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Abstract 

We discuss the ordinary quantum Hall effect and a higher-dimensional 
cousin. We consider the dimensional reduction of these effects to 1 +1 and 
3 + 1 space-time dimensions, respectively. After dimensional reduction, 
an axion field appears, which plays the rôle of a space-time dependent 
difference of chemical potentials of chiral modes. As applications, we 
sketch a theory of quantum pumps and a mechanism for the generation 
of primeval magnetic fields in the early universe. 
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1 Introduction 
In these notes, we clarify the rôle played by certain pseudo-scalar fields related to 
“axions” in some transport- or pumping processes in semiconductor devices and 
in the early universe. These processes are similar to ones observed in quantum 
Hall systems. We therefore start by recalling some key features of the theory 
of the quantum Hall effect. We then consider transport processes in very long, 
narrow rectangular Hall samples with constrictions, as shown in Figure 1. 

Figure 1: A constriction in a quantum Hall sample. 

For samples of this kind, filled with an incompressible Hall fluid, the compo-
nent, A2, of the electromagnetic vector potential, A, parallel to the short axis, 2, 
of the sample can be interpreted as a pseudo-scalar field analogous to the axion 
known from elemantary particle physics [1]. In the region where the sample has 
a constriction, tunnelling processes between the chiral edge modes on the upper 
and lower edge of the sample may occur. It is interesting to consider the effect of 
turning on a time-dependent voltage drop in the 2-direction. Not surprisingly, 
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we find that when such a voltage drop, V(t), with 

(1) 

is turned on, an electric charge δQ proportional to δφ is transported through 
the constriction from the left, L, to the right, R. This system thus realizes a 
simple “quantum pump". Due to the tunnelling processes between edge states of 
opposite chirality, the state of the pump exhibits a periodicity in δφ proportional 
to the inverse electric charge of the charge carriers in the sample. Thus, such a 
pump can be used, in principle, to explore properties of the quasi particles in 
incompressible quantum Hall fluids, such as their electric charges, [2]. 

Our model can also be used to describe quantum wires carrying a Luttinger 
liquid. The rôle of the constriction is then played by impurities mixing left and 
right movers. 

We then proceed to studying a five-dimensional analogue of the quantum 
Hall effect. If four-dimensional physics is described by dimensional reduction 
from a five-dimensional slab to two parallel boundary “3-branes”, the axion can 
be interpreted as the component of the five-dimensional electromagnetic vector 
potential transversal to the branes. Tunnelling of chiral fermions from one to the 
other brane, due e.g. to a mass term, generates a periodic axion potential. It is 
then argued that the dynamics of the axion may trigger the growth of large-scale 
primeval magnetic fields in the early universe. In other words, axion dynamics 
- which is coupled to the dynamics of the curvature tensor of space-time - can 
be viewed as a realization of a quantum-field theoretical “pump” driving the 
growth of large-scale primeval magnetic fields, [3][4][5]; see also [6]. Whether 
this mechanism plays a rôle in explaining the observed large-scale magnetic 
fields in the universe is, however, still uncertain; see [7]. 

2 Brief Recap of the Quantum Hall Effect 
We consider a uniform 2-dimensional electron gas of density n forming at the 
interface between a semiconductor and an insulator when a gate voltage is ap-
plied in the direction perpendicular to the interface. We imagine that a ho-
mogeneous magnetic field, BO, perpendicular to the interface is turned on. Let 
v \= (nhc)/(e|Bo|) denote the “filling factor”. From the experiments of von Kl-
itzing et al. [8] and Tsui et al. [9] we have learnt that, for certain values of v, the 
2-dimensional electron gas forms an incompressible fluid, in the sense that the 
longitudinal resistence, RL, of the system vanishes. We consider the response of 
such a system to turning on a small external electromagnetic field (E, B), where 
E_ denotes the in-plane component of the electric field, and Btot = BO + B is the 
component of the total magnetic field perpendicular to the plane of the fluid. 
By j(x) we denote the current density in the plane of the 2-dimensional electron 
gas, and by j°(x) = p{x) + en the deviation of the electric charge density from 
the uniform background charge density, en; (here x = (x, t), where x is a point 
in the sample and t is time). 
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By combining Hall’s law (for RL = 0), i.e., 

