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Abstract

We study an atom with finitely many energy levels in contact with
a heat bath consisting of photons (black body radiation) at a temper-
ature T > 0. The dynamics of this system is described by a Liouville
operator, or thermal Hamiltonian, which is the sum of an atomic Li-
ouville operator, of a Liouville operator describing the dynamics of a
free, massless Bose feld, and a local operator describing the interac-
tions between the atom and the heat bath, We show that an arbitrary
initial state which is normal with respect to the equilibrium state of
the uncoupled system at temperature T converges to an equilibrium
state of the coupled system at the same temperature, as time tends to
+oo [refurmn fo equilibrium).
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I Introduction and Summary of Main Results

In this paper, we study open quantum systems consisting of a small, compact
subsystem with finitely many degrees of freedom coupled to an infinitely ex-
tended reservoir or heat bath which, asymptotically, is in thermal equ.librium
corresponding to a temperature T > 0. By “asymptotic thermal equil brium”
we mean that, roughly speaking, the states of interest of the system are indis-
tinguishable from thermal equilibrium states at a fixed, positive temperature
T > 0 in a neighbourhood of spatial infinity.

Our main concern is to analyze the phenomenon of “refurn fo equihib-
rium ™ We exhibit a class of open quantum systems with the property that
the time evolution drives an arbitrary initial state describing “asymptotic
thermal equilibrium™ at a temperature T > 0 towards an equilibrium (er
KMS) state at the same temperature T, as time tends to oo, In other words,
the limiting state of an open system with the property of return to equilib-
rium, as time tends to oo, is a time-translation invariant KMS state corre-
sponidng to a temperature equal to that of the heat bath near spatial infinity.

A consequence of return to equilibrium is that the entropy of the state of
the small subsystem tends to tnerease under the time evolution. This means
that, if only the degrees of freedom of the small subsyvstem are observed, the
dynamics is dissipative, dissipation arising through energy exchange with the
thermal heat bath. This kind of dissipative behaviour is sometimes called
“quantum friction”.

The phenomenon of “return to equilibrium™ is similar to the phenomenon
of “approach to a ground state”, which is observed at zero temperature: If
a suitable small subsystem, such as an electron bound to a static nucleus,
is coupled to a dispersive medium with infinitely many degrees of freedom,
such as the quantized electromagnetic field, at zero temperature, then an ar-
bitrary initial bound state of the small subsystem approaches a groundstate
af the coupled system, as time tends to oo, The reason is that excited bound
states of the small subsystems become unstable when the subsystem is cou-
pled to the dispersive medium; they decay into lower-energy bound states
through emission of dispersive modes (photons) and eventually converge to
a groundstate. This phenomenon is sometimes called “dissipation through
dispersion (emission of dispersive radiation)”.

The two phenomena of “return to equilibrium” (T > 0) and “approch
to a groundstate” (T = 0) can be formulated as spectral problems for the
generator of the time evolution, i.e., for the Liouville eperator, or thermal
Hamiltonian, (T" > 0) and the Hamillorwan (T = 0), respectively: If one
can show that the point spectrum of the Liouville operator generating the
dynamics of an open quantum system in asymptotic thermal equilibrium at
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a temperature T > 0 consists of a simple eigenvalue at 0 then the property
of “return to equilibrium”™ can be proven to hold as a general consequence
of the so-called KMS condition. A prerequisite for establishing “approach
to a groundstate” is to show that the point spectrum of the Hamiltonian
generating the dynamics of the system at zero temperature consists of a single
eigenvalue, the groundstate energy, of finite multiplicity. In part:cular, one
must show that all excited bound states of the small subsystem (e.g.. an
atom) are turned into resonances of finite life time when the latter is coupled
to the dispersive medium. However, this kind of information on the energy
spectrum of the Hamiltonian does not, by itself, suffice to prove the property
of “approach to a groundstate”. (In addition, one needs to establish some
properties of scattering related to asvmptotic completeness, and this tends
to be a very hard analytical problem.)

The idea that initial excited bound states of an atom approach a ground-
state through emission of photons, as time tends to oo, first appeared in
Bohr's theory of the hydrogen atom coupled to the quantized radiation field,
at zero temperature, and remained a guiding idea in later perfurbative analy-
ses of the quantum theory of atoms coupled to the electromagnetic field by
some of the founding fathers of quantum mechanics. See, e.g., [14] for a
review of results. Mathematically rigorous, non-perturbative results on the
quantum theory of charged particles interacting with the quantized radiation
-{or the phonon) field at zero temperature started to appear surprisingly re-
cently; see, e.g., [11, 19, 20, 30, 5, 6, 7, 8, 9, 10, 26, 23, 24, 39, 38, 17, 36|

First traces of the idea of “return to equilibrium” at positive temperature
appear in work of Planck, in Einstein's 1917 derivation of the law of black-
body radiation, and in much subsequent work on radiation theory; see, e.g.,
[31, 32]. Mathematically, precise results were first obtained within various
approximate treatments, such as the van Hove limit; see, e.g., [16, 29] and
references given there. A complete proof of the return to equilibrium for a
simple infinite quantum system, the so-called X'Y chain, was first presented
in [35]. A reformulation of return to equilibrium as a spectral problem for
Liouville operators was proposed by Jaksi¢ and Pillet in [27, 28], drawing on
previous fundamental work due to Araki and Woods [3], Haag, Hugenholz
and Winnink [22], and Araki [1]; see also [12, 13, 21]. In the present paper,
we follow the general ideas of the spectral approach to the problem of return
to equilibrium due to Jaksi¢ and Pillet [27, 28]. Due to some confusion in
the literature, we find it necessary, however, to carefully review the general
formalism of the quantum theory of finite and infinite systems in or close to
thermal equilibrium, as developed in [3, 22, 1] (see also [12, 13, 21]), in a form
convenient for applications to concrete models, and to introduce several novel
technical devices within the spectral approach. Furthermore, we intend to
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present the general formalism in a fashion that will make future applications
to more complicated problems, e.g., to the problem of stationary states of
infinite quantum systems, or to some problems of transport theory, feasible.
Unfortunately, some of these purposes of our work make the present paper
quite long.

Next, we describe the class of open quantum systms considered in this
paper. The small, bounded subsystem consists of a confined atom or molecule.
In this paper, an idealized description of the small subsyvstem as a quantum-
mechanical system with a finite-dimensional slate space,

Ha =C¥, N < oo, (L1)

is chosen, L.e., we consider an atom or molecule with only finitely many energy
levels, When the coupling between the small subsystem and the reservoir, or
heat bath, is turned off, the dynamics is given by a Hamiltonian, H, which
is a selfadjoint operator on M. The spectrum of H consists of eigenvalues
Eg. Ey, ... ,Ex_y. For simplicity, we assume that these eigenvalues are non-

degenerate,
Eg < By < - < Ex_y. (1.2)
Every eigenvalue E; corresponds to an eigenvector ¢; of Hy, i.e.,
Hoo; = Eyoy. (13)

These eigenvectors form a complete orthonormal system in M. In particular,
in the natural scalar product, (|-}, on Mg,

{.@ll'ﬂ;} = Ji_p-l {]4.}

forall i,7=0,1,... ,N|.

The reservoir is chosen to consist of the quantized electromagnetic feld or
of the quantized vibrations, or phonons, of an infinitely extended, harmonic
material medium. The modes of the reservoir are indexed by wave vectors
k € B* and, for photons, a helicity A = £1. The Hilbert space, h, describing
pure states of a single phonon or photon is given by

b { LR, dk) , for phonons,

L*(R® x Z,,dk), for photons, (15)

where

e .r .'-.n.E} a'k, for phonons,
ff'[-ﬂ o { E!hril f,: FUE) d®k , for photons. (L6)



BFS-4, December 21, 1999 4

At zero temperature, the Hilbert space of pure staie vectors of the reser-
voir is chosen to be the Fock space

.‘F:=éh““’. (L.7)

n=0

where A" := C, and A" := A®" n > 1, denotes the symmetric tensor
product appropriate for the description of quantum-mechanical particals with
Bose-Einstein statistics. A vector ¥ € F is a sequence,

¥ o= {¥n}azo. (1.8)

of wave functions, v, (k,,... ,k,) € A" with k; = Ej e R?, for phonons, and
ki = (K, Ay) € R' x Z,, for photons. These wave functions are completely

symmetric in their arguments. The scalar product for two vectors, ¥ and $,
in F is given by

o) = Y [ iy [t G R valbi e k). (19)

n={

For f € h, we define an anmbhilation operator, a(f), on F by setting
alf)¥ := {@aslkr... Ka)lnza (1.10)

where

Prgtcs k) = VAFT [[dbuss Slknss) Voo nskuss).
(L.11)

(Note that f +— a(f) is linear in f, rather than anti-linear.) For every f € h,
a(f) extends to an unbounded, densely defined, closed operator on F. For
f € h, we define vf to be the complex conjugate of f, (vf)(k) := f(k). We
define the creation operator, a®(f), to be the unbounded, densely defined,
closed operator on F given by the adjoint of a7 f), i.e.,

a*(f) = (alrf))". (112)

Annihilation- and creation operators obey the canonical commutation rela-
tions

[a*(f).a’(9)] = [alf)ialg)] = 0, (1.13)
[alrf)ia®(g)] = (flanl. (1.14)
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where (-]}, denotes the scalar product on . We note that the vacuum
vector, 1= (1,0,0,..+), spans '™ and has the property that

alfi)l = 0, forall feh. (1.15)

The dynamics of the reservoir at zero temperature is determined by the Hamil-
tonian

Hy = fdkcr‘ll,k}lw[k]q{kj. (1.16)
We choose w(k) to be given by

wik) = [k], (1.17)

corresponding to massless, relativistic photons or phonons. The operator H
defined by (1.16) extends to an unbounded, selfadjoint, positive operator on
F. It has a simple eigenvalue at 0, corresponding to the eigenvector £1. The
rest of the spectrum of M, is purely absolutely continuous. See [34, 33] for a
more complete summary of the theory of free, quantized fields.

The Hilbert space of the combinded system, consisting of the idealized
atom and the reservoir, at zero femperature, is given by

H = Hy®F. (1.18)

When the coupling between the atom and the reservoir is turned off, the
dynamics is given by the Hamiltonian

Ho = Ha®1 + 19 Hy, (1.19)

with H,, as in (1.2). (L.3) and H; as in (L16). The coupling between the
atom and the reservoir is deseribed by an interaction gf, where g e R is a
coupling constant, and

I = f dk{G(k) @ a’ (k) + G(k)" @ a(k)}, (1.20)

where, for each &k € R*(xZ,;), G(k) is an operator on Hg, i.e., an N x N
complex matrix. One could add to [ terms quadratic in a* and a, (or even
of higher than second order). But, for the sake of a clear exposition of the
key ideas of our analysis, let us not do that. The Hamiltonian, H,, of the
combined, coupled system at zero temperature corresponds to the formal sum

H, = Hy + gl. (1.21)
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For notational simplicity, we assume without loss of generality that g >
0. We have studied the zero-temperature dynamics of similar systems in
|5, 7, 8, 9]. The purpose of this paper is to characterize the space of states of
the class of open systems introduced in (I.1)-(1.3) and (1.7}, (L.i6), (L.18)-
(I.21) describing “asymptotic thermal equilibrium” at a positive temperature
T > 0, and to study properties of the dynamics of such states, as formally
generated by the Hamiltonian H of Eq. (1.21). Under appropriate conditions
on H, and on the coupling matrix G(k) appearing in (1.20), we establish
“return to equilibrium” for inital states describing asymptotic equilibrium.
Somewhat surprisingly, it appears that the proper mathematical formalism
enabling us to formulate these problems precisely and then solve them is
not widely known, although it has been developed in the sixties and early
seventies. For this reason, a self-contained summary is presented in Sects. I1,
II1, and IV.1.

Before we give a survey of the contents of this paper, we now state the
conditions on K and on the coupling matrix G(k) on which our analysis is
based. In later sections, we refer to these conditions whereever we formulate
precise results. Our first condition is as follows.

Hypothesis H- 1. The specirum of H,; consists of simple eigenvalues
Ey< Ey < -- € Eyy (1.22)

corresponding to a complele, orthonormal system {-:,.:.'r!]-J':":z,;,,1 C M, of eigen-
vectors.

Next, let

Giylk) = (wl Glk)wy) (1.23)

denote the matrix elements of the coupling matrix, G{k), see Eq. (1.20), in

the basis of eigenvectors of H,;. These matrix elements are assumed to have
the following properties.

Hypothesis H- 2. For # € R, consider the functions G.J{:_ak}. For each
wave vector k € R® (and helicity A = 21) and all i,j = 1,... , N, G;;(e”"k)
extends to a function of @, also denoted by G.-J{c"k}, analytic on a domain
in € containing the strip

Toe = {0]|Im8] < 0}, (1.24)

for some ¥y > 0 independent of k € R*, (A = £1) and i and j. The same
property then holds for the functions

Gl(e k) = {p;|Gle~"k) ). (1.25)
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We also require a variety of boundedness condifions on the coupling fune-
tions {G,(e™"k)}.

Hypothesis H- 3. We assume thal there exists positive constants p > 0
and M < oo, such that, for all € £, and k € R fand A £ 1),

N

>

1J=l

Gisle™" k)| < MMk, (1.26)

where w(k) = |k|.

In concrete physical models, based on the dipole approximation for the
coupling of an atom with finitely many energy levels to the quantized elec-
tromagnetic field, one finds that (1.26) holds for p = 1/2.

Chur next requirement is a condition on the choice of an ultrawnelel cutaff
in the interaction / which can be stated in the form of decay properties of
the coupling functions G, ;(e~*k), as |k| = oo,

Hypothesis H- 4. There erists a constant 0 < A < oo such that, for all
[ = Eﬂﬂ,

N
f (Giale™ ) () +wlk) ]tk < MRAN2, (127)
1

o=
where M < oo ts the same constant as in Hypothesis H-5.

This condition will play a crucial role in our analysis of spectral properties
of the Liouville operator or thermal Hamiltonian. Among such properties the
most crucial one is that all but one eigenvalues of the Liouville operator of
the uncoupled system (g = 0) consisting of the (Anite-level) atom and the
reservoir dissolve in (absolutely) continuous spectrum when the interaction
between the atom and the reservoir is turned on. We will show that the
Liouville operator of the interacting system (g > 0) has a simple eigenvalue
at 0 corresponding to its unique equilibrium (KMS) state, the rest of the
spectrum of the Liouville operator being purely absolutely continuous. This
is quite remarkable, because the Liouville operator of the uncoupled system
(g = 0) has eigenvalues at {E, - E, |i,j =1,...,N, i # j} and an N-fold
degenerate eigenvalue at 0. Our proof that N? — 1 of these N? cigenvalues
dissolve in continuous spectrum when the interaction is turned on is based
on a mathematically rigorous variant of Fermi's Golden Rule. To make this
method work, we require the following condition.
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Hypothesis H- 5. Letir,,,, = min{|E.~—E'l,||i # j} and Tree = ma:»:{IE'.-—
E;|}. For anyi# j and any Ty €7 € Mg,

fm; §[w(k) -] |G, M > 0. (1.28)

Actually, condition (H-5) can be weakened considerably at the price of
rendering the computational aspects of our analysis more complicated, see
Appendix B.

Our proof of the result that the spectrum of the Liouville operator of the
interacting system is purely absolutely continuous, away from 0, will involve
a combination of the method of complez spectral deformations, more precisely
a novel variant of dilatation analyticity, with a mathematically precise form
of Fermi's Golden Rule based on the so-called Feshbach map of [7, 9. The
appearance of the complex parameter ¢, # € C, in conditions (H-2) through
(H-4), above, can be traced to our use of dilatation analyticity.

We now state our main results in the form of a theorem.

Theorem [.1. Consider an open quantum sysiem wath dynamics correspond-
ing to the formal Hamiltonian K, defined in {1.21), where Hy s given in
(I.19) and I in (1.20). We assume that Hy and I safisfy conditions (H-1)
through (H-5) deseribed above. Let

L, = LN, B={kTY, (1.29)

denote the Liouville operator acting on a Hilbert space, Ha, of states of the
system describing asymptotic thermal equilibrium at a temperature T > 0.
The operator Li generates the dynamics of the states in Hy.

Then we have that, for an arbitrary temperature T > 0, the following
hold:

(i) LY is essentially selfadjoint on a natural domain dense in ﬁ;,

(ii) If0 < g < g°, for some " > 0 independent of T, then Lﬁ."’:' has a simple
eigenvalue al @ corresponding to the unique equelibrium (KMS) state of
the system, and the resi of the specirum of L{;,ﬂ] covers the entire real
ans and 15 absolutely confinuous,

(iii) Under the same assumplions, the states in ‘ﬁp have the properly of
“refurn fo equthbrium”, in the sense described above.

(iv) Under certain more siringent assumptions, see Secl. V.3, (in particular,
g= i in (1.26)), there erists a natural linear subspace, Dy, of states
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dense m ﬁ,.. weth the property that every vector in Ty conwerges lo
the unique equilibrium state of the system at temperture T = (kg8)~'
exponentially fast in time.

Remark 1.2. Under the hypotheses of part {1v) of Theorem [ 1 stated above,
one can establish precise links befween our methods and those in [28], on one
hand, and various heuristic treatments of “return to equilibrium” mvolving
quanium master equations, on the other hand.

We conclude this intreduction with a briel summary of contents of the
various sections of this paper.

In Sect. 11, we review the general theory of pure and mixed states and of
their dynamics (in the “Schrodinger picture™) for quantum mechanical sys-
tems confined to bounded regions of physical space. We characterize their
thermal equilibrium states and derive the Kubo-Martin-Schwinger (KMS)
condition. We derive explicit expressions for the Liouville operator (or ther-
mal Hamiltonian) in terms of the Hamiltonian and for the “modular opera-
tor” and the “modular conjugation”. We describe perturbation methods for
the construction of equilibrium states of interacting systems.

In Sect. 111, we extend the results of Sect. I to the thermodynamic limit,
following [22] and [1]. In particlar, we clarify what we mean by the notion
of states in “asymptotic thermal equilibrium” at temperature T = (kg8)™";
see Sect. I11.2 and I11.3. We introduce the Liouville operators generating
the dynamics on states which are in “asymptotic thermal equilibrium”; see
Sect. I[11.2 and 111.3. In Sect. 111.4, we derive the property of “return to equi-
librium" from a spectral property of the Liouville operator of a svstem and
the KMS condition characterizing its equilibrium states. In Sect. IIL5, we
review the perturbation theory for equilibrium states in the thermodynamie
limit.

In Sect. IV, we first review the Araki-Woods representation of equilibrium
states of the quantized, free electromagnetic field. We then introduce a class
of open quantum systems describing an idealized, confined atom coupled to
the quantized electromagnetic field in “asymptotic thermal equilibrium™ at
a temperature T > 0. We establish selfadjointness of the Liouville aperators
of such systems and of related operators needed in the perturbation theory
of equilibrium states. We prove that, at an arbitrary temperature T > 0,
the systems studied in this paper have an equilibrium state which can be
constructed from the equilibrium state of the quantized electromagnetic field
with the help of convergent perturbation theory; see Sect. IV.3. We also
establish some simple technical estimates important for our analysis.

Our main resulls (see Theorem 1.1 stated above) are proven in Sect. V. In
Sect. V.1, we describe these results and sketch the basic analytical methods,
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a novel form of dilatafion analyticity for the Liouville operators er countered
in the analysis of our class of systems and the Feshbach map of [7, 8], on
which our proofs are based. All key elements of our proofs of the relevant
spectral properties of the Liouville operators are explained quite carefully.
In Sect. V.2, we compare and combine our approach with the one proposed
in [28]. We exhibit a dense set of states in “asymptotic thermal equilibrium”
which converge to a unique equilibrium state exponentially fast in time.

The remaining subsections of Sect. V and two appendices are devoted to
a variety of (partly rather tedious) technical considerations. We recommend
especially Sect. V.7 (a renormalization group analysis of the spectrum of
Liouville operators) and Appendix B (concerning Fermi's Golden Rule) to
the attention of the reader.

II Thermal Equilibrium States of Finite Sys-
tems

In this section, we recapitulate some results of [22]; see also [21, 12, 13].

I1.1 Pure and Mixed States of Quantum-Mechanical

Systems

We consider a quantum-mechanical system confined to a bounded region of
physical space, The pure states of the system correspond to unit rays in
a separable Hilbert space H, with scalar product denoted by («|-). The
algebra of observables of the system is a C"-algebra, A, contained in or equal
to the algebra B(H) of all bounded operators on H. We assume that A
contains the identity operator 1. The dynamics of the system is determined
by a Hamiltonian, H, which is a semibounded, selfadjoint operator on
with discrete spectrum.

Let Tr|| denote the usual trace on B{H). We assume that exp(—3H) is
trace-class, je.,

Tr[e™?¥] < oo, (IL.1)

for arbitrary 3 > 0.

We are interested in describing general mixed states of the system, in-
cluding its thermal equilibrium states, for arbitrary inverse temperature
A= (kgT)™", where kg is Boltzmann's constant and T denotes the absolute
temperature. Furthermore, we wish to study the time evolution of general
mixed states, as determined by the Hamiltonian M.
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According to Landau and von Neumann, a mixed state of the system
corresponds to a density matrix, i.e., to a positive, selfadjoint operator on H
of unit trace.

