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I. INTRODUCTION 

It seems good to start these lecture notes with the cautioning 
remark that, in a sense, their contents do not really fit into the 
topic "’Rigorous Atomic and Molecular Physics", although the results 
we shall discuss are certainly rigorous and do concern atoms, ions 
and molecules to some extent. Traditionally, the underlying theo-
retical framework for atomic and molecular physics is thought to be 
quantum mechanics, and the number of degrees of freedom of the ato-
mic and molecular systems which are considered is finite, at least 
if the radiation field is neglected which is what workers in that 
field do almost always. 

In these lecture notes, quantum mechanics is not heard of, 
except that some models which we will mention briefly do provide 
idealized descriptions of certain quantum mechanical systems. In 
those instances, however, we will employ the imaginary-time, Feyn-
man-Kac formulation of quantum mechanics which makes it look like 
classical, statistical mechanics. 

The basic, theoretical framework underlying our lectures is 
the classical statistical mechanics of systems with infinitely many 
degrees of freedom. We think that we do describe methods and re-
sults which are relevant for the physics of systems composed of 
very many atoms and molecules, namely for condensed matter physics, 
but we leave it to the reader to judge. 

Due to various circumstances it was not possible for us to 
produce somewhat detailed lecture notes which would include careful 
statements of results, proofs and discussion. Thus we can only hope 
the present notes will motivate the reader to consult the literature 
that is quoted in the text. 

1.1. What are Coulomb systems ? 

The underlying theory for the description of matter composed 
of nuclei and electrons forming ions, atoms and molecules is Quan-
tum Electrodynamics (QED). Since in atomic, molecular and condensed 
matter physics the energies and velocities of the constituent par-
ticles are usually very moderate, non-relativistic QED [1] ought 
to provide a sufficient description. This point of view bears, how-
ever, some problems. Non-relativistic QED cannot correctly and con-
sistently account for spin-dependent interactions. In particular, 
magnetic dipole interactions among constituent particles and the 
interactions of their magnetic moments with the quantized magnetic 
field have to be ignored or cutoff in some phenomenological way 
in order to prevent the theory from becoming mathematically meaning-
less. Some of these problems are briefly discussed e.g. in [2]. 

Thus, non-relativistic QED can only be expected to be an ac-
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curate description if 

- nuclear charges are moderate; 
- temperatures and densities are moderate; 
- the interactions between charged particles and the radiation 

field do not excite high frequency modes of the electromagnetic 
field ; 

- spin-dependent forces are weak. 

For the major part of these notes, spin and the radiation field 
will be neglected altogether, leaving us with charged particles in-
teracting via two-body Coulomb forces. We shall call systems for 
which these approximations are valid Coulomb systems. Some of the 
models we shall discuss would normally not be called Coulomb sys-
tems. However, in those examples it turns out that one can isolate 
certain particle-like excitations with long-range Coulomb interac-
tions. Among those models we shall mention ones which do feature 
an ultraviolet cutoff electromagnetic field : Simplified Landau-
Ginsburg type models of superconductors. 

Most of the models appearing in these lecture notes are quite 
naive caricatures of more realistic theories. Many of them are 
classical lattice models. However, in many instances, neither the 
assumption that the models be classical, nor the replacement of 
space by a lattice are really important, but are made because they 
are reasonable, or in order not to obscure the simplicity of an 
argument. The only serious requirement is that in order to render 
a classical, three-dimensional Coulomb system in thermal equili-
brium mathematically meaningful, the Coulomb potential must be re-
gularized at short distances. (The lattice is often a pedagogically 
and physically attractive regularization). 

In spite of all these crude approximations we believe that 
the models, methods and results we discuss in these notes have 
quite a lot to do with physics and are chosen so as to exhibit cer-
tain interesting physical phenomena in a pure and simple form. (It 
is a good tradition in theoretical physics to replace a theory if 
it turns out to evade our comprehension by an approximate model 
which can be analysed in satisfactory depth). 

