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Abstract

We discuss the ordinary quantum Hall effect aed s highor<dimensicnal
cenzabn. ‘We conaider the dimensional reduction of thess effects 1o 141 and
3 4 1 space-tims dimensions, respeetively, Alter dimenalonal redustion,
an axion feeld sppears, which plays the edle of & space-time dependent
difference of chemical potentials of chiral modes. As applications, we
akafich o theory of quantian pumps and o mechanisim for the generation
of primeval magnetic felds in the sarly universe.



1 Introduction

In these notes, we clarify the rile plaved by certain pseudo-scalnr fiokds related to
“nxbons” in some transpori- or punplng processes in sembconductor devices amd
in the early universe, These processes are similar Lo ones observed in quantiam
Hall systemns. We therefore start by recalling some key festures of the theory
of the quanium Hall effect. We then consider transport processes in very long,
narrow rectangular Hall samples with constrictlons, as shown In Flgure 1.
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Figure 1: A constriction in a quantum Hall ssmphe.

For samples of this Rind, filled with an incompressible Hall fuld, the compo-
nent, Az, of the elect rommagnetic vector potentinl, A, parallel to the short axis, 2,
af the sample can be interpreted as o paewdo-scalar feld analogous to the axion
known from elemantary particle physics [1], In the region where the sample has
& constriction, funnelling processes between the chiral edge modes on the upper
and lower edge of the sampls may oceur. [t s interesting Lo consider the effect of
turning on & time-dependent voltage drop in the 2-direction. Not surprisingly,



we findd that when such a voltage drop, V(1) with

i
V(tdt = &p (1)
-
is turned on, an electric charge &G} proportional to &y B transported through
the constriction from the left, L, to the right, K. This system thas realizes a
simple ®guantum pump”. Due to the tunnelling processes between edge states of
opposite chirality, the state of the pump exhibits & periodicity in §y proportional
to the inverse electric charge of the charge earriers in the ssmple, Thus, such &
pump can be used, in principle, to explore properties of the quasi particles in
incompressible quantum Hall Mabds, such as their electric charges, [2].

Our moedel can also be wed to describe quantum wires carrying a Luttinger
liquid, The rile of the constriction i then played by impurities mixing left and
right movers.

We then proceed to studying a five-dimensional analogue of the quantum
Hall effect. I four-dimensional physics is described by dinwmsional reduction
from a five-dimensional slab to two parallel boundary “3-branes™, the axion can
be Interpreted as the component of the Ave-dimensional electromngnetic vector
potential transversal to the branes. Tunnelling of chiral fermbons from one to the
other brane, due e.g. to s mass term, generates & pericdic axion potential. 1t is
tlren nrgued that the dynamscs of the axson may trigger the growth of large-scale
primeval magnetic fields in the early universe. In other words, axion dynamics
- which is coupled to the dynamics of the curvature tensor of space-time - can
be viewed as a realization of & gquantum-field theosetical “pump” driving the
growth of large-scale primeval magnetic flelds, [3][4][5]; see also (6. Whether
this mechanism plays & rdbe in explaining the observed large-scale magnetic
felds in the universe is, however, still uncertain; see [T

2 Brief Recap of the Quantum Hall Effect

We consider & uniform 2-dimensional electron gas of density i forming at the
interfnoe between & semiconductor and an bsulator when a gate vollage is ap-
ﬂhdlnthdmmpn'pmrﬁmlnmlhln!ﬂ{m. We imagine that a ho-

tic field, perpendicular to the interface is tumed on. Let
e -ﬂﬂmlftcaﬂhwlh:"ﬁuwfunw" From the experiments of von Kl
itzing ot al. [8] and Tsul et al. [9] we have learnt that, for certaln values of &, the
2-dimensional eloctron gas forms an inoompressible fluid, in the sense that the
longgitudinal resistence, Ry, of the system vanishes. We consider the response af
such o system Lo turning on a small external electromagnetic Aeld (£, B), where
E denotes the in-plane component of the electric field, and By = By + 8 is the
component of the totsl magnetic field perpendicular to the plane of the fubd.
By j(z) we denote the current density in the plane of the 2-dimensional electron
gas, and by §°(z) = p{x) + en the devintion of the electric charge density from
the uniform background charge density, en; (heee 2 = (g, £}, where 3 18 & point
in the sample and ¢ ks time),