The two-sided ideal of trace-class operators in B(H) is denoted by L{H),
the two-sided ideal of Hilbert-Schmitt operators in B{H) by £7(H). A density
matrix p is a positive element of £'(H) of unit trace. Then

ko= Mt (11.2)
is Hilbert-Schmitt, with
Te[w?] = Tr[x's] = Trlg] = 1. (1L.3)
As a lmear space, £(H) is a Hilbert space with scalar product given by
)+ L¥HH) % L2(H) =+ C, (ko) (ko) == Trlx"a]. (11.4)

For brevity, we denote £*(#) by K. This Hilbert space is isomorphic to
H@H. It carries a representation [ of the algebra A given by

fla]k := ax € K, (11.5)

for arbitrary & € K, a € A To every element x € K, we can associate a state
of the system given by the density matrix

p o= {xe) et (11.6)
The expectation value of an observable a € A in the state p is given by

@), = Trpa] = (slx)™" Tr[xn"a]
= 1:;;|;:}"T:!ﬁ"nx] (1L.7)
(11.8)
= (k&) (x| tla] x) .

where we have used the cyclicity of the trace. For .0 € K, with (x|x) =
{rlo) =1, and a € A, we may define the transition amplitudes

(x| ¢fa] o) . (1L9)

Pure states of the system correspond to orthogonal projections P € K of
rank 1, i.e.,

P=v) =|vHel, veH, (I1.10)
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in Dirac’s bra-ket notation. Then
{P|fla]P} = Tr[Pa Pl = Tr|Pal
= (v]ay). (II.11)

As an algebra, K = £*(H) is what is called a Hilbert algebra, ie., it is a
s-algebra, and, as a linear space, it is a Hilbert space, with the property that

ki ralkg) = (el wimg) and (k|m2) = (s3] s3) (11.12)

which follows from (11.4), see [22, 18]
The time evolution of an observable a € A in the Heisenberg picture is
defined, as usual, by

oy(a) = £ ae™ (11.13)
Then, for &, a0 € K,

(| t]ay(a)] o) Te [« ay(a) o]

Te[x" e ae™" 5] (I1.14)

- TI'[[_E-“H H-E“Hrﬂ |:E"“H ﬂ'i:“"}] {[]15}

(a_y(x)| fla] a_i(e)), (I1.16)

by cyclicity of the trace. Thus, it is useful to define the time evolution of an
element & € K in the Schradmger picture by

Ko Ky o= ay(x) = e ¥, (IL17)

for t € R. We define a selfadjoint linear operator £, the Liouwillian, on K by
setting

L = [H,x], (I1.18)

where [, -] denotes the commutator. Under our hypotheses on H, the oper-
ator L is essentially selfadjoint on the following core T dense in K,

D := span{|uiHyyl | 4.7 = 0.1,2,... }, (I1.19)
where {4, }72; is a complete orthonormal system of eigenvectors of H, ie.,
Hyy = Eay, i=0,1,2,..., (11.20)
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with

Eh < EE < 5 €, (I1.21)

It is instructive to verify that £ is a symmetric operator on T 3 x,0 by
computation,

(Crlo) = Tx[(Lx)"a] = Te([H, K] o)
= =Tr([H,x"]|a) = Te(x'[H, a])
= (x| La), (11.22)

using the cvclicity of the trace. Eq. (IL17) can now be rewritten as
ke = &5, (11.23)
and one easily verifies that

p'tE F[u! e e = Hogla)) . (I1.24)

I1.2 Equilibrium States of Bounded Systems

Since we are interested in studying systems in thermal equilibrium, we must
identify those vectors in & which describe equilibrium states at an arbitrary
inverse temperature J; see [22, 18, 12, 13] for more details. Let A’ denote the
von Neumann algebra of all bounded operators on H which commute with
all operators in A, the commulant of A. A selfadjoint operator @ on H i8
said to be affiliated with A" iff all spectral projections of @@ belong to A'. We
say that ¢ commutes with H iff all spectral projections of @ commute with
all spectral projections of H.

According to Gibbs, Landau, and von Neumann, every equilibrium state
of the system at inverse temperature 3 i& given by a density matrix

pag = Zyg expl-8(H - Q)] (11.25)

where (@ is an arbitrary selfadjoint operator on ‘H affiliated with A’, com-
muting with H, and such that

Zyg = Tr(exp[-8(H-Q)]) < oo. (I1.26)

The physical interpretation of @ is that of a conserved charge of the system.
Since ¢} is affiliated with 4", observables (i.e., elements of A) are neutral with

respect to Q.
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An element & of & describes a thermal equilibrinm state of the system iff
K= Kgg = Zyg expl-A(H-Q)2U, (11.27)
for an arbitrary unitary operator [ on H. For,
{kaglllalkag) = Tr[rhgarsg] (I1.28)
- E_._,'_L Tr [rc,.|_u. Kag ﬂ]
= ZyoTe(expl-8(H - Q)]a) = (a)pq.

Next, we recall some general properties of equilibrium states (see [22, 21, 12,
13]).

First, since pa g is strictly positive, for 3 < oo, we have that, for arbitrary
a€ A,

(t"ajag =0 = a=0. (11.29)
Equivalently,
tolxag =0 = a=0. (11.30)

Thus, the vector kg € A is separating for the algebra {[A].
Second, the state pg o satisfies the Kubo- Martin-Schunnger {KMS5) con-
dition:
(aay(t))pg = ZzgTrlexpl-B(H - Q)|ae"™ be "]
- z;u Tf [!:,;I-Q‘cll.!.i' &E-[.ﬂﬂl]ﬁ' ﬂ:]
- z.ﬂ'—.:.' Te [r_-dm-m L e ﬂ]

= (a_pgulb)adsg. (IL.31)

In the second equation, we have used the cyelicity of the trace and the fact
that H and b commute with ¢*¥, in the strong sense specified above. Defining
Fult) = (aoyb))sg. (11.32)

Gaslt) {og(bla)sg. (11.33)

the KMS condition says that the function &.(f) is the boundary value of a
function () analytic in z in the strip

i

Sa={(| -f<Im{ <0}, (11.34)
anl

rl'ig} Galt —im) = Fall). (11.35)
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Equivalently, F (1) is the boundary value of a function F,,(z) analvtic in 2
in the strip S5, with

|!itl|:j Falt+in) = G“I{-']l i (I11.36)
L
Third, we have that

(ao(b))ag = (ada)blsg, (11.37)

as follows from a trivial caleulation similar to that in (I1.31) or directly from
the KMS condition. In particular,

laelb))pg = (Blag. (11.38)

iLe., the state py o is ime-translation invarant; (set a = 1 in (11.37)).
We also note that the time-translation invariance (11.38) and the KMS
condition imply that

(a*b)sq = (aunla®b)),q = (awpla®) o)), q (11.39)
= {oiaplb) oigpla’)), g = (o) (a_wpala))),q-

We have used (I11.38) in the first and the KMS condition (I1.31) in the third
equation.

We have now summarized all important elements of the quantum me-
chanics of finite systems in or close to thermal equilibrium. However, we
shall shortly pass to the study of infinite systems which may be viewed as
thermodynamic limits of finite systems. We shall analyze their properties in
or close to thermal equilibrium and their behaviour under small perturba-
tions of their dynamics by coupling them to finite subsystems. In order to
prepare the ground for our analysis, we must elaborate on several aspects of
the theory of finite systems.

I1.3 The Commutant of the Representation £ of 4 on
K.

First, we note that the Hilbert space X of Hilbert-Schmitt operators carries
a second, anfi-linear representation, r, of the observable algebra A which
commutes with the representation f introduced in (IL.53). It is defined by

rlalk = xa", (I1.40)
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for v € K and a € A, It is now clear that £ stands for lefi-represen’ation and
r for right-representation. Obwviously
rlza] = zrfa], z€C, (1L.41)
anil
rlabl = rla]r[h]. (11.42)
It 15 not hard to show that if A is weakly dense in B(#), e,
A" = (AY = A" = B(#H), (11.43)
then
(A" = rlA]. (I1.44)

It is instructive to try to understand where Eq. (11.44) comes from. Let ©
be an anti-unitary involution on M, ie.,

C* =1 and (CO|C) = (oly), (11.45)

for arbitrary ¢, ¢ € M. (In a suitable orthonormal basis of H, C acts on
v € H as + complex conjugation of the components of ¢ in that basis.)
Given O, we construct an isomorphism,

Io: K = HOH. (11.46)
If = (] )y €K, ie,
& = |[){al, (11.47)
in Dirac’s bra-ket notation, then
ek = (@O, € HEH. (I1.48)
Next, we note that, for x as in (11.47),

letlalk = lofax) = Io(lasy){ys]) = avy ®Cty = (a® )ler,
(11.49)

and

Ierlals = le(ka®) = Ie(jiy)lay]) = ¢ @ Cay = (1@ CaCllpx,
(11.50)
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where we have used (11.40) in the first, (ILAT) in the second, (I1.48) in the
third, and (I1.45) (C° = 1) in the last equation.
Thus I intertwines the linear representation £ of A on H & H given by

fla) = a®1, acd, (1151)

with the linear representation £ of A on K and the anti-linear representation
rof Aon H&H given by

rle] = 1&@CaC, a€A, (11.52)

with the anti-linear representation r of 4 on A,
If A is weakly dense in B(H) then

(A" = BH)®1, rfA" = 18 B(H), (11.53)

where we use that the weak closure of a =-algebra of operators on a separable
Hilbert space is equal to its double commutant. Clearly,

{'IEHLHJ}' = BH)@1, (I11.54)
and, using that the commutant of a =-algebra of operators on a separable

Hilbert space is the same as the commutant of its weak closure, (11.44) follows.

I1.4 The modular operators S and 7

There is a distinguished linear operator E acting on the Hilbert space H&H,
defined by

E{lp@y) == ¥v2p. (11.55)

The operator E is called erchange operator. In terms of E and the anti-
unitary involution €, we may define what is called the modular conjugation
J by setting

J = E(CaC) = (Ca&C)E. (11.56)
Clearly, J is an anti-unitary involution, and, remarkably (though trivially),
JEJ = r, (IL57)

For

JalJ(v@g) = JHa]Co@Cy = HaCp®Cy) = y&Calyp
= 1@CaC)(y@y) = rla](v®y). (11.58)
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It is easy to check that
f!'.] dlek = &, [ors e K. []I.Eﬂ']

The operator 15" J e is denoted by 7.

Let A be weakly dense in B{H), and let p be a striely positive density
matrix on H. Let &, := p'. As in (1L29)-(11.30), one notes that &, is sep-
arating for ({H] and for r[H]. The separating property of &, and Eq. (11.44)
then imply that x, is eyelie for #[H] and for {[H], i.e., the subspaces

f!.-ﬂﬁl,, and r[Alx, {11.60)

are dense in K. We may therefore define an (in general unbounded) anti-
linear operator S, the modular aperator, by setting

S(tlalx,) = fla’]x, (1L61)
Thus
S(tlalx,) = a'k, = k;'k,a"x, (11.62)
Ky (rla)w,) e, = w,t (T(Ela)w,)) K,

by (IL57)-(11.58), and because s, = %, Since p is strictly positive, the
operator

I

1
H = —=Inp (I1.63)

s a seribounded, selfadjoint operator on H: Eq. (11.62) can then be rewritten
as

S(tla]x,) = "2 (T(tla]x,)) e P47 (11.64)
If £ denotes the Liouvillian associated with the Hamiltonian H, ie., if
Cx = [H, k] = ((H]-r[H) %, (11.65)
then (11.64) boils down to
S(tlalx,) = "7 F(tla]x,), (11.66)
or, by (11.60),
S = J g, (1L67)
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L.,
R = 18|, T = |87 8, (11.68)

In other words, (ILGT) describes the pelor decomposition of 8. Eq. (1161)
is the starting point of a theory which works in much greater generality:
Tomta- Takesaks theory (see, e.g., [41, 12]). Eqs. (ILG8) then define exp[3L/2]
and T, respectively (after a painful prnnf that the operator &S dehned h!.r
(I1.67) is closed).

If we prefer to work on the Hilbert space He M, instead of &, the operators
& and £ are replaced by

§=1I8Iz', L=1ILI3, (11.69)

and J = [ 7 I-" is given by (I1.56).
It is instructive to determine the explicit forms of S and L. By (11.51)
and (11.69),

Stlajlex, = Slctlalr, = [-SIZ Icta)x,

= lella’]x, = fa')lcw,. (IL.70)
Next, for & = [} {z], with v, € H,
Le = |Hy)e| - [W){HA, (1L.71)

by (I1.18). Thus

el = (H¥)@(Cp) — v&(CHy)

(Hy) & (Cy) - ¢ & ((CHC)Cp) (11.72)
(Hal - 1&CHC) (¢ & Cy)

= (Hal1 -1@CHC) I k.

We conclude that
L =Hal -12CHC. (11.73)

In their important paper [3] on the equilibrium states of non-interacting
bosons, Araki and Woods make a special choice for C: They choose O to
be given by the time-reversal operator, T, which, according to a result of
Wigner, is indeed an anti-unitary involution on #. For this choice,

THT = H, (11.74)
and hence, for the Araki-Woods somorphism I+ : K =+ H & N,
L=Hel-12H. (I1.75)
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I1.5 Perturbation Theory for Equilibrium States

Next, we consider a finite system with dynamics determined by a Hamiltonian
H of the form

H=H+1, (I1.76)

where Hy is the Hamiltonian of an (unperturbed) reference system, and [
s a perturbation. In this section, we assume that [ is a bounded selfadjoint
operator, (because we want to avoid obscuring the general theory with oper-
ator domain problems). The equilibrium state of the system is given by the
density matrix

paq = Zak expl-B(H - Q)] (11.77)
which corresponds to the vector
Kag = .HL'E € K. (I1.78)

We assume that ¢ is affiliated with A" and that it commutes with Hy and
with I and thus with H. Then

kg = Rz PN, (1L.79)

The thui]ihriulu state of the reference system s given by

Hg_q - {zﬂlﬁ}-lfl rdqll':lr-.ﬂﬂlull'z E.II,E'U}
corresponding to the density matrix
fia = (Kaa)"- (1181)

Note that

Zyq = Tr[e -] = Ty[ePHo-Q+N] < Tr[e-Pilo-Q) o8]
S MIT[e-Ab-0) o M7, s2)

where the first inequality is the so-called Golden-Thompson inequality (which
follows from the Trotter product formula and the Holder inequality, see, e.g.,
[13, 37]), and the second inequality follows from |le=™|| < "I for 8 > 0.
Thus, when [ is bounded, Z; ¢ is finite iff 2§ 5 is.

The Liouvillian of the reference system and the Liouvillian of the inter-
acting system are given by

Lo = {[Ho] — r[Hy], (11.83)
£ = fH] - r[H] = Lo + ] - ], (11.84)



BFS-4. December 21, 1999 21

respectively,. 'We also define two Radon-Nikodym operators, L, and £, by
setting

Lo= Lo+ fI), L = Lo-rll]. (11.85)
Note that
£l = fet), W= ], (11.86)

fora € A and z € C, as follows from the fact that £ is a linear homomorphism,
while r is an anti-linear homomorphism. By (11.85) and (11.86),

P2 Ko = & § (e1#vol+e101-r| 1) o = ¢ §itto+1) Sa ol e
- {Eﬂ_q}'[ﬁr'i":gqe"f"“tf Ha
= [zn.ﬂfz.:,u}m (Z5.) =W2 -§lH-Q)
= (Zs0/23q)" Koa. (11.87)

and a similar caleulation yields
=12
PR o = (Zaaf28e) " Kan- (11.88)

It follows from (I1.82) and (IL87), (11.88) that &} g is in the domain of def-
inition of the (generally unbounded) operators exp|—3L,/2] and exp|3L, /2],
and

kg = (Zsgql fﬂ.ﬂ]w e~ 80,8 g = (Z8e/2sq) ™ 2 Kyg- (I189)

Formula (11.89) iz a non-commutative version of the Radon-Nikodyvm deriv-
ative in measure theory; see [1, 2).
Under the isomorphism I, £, £;, and L, are mapped to

L = IcLI5' = Lo+ 1®1-1@CIC = L+ W (I190)

Ly = IEEIIE‘ = [g+I®1, (11.91)

L 1= J’.;E,I,;’ = [hj-1&CIC, (11.92)
with

Ly = Ho2l - 10CHC, (11.93)

W = Ial-12CIC. (11.94)

These formulae will turn out to be very useful in our analvsis of conecrete
systems.
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III1  Equilibrium States
in the Thermodynamic Limit

III.1 Thermodynamic Limit

In this section, we recapitulate the general theory of infinite sy:tems, ie.,
systems in the thermodynamic limit, in or elose to thermal equilibrium, and
we discuss spectral properties of their time evolution that guarantee return
te equilibrium of states which are local perturbations of equilibrium states.

Finite systems can be indexed by regions, A, in physical space. The
thermodynamic limit is reached, as A increases to all of physical space. It is
reasonable to start from the following assumptions.

I1L.1.1  Observable Algebras
Let Ay denote the observable algebra of a system confined to A. Then, for
M E Ay

Ax, © Ay, € A, (I11.1)

where A4 s a C"-algebra describing the observables of the system in the
thermodynamic limit. It is usually assumed that if {A,},en is & family of
regions increasing to all of physical space then

A=VA., (111.2)

[T

where the closure is taken in the operator norm.

111.1.2 Time Evolution

As described in Sect. I, the algebras A, are assumed to be contained in
B({Hy), where My is a separable Hilbert space whenever A is a bounded
subset of physical space. The dynamics is determined by a semibounded,
selfadjoint Hamiltonian H, on #H, with the property that exp|—3H,) is trace
class, e,

expl-8H,] € LMHa), (111.3)
for arbitrary 3 > 0, and that

u:':'llru] = " g7 for g & Ajs, (111.4)
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defines a s-automorphism group of Ay, i.e., a}(a) o} (b) = a}(ab), al(a)’ =
aMa®), and al(a) € A,. for arbitrary a € A, t € R By (1IL1), a*(a) is
well-defined and belongs to Ay, for all a € Ay, with A" € A, We denote
ULEH Ay, by A, Forany a € A, a(a) is thus well-defined, for 1 sufficiently

large. In a general theory of thermal equilibrium states, one will assume that

Ii}'nuj."'l:r::l =: ola) (111.5)

exists, for all @ € A, and all ¢t € R, and that {a,},x i5 a one-parameter
s-automorphism group of the algebra A. It describes the time evolution of
the abservables of the infinite svstem in the Heisenberg picture.

I11.1.3  Equilibrium States [40]

As discussed in Subsect. 111.1.2, Assumptions (111.3) and (II1.4) guarantee
that a finite system confined to a region A has equilibrium states (- )} o, see
Eq. (IL28), which satisfy the KMS condition, Eqs. (11.31), (11.35), (11.36).

For a € A, we may consider the sequence of expectation values {a}gfﬂ,
which are well defined if ¢ is large enough, depending on a, Let wal - ) denote
a limit of a (suitable subsequence of) the sequence {}E:q of states on A,
Then wg is a hime-translation imvaniant KMS stale on A, i.e.,

walog(a)) = wala), (1L}
and, defining
Fall) = u-"d(ﬂ n,{b}} . (I11.7)
Gul(t) = u.-d{n,{b} u} . (111.8)
we have the KMS condition
Gult —i8) = Fult), (111.9)
F,.l[t +l.ﬂ} - G',.I.U] i {"Ia"}:l

for a,b € A; see Eqs. (11.38), (11.35), (I1.36). By continuity, these equations
continue to hold for arhitm{f abe A

We define a »-algebra A by

A= {o; = fd:f{r;n,¢n1|ﬂe.4,fscrm}]. (1111

where f denotes the Fourier transform of f. Since o, has been assumed to
be a s-automorphism group of 4, A4 is a s-subalgebra of A, and o, leaves
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L: ]

A invariant. For any a € ...-Ii.~ agla) 18 the boundary value of an j-ﬂ-l-]l-lﬂd

entire function o {a), 2 € C Forae A and b e _j, we can rewrite the KMS
condition as the equation

m‘,.l:un,{b]} = .,-.r.-,[rl_,;r+,[bjr1}. (I11.12)
Note that
ala)® = ayla®), (111.13)

forzeC ae A. The invariance (11L&}, the KMS condition (111.12), and
(II1.13) then imply that, for a, b € A,

Wﬂ{ﬂ'b} = .:.'d[nwg{n'b]} = wylo_a2(8) |o_iaala)]’) . (111.14)

This equation has a noteworthy consequence: If A is a simple C"-algebra
(i.e., A does not contain any two-sided s-ideals other than {0} and .A) then
Eq. (II1.14) implies that, for any a € A,

wﬂ-{ﬂ'u] =) = a=10, (HL.15)

To see this, we show that N = {a € A | wyla®a) =0} is a two-sided »-ideal.
Clearly, if wala"a) =0 and b€ A then

wa(o® b ba) < wyla® bbb ba)' P wy(aa)'™ = 0, (111.16)

by the Schwarz inequality. Hence AN € A, Furthermore, if wyla®a) =0
and b € A then

why [b' a’a tr] = Wy [[h" a’ a) Er] = Wy {“a-ﬂ.ﬂ{b} O A [ﬁ'ﬂ'ﬂ]]
= wyla_z(b)b"a"a) = 0. (IL17)

In the second equation, we have used (I11.14), in the third one invariance,
i.e., (IILG), and in the last one again the Schwarz inequality, i.e.,

lwa(b”a)|” < wal(b®b) wela®a) . (111.18)
Thus, AN N ACN, and A is a two-sided »-ideal.
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I11.2 The GNS Construction

For the purpose of mathematical precision, it is useful to assume that there
exists a denumerable subspace 4 C A such that, for every a € A, the-e exists
a sequence {ay ).y © A with the property that

Jim walla—my)* (a—ay)) = 0, (111.19)
and that
Wy I:u :ll{b]] = Ly {n ~ila) ir} (111.20)

is condimuous in , for arbitrary a, b € A,

Next, we recapitulate the GNS construction in a situation where (1116),
(I1.12), (11119}, and (11120} hold: Teo the data (A, a,wy), as specified
above, one can associate a separable Hilbert space Hy, a representation ¢
of A on Hs, a vector (33 € M,y which is cvelic for 4], and a continuous
one-parameter group of unitary operators {e 7" },.z, where £ is a selfadjoint
operator on M4, such that, for all a € A,

wyla) = (82| Ca]24) , (111.21)
flagla)] = "€ fla] ™, (111.22)
L8y = 0. (I11.23)

To construct Hy, 3y, £, and £, let N ;= {a € A | ws(a®a) =0 }. As noted
above, A is trivial if A is simple, by the KMS condition. We set [a] :== a
mad A, for all a € A. Clearly, D := {[a] | a € A} is a linear space. It is
equipped with a scalar product

([a]1[8]) = wala"8). (111.24)

The Hilbert space Hy is then the closure of D in the norm induced by (]-).
By (II1.19), H 4 is separable. We set {2y := [1] and define the representation
£: A= B(H,) by

fa] [b] = [ab], (111.25)

which extends continuously from D to Hz. Finally, we define a one-parameter
unitary group {e "€}.q on H; by

e [a] = [myfa)]. (111.26)

Unitarity follows from the invariance of wy under a,. By (I11.20), e™ is
strongly continuous on the separable Hilbert space Hs, and hence it is gen-
crated by a selfadjoint operator £, the Liouvillion; (Stone’s theorem).
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II1.3 Modular Operator and Modular Conjugation

Whether A4 is simple or not, we shall henceforth always assume that £, is
separating for ([A], ie., Eq. (11L13), or, equivalently, that A" = 0. Then,

by (I11.20), £, is also cyclic and separating for (f .-E] with A as in (IIL11).
Under these assumptions, we can define an (unbounded) anti-linear operator
S on Hy by

S(tla] ) == (al* Sy, m2m)
forae Aforae .j.}. Since f1, is separating for {[A4], § is well-defined, and,
ginee (1 is evelie for (4], it is densely defined.