jk(x)=GHe
klEl{ x) , (2) 

where GH is the bulk Hall conductance, with the continuity equation for jo and 
j and Faraday’s induction law, one easily finds that 

f(x)=G„B(x) , (3) 

see [10]. Denoting by F = (F
uv

) the electromagnetic field tensor over the (2+1)-
dimensional space-time, Λ, of the sample and by J = (Jμv = εμvλ

jλ) the 2-form 
dual to the charge-current density (j°,j), eqs. (2) and (3) can be summarized 
in 

J = GHF , (4) 
the field equation of “Chern-Simons electrodynamics” [11]. Defining the dimen-
sionless Hall conductivity, σH, by 

(5) 

and using units such that e2/h = 1, the field equations of Chern-Simons elec-
trodynamics are 

J(x) = a
H

(x)F(x) (6) 

Taking the exterior derivative of eq. (6), we find that 

dJ — dσH Λ F , (7) 

because dF = d(dA) = 0. The gradient dan is transversal to the boundary, 
9A, of the sample’s space-time. Eq. (7) tries to tell us that electric charge is 
not conserved in an incompressible Hall fluid, because dJ, the dual of duju = 
dtj

o + divj, does not vanish. The origin of this false impression is that, so far, 
we have neglected the diamagnetic edge current, Jedge, in our equations. This 
current is localized on 9A and is dual to a vector field i = (ίμ) with support on 
dA and parallel to 9Λ. The edge current J

edge saves electric charge conservation: 

d(J + J
edge ) — 0 (8) 

Eqs. (8) and (7) then yield 

(9) 

where is the component of the electric field parallel to the boundary of 
the sample, and the “edge” conductivity, oH

edge, is equal to -σH, the “bulk” 
conductivity, as follows from (7). Eq. (9) describes the (l + l)-dimensional chiral 
anomaly [12]. Apparently, the edge current, i, is an anomalous (chiral) electric 
current localized on the boundary of the sample; (the chirality of i depends on 
the direction of BQ and the sign of the electric charge of the fundamental charge 
carriers). 
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Equations (9) and (6) can be derived from an action principle. If 
denotes the effective action, i.e., the generating functional of the current Green 
functions, of an incompressible Hall fluid confined to a three-dimensional space-
time region A, in the presence of an external electromagnetic field (E_, B) with 
vector potential A, then 

(10) 

where a = Α|||5Λ is the restriction of A to the boundary, 9A, of A, and 
means that only the leading contributions (in the sense of dimensional analysis) 
to the effective action are displayed on the R.S. The first (bulk) term on the 
R.S. of (10) is the Chern-Simons action, the second (edge) term turns out to 
be the anomalous chiral action [12] in two space-time dimensions. Its gauge 
variation fixes the value of by 

(11) 

Electromagnetic gauge invariance is a fundamental property of non-relativistic 
many-body theory. Thus, (A) must be gauge invariant, i.e., 

(12) 

for an arbitrary function χ οn A. Individually, the Chern-Simons action, 
ζψ fA A Λ dA, and the boundary action TsA(a) are not invariant under a gauge 
transformation, χ, not vanishing on the boundary dA; but the R.S. of (10) is 
gauge invariant precisely if an = —oH

edge. 
Since (A) is the generating functional of the current Green functions, we 

have that 
(13) 

These expressions, togheter with eq. (10) for S^eff(A), reproduce the basic equa-
tions (6) and (9). 

The boundary action TaA(a) is known to be the generating functional of 
the chiral Kac-Moody current operators of current algebra with gauge group 
U( 1). It is then a natural idea [13][14] that the boundary degrees of freedom 
of an incompressible Hall fluid are described by a chiral conformal field theory. 
Under the natural assumptions that 

(i) sectors of physical states of this theory are labelled by their electric charge 
and, possibly, finitely many further quantum numbers (e.g. spin) with 
finitely many possible values; and 

(ii) excitations of this theory with even/odd electric charge (in units where 
e = 1) obey Bose/Fermi statistics, 
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one shows that σ/H is necessarily a rational number, and one obtains a table of 
values of σH that compares well with those of the dimensionless Hall conductiv-
ity of experimentally established incompressible Hall fluids, [13] [14]. Moreover, 
one can systematically work out the spectrum of fractionally charged quasi-
particles propagating along the edge of the sample. The smallest fractional 
electric charge turns out to be given by q — er/dH, where r is a positive integer 
- and, for many fluids, r — 1 - and dH is the integer denominator of σH, (writing 
an — nH/dH, with nH and dH relatively prime integers); see [13][14]. 