By combining Hall's law [for Ry = 0}, i,
*(z) = G Eilz) | (2)

where Iy I8 the bulk Hall conductance, with the continuity equation for jo and
J§ and Farsday’s induction law, one easily finds that

F(z) = CuBlz) | (3)

sev [10], Denoting by F w (Fl.) the electromagnetic field tensor over the (2+41)-
dimensional space-time, A, of the sample and by J & (J = £.05") the 2-form
dual to the dharge-eurrent density I[;‘“,i], eqE. (2] and (3) can be summariped
in

J‘-EHF ] |:"i

the field equation of “Chern-Simeons electrodynamics™ [11]. Defining the dimen-
sionless Hall condwetivity, oy, by

o = G (s) (5

and using units such that e?/h = 1, the Beld equations of Chern-Simons elec-
trodivmnmics apn

Jix) =on(x)Fiz) . (6}
Taking the exterior derivative of oq. (6], we find that
ﬂ = ‘h’ﬂ' A F 1 ﬁ:'

bocause dF = d{dAd) = 0. The gradient dsy 8 transversal to the boandary,
OA, of the sample’s space-time. Eq. (7) tries to tell us that electric charge is
not conserved in an incompressible Hall fluid, because dJ, the dual of 8,% =
ﬂu“'+dh'i.duunu: vanish. The origin of this false impression is that, so far,
we have neglected the diamaognetic edge current, Jygs, in our equations, This
current is bocalized on 84 and is dual to & vector field § = {i,) with support on
8A and paralle] to 8A. The edge current 4., saves slectrie dunrge conservation:

d(d + St} =0, (&)
Eqa. (8) and (7} then yield
8" maff "Bl | {9)

where EY is the component of the slectric field parallel to the boundary of
the sample, and the “edge” conductivity, 037", is equal to =y, the “bulk”
conductivity, as follows from (7). Eq. (9) describes the (1+1)-dimensional chiral
anomaly [12]. Apparently, the edge current, i, is an anomalous (chiral) electric
current localized on the boundnry of the sample; (the chirality of § depends on
the direction of By and the sign of the electric charge of the fundamental charge
CArTiers).



Equations (9) and (6) can be derived from an action principle. If $37(A)
denotes the effective action, e, the generating functbonal of the curpent Green
functions, of an incompressible Hall fluid confined to a three-dimensional space-
time region A, in the presence of an external electromagnetic feld (E, B) with
vector polontial A, then

ﬂ![ﬂ}m%ﬂdndﬂ+n;{n] . (10)

where a = Al| . is the restriction of A to the boundary, @A, of A, and “="
muﬁdmlyhhﬂh,mﬁhﬂm{hlhmﬂdlmuﬂnnﬂmﬂrﬂs}
to the effective action are displayed on the RS, The first (bulk) term an the
R.5. of (10} s the Chern-Simons action, the second (edge) term tums out (o
be the anomalous chiral action [12] in two space-time dimensions. Its gauge

variation fixes the value of o™ by
il Fasla +edy) = x o "ET . {11}
d': =il

Electromagnetic gauge invariance is a fundamental property of non-relativistic
many-body theory. Thus, 57%(A) must be gauge invariant, ie.,

S7(A) =S (A+dy) | (12)

for an asbitrary Munction y on A Individuslly, the Chern-Simons action,
28 [, AAdA, and the boundary action ['pala) are not invariant under a gauge
tramslormation, ¥, nol vanishing o the boundsry SA; but the ALS. of {10) is
gauge invarinnt precisely oy = —-ﬂ#’“

Since 537(A) is the generating functional of the currert Green functions, we
have that

gy o SA) ey Son(s)
j {1} - ii“-‘_l]' i i {II - 5';[:} - {]1}
These expressions, togheter with eq. (10) for S37(A), reproduce the basic equa-
tions (6) and (9).