For a € A, we define an operator 7 by
T(tlalf) = Stla_ipp(@)] s = aspla®)] Oy, (111.28)
by (I11.27) and (I11.13). Then, for a,b € A,
(T a0y | TR = (Clowszla’)] R | Elaina®)] ) (111.29)

= (Q | laipale) o)) Q) = wal ooipple) aipp(d’))
= wylb"a) = (fb]02 | fla]) = (fla]y | (6] ),
where we have used Eq. ([11.14) in the fourth equation. It follows from

(I11.29) that T extends to an anfi-umiary operator on M4, which is called
modular conjugation. Note that, by (111.26) and (111.28),

J = St = g Phlg e,
S = Je Pt - St g (111.30)

which describes the polar decomposition of S. Temita- Takesaks theory (see,
e.g., [41, 12]) is a far-reaching generalization of these considerations [22],
which starts from the definition (I11.27), then shows that & is closable, and,
finally, constructs 7 and exp|£3L/2] by polar decomposition of §. But we
shall not have any occasion to make use of this theory,

Next, we establish some remarkable properties of the modular conjugation
J. Using .7, we may define an anti-hnear representation, r, of A on Hy:

rla] = Jla]J, foraec A (111.31)
We claim that

Al € €A, (111.32)
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e, rla) commutes with f]b], for arbitrary a,b € A. It is instructive to verify

(111.32): Since §24 is cyclic for f] .-Ia| it suffices to show that
rla) () €le] 24 = E]b] rla] f]c] 25 , (I11.33)

for arbitrary a, b,ec € ,i. Eq. (111.33) follows from the definition (I11.28) of 7
by a little algebra,

rla] {8 €] 25 = T fla] €foia2(c"8")] 24 (111.34)
- ,:r'-EI{l ﬂm”{c'ir‘}] 0 = -f[nml.-z{n_,;ﬁ[_bt_‘j n']] {2,
= flb]r[ﬂ”jlfj{[ﬂ ﬂ.dl,li[-ﬂ.}]'}] ﬂﬂ = r[-bl.j{[ﬂ ﬂl'.:l.l'i‘{f']] ﬂﬂ
= BT )T (R = (16]rla] 1,
which proves (I11.33). One can show (see [22]) that, under our assumptions,
ﬂ.ﬂ.l" = ri.pl]r : (111.35)
MNext, we show that 7 commutes with the time evolution, i.e.,

Je M = g . (111.36)

For a € A, Eqg. (111.26) and (111.28) yvield

Te )y = Jefa ()] = floyp(aida)]
= (oci(owpa(a))] s = e fayap(a’)] 2
= ¢ T ] N2y, (I11.37)

and we have used ([T1.13). As a corollary of (111.36), (111.31), and (111.26),
we have that

e'te flal e~ = l!'[n,lfu]] . (I11.38)
Hll‘.ﬂ I"[-I‘I! E-I!': = ¥ [nj{uﬂ ¥ {I.]LEB]

Eq. (111.36) implies that 7 i L = i £.7, where i is multiplication by /=1

Since T is anti-unitary, this is equivalent to
JL ==L, (T11.40)

which is consistent with the last equation in (I11.30). This equation has
an interesting consequence: If ¢ is an eigenvector of £ corresponding to an
eigenvalue A, and

Jo = ¢ (I11.41)
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them A = 0. This is seen as follows.
A = Luv = Ei_’f g = -—Jﬂi;'.' {[][.';2':
= ~JA¢y = -AJv = -}y,
and henee

A+)=o0. (111.43)

Since L is selfadjoint, A is real, and hence (111.43) implies that A = 0. (A
Hligllt generalization of this fact will be used in Sect. V.]

I1I.4 Return to Equilibrium

A state, p, on the C*-algebra A 15 normal with respect to the representation
{ (and the representation r) if 0 < p& LY{H4). ie, pis of the form

pa) = 3" b | fla] 02), (111.44)

where ¢, € My, with (Ve =1, and p, 20, foralln e N; 300, ps = 1.

Every vector ¢, can be approximated in norm by vectors of the form a5,
with a;' € A, m € N, by the evelicity of 9.
The time evolution, g, f € R, of a normal state p is defined by

mla) = plogla)). {I11.45)
We are interested in understanding under which conditions
Mpln) = wyla), ast = og, (IT1.46)

in a sense o be made precise. Eq. (1T1L46) expresses the property of return
te equilibrium. We give suthcient conditions involving spectral properties of
£ for veturn to equilibrium.

Lemma IIL1. Assume that O 15 a simple cigenvalue of £ corresponding to
the eigenvector 1y and that the rest of the spectrum of C is conlinuous, Lel
a € A and p be a normal state. Then

T

T
lim %f prila)dt = wyla) . (TIL.47)

If a( L)\ {0} 15 absolutely continuous then
ll.zlina.c mla) = wyla). (I1L.48)
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FProof. First, the continuity of the spectrum away from 0 implies that

B T
w-mjﬁ A gt = 1) (5] . (111.49)
If o[L] \, {0} is absolutely continuous then we even have that
wo lim e = 00y, (I11.50)

To derive (111.47) from (I11.49), it is enough to show that

T—oo

T
lim % ﬁ (E[B1 | Clas(a)] ) dt = wy(bc)wala),  (1L51)

for arbitrary a, b ¢ € ..E by (I11.44) and the remarks thereafter. Using the
KMS condition (I11.12}, the integrand on the left side of (I11.51) is seen to
equal

u.l,,{ﬁr' agla)c) = wslo_ise) b’ ni.{a}}
{'Elﬁ'] q"-‘ﬂ [f-"}] 5y | f[ﬂt:{ﬂﬂ ﬂ:}
(€[] Eforialc”)] Qs | € €la] Qa) . (111.52)

Since a,b,c € ..i

f[b] flaa(e® ) 2s, la]fts € Hy. (I11.53)
Thus, using (111.49) and (I11.52), we find that
1 T
1111; i fu wig (b argela) ) dt (111.54)
= {{[b] flaiale’)] a | o) {$a | fa] 24)
= wyla_plc)b")waln) = wa(b*c)wyla),

and we have used the KMS condition once more. Thus (111.51), and hence
(H11.47) are proven. The proof that (111.50) implies (111.48) is similar.
O

II1.5 Perturbation Theory

This section amounts to a transcription of Sect. 115 to the thermodynamic
limit. Let I € A To the pair ({a,}ier.J) we can associate a perturbed
Heisenberg picture time evolution as follows: Let

1) = all). (111.55)
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Then the eguation

e f Iy
al{a) = Ei"ﬁmlfu dty (11L.56)

[ . . o]

0

defines a perturbed one-parameter group {a''' ez on the algebra A. In the

GNS representation { of A corresponding to an a,-KMS state wy on A, &)’

can be implemented unitarily,
tlot"(a)] = exp(itcy”) tla] exp(—itc]”) . (111.57)

Using (I11.38) and applying the representation [ to (111.56), we readily find
that

=c+qn+ R, (111.58)

where R is an arbitrary operator in {[A}' = r[A]". Of course, o|' can also
be implemented unitarily on Hy in the anti-linear representation r of A,

rlad’@)] = Je[a"(@)]T = T exp(ite)") fla) exp(-itci?) 7
= exp(itl]") rla] exp(-itcy"), (111.59)
where
exp(itl)’) = 7 explit]”) 7, (111.60)
i.e., because J is anti-linear,
£ = =03 = £ -+l - IRT, (111.61)

where we have used (ITL58), (I11.40), and (111.31). It would be pleasant to
have £ = £]. This equation has the unique solution

£ = =g =+l -l + 2, (111.62)

where £ is in the center of the von Neumann algebra ([ A]", which is given
by f[A]" nr[A]". Without loss of generality, we set 2 = 0. Then

£p = =TT, (111.63)
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In our applications of the general theory, we shall use the following notation:
Ly =L+ W := L+ {1 -r|l], (111.64)

with W := {[I] — r[I]. It is natural to ask whether we can construct a
perturbed KMS state for the dynamics described by {n:” }tem startirg from
the data (Hy, £[A]. 7, £;). The considerations presented in Sect. [1.5 suggest
that the answer is affirmative. As in Eq. (I1.85), we introduce the Radon-

Nikodym operators
Liei= L+ 1, L,:=0°L-1+l. (I11.65)
We note that, by (I11.31) and (I11.40),
G 3P e I (111.66)

We claim that the vector 25 is in the domain of the unbounded operators
exp|—AL; /2] and exp|3L; /2], and that the vectar

Qog o= Z5 el 0y = 25, 200120 (HL6T)

defines a KMS state, wj 7, on A, for the time evolution given by {al"},ex. In
(HILGT), Z5; is a posthive, finile normalization factor for which we shall give
an explicit formula. The equality between the two definitions of {15 ; implies
that
Ter = Z Je PR q, = 22101 0y
= Zi R, = q, (I11.68)

by (111.G6); i.e., £24; is invariant under 7. The state wy; is defined by
waala) = (g | fa] Ry}, (111.69)

for a € A. Araki [1,2] has proven that wy ; is indeed a KMS state for {al }iex

and hence is invariant under {a}''},cg. (The time-translation invariance of

a KMS state is a simple consequence of Liouville's theorem, which says that
a bounded entire function on C is constant.) From the fact that exp(—it£;)

implements o} ' unitarily on M, and Egs. (111.63) and (I11.68) it follows that
e i, (I11.70)

Le., 0is an eigenvalue of £; with corresponding eigenvector {15 ;.
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The construction of 2, ; can thus also be viewed as a spechal problem
for £;: If we can show that 0 is a simple eigenvalue of £; then {1, can
be defined as the corresponding eigenvector, The results summanzed in this
subsection, mostly due to Araki [1, 2], are plausible extensions of those of
Sect. IL5. For KMS states obtained as thermodynamic limits of equilibrium
states af bounded systems, they eould be derived from the results in Sect, 115
by limiting arguments. However, like all other results in Sect. 111, they can be
proven directly, hy ising the KMS condition [or Wi, the Lie-Schwinger series
(I11.56) and the Dyson series for expl—3C; /2] - exp[3L/2] in moderately
clever (and somewhat tedious) ways. Reviewing the details goes beyond the
scope of this paper; but see [1, 2, 12, 13}, But we present the most essential
tools and explicit formulae for 2, and Z, .

Fora e ..; we may define

a(7 4+ i) = Oy moa gyee (@) . (TIIL.71)

Temperature (imaginary-time) erdering, T, of a product of operators a(r +1t)
18 defined by

Tlay(r + ity)- - 0alrn + itn)] 1= anpy(Tagn) + itegn) - Bepuy(Tega) + ileg) |
(LIL.72)

where x is the permutation of {1,2,... , n} with the property that, for ; # 7,
t#E
Tafl) = Tw(@) = *°° < Tajn}» (I11.73)

for arbitrary a;,a3,... .4, € .:i Then the KMS condition for wy implies that,
for arbitrary n € N, the temperature-ordered Green functions

wa Tlay(Gy) - -aqlCa)] ) (HL.74)
are analytic in §y, (g, ..., on the domains
To = {Gio-oo Go |0 <ReGoy <+ <ReGom <8}, (IILT5)

with

|wal Tlas(Cr) - anl)] )| < []lasll, (H1.76)

=1
where |[a]| is the C"-norm of a; see [1, 2|. Furthermore,

wal Tlaa(Gi) - anlCa)] ) = wal Tl ($o +7) - an(Cu 4+ 7)) ), (IILTT)
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for any real r. By (IIL76), (IIL74), Egs. (11L75) and (IIL77) hold for arbi-
trary ay,... .0, €E . neN
The GNS construction il]ll]-]il‘."l- tlial

{H, | f[f
j=l
<ﬂ'n | 1:[ o)) e~ et ~drynic ﬂ.i) :

=1

1]

wal Tlay(§p) - an(Ca)] ) Byyy] €1~ Sruan)E !'.1,.} (111.78)

fl

The second equation follows from the first one by conjugating with 7 and
using that J51; = §1;.

Applying the Duhamel (or Dyson) series for the expressions for {15 in
(HIL6T), we find that

0y = Z;)e*uitq, (111.79)
B i.lllll Ty L]

= 233 [an [Cdne [T dn i) dn) 9.
i ={F a o L

Normalizing {2y and 4, to have norm 1 and using (111.78), we find that

o 1 4 i
Zyy = — | dryeeo | drows(TH(R) - )] ). 111.80
at ..Eﬂu "!ju‘ 7 i wwy( T[I(n) (ra)] ) ( )

With (II1.76) we find that, for 0 < 3 < oo,
0 < Zyy < exp(ANN) . (I11.81)

Similar formulae hold when one replaces C; ; by £; .. The KMS condition for
wyy (see (I1L69)) with respect to a!' can be derived from (I111.56), (I1L.77)
and (I11.79) by straightforward, albeit somewhat tedious, calculations,

Formulae (ITLT9) and (I11.80) are very useful in the analysis of concrete
models: see Sect, V.

IV . KMS States and Liouvillians for Idealized
Atoms coupled to the Quantized Electro-
magnetic Field

IV.1 KMS States for the Quantized Free Electromag-
netic Field

In this subsection, we illustrate the general theory developed in Sects. 11 and
11T on the example of the equilibrium (KMS) states of the free electromagnetic



BF5-4. December 21, 1999 34

field in the thermodynamic limit, as described by Araki and Wonds in [3].
Similar results can be derived for gases of free fermions at positive density
and temperature; see [IF

It iz convenient to deseribe the free electromagnetic feld in terms of cre-
ation -and annihilation operators u;,{.i_.:}. ay (&) satisfyving the canonical com-
mutation relations,

[ﬂ';“_..]' I'I;r[E']I = iuﬂfil , uy{F}] = 0, (IV.1)

[ax(k), ale(K)] = dyp 8k - K, (IV.2)

as described in the introduction. We thus consider observable algebras which

are =-algebras of unbounded operators, instead of the C*-algebras appearing

in the general theory of Sects, 11 and IT1. By using the bounded Weyl aper-

ators we could, however, translate our results into C"-algebra language. But
in the analysis of concrete models, +-algebras are more convenient,

For notational convenience, we set k := (k,A) € R x Z;, where k € R

is the wave vector and A = £1 is the polarization index, and we denote
[dk =%, ., [d*k. We define

dlk — k') 1= 8y k- F), (TV.3)
and
a'(k) = al(K), alk) = aul(k). (IV.4)

Let Sy(RY) denote the Schwartz space test functions vanishing at the origin
of B'. For f = (f,,[.) € §(R')*, we define

o) = 3 [ekn@ad. o = ¥ [ern@ad),
A= A=d

(IV.5)
and the complex conjugation
(T = (7N (B) (rN)-(B) = (folR), F-(B)). (IV.6)
We set
(1) = X [ KB i), (Iv.7)
A=k

Then (IV.1) and (1V.2) can be written as

[a*(f), a*(g)] = [a(f),alg)] = 0, (IV.8)
[e(rf), e*(g)] = (f.9)1. (IV.9)
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We shall, however, continue to also use the operator-valued distr butions
alk), a®(k).
Let P denote the polynomial algebra generated by

{a(f)a*(g) | f.9 € S(R')}. (1V.10)
It is & «-algebra for the s-operation defined by
[u[_f:l:l' = a'(rf). (Iv.11)

The time evolution of operators in P is described by a one-parameter group
of s-automorphisms, {a] },cq. of P determined by

ﬂ-:r I[u'{ul']] s t'”"'mn"l,r_kj . nf{m{k}} 1= r“""'tk]u{k:l i (IV.12)

where w(k) := ]j.'l is the energy of a photon of wave vector E; {we set h=1).
A guasi-free state p on the s-algebra P defined in (IV.11) is a state with
the property that the connected, or “truncated”, expectations

pla®' (fy)---a®(f,)) (IV.13)

all vanish, except for n = 1 and 2. It is not hard to show that there is a
unigue state L..,'J‘: on P which is a KMS state for the time evolution {n{}.ﬁl
at inverse temperature 3. The state o) is quasi-free and hence completely
determined by the equations

wha'(k)) = wdfalk)) = «l{a"(k)a"(K)) = wilalk)a(k")) = 0,
(IV.14)

and

Sk — &)
A — 1"

Expectation values of products of more than two creation- and annihilation
operators are given by sums of products of expectation values of a®(k)a(k'),
as given by (IV.15), according to Wick's theorem, which holds for quasi-free
states. The KMS condition for ....Iﬁ is a direct consequence of applying (IV.2)
and (IV.12) to (IV.15):

wy(a(k)a* (k') = (IV.15)

whla(kla®(K)) = &k —K) + wi{a®(K)alk)) (IV.16)

&k -k
= SR el ) alh),
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where, in the frst equation, we have used (IV.2), in the second (IV.15), and
in the last one (IV.12).

The GNS construction (in a form originally due to Borchers and Wight-
man) tells us that the data (P, a),w}) determine a Hilbert space Hj, a
representation £ of P on M}, a vector (1) € H} cyclic for ([P], and a unitary
one-parameter group {e” "' },q such that

wife) = (0| a2, (IV.17)
tlof(@)] = “ flaje™er, (IV.18)

for arbitrary a € P. Furthermore, one easily shows that 115 is separating for
{1P] (which follows from the KMS condition for w} and the faithfulness of
the representation £; see Sect. [11), and that there is a modular conjugation
J such that the anti-linear representation r of P on H!, given by

rla] == Jfa)T, foraeP, (IV.19)
commutes with £[b], for all b e P, and
Jl =0, J6T = -L;. (Iv.20)

These are immediate corollaries of the general theory outlined in Sect. 1L

Following [3], we now present an explicit realization of the representations
f and r of P, of the vector Ilf;, and of the modular conjugation .7, which is
reminiscent of the description of the quantum theory of bounded systems in
thermal equilibrium presented in formulae (11,48)-(11.56) of Sect. II.

Let F denote Fock space carrying the standard Fock representation of
P. Fock space contains a distinguished vector {t (unique up to a phase)
characterized by the property that

alf)Q = 0, forall f e S(R*)?, (IV.21)

which is called the vacuum vector. Fock space F and the vacuum 2 arise
by GNS construction from the guas:-free state w, on P given by letting 8
tend to oo in (IV.15) and (IV.16). In our notation, we identify P with its
representation on F.

