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We describe a new order parameter for the confinement-deconfinement transition in lattice SU(2) Yang-Mills
theory. It is expressed in terms of magnetic monopole field correlators represented as sums over sheets of center
vortices. Our construction establishes a link between “abelian” and “center dominance”. It avoids an inconsistency
in the treatment of small scales present in earlier definitions of monopole fields by respecting Dirac’s quantization

condition for magnetic fluxes.

1. Abelian and center dominance

It is widely believed that confinement in SU(2)
Yang-Mills theory is due to condensation of topo-
logical defects, but it is still debated whether the

relevant defects are center vortices or magnetic
monopoles.

In the first scenario [1] confinement is usu-
ally discussed in terms of area decay for the
Wilson loop. In lattice theory, the location of
vortex sheets giving rise to area law have been
identified with surfaces of plaquettes, p, where
sign[TrUsp] = —1 (thin vortices), [2]. Here U,
denotes the SU(2)-gauge field, and U, the Wil-
son plaquette, [more precisely, if p is described
by a lattice site z and two direction pu,v then
Usp = Uy (2) = Up(2)Us (z +9)U' (z +5)U} (2)).
However it was later proved [3] that close to
the continuum, at zero temperature, thin vortices
form a dilute gas and hence they are unable to in-
duce an area decay of the Wilson loop. Therefore,
to explain confinement, one needs to invoke ei-
ther “thick vortices” [4], where sign[TrUL] = —1
for loops L comprising more than four links, or,
presumably equivalently [5], P-vortices which are
defined as follows [6]: one introduces a gauge
fixing (maximal center gauge) by maximizing
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2 e (TrU, ())2. In this gauge one defines the
Z,-gauge field Z,(z) = sign[TrU,(z)]; the lo-
cation of P-vortices is identified with the set of
plaquettes where Zs, = Z,,(z) = —1. We refer
to the above scenario, where the center degrees of
freedom are believed to be the relevant ones for
confinement, as “center dominance”.

't Hooft put on a concrete basis a proposal ex-
plaining confinement as a condensation of mag-
netic monopoles [7] : he suggested [8] to con-
struct a scalar field X (U) with values in su(2), as
a function of the gauge field U and transforming
in the adjoint representation of the gauge group
SU(2). By requiring that X(U) be diagonal he
then fixes a gauge (“abelian projection”). The
resulting theory exhibits a residual U(1) gauge
invariance.

The argument of the diagonal component of
the SU(2) gauge field in this “abelian projection
gauge” plays the role of a compact U(1) “pho-
ton” field, A,, with range (—27,27), and the off-
diagonal components are

described by a complex field, ¢, charged with
respect to the residual U(1) gauge group. The
points in space-time where the two eigenvalues
of the matrix X coincide identify the positions
of the monopoles in this gauge. Confinement is
believed to emerge as a consequence of monopole—
condensation in the form of a “dual Meissner ef-
fect”.



We refer to this scenario for confinement (to-
gether with the assumption that off-diagonal de-
grees of freedom are irrelevant for a description
of low energy physics) as “abelian dominance”.

2. U(1) monopole order parameter

In [9], a monopole field operator 7 is proposed
which plays the role of an order parameter for the
confinement—deconfinement

transition in the “abelian dominance” scenario,
i.e., with vanishing v.e.v. in the deconfinement
phase and v.e.v. (m) # 0 in the confinement
phase.

A euclidean representation of the two-
point monopole correlation function G(z,z’) =
(m(a)m' (2')) is

constructed as follows: let E%, z = (2°,&) de-
note the (lattice) electric Coulomb field generated
on the 3- dlmensmnal sublattice, Z3 -0, at constant
euclidean time z° € Z, by a unit charge located
at & € Z3. Denoting by Ao the

3—-dimensional (lattice) laplacian in Z3
has:

g0y ONE

Ef(y) = 0:iAT (v, 2),i=1,2,3, EZ(y) =0, (1)

for y € Z* with y° = 2°, and EZ(y) = 0 else-
where, so that 3, 0,E5(y) = d-(y). Let Bl ps
denote the * dual of Ef, supported on cubes in

the dual lattice, let j:“ be a unit current sup-
ported on a path from z to ' [}°, 3,_.3#
b2(y)—62: (v)], and let wZ, denote 1ts*dua.l sup-

vpo
port,ed on cubes dual to the links in the support
of jm:

The Yang-Mills action is defined by

S\U) = *ﬁZTT’Uep =-p Z T"U,uv (2

NS

and we  define a  modified action
Sye=t (U X, B”,B”), depending on a unit-norm
su(2) scalar X determining an abelian projection,
by multiplying U,,(y) in the plaquette term in
(2) by

SX@2R YD, 0,07 (v, 2)wEE, +BS

uvp uvp_B::f.a](z) (3)

where A is the 4-d lattice laplacian.

