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We describe a new order parameter for the confinement-deconfinement transition in lattice SU(2) Yang-Mills 
theory. It is expressed in terms of magnetic monopole field correlators represented as sums over sheets of center 
vortices. Our construction establishes a link between “abelian” and “center dominance”. It avoids an inconsistency 
in the treatment of small scales present in earlier definitions of monopole fields by respecting Dirac’s quantization 
condition for magnetic fluxes. 

1. Abelian and center dominance 

It is widely believed that confinement in SU(2) 
Yang-Mills theory is due to condensation of topo-
logical defects, but it is still debated whether the 

relevant defects are center vortices or magnetic 
monopoles. 

In the first scenario [1] confinement is usu-
ally discussed in terms of area decay for the 
Wilson loop. In lattice theory, the location of 
vortex sheets giving rise to area law have been 
identified with surfaces of plaquettes, p, where 
sign[TrUdp] = — 1 (thin vortices), [2]. Here ΙΙ

μ 
denotes the SU (2)-gauge field, and UaP the Wil-
son plaquette, [more precisely, if p is described 
by a lattice site x and two direction μ, u then 
UaP = υμν(χ) = υ

μ
(χ)υ

μ
(χ + v)U^(x + v)Ul(x)]. 

However it was later proved [3] that close to 
the continuum, at zero temperature, thin vortices 
form a dilute gas and hence they are unable to in-
duce an area decay of the Wilson loop. Therefore, 
to explain confinement, one needs to invoke ei-
ther “thick vortices” [4], where sign[TrUL,] = — 1 
for loops L comprising more than four links, or, 
presumably equivalently [5], P-vortices which are 
defined as follows [6]: one introduces a gauge 
fixing (maximal center gauge) by maximizing 
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 (TrUtl(x))2. In this gauge one defines the 
Z2-gauge field Ζμ(x) = sign]TrUμ(χ); the lo-
cation of P-vortices is identified with the set of 
plaquettes where ZQ

V
 — Ζμι>{χ) — — 1. We refer 

to the above scenario, where the center degrees of 
freedom are believed to be the relevant ones for 
confinement, as “center dominance”. 

’t Hooft put on a concrete basis a proposal ex-
plaining confinement as a condensation of mag-
netic monopoles [7] : he suggested [8] to con-
struct a scalar field X(U) with values in su(2), as 
a function of the gauge field U and transforming 
in the adjoint representation of the gauge group 
SU(2). By requiring that X(U) be diagonal he 
then fixes a gauge (“abelian projection”). The 
resulting theory exhibits a residual U( 1) gange 
invariance. 

The argument of the diagonal component of 
the SU(2) gauge field in this “abelian projection 
gauge” plays the role of a compact U( 1) “pho-
ton” field, Αμ, with range (—2π, 2π), and the off-
diagonal components are 

described by a complex field, c, charged with 
respect to the residual U( 1) gauge group. The 
points in space-time where the two eigenvalues 
of the matrix X coincide identify the positions 
of the monopoles in this gauge. Confinement is 
believed to emerge as a consequence of monopole-
condensation in the form of a “dual Meissner ef-
fect” . 
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We refer to this scenario for confinement (to-
gether with the assumption that off-diagonal de-
grees of freedom are irrelevant for a description 
of low energy physics) as “abelian dominance”. 

2. U(1) monopole order parameter 

In [9], a monopole field operator m is proposed 
which plays the role of an order parameter for the 
confinement-deconfinement 

transition in the “abelian dominance” scenario, 
i.e., with vanishing v.e.v. in the deconfinement 
phase and v.e.v. (m) # 0 in the confinement 
phase. 

A euclidean representation of the two-
point monopole correlation function G(x,x') = 
(m(x)m^(x')) is 

constructed as follows: let Ex,x = (x°,x) de-
note the (lattice) electric Coulomb field generated 
on the 3-dimensional sublattice, Z^

0
, at constant 

euclidean time x° G Z, by a unit charge located 
at x £ Z3. Denoting by Δ

x
ο the 

3-dimensional (lattice) laplacian in Z^0, one 
has: 

Ef(y)=diAî1(y,x)
<
i= 1,2,3 , Εξ (y) = 0, (1) 

for y £ Z4 with y0 = x°, and Ex(y) = 0 else-
where, so that ΣμΟμΕχ

μ(ν) = δ
χ

(y). Let Βχ

ρσ 
denote the * dual of Ex, supported on cubes in 
the dual lattice, let jxx be a unit current sup-
ported on a path from x to x' [Σμ δμΣμ

χ' (y) = 
δχ(υ)— &x' (y)], and let ojxx'

a
 denote its * dual, sup-

ported on cubes dual to the links in the support 
of jx/· 

The Yang-Mills action is defined by 

(2) 

and we define a modified action 
S

uXX
< (U\X, Bx, Bx ), depending on a unit-norm 

su(2) scalar X determining an abelian projection, 
by multiplying (y) in the plaquette term in 
(2) by 

e
iX(y)2n^

Z:p
9

P
A-\y,z)[^

p
+B^

p
-B^

p
](z) 

(3) 
where Δ is the 4-d lattice laplacian. 