We define an anti-unitary operator T on F, the second quantization of T,

by setting
TR = {1, (IV.22)
Ta*(/)T = a*(rf), (IV.23)
T =T = T, (IV.24)
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Physically. T describes time reversal, (compare (IV.12) and (IV.23))

Next, we deseribe an isomorphism, fr, between HY and F @ F and be-
tween appropriate representations. On F & F, we introduce the creation-
and annihilation operators

af (f) = o¥(fi®1, (IV.25)
a®?(f) = 18Td*{(/IT = 18a*(rf). (IV.26)
Note that a,, a; yield an anti-linear representation of the canonical commu-
tation relations (IV.8)-(IV.9). Let
1
exp[fu(k]] - 1

The isomorphism [y ‘Hi —+ H := F ® F is doetermined by the following
equations:

> 0. (IV.27)

palk) = plk) =

I, = neq, (IV.28)

L taN I = alTTof) +ai(vBf),  (IV.29)

erla(D I = ai(yarf) + a(VTFarf).  (IV.30)
Note that, by (IV.25)-(IV.26), Eq. (IV.29) is lincar in f, while Eq. g]'f.ﬂﬂ]l is
anti-linear in f, as it should be. Since £ is eyvelic for P in F and €2 is cyclic
for £[P] and r[P] in H Egs. (IV.28)-(1V.30) determine fr completely, Itisa
trivial caleulation to show that fpfla® 15" and frela®|I5" satisfy the canoni-
cal commutation relations (1V.8)-(IV.9), because u:f and a¥ satisfy them. It
follows that {[P] is «-hemoemaorphic to I-(P):" and #[P) is =-homomarphic
to frr|P)I:". Furthermore, since af £} = 0, for all f € S(R')*, where (2 is
the vacuum in F, we find that

(&0 | Iy fla" (k)] flalk))] 17! R @ 0)
= (&0 | VoE) a,(k) Vo) a3(k) & Q)
dk - k')
N o [ ¥ B
= whla*(k)a(k)) = (9f | fla* (k)] dalk)) LY,  (IV.31)

where the first equation follows from (IV.29) and (1V.21), the second from
(IV.9) and (IV.21), and the remaining equations from (IV.27), (IV.15), and
(IV.17). Likewise,

(@ Q| by rla* (k)] rla(k)] 17 R0 Q)

1

wh(a (k) a(k')) (IV.32)
= (2 | rla" (k)] rla(k")] 25) .
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It follows that [y : H;‘; — F & F, defined by (IV.28)-(IV.30), is an sometry.
Next, we caleulate Ly = f-rﬁf.f.;l. We claim that

Ly = fd!:a_.,-{f::l [n;[k]u;{kj - u:{ﬂ-]u,f.l.-}]- (IV.33)

Then
gty a (k) el amielk) aelk) (1V.34)
F"""-I' ﬂT{k:Ie—ll‘f.j = 'E'.Ld”“r{k:l . {]H_ﬂﬁ:

Thus, using (IV.29), we find that

'Lt Infla(R)) I7' e 1 = ) [ fla(k)] I7' = IrC[of (a{k))] I,

(IV.36)

as required. Similarly, by (IV.30) and (IV.33),

U frefa(k) f7 e = @ forfa(R)] IF = BpremMa(k)] 17
= Irrfof (a(k)] i7", (IV.37)

because r is anti-linear. This, (IV.18), and the corresponding relation for r
prove (IV.33).
For v @ ¢ € F& F, we define

Evey = pa¢, (IV.38)
and we set
J:= ET®T. (IV.39)
Then
Jaf(f) 4 = af(rf), (IV.40)

and, using that J{{a®(f).7 = rla®(r f)] and Eqs. (IV.20)-(IV.30), we verify
that

Jipa* (NI4T = Lerla® (o)) 15 = LI (N)J I, (IV.41)
By (IV.39),
Jnen = 9en, (IV.42)
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and J = J* = J7'. It follows from (IV.41)-(IV.42) that
J = Iy JIF, (TV.43)

e, J is the modular conjugation in the Araki-Woods representation. MNote
that

JIPe1)J = 1aTPT. (TV.44)

Our account summarizes all essential features of the quantum theory of
the free electromagnetic field in thermal equilibriom.

IV.2  An Idealized Atom and the Quantized Free Elec-
tromagnetic Field

As a next step, we consider a system consisting of an idealized atom with
finitely manv levels and the electromagnetic field. coupled to each other and
in thermal equilibrium.

We begin by describing an idealized atom with finitely many levels. This
svstem is a special example of those deseribed in Subsection 11.1. We briefly
recall the main objects and notions. The state space M,y has dimension
N < oo,

My = C¥, (IV.45)

and the Hamiltonian, M. 15 a selfadjoint N x N matrix on H,;. According
to Hypothesis H-1, the eigenvalues of H,; are simple. We choose the stan-
dard basis in H,; to consist of cigenvectors {-,:l_,. j‘;}' of H,; corresponding to
the eigenvalues Ey < E; < .- < Ey_,, ie., Hyp; = Ejp;. The atomic
Liouvillian acts on K, = My 2 & by

Lk = [Hy, K], (IV.46)

where My denotes the algebra of complex N x N matrices, and the atomic
KMS state is given by

o= Zyy 3™ o)l (IV.AT)

Recall from (IV.17) that ug denotes the unique KMS state of the electro-
magnetic field at inverse temperature 3. The reference state of the systems
consisting of an atom and the quantized radiation field is

o = pfeuw). (IV.48)
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Let {Ha, 250, f,r) denote the GNS Hilbert space, the evelic vector, the left
repesentation of 4 = My @ P, and the right anti-representation of A,
respectively, associated to {pﬂ, A). The Liouvillian of the uncoupled system
is

Ly = Ly + L, (IV.49)
where £; = I7'L;ly, with Ly as in (IV.33) and [y as in (IV.28)-(IV.30).

Note that gf is the unique KMS state of the uncoupled system.
We define I € A by

I = fm.-{c:rk}m'[k] + Gk)* @a(k)}, (IV.50)

where, as in Hypothesis H-3, the coupling function G : B x Z; &+ My is
assumed to obey

NGk = wik)®, (IV.51)
for some g > 0. The Liouvillian of the interacting system is defined by
£, = Lo + ofdN) - (1]}, (IV.5)
and the “Radon-Nikodym™ operators by
Lop = Lo+ glll), L, = Ly — gr|]]. (1V.53)

For the purpose of our analysis it is convenient to work in the Araki-
Woods representation, i.e., to conjugate the above operators by the isomor-

phism
fo == Ic@ly : Hy = H = Ha@Ha B FBF, (1V.54)

where conjugation by [ denotes complex conjugation in My in the standard
basis {; ® qﬂj}f;;',], We set

Ryp = Joflap (IV.55)

and note that

M=l
Opo = Zip Y e ™ip@p,20010. (IV.56)
=0
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Defining
Ly == R lg', L= L, 5", (IV.57)
we find that
L, = Ly + gW, (IV.58)
where
Ly = Luel +1901L,, (IV.59)
Ly = Hy®14-149Hy, (IV.60)

L; is defined in (IV.33), and the interaction is given by
W o= L{qn -0}t (IV.61)
By means of (IV.50), and Egs. (1V.29)}, (IV.30), we readily find that

W = fdk{{mmrk} - V/plk) G7(k)) az(k)  (IV.62)
(V1 + plk) Gi(k) — /p(k) G, (k) a(k)
(Volk) Gi k) — 1+ plk) G, (K)) ap (k)
(VoK) Golk) ~ I+ plK) GE(K)) a,(K)}
which we may rewrite as

W = ai(y1+pG - .;‘.-",EE‘_"] + ae( /1 + pGt — /pG,) (IV.63)
+a; (PG = V14 pG,) + o /PG - 1,,.l'l+,rJ(T.'.}.

using the shorthand notation i .= .",_-ru!'["d my=m® 1y, m =1,8m,
and

ag(m,) = fdkrli"[k}n;l:k} . a,(m,) = fdkmﬁ{k]ﬂ,{k], {I1V.64)

for o, € {£,r} and matrix-valued functions m: B x Z, — B(H,).
Similarly, setting

Lot = Tolyuly v Lyy = Bilysl s (1V.65)
we have that

Loy = Lo+ gW,, L,, = Ly + gW,, (IV.66)
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where

W, = 01" (IV.67)
= n”l 1+pﬂ'¢'_| + ﬂ,{\,."l +p{':-';] - u:[:ﬁﬂ;] + u,{ﬁﬂg}.

W, = —.fu.rl.ﬂfﬂ," (IV.68)

= —a;(VpGr) - al(VPG,) - al(V1+5G;) = a(y1+5G}).
Besides L;, the following positive operator,
Ln-" = Hr'ﬁ']; = IFWHI, [["I.-’Eg}

plays an important role in our analysis. It is straigthforward to see that L,
15 selfadjoint on its natural domain

Dom[Leus] = {vE€F@F | | Lausll < 00} (IV.70)
and that L,,. dominates Ly, in the sense that Dom[L,] 2 Dom[L,..] and
Efl & Lous- (IV.71)

Moreover, we have the following standard estimates (see, e.g., [T, 8, 9]),
Lemma IV.1, [ffe L*(R' xZ;, My) andw™?f € L*(R' x Zy, My) then

llae (£} Lait* |

=12 L _» -
il (fan(is i) wor) ", ava
llaz (fu) (Lane + 1))
for a,p € {L,r}.
From these relative bounds and Hypothesis H-4, i.e.,

113
(frl'k{m[k}+m{k]"]}||G'I[J:}||*) < A € 0, (IV.73)

we conclude selfadjointness of L, by Nelson's commutator theorem.

Theorem IV.2. The operators L,, L, ;. and L, are essentially selfadjoint
on Dom|L,,.].
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Proof. By (IV.71) and (IV.72), we have, for 2, ' € Dom| L.,
[{v] Lyu e}l = (IV.74)
(1 + 1698741 + 3)V2AY [[( Luss + 1) 0|| [(Lase + 1))

where L, 4 = L, L,y or L, ,. Next, we observe that Ly and L., commute
and that on Dom|[LL:], we have

[“F[-rjl] ' Lmu] = g 1.“" -Fj.l} : {[VTE}
Hence, for @, ¥ € D(Lass ),
[(¥] [Lans + 1, Lygle}| < (IV.76)

1698721+ )2 A ||(Laws + 1720 | Lane + 1)) -
Thus, L, is essentially selfadjoint by a variant [33, Thm. X.36°] of Nelson's

commutator theorem. O

Next, we recall the expression for the modular conjugation in the Araki-
Woods representation,

J=hKhIG'= E(CRCOTaT), (IV.77)
where the exchange operator acts as
Elgpadasdad) = (apad @y), (IV.78)

for y @@ @ ¢ € H, whore H is defined in (IV.54). Note that the
invariance property J1,5 = {144 translates to the invariance property

JGiae = gy, (1v.79)

IV.3 KMS States for an Idealized Atom coupled to the
Quantized Electromagnetic Field

The selfadjointness of the interacting Liouvillean L, guarantees the existence
of the dynamics as a strongly continuous unitary group {exp|=itL,]|}eq on

H. We define the Heisenberg-picture time evolution of a bounded operator
bon H by

uf{h} o= pthe =il (IV.80)

In the following theorem we construct a perturbed KMS state for the dy-
namics described by {of },cg. starting from the data (H, (M y2P), J, L,, I).
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Theorem IV.3. Assume that G fulfills Hypothesis H-{. Then the vector
ﬂﬂj 15 i the domam .ﬂf the two unbounded operators u‘!:r:p[—,ﬂi'.ffil arnd
exp{AL, /2], and the vector

ﬁ.".g’ b 3,“;,1} !.'d'Lu.ll": ﬁ.l‘l.ll = Ed-_llil t"ﬂl"”q ﬁ.ﬂ.ﬂ HV-E!-}

where Zy, = ||~ W2, of = ||-r‘"" i ﬂM“ defines a KMS state, wj, on
My @ P, for the time cvolulion qiven by {af }jeg. Moreover, the normaliza-
tion factor £5, obeys the estimale

0 < 24, (IV.82)
< fTrfe-9Ha) exp(g*_:i'*’ f{i+|;3wi_k}]"1]]|ﬂ[k}||“dk) < 0.
In particular, L’ﬁ_ﬂln = {).
Proof. We first note that due to the definition of 25,
Lag = {ﬁ.:ua| e~ Al ﬁar.u} = {ﬂa.u|f_ﬂc"' Dap) - (IV.83)

Thus, if we can prove (IV.82) then Q45 8 in the domain of e~ Eat and,

similarly, in the domain of 560+ To demonstrate (IV.82), we introduce
I(r) i= g~ Tl f[f]n‘:'h' and observe that

(an| e Qap) (IV.84)
= q dr dr o drn {Qap| Z(11)- - - T(1 ) g,
nz_u f 1_[ 3 f (Qa0| I(m a0}
Ma=1
= & | dn | dr dry (g T(r1) -+ T(7aa) o)
E f tf 3° f :-1‘: ﬂn| 1 am ) 2800

using that ]_]:1":‘( “‘“"I‘[II)I}M € Mg for w,... ., € Ry with 370w, <

8. Abbreviating e~ ™Wa*(k) =: a*(k, 1), -f'“""“u[k]- =: a~(k,7), G(k) =
G*r{k), and G*(k) =: G~ (k), and using (IV.36), with ¢ = i7, and (IV.50), we
may write

I(r) = f dk E[e~" MG (K)e™ @ a® (k, )] . (IV.85)

ok
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Inserting this expression in (IV.84), we then obtain
(] e~ 5 012) (1V.86)

S5 Bl [ o

=0 g 4,—

'l‘r[c-'““ ri =T |M, Gk ,11[r|-rghff o, plTm-1 —r:nHLrﬂ-crh{k].}]
.Jg{-'iﬂl “:.'|.'I"| ]' - --Hlu" tr"..:h“ T ]} :

Applying Holder's inequality for the trace,

Tr[A4, B, -- < [z H(Tr{ 14,

=l

” ) ) i (IV.87)

where p, = 0 and 1/p; + <+« 4 1/p, = 1, we observe that
Tr!c'_['ﬁr'_“"]""l?" Ht' ]‘,.:n—ﬁlﬁu = .Iﬁn-l*ﬁ-ﬁ"ﬂ_ﬂ!ﬂh{kh}]

< Tr[e] Hnﬂ{mn (IV.88)

3=1

Next, since oy is quasi-free, Wick's theorem implies that

whla™ (ky 1y} e 0™ (kyy, 7p)) = (Iv.89)
Z H wal a1 (kagai 1) Tagasn) a7 (Kagasy Tegzn)) »
rEPy, jul

where Py, is the set of pairings, l.e, all permutations ® € S, such that
w(1) < =(3) < --- < w(2n— 1) and 7(2j — 1) < 7(25). Since wf{ata*) =
wila~a™) = 0, the only nonvanishing contributions in (1V.29) come from

. ' . elr=rb)

wala™(k,r)a®(K.7')) = dk-k }r-'j'-"“} (1V.90)

[t} I L) F “'“_H-T L'H-}
uJI-,E!I-*”u'.T':IH_{L'.,T :|] = J[L—A}m . {WEI}

Thus, for 0 < ' < r < 4, we have the estimate
2 ein _
8k —K)—gr— < % whie”(k,7)a” (K, 7))
F
Sl k) 4 1

< (k- k) (IV.92)

Al — 1
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The number of pairings is

(2!
TR

[Paal = (20 =1)(2n—3)---1 (IV.93)

Henee, first summing over all g € {4, = }*", taking (IV.89) and the upper
bound in (IV.92) into account, and using (IY.93), we obtain

':H;mlr-"a'-'f ot £], ﬂ} {']'1.{!.—.:IH_J”-L
i . n 4 ™ Tim =1
< 3 g (¢ f contsatyel oo ar)” [on [ ("o

- E" ~’ ‘F f uLI:['.i...{L:I,n"E]|Iﬂ[H||Jr.|'ﬁ')

n=i
o :
= H]](_r,'r 2 ft'mh[.l‘i.u{k:l,."‘."] IIC-'{J;}IIE*urﬂ.'}
< exp(o(1+0)8A) < o, (IV.94)
due to (IV.73), and using cothr <2+ 2/r. O

V  Spectral Analysis of the interacting Liouvil-
lian

V.1 Main Results and Outline of Proofs

In this section we present our main results on the spectrum of the interacting
Liouvillian L, introduced in Eqs. (IV.52), (IV.58). Throughout our analysis,
we assume that Hypotheses (H-1) through (H-5) stated in the introduction,
Sect. I, are satished. Our goal is to prove that L, has purely abselutely
confinuous spectrum covering the real axis, except for a simple eigenvalue at
0. The eigenvector corresponding to this eigenvalue is the perturbed K M5
state {1, , constructed in Theorem IV.3.

Our method to prove this result involves lwo key mgredients: a novel vari-
ant of the technique of compler spectral deformations (see, e.g., [15, 33]), and
the wsespectral Feshbach map introduced in [7, 8. We shall first qualitatively
describe these ingredients and then outline the basic strategy underlying our
et b
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Recall that the Hilbert space of temperature states of the system, in the
Araki-Woods representation, is given by

-

=HeH0FaF, (v.1)

see Eq. (IV.54). The wave function of a photon in momentum space is given
by a pair of functions (f.(k), f_(k)), k € R', On the space of one-photon
wave functions we define dilalafions, {u(#)}aen, by setting

u(@)(f (), F(E)) = e @3 (f.(e7%F), f-(e*F)). (V.2)

Note that u(f) is unitary in the usual L? scalar product. We define U(8)
to be the unitary operator on Fock space F obtained from u(f) by second
quantization; see, e.g., [7T] and Sect. V.3, Then

vigytr = 1, (V.3)

where 1 is the vacuum vector. We define a representation {7{8) }scg of the
group of dilatations on the Araki-Woods Hilbert space by

' (#)

1

lalael@)elU(-4). (V.4)

For the purposes of our analysis of the spectrum of L, it is cructal that the
arguments, # and —#, in the third and fourth factor on the R.S. of (V.4)
have epposite signs. Our method of complex spectral deformations relies on
extending # to a complex domain, X, 5, which is the strip symmetric about
the real axis and of width 7. It is casy to see that lherg‘is a natural dense
domain T C H with the property that, for every ¢ € D, U(#)y) is an analytic
H-valued function of # € Yeia

We start by considering the spectrum of Ly = L_y; see (IV.59). Its
eigenvalues are given by those of L, ie., by {E, - E; 1,5 =0,... N-1}
the eigenvalue 0 is thus N-fold degenerate. These eigenvalues are covered
by N* branches of continuous spectrum which are copies of the continuous
spectrum of Ly, In the example, where N = 2, By = 0, E; = £, the spectrum
of Ly is depicted in Fig. 1.

We define the dilated Liouvillian by

Lo(8) = U(8) Lo U(-0) . (V.5)
From formulae (IV.33), (IV.59), and (IV.69), we infer that
Lo(#) = Lg + cosh(#) - Ly — sinh(@) - L,.. , (V.6)
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I
» .-

"E'u {I fn

Figure 1: The spectrum of Ly

Figure 2: The spectrim of Ly(#), for Re@ =0, Im# = ¢ > 0.

where L. is the pesitive operator defined in (IV.69). The operator Ly(#) is
clearly analytic in # on the strip £, 4. If @ ¢ R then the spectrum of Lq(#)
intersects the real axis only in the eigenvalues {E, - E, | 1,7 =0,... N =1}
of Ly If Im# =: & > 0 it is contained in the closed lower half plane, while
if @ < 0it lies in the closed upper half plane. In deriving Eq. (V.6) and
eatablishing these properties of a(Lg(@)), the relefive minus sign between
the third and the fourth argument on the R.S. of Eq. (V.4) is cruciald In the
example considered above, the spectrum of Lgi(#) for Re# = 0 and Im# =
! > 0 is depicted in Fig. 2.

The absolutely continmons nature of the spectrum of Ly = Lg(# = 0)
away from its eigenvalues can be inferred from the spectral properties of
Ly(@), # @ R, by considering matrix elements of the resolvent of Ly between
vectors in the dense domain P of dilatation-analytic vectors and using that

(| (Lo—2)"¢) = (DD (Lo(@) =) T(),  (V.7)

for ¢ and ¢ in D. Clearly the RS, of (V.7) is analytic in £ in the complement
of a(Ly(@)), and this provides an analytic continuation in = of the L.S. of
(V.7) to the complement of a(Lq(0)).

The idea is now to study what happens to the spectrum of Lg(#) when
the perturbation

gWii) = gU(mwW U8 (V.8)

is added to Lg(#). In defining the operator W(#) for complex values of & €
L os+ we shall make use of Hypothesis (H-2) stated in Sect. 1. There are some
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umportant technical points in the construction of an analvtic continuation of
the operator W{#) and of the interacting Liouvillian
L,(8) = ﬂ(ﬂjl L,m-!ﬂ = Ly(0) + gW (&) (V.9)

that require careful examination. They are dealt with in Sect. V.2 and in
Appendix A. The upshot is that there exists a natural domain Ty C D dense
in M such that, for arbitrary vectors o and o in Dy, the matrix elements

{E’{H}g | (L,(8) = z)7! E’{ﬂ]w} ., Imz#£0, HeR, (V.10)
are the boundary values on the real axis of the function
(O(@)e | (Ly(6) - =)' U(B)w) (v.1)

which is analytic in & on the strip E;,. defined in Eq. (1.24), thanks to
Hypothesis H-2. Since U(#)™' = U(#)* = U(-#), for # € R, the matrix
elements (V.10) are independent of 4, and hence

(el (Ly=2)7 ) = (Uld)e | (Ly(0) - 2)"' UOIW) (V.12)
for g, E Dy, and Imz > 0,0 < Im# < 0.

If we are able to find out where the spectrum, a{L,(6)), of Ly(#) is lo-
cated for, e.g., purely imaginary # = i, with 0 < ¢ < ¢, then we can use
Eq. (V.12) to construct an analytic continuation in = of matrix elements of
(L,—z)"" between vectors in Dy from the upper half plane to the complement
of a(L,(#)) in the lower half plane,

We shall attempt to locate the spectrum of Lg{id) with the help of per-
turbative methods, using that we know a{Lg(id)) explicitly. The form of
a(Lglid)), for ¢ > 0, see Fig. 2, Formula (V.6), and the bounds presented in
Lemma IV.1 suggest to apply the method of the isospeciral Feshbach map de-
veloped in [7, 8], in order to explore the properties of a(L,(id)), 0 < @ < ;.
We thus recall the definition and properties of the Feshbach map.

Let H be a closed operator on a Hilbert space M and let P be a closed
bounded projection operator whose range is in the domain of H. We define

H =PHP, P=1-P, (V.13)
Let = belong to the resolvent set of H|p,. We assume that the operators
PHPH-z""? and [H-z""*PHP (V.14)

are bounded, Then we can define an operator Fp{H — z), the Feshbach map
(associated to the projection P) at i — z, acting on the Hilbert space PH,
by setting

Fp(H-2) == P[H-2)P - PHP(H-2)"'PHP. (V.15)
In [7, 8] we have proven the following theorem.