Our most interesting methods, results and speculations appear 
in Sections III - V . Among them is a rigorous version of real-
space renormalization group techniques powerful enough to establish 
the existence of Kosterlitz-Thouless (pl asma –> dipolar phase) 
transitions in a large variety of situations. Furthermore, we com-
ment on "liquid crystal" phases in hard core Coulomb gases and the 
possible transitions in the three-dimensional Coulomb gas. See 
Sections II.2 and III. 

The reader familiar with the basic definitions and notions 
concerning Coulomb systems may skip the remainder of the introduc-
tion and proceed to Section II. 
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I.2. Stability. 

The v-dimensional Coulomb potential is defined to be the 

Green's function, V(x,y) , of a v-dimensional Laplacean, -Δ . If 

particles in a Coulomb system are confined to a bounded region, Λ , 

some boundary conditions (b.c.) need to be specified at the boundary, 

dΛ , of the box. (Different b.c. in the Coulomb potential can yield 

different thermodynamic limits of the corresponding systems). We 

shall consider two types of b.c. : 

(BC1) Insulating, or free b.c. : 

V(x,y) = V (x-y) is the Green's function of the infinite volume 

Laplacean. The arguments, x and y , are constrained to be inside 

Λ . Physically, this corresponds to putting up walls at which 

are perfect insulators. 

(BC2) Conducting, or Dirichlet b.c. : 

V (x,y) is the Green’s function of the Laplacean with O-Diri-

chlet data at dA . The physical interpretation of these b.c. is 

that the walls of A are perfect conductors. 

(In two dimensions, (BC1) and (BC2) can result in different 

thermodynamic limits of finite temperature, finite density Coulomb 

gases, [3]. We shall discuss further b.c. with yet more drastic 

effects in the thermodynamic limit, "roughening", in Section III). 

For A = RV we have 

(I. 1) 

where σ is the surface of the (v-l) dimensional unit sphere, 
v 

If configuration space is replaced by a lattice, ZZV , we shall 

define the Coulomb potential to be the Green's function of the 
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finite difference Laplacean (with free™, resp. Dirichlet b.c.). In-

stead, one could also define it to be the restriction of the conti-

nuum Coulomb potential to the lattice, with V (x = 0) e.g. 0 . The 

long range behaviour of the lattice Coulomb potential is still given 

by (I. 1). 

We also introduce a dipole potential : The potential between a 

dipole pointing in the +a-direction at position x and one point-

ing in the + B-direction at y , both of unit strength, is given by 

w αβ (x, y) = -(da d B V)(x, y) (I. 2) 

where d = d/dxa , a = 1, ..., ν . (On the lattice 

is a finite difference derivative). In the continuum, 
v 

W must be regularized at short distances : When Λ = R 

O 

We replace W by 

(1.3) 

where f is a non-negative function of rapid fall off, so that 

||W ||
 o

 is finite. Of course, regularization is unnecessary 

on the lattice. 

The Hamilton function (resp.- operator) of a system consisting 

of N point particles with masses , charges q1,..., qN 

and dipole moments μ1 , ..., μN , (where μj oc Sj , Sj is the spin 
.th N J J j 

operator of the j particle), is given by 

H(N) = T(n)
 +
 U(N) , 

(1.4) 
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If interactions with the radiation field, described by a vector po-

tential, A , in the Coulomb gauge (i.e. V A = 0) , are to be taken 
2 . 2 

into account, p.2/2m. is replaced by (p.-q.A(x.)) /2m. , and a 

term B(x) = (V/\A) (x) , is added. 

The first basic problem to be studied is the stability problem. 

One assumes that mj , qj and ||μj|| are bounded uniformly in 
j j j 

j = 1, ..., Ν and N = 2, 3, ..., and asks whether 

(N) 
H (N) > -const. N , (1.5) 

for some finite, N-independent constant. A system satisfying (I. 5) 

is said to be H-stable. Classical, continuum Coulomb systems of 

point particles are never H-stable, unless v = 1 , or qj > 0 , 

for all j . If all charges are positive the system does however 

not behave thermodynamically because of the long range of the Cou-

lomb potential. In fact, overall neutrality is important. 

For three-dimensional, quantum mechanical systems with μj = 0, 

for all j , H-stability has been established, provided all nega-

tively charged particles are Fermions, and is known to fail if all 

particles are Bosons. These matters are discussed in W. Thirrings 

contribution and in [2]. 

