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Abstract 

We study an atom with finitely many energy levels in contact with 
a heat bath consisting of photons (black body radiation) at a temper-
ature T > 0. The dynamics of this system is described by a Liouville 
operator, or thermal Hamiltonian, which is the sum of an atomic Li-
ouville operator, of a Liouville operator describing the dynamics of a 
free, massless Bose field, and a local operator describing the interac-
tions between the atom and the heat bath. We show that an arbitrary 
initial state which is normal with respect to the equilibrium state of 
the uncoupled system at temperature T converges to an equilibrium 
state of the coupled system at the same temperature, as time tends to 
Too (return to equilibrium). 
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I Introduction and Summary of Main Results 
In this paper, we study open quantum systems consisting of a small, compact 
subsystem with finitely many degrees of freedom coupled to an infinitely ex-
tended reservoir or heat bath which, asymptotically, is in thermal equilibrium 
corresponding to a temperature T > 0. By “asymptotic thermal equilibrium” 
we mean that, roughly speaking, the states of interest of the system are indis-
tinguishable from thermal equilibrium states at a fixed, positive temperature 
T > 0 in a neighbourhood of spatial infinity. 

Our main concern is to analyze the phenomenon of “return to equilib-
rium”: We exhibit a class of open quantum systems with the property that 
the time evolution drives an arbitrary initial state describing “asymptotic 
thermal equilibrium” at a temperature T > 0 towards an equilibrium (or 
KMS) state at the same temperature T, as time tends to oo. In other words, 
the limiting state of an open system with the property of return to equilib-
rium, as time tends to oo, is a time-translation invariant KMS state corre-
sponidng to a temperature equal to that of the heat bath near spatial infinity. 

A consequence of return to equilibrium is that the entropy of the state of 
the small subsystem tends to increase under the time evolution. This means 
that, if only the degrees of freedom of the small subsystem are observed, the 
dynamics is dissipative, dissipation arising through energy exchange with the 
thermal heat bath. This kind of dissipative behaviour is sometimes called 
“quantum friction”. 

The phenomenon of “return to equilibrium” is similar to the phenomenon 
of “approach to a ground state”, which is observed at zero temperature: If 
a suitable small subsystem, such as an electron bound to a static nucleus, 
is coupled to a dispersive medium with infinitely many degrees of freedom, 
such as the quantized electromagnetic field, at zero temperature, then an ar-
bitrary initial bound state of the small subsystem approaches a groundstate 
of the coupled system, as time tends to oo. The reason is that excited bound 
states of the small subsystems become unstable when the subsystem is cou-
pled to the dispersive medium; they decay into lower-energy bound states 
through emission of dispersive modes (photons) and eventually converge to 
a groundstate. This phenomenon is sometimes called “dissipation through 
dispersion (emission of dispersive radiation)”. 

The two phenomena of “return to equilibrium” (T > 0) and “approch 
to a groundstate” (T = 0) can be formulated as spectral problems for the 
generator of the time evolution, i.e., for the Liouville operator, or thermal 
Hamiltonian, (T > 0) and the Hamiltonian (T = 0), respectively: If one 
can show that the point spectrum of the Liouville operator generating the 
dynamics of an open quantum system in asymptotic thermal equilibrium at 
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a temperature T > 0 consists of a simple eigenvalue at 0 then the property 
of “return to equilibrium” can be proven to hold as a general consequence 
of the so-called KMS condition. A prerequisite for establishing “approach 
to a groundstate” is to show that the point spectrum of the Hamiltonian 
generating the dynamics of the system at zero temperature consists of a single 
eigenvalue, the groundstate energy, of finite multiplicity. In particular, one 
must show that all excited bound states of the small subsystem (e.g., an 
atom) are turned into resonances of finite life time when the latter is coupled 
to the dispersive medium. However, this kind of information on the energy 
spectrum of the Hamiltonian does not, by itself, suffice to prove the property 
of “approach to a groundstate”. (In addition, one needs to establish some 
properties of scattering related to asymptotic completeness, and this tends 
to be a very hard analytical problem.) 

The idea that initial excited bound states of an atom approach a ground-
state through emission of photons, as time tends to oo, first appeared in 
Bohr’s theory of the hydrogen atom coupled to the quantized radiation field, 
at zero temperature, and remained a guiding idea in later perturbative analy-
ses of the quantum theory of atoms coupled to the electromagnetic field by 
some of the founding fathers of quantum mechanics. See, e.g., [14] for a 
review of results. Mathematically rigorous, non-perturbative results on the 
quantum theory of charged particles interacting with the quantized radiation 
-(or the phonon) field at zero temperature started to appear surprisingly re-
cently; see, e.g., [11, 19, 20, 30, 5, 6, 7, 8, 9, 10, 26, 23, 24, 39, 38, 17, 36] 

First traces of the idea of “return to equilibrium” at positive temperature 
appear in work of Planck, in Einstein’s 1917 derivation of the law of black-
body radiation, and in much subsequent work on radiation theory; see, e.g., 
[31, 32]. Mathematically, precise results were first obtained within various 
approximate treatments, such as the van Hove limit; see, e.g., [16, 29] and 
references given there. A complete proof of the return to equilibrium for a 
simple infinite quantum system, the so-called XY chain, was first presented 
in [35]. A reformulation of return to equilibrium as a spectral problem for 
Liouville operators was proposed by Jakšić and Pillet in [27, 28], drawing on 
previous fundamental work due to Araki and Woods [3], Haag, Hugenholz 
and Winnink [22], and Araki [1] ; see also [12, 13, 21]. In the present paper, 
we follow the general ideas of the spectral approach to the problem of return 
to equilibrium due to Jaksic and Pillet [27, 28]. Due to some confusion in 
the literature, we find it necessary, however, to carefully review the general 
formalism of the quantum theory of finite and infinite systems in or close to 
thermal equilibrium, as developed in [3, 22, 1] (see also [12, 13, 21]), in a form 
convenient for applications to concrete models, and to introduce several novel 
technical devices within the spectral approach. Furthermore, we intend to 
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present the general formalism in a fashion that will make future applications 
to more complicated problems, e.g., to the problem of stationary states of 
infinite quantum systems, or to some problems of transport theory, feasible. 
Unfortunately, some of these purposes of our work make the present paper 
quite long. 

Next, we describe the class of open quantum systms considered in this 
paper. The small, bounded subsystem consists of a confined atom or molecule. 
In this paper, an idealized description of the small subsystem as a quantum-
mechanical system with a finite-dimensional state space, 

H
el
 = CN , N < oo, (I.l) 

is chosen, i.e., we consider an atom or molecule with only finitely many energy 
levels. When the coupling between the small subsystem and the reservoir, or 
heat bath, is turned off, the dynamics is given by a Hamiltonian, Hel, which 
is a selfadjoint operator on Hel. The spectrum of Hel consists of eigenvalues 
E0, Ei,... , En- 1

. For simplicity, we assume that these eigenvalues are non-
degenerate, 

E0 < Ε1 < · · · < EN-1 · (1-2) 

Every eigenvalue Ej corresponds to an eigenvector φ3 of Hel, i.e., 

HelPj = Ejpj . (1.3) 

These eigenvectors form a complete orthonormal system in Hel. In particular, 
in the natural scalar product, ( · | · ), on Hel, 

(<Pi\Vj) hj , (1.4) 

for all i, j = 0,1,... , N1. 
The reservoir is chosen to consist of the quantized electromagnetic field or 

of the quantized vibrations, or phonons, of an infinitely extended, harmonic 
material medium. The modes of the reservoir are indexed by wave vectors 
k 3 and, for photons, a helicity γ = ±1. The Hilbert space, h, describing 
pure states of a single phonon or photon is given by 

h — L2(R3,dk), for phonons, , 
Zr(M3 x Z2, dk) , for photons, ( ' 

where 

J f(k) dk := JK
3
 f(k) d3k , for phonons, , , 

Σλ=±ι43
/(*)Λ, for photons. 
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At zero temperature, the Hilbert space of pure stare vectors of the reser-
voir is chosen to be the Fock space 

(1.7) 

where h(0) : = C, and h(n) : = h®sn, n > 1, denotes the symmetric tensor 
product appropriate for the description of quantum-mechanical particals with 
Bose-Einstein statistics. A vector Ψ  F is a sequence, 

(1.8) 

of wave functions, ip
n
 (ki,... , k

n
)  h(n) with kj = kj  3, for phonons, and 

kj = (kj, λj)  3 x Z2, for photons. These wave functions are completely 
symmetric in their arguments. The scalar product for two vectors, Ψ and Φ, 
in F is given by 

(1.9) 

For f  h, we define an annihilation operator, a(ʄ), on F by setting 

(1.10) 

where 

· · · , k
n

) · Vn T 1 ʃ dk
n

+1 f (k
n+1

) νn+l (κ
1
 , · · · > k

n

, κ
n

+l) · 

(I.11) 

(Note that ʄ → a(f) is linear in ʄ, rather than anti-linear.) For every ʄ  h, 
a(f) extends to an unbounded, densely defined, closed operator on F. For 
ʄ  h, we define rf to be the complex conjugate of ʄ, (rf)(k) : = f(k). We 
define the creation operator, to be the unbounded, densely defined, 
closed operator on F given by the adjoint of a(rʄ), i.e., 

“*(/) := (a(r/))*· (1.12) 

Annihilation- and creation operators obey the canonical commutation rela-
tions 

[a*(ʄ), a'(g)] = [a(ʄ), a(g)] = 0, (1.13) 
[a(rʄ), a*(g)] = (f\g)h 1 , (1.14) 
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where ( · | · )h denotes the scalar product on h. We note that the vacuum 
vector, Ω = (1, 0, 0,···), spans h(0) and has the property that 

α(ʄ) Ω = 0, for all ʄ  h. (I-15) 

The dynamics of the reservoir at zero temperature is determined by the Hamil-
tonian 

H, = ʃ dka (k)ω(k)a(k) . (I.16) 

We choose ω(k) to be given by 

ω(κ) = κ (I-17) 

corresponding to massless, relativistic photons or phonons. The operator Hʄ 
defined by (I.16) extends to an unbounded, selfadjoint, positive operator on 
F. It has a simple eigenvalue at 0, corresponding to the eigenvector Ω. The 
rest of the spectrum of Hʄ is purely absolutely continuous. See [34, 33] for a 
more complete summary of the theory of free, quantized fields. 

The Hilbert space of the combinded system, consisting of the idealized 
atom and the reservoir, at zero temperature, is given by 

H : = H
el
F . (I.18) 

When the coupling between the atom and the reservoir is turned off, the 
dynamics is given by the Hamiltonian 

H0 = H
el

 1 + 1H
f
 (1.19) 

with H
el
 as in (I.2), (I.3) and Hf as in (I.16). The coupling between the 

atom and the reservoir is described by an interaction gI, where g   is a 
coupling constant, and 

I : = f dk{G(k)®a*(k) + G(k) ®a(k)} , (1.20) 

where, for each k  3(xZ2), G(k) is an operator on Hel, i.e., an N x N 
complex matrix. One could add to I terms quadratic in a* and a, (or even 
of higher than second order). But, for the sake of a clear exposition of the 
key ideas of our analysis, let us not do that. The Hamiltonian, Hg, of the 
combined, coupled system at zero temperature corresponds to the formal sum 

Hg - H0 + gl. (1.21) 
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For notational simplicity, we assume without loss of generality that g > 
0. We have studied the zero-temperature dynamics of similar systems in 
[5, 7, 8, 9]. The purpose of this paper is to characterize the space of states of 
the class of open systems introduced in (1.1)—(1.3) and (1.7), (1.16), (1.18)— 
(1.21) describing “asymptotic thermal equilibrium” at a positive temperature 
T > 0, and to study properties of the dynamics of such states, as formally 
generated by the Hamiltonian H of Eq. (1.21). Under appropriate conditions 
on Hd and on the coupling matrix G(k) appearing in (1.20), we establish 
“return to equilibrium” for inital states describing asymptotic equilibrium. 
Somewhat surprisingly, it appears that the proper mathematical formalism 
enabling us to formulate these problems precisely and then solve them is 
not widely known, although it has been developed in the sixties and early 
seventies. For this reason, a self-contained summary is presented in Sects. II, 
III, and IV.l. 

Before we give a survey of the contents of this paper, we now state the 
conditions on Hd and on the coupling matrix G(k) on which our analysis is 
based. In later sections, we refer to these conditions whereever we formulate 
precise results. Our first condition is as follows. 

Hypothesis H- 1. The spectrum of Hel consists of simple eigenvalues 

E0 < E1 < · · · < E
N

_1 (I.22) 

corresponding to a complete, orthonormal system °f eigen-
vectors. 

Next, let 

Gy(k) : = (ψ,\0(Η)ψ
3

) (I.23) 

denote the matrix elements of the coupling matrix, G(k), see Eq. (I.20), in 
the basis of eigenvectors of Hel. These matrix elements are assumed to have 
the following properties. 

Hypothesis H- 2. For θ  , consider the functions Gi, y (e~ek). For each 
wave vector k  R3 (and helicity γ — ±1) and all i, j = 1, ... , N, Gi, j(e~ek) 
extends to a function of θ, also denoted by Gi,j(e

-θk), analytic on a domain 
in C containing the strip 

Σ„
0
 := {0||lm0|<0o}. (1-24) 

for some ΰ0 > 0 independent of k  3, (γ = ±1) and i and j. The same 
property then holds for the functions 

G*i,j(e~ek) := (φ,,| G(e~sk)<p
t
) . (1.25) 
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We also require a variety of boundedness conditions on the coupling func-
tions {Giy(e~ek)}. 

Hypothesis H- 3. We assume that there exists positive constants μ > 0 
and Μ < oo, such that, for all θ  Σ

0
 and k  3 (and λ ± 1), 

(1.26) 

where u(k) = \k\. 

In concrete physical models, based on the dipole approximation for the 
coupling of an atom with finitely many energy levels to the quantized elec-
tromagnetic field, one finds that (1.26) holds for μ = 1/2. 

Our next requirement is a condition on the choice of an ultraviolet cutoff 
in the interaction I which can be stated in the form of decay properties of 
the coupling functions G

lt
j(e~ek), as \k\ → oo. 

Hypothesis H- 4. There exists a constant 0 < Λ < oo such that, for all 

(1.27) 

where M < oo is the same constant as in Hypothesis H-3. 

This condition will play a crucial role in our analysis of spectral properties 
of the Liouville operator or thermal Hamiltonian. Among such properties the 
most crucial one is that all but one eigenvalues of the Liouville operator of 
the uncoupled system (g = 0) consisting of the (finite-level) atom and the 
reservoir dissolve in (absolutely) continuous spectrum when the interaction 
between the atom and the reservoir is turned on. We will show that the 
Liouville operator of the interacting system (g > 0) has a simple eigenvalue 
at 0 corresponding to its unique equilibrium (KMS) state, the rest of the 
spectrum of the Liouville operator being purely absolutely continuous. This 
is quite remarkable, because the Liouville operator of the uncoupled system 
(g = 0) has eigenvalues at {E

t
 - Ej |i, j = 1, ... ,N, i ≠ j} and an N-fold 

degenerate eigenvalue at 0. Our proof that N2 - 1 of these N2 eigenvalues 
dissolve in continuous spectrum when the interaction is turned on is based 
on a mathematically rigorous variant of Fermi’s Golden Rule. To make this 
method work, we require the following condition. 
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Hypothesis H- 5. Let T
min

 : = mm {|Ei~Ej| |i ≠ j} and T
max

 : = max{|Ei-
I} · For any i ≠ j and any r

min
 < r < 2 r

max
, 

j dk δ [uj(k) — T] |G
i,J

(k)|2 > 0. (1.28) 

Actually, condition (H-5) can be weakened considerably at the price of 
rendering the computational aspects of our analysis more complicated, see 
Appendix B. 

Our proof of the result that the spectrum of the Liouville operator of the 
interacting system is purely absolutely continuous, away from 0, will involve 
a combination of the method of complex spectral deformations, more precisely 
a novel variant of dilatation analyticity, with a mathematically precise form 
of Fermi’s Golden Rule based on the so-called Feshbach map of [7, 9]. The 
appearance of the complex parameter e~9, θ  C, in conditions (H-2) through 
(H-4), above, can be traced to our use of dilatation analyticity. 

We now state our main results in the form of a theorem. 

Theorem 1.1. Consider an open quantum system with dynamics correspond-
ing to the formal Hamiltonian Hg defined in (I.21), where H0 is given in 
(1.19) and I in (1.20). We assume that H0 and I satisfy conditions (H-l) 
through (H-5) described above. Let 

(1.29) 

denote the Liouville operator acting on a Hilbert space, Hβ, of states of the 
system describing asymptotic thermal equilibrium at a temperature T > 0. 
The operator Lg generates the dynamics of the states in Hβ. 

Then we have that, for an arbitrary temperature T > 0, the following 
hold: 

(i) Lg(β) is essentially self adjoint on a natural domain dense in Tip. 

(ii) If 0 < g < g*, for some g* > 0 independent of T, then Lg(β) has a simple 
eigenvalue at 0 corresponding to the unique equilibrium (KMS) state of 
the system, and the rest of the spectrum of L(β) covers the entire real 
axis and is absolutely continuous. 

(iii) Under the same assumptions, the states in Hβ have the property of 
“return to equilibrium”, in the sense described above. 

(iv) Under certain more stringent assumptions, see Sect. V.3, (in particular, 
μ = \ in (I.26)), there exists a natural linear subspace, D0, of states 
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dense in Hβ with the property that every vector m Do converges to 
the unique equilibrium state of the system at temperture T = (kBβ)- l 

exponentially fast in time. 

Remark I.2. Under the hypotheses of part (iv) of Theorem I.1 stated above, 
one can establish precise links between our methods and those in [28], on one 
hand, and various heuristic treatments of “return to equilibrium” involving 
quantum, master equations, on the other hand. 

We conclude this introduction with a brief summary of contents of the 
various sections of this paper. 

In Sect. II, we review the general theory of pure and mixed states and of 
their dynamics (in the “Schrôdinger picture”) for quantum mechanical sys-
tems confined to bounded regions of physical space. We characterize their 
thermal equilibrium states and derive the Kubo-Martin-Schwinger (KMS) 
condition. We derive explicit expressions for the Liouville operator (or ther-
mal Hamiltonian) in terms of the Hamiltonian and for the “modular opera-
tor” and the “modular conjugation”. We describe perturbation methods for 
the construction of equilibrium states of interacting systems. 

In Sect. III, we extend the results of Sect. II to the thermodynamic limit, 
following [22] and [1]. In particlar, we clarify what we mean by the notion 
of states in “asymptotic thermal equilibrium” at temperature T = (kBp)~l; 
see Sect. III.2 and III.3. We introduce the Liouville operators generating 
the dynamics on states which are in “asymptotic thermal equilibrium”; see 
Sect. III.2 and III.3. In Sect. III.4, we derive the property of “return to equi-
librium” from a spectral property of the Liouville operator of a system and 
the KMS condition characterizing its equilibrium states. In Sect. III.5, we 
review the perturbation theory for equilibrium states in the thermodynamic 
limit. 

In Sect. IV, we first review the Araki-Woods representation of equilibrium 
states of the quantized, free electromagnetic field. We then introduce a class 
of open quantum systems describing an idealized, confined atom coupled to 
the quantized electromagnetic field in “asymptotic thermal equilibrium” at 
a temperature T > 0. We establish selfadjointness of the Liouville operators 
of such systems and of related operators needed in the perturbation theory 
of equilibrium states. We prove that, at an arbitrary temperature T > 0, 
the systems studied in this paper have an equilibrium state which can be 
constructed from the equilibrium state of the quantized electromagnetic field 
with the help of convergent perturbation theory; see Sect. IV.3. We also 
establish some simple technical estimates important for our analysis. 

Our main results (see Theorem 1.1 stated above) are proven in Sect. V. In 
Sect. V.l, we describe these results and sketch the basic analytical methods, 
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a novel form of dilatation analyticity for the Liouville operators er. countered 
in the analysis of our class of systems and the Feshbach map of [7, 8], on 
which our proofs are based. All key elements of our proofs of the relevant 
spectral properties of the Liouville operators are explained quite carefully. 
In Sect. V.2, we compare and combine our approach with the one proposed 
in [28]. We exhibit a dense set of states in “asymptotic thermal equilibrium” 
which converge to a unique equilibrium state exponentially fast in time. 

The remaining subsections of Sect. V and two appendices are devoted to 
a variety of (partly rather tedious) technical considerations. We recommend 
especially Sect. V.7 (a renormalization group analysis of the spectrum of 
Liouville operators) and Appendix B (concerning Fermi’s Golden Rule) to 
the attention of the reader. 

II Thermal Equilibrium States of Finite Sys-
tems 

In this section, we recapitulate some results of [22] ; see also [21, 12, 13]. 

II. 1 Pure and Mixed States of Quantum-Mechanical 
Systems 

We consider a quantum-mechanical system confined to a bounded region of 
physical space. The pure states of the system correspond to unit rays in 
a separable Hilbert space H, with scalar product denoted by (·|·). The 
algebra of observables of the system is a C*-algebra, A, contained in or equal 
to the algebra Β(Ή) of all bounded operators on Ή. We assume that A 
contains the identity operator 1. The dynamics of the system is determined 
by a Hamiltonian, H, which is a semibounded, selfadjoint operator on Ή, 
with discrete spectrum. 