The 2-point monopole correlation function cor-
responding to X proposed in [9] can be defined 
as the Yang-Mills v.e.v. of the disorder field 

(4) 

Since X transforms under the adjoint representa-
tion, the v.e.v. of D is SU(2)-gauge invariant. 

To make definition (4) plausible, we notice 
that, in an abelian projection gauge, and after 
integrating out the “charged field” c, the SU(2) 
theory appears as a Z7(l)-gauge theory. In this 
U( 1) theory, the disorder field (4) is constructed 
[10] by translating the field strenghth of Au(y) by 
π Σζ,ρ dPA~1 (y, z)ίωΧΧ' +BX - Βχ']

μ
„
ρ
(ζ) in the 

action. Wegner-’t Hooft duality [11] maps a pure 
U( 1) gauge theory onto 

a non-compact abelian Higgs (n.c.H.) model, 
exchanging the role of monopoles and charges. 
One can prove [13] that for a U( 1) version of the 
disorder field (4), one has the duality: 

(Ο
ω
^(Βχ,Βχ'))υ{1) = 

(
6
ί(θ(χ)-θ(χ'))

6
ίΣ

ν
,
μ

(
Ε
ΐ-

Ε
ΐ
 ){y)A

^
y)

)
n cH

' (5) 
where Θ is the charged field and Αμ the gauge 
field of the dual Higgs model. The r.h.s. of 
(5) appears as the two-point correlation function 
of the non-local gauge-invariant charged field of 
the Higgs model constructed according to Dirac’s 
ansatz [12]. If we expand the l.h.s. [r.h.s.] of 
(5) in terms of worldlines of monopoles [charges], 
such worldlines have a source at x and a sink at 
x'. The B[E] current distributions emerging from 
these points describe a cloud of soft “photons”. 
Notice that choosing ωχχ'ρ = ωχ

μ„ρ - ωχ

μι/ρ
, with 

ωχ dual to a path at constant time x° from x 
to oo ( where suitable b.c. are imposed so that 
still δμ(*ωχχ )μ = δ

χ
 — δ

χ
>) one recognizes the 

sum Bx

pup + ωχ
μι>ρ as the lattice magnetic field at 

euclidean time x° of a monopole located at x, 
with ωχ

μνρ playing the role of its Dirac string. 
It has been rigorously proved in [13] that as 
\x-x'\ —Y oo, the correlation function (5) tends to 
0 in the deconfined phase of the U(l) gauge theory 
[Coulomb phase of the dual Higgs model] and ap-
proaches a finite value in the confined phase [su-
perconducting Higgs phase]. Hence the monopole 
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field operator reconstructed from the v.e.v. of 
the disorder field correlation (5) in U(l) theory 
is a good order parameter for the confinement-
deconfinement transition. On the basis of these 
arguments it has been claimed in [9] that the 
monopole field operator reconstructed from v.e.v. 
of the disorder field (4) is a good order parameter 
in SU(2) Yang-Mills theory. Numerical evidence 
in favour of this conjecture emerged in [14]; (see 
also [10] [15]). Critical exponents associated with 
this transition extracted from the behaviour of 
the v.e.v. of (4) appear to be independent of the 
choice of X [16]. 

3. Inconsistency and cure 

In spite of its great numerical success, the or-
der parameter based on (4) is inconsistent in 
the treatment of small scales, because it violates 
Dirac’s quantization of fluxes required for self-
consistency of a theory where dynamical charges 
(in our case represented by c) and monopoles co-
exist. This inconsistency shows up in an unphys-
ical dependence on the “Dirac string” ωχχ ex-
hibited by (D

uXX
> (Bx, Bx')). In the abelian pro-

jection gauge-fixed theory, this feature appears 
because the U(l)-gauge theory obtained by inte-
grating out c has a dual which is a compact Higgs 
model, with dynamical charges and monopoles. 
The 2-point correlation function of the charged 
field constructed according to Dirac’s ansatz then 
depends on the choice of the Dirac surfaces swept 
out by Dirac strings attached monopole world-
lines. Let us explain how this happens [17]. In the 
compact dual Higgs model, the Dirac surfaces, S, 
are described by integer-valued surface currents, 
nμν, supported on the plaquettes dual to S. A 
change of Dirac surfaces, S —» S', for a fixed con-
figuration of monopole worldlines, corresponds to 
the shift 