The boundary action [aal(a) is known to be the generating functional of
the chiral Kac-Moody current operators of current algebra with gauge group
U(1). It is then a natural iden [13][14] that the boundary degrees of freedom
of an incompressible Hall fluid are described by a chiral conformal field theory.
Under the natural asumptions that

(t) sectors of physical states of this theory are labelled by thelr eleciric charge
and, possibly, finitely many further quantum numbers (eg. spin) with
finitely many possible values; and

(i) excitations of this theory with even/odd electric charge (in units where
e = 1) obey Bose/Fermi statistics,



one shows that oy is necessarily s refional number, and one obtains a table of
values of oy that compares well with those of the dimensionless Hall conductiv-
ity of experimentally established incompressible Hall Auids, [13]]14]. Moreover,
oneé can systematically work out the spectrum of fractionally charged quasi-
particles propagating along the edge of the sample. The smallest lractional
electric charge turns out to be given by g = erfdy, where r is a positive integer
- aind, for many Auids, r = 1 - and dyy i the integer denominator of oy, (writing
o = ngldpy, with ny and dy relatively prime integers); see [131]14].

3 Hall Samples with Constriction
and Quantum Wires

In this section we consider a very long, narrow rectangular Hall sample, ns
shown in Figure 1. The axs paralle] to the long side of the sample is taken
to be the 1-axis, the one parallel to the short side is the 2-axis, and we set
z = (r',2%) = (z,y). We define a field ¢ by

wlz,l) = J’; Az, g tMdy {14)

where 1 = [z,34) is & point on the lower edge of the sample, v = [z, ) B &
point on the upper edge, and 5, |5 the straight line from 1 to w. We assume
ihat the l-component,

E=E =thAd -dhda (15)

af the in-plane electrie beld, E, 8 independent of . It b convenlent to chooss
m gauge such that A = (As, A1) 5 independent of y. Then the effective action
in equatbon (10) becomes

S‘{w.J}mun}{#J{;d—:uE . (16)

where [ I8 the interval on the z-axis which the Hall ssmple s confined to. The
terms corresponding to the upper and the lower sdge in the boundary action
Tan on the B.5. of (10) cancel each other, becanse Ag, Ay are indopendont of
¥, up to & manifestly gouge-invariant term proportional to [ dt [dr{AT)?. The
sction 5% (s, A) describes the coupling of an “axion field™ 2z, t) 1o the slectric
field E{z, ) of (14 1)-dimensionsl QED. For the current, [, through the sample
mnd the charge density, P, in an external axion feld configurstion », we find
the expressions

Iz, 1) = % - el (17)
]
P{I.t:l i IES. ':'l:'- llq-] = EHI‘I’{I..I} . “E]‘

dAp(z, t)



provided E = 0, so that there are no contributions from the boundary action.
(Here Iz,t) = [j{=z,y t}dy, Piz,t) = J %=,y t}dy. We observe that {17}
and (18) imply the continaity equation £ + I = 0.)