Let Tr[.] denote the usual trace on B(H). We assume that exp(-βΗ) is 
trace-class, i.e., 

Tr [e ΡΗ] < oo , (II.1) 

for arbitrary β > 0. 
We are interested in describing general mixed states of the system, in-

cluding its thermal equilibrium states, for arbitrary inverse temperature 
β = (kBT)- l, where kB is Boltzmann’s constant and T denotes the absolute 
temperature. Furthermore, we wish to study the time evolution of general 
mixed states, as determined by the Hamiltonian H. 
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According to Landau and von Neumann, a mixed state of the system 
corresponds to a density matrix, i.e., to a positive, selfadjoint operator on Ή. 
of unit trace. 

The two-sided ideal of trace-class operators in Β(Ή) is denoted by ), 
the two-sided ideal of Hilbert-Schmitt operators in Β(H) by C2(H). A density 
matrix p is a positive element of L1(H) of unit trace. Then 

« : = p1/2 (Π.2) 

is Hilbert-Schmitt, with 

Tr[2κ] = Tr[/c*/ç] = Tr[p] = 1 . (II.3) 

As a linear space, C2(H) is a Hilbert space with scalar product given by 

(·|·) : C2(H) X C2(H) → C, (κ,σ)*->(κ\σ) := Tr[«V] . (Π.4) 

For brevity, we denote L2(H) by /C. This Hilbert space is isomorphic to 
Ή Ή. It carries a representation ℓ of the algebra A given by 

ℓ[a] κ : = an  K, (II.5) 

for arbitrary κ  κ, a  A. To every element κ  κ, we can associate a state 
of the system given by the density matrix 

p : = (κ|κ) 1 κ κ* . (II.6) 

The expectation value of an observable a  A in the state p is given by 

(a)
p
 : = Tr [pa] = (κ|κ) 1Tr[κκ*a] 

= (K|K)- 1 Tr [AC* a κ] (II.7) 
(II.8) 

= (K\/-c)- 1 (AC| £[a] κ) , 

where we have used the cyclicity of the trace. For κ, σ  κ, with (AC|AC) = 
(σ|σ) = 1, and a  A, we may define the transition amplitudes 

(κ| [ℓ|α]σ) . (II.9) 

Pure states of the system correspond to orthogonal projections P  κ of 
rank 1, i.e., 

P = ψ(ψ\·) = \ψ)(ψ\, ïpeH, (II.10) 
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in Dirac’s bra-ket notation. Then 

(P|ℓ[a]P) = Tr [PaP] = Tr [Pa] 
= (ψ\αψ) . (II.11) 

As an algebra, K. = L2(H) is what is called a Hilbert algebra, i.e., it is a 
*-algebra, and, as a linear space, it is a Hilbert space, with the property that 

(κ1 κ2| κ3) = {κ2κ1 κ3) and (κ
1
|κ2) , (II.12) 

which follows from (II.4), see [22, 18]. 
The time evolution of an observable a  A in the Heisenberg picture is 

defined, as usual, by 

at (a) : = eitH a e- i t H . (II.13) 

Then, for κ, σ  , 

(κ| l[a
t
(a)\ σ) = Tr [κ* at(a) σ] 

= Tr [κ* eÜH a e~itH σ\ (II.14) 

= Tr [(e~itH κ eitH Y a (e~ltH σ eltH)\ (II.15) 

= (a-M | φ] α-ί(σ)) , (11.16) 

by cyclicity of the trace. Thus, it is useful to define the time evolution of an 
element κ e κ in the Schrödinger picture by 

→ Kt : = a_
t
{n) : = e~itH κ eitH , (II.17) 

for t   We define a selfadjoint linear operator L, the Liouvillian, on κ by 
setting 

: = [H, κ] , (II.18) 

where [·, ·] denotes the commutator. Under our hypotheses on if, the oper-
ator C is essentially selfadjoint on the following core D dense in κ, 

D : = span{ |^)(^| | i, j = 0, 1, 2, ... } , (II.19) 

where 0 is a complete orthonormal system of eigenvectors of if, i.e., 

Hipi = Eitpi, i = 0,1,2,... , (II.20) 
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with 

E0 < E, < E2 < ... . (II.21) 

It is instructive to verify that L is a symmetric operator on D 3 κ, σ by 
computation, 

(LK\σ) = Tr [(£κ)* σ] = Tr([tf, κ]* σ) 
= -Tr([H, κ]σ) = Tr(κ[H , σ]) 
= (κ| Lσ) , (II.22) 

using the cyclicity of the trace. Eq. (II.17) can now be rewritten as 

Kt = e-itLK, (II.23) 

and one easily verifies that 

eitc ℓ[a] e- u c = ℓ(at(a)) . (II.24) 

II.2 Equilibrium States of Bounded Systems 
Since we are interested in studying systems in thermal equilibrium, we must 
identify those vectors in κ which describe equilibrium states at an arbitrary 
inverse temperature β ; see [22, 18, 12, 13] for more details. Let A! denote the 
von Neumann algebra of all bounded operators on Ή which commute with 
all operators in A, the commutant of A. A selfadjoint operator Q on Ή is 
said to be affiliated with A1 iff all spectral projections of Q belong to A\!. We 
say that Q commutes with H iff all spectral projections of Q commute with 
all spectral projections of Η. 

According to Gibbs, Landau, and von Neumann, every equilibrium state 
of the system at inverse temperature β is given by a density matrix 

Ρβ,ο ■= Z^
Q
 exp[-/3(H - Q)] , (II.25) 

where Q is an arbitrary selfadjoint operator on Ή affiliated with A!, com-
muting with Η, and such that 

Z^Q := Tr(exp\-0{H-Q)]) < oo . (II.26) 

The physical interpretation of Q is that of a conserved charge of the system. 
Since Q is affiliated with A', observables (i.e., elements of A) are neutral with 
respect to Q. 
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An element κ of k describes a thermal equilibrium state of the system iff 

κ = Kβ,Q = Z~%2 exp[-β(Η - Q)/2] U , (II.27) 

for an arbitrary unitary operator U on H. For, 

(AS,QKMA3,Q) = Tr [Kβ,Q a κβ,ο (II-28) 
= ZP!Q Tr [Kfi,Q K},Q a] 
= ^p,QTr(exPl-P(H-Q)]a) = (a)/

3
,g · 

Next, we recall some general properties of equilibrium states (see [22, 21, 12, 
13]). 

First, since pβ, g is strictly positive, for β < oo, we have that, for arbitrary 
a  A, 

(a* a) β, Q = 0 ==>· a = 0. (II.29) 

Equivalently, 

ℓ[a] K β, Q = 0 => a = 0 . (II.30) 

Thus, the vector /y^g  κ is separating for the algebra ℓ[A]. 
Second, the state pβ, Q satisfies the Kubo-Martin-Schwinger (KMS) con-

dition: 

(aa
t
(b) )β, Q

 = ZpQTr[exp[-p(H -Q)}aeitH be-itH] 
= Zpq Tr [e^Q eitH b e- ('3+it)ii a] 

= ZpQ Tr e<'3+<‘)" b e~^H a] 
( a-ig+t (b)a)M. (II.31) 

In the second equation, we have used the cyclicity of the trace and the fact 
that H and b commute with , in the strong sense specified above. Defining 

Kbit) := (aat{b))PtQ, (11.32) 
G

a
b{t) : = (a

t
{b)a)p

t

Q, (II.33) 

the KMS condition says that the function G
ab

{t) is the boundary value of a 
function G

ab
 (z) analytic in 2 in the strip 

S- β: ={ζ | — β < Imζ < 0 } , (II.34) 

and 

lim G
ab
(it-ίη) = F

ab
 (t) . (II.35) 

η/β 



BFS-4, December 21, 1999 15 

Equivalently, F
ab

(t) is the boundary value of a function F
ab

(z) analytic in z 
in the strip Sp, with 

lim Fabit + iη) = G
ab

(t) . (II.36) η/β 

Third, we have that 

(aat (b) )β,Q = (a_t(a)b)p'Q , (II.37) 

as follows from a trivial calculation similar to that in (II.31) or directly from 
the KMS condition. In particular, 

(»Î(^))/3,Q — (b)p,Q, (II.38) 

i.e., the state pβ, q is time-translation invariant ; (set a = 1 in (II.37)). 
We also note that the time-translation invariance (II.38) and the KMS 

condition imply that 

(a*b) β, Q = (aW2(a‘6)),9,<3 = (“W2(°*)aW 2(J))/3,Q (II39) 

= {0ί-ίβΐ2ψ)<Χίβΐ2{<ί,))β'(} = (a-v/2(b) (a-0/
2
{a)) )

/3 Q
 . 

We have used (II.38) in the first and the KMS condition (II.31) in the third 
equation. 

We have now summarized all important elements of the quantum me-
chanics of finite systems in or close to thermal equilibrium. However, we 
shall shortly pass to the study of infinite systems which may be viewed as 
thermodynamic limits of finite systems. We shall analyze their properties in 
or close to thermal equilibrium and their behaviour under small perturba-
tions of their dynamics by coupling them to finite subsystems. In order to 
prepare the ground for our analysis, we must elaborate on several aspects of 
the theory of finite systems. 

II.3 The Commutant of the Representation l of A on 
κ. 

First, we note that the Hilbert space κ of Hilbert-Schmitt operators carries 
a second, anti-linear representation, r, of the observable algebra A which 
commutes with the representation ℓ introduced in (II.5). It is defined by 

r[a\tc := κα* , (II.40) 
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for κ  κ and a  A. It is now clear that ℓ stands for left-representation and 
r for right-representation. Obviously 

r[za] = zr[a\, z C, (II.41) 

and 

r[ab] = r[a]r[b]. (II.42) 

It is not hard to show that if A is weakly dense in B(H), i.e., 

Aw = (A')' = A" = B(H), (II.43) 

then 

ℓ[A]" = r[A]'. (II.44) 

It is instructive to try to understand where Eq. (II.44) comes from. Let C 
be an anti-unitary involution on H, i.e., 

C2 = 1 and (Cv\Cip) = (φ\φ) , (II.45) 

for arbitrary φ,φ  H. (In a suitable orthonormal basis of hi, C acts on 
Φ  H as ± complex conjugation of the components of φ in that basis.) 
Given C, we construct an isomorphism, 

Ic : Id → hi hi. (II.46) 

If κ = (Ψ2Ι ·) Φι e IC, i.e., 

Kj = \φ1)(φ2\, (II.47) 

in Dirac’s bra-ket notation, then 

ICK : = Φι ® Οφ 2  hi® hi . (II.48) 

Next, we note that, for κ as in (II.47), 

Ic£[a]K = IC{CLK) = Ι0(\αφι){φ2\) = αφ1®Οφ2 = 
(II.49) 

and 

Icr[a}n = I0(κα*) = 10{\φι)(αφ2\) = φλ®Οαφ2 = (1 ®CaC)Icn, 
(II.50) 
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where we have used (II.40) in the first, (II.47) in the second, (II.48) in the 
third, and (II.45) (C2 = 1) in the last equation. 

Thus Ic intertwines the linear representation ℓ of A on Ή. <g) Ή given by 

ℓ[a] = a ) 1 , a  A, (II.51) 

with the linear representation ℓ of A on K, and the anti-linear representation 
r of A on H ® H given by 

r[a] = 1 ®CaC, a  A, (II.52) 

with the anti-linear representation r of A on κ 
If A is weakly dense in B(H) then 

ℓ[A\" = B(H)® 1, r[A]" = 1 ® B(H) , (II.53) 

where we use that the weak closure of a -algebra of operators on a separable 
Hilbert space is equal to its double commutant. Clearly, 

(1 ®B{U))' = BiU)® 1, (11.54) 

and, using that the commutant of a *-algebra of operators on a separable 
Hilbert space is the same as the commutant of its weak closure, (II.44) follows. 

II.4 The modular operators S and J 
There is a distinguished linear operator E acting on the Hilbert space H®n, 
defined by 

Ε(φ®ψ) := ψ®φ. (II.55) 

The operator E is called exchange operator. In terms of E and the anti-
unitary involution C, we may dehne what is called the modular conjugation 
J by setting 

J : = E(C®C) = (C®C)E . (II.56) 

Clearly, J is an anti-unitary involution, and, remarkably (though trivially), 

J ℓ J = r. (II.57) 

For 

J ℓ[a] J (φ ® φ) = 3£[α]Οφ®Οψ = 9{αΟφ®Οψ) = ψ®ΟαΟφ 
— (1 ® C a C) (ψ ® φ) = r[a] {ψ 0 ψ) . (II.58) 
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It is easy to check that 

I-1C J Ic K = K* , for ft E K. (II.59) 

The operator Ic-1 J Ic is denoted by J. 
Let A be weakly dense in B(H), and let p be a stricly positive density 

matrix on H. Let Kp := p1/2. As in (II.29)—(11.30), one notes that K
P
 is sep-

arating for l[H] and for r[H]. The separating property of kp and Eq. (11.44) 
then imply that κρ is cyclic for r[H] and for l[H], i.e., the subspaces 

l[A]κρ
 and r[Α]κρ

 (11.60) 

are dense in K. We may therefore define an (in general unbounded) anti-
linear operator S, the modular operator, by setting 

S(l[a]Kp) := l[α*]κ
ρ

. (11.61) 

Thus 

S(l[a]Kp) = a* κρ = Kp-1 Kp a* Kp (11.62) 

= Κρ-1 (r[a] Kρ) κ
ρ
 = Kp-1 (J(l[a] κ

ρ
)) κ

ρ
 , 

by (11.57)—(11.58), and because ft* = κρ. Since p is strictly positive, the 
operator 

H := -1/B ln p (11.63) 

is a semibounded, selfadjoint operator on H: Eq. (11.62) can then be rewritten 
as 

S(l[a]Κp) = EβΗ/2 ( J(l [a] κp)) e-βΗ/2 . (11.64) 

If L denotes the Liouvillian associated with the Hamiltonian H, i.e., if 

Lk = [H,k] = (l[H] - r[H]) ft , (11.65) 

then (11.64) boils down to 

S(l[a]K
p
) = eβL/2 J(l[a] κρ) , (11.66) 

or, by (11.60), 

S = eBl/2 J, (11.67) 
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i.e., 

eBl/2 = |S|, J = |S|-1 S. (11.68) 

In other words, (11.67) describes the polar decomposition of S. Eq. (11.61) 
is the starting point of a theory which works in much greater generality: 
Tomita-Takesaki theory (see, e.g., [41, 12]). Eqs. (11.68) then define exp[Bl/2] 
and J, respectively (after a painful proof that the operator S defined by 
(11.67) is closed). 

If we prefer to work on the Hilbert space HXH, instead of K, the operators 
S and L are replaced by 

S = IcSI-1c, L = IcLI-1c, (11.69) 

and J = IcJIc-11 is given by (11.56). 
It is instructive to determine the explicit forms of S and L. By (11.51) 

and (11.69), 

Sl[a] Ic Kp = S Ic l[a] Kp = ICS I-1c Ic l[a] Kp 
= Icl[a*] Kp = l[a*]ICKp. (II.70) 

Next, for κ = |ψ><φ|, with ψ,φ E H, 

LK = |Ηψ><φ| - |ψ><Ηφ| , (11.71) 

by (11.18). Thus 

Ic L κ = (Ηφ)X (Cp) — φ® (CΗφ) 
= (Ηφ) x (Cφ) - φ X ((CHC)Cφ) (11.72) 
= (Η x 1 - 1 X CHC) (φ X Cφ) 
= (Η X 1 - 1 X CHC) Ic κ . 

We conclude that 

L = Η X1 — 1XCHC. (11.73) 

In their important paper [3] on the equilibrium states of non-interacting 
bosons, Araki and Woods make a special choice for C: They choose C to 
be given by the time-reversal operator, T, which, according to a result of 
Wigner, is indeed an anti-unitary involution on H. For this choice, 

THT = Η, (11.74) 

and hence, for the Araki-Woods isomorphism IT : K ->► H X Ή., 

L = ΗX 1 - 1 XH. (11.75) 
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II.5 Perturbation Theory for Equilibrium States 
Next, we consider a finite system with dynamics determined by a Hamiltonian 
H of the form 

Η = H0 + I, (11.76) 

where H0 is the Hamiltonian of an (unperturbed) reference system, and I 
is a perturbation. In this section, we assume that I is a bounded selfadjoint 
operator, (because we want to avoid obscuring the general theory with oper-
ator domain problems). The equilibrium state of the system is given by the 
density matrix 

PB,Q = Ζ-1β,Q exp [-β(Η - Q)] (11.77) 

which corresponds to the vector 

KBQ = p1/2B,Q E K · (11.78) 

We assume that Q is affiliated with A' and that it commutes with H0 and 
with I and thus with H. Then 

κβ,Q =eBQ/2 ZB,Q-1/2]e e-BH/2. (11.79) 

The equilibrium state of the reference system is given by 

ksb = (ZοB,Q)-1/2 eBQ/2 e-BHo/2 (II.80) 

corresponding to the density matrix 

PB,Q = (KOB,Q)2. · (II.81) 

Note that 

ZB,Q = Tr[e-B(H-Q)] = Tr[e-B(Ho-Q+1)] < Tr [e-B(Ho-Q) e-B1] 

< eB||I|| Tr[e-B(Ho-Q)] = eB||I|| ZoB,Q , (11.82) 

where the first inequality is the so-called Golden-Thompson inequality (which 
follows from the Trotter product formula and the Hölder inequality, see, e.g., 
[13, 37]), and the second inequality follows from ||e_BI|| < eB||I||, for β > 0. 
Thus, when I is bounded, ZB,Q is finite iff ZOB, Q is. 

The Liouvillian of the reference system and the Liouvillian of the inter-
acting system are given by 

Lo := l[Ho] - r[Ho] , (11.83) 
L := l[H] - r[H] = L0 + l[I] - r[I] , (11.84) 
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respectively. We also define two Radon-Nikodym operators, and Lr, by 
setting 

Ll := L0 + l[Ι], Lr := L0 - r[I] . (11.85) 

Note that 

ezl[a] = l[eza], ezr[a]
 =

 r[eza] , (II.86) 

for a E Λ and z E C, as follows from the fact that l is a linear homomorphism, 
while r is an anti-linear homomorphism. By (11.85) and (11.86), 

(II. 87) 

and a similar calculation yields 

(11.88) 

It follows from (11.82) and (11.87), (11.88) that KOB,Q is in the domain of def-
inition of the (generally unbounded) operators exp[—βLl/2] and exp[Blr/2], 
and 

(11.89) 

Formula (11.89) is a non-commutative version of the Radon-Nikodym deriv-
ative in measure theory; see [1, 2]. 

Under the isomorphism Ic, C, and Lr are mapped to 

L := IcLI-1c = L0 + IX 1 - 1XCIC =: L0 + W (11.90) 
Ll := Ic LlI-1c = L

0
 + I X 1, (11.91) 

Lr := IcLrI-1c = L0-1XCIC, (11.92) 

with 

L
0
 := H0X 1-1X CHOC , (11.93) 

W := 1X1 - 1XCIC. (11.94) 

These formulae will turn out to be very useful in our analysis of concrete 
systems. 
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III Equilibrium States 
in the Thermodynamic Limit 

III. 1 Thermodynamic Limit 
In this section, we recapitulate the general theory of infinite systems, i.e., 
systems in the thermodynamic limit, in or close to thermal equilibrium, and 
we discuss spectral properties of their time evolution that guarantee return 
to equilibrium of states which are local perturbations of equilibrium states. 

Finite systems can be indexed by regions, A, in physical space. The 
thermodynamic limit is reached, as Λ increases to all of physical space. It is 
reasonable to start from the following assumptions. 

III. 1.1 Observable Algebras 

Let AA denote the observable algebra of a system confined to Λ. Then, for 
Ai C A2, 

AA1 C AA
2

 C A, (III.l) 

where A is a C*-algebra describing the observables of the system in the 
thermodynamic limit. It is usually assumed that if {Ai}iEN is a family of 
regions increasing to all of physical space then 

(ΠΙ.2) 

where the closure is taken in the operator norm. 

III.1.2 Time Evolution 

As described in Sect. II, the algebras AA are assumed to be contained in 
Β(ΉΑ), where HA is a separable Hilbert space whenever A is a bounded 
subset of physical space. The dynamics is determined by a semibounded, 
selfadjoint Hamiltonian HA on HA with the property that exp[—βΗΑ] is trace 
class, i.e., 

exp[-βΗA] E L1(HA), (III.3) 

for arbitrary β > 0, and that 

(IIΙ.4) 
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defines a *-automorphism group of ΛΑ, i.e., aAt(a) aAt(b) = aAt(ab), aA (a)* = 
aAt(a*), and aAt(a) E AA, for arbitrary a E ΛΑ, t E R. By (III. 1 ), aAt(a) is 
well-defined and belongs to AA, for all a E ΑΑ, with A' C A. We denote 
ViENAA AAi by A∞. For any a E A∞, aAt(a) is thus well-defined, for i sufficiently 
large. In a general theory of thermal equilibrium states, one will assume that 

(ΙII.5) 

exists, for all a E A∞ and all t E R, and that {at}TER is a one-parameter 
*-automorphism group of the algebra A. It describes the time evolution of 
the observables of the infinite system in the Heisenberg picture. 

III. 1.3 Equilibrium States [40] 

As discussed in Subsect. III. 1.2, Assumptions (III.3) and (III.4) guarantee 
that a finite system confined to a region A has equilibrium states < . >AB,Q, see 
Eq. (11.28), which satisfy the KMS condition, Eqs. (11.31), (11.35), (11.36). 