The 2-point monopole correlation function cor-
responding to X proposed in [9] can be defined
as the Yang-Mills v.e.v. of the disorder field

Dt (B®, B*) = e~15 =21 (U1X,B%,B=")-S(U)] (4)

Since X transforms under the adjoint representa-
tion, the v.e.v. of D is SU(2)-gauge invariant.

To make definition (4) plausible, we notice
that, in an abelian projection gauge, and after
integrating out the “charged field” ¢, the SU(2)
theory appears as a U(1)-gauge theory. In this
U(1) theory, the disorder field (4) is constructed
[10] by translating the field strenghth of A, (y) by
75, OpAH 1, )W + BT — B']uuy(2) in the
action. Wegner-"t Hooft duality [11] maps a pure
U(1) gauge theory onto

a non-compact abelian Higgs (n.c.H.) model,
exchanging the role of monopoles and charges.
One can prove [13] that for a /(1) version of the
disorder field (4), one has the duality:

(Dyest (B, B* ))u1) =
(ei(s(x)—ef:c'))e‘ Zy.p(E;_E: )(yJAn(y)>n_c_H_ (5)

where 0 is the charged field and A, the gauge
field of the dual Higgs model. The r.h.s. of
(5) appears as the two-point correlation function
of the non-local gauge-invariant charged field of
the Higgs model constructed according to Dirac’s
ansatz [12]. If we expand the Lh.s. [rhs] of
(5) in terms of worldlines of monopoles [charges],
such worldlines have a source at x and a sink at
z'. The B[E] current distributions emerging from
these points describe a cloud of soft photons

Notice that choosing ""’w:o = Wiy, — wm,p, with
w? dual to a path at constant time z° from =z
to oo ( where suitable b.c. are imposed so that
still 9, (*w®®'), = &, — d,v) one recognizes the
sum B.uvp + w;wp as the lattice magnetic field at
euclidean time z° of a monopole located at Z,
with wi, , playing the role of its Dirac string.
It has been rigorously proved in [13] that as
|#—2'| = oo, the correlation function (5) tends to
0 in the deconfined phase of the U(1) gauge theory
[Coulomb phase of the dual Higgs model] and ap-
proaches a finite value in the confined phase [su-

perconducting Higgs phase]. Hence the monopole



field operator reconstructed from the v.e.v. of
the disorder field correlation (5) in U(1) theory
is a good order parameter for the confinement-
deconfinement transition. On the basis of these
arguments it has been claimed in [9] that the
monopole field operator reconstructed from v.e.v.
of the disorder field (4) is a good order parameter
in SU(2) Yang-Mills theory. Numerical evidence
in favour of this conjecture emerged in [14]; (see
also [10] [15]). Critical exponents associated with
this transition extracted from the behaviour of
the v.e.v. of (4) appear to be independent of the
choice of X [16].

3. Inconsistency and cure

In spite of its great numerical success, the or-
der parameter based on (4) is inconsistent in
the treatment of small scales, because it violates
Dirac’s quantization of fluxes required for self-
consistency of a theory where dynamical charges
(in our case represented by ¢) and monopoles co-
exist. This inconsistency shows up in an unphys-
ical dependence on the “Dirac string” W™ ex-
hibited by (D,.. (B, B*')). In the abelian pro-
jection gauge-fixed theory, this feature appears
because the U(1)-gauge theory obtained by inte-
grating out ¢ has a dual which is a compact Higgs
model, with dynamical charges and monopoles.
The 2-point correlation function of the charged
field constructed according to Dirac’s ansatz then
depends on the choice of the Dirac surfaces swept
out by Dirac strings attached monopole world-
lines. Let us explain how this happens [17]. In the
compact dual Higgs model, the Dirac surfaces, S,
are described by integer-valued surface currents,
nuu, supported on the plaquettes dual to S. A
change of Dirac surfaces, S — S, for a fixed con-
figuration of monopole worldlines, corresponds to
the shift

Nup = Nup + OuVp — 0, Vi, (6)

where V), is the integer current supported on the
dual of the cubes contained in the volume whose
boundary is the closed surface S’ —S. In the par-
tition function, the interaction of the electric cur-
rents generated by the charged particles, whose
worldlines are described by an integer 1-current

Jju, with the Dirac surfaces of the monopoles is of
the form

ieg Z Ju(¥)8p A~ (y, 2)npu(2) (7)

iz, P

where e is the electric charge of the matter field
and g the magnetic charge of the monopole field.