We emphasize that H-stability depends only on the short range 

singularity of the the two-body potential, i.e. H-stability is the 

ultraviolet (not the infrared) problem of statistical mechanics; see 

e.g. [2, 4] . If the Coulomb potential is cutoff at short distances -

as we have done with the dipole potential - H-stability holds, and 

the proof is very simple, [5] . Thus, on the lattice, (I. 5) is al-

ways true. 

Three-dimensional, non-relativistic, quantum-mechanical matter, 

with negatively charged particles assumed to be Fermions, coupled 

to an ultraviolet cutoff, quantized electromagnetic field is stable 

if the spin of all particles is zero, but unstable if spin is in-
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cluded. It is unlikely that stability is restored when the ultravio-

let cutoff is removed. (We thank Erhard Seiler for a discussion 

which helped to clarify this point). 

Another notion of stability, equally basic for statistical 

mechanics, is Ξ-stability : Consider a system of m different spe-

cies of particles, the total number of particles being arbitrary, 
th 

The l species is supposed to consist of particles with mass ml, 
Bµ 

charge ql,... and activity (= fugacity) zl = e l , where 

B = 1/kT is the inverse temperature and μl the chemical potential. 

Let ΞA(B,z1,...,z ) denote the grand canonical partition function 

of this system, the Hamiltonian being given by (I. 4). See [4, 5, 6] 

for the definition of Ξ. The system is said to be Ξ-stable if 

(1.6) 

for some finite constant; | Λ| is the volume of the box Λ con-

taining the system. 

The notions of H-stability and Ξ-stability are not equiva-

lent : The two-dimensional, classical neutral Coulomb gas with two 

species of particles of charge ±q is never H-stable, but is 
2 . . 

Ξ-stable if Bq < 4π . This is the result of [4] . (For some ex-

tensions see [6]) . 

However, if the Coulomb potential is regularized at short dis-

tances, a Coulomb system of finitely many species of Bosons, with 

positive and negative charges, is H-stable, but fails to be 

Ξ-stable when some of the activities are large enough; (in fact 

is infinite when some of the activities exceed critical values). 

See [7] . 

Non-relativistic, quantum-mechanical matter in three dimensions, 

with negatively charged particles = Fermions, is Ξ-stable [8] ; 

(see also [7] ). Classical, H-stable systems are always Ξ-stable, 

[5] ; in particular classical lattice Coulomb gases are Ξ-stable. 
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(Quantum mechanically, the implication tends to go the other way a-

round). 

I. 3. Thermodynamic Functions. 

The basic results concerning the existence of the thermodynamic 

functions of Coulomb systems are due to Lieb and Lebowitz [8] . For 

various extensions of their methods see [2] and refs, given there. 

The problem of the thermodynamic limit is the "infrared problem" of 

statistical mechanics, and it is equally hard classically and quan-

tum mechanically. Under certain restrictive conditions, the proof 

of existence of the thermodynamic limit for e.g. the pressure of 

Coulomb systems is simple, (much simpler than the proofs in [8], 

although the results are not quite as strong) : 

A system composed of 2m species of particles is said to be 

charge conjugation invariant iff 

m2j m2j+1 ’ q2j -q2j+l ’ Z2j = z2j+l ’ 

and if the system is quantum mechanical the statistics of the par-

ticles in the 2jth and (2j+1)St species are the same; for all 

j = l,..., m . (If, in addition, the particles have dipole moments, 

µ , it is required that and have identical distri-

butions, j = 1,..., m) . 

For charge conjugation invariant systems a simple proof of 

existence for the thermodynamic limit of the pressure has been given 

in [7] , extending an idea of Griffiths [9] . For such systems, the 

screening properties of the Coulomb potential emphasized in [8, 2] 

are actually unimportant for the existence of the thermodynamic 

limit of the pressure, although sensitive dependence on shape and 

boundary conditions must be expected for potentials like the dipole 

potential which cannot be screened. As an example, we mention that 

in three dimensions the thermodynamic limit of the pressure of a 

charge conjugation invariant system with two-body potential 
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| -e 
V (x) ≈ |x| , ε > 0 , of positive type exists, although for ε ≠ 1 

| X | → ∞ 

there is no screening. See [7] . For additional methods involving 

correlation inequalities see [6] . 