For a E A∞, we may consider the sequence of expectation values <a>AiB,Q 
which are well defined if i is large enough, depending on a. Let wB(.) denote 
a limit of a (suitable subsequence of) the sequence < · >A1B,Q of states on A∞ 
Then ωβ is a time-translation invariant KMS state on A∞, i.e., 

wB(a
t
(a)) = ωβ(a) , (III.6) 

and, defining 

Fab(t) := wB(aa
t
(b)) , (III.7) 

G
ab

(t) := WB(a
t
(b)a), (III.8) 

we have the KMS condition 

Gab(t-iB3) = Fab(t), (III.9) 
Fab(t + ίβ) = Gab(t) , (III.10) 

for a, b E A∞; see Eqs. (11.38), (11.35), (11.36). By continuity, these equations 
continue to hold for arbitrary a, b E A. 

o 

We define a *-algebra A by 

(III.11) 

where f denotes the Fourier transform of f. Since at has been assumed to 
be a *-automorphism group of A, A is a *-subalgebra of A, and at leaves 
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A invariant. For any a E A, a
t
(a) is the boundary value of an A-valued 

entire function a
z
(a), z E C. For a E A and b E A, we can rewrite the KMS 

condition as the equation 

wB(aat(b)) = ωβ(α_ιβ+t(b)α) . (111.12) 

Note that 

αz(α)* = α
2
-(α*), (III.13) 

for z E C, a E A. The invariance (III.6), the KMS condition (III.12), and 

(III.13) then imply that, for a, b E A, 

ωβ (α* b) = ω
β

(α
ιβ/2

(α* b)) = ωβ(α_
ίβ/2

(b) [α_ίβ/2(α)]*) . (ΙΙΙ.14) 

This equation has a noteworthy consequence: If A is a simple C*-algebra 
(i.e., A does not contain any two-sided *-ideals other than {0} and A) then 
Eq. (III. 14) implies that, for any a E A, 

ωβ(α* a) = 0 => a = 0. (III.15) 

To see this, we show that N := {a E A | ωβ(α*α) = 0 } is a two-sided *-ideal. 
Clearly, if ωβ(α*α) = 0 and b E A then 

Wb(a* b* ba) < ωβ(α* b* bb* ba)1/2 ωβ(α* a)l/2 = 0, (III.16) 

by the Schwarz inequality. Hence ΑN C N. Furthermore, if ωβ(α*α) = 0 

and b E A then 

ωβ(b* a* ab) = ωβ((b* a* a) b) = ωβ(α_iB/2(b) α_ίβ/2(b*α*a)) 
= Wb(a_ib(b)b* a* a) = 0. (III.17) 

In the second equation, we have used (III. 14), in the third one invariance, 
i.e., (III.6), and in the last one again the Schwarz inequality, i.e., 

|ωb(b* α)\2 < ωβ(b* b) ωβ(α*α) . (ΙΙΙ.18) 

Thus, ΑN, NΑ C N, and N is a two-sided *-ideal. 
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III.2 The GNS Construction 
For the purpose of mathematical precision, it is useful to assume that there 
exists a denumerable subspace A C A such that, for every a E A, there exists 
a sequence {aA}AEN C A with the property that 

Jim ωβ((α-αχ)*(α-αλ)) = 0, (III.19) 
Λ—>)·οο 

and that 

WB(aa
t
(b)) = WWb(a-t(a)b) (III.20) 

is continuous in t, for arbitrary a, b E A. 
Next, we recapitulate the GNS construction in a situation where (III.6), 

(III.12), (III.19), and (III.20) hold: To the data as specified 
above, one can associate a separable Hilbert space Ηβ, a representation l 
of A on Ηβ, a vector Ωβ E Ή,β which is cyclic for l[A], and a continuous 
one-parameter group of unitary operators {e~itL}tER, where L is a selfadjoint 
operator on Ή,β, such that, for all a E A, 

ωβ(α) = <ΩB| l[a] Ωβ> , (III.21) 
l[at(a)] = eitL l[a] e-itL , (III.22) 

LΩβ = 0. (III.23) 

To construct Ηβ, Ωβ, l, and L, let N := {a E A | ωβ(α*α) = 0 }. As noted 
above, N is trivial if A is simple, by the KMS condition. We set [a] a 
mod N, for all a E A. Clearly, D := {[a] \ a E A} is a linear space. It is 
equipped with a scalar product 

<[α]|[b]> := ωβ(α* b). (III.24) 

The Hilbert space Ηβ is then the closure of D in the norm induced by <·|·>. 
By (III. 19), Ηβ is separable. We set Ωβ := [1] and define the representation 
l : A-> Β(Ηβ) by 

l[a][b] := [ab] , (III.25) 

which extends continuously from D to Ηβ. Finally, we define a one-parameter 
unitary group on by 

e-itL [α] := [at(a)] . (III.26) 

Unitarity follows from the invariance of ωβ under at. By (III.20), e-itL is 
strongly continuous on the separable Hilbert space Ηβ, and hence it is gen-
erated by a selfadjoint operator L, the Liouvillian; (Stone’s theorem). 
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III.3 Modular Operator and Modular Conjugation 
Whether A is simple or not, we shall henceforth always assume that Ωβ is 
separating for l[A], i.e., Eq. (III. 15), or, equivalently, that N = 0. Then, 

by (III.20), Ωβ is also cyclic and separating for l[A], with A as in (III.11). 
Under these assumptions, we can define an (unbounded) anti-linear operator 
S on Hβ by 

S(l[a] Ωβ) := l[a]* Ωβ , (III.27) 

for a E A (or a E A). Since Ω β is separating for l[A], S is well-defined, and, 
since Ωβ is cyclic for l[A], it is densely defined. 

For a E A, we define an operator J by 

I(l[α]Ωβ) Sl[α_ίβ/
2
(α)] Ωβ = l[αίβ/

2
(α*)]Ωβ , (III.28) 

by (III.27) and (III.13). Then, for a, b E A, 

< jl[a]ΩB| \ j l[b]Ωβ> = <l[aiB/2(α*)] Ωβ| l[aiB/2(b*)]ΩB> (III.29) 
= <ΩB | l|a_ίβ/2(α) αiB/2(b*)] Ωβ> = Wβ( a_iB/2(a) aiB/2(b*)) 

= WB(b*a) = <l[b]Ωβ|l[a]Ωβ> = <l[α]Ωβ | l[b]Ωβ> , 

where we have used Eq. (III. 14) in the fourth equation. It follows from 
(III.29) that J extends to an anti-unitary operator on Ηβ, which is called 
modular conjugation. Note that, by (III.26) and (III.28), 

J = SeBl/2 = e-BL/2S, i.e., 
S = J e-BL/2 = eBL/2 j , (III.30) 

which describes the polar decomposition of S. Tomita- Takesaki theory (see, 
e.g., [41, 12]) is a far-reaching generalization of these considerations [22], 
which starts from the definition (III.27), then shows that S is closable, and, 
finally, constructs J and exp[±Bl/2] by polar decomposition of S. But we 
shall not have any occasion to make use of this theory. 

Next, we establish some remarkable properties of the modular conjugation 
J. Using J, we may define an anti-linear representation, r, of A on Ηβ: 

r[a] := J l[a] J , for a E A. (III.31) 

We claim that 

r[A] C l[A]', (III.32) 
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i.e., r[a] commutes with l[b], for arbitrary a, b E A. It is instructive to verify 
(III.32): Since Ωβ is cyclic for l[A], it suffices to show that 

r[a] l[b] l[c] Ωβ = l[b] r[b] l[c] Ωβ , (III.33) 

for arbitrary a, b, c E A. Eq. (III.33) follows from the definition (III.28) of J 
by a little algebra, 

r[a]l[b]l[c]ΩB = J l[a]l[aib/2(c*b*)ΩB (III.34) 
= J l[a aiB/2(c*b*)] Ωβ = l[aib/2(a-iB/2(bc)a*)] 

= = l[b] J l[a aiB/2(c*)] ΩB 
= l[b]J l[a]J l[c]Ωβ = l[b]r[a]l[c]ΩB , 

which proves (III.33). One can show (see [22]) that, under our assumptions, 

l[A]" = r[A]'. (III.35) 

Next, we show that J commutes with the time evolution, i.e., 

J e-itL = e-itL J . (III.36) 

For a E A, Eqs. (III.26) and (III.28) yield 

J e-itL l[α] Ωβ = J l[a-t(a)]ΩB = l[aiB/2(a_
t
(a*))] 

= l[a_
t
(aiB/2(a*))]ΩB = e itL l[αiB/

2
(α*)] Ωβ 

= e-itL J l[a] Ωβ , (III.37) 

and we have used (III.13). As a corollary of (III.36), (III.31), and (III.26), 
we have that 

eitL l[a] e-itL = l[at(a)] , (III.38) 
eitL r[a]e-itL = r[at(a)] . (III.39) 

Eq. (III.36) implies that J iL = iLJ, where i is multiplication by V-1. 
Since J is anti-unitary, this is equivalent to 

J L = - L J , (III.40) 

which is consistent with the last equation in (III.30). This equation has 
an interesting consequence: If Ψ is an eigenvector of L corresponding to an 
eigenvalue Λ, and 

= φ (III.41) 
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then Λ = 0. This is seen as follows. 

Χφ = LΨ = LJΨ = -J Lφ (III.42) 
= -J λφ = -LJφ = —-Aψ, 

and hence 

Λ + A = 0 . (III.43) 

Since L is selfadjoint, Λ is real, and hence (III.43) implies that Λ = 0. (A 
slight generalization of this fact will be used in Sect. V.) 

III.4 Return to Equilibrium 
A state, p, on the C*-algebra A is normal with respect to the representation 
l (and the representation r) iff 0 < p E Lι(Hβ), i.e., p is of the form 

(III.44) 

where φ
η
 E HB, with <φη|φη> = 1, and p

n
 > 0, for all n E N; Σ∞ n=l pn = 1. 

Every vector φ
η
 can be approximated in norm by vectors of the form l[αmn]Ωβ, 

with amn E A, m E N, by the cyclicity of ΩB. 
The time evolution, pt, t E R, of a normal state p is defined by 

pt(a) := p(a
t
(a)) . (III.45) 

We are interested in understanding under which conditions 

Pt(a) -> Wwβ(α) , as t ∞, (III.46) 

in a sense to be made precise. Eq. (III.46) expresses the property of return 
to equilibrium. We give sufficient conditions involving spectral properties of 
L for return to equilibrium. 

Lemma III. l. Assume that 0 is a simple eigenvalue of L corresponding to 
the eigenvector Ωβ and that the rest of the spectrum of L is continuous. Let 
a E A and p be a normal state. Then 

(III.47) 

If σ (L) \ {0} is absolutely continuous then 

(III.48) 
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Proof. First, the continuity of the spectrum away from 0 implies that 

(III.49) 

If a[L] \ {0} is absolutely continuous then we even have that 

(III.50) 

To derive (III.47) from (III.49), it is enough to show that 

(III.51) 

o 
for arbitrary a, b, c E Λ, by (III.44) and the remarks thereafter. Using the 
KMS condition (III. 12), the integrand on the left side of (III.51) is seen to 
equal 

ωβ (b* a±t(a) c) = ωβ (a_iB(c) b* a±t(a)) 
= <l[b] l[aiB(c*)] Ω

β
 | l[a+t(a)] ΩB> 

= <l[b] l[aib(c*)] Ωβ | e±itL l[a] Ωβ> . (III.52) 

Since a, b, c E A, 

l[b]l[aib(c*)]ΩB , l[a] Ωβ € HB . (III.53) 

Thus, using (III.49) and (III.52), we find that 

(III.54) 

= <l[b] l[αiβ(c*)]Ωβ|Ωβ><Ωβ\l[a]Ωβ> 
= ωβ(α-iβ(c)b*) b*) ωβ(α) = ωB(b*c) ωβ(α) , 

and we have used the KMS condition once more. Thus (III.51), and hence 
(III.47) are proven. The proof that (III.50) implies (III.48) is similar. 

□ 

III.5 Perturbation Theory 
This section amounts to a transcription of Sect. II.5 to the thermodynamic 
limit. Let I E Λ. To the pair ({at}tER,I) we can associate a perturbed 
Heisenberg picture time evolution as follows: Let 

I(t) := at(I). (III.55) 
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Then the equation 

(III.56) 

defines a perturbed one-parameter group {αt(1)}tER on the algebra A. In the 
GNS representation l of A corresponding to an at-KMS state ωβ on A, 
can be implemented unitarily, 

(III.57) 

Using (III.38) and applying the representation l to (III.56), we readily find 
that 

(III.58) 

where R is an arbitrary operator in l[A]' = r[A]" Of course, can also 
be implemented unitarily on Hβ in the anti-linear representation r of A, 

(III.59) 

where 

(III.60) 

i.e., because J is anti-linear, 

(III.61) 

where we have used (III.58), (III.40), and (III.31). It would be pleasant to 
have L1(l) = LI(r) This equation has the unique solution 

(III.62) 

where Z is in the center of the von Neumann algebra l[A]", which is given 
by l[A]" Λ r[A]". Without loss of generality, we set Z = 0. Then 

L1 = -JL1J . (III.63) 
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In our applications of the general theory, we shall use the following notation: 

L1:=L + W := L + l[I] - r[I] , (III.64) 

with W := l[I] — r[I]. It is natural to ask whether we can construct a 
perturbed KMS state for the dynamics described by {at(I)}tER starting from 
the data (Ήβ, l[Α], J, L1). The considerations presented in Sect. II.5 suggest 
that the answer is affirmative. As in Eq. (11.85), we introduce the Radon-
Nikodym operators 

LI,l := L + l[I] , LI,r := L - r[I] . (III.65) 

We note that, by (III.31) and (III.40), 

J LI,l J = -LI,r (III.66) 

We claim that the vector Ωβ is in the domain of the unbounded operators 
exp[—BLI,l/2] and exp[BLI,r/2], and that the vector 

(III.67) 

defines a KMS state, on A, for the time evolution given by {at[(1)tER. In 
(III.67), Ζβ Ι is a positive, finite normalization factor for which we shall give 
an explicit formula. The equality between the two definitions of ΩB,I implies 
that 

(III.68) 

by (III.66); i.e., Ωβ,I is invariant under J. The state WB,I is defined by 

wB,I (a):= <Ωβ,I | l[a]Ωβ,ι>
 ,

 (III.69) 

for a E A. Araki [1, 2] has proven that ωβ,1 is indeed a KMS state for {at(I)}tER 
and hence is invariant under {at(I)}tER. (The time-translation invariance of 
a KMS state is a simple consequence of Liouville’s theorem, which says that 
a bounded entire function on C is constant.) From the fact that exp(—itLI) 
implements at (I)unitarily on Hβ and Eqs. (III.63) and (III.68) it follows that 

L1 Ωβ,Ι = 0 , (III.70) 

i.e., 0 is an eigenvalue of LI with corresponding eigenvector Ωβ,I. 
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The construction of Ωβ,I can thus also be viewed as a spectral problem 
for LI: If we can show that 0 is a simple eigenvalue of LI then Ωβ, Ι can 
be defined as the corresponding eigenvector. The results summarized in this 
subsection, mostly due to Araki [1, 2], are plausible extensions of those of 
Sect. II.5. For KMS states obtained as thermodynamic limits of equilibrium 
states of bounded systems, they could be derived from the results in Sect. II.5 
by limiting arguments. However, like all other results in Sect. Ill, they can be 
proven directly, by using the KMS condition for ωβ, the Lie-Schwinger series 
(III.56) and the Dyson series for exp[—BLI,l/2] . exρ[βL/2] in moderately 
clever (and somewhat tedious) ways. Reviewing the details goes beyond the 
scope of this paper; but see [1, 2, 12, 13]. But we present the most essential 
tools and explicit formulae for Ωβ,1 and Ζβ Ι. 

For a E A, we may define 

a(r+it) := ai(r mod B)+t (a) · (III.71) 

Temperature (imaginary-time) ordering, T, of a product of operators a(r+it) 
is defined by 

T [a1(T1+it1) it1)· . ·α
η

(τ
η
 + itn)] := aπ(1)(Ττ(1) + itn(Ι)) att(η)(Τtt(η) + itn(n)) , 

(III.72) 

where π is the permutation of {1, 2,... , n} with the property that, for τ1 # Tj, 
i # j, 

Tn(l) < Tr(2) <... < Tn(n) , (III.73) 

for arbitrary al, a2,... ,a
n

 E A. Then the KMS condition for ωβ implies that, 
for arbitrary n E N, the temperature-ordered Green functions 

...an(Cn)] ) (III.74) 

are analytic in ζ1, ζ2, · · · , Cn on the domains 

Tn := {c1,... , Cn | 0 < ReCr(1) < · . · < ReCr(n) < β } , (III.75) 

with 

(III.76) 

where ||a|| is the C*-norm of a; see [1, 2]. Furthermore, 

ωB(τ[αι(C1)···αη(Cn)] ) = ωB (Τ[α
1

(C
1
 + τ)···α

η
(C

η
 + τ)] ) , (III.77) 
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for any real r. By (III.76), (III.74), Eqs. (III.75) and (III.77) hold for arbi-
trary αι,... , an E A, n E N. 

The GNS construction implies that 

(III.78) 

The second equation follows from the first one by conjugating with J and 
using that JΩB = ΩB. 

Applying the Duhamel (or Dyson) series for the expressions for ΩB,I in 
(III.67), we find that 

(III.79) 

Normalizing ΩB and ΩB,I to have norm 1 and using (III.78), we find that 

(III.80) 

With (III.76) we find that, for 0 < β < ∞, 

0 < Ζβ,1 < exp(B \\I\\) . (III.81) 

Similar formulae hold when one replaces LI,l by LI,r. The KMS condition for 
wB,I (see (III.69)) with respect to can be derived from (III.56), (III.77) 
and (III.79) by straightforward, albeit somewhat tedious, calculations. 

Formulae (III.79) and (III.80) are very useful in the analysis of concrete 
models; see Sect. V. 

IV KMS States and Liouvillians for Idealized 
Atoms coupled to the Quantized Electro-
magnetic Field 

IV. 1 KMS States for the Quantized Free Electromag-
netic Field 

In this subsection, we illustrate the general theory developed in Sects. II and 
III on the example of the equilibrium (KMS) states of the free electromagnetic 
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field in the thermodynamic limit, as described by Araki and Woods in [3]. 
Similar results can be derived for gases of free fermions at positive density 
and temperature; see [4]. 

It is convenient to describe the free electromagnetic field in terms of cre-
ation -and annihilation operators a*A(k), aA(k) satisfying the canonical com-
mutation relations, 

[a*A(k),a*A(k')] = [ax(k),aA(k')] = 0, (IV.l) 
[aA(k), a*A(k')] = δA,A' δ(k-k'), δ(k - k') , (IV.2) 

as described in the introduction. We thus consider observable algebras which 
are *-algebras of unbounded operators, instead of the C*-algebras appearing 
in the general theory of Sects. II and III. By using the bounded Weyl oper-
ators we could, however, translate our results into C*-algebra language. But 
in the analysis of concrete models, *-algebras are more convenient. 

For notational convenience, we set k := (k, Λ) E R3 x Z2, where k E R3 

is the wave vector and Λ = ±1 is the polarization index, and we denote 
f dk := ΣA=±ι f d3k. We define 

δ(k-k') := δA,A' δ(k - k') , (IV.3) 

and 

(IV.4) 

Let S0(R3) denote the Schwartz space test functions vanishing at the origin 
of R3. For f = (f+,f-) E S0(R3)2, we define 

(IV.5) 

and the complex conjugation 

(tf)[k] = ((rf)+(k), (rf)_(k)) := (f+(k), f_(k)) . (IV.6) 

We set 

(IV.7) 

Then (IV.l) and (IV.2) can be written as 

[a*(f), a*(g)] = [a(f), a(g)] = 0, (IV.8) 
[a(tf), a*(g)] = (f, g) 1. (IV.9) 
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We shall, however, continue to also use the operator-valued distributions 
a(k), a*(k). 

Let P denote the polynomial algebra generated by 

{a(f), a*(g) | f, g E S0(R3)2} · (IV.10) 

It is a *-algebra for the *-operation defined by 

(a(f))* := a*(rf). (IV. 11) 

The time evolution of operators in P is described by a one-parameter group 
of *-automorphisms, {af}t€R, of P determined by 

(IV.12) 

where w(k) := |k| is the energy of a photon of wave vector k; (we set h = 1). 
A quasi-free state p on the *-algebra P defined in (IV. 11) is a state with 

the property that the connected, or “truncated”, expectations 

p{a#1(f1)... a#n(fn))c (IV. 13) 

all vanish, except for η = 1 and 2. It is not hard to show that there is a 
unique state on P which is a KMS state for the time evolution {aft}

t€R 

at inverse temperature β. The state is quasi-free and hence completely 
determined by the equations 

(IV.14) 

and 

(IV.15) 

Expectation values of products of more than two creation- and annihilation 
operators are given by sums of products of expectation values of a*(k)a(k'), 
as given by (IV. 15), according to Wick’s theorem, which holds for quasi-free 
states. The KMS condition for ωfB is a direct consequence of applying (IV.2) 
and (IV.12) to (IV.15): B 

(IV.16) 
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where, in the first equation, we have used (IV.2), in the second (IV.15), and 
in the last one (IV. 12). 

The GNS construction (in a form originally due to Borchers and Wight-
man) tells us that the data (P,aft, wfb) determine a Hilbert space Ήfβ, a 
representation l of P on ΉfB, a vector ΩfB E Ήfβ cyclic for l[P], and a unitary 
one-parameter group {e-itLf}tER such that 

wfB(α) = <Ω£B|l[a]ΩfB>, (IV.17) 

l[αft(α)] = eitLf l[a] e-itLf , (IV.18) 

for arbitrary a E.P. Furthermore, one easily shows that Ωfb is separating for 
l[P] (which follows from the KMS condition for wfb and the faithfulness of 
the representation l; see Sect. HI), and that there is a modular conjugation 
J such that the anti-linear representation r of P on Ήfβ, given by 

r[a] := J l[a] J , for a eP, (IV.19) 

commutes with l[b], for all b E P, and 

JΩfd= ΩfB, JLF J =-Lf. (IV.20) 

These are immediate corollaries of the general theory outlined in Sect. III. 
Following [3], we now present an explicit realization of the representations 

l and r of P, of the vector ΩfB, and of the modular conjugation J, which is 
reminiscent of the description of the quantum theory of bounded systems in 
thermal equilibrium presented in formulae (II.48)—(II.56) of Sect. II. 