ΤΙμρ ^ Τ^μρ + & pVp &pVp i (6) 

where νμ is the integer current supported on the 
dual of the cubes contained in the volume whose 
boundary is the closed surface S' — S. In the par-
tition function, the interaction of the electric cur-
rents generated by the charged particles, whose 
worldlines are described by an integer 1-current 

ΐμ, with the Dirac surfaces of the monopoles is of 
the form 

(7) 

where e is the electric charge of the matter field 
and g the magnetic charge of the monopole field. 
The change (6) induces a shift of (7) by 

(8) 

which when exponentiated is unity, as required, 
provided it is an integer multiple of 2πί [Dirac 
quantization condition for fluxes]. This happens 
in the partition function if Dirac’s quantization 
condition for charges holds, i.e. eg = 2nq,q an 
integer, because and νμ are integer currents. 
In the Dirac ansatz for the 2-point function of 
the charged field, however, acquires additional 
Coulomb-like terms, Εμ, which are real-valued, 
hence 

(9) 

even if eg G 2πΖ, and the Dirac strings of 
monopoles become unphysically “visible”. An ob-
vious cure for this inconsistency would be to re-
place the Coulomb field Ex by a “Mandelstam 
string” jx [18], squeezing the entire flux of Ex 

into a single line from x to oo at fixed time (and 
adding suitable b.c.). 

However, this squeezing of the flux is so strong 
that it produces IR divergences [(J2y ζ>μ

{Εμ — 
Ex'){y)A~1{y - z){Ex - Ex')(z) < oo but 
Ey,z

l
pUp-fp)(y)A~1(y-Z){jp -Γμ)(Ζ) = °°]· 

To avoid these divergences, we need to replace 
a fixed Mandelstam string by a sum over fluctu-
ating Mandelstam strings weighted by a measure 
Vuq(jx) such that, in the scaling limit, 

(10) 

[The integer g in the measure Dvq is the one 
appearing in the Dirac quantization condition 
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eg = 2πςτ], It has been shown in [17] that a mea-
sure with such properties can be constructed as 
follows: Consider a 3-dimensional XY model sup-
ported on a lattice at constant time x°, with the 
U( 1) spin field, χ, of period 2nq minimally cou-
pled, with charge e, to the compact gauge field Αμ 

of the compact Higgs model. Denote by (·)Χ°(Α) 
the corresponding expectation value, with a cou-
pling constant of the XY model chosen sufficiently 
large that the symmetry χ —y χ +const is sponta-
neously broken. The correlation functions of the 
field χ can be expressed in terms of Z /q— valued 
currents; in particular 

((e^e-^00))*0 (A))
ren

 -

fVv,(j£)eieZ,*r*(!,)AM 
(11) 

where (-)
ren

 involves a multiplicative renormal-
ization taking care of the selfenergies of Mandel-
stam strings. Vuq(jx) is the measure with the 
desired properties. This measure is supported on 
currents jx associated with q paths in a 3-plane 
at a fixed time starting at the site x and reach-
ing infinity (“oo”). Comparing (11) and (10) we 
see that the measure Vuq{jx) is peaked at Ex at 
large scales. The 2-point correlation function for 
the gauge-invariant charged field in the compact 
abelian Higgs (c.H.) model is then given by 

(12) 

replacing the r.h.s. of (5). This definition re-
spects Dirac’s quantization condition for fluxes 
and, as a consequence, it is independent of the 
Dirac strings of the magnetic monopoles of the 
compact Higgs model. [See [19] for preliminary 
numerical evidence for the validity of an order pa-
rameter for the Coulomb-Higgs transition in this 
model, based on the above correlation function.] 

The 2-point monopole correlation function ob-
tained by duality from (12) is given by 

/ÎNOP / VvSij')(D(E(j*-j*'+j“'))> (13) 

and plays the role of the l.h.s. of (5). Here D(E) 
is the ’t Hooft loop in the dual of the compact 
Higgs model corresponding to a surface Σ whose 
boundary is given by the support of jx —jx -f jxx , 
with b.c. turning it into a closed curve. D(Σ) 
is obtained by shifting the field strength of Αμ 
by 27xq * Σμι> in the action, where qT,^ is the Z-
valued surface current supported on Σ. Since jx is 
supported on q paths, Σ is a g-sheet surface with 
the q sheets having a common boundary given by 
the single line support of jxx . 

4. A new order parameter 

To export these ideas to SU(2) Yang-Mills the-
ory, one first remarks that, in an abelian projec-
tion gauge, there appear a charged field, c, of elec-
tric charge 1 and monopoles of two species: i) 
Z2-singular monopoles with magnetic charge [20] 
g = 2π, whose worldlines are defined indepen-
dently of the abelian projection. However they 
are screened [21] and dilute close to the contin-
uum at T = 0 [3] and thus cannot induce confine-
ment; ii) regular monopoles with magnetic charge 
g = 4π, whose worldlines are only defined within 
the abelian projection gauge. It is the condensa-
tion of these monopoles that should be responsi-
ble for confinement, and for them Dirac’s quan-
tization condition for charges is satisfied with 
q = 2. 