The action 5[y, A) In eq. (16) yields an accurate description of charge
transport in & long, narrow sample filled with an incompressible Hall fuid with
Hall conductivity o il the electric field in the 1-direction vanishes (so that the
term proportional to [ dt [ dx{AT)? does not contribute), as long as tunnelling
processes between the wpper and the lower edge can be neglected, However, for
a sample with a constriction, as shown in Figure 1, such tunnelling processes do
pocur, Inoa description of the Hall fluld in terms of an action that displays the

edge degrees of freedom explicitly, tunnelling processes between the two edges
are deseribed by terms of the form

Jr [l{:l En ‘;H.-{Il B lﬁ"::ﬂhjl: Ai[l*llmﬁﬂﬂ{l.nr l-]] i‘l.'dl +
+hc. (left — right) (18]

where a labels the different species of charged quasi-particles described by
left chiral Belds, Shh.o, Yaeha, &8 the upper edge and by right chiral felds
Wiright o s Vight o, 0N the lower edge, and goe Is the electric charge of a quasi-
particle of species a. Seiting

(=} =] =) (=]
Vialmt)=d g (mt) o ¥pa(nt)=¢ . (=mt) , (20)
and recalling eq. (14), the term (19) can be written as

f [:;:}Zﬁh,t:. tletiaietliy, (r t) 4+ he (E— R)|dedt . (21}

The function ¢(z) is » measure for the strength of the amplitude of tunnelling
betwoen the two edges; [£(z)] is “large” for © close to the constriction, and tends
to 0 rapidly, as the distance of r o the constriction incresses.

Beskdes (21), the action for the edge degress of freedom contains termns not
mixing the left- and right-moving degrees of freedom, These terms do not de-
pend on . Integrating (or “tracing™) out all edge degroes of freedom, we obtain
an effective “boundary action®, 'y, A = (Ag, A;)), which now depends on ¢ !
It is periodic in 4: if o bs the smalkest real number such that

fa¥o=ng , MAa€Z , (22)
for all species e, them
l-.{'lp{‘l ': + o, "“ i [-.{'P{'l ':Il "‘:' l {nj

This follows immediately from the form of (21) of the tunnelling terms in the
boundary action.



The resmarks on the relation between fractbonal charges and the value of the
Hall conductivity oy at the very end of Section 2 lead 1o the equation

Tupp == (24)
where ny is the Hall numerator and r is an Integer, (see [13]; actually r = 1, for
the Laughlin- and the simple Jaip fuids with oy = n/(2pn+1), pon=1,2,.. .}

The total effective action is given by

s‘{w,m“nfﬂjfdst + e, A) . (25)

The periodicity property (23) of [y, A) implies that, if the l-component of
the olectric field vanishes E = 0, the macroscopic state of this system depends
periodically on the external "axion fedd”™ », with period g, and that egs. (17)
and [18) for the electrie current Iz 1) and the charge density Pz, ) continue
to hold in average when the system is driven through several cycles. Indeed,
bocauss of the invariance of I, A) under & gauge transformation A" = A-+dy,
afe luas

& Tle. A) + 8. Bl A) = 0 , (26)

&
§Ao(z, 1) §Ai(=,t)

and one can wiile
mr['F- ﬂj - ﬂgU[lp.:.t] i ‘.ﬂ}

where the function U{sp, z, £}, which depends on the axion Geld configuration »
and the spacetime point (=, 1), is given by

U=~ [ dy grinin0) (28)
The function L' is periedic in », with period &,
Ll )+ o, =, ) o Uip{-, )z, 8] (29)
and does not depend on time explicitely,
Ulpl-,- + AL), z, 04 Af) = Up(- ) 2,1} . 30)

Consider s pump which works with a period T, i.e., & pump driven by an axion
field 4(-, ) which fulfills

@l +T) =l )+ ngo (31}
for some integer n. One then finds that the charge transport duee to the second
term on the RLH.5. of (25) vanishes, since

i&T ‘ -
J{ A w0 = Ulel -+ That 4 T) = Ulpl Jizt) = 0 .
(32)



We now recall the physical meanlng of the axdon feld . By e, (14),
det)= [ Azwidy= [ Eamytdy=Vizg . (39

where Viz, t) s the voltage drop st x between the lower and the upper edge
of the sample; (we are using that E; = &4z — s = &dg, because A, is

independent of y). Let it} be an r-independent configuration of the “axion
field”, with

f - j::a.aum = Jr:ﬂ vitdt . (34)