Let F denote Fock space carrying the standard Fock representation of 
P. Fock space contains a distinguished vector Ω (unique up to a phase) 
characterized by the property that 

a(f) Ω = 0 , for all f E S0(R3)2, (IV.21) 

which is called the vacuum vector. Fock space F and the vacuum Ω arise 
by GNS construction from the quasi-free state ω∞ on P given by letting β 
tend to ∞ in (IV. 15) and (IV. 16). In our notation, we identify P with its 
representation on F. 

We define an anti-unitary operator T on F, the second quantization of r, 
by setting 

ΤΩ = Ω, (IV.22) 
Ta#(f)T = a#(rf), (IV.23) 

T = T* = Tl . (IV.24) 
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Physically, T describes time reversal; (compare (IV. 12) and (IV.23)) 
Next, we describe an isomorphism, IT, between HfB and F X F and be-

tween appropriate representations. On F X F, we introduce the creation-
and annihilation operators 

(IV.25) 
(IV.26) 

Note that a
r

, ar* yield an anti-linear representation of the canonical commu-
tation relations (IV.8)-(IV.9). Let 

(IV.27) 

The isomorphism IT : HfB -> H := f X F is determined by the following 
equations: 

(IV.28) 

(IV.29) 

(IV.30) 

Note that, by (IV.25)-(IV.26), Eq. (IV.29) is linear in f, while Eq. (IV.30) is 
anti-linear in f, as it should be. Since Ω is cyclic for P in F and ΩfB is cyclic 
for l[P] and r[P] in HfB, Eqs. (IV.28)-(IV.30) determine IT completely. It is a 
trivial calculation to show that ITl[a#]I-1T and ITr[a#]I-1T satisfy the canoni-
cal commutation relations (IV.8)-(IV.9), because al# and a#r satisfy them. It 
follows that l[P] is *-homomorphic to ΙTl[Ρ]I-1T and r[P] is *-homomorphic 
to ITr[P]I-1T. Furthermore, since α(f)Ω = 0, for all f E S0(R3)2, where Ω is 
the vacuum in F, we find that 

= <Ω X Ω | Vp(k) a
r
(k) Vp(k') a*(k') Ω X Ω> 

(IV.31) 

where the first equation follows from (IV.29) and (IV.21), the second from 
(IV.9) and (IV.21), and the remaining equations from (IV.27), (IV.15), and 
(IV. 17). Likewise, 

(IV.32) 
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It follows that IT : Hfb -> F O F, defined by (IV.28)-(IV.30), is an isometry. 
Next, we calculate Lf := IT LfIγι. We claim that 

Lf = f dk w(k) [a*l(k)al(k) — α*r(k)αr(k)] . (IV.33) 

Then 

eitLf al(k) itLf = e-itw(k) al(k) , (IV.34) 
eitLf a

r
(k)e-itLf = eitw(k) a

r(
k) . (IV.35) 

Thus, using (IV.29), we find that 

= ITl[aft(a(k))]IT-1, 
(IV.36) 

as required. Similarly, by (IV.30) and (IV.33), 

IT1 

(IV.37) 

because r is anti-linear. This, (IV. 18), and the corresponding relation for r 
prove (IV.33). 

For ψ O φ e F O F, we define 

E ψ O φ = φ®ψ, (IV.38) 

and we set 

J := ΕΤOΤ. (IV.39) 

Then 

(IV.40) 

and, using that Jl[a#(f)]J = r[a#(Tf)] and Eqs. (IV.29)-(IV.30), we verify 
that 

(IV.41) 

By (IV.39), 

JQOQ = ΩOΩ, (IV.42) 
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and J = J* = J l. It follows from (IV.41)-(IV.42) that 

J = (IV.43) 

i.e., J is the modular conjugation in the Araki-Woods representation. Note 
that 

J (P O 1) J = 1OTPT. (IV.44) 

Our account summarizes all essential features of the quantum theory of 
the free electromagnetic held in thermal equilibrium. 

IV.2 An Idealized Atom and the Quantized Free Elec-
tromagnetic Field 

As a next step, we consider a system consisting of an idealized atom with 
finitely many levels and the electromagnetic held, coupled to each other and 
in thermal equilibrium. 

We begin by describing an idealized atom with finitely many levels. This 
system is a special example of those described in Subsection II. 1. We briefly 
recall the main objects and notions. The state space Hel has dimension 
N < ∞, 

H
el
 = CN . (IV.45) 

and the Hamiltonian, H
el

, is a selfadjoint N x N matrix on Hel. According 
to Hypothesis H-1, the eigenvalues of Hel are simple. We choose the stan-
dard basis in Hel to consist of eigenvectors {φj} of Hel corresponding to 
the eigenvalues E0 < Ε1 < ··· < EN-1, i.e., Hel<φj = Εjφju. The atomic 
Liouvillian acts on Kel = MN 3 κ by 

Lel κ = [Hel , κ] , (IV.46) 

where MN denotes the algebra of complex N x N matrices, and the atomic 
KMS state is given by 

(IV.47) 

Recall from (IV. 17) that denotes the unique KMS state of the electro-
magnetic held at inverse temperature β. The reference state of the systems 
consisting of an atom and the quantized radiation held is 

(IV.48) 
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Let {Ήβ,Ωβ,0,l,r) denote the GNS Hilbert space, the cyclic vector, the left 
repesentation of A := OP, and the right anti-representation of A, 
respectively, associated to (ρOβ,Α). The Liouvillian of the uncoupled system 
is 

L0 = L
el
 + Lf , (IV.49) 

where Lf = with Lf as in (IV.33) and IT as in (IV.28)-(IV.30). 
Note that ρ0β is the unique KMS state of the uncoupled system. 

We define I E A by 

1 := f dk{G(k)Oa*(k) + G(k)*O a(k)} , (IV.50) 

where, as in Hypothesis H-3, the coupling function G : R3 x Z2 —> MN is 
assumed to obey 

\\G(k)\\ < w(k)u, (IV.51) 

for some μ > 0. The Liouvillian of the interacting system is defined by 

Lg := L
0
 + 9{l[Ι]-π[Ι]}, (IV.52) 

and the “Radon-Nikodym” operators by 

£g,l := L0 + g£[I] , L
g
,r := L0

 - gr[I] . (IV.53) 

For the purpose of our analysis it is convenient to work in the Araki-
Woods representation, i.e., to conjugate the above operators by the isomor-
phism 

/o :— IQ O IT : Hβ —> H— Hel Hel O F  F , (IV.54) 

where conjugation by Ic denotes complex conjugation in ΜN in the standard 
basis {φi We set 

Ωβ,0 := Ι0 Ωβ,0 (IV.55) 

and note that 

(IV.56) 
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Defining 

L0 := I0L0I0-1 , L
g
 := I0 C

g
 , (IV.57) 

we find that 

L, = L0 + gW , (IV.58) 

where 

L0 = L
el
  1f + Iel  Lf , (IV.59) 

La — Ηel  1el — l
el
  H

el
, (IV.60) 

Lf is defined in (IV.33), and the interaction is given by 

W := I0{l[I}-r[I]} (IV.61) 

By means of (IV.50), and Eqs. (IV.29), (IV.30), we readily find that 

which we may rewrite as 

using the shorthand notation m := , := m ® l
el

, m
r
 1

el
  m, 

and 

for σ, μ E {£, r} and matrix-valued functions m : M3 x Z2-> 
Similarly, setting 

we have that 

Lg,l= L0 + pWl, Lg,r= L0+ GWr, (IV.66) 
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where 

Besides Ly, the following positive operator, 

Laux — Hf  1f + 1f  Hf , (IV.69) 

plays an important role in our analysis. It is straigthforward to see that L
aux 

is selfadjoint on its natural domain 

Dom[L
aux

] = {ψ E F F | \\L
auxW

\\ < ∞} (IV.70) 

and that L
aux

 dominates Lf, in the sense that Dom[Lf] Dom[L
aux

 and 

\Lf\ < L
aux

 . (IV.71) 

Moreover, we have the following standard estimates (see, e.g., [7, 8, 9]), 

Lemma IV. 1. If f E L2(R3 x Z2, MN) and ω~1/2f E L2(R3 x Z2, MN) then 

for σ, μ E {l,r}. 

From these relative bounds and Hypothesis H-4, i.e., 

(fdk (w(k) + w(k)-
3
) \\G(k)\\

21/2
 < A < ∞, (IV.73) 

we conclude selfadjointness of Lg by Nelson’s commutator theorem. 

Theorem IV.2. The operators Lg, Lg i, and Lg r
 are essentially selfadjoint 

on Dom[L
aux

]. 
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Proof. By (IV.71) and (IV.72), we have, for φ,ψ E Dom[L
aux

], 

|<ψ|Lg;# φ>| < (IV.74) 
(1 + 16gb-1/2(1 + B)1/2Λ) \\(L

aux
 + 1)1/2ψ|| \\{L

aux + l)1/2φ|| , 

where Lg,# = Lg, Lg,l, or Lg,r. Next, we observe that Lf and L
aux

 commute 
and that on Dom we have 

ao(f
μ
), L

aux
] = α

σ
(ωf

μ
). (IV.75) 

Hence, for φ,ψ e D 

| <Ψ| [L
aux

 + 1, L
g
,#] φ) | V (IV.76) 

16g B1/2(l + β)1/2 Λ ||(L
aux

 + 1)1/2ψ|| \\{L
aux

 + i)1/2 φ|| · 

Thus, Lg is essentially selfadjoint by a variant [33, Thm. X.36’] of Nelson’s 
commutator theorem. □ 

Next, we recall the expression for the modular conjugation in the Araki-
Woods representation, 

J = = E(CCTT) , (IV.77) 

where the exchange operator acts as 

E (φ  ψ  φ1  ψ') = (ψ  φ  ψ'  φ') , (IV.78) 

for ψ  φ  ψ'  φ' E Ή, where H is defined in (IV.54). Note that the 
invariance property — Ωb,0 translates to the invariance property 

JΩB, 0 = ΩB, 0 . (IV.79) 

IV.3 KMS States for an Idealized Atom coupled to the 
Quantized Electromagnetic Field 

The selfadjointness of the interacting Liouvillean Lg guarantees the existence 
of the dynamics as a strongly continuous unitary group {exp[—itLg]}tER on 

H. We define the Heisenberg-picture time evolution of a bounded operator 
b on H by 

(IV.80) 

In the following theorem we construct a perturbed KMS state for the dy-
namics described by { }tER, starting from the data (H, l[MNP], J, Lg, I0). 
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Theorem IV.3. Assume that G fulfills Hypothesis H-4. Then the vector 
0 is in the domain of the two unbounded operators exp[—BLg,l/2] and 

exp[BL9, r/2], and the vector 

where Ζβ,
9
 = ||e-4L

g
,l/2 ΩB,0|| = ||eBLg,r/2 ΩB,

0
||

?
 defines a KMS state, ω9β, on 

MΝ P, for the tim,e evolution given by Moreover, the normaliza-
tion factor Ζβ, 9 obeys the estimate 

0 < ZB,
g
 (IV.82) 

In particular, LgΩB,0 = 0. 

Proof. We first note that due to the definition of Ζβ 9, 

= <(ΩB,0| e-BLg,l ΩB,
0
) = <(ΩB, 0| e- BLg,l ΩB,0) · (IV.83) 

Thus, if we can prove (IV.82) then ΩB,0 is in the domain of e and, 
similarly, in the domain of To demonstrate (IV.82), we introduce 
L(t) := L0l[I]eTL0 and observe that 

(IV.84) 

using that ΩB,
0
 E Ηβ, for v1... , v

n
 E R+ with v

n
 < 

β. Abbreviating e-Tw(k)a*(k) =: a+(k,t), eTw(k)a(k) =: a-(k,T), G(k) =: 
G+(k), and G*(k) =: G-(k), and using (IV.36), with t = iT, and (IV.50), we 
may write 

(IV.85) 



BFS-4, December 21, 1999 45 

Inserting this expression in (IV.84), we then obtain 

(IV.86) 

Applying Hölder’s inequality for the trace, 

(IV.87) 

where pj > 0 and 1/p1 + · · · + 1/p
n

 — 1, we observe that 

■ 

(IV.88) 

Next, since is quasi-free, Wick’s theorem implies that 

(IV.89) 

where P2n is the set of pairings, i.e., all permutations π e S2n such that 
π(1) < π(3) < · · ■ < π(2n — 1) and π(2j — 1) < π(2j). Since w0β(α+α+) = 
cw0β(α-α-) = 0, the only nonvanishing contributions in (IV.89) come from 

(IV.90) 

(IV.91) 

Thus, for 0 < τ' < τ < β, we have the estimate 

(IV.92) 
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The number of pairings is 

Hence, first summing over all σ E {+,— }2n, taking (IV.89) and the upper 
bound in (IV.92) into account, and using (IV.93), we obtain 

< expig2 (1 + β)βA < ∞ , (IV.94) 

due to (IV.73), and using coth x < 2 + 2/x. □ 

V Spectral Analysis of the interacting Liouvil-
lian 

V.l Main Results and Outline of Proofs 
In this section we present our main results on the spectrum of the interacting 
Liouvillian Lg introduced in Eqs. (IV.52), (IV.58). Throughout our analysis, 
we assume that Hypotheses (H-1) through (H-5) stated in the introduction, 
Sect. I, are satisfied. Our goal is to prove that Lg has purely absolutely 
continuous spectrum covering the real axis, except for a simple eigenvalue at 
0. The eigenvector corresponding to this eigenvalue is the perturbed KMS 
state Ωβ,g constructed in Theorem IV.3. 

Our method to prove this result involves two key ingredients: a novel vari-
ant of the technique of complex spectral deformations (see, e.g., [15, 33]), and 
the isospectral Feshbach map introduced in [7, 8]. We shall first qualitatively 
describe these ingredients and then outline the basic strategy underlying our 
method. 
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Recall that the Hilbert space of temperature states of the system, in the 
Araki-Woods representation, is given by 

H = Ή
ε

ι  Hel  F  f , (V.1) 

see Eq. (IV.54). The wave function of a photon in momentum space is given 
by a pair of functions (f+(k), f_(l)), k E R3. On the space of one-photon 
wave functions we define dilatations, {u(θ)}θeR, by setting 

u(θ)(f+(k),f-(k)) = e-30/2 (f+(e-θk), f_(e-θk)) . (V.2) 

Note that u(θ) is unitary in the usual L2 scalar product. We define u(0) 
to be the unitary operator on Fock space F obtained from u(θ) by second 
quantization; see, e.g., [7] and Sect. V.3. Then 

U(θ)Ω = Ω, (V.3) 

where Ω is the vacuum vector. We define a representation {U(θ)}θER of the 
group of dilatations on the Araki-Woods Hilbert space by 

U(θ) := 1  1  U(θ)  U(-θ) . (V.4) 

For the purposes of our analysis of the spectrum of Lg it is crucial that the 
arguments, θ and —θ, in the third and fourth factor on the R.S. of (V.4) 
have opposite signs. Our method of complex spectral deformations relies on 
extending θ to a complex domain, Σπ/2, which is the strip symmetric about 
the real axis and of width π. It is easy to see that there is a natural dense 
domain D C H with the property that, for every ψ E D, U(θ)ψ is an analytic 
H-valued function of θ E Σ

π
/2. 

We start by considering the spectrum of L0 = Lg=0; see (IV.59). Its 
eigenvalues are given by those of L

el,
 i.e., by {E, — Ej \ i,j = 0,... , N — 1}; 

the eigenvalue 0 is thus N-fold degenerate. These eigenvalues are covered 
by N2 branches of continuous spectrum which are copies of the continuous 
spectrum of Lf. In the example, where N = 2, E0 = 0, Ε1 = ε0, the spectrum 
of L0 is depicted in Fig. 1. 

We define the dilated Liouvillian by 

L0(θ) := U(θ)LoU(-θ). (V.5) 

From formulae (IV.33), (IV.59), and (IV.69), we infer that 

L0(θ) = Lel + cosh((θ) . Lf - sinh(θ) · L
aux

 , (V.6) 



BFS-4, December 21, 1999 48 

Figure 1: The spectrum of L0. 

Figure 2: The spectrum of L0(θ), for Re θ = 0, Im θ = ΰ > 0. 

where L
aux

 is the positive operator defined in (IV.69). The operator L0(θ) is 
clearly analytic in θ on the strip Σ

π
/2. If θE R then the spectrum of L0(θ) 

intersects the real axis only in the eigenvalues {Ei — Ej \ i,j = 0,... ,N — 1} 
of Lel If Im θ =: ϋ > 0 it is contained in the closed lower half plane, while 
if ΰ < 0 it lies in the closed upper half plane. In deriving Eq. (V.6) and 
establishing these properties of o(L0(θ)), the relative minus sign between 
the third and the fourth argument on the R.S. of Eq. (V.4) is crucial! In the 
example considered above, the spectrum of L0(θ) for Reθ = 0 and Im θ = 
ΰ > 0 is depicted in Fig. 2. 

The absolutely continuous nature of the spectrum of L0 = L0(θ = 0) 
away from its eigenvalues can be inferred from the spectral properties of 
L0(θ), θ E R, by considering matrix elements of the resolvent of L0 between 
vectors in the dense domain D of dilatation-analytic vectors and using that 

(φ | (Lo - z)-1 ψ> = <U(θ)φ | (L0(θ) - U(θ)ψ> , (V.7) 

for φ and ψ in V. Clearly the R.S. of (V.7) is analytic in z in the complement 
of O(L

0
(θ)), and this provides an analytic continuation in Z of the L.S. of 

(V.7) to the complement of o(L0(θ)). 
The idea is now to study what happens to the spectrum of L0(θ) when 

the perturbation 

gW(θ) := gU{θ)WÛ(θ)-1 (V.8) 

is added to L0(θ). In defining the operator W(θ) for complex values of θ E 
Σv

0
, we shall make use of Hypothesis (H-2) stated in Sect. I. There are some 
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important technical points in the construction of an analytic continuation of 
the operator W(θ) and of the interacting Liouvillian 

Lg(θ) = U(θ)LgU(-θ) = L0(θ) + gW(θ) (V. 9) 

that require careful examination. They are dealt with in Sect. V.3 and in 
Appendix A. The upshot is that there exists a natural domain D0 C D dense 
in H such that, for arbitrary vectors φ and ψ in D0, the matrix elements 

<U(θ)φ | (Lg(θ) - z)-1U(θ)ψ) , Imz#0, θ ϵ R, (V.10) 

are the boundary values on the real axis of the function 

<u(θ)φ | (L
g
(θ) - z)-

1 U(θ)ψ> . (V.11) 
which is analytic in θ on the strip ∑v

0
, defined in Eq. (1.24), thanks to 

Hypothesis H-2. Since U(θ)-1 = U(θ)* = U(—θ), for θ E R, the matrix 
elements (V.10) are independent of θ, and hence 

<φ| | (L
g
 - z)-1 ψ> = <U(θ)φ | (Lg(θ) - z)-1 U(θ)ψ) , (V.12) 

for φ, ψ E D0, and Imz > 0, 0 < Im θ < v0. 
If we are able to find out where the spectrum, o(Lg(θ)), of Lg(θ) is lo-

cated for, e.g., purely imaginary θ = iv, with 0 < v < v0, then we can use 
Eq. (V.12) to construct an analytic continuation in Z of matrix elements of 
(Lg — z)- 1 between vectors in D0 from the upper half plane to the complement 
of o(Lg(θ)) in the lower half plane. 

We shall attempt to locate the spectrum of Lg(iv) with the help of per-
turbative methods, using that we know o(L0(iv)) explicitly. The form of 
o(L0(iv)), for v > 0, see Fig. 2, Formula (V.6), and the bounds presented in 
Lemma IV. 1 suggest to apply the method of the isospectral Feshbach map de-
veloped in [7, 8], in order to explore the properties of o(Lg(iv)), 0 < v < v0. 
We thus recall the definition and properties of the Feshbach map. 

Let H be a closed operator on a Hilbert space H and let P be a closed 
bounded projection operator whose range is in the domain of H. We define 

H := PHP , P := 1 — P . (V.13) 

Let z belong to the resolvent set of H\-pH. We assume that the operators 

PHP|H -z|-1/2 and |H - z|-1/2 PH P (V.14) 

are bounded. Then we can define an operator Fp{H — z), the Feshbach map 
(associated to the projection P) at if — z, acting on the Hilbert space PH, 
by setting 

FP(H-z) := P(H — z)P — P H P (H — z)-1 P H P . (V.15) 

In [7, 8] we have proven the following theorem. 
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Theorem V.1. Under the hypotheses on H, P, and z just stated, one has 
that 

(i) z is an eigenvalue of H iff 0 is an eigenvalue of Fp(H — z), and the 
multiplicity of z E σρρ(Η) is the same as the multiplicity of 0 E 

σΡρ(Fp(H - z)); 

(ii) z belongs to the resolvent set of H iff 0 belongs to the resolvent set of 
FP(H - z); 

(iii) For φ,ψ E ΡH and z E σ(Η), 

<φ| (Η- z)-1 ψ> = <φ | F
Ρ(

Η - z)-1 ψ> . (V.16) 

Our strategy, in this section, is based on applying Theorem V.1 to the 
concrete situation studied in this paper, with the following identifications: 

Η := Η, Η = L
g
(iv) , (V.17) 

for some 0 < v < v0, to be chosen optimally. Furthermore, the projection P 
is given by 

(V .18) 

where η is an eigenvalue of Lel (i.e., n = Ei — Ej, with Ei, Ej eigenvalues 
of H

el
, i, j — 0,... , N — 1), and is the orthogonal projection onto the 

eigenspace of Ld corresponding to the eigenvalue η. Moreover, is a 
spectral projection of the operator L

aux
 introduced in (IV.69); more precisely 

(V.19) 

where χ[x < p] is the characteristic function of (—∞, p). The positive number 
p is later chosen to depend on the coupling constant g; (p ~ g2-0(ε), or 
p ~ g2+0^£\ for a small ε > 0). 