Therefore, we propose [22] to construct the 
2-point function for such regular monopoles, 
GYM (x, x'), as in equation (13) for q = 2, with 
the following reinterpretation of notations: (·) de-
notes the expectation value in SU (2) Yang-Mills 
theory and £>(Σ) is the SU(2)-’t Hooft loop which 
is defined by replacing the plaquette term in (2) 
by 

Tr(u^{y)eia32n*E^y (14) 

GYM{X,X') is thus defined as a sum of’t Hooft 
loops, and the surfaces Σ involved have 2 con-
nected boundaries, each at constant time, with 
fixed points the location of creation and annihi-
lation, x and x', of the monopole. The defini-
tion of GYM

(X,X') is clearly intrinsic to 577(2) 
Yang-Mills theory, independent of the choice of 
an abelian projection. In an abelian projection 
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gauge, however, the surfaces Σ are viewed as ‘2,-
sheet surfaces of center vortices, with the two 
sheets joining along the support of jxx , which 
becomes the worldline of a regular monopole. 
Hence, whereas the definition of the worldline of 
a regular monopole necessitates the introduction 
of an abelian projection, the positions of creation 
and annihilation of the monopole are independent 
of it. There is no semiclassical analogue of such 
monopoles in the SU(2) theory without abelian 
gauge fixing. 

From correlation functions of regular monopole 
fields obtained generalizing in obvious way the 
above definition, one can reconstruct a monopole 
field operator M. We claim that its v.e.v. is 
a good order parameter for the confinement-
deconfinement transition. An argument support-
ing this conjecture goes as follows: Since 2Σμν 
is integer-valued, one can substitute <73 in (14) 
with any su(2)-valued field X of unit norm, se-
lecting an abelian projection. Since the measure 
Vu2(jx) is peaked near Ex, at large scales, one 
may argue (using that Bx = *EX) that, in the 
scaling limit, GYM(x,x') behaves like the v.e.v. 
of the disorder operator (4) of [9] , which, numer-
ically, is a good order parameter. By respecting 
the Dirac quantization condition for fluxes our 
construction of GYM(x,x') avoids the inconsis-
tency in the treatment of small scales of previ-
ous monopole correlators and, although we expect 
that this inconsistency is irrelevant for the large 
distance behaviour controlling the phase transi-
tion, the independence of X of GYM(x, x') could 
explain why, numerically, the critical exponents 
of the transition have been found to be indepen-
dent of the choice of abelian projection [16]. 

Finally, our construction, being based on cen-
ter vortex sheets, points to a natural connection 
with the scenario of center dominance. To make 
this more concrete, we replace the 577(2)-field υμ 
by a coset field 0μ, SU{2)/7J

2
 ~ SO(3)-valued, 

and a Z2 — {0, l}-valued 2-form σμ„, obeying 
a constraint [3] which admits a gauge-dependent 
solution: 

ei*cr„M
 = sign[TrU^{y)]Z^(y) (15) 

where Ζμu(y) is the Wilson plaquette of Ζμ(υ) — 
sign[TrUμ[υ)\. The ’t Hooft disorder field Ζ)(Σ) 

is obtained in terms of 0μ and σμι/ by shifting 
σμι/ by *2Σμι/ in the action (in the notation of 
(14)). Plaquettes with a value —1 for the first, 
gauge-invariant, term on the r.h.s. of (15) iden-
tify the support of thin vortices; a value —1 for the 
second term in the center projection gauge iden-
tifies the plaquettes in the support of P-vortices. 
There is numerical evidence [23] that P-vortex 
sheets are percolating in the space directions in 
the confinement phase, and this suggests that, 
in the center projection gauge, the introduction 
of the vortex sheets Σ, infinite in space direc-
tions, involved in the construction of monopole 
correlation functions should be a small perurba-
tion, and the Vv2 average of (Ζ)(Σ)) shoud not 
vanish, whence (Μ) φ 0. In the deconfinement 
phase at positive temperature, however, P-vortex 
sheets appear, numerically, to be non-percolating 
in space directions [23], and one expects that the 
introduction of Σ then leads to clustering, imply-
ing (M)=0. Condensation of regular monopoles 
in the center projection gauge could then be in-
terpreted as due to percolation in space directions 
of P-vortex sheets. The relation between world-
lines of regular monopoles and vortex sheets, in 
our construction, is a natural extension to open 
worldlines, with boundaries corresponding to cre-
ation and annihilation of monopoles, of that ap-
pearing in [24] for closed monopole worldlines. 
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