MONOFPOLE FIELDS FROM VORTEX SHEETS RECONCILING
ABELIAN AND CENTER DOMINANCE

J. FROHLICH and P.A. MARCHETTI

Institut des Hautes Etudes Scientifiques
35, route de Chartres
91440 - Bures-sur-Yvette (France)

Juin 2002

[HES/P/02/40



MONOPOLE FIELDS FROM VORTEX SHEETS RECONCILING
ABELIAN AND CENTER DOMINANCE

J. Frohlich® and P.A. Marchetti®*

*Theoretical Physics, ETH- Honggerberg , CH-89093, Liirich, Switzerland
"Dipartimento di Fisica, Universita di Padova and INFN-Sezione di Padova, 1-35131 Padova, [taly

We describe a mew order parameter for the confinement-deconfinement transition in lattice SU[2) Yang-Mills
theory. L is expressed in terms of magnetic monopole field correlators represented as sums over sheets of center
vartices. Dur construction establishes a link between “abelian™ and “center dominance™. [t avoids an inconsistency
in the treatment of small scales present in carlier definitions of monopole fields by respecting [rac’s quantization

capdition for magnetie fluzes,

1. Abalinn and center dominanes

It is widely believed that confinement in SU[Z)
Yang-Mills theory is due to condensation of topo-
logical defects, but it is still debaied whether the

relevant defects are center vortices or magnetic
monopoles.

In the first scenario [1] confinement is usu-
ally discussed in terms of area decay for the
Wilson loop. In Iattice theory, the location of
vortex sheets giving rise to ares law have been
identified with surfaces of plaguettes, p, where
sign[Trls,] = =1 (thin vortices}, (2], Here U,
denotes the SU(2)-gauge field, and Uy, the Wil-
son plaguette, [more precisely, if p is described
by a lattice site £ and two direction u, e then
Uap = Un(2) & Up()Us [z + P)U [z + #)U N {2]).
However it was later proved [3] that close to
the continuum, at zero temperature, thin vortices
form a dilute gas and hence they are unable to in-
duce an area decay of the Wilson loop. Therefore,
to explain confinement, one needs to invoke e
ther “thick vortices™ [4), where sign[Tril/L] = =1
for loops L comprising more than four links, or,
presumably equivalently [5), P-vortices which are
defined as follows [6): one introduces a gauge
fixing [maximal center gauge) by maximizing
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E,,JT"F’J-“”:- In this gange one defines the
Ey-gauge field Z,(x) = sign[Trll,(2])]; the lo-
ention of P-vortices is identified with the set of
plaquettes where Zp, = Z,,.(2) = =1. We refer
to the above scenario, where the center degress of
freedom are believed to be the relevant ones for
confinement, as “center dominance”.

"t Hooft put on a concrete basis a proposal ex-
plaining confinement as a condensation of mag-
netic monopoles [7] @ he suggested [8] to con-
struct a scalar field X {0/} with values in su{2), as
a function of the gauge field UF and transforming
in the adjoint representation of the gauge group
SU(2). By requiring that X({/) be diagonal he
then fices n gauge (“abelian projection”). The
resulting theory exhibits & residual (1) gauge
invariance.

The argument of the disgonal component of
the SU(2) gauge field in this "abelian projection
gauge” plays the role of & compact U(1) “pho-
ton” field, A, with range {=2x, 2x), and the off-
diagonal components are

described by & complex field, ¢, charged with
respect Lo the residual [F(1) gauge group. The
points in space-time where the two eigenvalues
of the matrix X coincide identify the positions
of the monopoles in this gauge. Confinement is
believed 1o emerge as a consequence of monopole-
condensation in the form of & “dual Meissner of-
fect™,



We refer to this scenario for confinement (to-
gether with the assumption that off-diagonal de-
groes of freedom are irrelevant for a description
of low energy physics) ss “abelian dominance™,

2. U1} monopole order parameter

In [8], & monopale field operator i is proposed
which plays the role of an order parameter for the
copfinement-deconfinemnent

transition in the “abelian dominance” scenario,
i.e., with vanishing v.e.v. in the deconfinement
phase and vev. () # 0 in the confinement
phase,

A euclidean representation of the two-
point monopole correlation function Gir,z") =
{(infe)mt ()} in

constructed as follows: let Ef z = (27, 7) de-
note the (lattice) electric Coulomb field generated
on the 3-dimensional sublattice, Z3,, at constant
euclidean time £° € 2, by a unit charge located
at £ & 2%, Denoting by Age the
3-dimensional (lattice) laplacian in 2%, one

has:
Ef(y) =8a3'(p.2),6=1,23, By =0, (1)

for y € Z* with 3° = z° and EX(y) = 0 else
where, so that E,E,.E:[ﬂ = d(y). Let B].
dencte the * dual of EZ, supported on cubes in

ihe dunl Isitice, let j:" be & unit current sup-

ported on a path from = to 2 [T, 8,55 (y) =
S (y)—bp hl]. and let l-'::; denote its * dual, sup-
ported on cubes dual to the links in the support
of j=',