Next, we define a family of subsets, S>, S0,>, S0,<, and Si,j, 1 < i, j < N, 
i # j, of the complex plane. Our choice of a projection P, as in Eqs. (V.18), 
(V.19), in the definition of the Fesirbach map, FP, applied to the operator 
Lg(iv) — z1, i.e. , 

FP(Lg(iv)-z) , (V.20) 

will depend on which of these subsets, Spp the variable z belongs to. For 
the definition of S(.), we pick 0 < ε < 2/3 and set 

P0 := g2-ε , ft := g2+ε/2 , (V.21) 
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Figure 3: The subsets S>, S0
,
>, S0<, Si,j· 

and furthermore 

(V.22) 

Using p0, p1, and i,j E {0,... , N - 1}, i # j, the sets <S(.) are defined to be 
the following subsets of <S, 

(V.23) 

(V.24) 

(V.25) 

(V.26) 

In the example, where N = 2, E0 = 0 and E1 = ε0, these subsets are shown 
in Fig. 3. 

We note that (V.23)-(V.26) define a covering of S, 

(V. 27) 

as one easily checks. 
Next, we describe, qualitatively, how one analyzes the intersection of the 

spectrum of Lg(IV) with any one of the sets S>,S0,S0,<, and Si,j, i # j· 
The easiest problem is the determination of 

V.1.1 o[Lg (ιv)] Π S>. 

We show that 

σ[Lg(iv)] Π S> = Ø , for g > 0 sufficiently small. (V.28) 
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To this end, we show that, for z E S>, (Lg(iv) — z)_ 1 is a bounded operator. 
This can be done by expanding (Lg(iv) — z)-1 in a Neum,ann series in the 
perturbation gW(θ) and, after using that z E S> and applying the bounds of 
Lemma IV. 1, proving that this Neumann series converges in norm, for g > 0 
small enough. Details are presented in Sect. V.4 

The second easiest problem is the study of 

V.1.2 a[L
g
(i9)}nS

hJ
, 

for g > 0 sufficiently small. Here we make use of the Feshbach map associated 
to the projection 

(V.29) 

where p0 = g2 2ε, for a suitable ε > 0, and Ei, J := Ei - Ej. Without loss of 
generality, we assume that the coupling constant g is so small that 

|Ei,j ~ Ek,l\ > 2 p0
 (V.30) 

if Ei, j # Ek For simplicity, we also assume that Ei,j is a simple eigenvalue 
of Lel, but this assumption is only made, in order to explain the key ideas 
without technical complications. 

We now note that if z E Si, j, as defined in (V.24), then 

(V.31) 

where Lg(iv) = Pi,j Lg(iv) Pi j, see (V.13), is a bounded operator on Pi,j H. 
This is seen by expanding the resolvent (V.31) in a Neumann series in 
gW(iv), where W(iv) = Pi,jW(θ)Pij. Using (V.30) and the definition 
of Eq. (V.19), one proves norm-convergence of this Neumann series, 
for sufficiently small g > 0, with the help of the bounds of Lemma IV. 1. 
Similarly, one proves that 

, \ (V.32) 

are bounded operators; note that 

Pi,jgW(iv)Pi,j = Pi,j Lg(iv) Pi,j , (V.33) 

because Ρi, j commutes with L0(iv), (see (V.6)). 
Thus the Feshbach map on Lg(iv) — z 1 is well defined. It is given by 

FPi,j(Lg(iv)-z) = Pi,j (L
g
(iv) - z) Pij (V.34) 

- g2 P
i,j

 W(iv) Pi,j (Lg(iv) -z)-1 Pi,j W(iv) Pi,j . 
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The operator FPi,j (Lg
(iv) — z) acts on the space Pi,j H and is bounded. The 

leading contribution to the first term on the R.S. of Eq. (V.34) is given by 

(V.35) 

up to corrections of 0(g2)·, (see (V.19)). 
Since, for z E Si,j, the resolvent (V.31) has a norm-convergent Neumann 

series in gW(iv), the leading contribution to the second term on the R.S. of 
(V.34) is seen to be given by 

-g2 Pi,j W(iv) Pi,j(L
0
(iv) - Ei,j)-1 Pij W(iv) P,j (V.36) 

up to corrections of 0(g2). 
In Eq. (V.36), one may replace the projections Pi, j on the left and the right 

by P ΩΩ, at the price of an error term of 0(g2). The resulting operator 
is then independent of v, for 0 < v < v0, by analyticity. We decompose it into 
“real” and “imaginary” part, i.e., into a selfadjoint and an anti-selfadjoint 
operator. The real (selfadjoint) part is denoted by AEij(g) Ω PΩΩ, while 
the imaginary part is written as ig2Γ(i,j) Ρ

ΩΩ where Γ(i,j)
 is a

 selfadjoint 
operator. Since we temporarily assumed Ei,j to be a simple eigenvalue of L

el
, 

the rank of is one, and AEi,j(g) = g2 Aei;j PPij
 and Γi,j = Yi,j are 

determined by two numbers, Aei j and 

y (i,j) := <Pi,j Wψi,j |δ(L
0
-Ei + E

J
)PWψ

i,j>
 , (V.37) 

with ψi,j := φi  φj  Ω  Ω, and φi is the eigenvector of H
el
 corresponding 

to the eigenvalue Ei, see Sect. IV.2, after Eq. (IV.45). 
Expression (V.37) and Hypothesis (H-5) on G(k) stated in Sect. I guar-

antee that y(i,j) is strictly positive, 

y (i,j) > 0. (V.38) 

An explicit estimate of y(i,j) can be found in Appendix B. 
Putting everything together, Eqs. (V.34) through (V.38), and recalling 

that the Feshbach map FPi,j is isospectral, more specifically, applying Theo-
rem V.1, (ii), we conclude that 

(V.39) 

for g > 0 sufficiently small. For more (but standard) details see Sect. V.5. 
We turn to the study of 
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V.1.3 o[Lg(iv)]nS0>, 

for g > 0 small enough, to which we now turn our attention. For this purpose 
we consider the Feshbach map, Fp

0
, applied to the operator Lg(iv) — z, 

FPo(L
g(

iv) - z) , z E S0> , (V.40) 

where 

(V.41) 

In (V.41), P0
el is the orthogonal projection onto the N-dimensional subspace, 

), of Hel  Hel given by 

span{φ0 φ0, φ1 φ1, .... , (V.42) 

which is the kernel of L
el 

In a first step, we proceed as in Subsect. V.1.2, above. The Feshbach map 

Lg(iv) - z1 ->—> FPo(L
g
(iv) - z) , (V.43) 

with z E S0,>, is well defined, by the same arguments as in Subsect. V.1.2, 
and Fp0(Lg(iv) — z) is given by formula (V.34), with Pi,

j
 Pi,j replaced by 

P0, P0, respectively. Thus 

FPo(L
g
(iv) - z) = P0 (Lg

(iv) - z) P0
 (V.44) 

- g1 P0 W(iv) P0 (L
3
(iv) - z) P

0
 W(ίv) P

0
 , 

with 0 < ΰ < V0 This is a bounded operator on P0H. The first term on the 
R.S. of (V.44) is given by 

(V.45) 

which is shown in the same way as (V.35). Up to errors of order g£, the 
second term on the R.S. of (V.44) is given by 

(V.46) 

where the operator Γ(0) Ξ Γ(0)(G,Z) = P0
el Γ(0) (g, z) P0

e1 is given by 

(V.47) 
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More explicitly, the matrix elements := <φi  φi|Γ(0) φj  φj> of in 
the orthonormal basis {φi  φi} of Ran are given by 

= (W φi  φi  Ω  Ω | δ(L0) W φj  φj  Ω  Ω> . (V.48) 

It follows from arguments similar to those in (III.41 )—(III.43) that, for 
θ = iv, 0 < ϋ < ϋ0, and for z purely imaginary, the spectrum of Γ(0)(g,z) 
is symmetric about the real axis, and the coefficient, Γ(0), of the leading 
contribution to Γ(0)(g, z) is an N X N matrix acting on H0

el
 with real spectrum. 

From Eq. (V.48) it is obvious that 

Γ(0) > 0. (V.49) 

The matrix is studied in Appendix B. One result of the calculations in 
Appendix B is that satisfies a detailed-balance equation 

(V.50) 

and that 

(V.51) 

From Eq. (V.50) it follows that 

(V.52) 

is an eigenvector of corresponding to the eigenvalue 0. Eq. (V.51) then 
implies that 0 is an eigenvalue of of multiplicity 1. The last claim follows 
from (V.51) with the help of a standard Perron-Frobenius argument. Note 
that κ,β is the unperturbed Gibbs state of the atom (in the Araki-Woods 
representation (II.46)—(II.51)). It follows that there is a positive constant 
Y0 > 0 such that 

<ψ | Γ(0) ψ> > y0 > 0 , (V.53) 

for all normalized vectors ψ € which are orthogonal to Κβ. In Appen-
dix B, we give a lower bound on the value of y0 > 0. 

Let denote the orthogonal projection onto Κβ, and let := — 
Our analysis shows that, forz E <S>,0, 

FP0,(Lg(iv) -z) = F1+F
2
 + O(g2+E) , (V.54) 
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Figure 4: = σ[F1], σ2 = σ[F2]> σ[Fρ
0
{L9(ίv))] C σ1 U σ2 U A, z = 0. The 

region Λ is of width 0(g2+E), v' < v. 

where 

(V.55) 

and 

(V.56) 

It follows from these formulae that (for z = 0!) the spectra of FPo(L
g
(iv) — z), 

F1, and F2 are contained in the shaded regions sketched in Fig. 4. In Sect. V.6 
we then use this information to prove the invertibility of F

P0
 (L

g
(iv) — z), for 

z E S0,> \ C(v/), 0 < v' < v, and g > 0 sufficiently small, where C(a) C C is 
the cone (see Fig. 4) 

C(a) := {z E C | | arg(z) - 3π/2| > (π/2) — a} . (V.57) 

By far the hardest analytical problems, and the physically most interesting 
phenomena, appear in the study of 

V.1.4 o[Lg(iv)] n S0,< 

Formulae (V.54)-(V.56) and Fig. 4 suggest to apply a second Feshbach map 
to the operator FP0(Lg(iv) — z), requiring now that z belongs to the set <S0,< 
defined in Eq. (V.26). For this purpose, we define an orthogonal projection, 
P0,<, by setting 

(V.58) 
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Figure 5: Set containing o[K(0)(g,z)]. 

recalling from (V.21) that p1 = g2+e/2. with the help of formula (V.54), 
(V.55), (V.56) and Lemma IV. 1 one verifies without difficulties that the 
Feshbach map 

FPo(Lg(iv) - z) -> K(0)(g,z) := F
P0,<

 (F
Po

{L
9
(iv) - z)) (V.59) 

is well defined, for z € <S0,< and that the spectrum of K(0)(g, z) is contained 
in the shaded region shown in Fig. 5. 

The operator K(0)(g, z) is now chosen as the initial condition for a renor-
malization operator (-map), R, very similar to the one introduced in [7, 8]. 
The effect of the renormalization operator is to lower the spectral scale cor-
responding to L

aux
 by a factor p, 0 < p < 1, to be chosen appropri-

ately. It is defined as the composition of a Feshbach map with a dilatation, 
p_1 f/ (ln(1/p))  U/(ln(1/p)); (note that the signs in the two arguments are 
now equal.) The Feshbach map involved in the definition of 77 maps operators 
on the range of 

(V.60) 

to operators on the range of p(n) for arbitrary η = 1,2,..., while simulta-
neously locating the “spectral parameter” z in ever smaller disks around a 
point E(∞) E C (depending on the initial condition). For the initial condi-
tion K(0)(g,z) it follows from Theorem V.l, (i), and the fact that Lg

 has an 
eigenvalue at 0, proven in Theorem IV.3, that = 0. Using Hypothesis 
(H-3), Sect. I, on the interaction /, one sees that iterated application of the 
renormalizatin map R to K(0)(g, z) drives this operator towards a trivial fixed 
point, which is given by the operator Lf(iv) P(0). This is the phenomenon of 
infrared asymptotic freedom, which one encounters in all the models studied 
in [5, 7, 8] as well as in the model studied in this paper. With a little expe-
rience, the details of this process of infrared renormalization can be carried 
out by inspection. They are studied in more detail in Sects. V.6 and V.7. 

The conclusion of the discussion presented in Subsects. V.l.l-V.1.4, above, 
is that, for 0 < v < and for g > 0 sufficiently small, there is an angle 
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Figure 6: Approximate location of σ[Lg(i,d)]. 

0 < ϋ" < ΰ such that 

a[L
g(

id)] Π {z e C | Iraz > —g2} (V.61) 
C C(d”) = {zGC|lmz<0, |Rez| < cot(i9") |Im z\} , 

Furthermore, Lg has a simple eigenvalue at 0. In the example, where N = 2, 
E0 = 0, Ει = ε0, the spectrum of Lg(id), 0 < ϋ < $0, for g > 0 small enough, 
is contained in the shaded region, shown in Fig. 6. 

Using Eq. (V.12) we see that our analysis proves that, away from the 
simple eigenvalue 0 of Lg, the spectrum of Lg is purely absolutely continuous. 
The general results of Sect. III.4 then imply that the model studied in this 
paper has the property of “return to equilibrium”. 

V.2 A Comment on Exponentially Fast Return to Equi-
librium 

The results on the spectrum of Lg(iO) presented in the last subsection are 
not sufficient to prove exponentially fast return to equilibrium of dilatation-
analytic initial states. In fact, there is no compelling reason to expect that, 
for the general class of interactions between the atom and the quantized ra-
diation field considered in this paper (see Hypotheses (H-1)-(H-5) of Sect. I), 
arbitrary dilatation-analytic initial states of the system return to the unique 
equilibrium state constructed in Theorem IV.3 exponentially fast. How-
ever, for a rather special class of interactions introduced by Jaksic and Pillet 
[27, 28], one can prove exponentially fast return to equilibrium of initial 
states belonging to a certain fairly natural dense subset of H by combining 
our methods with some of the ideas developed in [27, 28]. The key arguments 
are outlined in this subsection. 
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To begin with, it is useful to use polar coordinates in momentum space, 

R3 3 k = w e, (V.62) 

where ω = \k\ and e is a unit vector in R3. Then 

d3k -> w2 dw dQe, (V.63) 

where dQë is the uniform measure on the unit sphere in R3. In the following, 
we shall extend the range of values of the variable ω from the positive half-
axis to the entire real line. 

It is convenient to introduce new creation- and annihilation operators, a* 
and a, by setting 

α#(ω,ε) := (V.64) 

where Λ = ±1 is the polarization index and ε — (e, Λ). We also define 

(V.65) 

and 

δ(ε - ε') := ôxx,ô(e-e). (V.66) 

Then α(ω,ε) and α*(ω, ε) satisfy the canonical commutation relations 

[α(ω, ε), ο(w', ε')] = [α*(α;, ε), ο*(ω', ε')] = 0, (V.67) 

and 

[α(ω, ε), ε')] = δ(ω — ω') δ(ε — ε) . (V.68) 

We set 

φ := Ω<8>Ω (V.69) 

and note that 

α(ω,ε) φ = 0, for all ω, ε. (V.70) 

The Liouvillian, Lf, of the radiation field is then given by 

Lf = dw dkl
c
 ε) ω α(ω, ε) ; (V.71) 
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see [27], while L
aux

 becomes 

L
aux

 = I dw I dΩ
ε
 α*(ω,ε) \ω\α(ω,ε) . (V.72) 

Let G(k) denote the form factor of the interaction, I, between atom and 
quantized radiation held, as defined in (1.20) and (IV.50); G(k) is an operator 
on U

el
, i.e., it is an N x N matrix. We define matrix-valued functions, Fl(w, ε) 

and F
r
(u,e), by 

F
(
(UJ,S) := 

w 1//2 Gi{ide, Λ) , w > 0 (V. 73) 
— (—ω)~12 G}(-cde, Λ) , ω < 0 

and 

F
r

(w, E) := w 1//2 CG*(we, X)C , w > 0 (V 74) 
-(-w)-1/2CG

r
(-we, A)C, w < 0 ’ (V.74) 

where C is the conjugation introduced in Sect. II.3. 
We now assume that Fe(w,e) and F

r
(w, e) are the restrictions to the real 

axis of matrix-valued functions, also denoted by Fi(w,e) and F
r
(w,e), which 

are analytic in ω on the strip 

Σ
τ
 := | |Im w| < r} , (V.75) 

for some positive r < oo. We also assume that the L2-norm (w.r. to άξ) of 

(|E|3/2 + |E|-1/2) ||F# (E+in, e)|| B(Hel) 

is bounded uniformly in n, if |n| < δτ, for an arbitrary δ < 1. 
It is not hard to construct form factors G(k) for which these assumptions 

hold; see [27, 28] for some simple examples. But we emphasize that if 

||G(k)|| B(Hel) ~ |k|µ, for |k| -> 0, (V.77) 

for some μ > 0 (as required in this paper), then the assumptions described 
in (V.73)-(V.76) only hold if 

μ = 1/2, 3/2, ..., | (V.78) 

while the techniques described in Sect. V.l are applicable for arbitrary μ > 0! 
Given an inverse temperature β > 0, we define 

(V.79) 
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and 

ΡΛ(ω,ε) := ^/-w(l - e'5'*’) 1 F
r
{ui,e) ■ (V.80) 

It is important to observe that the functions 

6±βω^-1 (V. 81) 

are analytic in ω in the strip Σ2π/3-ι; (the function under the square root has 
simple poles at the points ±2πΐβ~ιη, η = 1,2,3,...). Thus and F^ 
are analytic on the strip Σ

κ
, with κ — min{r, 2ττβ~1}. 

The interacting Liouvillian, L
g

, can be expressed in terms of a, a*, F^\ 
and Fr^ by 

Lg = L
el

 + Lf + g{W
t
-W

r
), (V.82) 

where Lf is given by (V.71), and 

(V.83) 

where # = l or r. Formula (V.83) follows directly from (V.79), (V.80), and 
Eqs. (IV.67), (IV.68). 

Given an N x N matrix Μ(ω) = (Μ^(ω)) expressed in the basis 
of eigenvectors of H

eÎ
, we define 

Mid(u) := Μ^(ω), (V.84) 

and 

(V.85) 

We introduce the generator, T, of translations along the ω-axis 

(V.86) 

Then 

Lg(a) := e~^TLge^T = L
el
 + Lf - σΝ + g{We(a) - W

r
(a)) (V.87) 

where W#(o) is obtained from W# by replacing F^\ω,ε) in (V.83) by 
F^\cu + σ, ε), with Φ = l or r, and 

N = j άω J άΩ
ε

 a*(ω,ε) α(ω,ε) (V.88) 
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is the number operator. The assumptions on the form factor G(k) described 
above and Eqs. (V.84), (V.85) ensure that the operator Lg(a) extends to a 
family of operators analytic on the strip 

£
min

{T,27r/3-i} := {σ I |Imor| < min{τ,2ττ/3 l}} . (V.89) 

The proof is similar to the one presented in Appendix A. Clearly, there are 
natural dense sets of translation-analytic vectors in Ή. Thus, we can apply 
the techniques of complex spectral deformation theory. In fact, the thing to 
do is to combine complex translations with the complex dilatations used in 
Sect. V.l, i.e., 

ω —-> ω + σ —> e Θ(w + σ) . (V.90) 

Note that translations and dilatations do not commute. Hence, it is impor-
tant that we first translate and then dilate Lg. Reversing the order of these 
operations does not yield an analytic family since, e.g., L

aux
 is not transla-

tion analytic. So, after translating and then dilating Lg, we obtain a family 
of operators 

R,M)} (v.9i) 

analytic in σ and Θ on a domain 

A
no

, P
o
 := {(o, 7) G C2 | |Im σ\ < η

0
 , |Ιm θ| < v

0
} (V.92) 

in C2, for some positive constants 

η0 = 0(β- 1) and ΰ0 = O (1). (V.93) 

There is a natural dense domain DA, of vectors in H which are contained in 
D(L

aux
) Π D(N) and are translation-and dilatation-analytic on the domain 

A
n0,

 Assuming that the conditions on the form factor G(k) described in 
Sects. I and V.l and in (V.73)-(V.76) hold, we are then able to construct an 
analytic continuation in z of the matrix elements 

<ip | (L
g
 - z) -1 φ) , (V.94) 

to the complement of 

(V.95) 
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Figure 7: Sketch of a[L0(in, id)]. 

In order to see what can be accomplished with these methods, we set 

σ = ΐη, θ = ιϋ , (V.96) 

with 0 < η < η0, 0 < ϋ < 90, and study the spectrum of Lg(ip,id) with the 
help of the techniques described in the last section. In the example where 
N = 2, E0 = 0, and Ε1 = ε0, the spectrum of L0 (in, id) has the form sketched 
in Fig. 7. 