BFS-4, Divesnlier 21, 1999 a0

Theorem V.1. Under the hypotheses an H, P, and = just sfaled, ene has
that

(i) =z is an eigenvalue of H off 0 15 an eigenvalue of FpllH — z), and the
multiplicity of = € a,,(H) s the same as the multiphicity of 0 €
d.qll:'?f'[f'r T ‘_-:”ll

[ii'_l z br.‘funy.u to the resolvent set of H iff 0 -!rr.‘.fmly.! to the resolvent set of
.illl:'.p[f:lll - = ’.'

(ili) For o0 € PH and = ¢ a(H),
(o | (H-2)"¢) = (| FplH-2)"" . (V.16)

Our strategy, in this section, is based on applying Theorem V.1 to the
concrete situation studied in this paper, with the following identifications:

H:=H, H=Lf(id), (V.17)

for some 0 < & < iy, to be chosen aptimally. Furthermore, the projection P
is given by

P = Plop™ (V.18)

where n 18 an eigenvalue of L, (ie., n = E, - E,, with E,, E; cigenvalues
of Hy, i,j = 0,... N = 1), and P is the orthogonal projection onto the
cigenspace of L, corresponding to the eigenvalue n. Moreover, PJ™ is a
spectral prajection of the operator Ly, introduced in (1V.69); more precisely

P i N [Laws < 0], p>0, (V.19)

where y[r < p| is the characteristic function of (—oo, p). The positive number
p is later chosen to depend on the coupling constant g¢; (p ~ g*~ "), or
P~ gt for & small £ > 0).

Next, we define a family of subsets, S., S .. Spe,and 5,5, 1 €4i,7 < N,
1 # 3, of the complex plane. Our l'l'li:llll'.'li of a projection P, as in Eqs. (V.18),
(V.19), in the definition of the Feshbach map, Fp, applied to the operator
Ly (td) = 21, ie.

Fo(Lylit) = 2) (V.20)

will depend on which of these subsets, 5, the variable = belongs to. For
the definition of 8 |, we pick 0 < £ < 2/3 and set

R T R i (v.21)
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Figure 3: The subsets 5., 8y, S, Sij-

and furthermore

S = {;Eﬂilmz}-ﬂr%—ﬂm . (v.22)

Using pg, m, and i,5 € {0,... ,N — 1}, i # j, the sets 5., are defined to be
the following subsets of 5,

& = {:E.s dist(Rez , o[L]) > E!'i} (V.23)
54 = {ze8|[Rez - E+E| < B}, (V.24)
S> = {zes “‘“{‘?]m{|1 ?} (V.25)
Soc = {zes g;m“"f}ﬁ}_ (V.26)

In the example, where N = 2, Ey = 0 and E| = g;, these subsets are shown
in Fig. 3.
We note that (V.23)-(V.26) define a covering of S,

s ¢ s u(Usiy) uses u s, (v.27)
i#j
as one easily checks.

Next, we describe, qualitatively, how one analyzes the intersection of the
spectrum of L, (i) with any one of the sets 5.,5q5,50., and 5;;, 1 # .
The easiest problem is the determination of
V.11 o[L, (i) N S..

We show that

o[l (id)jNnS, = @, for g > 0 sufficiently small. (V.28)
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To this end, we show that, for z € 8., (L,(0d) - z)7 1 is a bounde] operator.
This can be done by expanding (Lg(id) = 2)° Vin a Newmann seres in the
perturbation gl (@) and, after using that = € 8. and applying the bounds of
Lemma IV.1, proving that this Newmann series converges o norm, for g > 0
siall enough. Details are prosented in Sect. Vo

The second easiest problem is the study of

V.12 o[l i) NS,

for g = 0 sufficiently small. Here we make use of the Feshbach map associated
to the projection

P= P, = FE opP™, (V.209)

where pg = g%~ %, for a suitable £ > 0, and E;; := E, - E,. Without loss of
generality, we assume Lhat the coupling constant g is so small that

|Eiy — Eggl > 2 (V.30)

it E, , # Ey . For simplicity, we also assame that E, | is a simple eigenvalue
of L. but this assamption s only made, in order to explain the key ideas
without technical complications.

We now note that if = € 8, . as defined in (V.24), then

[(I,{m] = .-;n|p__|ﬁ]

where Igl:fﬂ] = F.I} Ly(rtd) ?iu, sev (V. 13), is a bounded operator on F"-Jﬁ'
This is seen by expanding the resolvent (V.31) in a Newmann series in
gW i), where Wiid) = ﬁull'{ﬂ'] I'_'-',I_,. Using (V.30) and the definition
of PR, Eq. (V.19), one proves norm-convergence of this Neumann series,
for sufficiently small g > 0, with the help of the bounds of Lemma IV.1.

Similarly, one proves that

F Wi P |L i) — |77, L) - =|"P P, ,w(id) Py (V.32)

i (V.31)

are bounded operators; note that
PLogWENP,, = P, LiNP,,, (V.33)

because P, commutes with Lg(id), (see (V.G)).
Thus the Feshbach map on L (1) — =1 is well defined. It is given by

Fo, (Lylit) -2} = Py (L,(i) -2) Py (V.34)
— @ P W P (T i) — 2) P W(io) Py
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The operator Fp, (L, (i) = z) acts on the space H-Jﬂ and is boundsd. The
leading contribution to the first term on the R.S. of Eq. (V.34) is given by

(Bt + Lid)] gy o] Ln . (V.35)

up to corrections of ofg?); (see (V.19)).

Since, for = € S, the resolvent (V.31) has a norm-convergent Neumann
sories in gW (i), the leading contribution to the second term on the R.S. of
(V.34) 18 seen to be given by

—g* Py W) P (Toliv) = E) " By Wiid) Py (V.36)

up to corrections of ofg*).

In Eq. (V.36), one may replace the projections P, ; on the left and the right
by ."’;‘. @ FPagn, at the price of an error term of ol g*). The resulting operator
is then mdependent of o, for 0 < i < oy, by analyticity. We decompose it into
“real” and “imaginary” part, e, into a selfadjoint and an anti-selfadjoint
operator. The real (selfadjoint) part is denoted by AE, (g) @ Ppgn, while
the imaginary part is written as ig° T & Poon where T s a selfadjoint
operator. Since we temporarily assumed £, ; to be a simple eigenvalue of Ly,
the rank of P! is ane, and AE, ;(g) = ¢* Ae,; PE, and Ty; = v Pg,, are
determined by two numbers, Ae, ; and

1';-..:! g {F'J W t:ll.,l | {ﬂfﬂ = E, + Ej}ﬁ“,r “"J} 4 {\u’.ﬂﬂ

with ¢, = g, @, @02 @ Q, and g, is the eigenvector of Hy corresponding
to the eigenvalue E; see Sect, 1V.2, after Eq. (IV.45).

Expression (V.37) and Hypothesis (H-5) on (k) stated in Sect. | guar-
antee that +" is strictly posifive,

UL B (V.38)

An explicit estimate of 1" can be found in Appendix B.

Putting evervthing together, Eqs. (V.34) through (V.38), and recalling
that the Feshbach map Fp | is isospectral, more specifically, applying Theo-
rem V.1, (i1}, we conclude that

1
dist(e[L,(i?)] N &, , R) > E_:f bl (V.39)

for g > 0 sufficiently small. For more (but standard) details see Sect. V.5.
We turn to the study of
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V.13 alL, (i) NSy,

for g = 0=mall enough, to which we now turn our attention. For thes purpose
we consider the Feshbach map, Fp,, applied to the operator Lgiv) — 2,

Frllylit) -z}, €8s, (V.40)
where
Py = Pile P (V.41)

In (V.41), P5' is the orthogonal projection onto the N-dimensional subspace,
MY, of Hyr o My given by

span{ o @ Yo, 1 @ P4y <o 0 PN BN} (V.42)

which is the kernel of L.
In a first step, we proceed as in Subsect, V.1.2, above, The Feshbach map

Lolid) = 21 .ﬂ.,}[.[.’[i'ﬂ} - :] . (V.43)
with = € 8, 18 well defined, by the same arguments as in Subsect. V.1.2,
and Fp (L(id) — 2} is given by formula (V.34), with F;, ;. replaced by

Fa. Py, respectively, Thus

Fa(L(i)=2) = PBy(L(id)=2) Py (V.44)
— i By W (ith) Py (L (i) — 2) ' Py W(id)

with 0 < @ < . This 15 a bounded operator on Pnﬁ. The first term on the
.5 of (V.44) is given Iy

r.,:hn'mﬁ + olg?). (V.45)

which i= shown in the same way as (V.35). Up to errors of order ¢*, the
second term on the RS, of (V.44) is given by

~ig* (T (g,2) ® P | (V.46)
where the operator I'" = M"™(g, 2) = PP (g, 2) P is given by
M@ Py = PP PaWoLla) WF @ Py . (V.47)
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More explicitly, the matrix elements Ffﬂ’ =g @ T e @) of T in

the orthonormal basis {2 @ f";'n' of Ran P are given by
" = (Wyepene|dl)Weepenen). (V.48)

It follows from arguments similar to those in (I11L41)-(111.43) that, for
8 =id, 0 < 0 < d, and for = purely imaginary, the spectrum of "% (g, z)
is symmetric about the real axis, and the coefficient, 'Y, of the leading
contribution to I (g, z) is an N x N matrix acting on H® with real spectrum,
From Eq. (V.48) it is obvious that

' > g, (V.49)

The matrix "% is studied in Appendix B. One result of the calculations in
Appendix B is that 'Y satisfies a detailed-balance equation

il ef& = -y rietn, (V.50)
kt
and that
>0, TriY<o, forigk (V.51)

From Eq. (V.50) it follows that

N=]
Kp = Y gy (V.52)

is an eigenvector of 'Y corresponding to the eigenvalue 0. Eq. (V.51) then
implies that 0 is an eigenvalue of T of multiplicity 1. The last claim follows
from (V.51) with the help of a standard Pervon-Frobenius argument. Note
that kg is the unperturbed Gibbs state of the atom (in the Araki-Woods
representation (I146)-(I1.51)). It follows that there is a positive constant
Sy > 0 such that

®119) 2 5% > 0, (v.53)

for all normalized vectors o € Hﬁ” which are orthogonal to xs. In Appen-
dix B, we give a lower bound on the value of 3; > 0.

Let Pz denote the orthogonal projection onto xy, and let Py := P -
Psi. Our analysis shows that, forz € 8.5,

Fa (L, (i) —2) = F + F + O(*™), (V.54)



BFS-4, December 21, 1999 o

S, \C()

Figure 4: 0, = oF], 03 = o|Fy), o[ Fp(Lli0))] C oy U, U A, 2 =0. The
region A is of width O(g**), &' < d.

where
Fy = P @ Pa(L(i0) - 2), (V.55)
and
Fy = P & PRe[Llid) - z - ig'T?] . (V.56)

It follows from these formulae that (for = = 0') the spectra of Fp (L, (i) =z),
Fy, and F,y are contained in the shaded regions sgketeched in Fig. 4. InSect, V.6
we then use this information to prove the invertibility of Fp, (L,(id) - 2}, for
2 € S \C(7), 0 <& < d, and g > 0 sufficiently small, where Cla) C Cis
the cone (see Fig. 4)

Cla) = {: e C||arg(z) - 3x/2| = (x/2) - n} : (V.57)
By far the hardest analybical problems, and the physically most interesting
phenomena, appear in the study of

V.4 o[l (i) NS

Formulae (V.54)-(V.56) and Fig. 4 suggest to apply a second Feshbach map
to the operator Fp (L, (20) — z), requiring now that = belongs to the set & .
defined in Eq. (V.26). For this purpose, we define an orthogonal projection,
-Pl:l.:1 by setting

PR = PLoP™, (V.58)
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Figure 5: Set containing o[ K" (g, 2)].

recalling from (V.21) that g, = ¢**2. With the help of formula (V.54),
(V.55), (V.56) and Lemma IV.1 one verifies without difficulties that the
Feshbach map

Fry(Ly(it) = 2) = KO(g.2) == Fa (Fa(Ly(i)-2))  (V.59)

is well defined, for z € & ., and that the spectrum of K'%(g, 2) is contained
in the shaded region shown in Fig. 5.

The operator K'%(g, 2) is now chosen as the initial condition for a renor-
malization operator (-map), R, very similar to the one introduced in [7, 8].
The effect of the renormalization operator is to lower the spectral scale cor-
responding to L, by a factor p, 0 < p < 1, to be chosen appropri-
ately. It is defined as the composition of a Feshbach map with a dilatation,
! U{ln{l,n"p]]l & U[In[lg’p}}: (note that the signs in the two arguments are
now equal.] The Feshbach map involved in the definition of R maps operators
on the range of

Pl o PP (V.60)

to operators on the range of P far arbitrary n = 1,2, ..., while simulia-
neously locating the '"I:ip{'l,"l.'[ﬂl parameter” 2 in ever smaller dizks around a
point Ei., € C (depending on the initial condition). For the initial condi-
tion K'™(g,z) it follows from Theorem V.1, (i), and the fact that L, has an
eigenvalue at 0, proven in Theorem V.3, that £y = 0. Using Hypothesis
{H-3), Sect. I, on the interaction [, one sees that iterated application of the
renormalizatin map R to K'%(g, ) drives this operator towards a trivial fired
point, which is given by the operator Lg(idf) P This is the phenomenon of
infrared asymptotic freedom, which one encounters in all the models studied
in [5, 7, 8] as well as in the model studied in this paper. With a little expe-
rience, the details of this process of infrared renormalization can be carried
out by inspection. They are studied in more detail in Sects. V.6 and V.7.
The conclusion of the discussion presented in Subsects. V.1.1-V.1.4, above,
is that, for 0 < @ < ¥, and for g > 0 sufficiently small, there is an angle
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Figure 6: Approximate location of all (i)

0 < " < ¥ such that

ell(i)] N {zeC|lmz> —_ql} (V.61)
C () = {zeC|lmz<0, |Rez| < cot{d)|lmz|},

Furthermore, L, has a simple eigenvalue at 0. In the example, where N = 2,
Ey = 0, E; = £g, the spectrum of L (1), 0 < 0 < d, for g > 0 small enough,
is contained in the shaded region, shown in Fig. 6.

Using Eq. (V.12) we see that our analysis proves that, away from the
simple cigenvalue ) of Ly, the spectrum of L, is purely absolutely continuous.
The general results of Sect. 1114 then imply that the model studied in this
paper has the property of “return to equihibrium ",

V.2 A Comment on Exponentially Fast Return to Equi-
librium
The results on the spectrum of L(1) presented in the last subsection are
not sufficient to prove exponentially fost return to equilibrium of dilatation-
analytic initial states. In fact, there is no compelling reason to expect that,
for the general class of interactions between the atom and the quantized ra-
diation field considered in this paper (see Hypotheses (H-1)-({H-5) of Sect. 1),
arbitrary dilatation-analytic initial states of the system return to the unigue
equilibrium state constructed in Theorem IV.3 exponentially fast. How-
ever, for a rather special class of interactions introduced by Jak#icé and Pillet
[27, 28], one can prove exponentially fast return to equilibrium of initial
states belonging to a certain fairly natural dense subset of H by combining

our methods with some of the ideas developed in [27, 28]. The key arguments
are outlined in this subsection.
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To begin with, it s useful to use polar coordinates in momentun space,
R 3k = wé, (V.62)

where w = |.‘i':| and & is a unit vector in B*. Then
Pk = o dwdQ;, (V.63)

where d12; is the uniform measure on the unit sphere in B*. In the following,
we shall extend the range of values of the variable w from the positive half-
axis to the entire real line.

It is convenient to introduce new creation- and annihilation operators, o®
and a, by setting

a®w,e) = { i:g::‘ji_} : :g: (V.64)
where A = %1 is the polarization index and £ = (£, A). We also define
e, = Yy dq,, (V.65)
A=zl
and
de—¢') 1= 8, 8(E—9). (V.66)
Then alw, ) and a®(w, =) satisfy the canonical commutation relations
[alw,e), ale’. )] = [a(w,e), a*(,e)] = 0, (V.67)
and
[a(w.e}, a”(w',¢)] = d{w - u)d(e-¢). (V.68)
We set
¢ = 021 (V.69)

and note that
alw, )¢ = 0, for all w, &, (V.70)
The Liouvillian, L, of the radiation field is then given by

Ly = Ldu:fdﬂﬂ o (w,e)walw, )} (V.71)
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A [ETL while L., hevomes

R f i f A, o (w2} ol alwne) . (V.72)
R

Lot &lk) denote the form Gwctor of the interaction. £, between atom and
quantized radintion field, as defined o (120) and (IV.50); () is aa operator
on Mt it isan Ve N matrix. We deline matris-valued lunctions, Flw. )
and F {w, 2], by

. w R GHwEN), w>
y ..i.-'.-'| . = : j r..
Filwe) { ~{-w) MG (~wE A), w=0 (V.73)
prnil
: w2 OGHwE AT, w>0 .
-II‘I-['A----} - { —1—._._’] 12 L.'E;Fl:'-..,.':'—:_.h}f 2 - l] 4 {v.fd]

where € 18 the conjugation imtroduced in Sect, 11,3,

We now assume that Filw, 2) and F(w, £) are the restrictions to the real
axis of matrix-valued functions, also denoted by Filw, ) and F,(w, £), which
are analylie in w on the strip

g {m] fimw| < r} . (V.73)
for some positive © < a0, We also assume that the L -norm (w.r. to dE) of
(1Y% + 1€172) || Fatl€ + ima )] gy, (V.76)

is bownded undformly oy, if [y < d7, for an arbitrary 4 < 1.
It i= not hard to construct form factors Gl k) for which these assumptions
hold; see [27, 28] for some simple examples. But we emphasize that if

WG sy ~ 1KY, Tor |E] =0, (V.77)

for some jo > 0 (as pegquired in this paper), then the assumptions deseribed
in (V.73)- (V.76) only hold if

| a

(V.78)

B | ==
-
ak

H =

while the technbgues desepibed in Sect, V.1 are applicable for arbitrary g > 0!
Ciiven an inverse temiperature J > 0, we define

F N 8) == vf;mfﬂ*“f}* (¥.79)
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and

F'fMw,e) 1= f=w(l = ™)1 F,(w,e). (V.30)
It is important to observe that the functions
vtw (1 = e2t)1 (V.81)

are analytic in w in the strip 4, 5-1; (the function under the square root has
simple poles at the points +27i8"'n, n = 1,2,3,...). Thus F/” and £
are analytic on the strip X, with & = min{r,2x37'}.

The interacting Liouvillian, L,, can be expressed in terms of a, a®, F,['S},

and Fi" by

Ly = Ly + Ly + g(W,-W,), (V.82)
where L; is given by (V.71), and

W, = f dw f 2, [a*(w.e) FY (w.€) + alw,e) Fe(w,e)'],  (V.83)

where # = { or r. Formula (V.83) follows directly from (V.79), (V.80), and
Eqs. (IV.67), (IV.68).

Given an N x N matrix M{w) = (M, ;(w)) expressed in the basis {;}]Lp'
of eigenvectors of H,;, we define

M) = M@, (V.84)

M j(w) = M(@). (V.85)
We introduce the generator, T, of translations along the w-axris
. i
T e fd..ufrj'ﬂln {w, ) [—IEGJEW-E}- (V.86)
Then
Lilg) = e T LT = L, + Ly — aN + g(Wo) - W.(a)) (V.8T)
where Wy(o) is obtained from W, by replacing ,F'f][w,s}l in (V.83) by
Ff‘{u-i— a,£), with # = £ or r, and

N = fd.ﬂf-lﬁ], a”(w, £) alw, g) (V.88)
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is the number operator. The assumptions on the form factor Gk) described
above and Eqs. (V.84), (V.85) ensure that the operator L,(o) extends to a
i'E'l.In'tI}' of operiators mmfy!ir on the strip

Emin(rana-1) = {0 | llmo| < min{r,2737"'}}. (V.89)

The proof is similar to the one presented in Appendix A. Clearly, there are
natural dense sets of translation-analytic vectors in H. Thus, we can apply
the technigques of complex spectral deformation theory, In fact, the thing o
do is to combine compler translahons with the compler dilatations nsed in

Sect. V.1, i.e.,
Wor— W — e+ a). (V.90

Mote that translations and dilatations do not commute, Hence, it is impor-
tant that we first translate and then dilate L,. Reversing the order of these
operations does not yield an analytic family sinee, e.g., L., i8 not transla-
tion analytic. So, after translating and then dilating L, we abtain a family
of operators

{Lyl0.0)} (V.91)
analytic in o and @ on a domain
Amao = {(o.7) €C ||Ima]| <ny, [Im8] < dy} (v.92)
in €2, for some positive constants
m o= 0(F"') and & = O(1). (V.93)

There i5 a natural dense domain T4, of vectors in ‘H which are contained in
D L) N DIN) and are translation-and dilatation-analytic on the domain
Ayt Assuming that the conditions on the form factor G(&) described in
Sects. [ and V.1 and in (V.73)-({V.T6) hold, we are then able to construct an
analytic continuation in z of the matrix elements

(| (L,—2)" ), vpEDy, (V.94)

to the complement of

[ elL,lo.0)]. (V.95)

(0 B)E Ny 0y
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Figure 7: Sketch of o Lg(in, 1),

In order to see what can be accomplished with these methods, we set
g =i, 0 =i, I:\".gﬁ}

with 0 < 5 < ng, 0 < d <, and study the spectrum of L,(én, i?) with the
help of the techniques described in the last section. In the example where
N =2, E; =0, and E| = g, the spectrum of Lg(in, i) has the form sketched
in Fig. 7.