The change (6) induces a shift of (7) by

ieg 3 3u()Va(v) ®)
Y4

which when exponentiated is unity, as required,
provided it is an integer multiple of 277 [Dirac
quantization condition for fluxes]. This happens
in the partition function if Dirac’s quantization
condition for charges holds, i.e. eg = 2mg,q an
integer, because j, and V|, are integer currents.
In the Dirac ansatz for the 2-point function of
the charged field, however, j, acquires additional
Coulomb-like terms, E,, which are real-valued,
hence

e9 ) Eu(v)Vu(v) ¢ 27Z (9)

even if eg € 2wZ, and the Dirac strings of
monopoles become unphysically “visible”. An ob-
vious cure for this inconsistency would be to re-
place the Coulomb field Ej by a “Mandelstam
string” jii [18], squeezing the entire flux of E¥
into a single line from z to oo at fixed time (and
adding suitable b.c.).

However, this squeezing of the flux is so strong
that it produces IR divergences [(3_, . ,(E} —
E;) A~y - 2)(E; - E)(z) < oo but
Yy ulin = 35 WA (v = 2) (i — 3§ )(2) = o).

o avoid these divergences, we need to replace
a fixed Mandelstam string by a sum over fluctu-
ating Mandelstam strings weighted by a measure
Duy(jj;) such that, in the scaling limit,

/D”q(ff;) Eiezy.nj:(y)Aﬂ(y) -
€ 2y, R ()AL () (10)

[The integer ¢ in the measure Dy, is the one
appearing in the Dirac quantization condition



eg = 2mq). It has been shown in [17] that a mea-
sure with such properties can be constructed as
follows: Consider a 3-dimensional XY model sup-
ported on a lattice at constant time z°, with the
U(1) spin field, x, of period 27q minimally cou-
pled, with charge e, to the compact gauge field 4,
of the compact Higgs model. Denote by (-)*" (A)
the corresponding expectation value, with a cou-
pling constant of the XY model chosen sufficiently
large that the symmetry y — x+ const is sponta-
neously broken. The correlation functions of the
field x can be expressed in terms of Z/q— valued
currents; in particular

((eix(x)e—ix(oo)}zo(A)) ~

ren

fqu(j:)eie Zw j:(y)“"#(y) (11)
where (-)ren involves a multiplicative renormal-
ization taking care of the selfenergies of Mandel-
stam strings. Dy,(j;) is the measure with the
desired properties. This measure is supported on
currents j; associated with ¢ paths in a 3-plane
at a fixed time starting at the site  and reach-
ing infinity (“c0”). Comparing (11) and (10) we
see that the measure Dy,(j7)) is peaked at Ef at
large scales. The 2-point correlation function for
the gauge-invariant charged field in the compact
abelian Higgs (c.H.) model is then given by

¢ Dy Ui i @AWy )

replacing the r.h.s. of (5). This definition re-
spects Dirac’s quantization condition for fluxes
and, as a consequence, it is independent of the
Dirac strings of the magnetic monopoles of the
compact Higgs model. [See [19] for preliminary
numerical evidence for the validity of an order pa-
rameter for the Coulomb-Higgs transition in this
model, based on the above correlation function.]

The 2-point monopole correlation function ob-
tained by duality from (12) is given by

[Puatii) [ Doy WD -5 +5 )03

and plays the role of the Lh.s. of (5). Here D(X)
is the 't Hooft loop in the dual of the compact
Higgs model corresponding to a surface ¥ whose
boundary is given by the support of j&— ;% + ;7%
with b.c. turning it into a closed curve. D(X)
is obtained by shifting the field strength of A,
by 2mq * £, in the action, where ¢X,, is the Z-
valued surface current supported on X. Since jj is
supported on ¢ paths, ¥ is a ¢-sheet surface with
the ¢ sheets having a common boundary given by
the single line support of jﬁ”’.

4. A new order parameter

To export these ideas to SU(2) Yang-Mills the-
ory, one first remarks that, in an abelian projec-
tion gauge, there appear a charged field, ¢, of elec-
tric charge 1 and monopoles of two species: i)
Z,-singular monopoles with magnetic charge [20]
g = 2m, whose worldlines are defined indepen-
dently of the abelian projection. However they
are screened [21] and dilute close to the contin-
uum at 7' = 0 [3] and thus cannot induce confine-
ment; ii) regular monopoles with magnetic charge
g = 4w, whose worldlines are only defined within
the abelian projection gauge. It is the condensa-
tion of these monopoles that should be responsi-
ble for confinement, and for them Dirac’s quan-
tization condition for charges is satisfied with
q=2.