We define subsets <S>, *S
t
 *S0,>, and <S0,< of C in a way very similar to the 

one in Sect. V.l. The analysis of the spectrum of Lg(in, iv) on the subsets 
S>, Si,j, and S0,> is virtually identical to the one of a[Lg(id)] outlined in 
Sect. V.l (and completed in Sects. V.3-V.7). It is only in the analysis of 

a[Lg(ip, id)) Π S0,< (V.97) 

where the usefulness of complex translations becomes manifest: Applying the 
renormalization operator R mentioned in Sect. V.l (see [7, 8] and Sect. V.7) 
to the operator 

L
(0)

(g,z) := T(
Pl

) F
Ρθι,

<(Fρ
0
(L

9
(ίη,ίϋ) - z)) T(p

1
)*, (V.98) 

where we use the notation introduced in Sect. V.l, and T(p1) 1 0 1 ® 
U(— In p1) <S> U( — In p1) is the unitary dilatation that maps L

aux
 into p1 Laux

,, 
one encounters the phenomenon that, for η > 0, ϋ > 0, the continuous 
spectrum of L(0) (g, z) is pushed farther and farther into the lower half-plane. 
If the renormalization operator R lowers the scale of the L

aux
-spectrum by a 

factor p < 1, then the distance between the continuous spectrum of L(0)(g, z), 
\z\ ~ 0(pn), and the real axis, after n applications of the renormalization 
operator R, is 0(p- n). This follows from the fact that 

'R(Lf(in,id)) = R(cos($)Lf — isin(d)L
aux

 — ΐηΝ) 

= cos(d)Lf - i sin(d)L
aux

 - ipp- 1N 
= L

f
(inp-1, id) , (V.99) 
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Figure 8: Sketch of o[Lg(in),iϑ)]. 

which follows from Eqs. (V.6), (V.87) and from the definition of R; see 
(V.59)-(V.60) and Sect. V.7. Thanks to infrared asymptotic freedom, it fol-
lows that, for z E S0,<, 

L(n)(g,z) := Kn(Lm(g,z)) (V.100) 

for some a > 0 (which depends on the behaviour of G(k) near |k| = 0). 
It follows from the isospectrality of the Feshbach map, Theorem V.1, (i), 

and Theorem IV.3 (existence of a perturbed KMS state) that L(n)(g, 0) has 
an eigenvalue at 0. This fact and Eq. (V.100) then imply that 0 is a simple 
eigenvalue (analytic perturbation theory!) and that for 0 < |z| < 0(1), 
L(

n)
 (g,z) is invertible on the range of P%1 <S> Pfux. 
By Theorem V.1, we conclude that, in a small disk around 0, the spectrum 

of Lg(in, iϑ) is empty, except for a simple eigenvalue at 0. 
In the example where N = 2, E0 = 0, and E1 = ε0, the location of 

σ[Σ9(ίη,ΐΰ)\ is sketched in Fig. 8, for g > 0 small enough. 
It follows from these results by arguments due to Hunziker [25, 9], that 

an initial state φ G VA C Ή returns to equilibrium exponentially fast, with a 
rate of 0(β-1), for g > 0 sufficiently small. 

In the remaining subsections and in two appendices, we present some 
analytical details required to render the analysis presented in this and the 
last subsection mathematically rigorous. 

V.3 Complex Dilatation of the Liouvillian 
In this section, we discuss the dilatation analyticity of the Liouvillian Lg. 
The technical details of this discussion are given in Appendix A. 



BFS-4, December 21, 1999 65 

Recall from (V.2)-(V.4) the definition of the unitary dilatation operator 
U(θ), for θ E R. We define the dilated Liouvillian by 

L
g
(θ) := U(θ) L

g
 U(θ)-1 . (V.101) 

We find that 

L
g
(θ) = L

el
 ® 1f + 1el ® Lf(θ) + gW(θ) , (V.102) 

where 

Lf(θ) = e-θ (Hf ® 1f) - ee{lf®Hf), (V.103) 

and 

W(9) = (V.104) 

e~
3e/2 J d/t{(v

,
l + p(e-'

,
/t)G

f
(e^i:) - \Jp(e~

e
k) G*(e~

e
k)) a)(k) 

+ (%/l+p(e-«fc)G
i
*(e^fc) - s/p(e~<>k) G^(e~ek)) a

e
(k)\ 

+e30/2 J dk ^p(e°k)Cr
t
(e

e
k) - s/l + p(e

e
k) Cf

r

(e
s
k)) a'

T

(k) 

+ (\/p(eek) G
t
(eek) - ^1 + p(eek) G$(eek)) a

r
(fc)| 

and e~ek (e~ek, Λ). 
In order to obtain an analytic continuation of the dilated interaction 

W(θ) in Eq. (V.104) from real to complex θ E Σ^, we recall that Hypothesis 
H-2 insures the dilatation analyticity of G(e~ek), for Θ E Σ#

0
, and thus 

also insures the dilatation analyticity of eeLo(k) l^2G(e ek). We follow the 
convention that, for a matrix-valued function M(z), z E C3, 

(<Pi\ Μ{ζ)ψό) := (<Pi\ Μ(ζ)φ
3
) (V.105) 

(<Pi\M*{z)ipj) := (φά\M(z)ipi). (V.106) 

Furthermore, for θ E R, we set 

Me(fc) := y/u(k) p(e~ek) = \Jω(Η) (exp[e~ePiu(k)} - 1) 1 , (V.107) 

ve(k) := yju(k) (l + p(e~ek)) = exp[e θβω(^)/2] μ
0

(&) , (V.108) 

and similar to the discussion of the function in (V.81), we extend θ —> 
μ0(&), ^(/c) to the strip Σπ/2 = {|Im< 7Γ/2} about R by analytic con-
tinuation. 

With Eqs. (V.105)-(V.108), we see that the interaction is dilatation an-
alytic. 
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Lemma V.2. Assume Hypotheses H-1, H-2, and H-4. Then the map 

w : Σΰα —> B[Dom[L
aux

]
,H

] , θ–>(θ) (V.109) 

is analytic. 

Proof. We first write a := Re θ, θ:= Im θ and observe that 

| exp [e~epcj(k)\ — 1| (V.110) 
= |exp[e- a cos(9)Pij(k)] exp[ze_ a sin(9)ficj(k)] — l| 
> |exp[e_ a cos(ti)Pu(h)] — l| > e~Q cos(ϑ) βω(Η) , 

and hence 

(V.lll) 

So, defining 

w(P
t
(k) := β“βω(λ·)“1/2 pe(fc) Gt{e-ek) - μ,(k) Gf.(e~ek)) (V.112) 

wP/k) := e~e w(k)-l/2 (v„(k)G'
e
(erek) - μ^)α^(ε~β^) (V.113) 

w(P(k) := eeu(fc)-l/2(/j_<l(fc)GKe<’fc) - u_
e

{k)G~
r
(eek)) , (V.114) 

wigO) := eeu(k)~1/2 (i^„(k)Gi{e°k) - i/_e(fc) Gj{eek)) , (V.115) 

Hypotheses H-3 and H-4 insure the following estimate, 

(V.116) 

for any θίηΣΰο, with ΰ := Im θ M < oo as in Hypotheses H-3 and 4, and 
K < 1 is a function such that 

f fj{k) +ω(0“
3
) \ϊΐ\2μ \n{k)\2 dk < A2. (V.117) 

Furthermore, the matrix-valued functions θ H>· w£)
T
(k) are analytic in Σ^

0
. 

Hence the standard bounds given in Lemma IV. 1 insure that 

(V.118) 
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with aj := α*φ and a# := a#, is dilatation analytic, and the following norm 
bound holds, for some constant C < oo, 

(V.119) 

Our next goal is to establish the analyticity of the resolvent 

Λ»(Μ := (£,(0) - *)_ 1, (V.120) 

as an operator-valued function of 0 and z. This is not immediate from a 
direct application of standard techniques in dilatation analyticity because 
θ Lg{9) is not a family of type A, for θ E Σ^

0
. Indeed, as we point out in 

Appendix A, θ —> Lg(θ) is not even an analytic family on H in the sense of 
Kato (see, e.g., [33]). 

To make a precise statement, we introduce a dense set of vectors, 

D := D1f]D2 C U , (V.121) 

where 

(V.122) 

and D2 consists of all vectors which are analytic w.r.t. θ E Σ^0. We see that 
D C H is dense by observing that 

D D span{φl ®(p
r

®ip
t

®ip
r
 φ

ι/τ
 G U

el
 , ψψ G V

Gauss
J , (V.123) 

where VGauss consists of all translates and dilates of Gaussians, 

DGauss := |α*(/ι)···α*(/„)Ω f
J
(k,\) = exp[-(k-k

j
)2/a

j
]S

Xj:X
, 

neN„, kj eR3 , > 0 , λ,·€{±1}}. (V.124) 

For φ, ψ E D, we establish the existence of the desired analytic continu-
ation of 

(θ,z) —> Fφ,ψ(θ,z) := (t/(0)V| (L
9

(0) - z) 1Ό(Θ)Φ) (V.125) 

in the following theorem, which is an immediate consequence of Theorem A.4 
proven in Appendix A. 
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Theorem V.3. Let 0 < ΰ'0 < ϋ0 < π/2, and assume that Im z > 0, 0 < g 
$ό(π/2 — #0), and θ E Σϋο, Im θ > ϑ'0. Then 

(i) For all φ,ψ E D, the function z —>· <φ|(Lg — z)-1ψ> has on analytic 
continuation from the upper half-plane into G' given by 

<ψ| (L
g
 - zplt) = φ{θ)ψ| (L

g
(9) - ζ)~1ΰ(θ)ψ). (V.126) 

(ii) On the rectangular domain R := {$ E C | |Re0| < a , $0 < Im O < O0}, 
where a := — \ Incos(2t?0) > 0, the map 

R 3 θ —> Lg(θ) E B[Oom[L
aux

\,H\ (V.127) 

is an analytic family of type A. 

(iii) o[Lg(θ)] C C~ \ G', where G' is the connected component of {z E 
C| \\Rg(9, 2)|| < oo} containing C+. 

V.4 Invertibility of Lg(θ) - z on <S> 
In this subsection we study the spectral properties of Lg(θ) on S>. In the pre-
vious subsection, we established the analytic continuation of matrix elements 
of (Lg(θ) — z)- 1 in θ and z. This allows us now to choose purely imaginary 
values of θ, and we shall henceforth assume that 0 < O0 < θ0 < π/2, 

θ = iθ and θ'0 < ϋ < ΰ0 . (V.128) 

We first demonstrate that S> Ç p[Lg(9)], the resolvent set of Lg(θ), simply 
by expanding (Lg(θ) — z)~l in a norm-convergent Neumann series. 
Theorem V.4. For g > 0 sufficiently small, Ç p[Lg(9)\, and 

||(G(0-m1|| < O(pp), (V.129) 

for any z E S>. 

Proof. We expand the inverse of Lg(θ) - z in a Neumann series, 

(V.130) 

which is easily seen to be norm-convergent since, by Lemma IV. 1, we have 

\\(L
aux

+p
0
)-1/2gW(e)(L

aux
 + p

a
r1/2\\ = 0(gpp/2) = O>(ge) , 

(V.131) 
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and 

(V.132) 

where C(ϑ) < oo is a ϑ-dependent constant, and r
aux

, rf are points in the 
joint spectrum of L

aux
, Lf, respectively. 

To check (V.132), we distinguish the cases r
aux

 < rp0 and r
aux

 > rp0, 
with r > 0 to be picked later. For r

aux
 < rp0, we have 

|A + cos(ϑ)rf — i sin(ϑ)r
aux

 — z| > |A + cos($)r/ — Re(z)| (V.133) 

and, for r
aux

 > rp0, 

|A + cos(ϑ)rf — i sin(ϑ)r,
aux

 — z| > | sin(ϑ)r
aux

 + Im(z)| (V.134) 

Choosing τ := (sin ϑ + 2 cos ϑ) (4 cos ϑ) 1 (sin ϑ + cos ϑ)- 1, we obtain C(ϑ) = 
(sin ϑ/2)(sin ϑ + cos ϑ)- 1. □ 

V.5 Invertibility of Lg(O) — z in the Vicinity of Atomic 
Eigenvalues away from Zero 

In this subsection we investigate the invertibility of Lg(ϑ) — z in <Si,j, for any 
i # j. In Theorem V.7 below, we show the existence of a positive constant 
y#0 > 0 such that 

Sij n {z e C: Im z; > —g2 y#0} Ç p[L
g

(o)] , (V.135) 

provided g > 0 is sufficiently small, and ε > 0 is as in Eq. (V.21). Theo-
rem V.7 and Theorem V.4 imply, in particular, that the spectrum of Lg(O) 
in (-∞ , — p0] U [p0 , ∞) is absolutely continuous. 

Let z E Si, j. We recall from the definition (V.24) of Si, j that 

sin(ϑ) 
|Re(z) — η| < p0/2 and Im z > —p0 , (V.136) 
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where η := Ei, j # 0 is a nonzero eigenvalue of L
el

 The proximity of z to n 
implies that z is uniformly in g away from any other eigenvalue of L

el 

dist ( z, o[L
el

] \ {η} ) > 1 min |μ-ν| > 0. (V.137) 
μφν 

As in [7, Sect. IV] and in [9, Sect. III], we establish the invertibility of 
Lg(ϑ) — z by means of the Feshbach map, FP(L

g
(ϑ) — z), corresponding to 

the projection 

ρ
η
 := pf®Ρ;Γ . ρ

η ■= 1 -a,, (V.138) 

where Pg
l := xp

?
}[L

ei
] is the projection of Ld onto η, and Pffx := χ[Τ

αΐΧΧ
 < 

p0] is the projection onto spectral values of L
aux

 strictly less than p
0

- To prove 
existence of FPji(Lg(9) — z), we require the following preparatory lemma. 

Lemma V.5. Assume (V.128) and (V.136). Then, for g > 0 sufficiently 
small, Pv{Lg{9) — z)Ρη is invertible on Ran Ρη. 

Proof. We construct the inverse of ΡηΣ9(θ)Ρη~z on Ran Ρη by an expansion 
in a Neumann series, 

(V.139) 

By Lemma IV. 1, we have 

||(L
aux

 + p
0
)-ll2gW(e)(L

aux
 + Po)-

ll2\\ = θ(9ρΰΦ). (V.140) 

We make use of 

P
v
 = Plf + P*’ . (V.141) 

P{3 := p‘2) := P‘‘ ® X[L
aux

 > p
0

] , (V.142) 

where Pfl := XR^J [Lel] is the projection onto the eigenvalues of Ld different 
from η. Since both and P^ commute with L

aux
 and with L0(ϑ), we 

have that 
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On Ran P^, we observe that 

(V.144) 

where the supremum is taken over μ e a[Ld\ \ {η} and 0 < rj < r
aux

. Since 
sin v > sin > 0 and \μ — Re z| > c, for some constant c > 0, we have 

\μ + cos (v)rf - i sin(v)r
aux

 - z\ (V.145) 

> - (c — cos(ϑ)r f)
+
 + -(r

aux -sin(ϑ)p0) + 

— 2 (2p0- r aux) + + r aux- p0)+ — 1/8 (p0) +r) , 

and hence 

(V.146) 

On Ran Pn , we estimate 

(V.147) 

and putting together (V.146) and (V.147), we obtain 

(V.148) 

Inserting (V.148) and (V.140), the Neumann series (V.139) is seen to con-
verge in norm since 0(g PQ1^2) = G(g£) <C 1, for g > 0 sufficiently small. 

□ 

Lemma V.5 establishes the existence of the following Feshbach operator, 

FΡη := Τρ
ν
μ

9
(θ)-ζ) 

:= (Z„ (<?)-*) P, + βΡη\ν(θ)Ρ
η
 (V.149) 

- 9
2ρ

η
πφ)ρ

η
(ρ

η
ι

9
(θ)ρ

η
 - ζ)-1ρ

η
πφ)ρ

η
. 
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The importance of TPj] lies in the following identity (see [7, 8, 9]), 

(L
g
(e)-z)~l = [ρ

η
 - 9(Ρ

η
Ι,

9
(θ)Ρ

η
-

Ζ
)-1Ρ

η
\ν(θ)Ρ

η 

Tp] [P„ - 9
ρ

η
π(θ)ρ

η
(ρ

η
ι

9
(θ)ρ

η
-ζ) 1 

+ Ρ
η

{Ρ
η
1

9
(θ)Ρ

η
 - ζ)~'ρ„ , (V.150) 

which manifestly shows that Lg(0) — z is invertible iff TPr){Lg{0) — z) is 
invertible on Ran Ρη. Indeed, 

|| (L
g
(0) - z)-1 \\ < [l + O(gp-

0

ll2))\\F
Pri

(L
g
{e)-z)\\ + 0(V/2) , 

(V.151) 

by Lemma V.5 and the estimates in its proof. 
To apply the Feshbach map, we introduce the level-shift operator, 

QE®Pn := lim {PüWPü(L
0
-E-ze)-lPQWPa}, (V.152) 

where E G R. and := |Ω (g) Ω)(Ω Θ Ω| is the projection onto the vacuum 
Ω 0 Ω in F <S) F. An explicit computation shows that QE is bounded and 
has a nonnegative imaginary part 

ΓE®Pn := Im QE®Pn = P
n

W P
n

ô(L
0
 - E) P

n
WP

Q
 > 0. (V.153) 

It is convenient to omit the trivial tensor factor <S>PQ in our notation, i.e., to 
identify QE with QE® ΡΩ and ΓE with ΓE <S> Pn-

In Theorem B.l of Appendix B, we show that if η = Ei — Ej # 0 then 

ΡnΓ
n

Ρn > 7(,J)P,. (V.154) 

for some strictly positive constant 7^ > 0. 

Theorem V.6. Assume (V.128). For any 0 < ε < 2/3, 

||Fp
n
 - Ρ

n
(1

0
(Θ) - z - g2Q

n
)P

n
II = 0(g2+£). (V.155) 

Proof. Denoting χ
τ
(ω) := χ[ω < r], we first observe that, by Lemma IV. 1, 

||“η«4^)Ρ)|| = |Mx,o<i)P,|| 
< o(pJ/2) ||at(x„<>) (Laux + Po)“1/2P„|| 

= θ(ΰ~4 Ρο1+τ)/2 β~ι/2{β + 1)1/2) , (V.156) 
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for any 0 < r < 1. Using similar estimates for the other terms, we obtain 

\\9Ρ
η

ΐν(θ)Ρ
η

\\ = θ(9ρ^+τ)/2) = 0(g1+{1~e){1+T)) , (V.157) 

Compare to [7, (IV. 101)]. Next, the second resolvent equation and Lemma V.5 
yield 

19
2Ρ

η
Ψ(θ)Ρ

η
{Ρ

η
1

9
(θ)Ρ

η
 - ζ)-'ρ

η
\ν(θ)ρ

η 

- 9
2Ρ

η
\ν(θ)Ρ

η
{Ρ

η
1

0
(θ)Ρ

η
 - z) 1Ρ

τ]
Ψ(θ)Ρ

η 

= 0(g3p~l/2) = 0{
9

2+ε), (V.158) 

Compare to [7, (IV. 101)]. Third, we define Ρη(ω) := 1 — X{v}[L
e
i\®x[Lf+ω < 

p0] and 

(V.159) 

similar to Q in [7, (IV.67)]. A normal-ordering procedure as in [7, (IV.66)-
(IV.76)] then gives, for any 0 < τ' < 1, 

g2P
r
,W(e)P

r
,(P

rl
L

0
(e)P

rl
-zy1P,W(e)P, - 9

2Ρ
η
Μ(θ,ζ)Ρ

η 

= o{g2pï) = o(i?2+2T'(1-e)) · (V.160) 
Fourth, using the first resolvent equation, we obtain 

|
9

2Ρ
η
(Μ(θ,ζ) - Μ(θ,η))Ρ

η
| 

= 0(g2
P
y) = o^d-X1-")) _ (V.161) 

for any 0 < r" < 1. Fifth, a similar estimate as (V.161) and an analytic 
continuation ϑ —> 0 give 

\\9
2Ρ

η
Μ(θ,η)Ρ

η
 - 32P,Q,Pj = O(g2pl

0-
T"') = o(y+a->a-'">) , 

(V.162) 
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for any 0 < τ'" < 1. Estimates (V.161) and (V.162) are similar to [7, 
Lemmata IV. 11, IV. 12]. Choosing τ'" := τ" := 1 — τ' := 1 — r and observing 
that 1 + 2r(1 — ε) < min{1 + (1 — ε)(1 + τ) , 2 + 2r(1 — ε)}, we arrive at 

||Fp„ - Pr,(L
0

(ff) - z - g2Qn)P
n

|| = O(9
2+ε + g1+2T(1-e)) , (V.163) 

from which (V.155) follows upon choosing r:= 2ε(1 — ε) 1. □ 

Next, thanks to (V.154), we have 

||(L0(ϑ) - 2 - g2Q,
1
) 1 P.,11 < dist{a[L

0
(0 - g2Q

n
], z} 

< 2 (7(’j))_1 g~2 , (V.164) 

whenever |Im z| < 7^J^2/2. Combining this with (V.155), we obtain a con-
vergent Neumann series expansion for 

(V.165) 

Defining 

7^o min{7^ | i ψ j } > 0 , (V.166) 

we thus arrive at the following theorem. 