I. 4. Equilibrium States. 

A third basic problem concerning Coulomb systems is the quest-

ion of existence and properties of the thermodynamic limit of equi-

librium states, in particular of the correlation functions of clas-

sical systems, resp. the reduced density matrices or imaginary-time 

Green's functions of quantum mechanical systems. 

For a rather large class of classical and quantum Coulomb sys-

tems locally normal equilibrium states in the thermodynamic limit 

can be constructed by means of a weak compactness argument, provided 

suitable boundary conditions (periodic b.c.) are imposed. (A proof 

of this can be based on constructive field theory methods of Glimm 

and Jaffe). In many physically interesting situations not even such 

a weak result is known to hold ! Moreover, the problem of construc-

ting the time evolution for infinite Coulomb systems "near equili-

brium" is essentially entirely open, except in very special, physi-

cally unrealistic cases. 

After these rather depressing remarks we now recall some posi-

tive results among which the most impressive ones are due to Brydges 

[10] and Brydges and Federbush [11] : For a large class of classical, 

dilute Coulomb systems in two or more dimensions they have construc-

ted the thermodynamic limit of the correlation functions (with 

Dirichlet, i.e. conducting b.c.), and they have established Debye 

screening in the form of exponential cluster properties. This remark-

able development is reviewed in detail in the lectures given by 

D. Brydges. 

Another construction of the thermodynamic limit of correlation 

functions, resp. reduced density matrices or imaginary-time Green's 
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functions valid for all values of the thermodynamic parameters for 

which the system behaves thermodynamically is given in [6,7] . That 

method is based on correlation inequalities first used in a related 

context in [12] . The hypotheses under which those inequalities are 

known to hold are unfortunately rather restrictive : 

- Exact charge conjugation invariance. 

- The two-body potential is of positive type; (n-body potentials 

vanish for n > 2). 

- The system is classical or quantum mechanical with Boltzmann - or 

Bose-Einstein statistics. 

The first and the third hypothesis are physically awkward. However, 

the inequalities hold for arbitrary values of B and z and a 

large class of potentials including the Coulomb potential and ones 

with slower decrease than the Coulomb potential. Moreover, they are 

strong enough to provide some general information about the proper-

ties of the thermodynamic limit, [6, 7]. They also permit to include 

the radiation field and supply some general information of interest 

in superconductivity and Bose-Einstein condensation, [7]. In spite 

of the many encouraging results alluded to above and discussed in 

more detail in the lectures by Aizenman, Brydges, Lebowitz, Lieb 

and Thirring it should be clear that the mathematical foundations 

of the theory of Coulomb systems and non-relativistic matter -

starting from first principles - are still quite incomplete. Seve-

ral topics,such as non-relativistic QED, may have been undeservedly 

neglected. 

In the remainder of these notes we shall study highly ideali-

zed systems of excitations with Coulomb interactions about which 

detailed statements can be made. We shall concentrate on the dis-

cussion of the Kosterlitz-Thouless transition and other aspects of 

the phase diagram of two - (and higher) dimensional Coulomb systems. 
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II. Generalities about Classical Coulomb Gases. 

Throughout the remaining sections we study classical lattice 

Coulomb gases, but many of our results extend to continuum gases, 

provided the Coulomb potential is regularized at short distances, 

some also to quantum mechanical gases. We concentrate our attention 

on monopole gases but at various places mention results on dipole 

gases. 

We first recall the sine-Gordon (or Siegert) transformation 

[3, 4, 6, 13]. The end of the section contains an outlook on what is 

discussed in subsequent sections, in particular a phase diagram of 

a hard core Coulomb lattice gas in two, resp. three dimensions 

which we shall establish in part. 

II.1. The sine-Gordon transformation. 

We consider Coulomb gases on the lattice ZZV . The Coulomb 

potential, V , is the Green's function of the finite difference 

Laplacean, Δ . Unless stated otherwise, free, i.e. insulating, 

b.c. are imposed. (Other b.c. are treated in the references quoted 

in the text). 