We define subsets S.., 8, ;, 8., and S . of € in a way very similar to the
one in Sect. V.1. The analysis of the spectrum of Lg(in, i) on the subsets
8., 8, and 8., is virtually identical to the one of a[L,(1?)] outlined in
Sect. V.1 (and completed in Sects. V.3-V.7). It is only in the analysis of

a|Ly(in,id)] N S (V.97)

where the usefulness of complex translations becomes manifest: Applying the
renormalization operator R mentioned in Sect. V.1 (see [7, 8] and Sect. V.7)
to the operator

Ligy(g,2) == T(p;) Fp,. (Fm{LgUfh id) - 3}) Fim)* . (V.98)

where we use the notation introduced in Sect. V.1, and I'(py) := 121 &
U{=Ing) @ U{=1np) is the unitary dilatation that maps L, into gy Laus,
one encounters the phenomenon that, for n > 0, ¢ > 0, the continuous
spectrum of Lygy(g, z) is pushed farther and farther into the lower half-plane.,
If the renormalization operator R lowers the scale of the L, -spectrum by a
factor p < 1, then the distance between the continuous spectrum of Ly (g, 2),
|z] ~ O(p"), and the real axis, after n applications of the renormalization
operator R, is Op™"). This follows from the fact that

R(Lslin,i0)) = R(cos(d)L; — isin(d)L,. — inN)
cos{d) Ly — isin(0) Loy — inp ' N
= Ly(inp™",id) (V.99)
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Figure 8: Sketch of oL, (i, 1d)].

which follows from Eqgs. (V.G6), (V.87) and from the definition of R; see
(V.59)-({V.60) and Sect. V.7. Thanks to infrared asymplotic freedom, it fol-
lows that, for = € 5 ..

Liwylg.2) = R"(Lioylg. =) (V.100)
= Lyling™",i0)Fsl @ PP + O(lz]p™") + O(go™"),

for some o > 0 (which depends on the behaviour of G(k) near |k] = 0).

It follows from the sospectrality of the Feshbach map, Theorem V.1, (i),
and Theorem IV.3 (existence of a perturbed KMS state) that Li,,(g,0) has
an eigenvalue at 0. This fact and Eq. (V.100) then imply that 0 is a simple
cigenvalue (analytic perturbation theory!) and that for 0 < |z| < @(1),
Liny(g. 2) is mvertible on the range of P:i & P,

By Theorem V.1, we conclude that, in & small disk around 0, the spectrum
of L,(in, 1) is empty, except for a simple eigenvalue at 0.

In the example where N = 2, E; = 0, and E; = £, the location of
o|Lg(in,10)] is sketched in Fig. 8, for g > 0 small enough.

It follows from these results by arguments due to Hunziker [25, 9], that
an initial state v € D, C H returns to equilibrium exponentially fast, with a
rate of O(F~"), for g > 0 sufficiently small.

In the remaining subsections and in two appendices, we present some
analytical details required to render the analysis presented in this and the
last subsection mathematically rigorous.

V.3 Complex Dilatation of the Liouvillian

In this section, we discuss the dilatation analyticity of the Liouvillian L.
The technical details of this discussion are given in Appendix A.
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= Recall from (V.2)-(V.4) the definition of the unitary dilatation operator
LN@), for # € B. We define the dilated Liouvillian by

L,(8) = (o)L, T(8)". (V.101)
We find that
Li6) = La® 1! + 1" @ L,(6) + gW(®), (V.102)
where
L) = e (Hy@1y) - (1, @ Hy), (V.103)
and
W) = (V.104)

e [k { (VIT R Gole™*h) — V/Ae D) Gile™ W) ai(h)
+(VIF peR) Gile™ k) ~ /ple k) Grle k) (k) }

+e¥ [k { (VAR Gile®k) — VTF PR Grleh)) i)
+H(VIERIGe'k) — T+ ple"R) Gr(e"k)) o, (K)}

and ™% := (e~*k, A).

In order to obtain an analyvtic continuation of the dilated interaction
W(#) in Eq. (V.104) from real to complex # € £, , we recall that Hypothesis
H-2 insures the dilatation analyticity of G(e~%k), for # € £,,, and thus
also insures the dilatation analyticity of e®w(k)™"*G(e™"k). We follow the
convention that, for a matrix-valued function M(z), z € C,

'{‘i"llﬁ{:}'iﬁ_r:l S {'F‘Il M{!j'lﬁ_r} {‘l"lu&}

(el M* () sy = (sl M(Z) iy (V.106)
Furthermore, for # € R, we set

polk) = w(k)ple-'k) = \/u'[k}{mp[f"ﬂw[k}] - 1) (V.107)
walk) = \,/ru.'l[.l']l[:l + ple®k)) = exple™ w(k)/2] pe(k), (V.108)

and similar to the discussion of the function in (V.51), we extend & —
pg(k), vg(k) to the strip Z,5 = {|Imz| < x/2} about R by analytic con-
tinuation.

With Eqs. (V.105)-(V.108), we see that the interaction is dilatation an-
alytic.
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Lemma V.2, Assume Hypotheses H-1, H-2, and H-4. Then the map
Wi g - B[Dom|L,.. H] . &~ W(#) (V.109)
is analytic,
Proof. We first write o := Ref, o := Im & amdd observe that
[esple " Bulk)] — 1] (V.110)

= |exple ™™ cos(d) (k)] explie " sin()Fu(k)] — 1]
> |exple™ cos(d)du(k])] = 1| = ¢ cos(d) Fuwlk)
il |.1.| ]li"ll"!"

lalk)] o |ealk)] = Wwik) ( ' ) (V.111)

Jl'uﬁ‘ o) B3 wlk) o

S0, defining
withik) = e (k) (k) Gule k) = pe(k) e k) (V.112)
wl (k) = ¢ w{k)TVP (ba(k) GEle™R) — pa(k) Crle"k)) (V.113)
with (k) = e®w(k) M (j_olk) Gile®k) = vio(k) Gr(e®k)) . (V.114)
w (k) = " wl(k)T (alk) Gele"k) — v_olK)T3(e%k)) , (V.115)

Hypotheses H-3 and H-1 insure the following estimate,

" . |!P1.'U'+|H|hﬂ| 1 ifd r" ; V116
! y g L2 : J A1
H“."{ :II| = o) (1 3 .I"L.'{L‘J) I ) t )

for any tink,,, with ¢ ;= lm# M < oo as in Hypotheses H-3 and 4, and
k < 118 a function such that

Jf{-ﬂ-[l.-}rf-,..nm'*:} P sk P dk < AL, (V.117)

Furthermore, the matrix-valued functions # — whe(k) are analytic in £,
Henee the standard bounds given in Lemma V.1 insure that

W@ = u:[rrl::.]- + u;[ri'l_"i:.] 4 rl:-[lr",,._],} + u;.{lr"i],] = E E u'f[_wif“.
a=4 rml r

(V.118)
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with aj := aj and ag := ay, is dilatation analytic, and the following norm
bound holds, for some constant © < oo,

|

f“f[”ﬂ]lﬂ#'l{ﬂ +1)

Feos(d) A U

(V.119)

WO (Lo +1)7']| =

Our next goal is to establish the analyticity of the resolvent
R,(8,2) := (L,(6) = 2)", (V.120)

as an operator-valued function of @ and z. This is not immediate from a
direct application of standard techniques in dilatation analyticity because
i =+ L,(0) is not a family of type A, for # € E,,. Indeed, as we point out in
Appendix A, # — L ()} is not even an analytic family on # in the sense of
Kato (see, e.g., [33]).

To make a precise statement, we introduce a dense set of vectors,

D=D:"nDy CH, (V.121)
where
D = n Dmn[{L.._,vi-I}ﬁ{ﬁ'}], (V.122)
LRt

and T; consists of all vectors which are analytic w.r.t. # € £;5,. We see that
D C H is dense by observing that

D 2 span{p @ @V @Y | v € Hut's Yy € Douuns} s (V-123)

where Dg,.,, consists of all translates and dilates of Gaussians,
Dgonss = {“'{.u'rI‘.| et (fu)0 | L[E.:'l} =EHDE—|:E—‘ EJ}?iFﬂj]'ﬁA,AT
neNy, K, €R, 0,50, ) E{:l:l}} L (V.124)

For @,y € D, we establish the existence of the desired analytic continu-
ation of

(8,2) = Fool0,z) = (O(@)g| (Ly(8) — 2)~" T(Ow)  (V.125)

in the following theorem, which is an immediate consequence of Theorem A4
proven in Appendix A.
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Theorem V.3. Let 0 < 0 < dy < #/2, and assume that Imz > 0,0 < g <
Uo7 /2 ~ 1y), and § € £y, Im8@ = 0. Then

(i) For all p.fr € D, the funchion z — (p|(L, - :}"l.":} has an analytic
contmuation from the upper half-plane mto G' qroen by

(o (Ly = =) "0 = (D] (Ly8) - =) Doy,  (v.a2s)

(ii) On the rectangular domam R := {# € C| |Ref| < a, ¥ < Imf < d,},
where o i= —§ Incos(2dy) > 0, the map

R380 » L,JO) e B[Drmlli.,,u]. ‘H] (V.127)
s an analylic farmly of type A,

(iii) o[L,(#)] < €\ G', where G' is the connected compenent of {2 €
Cl |1Ri,fﬁ'.:}l|| < oo} containmg C*.

V.4 Invertibility of L (#) - z on S,

In this subsection we study the spectral properties of L,(#) on S.. In the pre-
vious subsection, we established the analytic continuation of matrix elements
of (Ly(f) — 2)7" in # and =. This allows us now to choose purely imaginary
values of 8, and we shall henceforth assume that 0 < ) < dy < 7/2,

=i and 0, < d < 4. (V.128)

We first demonstrate that 8. € p[L, (#)], the resolvent set of L,(#), simply
by expanding (L,(#) - 2"Vina norm-convergent Newmann series,

Theorem V.4. For g > 0 sufficrently small, 8. € p[L,(#)], and

I(£4(8) = 27| < Olp5") (V.129)
for any z € 5.
Proof. We expand the inverse of L (#) = = in a Neumann series,

(£,00) =) = 3 (Lo(®) = =) {-aw (o) (Lot9) - )"}, (v130)

i

which is easily seen to be norm-convergent since, by Lemma IV.1, we have

[} (Lase + 26) "2 gW (8) (Luwe + o) || = Ofa"®) = O(s").
(V.131)
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and
Laws + 0 Faus + P
R — = <
bEw[Lyy]
V.132)

where C(#) < oo i8 a d-dependent constant, and r,,,, r; are points in the
joint spectrum of L., Ly, respectively.

To check (V.132), we distinguish the cases r,,, < 7pp and re = 7oy,
with 7 = 0 to be picked later. For r ., < 70y, we have

A+ cos(d)ry — isin(@)ress —2| > |A+cos(@)ry - Re(s)]  (V.133)
> (B -costrrm), 2 S (et o)
and, for Tou, > T,
A+ cos(t)ry = isin(@)rpuy = 2| = |sin(#)ra,, + Im(z)| (V.134)
> (sin[ﬂ}l—%i)*r.“ > t”";?};‘:'ﬂ* (Fous *+ o) -

Choosing 7 := (sin ¥ + 2 cos ()(4 cos #) " (sin & + cos ) ™!, we obtain C(d) =
(sin 9/2)(sin @ 4 cosd) ™", O

V.5 Invertibility of L (#) — z in the Vicinity of Atomic
Eigenvalues away from Zero
In this subsection we investigate the invertibility of Ly{#) — z in &, ;, for any

i # j. In Theorem V.7 below, we show the existence of a positive constant
Y20 > 0 such that

S-J N{zeC: Imz> —Qz"ﬁm} c F[L,.{ﬂ]'i, (V.135)

provided g > 0 is sufficiently small, and £ > 0 is as in Eq. (V.21). Theo-
rem V.7 and Theorem V.4 imply, in particular, that the spectrum of L,(#)
in (o0, —pg] U [pg, o0) is absolutely continuous.

Let z € 5;;. We recall from the definition (V.24) of 5;; that

sin (1)
e .i pu i

[Re(z) =n| < mf2 and Imz > (V.136)
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where 5 := E, ; # 0 iz a nonzero cigenvalue of L. The proximity of 2 to i
implies that = is uniformly in g away from any other eigenvalue of L,

dist( z, a[La]\ {:;]l) > %”l:_wg ][p: -v| > 0. (V.137)

e

As in [T, Sect. IV] and in [9, Sect. 1], we establish the invertibility of
L,(#) = = by means of the Feshbach map, Fp(L,(#) = z), corresponding to
the projection

P, = F.;' g Fo=1<PF, (V.138)
where Py’ i= xp1[Lal I8 the projection of Ly onto 1, and P := y[Laus <

o) is the projection onto spectral values of L, strictly less than py. To prove
existence of Fp, (Lg(6) = z), we require the following preparatory lemma.

Lemmg V.5, Assume (V.I28) and (V.156). Then, for § > 0 sufficiently
small, P,(L,(#) = z) P, is invertible on Ran P,

Proaf. We construct the inverse of P, L, (8)P, -z on Ran P, by an expansion
in a Neumann series,

) = - e :Elu - ﬁﬂ L
{F'IL!{H}.P‘I-"J FI'I' - E Lﬂ{ﬂ]’-‘ :( yﬁ-"t.ﬁ'} Lu{ﬂ}— :)

=0

Ijiim =
(Lans + )P, E{{L__, + p0) ™ (~gW (0)) (Le + o)™

Lu{ﬂ} — ¥ i
| . B
(%) } (Luwe + o) ™72 (V.139)
By Lemma IV.1, we have
|| (Laus + o)™ gW (8) (Lass + p0) || = Of905"*).  (V.140)
We make use of
P, =P +P, (V.141)

Ff,” L F_:‘-E-I;, FEH = p_;h.g. XLexs = P4l + (V.142)

where F‘_,'l,” := X\ {n}| Le] 15 the projection onto the eigenvalues of L, different

from #. Since both ﬁfr” and Ff' commute with L., and with Ly(#), we

have that

(Lune + 20) Py
Lo(8) - =

|{L.u + ) P,
Lo(8) = =

(V.143)

= Imax
r=1.1
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On Ran ﬁf,”. we observe that

‘ (Laws + 20) Py’

Lo(f) - =

where the supremum is taken over i € o[Ly]\ {n} and 0 < r; < ryy,. Since
sind > sindy > 0 and |4 — Re z| > ¢, for some constant ¢ > 0, we have

v r+ g .
N rmp{ |;i+ffﬁ't:1?}ff = 18I 0)r e = z| } N1

| + cos(d)ry = isin(d)re. - 2| (V.145)

i 1
2 g(e—cos(ihry), + Flreu —sin(d)p),

1 | 1
> Etzm-rq-:}++3[rnw_.']ﬂ}+ = g{ﬂ}""r}q

and hence

< 8, (V.146)

H{L'E:t;ﬁ]:ﬁwl

On Hﬂnﬁ,ﬂ. we estimate

)
|th+panE, " % mp{ T+ po }5 mp{ z{rm}} -

Lol@) =z |rsind + Imz| r— g2
(V.147)
and putting together (V.146) and (V.147), we obtain
(Laus + o) Py
‘ Lo(0) — = < 8. (V.148)

Inserting (V.148) and (V.140), the Neumann series (V.139) is seen to con-
verge in norm since O(gp;"'*) = Olg") < 1, for g > 0 sufficiently small.
O

Lemma V.5 establishes the existence of the following Feshbach operator,
Fp, = Fp(L,(8) - z)
= (Lo(#) — 2) Py + gF,W(B)F, (V.149)
- g*P,W(0)P, (P,L,(0\F, - z) _1F,W{H}H,.
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The importance of Fp lies in the following identity (see [7, 8, 9]).
(Ly(t) —2)"" = [P,, - ¢(P,L ()P, - :'_I"?’,,TI-'{H]P.,]
Fil [Py = aPW(OP,(PyLy(@)P, - )]
+ Py (PoL,(0)P, - 2) ' P,, (V.150)
which manifestly shows that Lo (®) — = is invertible iff Fp (Lo(f) = 2) 15
invertible on Ran F,. Indeed,
(L@ =2)" || < (1+ Oam?)) | Fr, (Ly(0) = 2) || + O(5™),
(V.151)

by Lemma V.5 and the estimates in its proof.
To apply the Feshbach map, we introduce the level-shift operator,

Qea Py = IT;..{ PaWPu(Ly-E—-ig) ' PaWh, }, (V.152)
where £ € R and Fy = [ & Q{1 @ ] is the projection onto the vacuum

Q@0 in FeF. An explicit computation shows that Qg is bounded and
has a nonnegative imaginary part
M@ Py = InQe®@ Py = PaW Ppd(ly—~ E)PaWPF, > 0. (V.153)

==

It is convenient to omit the trivial tensor factor @M% in our notation, i.e., to
identify Qg with Qg @ Py and Mg with Tg & Pp.
In Theorem B.1 of Appendix B, we show that if n = E; — E; # 0 then

P,T,P, > 4P, (V.154)
for some strictly positive constant '™ > 0,
Theorem V.6. Assume (V.128). For any0 <= < 2/3,
|Fe, — Py(Lol®) -z - 3°Q )R]l = O(g**). (V.155)
Proof. Denoting x,(w) 1= y|w < r|, we first observe that, by Lemma IV.1,
laew Pl = [lactnm il |
< O(m™) laetxp WD) (Luus + 20) "2 Py
1 s
< Ofp? (f di 1+ —=e uri."]ki)
1 g-1y: 1y 4wk
(L4 )f2 g-1/24 1/2
lﬂ{ﬂn A8+ 1) ](Lﬂim uJ[J:F") P )
— ﬂ[ﬂ_" ﬂ[:'l+r].l'1 ,fl_”:[ii‘i' l}lﬂ} ' I_V-IEE}

1A

.:u—(1+
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for any 0 < 7 < 1. Using similar estimates for the other terms, we obtain
||_qF,r'Irl’[Ei'j F || = ﬂ{gp':n'"m} = ﬂ{g""““”i"""] - V.157)

Compare to |7, (IV.101]]. Next, the second resolvent equation and Lemma V.5
vield

9P 6P, (P, L, 0)P, - 2) ' P, W (B)P,
- ' PW(0)P, (P, Lo(0)P, - z) P, W(O)P)|
- ﬂ[y"pﬁ"‘l:} = O(*"), (V.158)

Compare to [7, (IV.101)]. Third, we define P,(w) := 1= x| Lal@x][Ly+w <
o) and

¥} 1= . P (w(k)) )
M(8,2) = f:ﬂ:{ ”m(h{mﬂ_%m_ ) @) (v.159)

) Fq{"""[t}.:l [#)
w"'{”(.i.n{ﬂ}+r“’u{k] = ) ”’]}

similar to @ in [7, (IV.67)]. A normal-ordering procedure as in [7, (IV.66)-
(IV.76)] then gives, for any D < 7" < 1,

|92 ()P, (PoLo(0)P, ~ )P, W ()P, ~ g
= Ofm) = O@** "), (V.160)

Fourth, using the first resolvent equation, we abtain

|o*Po(M(8.2) — M6, n}}P [

p ! K(k) 2
S g fisl f * ( ﬂu{k}) (Fn ¥ um)
i E'—'E:ﬂz I-v"y ﬂ{y‘lﬂl—:l[l.—f":l} (V.161)

for any 0 < " < 1. Fifth, a similar estimate as (V.161) and an analytic
continuation @ — 0 give

Hﬂ: Py M{(8,9) P, - g FyQ, ﬂ;“ = 'ﬂ{ﬂi ﬂl!!_'m} = G{Q‘H{l—fltl—f‘"]‘} !
(V.162)
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for any 0 < ™ < 1. Estimates (V.161) and (V.162) are similar to |7,
Lemmata IV.11, 1V.12]. Choosing v := " := 1 = 7' := 1 = r and observing
that 1 +2r(1l —¢) < min{l +{l—c{l+7). 24211 —-E]}.. we arrive at

|Fe, = PofLo(®) =2 = #'Q)P)|| = Og™* + g"**1"9),  (V.163)
from which (V.155) follows upon choosing 7 := 2=(1 — £)~%, O
Mext, thanks to (V.154), we have

I(Lo(®) - = - g°Q.) " P, dist{o[Ly(6) - 4°Q,], 2}

<
< 2y g7, (V.164)

whenever |Imz] < 4"¢%/2, Combining this with (V.155), we obtain a con-
vergent Neumann series expansion for .'F,'.:,

Il < et S (557) = o6y, vass

warlh

Defining
Yo = min{‘r{""] | #J ]- = 0, (V.166)

we thus arrive at the following theorem.