3 Hall Samples with Constriction 
and Quantum Wires 

In this section we consider a very long, narrow rectangular Hall sample, as 
shown in Figure 1. The axis parallel to the long side of the sample is taken 
to be the 1-axis, the one parallel to the short side is the 2-axis, and we set 
x = (x1, x2) ΞΞ (x, y). We define a field φ by 

(14) 

where 1 = (x,y1) is a point on the lower edge of the sample, u = (x, y
u

) is a 
point on the upper edge, and 7lu is the straight line from 1 to u. We assume 
that the 1-component, 

E — E1 = ÔOA1 — D1AO , (15) 

of the in-plane electric field, E, is independent of y. It is convenient to choose 
a gauge such that A = (Ao, A1) is independent of y. Then the effective action 
in equation (10) becomes 

(16) 

where I is the interval on the x-axis which the Hall sample is confined to. The 
terms corresponding to the upper and the lower edge in the boundary action 
ΓQ\ on the R.S. of (10) cancel each other, because Αο,Α1 are independent of 
y, up to a manifestly gauge-invariant term proportional to f dt J dx(AT)2. The 
action Seff(φ, A) describes the coupling of an " axion field” p(x, t) to the electric 
field E(x, t) of (1 + l)-dimensional QED. For the current, I, through the sample 
and the charge density, P, in an external axion field configuration φ, we find 
the expressions 

(17) 

(18) 
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provided E = 0, so that there are no contributions from the boundary action. 
(Here I(x,t) = f j1(x,y,t)dy, P(x,t) = J j°(x,y,t)dy. We observe that (17) 
and (18) imply the continuity equation P + I' = 0.) 

The action Seff(φ, A) in eq. (16) yields an accurate description of charge 
transport in a long, narrow sample filled with an incompressible Hall fluid with 
Hall conductivity σH if the electric field in the 1-direction vanishes (so that the 
term proportional to f dt f dx(AT)2 does not contribute), as long as tunnelling 
processes between the upper and the lower edge can be neglected. However, for 
a sample with a constriction, as shown in Figure 1, such tunnelling processes do 
occur. In a description of the Hall fluid in terms of an action that displays the 
edge degrees of freedom explicitly, tunnelling processes between the two edges 
are described by terms of the form 

+ 

(19) 

where a labels the different species of charged quasi-particles described by 
left chiral fields, Ψ left,a, Ψleft,α, on the upper edge and by right chiral fields 
bright,α, Ψright,a, on the lower edge, and q

a
e is the electric charge of a quasi-

particle of species a. Setting 

(-) (-) (-) (-) 
Ψ L,o (x, t) = Ψ left,α (x, y

u
, t) , Ψ R,a (x, t) = Ψ right,a (x, y1, t) , (20) 

and recalling eq. (14), the term (19) can be written as 

(21) 

The function t(x) is a measure for the strength of the amplitude of tunnelling 
between the two edges; |t(x)| is “large” for x close to the constriction, and tends 
to 0 rapidly, as the distance of x to the constriction increases. 

Besides (21), the action for the edge degrees of freedom contains terms not 
mixing the left- and right-moving degrees of freedom. These terms do not de-
pend on φ. Integrating (or “tracing”) out all edge degrees of freedom, we obtain 
an effective “boundary action”, T(φ, A = (A

0
,A

1
)), which now depends on φ ! 