We start by considering systems in a finite region A ACZZV. A 

configuration of such a system is a function 

qA : Λ → ZZ , Λ Є j → q (j) Є ZZ , 

where q (j) is interpreted as the total electric charge concentrated 

at site j . The a priori distribution of q (j) is given by a mea-

sure d A on ZZ . We shall be interested in the following choices 

of d y : 

A) Hard core gas : 

dX (q) = {d (q) +z/2 [d (q-l)+d (q+1)] }dq , (2.1) 

where d is the Dirac function and z the (bare) activity. 
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B) Standard lattice gas without hard cores : 

(2.2) 

where I (z) is the modified Bessel function, i.e. the n 
n 

Fourier coefficient of exp (zcosϕ) , and z is a (bare) activity. 

C) Villain gas : 

(2.3) 

We note that this measure is the limit of IO (Z) 1dλ(q) , as 

z → +∞ , with d λ given by (2. 2). 

Clearly there are other interesting choices for dλ , but here 

dλ will usually be given by A). 

(2. 4) 

The functional E(qA) is the electrostatic self-energy of the con-

figuration , self-energies of charges included. 

The equilibrium distribution for the configuration q
Λ
 is 

given by 

(2. 5) 

Note, by a finite redefintion of dλ , self-energies of charges can 

be excluded in the definition of E(qA). 

Next we consider the Fourier transform of the equilibrium mea-

sure introduced in (2.5). Let ϕ : ZZV → R be a Gaussian random 

field on ZZv with distribution 



13 

(2.6) 

where 

and 

is a normalization factor. Mathematically, dµ Bv is defined to be 

the Gaussian measure with mean 0 and covariance BV . In one and 

two dimensions, dµBV is only defined, a priori, when integrated 
BV 

against bounded functions of 

(2.7) 

with ϕ (f) ≡ Σ ϕ(j)f(j) . This is because 
j 

(2.8) 

(the Fourier transform of V(j)) is not integrable at k = 0 when 

v = 1 or 2 . See e.g. [4] for details. Thus 

(2.9) 

In v > 3 dimensions, V is positive definite and no constraints 

arise. By (2.4) and (2.9) 

(2.10) 

provided Q (qA) ≡ Eq(j) = 0 when v = 1, 2 . (If Q (qA ) ≠ 0 , 

v = 1 or 2 , we set E(qA ) ≡ +∞
 ,

 and (2.10) remains true). Note 

that the variable ϕ (j) is conjugate to the charge variable q (j). 

Thus 
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(2.11) 

where 

(2.12) 

In the hard core gas (2.1) , 

(2.1') 

In the standard gas (2.2), 

(2.2’) 

and in the Villain gas (2.3) 

(2.3') 

We denote by <—> A (B, λ) both, expectations in the equilibrium mea-

sure (2.5), and expectations in the (generally non-positive) measure 

(2.13) 

The interpretation of correlations <F(qA)(B,λ) , where F is a 

bounded function of qA , is obvious. (It is an expectation of a 

sort we are familiar with from lattice spin systems). 

In order to interpret expectations such as 

note that, by (2.9) - (2.11), 

(2.14) 
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Thus <exp iϕ (f)> (β, λ) measures the correlations between external 

charges, f (j) , located at different sites j ε Λ ,
 which are put in-

i ϕ (f ) 
to the system from the outside. More precisely, - 1/B log<e (f) )>A 

is the average amount of free energy needed to pump the charges 

{f(j)}jeA into a system of charges in thermal equilibrium at in-

verse temperature B . Of particular interest in the following is 

the fractional charge correlation 

(2.15) 

which measures the correlation between two fractional charges, one 

charge γ located at 0 E Λ and one, -γ , located at x E Λ, 

0 < γ < 1 , put into the system. The behaviour of the fractional 

charge correlation GA(x) reflects the screening properties of the 

Coulomb gas; see [3] and Section III. 

Next, we briefly sketch how to extend the formalism developed 

here to the simplest example of a dipole gas. See [3,6] for more 

details. As our dipole potential we choose e.g. 