Theorem V.7. Assume (V.128), z E Sij, i # j, and Im (z) > —^f^0g2/2. 
For sufficiently small g > 0, the dilated Liouvillian Lg(0) — z is bounded 
invertible, 

o[L
g

(9)] Π {z E C | Rez > p
0
/2 , Im z > -y#o g2/2} = . (V.167) 

V.6 Invertibility of Lg(ϑ) - z in S0 > outside the cone 
C(ϑ') = {|Rez| < — cot(ϑ')Im z}, for ϑ' < ϑ 

The purpose of this subsection is to study the invertibility of Lg(ϑ) — z in 
S0,>. Thus we henceforth assume (V.128) and |z| < Po/2. We introduce the 
projections 

Po:= Po x[L
aux

 < p0] 5 (V.168) 

P0 := 1-P0 = Po+Po, (V.169) 

Po] := Pa ® 1 , Po] := Pa ® x[Laux > Po\, (V.170) 
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where PQ1 is the projection of rank N onto Ker L
el, 

V.171) 

and x[L
aux

 < p0\ is the projection onto spectral values of L
aux

 strictly less 
than p0. Again, we first establish the applicability of the Feshbach map. 

Lemma V.8. Assume (V.128) and \z\ < po/2. Then, for g > 0 sufficiently 
small, P0(Lg(0) — z)P0 is invertible on Ran P0. 

Proof. Analogous to Lemma V.5. □ 

By Lemma V.8, Lg(0) — z is invertible (on H) iff FPo := FPo(Lg(0) — z) is 
invertible on Ran P0. As in the previous subsection, the level shift operator 
QE, introduced in (V.152), plays an important role. Note that J((p

n 

Ω ® Ω) = φ
η <S> φη <8> Ω <S> Ω, and hence 

Po®Pn = J Pa ® Pu = Po®PnJ, (V.172) 

where J is defined in (IV.77). Since furthermore, J L0 J = —L0, and 
JW J — —W, we have that 

Po ®P
a

WP
a
 (L

Q
 - ίε)~ι P

n
 W PQ1 ® P

n
 (V.173) 

= Po ®Pn JW P
n
 (L

0
 -ü)-lP

ü
WJ P

0
el ® P

n 

= - Po ®PuWP
a
 (L

0
 + ie)~l P

Q
 W P

0
e' ® Ρ

Ω
 , 

and therefore 

Qo PQ = ^ Γ0 P0
 (V.174) 

is purely imaginary. 

Lemma V.9. Assume (V.128) and \z\ < po/2. Then, for g > 0 sufficiently 
small and any 0 < ε < 2/3, 

IIPPO - P
0
(Lo(e)-z-ig2r

0
)P

0
\\ = 0(g2+e) . (V.175) 

Proof. Analogous to Theorem V.6, taking into account (V.174). □ 

We now distinguish between spectral parameters, z, very close to zero 
and those which are at least of magnitude 0(g2+e). The latter can be dealt 
with by a standard Neumann series expansion, provided they are outside the 
cone C(d'), ϋ' < 9, while for the spectral parameters close to zero we apply 



BFS-4, December 21, 1999 76 

the renormalization group arguments developed in [7, 8]. This is done in 
Subsection V.7. 

We turn to proving the invertibility of the resolvent of Lg(0) — z for z 
outside of C(d') and of magnitude between 0(g2+£) and p0/2, see Fig. 4. 

Theorem V.10. Assume (V.128), 0 < ϋ' < ΰ, and 0 < ε < 1/3. Suppose 
that C0 g

2+£ < \z\ < p0/2 and z C(d'), where C0 < oo is sufficiently large. 
Then, for g > 0 sufficiently small, Lg(9) — z is bounded invertible. 

Proof. We first observe that (Lo(0) — ig2T0)P0 is a normal operator. Since 
Γ0 > 0, we have that a[Lj{9) - ig2Γ0] Ç a[Lf(9)] = C(i9). Hence we obtain 

(L
o
(0)-z-ig2 Γ

0
) 1 P

0
 < dist {z , C(i?)} 1 < (C0 sin (i?/2) g2+£) 

(V.176) 

Inserting this estimate into a Neumann series expansion and using (the ana-
logue of) (V.155), we arrive at the assertion, 

(V.177) 

provided C0 is chosen sufficiently large. □ 

V.7 Renormalization Group Study of the Spectrum of 
Lg(0) in S0 < 

Having dealt with the spectral parameters of magnitude larger than C0 g2+£, 
we shall henceforth assume that z G <S0)o i-

e
-> ^

ia
f \z\ — Αη(ΰ) g2+£/2/2. 

The analysis of the spectrum of Lg(6) in N0j< is the most involved part of our 
analysis, as it requires an application of the renormalization transformation 
developed in [7, 8]. 

To apply the renormalization group map, it is necessary to convert tFPo = 
Tp

0
(Lg(9) — z) into a normal-ordered form. More precisely, we expand FPo 

in a Neumann series, 

(V.178) 

which is norm-convergent, as we have seen in the previous subsection. 
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To convert FPo into its normal-ordered form, it is convenient to adopt 
the following notation. We henceforth denote 

k := (k, A, r) e R3 x {1,2} x {l,r} , (V.179) 

(V.180) 

and 

a+(k, λ,τ) :== ci*(k,X) , a (k,X,r) := a
T
(k,X) , (V. 181) 

(V.182) 

Furthermore, we write u(k) := \k\, etc. In this new notation the operators 
to deal with appear in a more compact form as 

W(9) = a+(w^)-ba (w^) , (V.183) 

L
aux

 — f dk u(k) a+ (k)a (k) , Lf = f dk τu(k) a+(k)a (k) . (V.184) 

Thus the term in (V.178) of order (f can be written as 

„ Σ
(V

'
185

> 

For future purpose, we introduce some more notation. We collect the 
eigenvalues of Ld in a set {n0, n1, . · · ,nM} — {^j|0 < i,j <77 — 1}, where 
?7o := 0 and Μ < N(N — 1). We then introduce 

(V.186) 

(V.187) 

and we observe that 

(V.188) 
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For , fc
m

, Aq,... , k
n

 G R3 x {1, 2} x {£, r}, we further denote 

*<m) fc
m
), I» := (fcj,... ,fc

n
), (V.189) 

C · (-^/j Laux) > 21 ■ fT^'aux') j (V.190) 

(V.191) 

(V.192) 

:= (k{m\k(n)), dK(m’n) := dk{rn)dk(n), (V.193) 

(V.194) 

Equipped with this notation, we rewrite (V.185) as 

(V.195) 

Now we normal-order the product of creation- and annihilation operators in 
the second line of (V.195). By (a two-component variant of) [8, Lemma A.3], 
we have, for arbitrary functions /1? /2,... , /„_i, 

'·· /«„_![£/, (V.196) 

where λί := {1,2,... , zx}, Q± := {j G Q|a.,· = ±}, and [ασ^ (kj)]x^Q^ = 
aaj (kj), for j ^ Q, and [α^ (Aq)]x^sl = 1, for j G Q. To apply this formula 
to the second line of (V.195), we choose 

(V.197) 
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Note that, similar to (V.143)-(V.148), we have 

( V.198) 

for some C < oo. Inserting formula (V.196) into (V.195) and summing up 
the contributions to all orders in g, we obtain an effective Liouvihian on 
Ran P0, 

Li0)[z\-z := ΤΡ„(13{θ)-ζ) (V.199) 

— Cj f £(0)M — z + T(ÿ)[z, L] + W
{a)

[z\ j P
Q

 , 

where 

(V.200) 

Χ(Ω| α'·(*ι)/
01

[£] ··■ fi), 

r(o)[z,d 

= xL0) ® Pn (pp
0
(r
f

(e) + L
g

(9) - z) - T
Pa

(L
g

{0) - z)) χ<?> ® P
n

 , 

(V.201) 

-ασι(^ι)/
αι

[η ■·■ /«mrKddm), 

using L := (Lf,Laux
), r := (rf,raux

), and rf(6) := cos(ti)rf - isin(tf)r
aux

. 
Furthermore, 

(V.202) 

w4°Ud
 :

= / a+(^(m)) ^(m'n)] a"(^<n)) , (V.203) 
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and we shall display the dependence of L(0), E(0), TJ0), and VE(0) on Θ unless 
necessary. Note that E(0) is an operator on Rany^, i.e., E(0) G Μχ is an 
N x TV matrix. Similarly, r T(0)[2,r] is an TV x TV matrix-valued function, 
and r i-> Wm]

n
[z,r, are N x TV matrix-valued functions, for m + n > 1, 

pointwise in K^m'n\ Eq. (V.196) yields the following explicit expressions for 
Wmjn (compare to [8, Lemma III.6]), 

w£!
n

[z
t
L,K<m'n>] = (V.204) 

where Bm,n,P denotes the set of partitions b = (bk,bk,b
x
,b

x
) of {1,2,... , m + 

n + 2p} such that \bk\ = m, |6*.| = n, and \b
x

\ = |b
x
 = p, i.e., bk, b~k, b

x
, b^ are 

ordered, pairwise disjoint subsets of {1,2,... ,m + n + 2 p) whose union give 
{1,2,... , m + η + 2p}. 

Given b G Bm,n,P and denoting M := m + η + 2p, the matrix-valued 
function Fb is defined by 

Fb[XM,K(m’n)] := (V.205) 

•(n| ab(l,X^\K^)f
ai

[L +
 kl

} 

■ ■ ■ /«._,[£ + XM, K<"*■">) Ω) , 

where 

w{
b\j,X{p'p),K{m'n)) := 

, if j is the Ith member of bk, 
w^\ki) , if j is the Ith member of b

k
, 

w+\xi) , if j is the Ith member of b
x

, 
w^\xi) , if j is the Ith member of b

x
, 

(V.206) 

and 

a\j,XM,K^n)) := 
1, ifjebkUb-k, 
a+(xi) , if j is the Ith member of b

x
, 

a~(xi) , if j is the Ith member of b
x

. 
(V.207) 

Moreover, S
m n

 denotes the symmetrization operator, 

S
mtn

{F}[X^\K^) := (V.208) 
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We have the following estimates on these coefficients. 

Lemma V.ll. Assume that z G <S0)<. Then there exists a constant, C < oo, 
such that, for g > 0 sufficiently small, 

||£(0)M + «ff2r
0

|j < C g2+2t , (V.209) 

\K„Tm[z,r) + *siuO|| < Cg2e , (V.210) 

(V.211) 

< C(Cg)m+n, (V.212) 

where B
r
 := {k \ u(h) < r}. 

Proof. The asserted estimates follow from adaption of [8, Section III]. For 
illustration, we give a proof of (V.209). We first rewrite E^[z\ as 

(V.213) 

Χ(Ω ασι(Α:ι)/
αι

[Τ] ··· f
a

„_
1

[L] <fv{k
v

) Ω) , 

where 

(V.214) 

Here, k = (.fc, A,r) G Μ3 x {1,2} x {£, r}, and (—1)T := 1, for r = t, and 
(—1)T := -1, for τ = r. We recall that 

(V.215) 
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and that an analytic continuation from Θ = 0 to θ = ιϋ yields 

(V.216) 

since Γ0 is independent of Θ. In view of the fact that 

(V.217) 

for a > 1, and 

(V.218) 

we obtain that 

IIAIM - *r
0

|| = o(gz). (V.219) 

Secondly, we observe that 

(Ω| α
σι

(*ι)/«..(a ··· m,[C]V"(C)n) (V.220) 

— Po (Ω (L
aux

 + Po) 1//2 βσΐ (fcl) (4ta + Po) ^ (^ara + Ρθ) ίαχ [Ü] 

• · · (L
aux

 + Po) /a„_i LÜ (^aui + Po) ly"2 ασι/ (A:i) (Taux + Po) ^2 Ω\ 

using (V.198). The standard estimate from Lemma IV. 1 implies that 

f dk
3

\\w^{k
3
)\| |(Z/

aua;
 + p

0
)~l/2 aaj (kj) (L

aux

 + p
0
)~

1/2
| = 0(pû

Φ
) · 

(V.221) 

Inserting (V.219)-(V.221) into the sum in (V.213) and summing up the terms 
of order v > 4 as in [8, Lemma III.7], we obtain that 

(V.222) 
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thus establishing (V.209). □ 

In Theorem B.2 in Appendix B we prove that KerTo — CK^, where 

(V. 223) 

is a normalization factor. Hence, denoting by 

(V.224) 

the orthogonal projection onto κ,β, we have that 

(V.225) 

for some positive y0 > 0. Our strategy is now to apply the Feshbach map 
again, using the projection 

(V.226) 

where 

Pi := g2+c'2 ■ (V.227) 

We have Ργ PQ = PQP\ = P\ and 

Pi := 1-Pi = Ph + Pff (V.228) 

where 

(V.229) 

Again, for the Feshbach map to be dehned, we prove the invertibility of 
the operator restricted to RanPiP0. We divide the proof into a series of 
lemmata. 

Lemma V.12. Assume z G S0 <. Then 

(V.230) 
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Proof. According to (V.209), (V.210) and (V.225), we have 

-lm{T[0)[z,L}+E{0)[z}~ z} > (sinΰ - 0(g2e))L
aux

 + (70 - 0(ge/2))g2 

(V.231) 

on RanP^\ Conversely, on RanP^, we estimate 

—Im{T{0)[z,L\ + E{0)[z] - zj 

> (sin(^)/2 - 0(g3£/2))L
aux

, 

(V.232) 

since 0(g2+£) = piO{g3£/2) = L
aux

O{g3e/2). □ 

Lemma V.13. Assume z G <S0i<. Then 

||Po {Taux + Pi) hC(o)[z]{L
aU

x + Pi) ^Poll — O(g (po/pl)1^2) 

= 0(gl~3ε/<). (V.233) 

Proof. The proof is an adaption of [8, Theorem B.2], using the bounds 
(V.211), for all m + η > 1, and summing up all contributions. □ 

Putting together Lemma V.12 and Lemma V.13, we obtain the invert-
ibility of L^[z] — z restricted to RanPx P0 by a Neumann series expansion 
of (L{0)[z\ - z)~l around (T{0)[z,L] + E{0)[z\ - z)~l. 

Lemma V.14. Assume (V.128) and \z\ < C0g2+£. Then, for g > 0 suffi-
ciently small, Px (L(0) — z) Px is invertible on RanPx P0. 

Lemma V.14 justifies a second application of the Feshbach map with 
projection Px. That is, the operator TPl{L^[z] - z) is well-defined. To 
formulate this result, we define a bijection, 

i ζ 
Z(°) : S»,<^D

1/2

, zm(0 :=
 sin(

0
)pi

 . (V.234) 

and we introduce the unitary dilatation 

UiQ)n ■■= Ω, um λ, r) UJ, := ρ^α'β/κ,Χ,τ) , (V.235) 

noting that 

P(o) LU{0) Pi L_{9 , C/(0) Ran Xp
1
 [L

aua;
] Ran Xi[L

aua;
] , 

where L = (Lf,Laux
). 

(V.236) 
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Theorem V.15. Let z G DI/2. Then, for g > 0 sufficiently small, L,,(9) — 2 
is isospectral (in the sense of [7, 8]) to 

WM ~ z := —^ U
{
o) T

Pl
 (L

{0)
[Z(-

0
](z)} - Zf

0
](z)) Ufa (V.237) 

defined on Ti
red

 := Ran [L
aua;

]. 

Similar to L(0)[^], we write -Z5(i) [^] as 

^(l)W — z — Xll^aux] ~ 2 + + W(1)N) XI [i'aux] 5 
(V.238) 

where 

(V.239) 

(V.240) 

(V.241) 

W^
n

{z] := JdKa
+

(C”>) <
)
„[

Z)
LW

<m
'
n)

] α-(*
<η)

) . (V.242) 

From Lemma V.ll and using the techniques from [8, Section IV], we derive 
the following estimates on these operators. 

Lemma V.16. Assume z G Dxj2. Then there exists a constant, C < oo, 
such that, for g > 0 sufficiently small, 

\Em[z}\ < Cg^\ (V.243) 

\dr
au

,T(1)[z,r] - 1| < Cg2e, (V.244) 

(V.245) 

< c(c5)"*+n, (V.246) 

where B
r
 := {k \ uj(k) < r}. 
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Proof. To prove (V.243), we observe that due to Lemma V.13 we have 

ΡΓΊ<Ω| HWC]P, (P,L(0)[C)Pi - 0~l Pi W{0)
[z]Q)I 

< 0(1) ||p0
 (4« + Pi)-1'2 W"(0,[C] (L

aux
 +

 Pl
)~1/2 Poll2 

= Ό{β2~ΖεΡ) . (V.247) 

Thus, using (V.222), we obtain 

\Ε(Φ)\ = -^Ρ,Ρίο,Ι^'ωΐΡι + 0(g2-*P) (V.248) 

=
 Φ^ΡΙ

Ρι[Ε{0)[ζ

'
1{ζ)] + 192ΓΟ)ΡΙ +

 °b
2
~

3
D 

= 0(g3c/2). 

A similar argument yields (V.244). The proof of (V.245) and (V.246) is 
rather lengthy, and we shall only examine the tree level contributions to 
Wm]n, he., those resulting from rescaling ιυ$η· It actually turns out that 
these contributions are the dominant ones. We set 

(V.249) 

One then easily checks that (V.211) and (V.212) imply the bounds (V.245) 
and (V.246), with Wm]n replaced by w^n . □ 

Using these bounds, it is not difficult to verify that, for a suitable choice 
of p and ξ, 

D\/2 3 2 i-> L(i)[z\ G W'
A 

(V.250) 

defines an analytic family, where is the Banach space of operators defined 
in [8, (L46)]. Hence Lp) G WA, and Lemma V.16 implies the following 
theorem. 

Theorem V.17. For some constant C < oo and sufficiently small g > 0, 
I/p) belongs to the polydisk 

Lm 6 B(Cg2e , Cg3^2) , (V.251) 

defined in [8, (1.64)]· 
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In other words, Lp) is a proper initial operator for the renormalization 
group map 1Zp dehned in [8]. We may thus invoke [8, Theorems V.7 and 
V.10] to obtain the following result. 

Theorem V.18. Let 0 < ΰ' < ϋ. For sufficiently small g > 0, there exists 
a number, E^) G S0 <7 such that 

(i) E{oo) is a simple eigenvalue of Lg{9), and 

(ii) the spectrum of Lg{9) obeys 

σ[19(θ)} n s0i<
 C (£(oo) + C(û')) n 5o,< · (V.252) 

A simple corollary (see Fig. 6) is 

Corollary V.19. Let 0 < ϋ' < ϋ. For sufficiently small g > 0, 

(i) 0 is a simple eigenvalue of Lg{9), and 

(ii) the spectrum of Lg(9) obeys 

a[Lg{9)} Π So,< ç C(tf') Π So,< · (V.253) 

Proof. We first note that a[Lg(9)\ C C_, by analytic continuation and the 
fact that the spectrum of Lg is real. Thus Im E^) < 0. 

Secondly, 0 is an eigenvalue of L
g

(9), so 0 G E^ + C(d'), which implies 
that £(oo) = 0. □ 

A Analytic Continuation of the Resolvent of 
the Liouvillian 

A.l Outline of the strategy 
Our goal in this appendix is to establish the analyticity of the resolvent 

R
g
(9,z) := {L

g
{ff) - z)\ (A.l) 

as an operator-valued function of 9 and z. This does not follow from a direct 
application of standard techniques in dilatation analyticity, in contrast to 
[7, 8, 9], because 9 (-> Lg(9) is not a family of type A, for 9 G D(0,π/2). 
Indeed, as we point out below, 9 HG Lg{9) is not even an analytic family on 
Ft in the sense of Kato (see, e.g., [33]). 
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Note, however, that we are not really interested in global analyticity 
properties of Rg(9, z). For our spectral analysis, it suffices to have an analytic 
continuation of Rg(0, Λ + ίε), with Λ + ίε G C+, 0 < ε <C 1, in the upper 
half-plane, to Rg{id,z'), with z' G C~ in the lower half-plane and ΰ > 0. 
Hence, it suffices to have a connected domain A Ç C2, containing (0,2;) and 
(ίΰ,ζ1), such that A 3 (θ,ζ) Rg(9,z) is analytic. 

The construction of A or, rather, of the curve in A linking (0, λ-Με) and 
(ίΰ, z1) is as follows. 

• First, using the selfadjointness of Lg
, we pass from R

g
{Ο,λ + ιέ) to 

Rg(0, Λ + 2i), by usual analytic continuation in z. 

• Second, for (Θ, z) = (0, λ + 2i), we pass from Rg{9, z) to a more regular 
resolvent, 

R
g
(9,z) (L

aux
 + 1) 1 R

g
(9, z) (L

aux
 + 1) (A-2) 

Note that the restriction of Rg{9, z) to Dom(L
aua;

) can be reconstructed 
from Rg(9, z). 

• The key step of our construction is as follows. Introducing 

(A.3) 

we prove that 

(A.4) 

defines an analytic family with 

11 R
g
 ($, Λ T 2z) 11 < dist{NumRan[L

ff
(#)], Λ + 2i} 1 . (A.5) 

The main difficulty we are facing here is that the coefficient in front 
of the dominant operator L

aux
 is linearly vanishing, as Θ -> 0, since 

Lg(9) — cosh(9)Lf - sinh(0)L
aua

. + gW(0). So, while all other terms 
in Lg(9) are relatively bounded w.r.t. L

aux
, their relative bounds are 

divergent, as Θ —» 0. Our main observation, however, is that we only 
need to control the imaginary part of Lg{9) and that the imaginary part 
is asymptotically of the form Im Lg(9) = —i\m(9)[L

aux
+gW(9), where 

W(0) is relatively L
aua;

-bounded with zero relative bound, as 9 —> 0. 
Hence, for sufficiently small \9\ with Im0 > 0, the imaginary part of 
Lg{9) is negative definite. The assumption Imz > 2 now insures the 
differentiabilty of Rg{9, Λ + 2i) at 9 — 0. 
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• Fourth, continuing from Θ = 0 to θ = id, 0 < $0 < d < d0 < -τ/2, the 
norm estimate (A.5) enables us to analytically continue Rg(id,z) in 2 
from 2 = Λ + 2i to the connected component Q of 

{z e C | ||L
g

{ff) - z\\ < oo} (A.6) 

containing Λ + 2i. Since, on Dom(L
au;r

), we can obtain Rg(id,z) from 
Rg(id,z), we arrive at the desired analytic continuation of matrix ele-
ments ((p|i?5(0, ζ)φ), for φ,ψ in the dense set V defined in (V.123). 