Theorem V.7. Assume (V. 128), z € -5':,_;- i # 7, and Im(z) = — T4l g?fz.
For sufficiently small g > 0, the dilated Liowwillian L,(0) — z 15 bounded
inirertible,

ollg(@) N {z€C | Rez = pf2, Imz>—y49°/2} = 0. (V.167)

V.6 Invertibility of L (#) - z in §;. outside the cone
C(1#) = {|Rez| € — cot(#)Im z}, for ¥ < ¢

The purpose of this subsection is to study the invertibility of L (#) - z in

Sy~ Thus we henceforth assume (V.128) and |z| < pp/2. We introduce the
projections

P o= F @ X[ Lane < M) . (V.168)

Po=1-h = B +F, (V.169)

P) = Pfel , PP = Prexle 2, (V.170)
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where Py’ is the projection of rank N onto Ker Ly,

N-1

H."" = "H{I-}[L'er] — EW.H%H% ﬁ"l‘:lﬂli tv-ll?l}

and y[L... < py) is the projection onto spectral values of L,,, striczly less
than py. Again, we first establish the applicability of the Feshbach map.
Lemma V.8. .-!s.mm_e (V.128) and |z| < pg/2. Then, for g > 0 sufficiently
small, Py(L,(8) — 2)Py is invertible on Ran F;,

Proof. Analogous to Lemma V.5, O
By Lemma V.8, L (#) = z is invertible (on H) iff Fp, := Fp,(L,(8)—z) is
invertible on Ran M. As in the previous subsection, the level shift operator

Qg introduced in (V.152), plays an important role. Note that J(p, @ ¢, @
@) =y, @, &0 &0 and hence

PlePy = PP, = F'@Py, (V.172)

where J is defined in (IV.77). Since furthermore, JLgJ = -L; and
JW.J = =W, we have that

P @ PaW By (Lo —ie) ' PaW P @ Py (V.173)
= Pl@pPaJWPq(Ly—ie) ' PaWIP!® Py
= ~PlaPWPy(Ly+i)  BaW P @ Py,

and therefore
QP = il By (V.174)

15 purely imaginary.
Lemma V.9. Assume (V.128) and |z| < po/2. Then, for g > 0 sufficiently
small and any 0 < ¢ < 2/3,

|Fr = Po(La(8) =z —ig’To) R|| = O(g**). (V.175)

Proof. Analogous to Theorem V.6, taking into account (V.174). a

We now distinguish between spectral parameters, z, very close to zero
and those which are at least of magnitude C{g***). The latter can be dealt
with by a standard Neumann series expansion, provided they are outside the
cone C(d'), ' < ¥, while for the spectral parameters close to zero we apply
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the renormalization group arguments developed in [7, 8], This is done in
Subsection V.7,

We turn to proving the invertibility of the resolvent of L,(#) — 2 for =
outside of C{¢") and of magnitude between O(g***) and /2, see Fig. 4.

Theorem V.10. Assume (V.I25) 0 < <0, and 0 < £ < 1/3. Suppose

that Cog®** < |z| < /2 and z & C(), where Cy < oo is sufficiently large.
Then, for g > 0 sufficrently small, L(#) = 2 15 bounded invertible.

Proaf. We first observe that (Lg(#) — ig ru}Fn 15 a nm‘nml operator. Since
[y 2 0, we have that a[L(#) - ig°Ty] € a[L,(#)] = C(#). Hence we obtain

||{L.,{a}-:—sg=rn}“ﬂ|| < dist{z, ¢} < (Cosin(#/2)g™) .
(V.176)

Inserting this estimate into a Neumann series expansion and using (the ana-
logue of ) (V.155). we arrive at the assertion,

IFnll < Olg™) E({: :i?f;;ﬂ) = Of{g™*"), (V.177)

provided Cy is chosen suthciently large. O

V.7 Renormalization Group Study of the Spectrum of
Ly(0) in 8,

Having dealt with the spectral parameters of magnitude larger than Cy -gj"",
we shall henceforth assume that z € S, ie., that |z| < sin{d)g** /2.
The analysis of the spectrum of L,(#) in & . is the most involved part of our
analysis, as it requires an application of the renormalization transformation
developed in [T, §].

To apply the renormalization group map, it is necessary Lo convert Fp, =
Fp(Ly(0) = z) into a normal-ordered form. More precisely, we expand Fp,
in & Neumann series,

Py

=1
L=z W ﬁ') '

(V.178)

Fr, = (Lol0) - )Py + Zn—n*"‘fﬂlv{m(
=1

which is norm-convergent, as we have seen in the previous subsection.
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To convert Fp, into its normal-ordered form. it is convenient tc adopt
the following notation. We henceforth denote

k

[ ak s

at(k, A7) 1= al(k,A) , a"(k A7) = a;(kA) , (V.181)
wl'(k,A,7) = wiL(E,A). (V.182)

(kA7) € R x{1,2)}x{4r}, (V.179)

¥, Zf & f(E, 2,7, (V.180)

A=17r={r

Furthermore, we write w(k) := |k|, etc. In this new notation the operators
to deal with appear in a more compact form as

Wi = a* () +a ('), (V.183)
= [dkw(k)a®(k)a~(k) , Ly = [dkrw(k)a*(k)a™(k). (V.184)

Thus the term in (V.178) of order ¢ can be written as

" By P

For future purpose, we introduce some more notation. We collect the
eigenvalues of L, in a set {ny,m,--- ,nn} = {Eij|0 €1, £ N - 1}, where
ng =0 and M < N[NV = 1). We then introduce

X = P = gLl (V.186)
& I fora=12...,M,
(w) = { X[ Laus +w < py] for a=0, (V.187)

and we observe that

Ar
= Y x{ o), (V.188)
=0
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For ky,... ke by, ...k, € B x {1,2} = {{,r}, we further denote

B o= Ry k) R = (. R {V.189)
= {L;,L,“,'1 r .= [rjnrulu:ll {v'lm}
qf{k[lﬂ:ln = n“‘“‘-jj' u'[j;h]} T H“"{I*j}. {Vlgl:l
j=i J=l
dit™ = []dk;, k™ = J]dk;, (V.192)
i J=1
JUmmd o (gl By et o gdmh gRie) o (y 103)
wikt™) = 3 wlk),  xlwl = vl (V.194)
Equipped with this notation, we rewrite (V.185) as
f dk P (k)N G ek Pe  (V.195)
- ."'._:T:.Ei._
iEruL:{ J Ifﬂu :]{ }

Yol L] 0™ (K1) oy + Lyl0) =2 W, + Ly(8) - :u"' (e ) XpolLanel -

Now we normal-order the product of creation- and annihilation operators in
the second line of (V.195). By (a two-component variant of) [8, Lemma A.3],
we have, for arbitrary functions f,, f5,-.. , fu-1,

EI’: {""-I :I .|ru: [L_F- L’cu] I .rn...-..| [L_ﬁ f-'mu'] ﬂub Eku.:l {v'lgﬁ}
> 1T « (o [T{lar e moee
RN 1EQ j=l
1 w
o |Lp+rp+ 3 (F0w(k) + 3 (—1)"wiks)
o 4+?E'=+
1
Laws + Tz + 3 wik) + w{k.]] 11>| IT a* k),
. o e=kjeQ-

where N = {1,2,... v}, Qi := {j € Qlo; = £}, and [a% (k,)}I#9 =
a®(k;), for j ¢ Q, and [a™ (&, )€ = 1, for j € Q. To apply this formula
to the second line of (V.193), we choose

f!{njinu}

o + COS{ D)1 — 15[ D) Py — = (V.197)

folrp  Tans] =
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Note that, similar to (V.143)-(V.148), we have

Sip {{rd.,+;.|.}} |L,[rpr,u]|] < O, I V.198)

|:|'E|'=|!"'-Illl
], A

for some C < oo, Inserting formula (V.196) into (V.195) and summing up
the contributions to all orders in g, we obtain an effective Liouvil ian on
Ran F,

L[zl =2 = Fp(L,(0) - z) (V.199)
= P [E:ur[=] - 2+ Tiyls. L] + W:up[ﬂ)ﬁ:.
where
Enl] = \Q@Pa(FnlLy6)-2) + :)xF@Pa,  (V200)

- Yo %
v=1

e P
Wl W | S, M

f dk™ Pl k)8 - e Y

% (] a® (k1) g 2] -+ fo,. [E]a™ (k) ),

Tim[=.1]
= X7 © P (Fnrs(0) + Ly(0) - 2) - Fiu(L,(6) ~2)) X7 @ Pa,
= M) -3 (-9 (V.201)
=2 i o |

f Akl gy o A e () xey'
(0] {a™ (k) fasllt ] o+ oL+ Ela™ (k,)

- a™ (k) fou[L] -+ fa. [l (k) Q)

using L = (L, Lous), T 2= (rp, Pouse ), and rp(@) := cos{d)r; = isin(d)r..-
Furthermore,

Wald = 3 Wik, (V.202)
—nEh

Wiz := f dE ™ g% (k) Wi [2, L, K] o~ (k™) , (V.203)
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and we shall display the dependence of Ligy, Ejgy, Tigy, and Wigy on @ unless
necessary. Note that Ey, is an operator on RanyY', i.e., Eg € My is an
N = N matrix. Similarly, r — T,:u,[:, r] is an N x N matrix-valued function,
and £ — whow|z, £, K™ are N x N matrix-valued functions, for m+n > 1,
pointwise in K", Eq. (V.196) yields the following explicit expressions for

tmn (compare to [8, Lemma 11L6]),
w, [2,L K™Y = (V.204)

- i Z i {_g}vfdx!r.ﬂsmm{ 1.:"\[_.":'h=.1=:|r ﬂ-lh.ﬂi] } .

p=0 BEBm o p Oy iy =l
where B, . , denotes the set of partitions b = (b, b, b, b;) of {1,2,... ,m+
n+ 2p} such that |b| = m, [bi] = n, and |b,] = [bs = p, L., by, b, b, b are
ordered, pairwise disjoint subsets of {1.2,... ,m + n+ 2p} whose union give
{1,2,... ,m+n+ 2p}.
Given b € B,,,, and denoting M := m + n + 2p, the matrix-valued
function Fj is defined by

Rxta), gom)] (V.205)
X1, X0, geimayy o). yEe-huff (g, X102, petmnlyx (D
0] a0, X0, k) £, L+ ]
J"n,_.[.[:+ E,.-.]“b{‘w'xmﬂ‘ H[m.hr} n) ]

where

w (k) , if 7 is the {" member of by,

wi®™ (k) , if j is the I member of b;,

w''(zy), if j is the I'™* member of by,

w™ (%), if jis the [™* member of b,
(V.206)

H-'E."U! _}:LF'.\F']I| h’f""-"’] e

and
0 if j € by Uy,
ab(j, X gimedy .= & a*(x), if jis the I member of b,, (V.207)
a~ (&), if jis the ' member of b;.

Moreover, 5, , denotes the symmetrization operator,

Spu,n'[F]'ixtF'”1 h-l;m.ﬂ'b] P E!,..*m}

1

min! E F[JE'L"-’},.I;,"]____ -krl;m:l: Ei-m,--- .F_-‘i,;n;.] .
ol S
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We have the following estimates on these coefficients.

Lemma V.11. Assume that = € &, .. Then there enists a constant, C < 00,
such that, Jor g = 0 sufficeently small,

||Elllj[':i + iy ['u” < gt | V. 209)
.., Twlz.x] + isind]| Cy, (V.210)

!

i i E‘ e H{k ] a H[i: }

o g (i) 4 !

leitee. i) < o () Mgt i
(V.211)

fi

where B, = {.’-‘ | a,...'l:l'-‘]' < F]'.

Proaf. The asserted estimates follow from adaption of [8, Section I1I). For
illustration, we give a proof of (V.209). We first rewrite Eyg[z] as

o 'k, - d*k;
CRRAEEN ’IIIH(J{L ) H(W)

Jul

< @(Cg)", (V.212)

Eol:]l = —¢*Mg.z) - ¥ (-g) f dk™ (V.213)
=4 -y .h-t
L P

P w kS - e “’L’.-'L.f}\.w
%{0) 0™ (k) S 2]+ S, [L]0™ (K)) R)

whers

M, 2] = f dk £,[(=1)"w(k), wik)] v w0 ©) el R
(V.214)

Here, k = (kA7) € R' x {1,2} = {€,r}, and (=1)" := 1, for r = £, and
(=1)7 := =1, for 7 = r. We recall that
YRE

o (V.215)

fﬂ[{_”.r“-'r“-'] =
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and that an analytic continuation from & = 0 to # = id yields

ko= Z f i l,-.f g et e X X

I

1 (o), (815 da), ()
Zf*“ e N e (v216)

since [y is independent of @, In view of the fact that

'irlb
fw (k)] 1 ——s ’
|%+E_|‘ 1'}r#l'.|1{-ﬁ}—: - En+f,_‘1_,_"u#w{k} e ﬂ{l"ljf ':‘I".EII}
for ¢« > 1, and
_ (i) v
K (k)] et 2z X [w ()]
e =ikl — 2 wik) | — (wik) + po)® wik) ! (V-318)
we obtain that
|K[8.2] = iTs|| = ") . (V.219)
Secondly, we observe that
0] a™ (k) for L] -+ o [Lla™ (k) )] (V.220)

= ﬁ}l(ﬂ illl["""+-':;'Il}_lﬂ":rm“':l-lE'{-'mu-"'.I‘:i'l.'l:'_!lﬂ {.Lnu.+pﬂ.].-lrﬂl[”
(Laws + ) forsLE] (Laws + 20) ™72 0% (Ks) (Luus + p0) ™ )|

using (V.198). The standard estimate from Lemma IV.1 implies that

(Laws + o) "2 a® () (Lyus + o) 12

f""k: “w{”“'.r]" "l:Ldu + M) v a™ (ky) (Laus + po)” ”=|! = Of _”?}
(V.221)

Inserting (V.219)-(V.221) into the sum in (V.213) and summing up the terms
of order ¢ > 4 as in [8, Lemma 111.7], we obtain that

| Egylz] + ig°Toll < zr:pu( 9) = O(g™*), (V.222)

=4
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thus establishing (V.209). O

In Theorem B.2 in Appendix B we prove that Ker [y = Cky, where
N-1 )
kg = Z7' Y ™Ry e, 'V.223)
m={}
Z = E: ﬂ'e-"”' 15 a normalization factor. Hence, denoting by
Pg = Ira) (sl (V.224)

the orthogonal projection onto x4, we have that

g = Do P > HPa, (V.225)

for some positive 5; > 0. Our strategy is now to apply the Feshbach map
again, using the projection

P = ar‘:: @ x[Laus < M), (V.226)

where
R s P (V.227)

We have PPy = Py, = P, and

P, =1-P = P4+ P, (V.228)

where
P =F,01, P = Floxle2nl (v.220)
Again, for the Feshbach map to be defined, we prove the invertibility of

the operator restricted to Ran P, By, We divide the proof into a series of
lemmata.

Lemma V.12, Assume z € 5 .. Then

” (Thoyl2, L] + Eiylz] = 2) P By
Lous + 1

< O(1). (V.230)
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Proof. According to (V.209), (V.210) and (V.225), we have
~Im{Tig)[z, L] + Elz] = 2} 2 (sind = O(¢* ) Lawr + (G0 - Os""))9"

(V.231)
on RanP.", Conversely, on RanP, we estimate
~Im{Tiglz, L] + Egl2] - 2) (V.232)
> (600~ 0g)) Loue — 20p, — O(g*)
> (sin(d)/2 - OG™"™)) Laws
since O(g**") = O™ ) = Lous Olg™ 7). O
Lemma V.13. Assume z € § .. Then
11Po (Laus + 1) Wigglz] (Laws + 20) 2 Bl = Ol (n/21)')

" ﬂl:g] -.!.l.H'J : {V-?ﬂ:l

Proaf. The proof is an adaption of [8, Theorem B.2], using the bounds
(V.211), for all m +n = 1, and summing up all contributions. O

Putting together Lemma V.12 and Lemma V.13, we obtain the invert-
ibility of Ly z] — = restricted to Ran Py Fy by a Neumann series expansion
of {L’{{H[Z] = I]_I around {T;u][:. L-_] s o .E"]][II = :}_I-

Lemma V.14, Assume (V.128) and || < Cf,g’“._ Then, for g > 0 suffi-
ciently small, P\ (L, — z) P, 15 invertible on Ran P, F.

Lemma V.14 justifies a second application of the Feshbach map with
projection P,. That is, the operator Fp (Lig[z] — 2) is well-defined. To
formulate this result, we define a bijection,

g

dioy ¢ Soe =Dy, Zgll) = S

(V.234)

and we introduce the unitary dilatation

Ugy@ = 0, Uga®(EA\7T) U = gy a"(kfp, A7),  (V.235)
noting that

UnLUgy = mL(O, Ug Ranx,[Lowe) = Ranxy[Lo],  (V.236)
where L = (L, L,..).
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Theorem V.15. Let z € Dy 5. Then, for g > 0 sufficiently small, L,(#) -z
15 isospectral (in the sense of [T, 8]) to

L“J[il = = = Slnl:.ﬂ:l L"m ,Fﬁ [L{mi.zm: ] W! I} UEUI \’.23‘?]

defined on 'H,.; = Ran l‘uiL-u!-

Similar to Lm][:i. we write L’{'I.]|=] as

Loplel =2 = MalLawe] (Ewle] = = + Tglzo ]+ Wonla] ) xilus]

(V.238)
where
Eyls] = Eml['ﬂ:l_ﬂ (] Fp (LilZ7'(2)] = Z7'(2)) Q) + =, (V.239)
Tlszl = E.mmpl (] Fin o Fay(r + Ly(0) - 27(2)) (V.240)
~FnoFn(c+Ly(#) - 27(2)) Q)
Wiyl == E will: (V.241)

H-IIl'EI
wills] := fdm'"* ) Wit [2, L K] o (). (V.242)
From Lemma V.11 and using the techniques from [8, Section IV], we derive
the following estimates on these operators.

Lemma V.16. Assume z € Dy, Then there exists a constant, C < oo,
such that, for g > 0 sufficiently small,

|Egyl=]l
"-n-tTEII[ [-F - 1'

Cghit, (V.243)
Cg™, (V.244)

A 1A

r min 77 K(K - J
|whanlz o, K™Y < (Cg) Hu{kf}l:"::—u Em{f‘]'ﬂ-p (V245
£

where B, == {k |w(k) < r}.

o - dk;
a-..,“’ﬂ]- 1, K }]|H(u_,“, ].lﬂw) E(w{ﬁj]mﬂ)

G (o] i (V.246)
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Proaf. To prove (V.243), we observe that due to Lenuna V.13 we have

o7 (0] Wil Py (PrL@lQ)Py — €)™ Py Wig =19}
< O0) [|Ps (Luus + 01) 2 Wigg[€] (L + 1) B[
= O ™). (V.247)

Thus, using (V.222). we obtain

IEml:ll = qm{:-!}p e Py Ey[ 27 (20 Py + O 7) (V.248)

‘ﬂn{d} PR {'FW:I[-E l{. }] + ig*[‘u'_] P+ ﬂ{g""-ﬂ}
= Og™).

A similar argument yields (V.244). The proof of (V.245) and (V.246) is
rather lengthy, and we shall only examine the tree level contributions to
r-uf.!f,-,, 1o, those resalting from rescaling wn, It actually turns out that

these contribiitions are the dominant ones. W& gt

phetm=t ) (7=1(2) i, K]
(V.249)

L iy e R
W (2,0 K] = rﬂnl[r?:l

One then easily rim-rl-:ﬁ that (V.211) and (V.212) imply the bounds (V.245)
and (V.246), with wh’, replaced by wh s . O

Using these bounds, it 15 not difficult to verify that, for a suitable choice
of pand £,

D”-! = L“]I:] = “"L {‘r’.?ﬁﬂ]

defines an analytic family, where W is the Banach space of operators defined
in [8, (L46)). Henee Ly € Wy, and Lemma V.16 implies the following
theorem.

Theorem V.17. For some constant C < oo and sufficiently small g > 0,
Lyy belongs to the polydisk

Loy € B(Cg™, Cg™"), (V.251)
defined in [8, (1.64)].
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In other words, Ly is a proper initial operator for the renormalization
group map R, defined in [8]. We may thus invoke [8, Theorems V.7 and
V.10] to obtain the following result.

Theorem V.18, Let 0 < ' < . For sufficiently small g > 0, there enists
a finrrder, E,:m| Z ..';ul.:. stch that

(1) By is @ simple eigenvalue of L,(9), and
(ii) the spectrum of L (6) obeys

a[Le(8)] N S € (B + C(¥)) N Spc. (V.252)

A simple corollary (see Fig. 6) is
Corollary V.19, Let 0 < <o, For sufficiently small g > 0,
(i) 0 s a simple egenvalue of Lo(0), and
(ii) the spectrum of L,(#) obeys
a|Ly(8)] N Soc € C() N Spe. (V.253)

Proaf. We first note that a[L,(#)] € C_, by analytic continuation and the
fact that the spectrum of L, is real. Thus lmn £, < 0.

Secondly, 0 is an eigenvalue of L(#), so 0 € Ej; + C(i¥'), which implies
that E[m] = [, O

A Analytic Continuation of the Resolvent of
the Liouvillian

A.1 Outline of the strategy

Owur goal in this appendix is to establish the analyticity of the resolvent
Ry(0,2) = (Ly(®) — )", (A.1)

as an operator-valued function of # and z. This does not follow from a direct
application of standard techniques in dilatation analyticity, in contrast to
[7, 8, 9], because & — L,(#) is not a family of type A, for # € D(0,=/2).
Indeed, as we point out below, # — L,(#) is not even an analytic family on
H in the sense of Kato (see, e.g., [33]).
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Note, however, that we are not really interested in global analyticity
properties of B, (#, z). For our spectral analysis, it suffices to have an analytic
continuation of R,(0, A+ i), with A+1iz € C", 0 < £ < 1, in the upper
half-plane, to R, (id, '), with 2 € C in the lower half-plane and 4 > 0.
Hence, it suffices to have a connected domain A © €, containing (0, 2) and
(14, 2"), such that A4 3 (#, z) — R,(#, 2) is analytic.