(2.16) 

where d is the finite difference derivative in direction & a 
Let Ad C A be some sublattice of A , e.g. Λ. = l ZZv DA, 

d = a 
l = 1,2,3,... . A configuration of a lattice dipole gas is descri-

bed by a function µA : A, → RV , Ad 3 j → µ (j) E RV , where µ (j) 
Ad d 

is the total dipole moment at site j € Ad . The dipoles are non-

overlapping if l > 2 . The energy of µA is given by 

(2.17) 

the equilibrium distribution by 

where dA is a finite measure on R , e.g. 
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(2.18) 

Combining (2.9) with (2.16) and (2.17) one gets 

(2.19) 

where V* ≡ (d*j, ..., d*) , and d* is the adjoint of d 
1, ..., v a J a 

For j € , let {ϕ}j = {ϕ (i) : | i-j | < 1} . We set 

The dipole measure in the ϕ-variables is then given by 

(2.20) 

The definition and interpretation of the expectations <—>A (B, λ) 

and correlations <F (µA) >A (B, λ) , <exp i ϕ (V·h)>A (B, λ) , h an 

Rv-valued function on Λ , is analogous as in the previous case of 

monopole gases. Note that, by (2.6) and (2.20), dipole gases have 

the continuous symmetry ϕ(.) → ϕ (.) + const. which is always broken 

by the boundary conditions. As a consequence one can show [3] that 

there exist Goldstone excitations and that correlations in dipole 

gases do not decay exponentially. 

We conclude this subsection by recalling the standard integra-

tion by parts formula, (e.g. [3] and refs, given there). 

We do this for the monopole gases; for dipoles see e.g. [3]. 

First, we recall the well known identity 

∫ Φ (j) G (Φ) d µ BV (Φ) 
(2.21) 
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which a physicist calls Wick’s theorem. 

Clearly 

Thus, by (2.13) and(2.21) 

(2.22) 

This equation shows that (1/i B) ϕ (j) is the effective potential 

felt by an infinitesimal test charge at site j . By setting 

G (ϕ) = ϕ (l) and repeating (2.22) one gets 

(2.23) 

If on the r.s. of (2.23) integrations over q and ϕ are inter-

changed one obtains 

(2.24) 

for some functions γ and σ on the real line which are determined 

by λ and are real-valued if λ is real, [3] .If λ is non-ne-

gative (resp. a "renormalized'' version of λ is non-negative, see 

Section II.2) formulas (2.23) and (2.24) provide a surprisingly 

powerful tool. 

Finally, we wish to add a remark on the existence of the ther-

modynamic limit : For a large variety of Coulomb monopole and dipole 
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gases the correlation inequalities in [6] can be used to construct 

the thermodynamic, limit of the states <—> A (B, λ) , as Λ / Zv 

In particular, assume that 

(2.25) 

where G (ϕ) is real-valued and of positive type. Impose free (in-

sulating)or Dirichlet (conducting) b.c. on the Coulomb potential V . 

Then 

(2.26) 

exists. The limiting state, <—> (β, λ), is translation invariant 

and, in v > 3 dimensions, clustering, [6] . (In two dimensions it 

clusters on observables which are functions of 

p f bounded 

Necessary conditions for (2.25) to hold are exact charge conjugation 

invariance of the system, i.e. d A (q) = d λ (-q) , and positivity of 

λ (ϕ) . It is easy to see that (2.25) holds for the standard and the 

Villain gas for which d λ is given by (2.2), (2.3), respectively. 

It fails for the hard core gas, although that gas is charge conju-

gation invariant, and λ(ϕ) > 0 , for z <1 . 

For charge conjugation invariant, strictly neutral systems with 

periodic b.c. at dΛ , a translation-invariant, thermodynamic limit, 

<—> (B, λ) , can be constructed by passing to subsequences. Every li-

miting state obtained in this way has strong regularity properties -

as a state on bounded functions of the charge variables 

{q ( j) } - reminiscent of superstability estimates. This can be 
j EZZV 

proven by means of chessboard estimates [3, 14] . For any transla-

tion-invariant limiting state, <—> (B, λ) , we obtain from (2.23) by 

Fourier transformation 
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with 
(2.27) 

Existence of thermodynamic limits will not be discussed any further 

(see [6-11]), but there certainly are still many interesting open 

problems. 