The Yang-Mills action is defined by
Sl = -ﬂETI'Ua, =-§ E Trifuiy), (2)
’

Vi
and we define a  modified  action
S e (U] X, B®, B*'), depending on a unit-norm
su2) gcalar X determining an abelian projection,
by multiplying U.(y) in the plaguette term in
{2) by

Xl T 0,47 (yaluit,+BE,, - B2 )s) @)

where A is the 4-d lattice laplacian.

The 2-point monopole correlation function cor-
responding to X proposed in [8] can be defined
s the Yang-Mills v.e.v. of the disorder field

Dt (BT, B ) = ¢~ nw W1X,8° B )50 (g

Since X transforms under the adjoint representa-
tion, the v.e.v. of D ia SU(2)-gauge invariant,

To make definition (4] plausible, we notice
that, in an abelian projection gauge, and after
integrating out the “charged field” ¢, the SU7(2)
theory appears as a UU{1)-gauge theory. In this
(1) theory, the disorder field (4) is constructed
[10] by translating the field strenghth of A, (y) by
w5, , Ay, 1) + B® — B, 2) in the
action. Wegner-'t Hooft duality [11] maps a pure
(1) gauge theory onto

a non-compact abelian Higgs (n.e.H.) model,
exchanging the role of monopoles and charges.
One can prove [13] that for a [7{1) version of the
disorder field (4], one has the duality:

q’ﬂull'{ﬂll B"]‘}UI:L'I =
ﬂ:‘['t':'“"-'lnﬂl quﬂ:rﬁf]iﬂ.ﬂlﬂ!!}- n [5)

where & is the charged field and A, the gauge
field of the dual Higgs medel. The rhs. of
(3} appears as the two-point correlation function
of the non-local gauge-invariant charged field of
the Higgs model constructed according to Dirac’s
ansatz [12]. If we expand the Lhs [rhs] of
{5) in terms of worldlines of monopoles [charges],
such worldlines have a source at ¢ and o sink at
z'. The B[E] current distributions emerging from
these points describe a cloud of soft “photons™.
Notice that choosing wip, = Wi, — Wi, With
w* dual to a path at constant time z° from =
to oo | where suitable b.e, are imposed so that
still 8,(s"), = &, — &) one recognizes the
sum 8L, + wi,, as the lattice magnetic field at
euclidean time £” of a monopole located at 7,
with W'F,,_, playing the role of its Dirac string.
It has been rigorously proved in [13] that as
|z=z'| =+ oo, the correlation function (5) tends to
0 in the deconfined phase of the U{1) gauge theary
[Coulomb phase of the dual Higgs model] and ap-
proaches a finite value in the confined phase [su-
perconducting Higgs phase]. Hence the monopaole



field operator reconstructed from the vew, of
the disorder field correlation (5) in U{1) theory
is o good opder parameter for the confinement-
deconfinement transition. On the basis of these
arguments it has been elaimed in [0] that the
monopale field operator reconstructed from v.e.v.
of the disarder fleld (4) is a good order parameter
in SU{2} Yang-Mills theary. Numerical evidence
in favour of this conjecture emerged in [14]; (see
also [10] [15]). Critical exponents associated with
this transition extracted from the behaviour of
the v.e.v. of (4} appear to be independent of the
choiee of X [16].

3. Inconsistency and cure

In spite of its great numerical success, the or-
der parameter based on (4] 8 inconsistent in
the treatment of amall scales, because it violates
Dirac’s quantization of Huxes required for seli-
consistency of a theory where dynamical charges
{in our case represented by c) and monopoles co-
exist, This inconsistency shows up in an un[r]:u-'l-
ical dependence on the “Dirac string” &F ex-
hibited by {D_..(B*, B")). In the abelian pro-
jection gauge-fixed theory, this feature appears
because the Ufl)-gauge theory obtained by inte-
grating out ¢ has a dual which is a compact Higgs
model, with dynamical charges and monopoles.
The 2Z-point correlation function of the charged
field constructed according to Dirac’s ansata then
depends on the choice of the Dirac surfaces swept
out by Dirac strings attached monopole world-
lines. Let us explain how this happens [17]. In the
compact dual Higgs model, the Dirac surfaces, 5,
are described by integer-valued surface currents,
ty., supported on the plaquettes dual ta 5. A
change of Dirac surfaces, § = 5, for a fixed con-
figuration of monopole worldlines, corresponds to
the shift