Then eq. (17) tells us that the total amount, 88, of electric charge transporied
from the left (L) to the right (R) of the sample is given by

§Q = fﬁ Iz, t)dt = —oybp | (35)

{and Pz, t}) =0, by eq. [1B]). Thus, a sample with a time-dependent voltage
drop between the upper and lower edge can be viewed as & “quantum pump”
transporting electric charge from the ket to the right. The macroscople state of
this pump is periodic in & with period 9. Thus, when the pump is operated
over no= 1,2, ... cycles, & total amount, §Q,, of electric charge

0Qn = —oynge = _¥ (36)

is transported from the left to the right; (here we have used eq. (24)). Since 5"
is the smallest fractional electric charge of & quasiparticle tunnelling through the
constriction, s measuremsent of this charge can be obtained from independent
micasurement of the charge 8Q, transporied from the left to the rght In s eyeles
and of 0. Whether o given voltage pulse &g = [~ V(t)dt corresponds to an
intoger number of cycles of the pump can be inferred from the flucteations of
the charge, 40, transported from the keft to the right during that pulse around
its mean value —oyde: i, on the left and right ends the sample is connected to
free-electron leads then (independently of §p) §Q must be an integer (multiple
af e). If oyydp is not an integer then 5Q will exhibit Auctuations around its
menn value —oydp, But il & corresponds to exactly nr eyeles, n = 1,2,..
then =oydy = nny is an integer, and hence the fuctuations of 6Q in this
process will essentlally vanish. i

Typical features of the effective action ['(y), with E = 0, can be determined
by measuring the tunnelling current 1 through the constriction: when E =0

8w
)= [ dsra) = (a7)
where Alx) is the width of the snmple at z. A tunnelfing current [+ can be gen-
erated e.g. by a modulation of the magnetic field perpendicular to the plane of

9



the sumple. The expression for the tunnelling current In terms of T' given above
shows that, [fom measurements of [y and of the veltage drop V' as functbons of
Ltime, one can infer the pericd 2o of I and, benee, the smallest fractional electric
charge of the quasi-particles. Furthermore, one can argue that the Buctustions
of I+ wre proportional to the (ractional charge of the quasl-particles tunnelling
through the constriction - an effect wsed in the expertments described in (2] to
measure the ractional charges of quasi-partbcles.

If the magnetic field ks set to 0 our considerations can also be used to describe
quantum wires, Then ez, £} has the interpretation of & (space-time dependent)
difference of chemical potentials between leflt- and right-moving modes in the
wire. Eq. (17) then says that if there isn't any chirality-reversing scattering in
the wire [ie. [, A=0) =0), and for E =0,

I(2,8) = ~Go(2,8) = lpg - prllm,0) (38)

where &7 now has the interpretation of & longitudingl conductance, [ all quasi-
parthcles in the wire have integer eleciric charge then & b5 an integer multiple
of ¢ h; (see [15][16]).

If there are tunnelling processes mixing lefi- and right-movers, due eg. to
impurities in the wire, then the term ['{i2, A) on the RS, of (25) does not vanish,
even il E =0, The general expression for the current [ in the wire is given by
the eguation

(e, A)

dA [z, ) '

with e = pg, — pp and Ay = E. If scattering at the impurities converts left-
into right-movers, and conversely, the second term on the B.5. of eq. (39) does
not vanish even if E = 0, and hence conductance s not quantized, anymore,
in accordance with experiment, Hewever, charge transport over long periods of
time still exhibits “quantization”, provided E = 0, due to the periodicity of I
in 2

A more detalled account of our pesults and an analysis of the Luttinges
Bigubds in quantum wires in the presence of impurithes will be given elsewhere.