The construction of A or, rather, of the eurve in A linking (0, A+ i<} and
(1, 2"} is as follows.

e First, using the selfadjointness of Ly, we pass from R0, + i2) to
R, (0, A+ 2i), by usual analvtic continuation in z.

e Second, for (8, 2) = (0, A+ 2i), we pass from R (#, z) to a more regular
resolvent,

R(0,2) == (Lows+1)"" By(0,2) (Lyus + 1) (A.2)

Note that the restriction of R,(#, z) to Dom( L, } can be reconstructed
from R,(#, z).

o The key step of our construction is as follows. Introducing
£t = {eC|0<Imb<r}, (A.3)
we prove that
vr 38 = R,(6,)+2i) (A.4)
defines an analytic family with
|| Ry(8, A +2i) || < dist{NumRan[L,(6)], A+2i}™".  (A5)

The main difficulty we are facing here is that the coeflicient in front
of the dominant operator L., is linearly vanishing, as # — 0, since
L, (8) = cosh(@) Ly = sinh(f#) L., + gW(#). So, while all other terms
in L,(#) are relatively bounded w.r.t. L,,,, their relative bounds are
divergent, as # — 0. Our main observation, however, is that we only
need to control the smaginary part of L, (#) and that the imE-_.g:innI}? part
is asymptotically of the form Im L, (#) = —ilm(0)( Lau. +9W (6), where
W(#8) is relatively L, -bounded with zero relative bound, as # —+ 0.
Henee, for sufficiently small |#] with Im# > 0, the imaginary part of
L,(#) is negative definite. The assumption Imz = 2 now insures the

differentiabilty of R, (8, A + 2i) at 8 = 0.
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» Fourth, continuing from # =0 to 0 =id, 0 < ¥ < 0 < &y < 7/2, the
morm estimate (A.5) enables us to analvtically continue R (id, z) in =
from = = A+ 2i to the connected component G of

{:eC||L,®) -zl <oo} (A.6)

containing A + 20, Since, on Dom( L, ), we can obtain Ry(id, z) from

R (1, z), we arrive at the desired analytic continuation of matrix ele-
ments (| R, (0, z)¢), for v, ¢ in the dense set P defined in (V.123).

A.2 Key Step

To carry out the third step indicated above, we first prove some preparatory
lemmata.

Lemma A.l. Let 0 < iy < =2, and assume that @ € £3 , Imz > 2, and
0<g& My, = g(nf2=1dp). Then Ly(#) - = 15 mnvertible and

L(6)—2)"|| < dist{NumRan|L,(0)], z}"". (A.7)
| (Za(8) = 2) 7"l g

Proaf: It suffices to prove (A.7) only for purely imaginary @ = #d, 0 <
t < g, sinee the real part of # gives rise to a unitary dilatation which leaves
norms and numerical ranges and hence both sides of (A.7) unchanged. We
observe that, by Cauchy's estimate and (V.116), we have

L 2 2 ! & [N
ool < (575 M(' v o) ). (A8)

This and Lemma IV.1 imply that

I {W ()} (Lo + 17| = [[Im{W(8) = W(0)} (Loue + 1)

= O(t/Ms, ), (A.9)
and similarly
|Re{W(8)} (Luws + 1)7'|| = O(1/Ma,). (A.10)
Next, we note that
L8 = cosdL; + isind Ly, + gW(8)" (A.11)

= costLy + gRe{W(B)} + i(sind Lyws + gIm{W(O)'}).
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Thus, for any ¢ € Dom[L,..] € Dom[L,(8)"], we have
1 (Laws + 170 | L,(0)" ) (A.12)
= (0] (e 107 aReqw@)] ) + sin0 (v | (72255) ¥)

3 He({Lm +1)' |gim[wm}' - W(0)} w}.

As in (IV.74)-(IV.75), we obtain from Lemma IV.1 that
| (9| [(we + 17", gRefW @)} ) | (A.13)

8| ((Laws + 17" ¥ | [Lone s Re(W(O)}] (Lawa + 1) ) |

< Cy{v| (Lawe +1)7" %),

whereas (A.9) implies that

| {(Lase + 1) 0 [ st (0) = W)} )| = O(90M5") (Wlv) -

(A.14)
These estimates yield
I ((Lawe + 17" | L,(0) ¥) (A15)
> sind (v |(7227) ¥) - O@oM) i)

= Cg (| (Loue +1)7" )
2 —(1+Cg) (¥ | (Laue +1)7" W) + (sind — (g0 Mg')) (¥1¥)
> —(1+Cg) (¥ | (Laws+ 1) ¥},
provided that g <2 M,,. Note that (A.15) extends to any ¢ € Dom|[L,(8)"],
by continuity.
Assuming now that ¢ € Ker{L,(#)* — £}, we derive from Estimate (A.135)
the following inequality,

—Im(z) ((Lawe + 107" | &)

[

Im{{Laez+ 1) % | 59 (A.16)
= Im{(Lgwe +1)7" 0 | L(8)" ¥)
2 —(1+Ce){¥| (Lawa +1)7" ).

Since Imz = 2, this estimate implies that ¢ = 0, provided g > 0 is sufficiently
small. Hence, Ran{L,(#)—z} is dense, and we may define an inverse, (L,(#)-
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=)', Furthermore, the density of Ran{L,(#) - z} insures the validity of the
second equation in the following munerical range estimate,

I (Lot8) - 2) 7" (A17)
sup{[| (£,(0) - 2) ™" 0| | v & DomiL, @), llvll =1}

sup{[| (£,(6) - =) ¢[|"* | ¢ € Ran{L,(8) - 2}, llell =1}

< sup{[(elLy(0)0) — 2| " | v € Ran{Ly(8) - 2}, llell =1}

= dist{NumRan[L,(6)], =} " o

Lemma A.2. Let 0 < oy < 72, and assume thal 8 € E:'u‘ Imz > 2, and
0< g & My, i=10y(nf2 —1y). Then

By(0) = (Luus + 1% (Ly(0) = 2) " (Lowe + 1™ (A.18)
is defined on Dom[L,,,] and ertends to a bounded operator on H of norm
IBL(®)] < €™ (14 Olg/My,)) dist{ NumRan[L,(8)], z} " . (A.19)
Proof: We first notice that Dom|[B; (#)] = Dom|[B(ilm ﬂj] and
1B(@)]| < ™| By (ilmB)] . (A.20)

Thus, it suffices to prove the assertion for # = id, 0 < ¢ <y, which we
henceforth assume. Next we observe that

(£,08) = 2) ™" (Lows +1)7" = (Lawe +1)7" (Ly(8) = 2) (A.21)
= (L = 2) " (Lo + 1) [Lans s Lo(®)] (e + 1) (L,00) = 2) 7"

Indeed, thanks to Lemma A.1 and Dom|L,(#)] 2 Dom[L,..|, both sides in
(A.21) define a bounded operator. Note that on Dom|L,,.],

[Lose s Ly(8)] = 8 [Lune. W(B)], (A.22)

and hence, by the same argument as in (IV.73), (IV.74)-(IV.75), we even
have that

| Eae + 07" [ s Lo(8)] | = Olg). (A.23)
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On the other hand, Im:z > 2 and g € M,, insures the condition that
dist{NumRan|[L,(6)], z} = 1. Hence || X| = O(g), where
X = (Ly(8) = 2) " (Laue + 17" [Lana s Ly(6)] (A.24)
and
(1= X) (Lous + 1) (L(0) = 2) ™" (Laus + 1) = (L,(8) —2)™". (A.25)
This implies that 1 — X is invertible and that
l(1=X)"Y = 1+ O(g). (A.26)

Multiplying (A.25) by (1-X)~" and using (A.26), we arrive at the assertion
for B, (id). The proof for B_{i?) is similar. O

Putting together Lemma A1 and Lemma A.2, we arrive at

Theorem A.3. Let 0 < dy < w/2 and 0 < g & My, 1= Oy({w/2—1y). Then,
Jorallz € {z € C|Im:z > 2},

R(-,z) : £}, - BHeH|, (A.27)
0 v~ R(8,2) = (Laue+1)7" (L,00) =2) 7" (Luue + 1)

is analytic, i.e., @+ L,(#) defines an analytic family on T3 in the sense of
Kato.

Proof: We start with the observation that
DLy(0) = 1@ (*H @1, +'1 @ Hy) + g0W(B),  (A28)
where (see (V.118)

BW(B) = aj(@u') + a( By
+a(@uwl’) + a(Bu!™). (A.29)

By Lemma IV.1 and {A.8), we clearly have
|86W (0) (Laws + 107 | = O(eRe 05, (A.30)
and hence

|| BpLy(0) (Lys + 1) || = O(e™" (1 +gM;,'}) - (A.31)
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Using Lemmata A.1, A.2, and (A.31), we thus obtain

(L + 17 A (£g(8) = 2) ™'} (e + 1) (A.32)
= [ e+ 17 (£5(8) — 2) 7 By (0) (Ly(6) - 2) ! (e + 17|

1846 (Le + 17" 8L, (8) (L + 1) B_(0)]

C dist{NumRan[L,(0)], z} © < €' < o0,

Fy

for some constants C,C' = O(e'™*") < nc. O

Theorem Ad. Let 0 < ¥y < ¥y < n/2, and assume that lmz = 2, 0 <
g <€ Uy(m/2 = dg), and 68 € 5 N {Imd > dy}. Define R'(8,z2) := (Lous +
1)R(8, 2)(Lous + 1) on Dom|L,,.]. Then

(i) A'(P,z) extends to a bounded operator on H & H.

(ii) L () =z 15 mnvertible on H&H, and its mverse, R(#, z) := (L, (¢ -z,
is given the extension of B'(8, z).

(iii) On the rectangular domamn R := {i.'il' (= Ci |Red| < a, 0 <Imf < 1?.;},
where o := — § Incos(204) > 0, the map

Rad — Ljb) e E[Dumli..#] M IE-'H] (A.33)
defines an analylic family of type A.

(iv) oL, (#)] € T n(C\G'), where G' is the connected companent of
{z € C| ||R(#,z)|| < oo} contaming C*.

Proeof: Statements (i) and (ii) easily follow from Lemmata A.1, A.2, and
Theorem A3,

For (iii}, we set o := Re#, d := Im#, and we ohserve that

Ly(6) = cosh(8) Ly — sinh(8) Loy, = —sinh(8)[Loys — coth(8) Ly] .
(A.34)

Since sinh @ = sinh o cosd + i cosha sind and 7 > ¥ > 0, we have that
|sinh @ > |Imsinh®| > sind > sindy > 0. (A.35)
MNext, we observe that, for o € Dﬂm[Liﬂ :
[ (] Ly@)¥)| < [sinh6] (1 +|cothl) (] Laew),  (A36)



BFS-4, December 21, 1999 94

because £Ly < L,,.. To construct a lower bound, we use

| {w] Ly(d) )| |sinh @] [Rey | (Lows — coth(@)L;) v)

<
< |sinh#| (1 — Refcoth(8)}) (¢ | Louev') . (A.3T)

To have a nontrivial lower bound, we therefore require that

sinh(2a)
Refcothf} = coeh2a) — cos(20) <1, (A.38)
or, equivalently, cos(2d) < cosh(2a) — |sinh{2a)|. By our assumption on
tfy, we have that cos(2d) < cosh(2a) — |sinh(2a)|, and (A.38) holds. Thus,
for all 8 € D{0,d) N {Imz = ¥}, the quadratic form L(#) is sectorial,
and Domg|L(#)] = Domg|L,,.]- Since W(#) is a relatively bounded form
perturbation w.r.t. L., with zero relative bound, so it is with respect L;(#)
and hence Lg(#). This proves (iii).
To prove (iv), we observe that, by analytic continuation, L,(#) — z is in-
vertible in C°, sinee Ly(#) — z is. O

B Positivity of the Level-Shift Operator I';

B.1 Definitions

Recall from Hypothesis H-1 that the spectrum of H; is assumed to entirely
consist of simple eigenvalues E,, < E,..; with corresponding orthonormal
eigenvectors @, m € N = {0,1,... ,N = 1}. Thus {g]i e N} € H,isan
orthonormal basis, We also have

Ly = Hy®1ly-148 Hy, (B.1)
Ly = Hy@l;-1,®H,, (B.2)
Ly = Lyl +190L,, (B.3)

where 1% := 1, ® 1, and 1/ := 1; @ 1;. Henceforth, we frequently omit
trivial tensor factors, like @1, unless they clarify the exposition.

Recall from (IV.62) that the interaction in the Liouvillian at inverse tem-
perature [ in the Araki-Woods representation is given by

W = ai(\/1+pG, - JpG:) + ﬂ;h.l"1+ﬁG; - JEE:I (B.4)
+a; (VPGE = 1+ pG;) + a. (VPG — 1+ pGy),
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where the coupling function G : B® x Z, — B(H,,) is a matrix-valued function
and

p = plf) = (™9 -1)7". (B.5)

We further recall from (V.152)-(V.153) that, for £ € R, the imaginary
part ['g of the level shift operator Qg is given by

Fe®Po = PaW Pié[LoPs — E] PAW Pa, (B.6)

where, Py, is the orthogonal projection onto the vacuum veetor £/ = Q, @00,
in .'F_f = .'F_r.

Applying the modular conjugation J = E(CaCaTaT) (see Eq. (IV.77)),
we see that J(Cg® Pp)d = I'_g@® F,. Introducing the corresponding restric-
tion, Jy = E4(C & C), of J to H, & M., where Eu{p x ¥) := ¢ ® @ is the
corresponding exchange operator, we find that ['g is anti-unitarily equivalent
to I'_g,

J,;r_g J,; = r_g. {B.T}

In parti-culnr, J,iI'ﬁJ',; = I‘d..
For any Borel set A C R, we denote v, := ya{la) and further

Az = {(i,5)eN?| E e A}, (B.8)
AV = lieN|JjeN: E;eal, (B.9)
AD = {jeN|3JieN: E eA}, (B.10)
A% = M\ AY, p=1,2. (B.11)

Note that A = A", and that [AY')" = [AS") = 0if A 5 0. Moreover,
A={E }c(000) = AV3i, [AVF>30, (B.12)
A={E;}C(~00,0 = AV3i, [AVFaN-1. (B13)
Furthermore, we denote the corresponding canonical projections by

g A =AY, ()i, (B.14)
P Ay =AY (L) =7, (B.15)
and we call a Borel set A C R nondegenerate iff p'Y or p'¥ is bijective. (Note

that p'"! is bijective iff p'® is.) The assumption of simplicity of the eigenvalues
E, < E,,, implies that {E} is nondegenerate, for any £ € R For any
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nondegenerate & C R, there exists a bijection N = N, : AE] — AE] such
that

Ay = {(i,Nali))| i e AD}. (B.16)

The case & = {E, ;} and E = E, ; is of special interest, and we denote

rM&s) .-

g (B.17)

L]

recalling that P} = xig,jlLal
We conclude this section with a computation of the matrix elements of [g.
To this end we abbreviate ,; := @i @y, E; := E, - E;, and G;; = G4(£),
£ := (£, A). We obtain
(il T o) (B.18)
= {piy @ a(y1+06G" @1, - P1.8C) Pad[LPq — E] Py
ap(WV1+pGR1,; — pla® T ) {*Fi_f@'ﬂ‘r}}
+{pi; @0 e (VPG &1y - V1+p1a8 T ) Pid[LoPi - E] Pt
ar (VP @1y - 1+ p1,8G6) (w2 )

= fdﬁ{{wul (V140G @14 - 5148 C) §[La - E +w(§)]
(VI+pG@1,y - VP1a8T ) eie)
+ {2 V| (VAGR 1y — V1+9148C ) §[Lu - E - w(€)]
(VPG ® 14 - VIFp1u®T) eus) }.

and hence

N=1
(wijlTewes = f'ﬁ }: (B.19)

{6[Evmn = E+w(8)] (05| (VIF5G @ 1u = 514 ®T) ¢
(Pmal (VI+2C®1d — VP1aBT ) Prnn)

+ 8[Epn = E = w(8)] {0i5] (VPG @1 = v1+014®C) i)
(omal (VBG' @14 = VTH5140C) id) |
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Hence, the final result is

{IFlJ! r-'lT 'I:'-"l..!} [.E?u]
N=1
= fdif Z {J[Em.n - E"'Wtﬂ] {1.-"1 +F?-’=ru.t bim = +/P0im E,1i.rl,"

m,m={}
{"u" 1+ me.l"En.-f = \ﬁ'ﬁm.* Gf.ﬂ}
+ 8[Empn = E = wl€)] (VBGimbjn — V1+ p8inGay)

(VPGimbng = V14 pdus Gar) ] .

In particular, for E =0, 1= j, and k = £, we have

(wiil Coves) = dig (E M. E“’E'*‘"'!) = (1=dix) e, (B.21)
J#k
where
i 1= 2 [ (5[0(6) ~ Eua] +6[u(6) + Bua]) VAOT+ 2@ [GunE) .
(B.22)

Formula (B.21) is equivalent to the detailed-balance equation (V.50). To
derive (B.21), we use

1+pl8) _ A _ suen
R A (B.23)

which implies the following two identities,

Slwl(t) = E) (1 +pl8)) = 8[wi€) = Eix] vPIE)(1 + plE) #5472 (B.24)
[w(€) + Eig] pl€) = S[wif) + Eix] olE)(1 + plE) "5/ (B.25)

B.2 Strict Positivity of I'g for £ #0

Our next task is to show that under certain assumptions yalgxa = axa.
for some o > 0 and all E # 0. Since g is anti-unitarily equivalent to I'_g,
we may restrict ourselves to considering E > 0.

Theorem B.1. Assume Hypotheses H-1 and H-5. Let E > 0 and A C R be
a nondegenerate Borel set. Then

xalexa = veld)xa. (B.26)
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where the number yg(A) > 0 s defined by

w(8) = min [de 3 {6[Emnia ~E+ul€)] |GmalO)]

rﬁﬁ"lﬂ.. "“Ei-'"l:]]:
+ 6 [Ennpmy = E = wi(€)] |G.~rtma..~r:m:{ﬂ|j} . (B.27)
Furthermore, for E, ; # 0,
T84 > o) 1= g ({E)) > 0, (B.28)

uniformly in § = oo,

Proof. Since A is nondegenerate, {y, vili € A4} is an ONB in Ranxya(La).
We may therefore write any normalized vector in ¢ € Ranyal(ly) as & =

Y ien G Wi, Where 5 lei* = 1 and ¢ = 0, for all i € [AS')°. Inserting
this into (B.20) yields

N-1

@ired) = fae Y (B.29)

(L]

§[Emn = E +w(€)] |1+ p G pi-1in) En-i(n) = ﬁf-’-'mm].m-l’
+ 5[Em_,. - E- HJI::E}] |g’,_pG';.-.:1,,:,.m E_,u,ralt.]. - 41+ pG"-.H{M} E-m|2 ] .

Now we observe that the range A™ of summation contains the following two
disjoint subsets:

@, alrxa®, (B30)

Using this and the fact that ¢ vanishes for i € [..-!.E ¢, we obtain the following
lower bound,

(BITe®) 2 v+ 9", (B.31)
where
= f & Y leal 3 {6[Emn— E+wl®)] |VBCrimal
medl’ AL
+ 6[Epn — E = ()] [VT+ 2G| } (B.32)
= [ T teal T {6(Enim - E+ule)]e
medy  melAl'

+ 6[Eavim = E = w(€)] (1 4+ 0)} [Grmam] (B.33)
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and similarly

Vo= fae T eal T {olEmmn - E+u(©] 1 +0)

ey me[AL ]
+ 8B iy = E = w(8)] £} |Guna] (B.34)

Adding v' and ", we arrive at the first assertion, Eq. (B.27),

¥+4" 2 Z |ﬂ-a|=fd‘5 Z {'S[Em.r-'hﬁub—-5'-'”'-“[1‘5]']|"-_'*'-r-.-ﬁ-|t

-riuf.l.‘ﬂ:’ mEI..-l.L"]]-
+ '5[5-?-..-'[-.: ¥ H‘{-E}I |GN{ri1!.N{nﬂ|=] . (B.35)

To prove (B.28), we assume that A = {E, ;}and E=E,; > 0. Theni € ..-I.ﬂ]
and 0 € [A}'], so retaining only the term m = 0 in (B.27), we find that

79 2 min [ de 8[Eowim = Euy+(©)] [Gra(© . (B30
g AL

Since Ep nim) < 0, we have that T = Eij = Eo vpm) = 27mar, and Hypoth-

esis H-5 directly vields 74! > 0, 0

B.3 Spectral Gap above 0 for ['%

In this section we assume that A = {0} and that E = 0. Furthermore, we
shall make use of Hypothesis H-3, in addition to Hypotheses H-1 and H-5.

Note that since the eigenvalues of H,; are nondegenerate, {0} is nondegener-
ate and symmetric. Moreover I = Tg|, .. commutes with J;.

Theorem B.2. The infimum of the spectrum of I'% is a simple eigenvalue
and equals 0, with eigenvector xy = Y0 1 e~ #8=/25  Furthermore, the gap
above 0 can be estimated by

0<% < min{o[r®] \ {n}} (B.37)
where
=1
o= 2 (S o) mn, a0 sy

=

and Ty, o > 0 is defined in (B.21).
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Remark B.3. Note that

liminf &, >
Hto ﬂﬁmf:'rl‘fn'f 1

[ & [Gan@) 6 [ +ot6)] ). (B39

s0 5 > 0, uniformly in 8 — oo, thanks to Hypothesis H-5.

Proaf. Since {0} is nondegenerate, {y;li € N} is an orthonormal basis
in Ran P, and we may write any normalized vector x € EnnP,f as K =
Pien Kiwis, where 3 |k * = 1. Inserting this into (B.21) and denoting
Himn = Tlmn Eﬂ‘E--PE"”:. we obtain

- .
(k| Tox) = Z N Ceat T ~ (B.40)
iy
© 5 (et - T )
H ]
= me| e HEnity =0T ,Em|
_ﬂ
ke 2
_ E | BEaj2 . _ gBENJ ,{m| :
Eman
From Eq. (B.40) it is obvious that
(%g|Toxg) = 0. (B.41)

Moreover, we obtain the lower bound

N-1

(|Tom) 2 26" ¥ |e25g, — PR P (BA2)
mm
N=1

(g E Ie""":‘” K = e"E""’ic.,.F

=il

26 (2 ~ |(malo)*).

where Z' := E:_:; “PEm = (KglKp) and G' = MiNg<men<N—1 {limn}. Hence,

(x|Tox) > 26" 2", (B.43)
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whenever & L k4 and ||| = 1. O
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