It is periodic in φ: if φο is the smallest real number such that 

q
a

φ0 — , na E Z , (22) 

for all species a, then 

Γ(φ(·,·) + φ0,A) = Γ(φ(·,·),Α) . (23) 

This follows immediately from the form of (21) of the tunnelling terms in the 
boundary action. 
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The remarks on the relation between fractional charges and the value of the 
Hall conductivity σH at the very end of Section 2 lead to the equation 

(24) 

where nH is the Hall numerator and r is an integer, (see [13]; actually r = 1, for 
the Laughlin- and the simple Jain fluids with σH = η/(2pn+1), p, n — 1,2,...). 

The total effective action is given by 

(25) 

The periodicity property (23) of T(φ, A) implies that, if the 1-component of 
the electric field vanishes E = 0, the macroscopic state of this system depends 
periodically on the external “axion field” φ, with period φο, and that eqs. (17) 
and (18) for the electric current I(x,t) and the charge density P(x,t) continue 
to hold in average when the system is driven through several cycles. Indeed, 
because of the invariance of Γ(φ, A) under a gauge transformation A' = Α + dx, 
one has 

(26) 

and one can write 
(27) 

where the function U(φ, x, t), which depends on the axion field configuration φ 
and the spacetime point (x, t), is given by 

(28) 

The function U is periodic in φ, with period φο, 

(29) 

and does not depend on time explicitely, 

U· + Δt), x,t+ Δt) = U(φ(.,.),x,t) . (30) 

Consider a pump which works with a period T, i.e., a pump driven by an axion 
field φ(·,·) which fulfills 

φ(·,·+ T) = φ(·,·) + ηφο (31) 

for some integer n. One then finds that the charge transport due to the second 
term on the R.H.S. of (25) vanishes, since 

(32) 
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We now recall the physical meaning of the axion field φ. By eq. (14) 

(33) 

where V(x,t) is the voltage drop at x between the lower and the upper edge 
of the sample; (we are using that E2 = d0A2 — d2 A0) = d0A2, because Ao is 
independent of y). Let φ(t) be an x-independent configuration of the “axion 
field”, with 

(34) 

Then eq. (17) tells us that the total amount, dQ, of electric charge transported 
from the left (L) to the right (R) of the sample is given by 

(35) 

(and P(x,t) = 0, by eq. (18)). Thus, a sample with a time-dependent voltage 
drop between the upper and lower edge can be viewed as a “quantum pump” 
transporting electric charge from the left to the right. The macroscopic state of 
this pump is periodic in δφ with period ψο. Thus, when the pump is operated 
over n — 1,2,... cycles, a total amount, δQ

n
, of electric charge 

(36) 

is transported from the left to the right; (here we have used eq. (24)). Since 1 

is the smallest fractional electric charge of a quasiparticle tunnelling through the 
constriction, a measurement of this charge can be obtained from independent 
measurement of the charge 6Q

n
 transported from the left to the right in n cycles 

and of σH· Whether a given voltage pulse δφ = V(t)dt corresponds to an 
integer number of cycles of the pump can be inferred from the fluctuations of 
the charge, SQ, transported from the left to the right during that pulse around 
its mean value —σΗδφ: if, on the left and right ends the sample is connected to 
free-electron leads then (independently of δφ) dQ must be an integer (multiple 
of e). If σHδφ is not an integer then dQ will exhibit fluctuations around its 
mean value —σΗδφ. But if δψ corresponds to exactly nr cycles, η = 1,2,..., 
then —σπδφ = nnH is an integer, and hence the fluctuations of δQ in this 
process will essentially vanish. 

Typical features of the effective action Γ(φ), with E = 0, can be determined 
by measuring the tunnelling current IT through the constriction: when E = 0 

(37) 

where λ(x) is the width of the sample at x. A tunnelling current IT can be gen-
erated e.g. by a modulation of the magnetic field perpendicular to the plane of 
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the sample. The expression for the tunnelling current in terms of Γ given above 
shows that, from measurements of IT and of the voltage drop V as functions of 
time, one can infer the period φ0 of Γ and, hence, the smallest fractional electric 
charge of the quasi-particles. Furthermore, one can argue that the fluctuations 
of IT are proportional to the fractional charge of the quasi-particles tunnelling 
through the constriction - an effect used in the experiments described in [2] to 
measure the fractional charges of quasi-particles. 