1,0) = Sips - a0 + (39)

4 A S-dimensional analogue of the Quantum Hall
Effect, and Primeval Magnetic Fields in the
Early Universe

Imiagine, for & moment, that our world cortesponds 1o a stack of d-branes in
o S-dimensional space-time. We suppose that all electrically charged modes
propagating through the S-dimensional bulk have & large mass (comparable,
e, to the Planck mass) and have parity-violating dynumics. 'We may then
nsk whether there b an analogue of the quantum Hall effect in the {4 + 1)
dimensional bulk. To be specific, we assume that there are two parallel, fiat 3-
branes separated by a (441)-dimensional slab A of width A representing the bulk

1



of the system. Let.-idm&ri—dhmmhmlﬁumqnﬂhmpmﬂh_l
and A the restriction to the boundary, 8A, of the slab of the components of A
parallel to 8A. Assuming that only the graviton and the photon are massless
mades, and dropping the gravitational contribution, the effective action of such
& system is given by

sod) = ﬁf;h-ﬁ*

iy
+~3—LJ.~.F.&P
+CgafA) + irrelovant terms (40

with £ = (£%,£,..., &%) = (t, z.£'), where £ Is the coordinate perpendicular
to the boundary 3-branes, which are located at £f = 0, A, respectively, and ¢ is
& dimenslonbess constant. The first torm on the B35, of (40) is & Maxwell term,
which is the dominant term, the second term is the Sdimensional Chern-Simons
sction, the last term is the 4-dimensional anomalous chiral (boundary) sction,
which ensures that S37(A) is gauge-invariant. From the theory of the chiral
anomaly we infer that

f’
d'r-ﬂ—';;q: . (41)
whiere the g, 's are the charges of the chiral fermions propagating along 84. The

action Cay is the 4-dimensional version of the boundary sction Tap, ineg. (10).
It is the generating functional of the Green functions of chiral currents j:rﬂ'

ar
Biiyn = 5 EB | (42)

where (E, B} s the eleciromagnetic field on the boundary 3-branes. Modes of
oppasite chirality are localized on the two opposite 3-branes, (at £* = 0 and
£4 = A, respectively),
Imagine that the felds .F",.... gy e 0, 1,2, 3 ase indepenident af £4, We define
the amion field, i, by
A
After dimensional reduction to the boundary 3-branes, 8A, the effective action
in [40) becomes
£ [
S, A) = 3 fMF_,F‘"'d“:-l- =3 fﬂ Bopitpd'z {44)

wLanF (45)

+lanlie, A) . (46)

If tunnelling between the two boundary 3-branes is suppressed completely the
boundary action Fpalw, A) is independent of » and can be combined with the

§]



Muocwell term to renormialize its coefficent. But if tunnelling processes mixing
fermions of opposite chirality are present then Fanle, A) depends on ¢ and is
# 0 even if F = 0, Tunnelling processes generate a small mass, proportional to
Me=4'* of boundary fermions; (here M is a typical bulk mass scale, and [
is the Planck length). By repeating the arguments explained in Section 3, one
finds that Faali, A) is periodic in @ with period 4 proportional to 7!, where
i« B8 the smallest electric charge of modes propagating aleng the 3-branes,

We recall that 5{, A) Is the generating functional of the Green func-
tions of the pseudo-scalar density and the electric current density; in particular,
§* = 85 (o, A)/EA,.. Plugging the expressions for j* = (J*) and for ($")
obtained from (46) into Maxwell's equations and the squations of motion for
thoe axbon field, we find the following equations of motéon:

Flpsw) = 0,
(g, A)
_d* E

s, A)
J'F + hl{RﬁJ "

where @ and @ are dimensionaless constants, and the term kel RR). where R
is the Riemann tensor, comes from a term k [ tr(RR) in the effoctive action
describing the coupling of the axion (o space-time curvature (which has not been

displayved in eq. (46)). I there exist mq:nﬂl-c d:olnl the first equation in
[-I'F}tuulthumphudhyﬁ_,,,]njn . where j the magnetic current