A.2 Key Step 
To carry out the third step indicated above, we first prove some preparatory 
lemmata. 

Lemma A.l. Let 0 < d0 < π/2, and assume that Θ E Σ^
ο

, Imz > 2, and 
0 < g M#

0
 := d0(n/2 — d0). Then Lg(9) — z is invertible and 

|| (L
g

(0) — z) 1 || < dist{NumRan[L
fl
(0)], z] 1 . (A.7) 

Proof: It suffices to prove (A.7) only for purely imaginary θ = id, 0 < 
d < d0, since the real part of Θ gives rise to a unitary dilatation which leaves 
norms and numerical ranges and hence both sides of (A.7) unchanged. We 
observe that, by Cauchy’s estimate and (V.116), we have 

(A.8) 

This and Lemma IV. 1 imply that 

(A.9) 

and similarly 

||Re{W(0}(£au* + l)T| = °b/MD· (A-10) 

Next, we note that 

Lg{9)* — cos dLf + isindL
aux

 + gW{9)* (A.ll) 
= cos dLf + gRe{VF(0)} + i(smdL

aux
 + gIm{bF(#)*}) . 
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Thus, for any ip e Dom[L
aua;

] Ç Dorn[L
5
 (#)*], we have 

lm((L
aux

 + l)~l ψ \ L
g
(ôy ψ) (A.12) 

= \{φ [(L«ux + 1) 1, pRe{W^(6»)}] + είηϋ^φ (
L A t

) φ) 

+ Re((L
ara

 + l)'1 ψ | glm{W(0y - W(0)} t/>) . 

As in (IV.74)-(IV.75), we obtain from Lemma IV. 1 that 

(φ | [(L
aux

 + I)"1, srRe{VR(0)}] φ) (A.13) 

= s| {(L
aux

 + I)"1 Φ | [L
aux

 , Re{W(0)}] (L
aux

 + l)"1 φ) 

< Cg(y\(L aux V !) 1Ψ) > 

whereas (A.9) implies that 

pL
aux

 + iy1y\glm{W(ey-W(0)}y)\ = O(gtiM^) (φ\φ) . 
(A.14) 

These estimates yield 

im^Uoux +1)-1 Φ | Lyeyy) (A. 15) 

> sini)(φ l) (Φ\Φ) 

~Cg(ïp I (L
aua;

 + 1) V) 

> — (1 + Cg) ( ip | (L
aux

 + 1) 1ψ), 

provided that g <C M$
0

. Note that (A. 15) extends to any ψ G Dom[L
fl

(0)*], 
by continuity. 

Assuming now that ip G Ker{Lg(9)* — z}, we derive from Estimate (A.15) 
the following inequality, 

—Im(z) ((L
aux

 + 1) 1φ\φ) = Im((L
aux

 + l) ιφ\ζφ) (A.16) 
= lm((L

aux
 + l)-1 φ \ L

g
(ey φ) 

> ~(1 + Cg) ( ψ | (i
0
«x + 1) ' ΐ-) · 

Since Imz > 2, this estimate implies that ψ = 0, provided g > 0 is sufficiently 
small. Hence, Ran{L

g
(0) — z} is dense, and we may define an inverse, (L

g
{6) — 
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z) 1. Furthermore, the density of Ran{L
fl

(0) — z} insures the validity of the 
second equation in the following numerical range estimate, 

||(L,(0)-*)-1|| (A.17) 

= supjll (Lg(9) - z) 1 ψ || ψ e Dom[L
5
(0)], ||ψ|| = lj 

= supjll (Lg{9) - z) ψ || 1 Ψ e Ran{L
g

(6») - z} , \\φ\\ = 1 j 

< supj|(<p|L
fl

(0)<p) - z\ 1 Ψ e R-àn{L
g

(9) - z} , \\φ\\ = lj 

= dist{NumRan[Z/
5
(#)], z} 1 . □ 

Lemma A.2. Let 0 < ΰ0 < π/2, and assume that Θ G Σ^
ο

, Imz > 2, and 
0 < g < Μΰο := ^

0
(7Γ/2 - #0)· Then 

Β
±

(θ) := (L
aux

 + 1)τ1 (L
s

(0) - z) 1 (L
aux

 + 1)" (A.18) 

is defined on Dom[L
aux

] and extends to a bounded operator on Ή, of norm 

\\Β±(Θ)\\ < e2*Re0i (l + G(g/M#
0
)) dist{NumRan[L

s
(0)], z) 1 . (A.19) 

Proof: We first notice that Dom[J3±(0)] = Dom[R±(zImΘ)} and 

||B±(OII < e2|ReS| ||J5±(Îlm0)H . (A.20) 

Thus, it suffices to prove the assertion for Θ = id, 0 < ϋ < 'do, which we 
henceforth assume. Next we observe that 

(L
g

(9) - z) 1 (L
aux

 + I)"1 - (L
aux

 + I)"1 (L
g
(Θ) - z) 1 (A.21) 

= (L
g

(9) - z) 1 (L
aux

 + I)'1 [JL
aux

 , L
g

(9)] (L
aux

 + I)"1 (L
g

(9) - z) . 

Indeed, thanks to Lemma A.l and Dom[L
5

(0)] D Dom[L
auæ

], both sides in 
(A.21) define a bounded operator. Note that on Dom[L

aux
], 

[Laux, L,j(9)] = g [L
aux

, W(9)] , (A.22) 

and hence, by the same argument as in (IV.73), (IV.74)-(IV.75), we even 
have that 

{Taux + 1) 1 [Taux > T
g

{9)] — 0{g) . (A.23) 
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On the other hand, Imz > 2 and g <C M$
0
 insures the condition that 

dist{NumRan[Lg(#)], z} > 1. Hence ||X|| = 0(g), where 

X := (L
g
(e) - z) 1 {L

aux
 + I)"1 [L

aux
 , L

g
{6)\ , (A.24) 

and 

(l-X)(L
aux

 + l)-l(L
g
tf)-z)-1(L

aux
 + l)-1 = (L^-zy1. (A.25) 

This implies that 1 — X is invertible and that 

||(1-ΑΓ1!! = 1 + O(g). (A.26) 

Multiplying (A.25) by (1 — X) 1 and using (A.26), we arrive at the assertion 
for Β+(ίΰ). The proof for Β_(ιϋ) is similar. □ 

Putting together Lemma A.l and Lemma A.2, we arrive at 

Theorem A.3. Let 0 < ϋ0 < π/2 and 0 < g <C M#
0
 := ΰ0(π/2 — ΰ0). Then, 

for all z e {z e C \ Imz > 2}, 

R(-,z) : Σ+ -> Β[Η®Ή], (A.27) 

θ H4 R(e,z) = (L
aux

 + l)~l (L
g
(e)-z) l(L

aux
 + \)-1 

is analytic, i.e., Θ i-)· Lg(9) defines an analytic family on Σ^
ο
 in the sense of 

Kato. 

Proof: We start with the observation that 

d
e
L

g
(0) = -\el®[e-eH

f
®l, + eel

I
®H

i
'Sj +gd

e
W(ê), (A.28) 

where (see (V.118) 

d
e
W(9) = a*

e
(d

e
w^) + afid

e
w^\) 

+ a*(dew^}
r

) + a
r
(dew^]

r
) . (A.29) 

By Lemma IV. 1 and (A.8), we clearly have 

| d
6
W{S) (L

aux

 + l)-1 J = 0(e'M' M^) , (A.30) 

and hence 

| d,L
g

(fi) (L
aux

 + I)'11 = o[e2^(l+gM
go
fi . (A.31) 
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Using Lemmata A.l, A.2, and (A.31), we thus obtain 

(L
aux

 + 1) 1 9Q{(L
g

(6) — z) } (L
aux

 + 1) (A.32) 

= |{Laux + l)- 1 (L
g

(9) - z)-1 d
e
L

g
(9) (L

g
(9) - z)~l (L

aux

 + l)-1] 

— B+(9) (L
aux

 + 1) 1 doL
g
(9) (L

aux
 + 1) 1 B_{9) 

< C dist{NumRan[Z/
g
(0)], z} 2 < C' < oo , 

for some constants C, C = 0(e4'Re(^) < oo. □ 

Theorem A.4. Let 0 < ΰ'0 < d0 < π/2, and assume that Imz > 2, 0 < 
g ΰ'

0
(π/2 — #o), and θ E Σ^

ο
 Π {Imd > $0}. Define R'(9,z) := (L

auæ
 + 

l)R(d,z)(L
atlx

-{-1) on Dom[L
aux

]. Then 

(i) R\9,z) extends to a bounded operator onTLEpTL. 

(ii) L,(0)-* zs invertible onPt^Pi, and its inverse, R(fi,z) (Lg(9) — z) 1, 
is given the extension of R1 (9, z). 

(iii) On the rectangular domain R := [θ E C| \Re9\ < a, ΰ'
0
 < Imd < ^0}; 

where a In cos(2d'0) > 0, the map 

R 3 9 i—y L
g

(9) E [Dom[L
aux

], Pi <8> Pi] (A.33) 

defines an analytic family of type A. 

(iv) a[Lg{9)\ C C~ Π (C \ Q'), where Q' is the connected component of 
{z E C| ||i?(0, z)|| < oc} containing C+. 

Proof: Statements (i) and (ii) easily follow from Lemmata A.l, A.2, and 
Theorem A.3. 
For (iii), we set a := Red, ϋ := Imd, and we observe that 

Lf{9) = cosh(9)Lf - sinh(d) L
aux

 = - sinh(d) [L
aux

 - coth(9) Lf] . 
(A.34) 

Since sinh 9 = sinh a cos ΰ + i cosh a sin ΰ and ΰ > d'0 > 0, we have that 

|sinhd| > |Imsinhd| > sind > sin$ô > 0. (A.35) 

Next, we observe that, for ψ E Dom[Lll?
x

\, 

\{Φ\1,(Θ)Φ)\ < | sinh θ\ (l + | coth 0|) (ψ | L
aux

 ψ) , (A.36) 
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because ±Lf < L
aux

. To construct a lower bound, we use 

I (ψ\ Lf(9)ip) | < |sinh0| \Re(ip\ (L
aux

 - coth(9)Lf)y) 
< | sinh 9\ (l - Re{coth((9)}) (ψ \ L

aux
 ψ) . (A.37) 

To have a nontrivial lower bound, we therefore require that 

(A.38) 

or, equivalently, cos(2$) < cosh(2a) - |sinh(2a)|. By our assumption on 
#o, we have that cos(2$) < cosh(2a) — |sinh(2a)|, and (A.38) holds. Thus, 
for all Θ G D(0,I9Q) Π {Imz > ^0}, the quadratic form Lf(9) is sectorial, 
and Domo[Lf(9)] — Domg[L

aux
]. Since W{9) is a relatively bounded form 

perturbation w.r.t. L
aux

, with zero relative bound, so it is with respect Lf(9) 
and hence L0(9). This proves (iii). 

To prove (iv), we observe that, by analytic continuation, Lg(9) — z is in-
vertible in C+, since L0(9) — z is. □ 

B Positivity of the Level-Shift Operator Γ# 

B.l Definitions 
Recall from Hypothesis H-l that the spectrum of Hei is assumed to entirely 
consist of simple eigenvalues E

m
 < E

m+
1 with corresponding orthonormal 

eigenvectors φ
πι

, m G J\f := {0,1,... ,N— 1}. Thus {ψι\i G Λ/’} Ç Hd is an 
orthonormal basis. We also have 

Lei H
el

 ® 1 el — 1 el ® Hf ? (B.l) 
L f :— — 4f(£)Hf, (B.2) 
LQ :— L

el
 0 1·^ + le/ 0 Lf , (B.3) 

where Ie' := le, ® lei and l/ := 1^0 1^. Henceforth, we frequently omit 
trivial tensor factors, like 01, unless they clarify the exposition. 

Recall from (IV.62) that the interaction in the Liouvillian at inverse tem-
perature β in the Araki-Woods representation is given by 

(B.4) 
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where the coupling function G : R3 xZ2 —» B{Pei) is a matrix-valued function 
and 

p = ρ(ξ) = - 1) 1 . (B.5) 

We further recall from (V.152)-(V.153) that, for E G R, the imaginary 
part ΓE of the level shift operator QE is given by 

(B.6) 

where, PQ is the orthogonal projection onto the vacuum vector Ω·^ := 
in Tf <8> Ef. 

Applying the modular conjugation J — E(C®C®T®T) (see Eq. (IV.77)), 
we see that J(T

E
®PQ)J = T_

E
®PQ. Introducing the corresponding restric-

tion, J
ei
 = E

e
i(C 8> C), of J to Ή.

ε
ι 8) P

eE
 where Ed(p x ψ) := ψ 8 φ is the 

corresponding exchange operator, we find that TE is anti-unitarily equivalent 
to Γ_£, 

J
e

l Γ E Jel ~ Γ _£ . (B.7) 

In particular, JeiT0Jel = Γ0. 
For any Borel set Δ Ç R, we denote χΔ := x&{Lei) and further 

ΛΔ := {(i,j) e N21 Eij e Δ}, (B.8) 

(B.9) 

(BIO) 
(B.ll) 

Note that AΔ' = ^Ι'Δ and that [-4^*]c =

 [-^Δ7 = 0 if Δ 3 0. Moreover, 

(B.12) 

(B.13) 

Furthermore, we denote the corresponding canonical projections by 

p(1) : Λ
Δ
 -t . (hi) ^ i. (B.14) 

p(2) : ΑΔ^Α(2 , (B.15) 

and we call a Borel set Δ Ç 1 nondegenerate iff p^ or p^ is bijective. (Note 
that p^ is bijective iff p^ is.) The assumption of simplicity of the eigenvalues 
E

m
 < E

m+i
 implies that {F} is nondegenerate, for any E e R. For any 
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nondegenerate Δ Ç R, there exists a bijection N = NA : such 
that 

(B.16) 

The case Δ = {E
hJ

} and E = EhJ is of special interest, and we denote 

(B.17) 

recalling that P/;' = χ{Ε. . j [£
el

]. 
We conclude this section with a computation of the matrix elements οΐΤΕ. 

To this end we abbreviate <\= φί φ3, E^ := E{ — Ej, and G{j = Gitj((), 
ξ := (ξ, Λ). We obtain 

(pi,j\ Γβ ipk,i) (B. 18) 

— ® (A/I + pG* CED l
e

i — y/pl
e

i <S> G) P^ô[L
0
P^ — E\ 

a\ (λ/l T pG CED l
e

i — y/plei <8> G ) CED Ω-Π ) 

+ (tPi,j CED Ω·^ | a
r
 {yfp G <S>l

e
i — \/l + p 1

 e
i® G ) PQ δ [L

0
PQ — P] 

a* {y/pEr* <S> l
e

i — /l + P l
e

z CED G'j (<Pk,e CED Ω^)) 

— [ d£{(Vi,j\ (y/Î-bpG* <g> l
e

/ - ^/p l
e

/Θ G) ^ [L
ei

 — P + ω(ξ)] 

( \/l + P G CED l
ei

 — yfplel Fk,c) 
+ CED Ω^| (\/pG <8> l

e
z — \/l + p l

e
« CED G ) <5[L

e
z — E — u(£)] 

(y/pG* CED l
e

/ — A/1 + P lei ® G) <Pk,l) } 5 

and hence 

(B.19) 

— E + ω(ξ)] (<Pij\ (Λ/I + pG* ® l
ei

 — /plez®£>9 <p
m>n

) 

(,ψπι,η | ("/l T P CED l
e

/ \/P leZ ® G ) ψγη,η') 
+ ô[E

m
,n ~ E — ω(ξ)] (y/pG ® l

ei
 — /l + pl

e
z ® G ) <ρ*^) 

(,Ψπι,η | {y/pG* CED l
e

z - /l + P l
e

z ® G) j . 
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Hence, the final result is 

(B.20) 

(v/lTpG m,k &n,i \/~P &m,k ̂ ί,η) 
“h (5 [•^'τη,η E Gi

 m
 δj

 n
 \/l fi" P ^i,m G

n
,j) 

(y/pGk,m^n,£ ~ A/1 + pÔm,k ^η,ί) | · 

In particular, for E = 0, i = j, and k — i, we have 

(B.21) 

where 

m,k ■■= 2 J(ί[ω(ξ) - E
iik

] + <5[
ω

(ξ) + £,,*]) VM0(1 + P(0) ■ 

(B.22) 

Formula (B.21) is equivalent to the detailed-balance equation (V.50). To 
derive (B.21), we use 

(B.23) 

which implies the following two identities, 

<5MO - E
hk

] (1 + p(0) = 5MO - EA \/P(0(1 + P(0 , (B.24) 

<5M0 + ̂ ,
t
]p(0 = <5[«(0 + E

>,k) \/p(0(l + p(0 *E<-kl2 · (B.25) 

B.2 Strict Positivity of TE for E ^ 0 
Our next task is to show that under certain assumptions ΧΔΓ^ΧΔ > αχΔ> 
for some a > 0 and all E φ 0. Since TE is anti-unitarily equivalent to Γ_#, 
we may restrict ourselves to considering E > 0. 

Theorem B.l. Assume Hypotheses H-l and H-5. Let E > 0 and ACM be 
a nondegenerate Borel set. Then 

ΧΔΓ^ΧΔ > 7Æ;(^)Xa, (B.26) 
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where the number yE(Δ) > 0 is defined by 

+ - E — w(£)] |N(rh),N(m) (£) | } · (B.27) 

Furthermore, for EiJ φ 0, 

r(Bu) >
 y
(i,j)

 :=
 > 0, (B.28) 

uniformly in β — oo. 

Proof Since Δ is nondegenerate, is an ONB in RanxA(L
el

). 
We may therefore write any normalized vector in Φ G RanxA(Lel) as Φ = 
YlieMCi Pi,N(i), where Σ

ίΕλί
 |ci|2 = 1 and ci = 0, for all i <E Inserting 

this into (B.20) yields 

(B.29) 

δ\Εγη,η E Ί- \y/ï+-pGm#-Hn)CN-Hn) \f~P ^-*ΛΓ(ττι),η C
m

 \ 

"h ^ [-β'τη,η E | Ε*Ν~
ι
{η),πι

 <
-'7V

_ 1

(n) Er
n

N(m) ^m\ J · 

Now we observe that the range Af2 of summation contains the following two 
disjoint subsets: 

(B.30) 

Using this and the fact that ci vanishes for i G we obtain the following 
lower bound, 

(Φ|ΓΕΦ) > y + y", (B.31) 

where 

+ ô[E
m

,n — E — ω(ξ)] | y/l + p(j7V(m),n| } (B.32) 

+ δ[Εγη ,N(m) Ε-ω(ξ)} (1 + p)} |G N(rh),N(m) | , (B.33) 
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and similarly 

+ δ [-Ë'rn
)
iV(m) E ^(0] P^ | ̂ m,rh \ (B.34) 

Adding y' and y", we arrive at the first assertion, Eq. (B.27), 

+ ^ [Em,N(m) E w(£)j |(jW(m),JV(m) | ^ · (B.35) 

To prove (B.28), we assume that Δ = {Εί3} and E = Eitj > 0. Then i G 
and 0 G [A^]c, so retaining only the term m = 0 in (B.27), we find that 

(B.36) 

Since £0,yv(m) < 0, we have that T
min

 < Ei,j - E0yN{7h) < 2r
max

, and Hypoth-
esis H-5 directly yields y(i,j) >0. □ 

B.3 Spectral Gap above 0 for Γ(0) 
In this section we assume that Δ = {0} and that E = 0. Furthermore, we 
shall make use of Hypothesis H-3, in addition to Hypotheses H-l and H-5. 
Note that since the eigenvalues of Hel are nondegenerate, {0} is nondegener-
ate and symmetric. Moreover Γ(0) = r0L „

ei
 commutes with Jel. 

Theorem B.2. The infimum of the spectrum of Γ(0) is a simple eigenvalue 
and equals 0, with eigenvector κ,β = Furthermore, the gap 
above 0 can be estimated by 

0 < y0 < min {σ[Γ<°>] \ {0}} (B.37) 

where 

(B.38) 

and n
m n

 > 0 is defined in (B.21). 
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Remark B.3. Note that 

(B.39) 

so y0 > 0, uniformly in β — oo, thanks to Hypothesis H-5. 

Proof. Since {0} is nondegenerate, {ψί^ι G AT} is an orthonormal basis 
in RanP0

eZ, and we may write any normalized vector κ G RanP0
eZ as κ = 

ΣίελΓ Ki Ρί,ίι where ΣίελίΙ^Ι2 = 1· Inserting this into (B.21) and denoting 
βπι,η := nπι,η^Ετη+Εη)/2, we obtain 

(B.40) 

From Eq. (B.40) it is obvious that 

{κβ\ Γ0
 Κβ) = 0. (B.41) 

Moreover, we obtain the lower bound 

(B.42) 

where Hence, 

(κ\Τ0κ) > 2G'Z', (B.43) 
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whenever κ _L κ,β and \\κ\\ = 1. □ 
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