If the magnetic field is set to 0 our considerations can also be used to describe 
quantum wires. Then φε(x, t) has the interpretation of a (space-time dependent) 
difference of chemical potentials between left- and right-moving modes in the 
wire. Eq. (17) then says that if there isn’t any chirality-reversing scattering in 
the wire (i.e. Γ (φ, A = 0) = 0), and for E — 0, 

(38) 

where G now has the interpretation of a longitudinal conductance. If all quasi-
particles in the wire have integer electric charge then G is an integer multiple 
of e2/h; (see [15][16]). 

If there are tunnelling processes mixing left- and right-movers, due e.g. to 
impurities in the wire, then the term Γ(φ, A) on the R.S. of (25) does not vanish, 
even if E = 0. The general expression for the current I in the wire is given by 
the equation 

(39) 

with εφ = μL — uR and À1 = E. If scattering at the impurities converts left-
into right-movers, and conversely, the second term on the R.S. of eq. (39) does 
not vanish even if E = 0, and hence conductance is not quantized, anymore, 
in accordance with experiment. However, charge transport over long periods of 
time still exhibits “quantization”, provided E = 0, due to the periodicity of Γ 
in φ. 

A more detailed account of our results and an analysis of the Luttinger 
liquids in quantum wires in the presence of impurities will be given elsewhere. 

4 A 5-dimensional analogue of the Quantum Hall 
Effect, and Primeval Magnetic Fields in the 
Early Universe 

Imagine, for a moment, that our world corresponds to a stack of 3-branes in 
a 5-dimensional space-time. We suppose that all electrically charged modes 
propagating through the 5-dimensional bulk have a large mass (comparable, 
e.g., to the Planck mass) and have parity-violating dynamics. We may then 
ask whether there is an analogue of the quantum Hall effect in the (4 + 1)-
dimensional bulk. To be specific, we assume that there are two parallel, flat 3-
branes separated by a (4+l)-dimensional slab Λ of width Λ representing the bulk 
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of the system. Let A denote the 5-dimensional electromagnetic vector potential 
and A the restriction to the boundary, dA, of the slab of the components of A 
parallel to dA. Assuming that only the graviton and the photon are massless 
modes, and dropping the gravitational contribution, the effective action of such 
a system is given by 

+Γ,9Λ(Α) + irrelevant terms , (40) 

with ξ = (ζ°, ξ1,..., ξ4) = (t,x, ξ4), where £4 is the coordinate perpendicular 
to the boundary 3-branes, which are located at £4 = 0, Λ, respectively, and ε is 
a dimensionless constant. The first term on the R.S. of (40) is a Maxwell term, 
which is the dominant term, the second term is the 5-dimensional Chern-Simons 
action, the last term is the 4-dimensional anomalous chiral (boundary) action, 
which ensures that (A) is gauge-invariant. From the theory of the chiral 
anomaly we infer that 

(41) 

where the q
a

’s are the charges of the chiral fermions propagating along dA. The 
action TQ is the 4-dimensional version of the boundary action ΓdA in eq. (10). 
It is the generating functional of the Green functions of chiral currents ju

L
/R 

satisfying 
(42) 

where (E, B) is the electromagnetic field on the boundary 3-branes. Modes of 
opposite chirality are localized on the two opposite 3-branes, (at £4 = 0 and 
£4 = λ, respectively). 

Imagine that the fields Fuv, μ, v = 0,1,2,3 are independent of ξ4. We define 
the axion field, φ, by 

(43) 

After dimensional reduction to the boundary 3-branes, dA, the effective action 
in (40) becomes 

(44) 

(45) 

(46) 

If tunnelling between the two boundary 3-branes is suppressed completely the 
boundary action ΓdA (φ,Α) is independent of φ and can be combined with the 
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Maxwell term to renormalize its coefficient. But if tunnelling processes mixing 
fermions of opposite chirality are present then ΓdΑ(φ,Α) depends on φ and is 
# 0 even if F = 0. Tunnelling processes generate a small mass, proportional to 
Με_ λ/,ρ, of boundary fermions; (here M is a typical bulk mass scale, and Ip 
is the Planck length). By repeating the arguments explained in Section 3, one 
finds that ΓdA(φ, A) is periodic in φ with period φο proportional to q-1

*, where 
g* is the smallest electric charge of modes propagating along the 3-branes. 