Fo = 2for(pF* ), + f—"— (47)

Dpmgd = ~ﬂ'.\’[ FE+ —2

dorm. In nmmﬂhnlmmmnlnll n-uf-mnn. « [47) take the form
Y-B = 0
TAE = 2 _
VE = 2or¥s B+t
YAB = -£+n£+zﬂa~r|w£+£w~5:+ﬂm"1"‘}
Bp = -FA |20rE B+ M hrmm] L s

where, in the fourth equation of (48], the term o L E hns been added to describe
dissipative current parallel to E, with op the kengitudinal conductivity; (OHum's
faw).

It s clear from eq. (43) that the time derivative, e, of the axion fild has
the interpretation of o (space-time dependent) difference of chemical potentials
of right-handed and left-handed charged modes propagating on the “upper™ and
the “lower™ brane, respectively.

Absorbing the leading A-dependent contribution to [, A) into a renarmal-
ization of the constant 3, the leading term in [y, A) &= independent of A and

12



hns the form
(e, A) = j Ulelz))d's | (49)

where U is n (temperature-dependent) periodic function with period we. Plug-
ging &3 (49) into (48), we find that & special solution of (48) is given by
E = B =0 and ¢ solving the the equation

Op = -F'A? EU'{p] +ktelRfy] . (50)

As mentioned above, U' actually depends on the the temperature of the universe:
[/ = 0 at temperatures well above the electro-weak phase transition; while,
sb temperatures below the electro-weak scale, U7 is a nop-constamt, periodic
function of & with minima at ¢ = nge, n & & Thus, at the tims £, of the electro-

weak phase transition, the configuration o(f,, ) corresponds, approximatively,

to n solution of -
Oy = ~F A0 t(RA) | {51)

and there B no reason why (f., z) should be close to a minimum of the functbon
(i), or why @#(t.,z) should be small. The source term —# A%te{RA) on the
R.S. of (51) does not vanish, provided there are gravitational waves propagating
through the universe, For n Friedman universe, it is proportional to the ampli-
tude of gravitational waves: thus, such waves can, in principle, feed the growth
of the axion field.

At times ¢ > t., the equation of motion of the axon bs given by

O = -85 [U'(y) + kel RA)] (52)

with [ #eonstanl. Assuming that gravitational waves oventually disperse away,
the term proportional to tr{RR) will approach 0, for a Friedman universe. Let
us suppose that, after inflation, {t, g) = (t) varies slowly over spage. Then
. (52} reduces to an ordinary differential equation

v =@ (pe)) (53)

to be solved for essentially random initial conditions, (p(t.), #{t.)) ¥ (e, 0),
n € &, Eq. (53) is the equation of motlon for & pendulum i a potential force
field, L {i2(1)). Solutions of (53} are given by
wlt) = w: +aoft) | (54)
where o is & periodic function of £

Next, we linearize ega (48) around the special solution £ = B =0, @{t) as
in (54). This i not a difficult task, One finds that for sufficiently small wave
voctors, &, (Ik| < 2Bor{us - pr)/e, for a = 0), there are expanentially growing
transverse modes, [{k, ¢}, of the magnetic field with non-vanishing magnetic
helicity. One expects that axon field configurations which are slowly varying
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in space bead to qualitstively similar instabilities. When combined with the
galactie dynamo mechanlsm they might provide an explanation of the large-
scale magnetic fields observed in the wniverse; (bat see [7] for discussion of some
of the dificulthes with this and other soenarfos). We hope to present & more
detailed account of our results, in particular of the possible réle of gravitational
waves, eleewhere,

Acknowledgments, We thank G. M. Graf for explaining to us the notion
of & “quantum pump”, [17], and . 1. Tkachey and Ph. Werner for very valuable
discussions on the material presented in Section 4.
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