Bup =+ Ngp + 0.V = 8V, (4)

where V), is the integer current supported on the
dual of the cubes contained in the volume whose
boundary is the closed surface ' =5, In the par-
tition function, the interaction of the electric cur-
rents generated by the charged particles, whose
worldlines are described by an integer l-current

Jus with the Dirac surfaces of the monopoles s of
the form

ieg 3 July)0 A" (w, 2)npa(z) (7)

Wl

where ¢ is the electric charge of the matter field
and g the magnetic charge of the monopole field,
The change (6) induces & shift of (7) by

ieg 3 Fulw)Vily) (8]
W

which when exponentiated is unity, as required,
provided it is an integer multiple of 2= [Dirac
quantization condition for fluxes]. This happens
in the partition function if Dirac’s quantization
condition for charges holds, ie. ey = Irg, ¢ an
integer, because j, and V), are integer currents.
In the Dirac ansatz for the 2-point function of
the charged field, however, j, acquires additional
Coulomb-like terms, E,, which are real-valued,

hence

ey D Euly)Valy) ¢ 222 (9)
P

even if eg € 2¢Z, and the Dirsc strings of
monopoles become unphysically “visible®. Anob-
vious cure for this inconsistency would be to re-
place the Coulomb field E] by a "Mandelstam
string” j% [1B], squeezing the entire flux of £°
into a single line from = to oo at fixed time (and
adding suitable b.c.}).

However, this squeeaing of the Aux is so strong
that it produces IR divergences [(3°, , (EL —
E;']'mﬂ'lﬂﬂl- EZ = Ef)z) < oo but
By o ulin =30 M=y — )5 — 55 )2) = =e].

avoid these divergences, we need to replace
a fixed Mandelstam string by a sum over fluctu-
ating Mandelstam strings weighted by & measure
Dyl 5) such that, in the scaling limit,

! *Eh.- EQ(wkALlw) {10}

[The integer ¢ in the measure Du, is the one
appearing in the [Nrac quantization condition



eg = 2xg]. It has been shown in [17] that & mea-
sure with such properiies can be constructed as
follows: Consider a 3-dimensional XY model sup-
ported on a Iattice at constant time 27, with the
/(1) spin field, x, of period 2rg minimally cou-
pled, with charge ¢, to the compact gauge field A,
of the compact Higgs model. Denote by {)*" (A)
the corresponding expectation value, with a cou-
pling constant of the XY model chosen sufficiently
large that the symmetry ¥ = x4 consi is sponta-
pecusly broken. The correlation functions of the
field x can be expressed in terms of Z/g— valued

currents; in particular

((e'xlele-ixtmye" Ay~
I Dufj)el T MW (1)

where [ Jren involves a multiplicative renormal-
ization taking care of the selfenergies of Mandel-
stam strings. Dug(i7) is the measure with the
desired properties. This measare is supported on
currents ji associated with ¢ paths in a J-plane
at & fixed time starting at the site £ and reach-
ing infinity (“=c"). Comparing (11) and (10) we
see that the measure Dy (53 is peaked at E5 at
large scales, The 2-point correlation function for
the gauge-invariant charged field in the compact
abelian Higgs {c.H.) model is then given by

JPw (=) [ Pl _,:'],{,:I:-::;_-;,»“
o E,,..'[-'T“.*—.I‘:*n[m]d.Er}}t o (12)

replacing the rhas. of (5). This definition pe-
spects Dirac’s quantization condition for Auxes
and, as 8 consequence, it i independent of the
Dirac strings of the magnetic monopoles of the
compact Higgs model. [See [19] for preliminary
numerical evidence for the validity of an order pa-
rameter for the Coulomb-Higgs transition in this
model, based on the above correlation function.]

The 2-point monopele correlation function ob-
tained by duality from (12) is given by

[ Pvatin) [ DuiE DL -5 45 a3

and plays the role of the |.h.s. of (5). Here D(E)
is the 't Hooft loop in the dual of the compact
Higgs model corresponding to a surface £ whose
boundary is given by the support of 7" -7 +§°7 ,
with b.e. turning it into a closed curve. D(E)
is obtained by shifting the field strengih of A,
by 2mg« B, in the action, where gE,, is the Z-
valued surface current supported on E. Since j7 is
supparted on g paths, E is a g-sheet surface with
the g sheets having a commeon boundary given by
the single line support ufj':".