We recall that Seff(φ,A) is the generating functional of the Green func-
tions of the pseudo-scalar density and the electric current density; in particular, 

= δSeff(φ, Α)/δΑμ. Plugging the expressions for = (Ju) and for 
obtained from (46) into Maxwell’s equations and the equations of motion for 
the axion field, we find the following equations of motion: 

Ρ[μι/;σ] — 0 ) 

(47) 

where β and β' are dimensionsless constants, and the term ktr(RR), where R 
is the Riemann tensor, comes from a term k f φtr(RR) in the effective action 
describing the coupling of the axion to space-time curvature (which has not been 
displayed in eq. (46)). If there exist magnetic monopoles the first equation in 
(47) must be replaced by F{uv;a} = jM

uvo, where jM is the magnetic current 
3-form. In conventional vector analysis notation, eqs. (47) take the form 

V · B = 0 

VAE = B 

(48) 

where, in the fourth equation of (48), the term σLΕ has been added to describe a 
dissipative current parallel to E, with σL the longitudinal conductivity; (Ohm’s 
law). 

It is clear from eq. (43) that the time derivative, εφ, of the axion field has 
the interpretation of a (space-time dependent) difference of chemical potentials 
of right-handed and left-handed charged modes propagating on the “upper” and 
the “lower” brane, respectively. 

Absorbing the leading A-dependent contribution to Γ(φ, A) into a renormal-
ization of the constant β, the leading term in Γ(φ, A) is independent of A and 
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has the form 
(49) 

where U is a (temperature-dependent) periodic function with period φo· Plug-
ging eq. (49) into (48), we find that a special solution of (48) is given by 
E_ = B_ = 0 and φ solving the the equation 

(50) 

As mentioned above, U actually depends on the the temperature of the universe: 
U = 0 at temperatures well above the electro-weak phase transition; while, 
at temperatures below the electro-weak scale, U is a non-constant, periodic 
function of φ with minima at φ = ηφο, n E Z. Thus, at the time t* of the electro-
weak phase transition, the configuration φ(t*,x) corresponds, approximatively, 
to a solution of 

Ώφ = -β'λ2tr(RR) , (51) 

and there is no reason why should be close to a minimum of the function 
U(φ), or why φ(t*,x) should be small. The source term -β' λ2tr(RR) on the 
R.S. of (51) does not vanish, provided there are gravitational waves propagating 
through the universe. For a Friedman universe, it is proportional to the ampli-
tude of gravitational waves: thus, such waves can, in principle, feed the growth 
of the axion field. 

At times t > t*, the equation of motion of the axion is given by 

(52) 

with U #constant. Assuming that gravitational waves eventually disperse away, 
the term proportional to tr(RR) will approach 0, for a Friedman universe. Let 
us suppose that, after inflation, φ(t,x) = λ(t) varies slowly over space. Then 
eq. (52) reduces to an ordinary differential equation 

φ = -β'λ2U'(φ(t)) , (53) 

to be solved for essentially random initial conditions, (φ(t*), φ(t*)) # (nφ0,0), 
n € Z. Eq. (53) is the equation of motion for a pendulum in a potential force 
field, —U' (φ(t)). Solutions of (53) are given by 

(54) 

where a: is a periodic function of t. 
Next, we linearize eqs (48) around the special solution E_ = B_ = 0, φ(t) as 

in (54). This is not a difficult task. One finds that for sufficiently small wave 
vectors, k, (|k| < 2βστ(μL ~ μR)/e, for a = 0), there are exponentially growing 
transverse modes, B(k,t), of the magnetic field with non-vanishing magnetic 
helicity. One expects that axion field configurations which are slowly varying 
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in space lead to qualitatively similar instabilities. When combined with the 
galactic dynamo mechanism they might provide an explanation of the large-
scale magnetic fields observed in the universe; (but see [7] for discussion of some 
of the difficulties with this and other scenarios). We hope to present a more 
detailed account of our results, in particular of the possible rôle of gravitational 
waves, elsewhere. 
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