a transition, characterized by the condensation of this type of defects, to a

phase of extreme high density is expected to occur.

This can be shown in a class of lattice theories of defects, where one takes
into account interactions between different defects of variable dimension. Those
transitions appear to be most important for the understanding of quark confine-

8,12 . . "
ment( »12) , the existence, or absence, of massive, stable magnetic monopoles

in four-dimensional Higgs theories, the breaking of chiral invariance (related
. (16))

to a phase transition in Higgs theories with 6-vacua, at 8 and

possibly of gauge hierarchies.

The last three applications (effective actions for defect gases and their
phase diagrams) will be discussed in more detail elsewhere. Here we just want to

point out some theoretical problems of the approach described here :

- classical configurations contributing to the functional integrals contain an

infinite number of defects (the total action and entropy are infinite) of finite
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density. They have therefore no well-defined, prescribed behaviour at spatial
infinity. They have to be analyzed in space-time regions small with respect

to the inverse defect density.

- It is then clear that dominant classical configurations do typically not
correspond to local minima of the global action, but rather to approximate, local
minima of the action density integrated over bounded space-time regions. For this
reason, the fluctuation field has in general zero and negative frequency modes,

so that non-Gaussian corrections have to be taken into account. This makes quan-

titative, semiclassical calculations extremely tedious.

- The approach based on interpreting the classical field configuration as a
configuration of a gas of individual defects with definite chemical potentials
and short range (mH >> 0!) 1interactions is only reliable when (7.8) holds, i.e.

at very low densities. This makes a reliable, quantitative investigation of e.g.

the condensation of monopoles in this approach impossible. Nevertheless, it
appears promising to study the qualitative features of defect condensation transi-
tions and their physical effects in phenomenological (lattice) models of inter-

acting defect gases which are well defined for all values of g .

7.5. Validity of perturbation expansion and defects

The previous estimate (see Sect. 4) of the instanton density implies that

in space time regions of size d the probability of finding a

point defect inside is smaller than ( (0{/[_)4-' C (4 m, )4 &_4A/?1

(C and A>0 constants). Thus we have

i) regions of size d<L are essentially "defectfree". Since
L =~ 'm:: e.A/%z this applies to regions of size

comparable to inverse Higgs masses;

e . -4

ii) as a function of g, p v L vanishes at the origin (g=0)
together with all its derivatives, so that p=0, in each

order of the perturbation expansion.
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The above two properties and (7.5) - (7.8) suggest that the non-perturbative effects

originated by defects vanish at g = O together with all their

derivatives and are in any case small in regions of size d<L.

We expect therefore that a) the perturbation expansion is asymp-
totic; b) non-perturbative effects are important only for corre-
lation distances of order 2> L Hlﬁ? e" .

The features discussed above seem to have a general charac-
ter. 1In situations in which the action has more than one mini-

mum and the boundary conditions are not able to fix one of them

the standard perturbation expansion of the functional integral
around one fixed minimum neglects those field configurations
which cannot be regarded as small oscillations around that mini-
mum. This is not correct if the boundary conditions do not fix
the asymptotic behaviour of the field configurations with non-

zero functional measure. However, for models with exponentially

small defect density, if one considers any fixed space time re-
gion D, the functional measure defined on the field configura-
tions with support in D by "integrating over all the configu-
rations outside D", is essentially concentrated on the "small
oscillations™ around each of the minimé with corrections which
vanish asymptotically together with all its derivatives as g —+ 0.
Therefore one expects that a perturbation expansion taking into
account all the minima is asymptotic for correlation functions
inside any fixed region D. Even if the corrections due to non-
zero defect density are exponentially small, they may lead to
very interesting effects like the generation of small masses for
the gauge bosons of the residual group. They are expected to

play a rdéle in understanding the occurrence of gauge hierarchies.
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It is important to point out that the above features of the
functional integral are exactly realized in the well known double-

well oscillator model described by the Hamiltonian
q

O R R

The expansion around one of the minima of the potential is the

expansion in the parameter g. It is known that a) the pertur-

bation expansion for the energy levels is asymptotic and b)
energy levels come in pairs with separation exponentially small
in g (-u EOQTA/%? = l;-1) ,S0 that such non-perturbative ef-
fects are relevant only for correlation times of order 2 L.

We also note that the non-symmetric correlation functions vanish
(reflection symmetry is not broken) whereas the standard pertur-
bation expansion around one minimum gives a non zero value for
them, so that for non-symmetric correlation functions the ex-

pansion around one minimum cannot be asymptotic.



a)

b)

c)

d)

e)
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FOOTNOTES

It is believed that asymptotic freedom is the crucial

property that entails the existence of the continuum
limit. It has by now become a quite generally accepted
requirement and it is valid (perturbatively) in grand

unified theories where because of the occurrence of

very different scales a non-perturbative understanding

of the Higgs phenomenon becomes a crucial issue.

In particular, conventional perturbation theory in the
continuum limit can only be formulated by introducing
gauge-dependent Green's functions and fixing a gauge,
even if one wants to calculate a gauge-invariant Green's

function.

Most of the gauge fixings used in the literature have
these properties. The 't Hooft non-linear gauge and

the unitary gauge do not satisfy b).

The temporal gauge has been discussed in detail by
G.C. Rossi and M. Testa(s) by extensively exploiting
the validity of a Gauss' law. It is not clear to us
whether their argument gives < ¢ > = 0 when the

boundary conditions are specified.

As emphasized before this group acts non trivially only
on gauge dependent (unobservable) field variables and
its non trivial action is made possible just by the

introduction of a gauge fixing.



f)

g)

h)
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In particular one is facing the puzzle of understanding
the experimental success of the standard picture, like
in the Glashow-Weinberg-Salam model, for which the

breaking of the global gauge group is crucial.

Technically, G{a} is the abstract group isomorphic to

the stability group of any point of the orbit {5}.

All the proofs are postponed to Sect. 6.
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