Therefore, we propose [22] to construct the
2-point function for such regular monopoles,
GYM(g,2'), as in equation (13) for ¢ = 2, with
the following reinterpretation of notations: (-) de-
notes the expectation value in SU(2) Yang-Mills
theory and D(X) is the SU(2)-'t Hooft loop which
is defined by replacing the plaquette term in (2)
by

Tr (U ()22 5 ) (14)

GYM (z,2') is thus defined as a sum of ’t Hooft
loops, and the surfaces ¥ involved have 2 con-
nected boundaries, each at constant time, with
fixed points the location of creation and annihi-
lation,  and 2/, of the monopole. The defini-
tion of GYM(z,2’) is clearly intrinsic to SU(2)
Yang-Mills theory, independent of the choice of
an abelian projection. In an abelian projection



gauge, however, the surfaces ¥ are viewed as 2-
sheet surfaces of center vortices, with the two
sheets joining along the support of j°*', which
becomes the worldline of a regular monopole.
Hence, whereas the definition of the worldline of
a regular monopole necessitates the introduction
of an abelian projection, the positions of creation
and annihilation of the monopole are independent
of it. There is no semiclassical analogue of such
monopoles in the SU(2) theory without abelian
gauge fixing.

From correlation functions of regular monopole
fields obtained generalizing in obvious way the
above definition, one can reconstruct a monopole
field operator M. We claim that its v.e.v. is
a good order parameter for the confinement-
deconfinement transition. An argument support-
ing this conjecture goes as follows: Since 2X,,
is integer-valued, one can substitute o3 in (14)
with any su(2)-valued field X of unit norm, se-
lecting an abelian projection. Since the measure
Dv;(jj;) is peaked near E¥, at large scales, one
may argue (using that B* = xE7) that, in the
scaling limit, GYM(z,2’) behaves like the v.e.v.
of the disorder operator (4) of [9] , which, numer-
ically, is a good order parameter. By respecting
the Dirac quantization condition for fluxes our
construction of GYM(z,z’) avoids the inconsis-
tency in the treatment of small scales of previ-
ous monopole correlators and, although we expect
that this inconsistency is irrelevant for the large
distance behaviour controlling the phase transi-
tion, the independence of X of GYM(z,z') could
explain why, numerically, the critical exponents
of the transition have been found to be indepen-
dent of the choice of abelian projection [16].

Finally, our construction, being based on cen-
ter vortex sheets, points to a natural connection
with the scenario of center dominance. To make
this more concrete, we replace the SU(2)-field U,
by a coset field Uy, SU(2)/Z2 ~ SO(3)-valued,
and a Z, ~ {0,1}-valued 2-form o,, obeying
a constraint [3] which admits a gauge-dependent
solution:

e ur V) = sign[TrUu, (¥)) Zu (v) (15)

where Z,, (y) is the Wilson plaquette of Z,(y) =
sign[TrU,(y)]. The ’t Hooft disorder field D(X)

is obtained in terms of U, and o,, by shifting
ouy by *2X,, in the action (in the notation of
(14)). Plaquettes with a value —1 for the first,
gauge-invariant, term on the r.h.s. of (15) iden-
tify the support of thin vortices; a value —1 for the
second term in the center projection gauge iden-
tifies the plaquettes in the support of P-vortices.
There is numerical evidence [23] that P-vortex
sheets are percolating in the space directions in
the confinement phase, and this suggests that,
in the center projection gauge, the introduction
of the vortex sheets ¥, infinite in space direc-
tions, involved in the construction of monopole
correlation functions should be a small perurba-
tion, and the Dv, average of (D(X)) shoud not
vanish, whence (M) # 0. In the deconfinement
phase at positive temperature, however, P-vortex
sheets appear, numerically, to be non-percolating
in space directions [23], and one expects that the
introduction of ¥ then leads to clustering, imply-
ing (M )=0. Condensation of regular monopoles
in the center projection gauge could then be in-
terpreted as due to percolation in space directions
of P-vortex sheets. The relation between world-
lines of regular monopoles and vortex sheets, in
our construction, is a natural extension to open
worldlines, with boundaries corresponding to cre-
ation and annihilation of monopoles, of that ap-
pearing in [24] for closed monopole worldlines.
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