4. A new order parameter

To export these ideas io SU{2) Yang-Mills the-
ory, one first remnrks that, in an abelian projec-
tion gauge, there appesr & charged field, 2, of elec-
tric charge 1 and monopoles of two species: 1)
Zy-singular monopoles with magnetic charge [20]
9 = 2x, whose worldlines are defined indepen-
dently of the abelian projection. However they
are screened [21] and dilute close to the contin-
uum at T = 0 [3] and thus cannot induce confine-
ment; ii) regular monopoles with magnetic charge
g = 4=, whose worldlines are only defined within
the abelian projection gauge. It is the condensa-
tion of these monopoles that should be responsi-
ble for confinement, and for them Dirac's quan-
tization condition for charges is satisfied with
g=2

Therefore, we propose [22] to construct the
-point function for such reguiar monopoles,
Lifg "{r,z'}, as in equation (13) for ¢ = 2, with
the following reinterpretation of notations: (-) de-
notes the expectation value in SU(2) Yang-Mills
theory and D{E] is the SU(2)-"t Hoolt loop which
is defined by replacing the plaguette term in (2)
by

Tr (U ()35 81) (14)

GYM {2 2') is thus defined as a sum of 't Hooft
loops, and the surfaces X invalved have 2 con-
nected boundaries, cach st constant time, with
fixed points the location of creation and annihi-
lation, = and z', of the monopole, The defini-
tion of G¥™{z,2") is clearly intrinsic to SU/(2)
Yang-Mills theory, independent of the choice of
an abelian projection. In an abelian projection



gauge, however, the surfaces X are viewed as 2-
sheot surfaces of center vortices, with the two
sheets joining along the support n{j"', which
becomes the worldline of a regular monopole.
Henee, whereas the definition of the worldline of
a regular monopole necessitates the introduction
of an abelian projection, the positions of ereation
and annihilation of the monopele are independent
of it., There is no semiclassical analogue of such
monopoles in the SU{2) theory without abelian
gauge fixing.

From correlation functions of regular monopaole
fields obtained generalizing in obvious way the
above definition, one can reconstruct a monopols
field operator M. We claim that its v.ev. is
a good order parameter for the confinement-
deconfinement transition. An argument support-
ing this conjecture goes as follows: Since 2E,.
is integer-valued, one can substitute oy in (14)
with any suiZ}-valued field X' of unit norm, se-
lecting an abelian projection. Since the measure
Dusg(jE) is peaked near E¥, at large scales, one
may argue (using that B* = «E®) that, in the
scaling limit, GYM{z, ") behaves like the vev.
of the disorder operator (4) of [9] , which, numer-
ically, is & good order parameter. By respecting
the Dirac guantization condition for fluxes our
construction of GY™(z, ') avoids the inconsis-
tency in the treatment of small scales of previ-
ous monopole correlators and, although we expect
that this inconsistency is irrelevant for the large
distance behaviour controlling the phase iransi-
tion, the independence of X of GYM(z, 2') could
explain why, numerically, the critical exponents
of the transition have been found to be indepen-
dent of the choice of abelian projection [16].

Finally, our construction, being based on cen-
ter vortex sheets, points to a natural connection
with the scenario of center dominance. To make
this more concrete, we replace the SU(2)-field Uy
by n coset field U7, SU(2)/2a = SO{3)-valued,
and a B3 = {0, 1}-valued 2-form o, obeying
a constraint [3] which admits a gauge-dependent
solution:

UL L) . s [Tl ()] 2 (w) (15)

where Z..(y) is the Wilson plaquette of Z,(y) =
sign[TrllL(¥)]. The 't Hooft disorder field D(E]

is obiained in terms of [/, and e, by shifting
7 by «2E,, in the action (in the notation of
{14)). Plaqueties with a value —1 for the first,
gauge-invariant, term on the rha of (15) iden-
Lify the support of thin vortices; & value -1 for the
second term in the center projection gauge iden-
tifies the plaguettes in the support of P-vortices.
There is numerical evidence [23] that P-vortex
sheets are percolating in the space directions in
the confinement phase, and this suggests that,
in the center projection gauge, the introduction
of the vortex sheets £, infinite in space direc-
tions, involved in the construction of monopole
correlation functions should be a small perurba-
tion, and the Diy average of (D{X)) shoud not
vanish, whence (M) # 0. In the deconfinement
phase at positive temperature, however, P-vortex
shests appear, numerically, to be pon-percolating
in space directions [23], and one expects that the
introduction of E then leads to clustering, imply-
ing (M)=0, Condensation of regular monopoles
in the center projection gauge could then be in-
terpreted as due Lo percelation in space directions
of P-vortex sheets. The relation between world-
lines of regular monopoles and vortex sheets, in
our construction, is & natural extension to open
worldlines, with boundaries corresponding to cre-
ation and annihilation of monopoles, of that ap-
pearing in [24] for closed monopole worldlines.
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