II.2. The phase diagram of lattice Coulomb gases. 

We consider the hard core lattice Coulomb gas with d λ given 

by (2.1). The equilibrium state of this system is henceforth denoted 

by <—> (B, z) . Our purpose here is to describe what is known about 

the phase diagram of this interesting system in two and three dimen-

sions. The relevant thermodynamic parameters are the inverse tempe-

rature B and the activity z . Here are portraits of the phase 

diagrams in v = 2 and 3 dimensions. 
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Fig. 2 

We first discuss common features of the two- and three dimensional 

diagrams and then discuss striking differences known to arise within 

domain 0 . 

Domain 0 is an open region bounded by the lines B = 0 , z = 0 

B = ∞ and z = eεB , with ε > l/8v (= 1/16 , for v = 2 , = 1/32, 

for v = 3 ) . It is characterized by the existence of a translation 

invariant state which is a limit of states with periodic b.c. (For 

z < 1 that limit is clustering). The charge-charge correlation 

<q (0) q (x) > (3, z) tends to 0 , as |x| → ∞ , (absence of long range 

order). Furthermore there is no short range order, in the sense 

that for x = ne , e a unit lattice vector, n = 1, 2, 3,..., 

<q (0) q (ne) > (B, z) is negative and concave. (2.28) 

The local charge, qA = Σ q (j) , has abnormal fluctuation, i.e. 

<qA> = O (dΛ) · 

On each line z = = const., the exponential decay rate, 

m (B) , of <q (0) q(x) > (B, z) , the inverse of the correlation length 

ξ (B) , is known to satisfy the inequality 

(2.29) 

for some δ >0 which depends on Z
Q
 and v . These results are 



21 

proven in [3]. 

The basic tools used in the proofs are the existence of self-

adjoint transfer matrices, i.e. reflection positivity in the Φ-
εβ 

and q-representations, [3,14] , and the fact that for z < e 

(2.30) 

Thus by (2.27) 

(2.31) 

Absence of long range order and abnormality of the fluctuations of 

follow from (2.31) by Fourier transformation. For z < 1 , the 

state <—> (β, z) is given by a positive measure in the ϕ-variables, 

so that (2.30) holds. When z > 1 , <—> (B, z) does not correspond 

to a positive, measure in the ϕ 's , and (2.30) is not obvious. In 
ε β 

order to deal with large bare activities z , 1 < z < e , we 

must apply a simple renormalization transformation : Between two 

nearest neighbor sites, i and j , we introduce an additional 
2 

site, ij , and replace the factor exp-1/2B(ϕ(i)-ϕ(j)) in the 

Gaussian measure dp (ϕ) by 
BV 

We then interchange the integrations over φ- and φ-variables, 
V 

first integrating out all ϕ (j) , j E ZZ . The ϕ-integrations can 

be done explicitly by using the identities 

(2.32) 

where and each φ stands for a variable ψ(ij) 
a 
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associated with the new site in the middle of the link ij . By dif-

ferentiating in q and adding the resulting identities for ±q we 

obtain 

(2.33) 

Thus, under this renormalization transformation, the activity, 

λ ( {q}) , of eiqϕ is multiplied by exp-(Bq2/8v) , in particular, 

in the hard core gas, 

(2.34) 

In the ψ-variables, the state <—> (B, z) is given by a positive 
-B/8v . εβ with , (8v) )-1 

measure, provided ze < 1 , i.e. z < e , with ε = (8ν) 

Then (2.34) clearly implies (2.30). 

A sequence of renormalization transformations of this type, 

driving down bare activities, is a crucial tool in [15]. See also 

Section IV and § 5 of [3] . 

Next we discuss domain I which is contained in domain O . Its 

main characteristics is the existence of a state with exponential 

Debye screening : The infinite volume Limit, <—> (β, z) , of the 

family of states {<—> A (β, z)} with Dirichlet b.c. exists, and cor-

relations in <—>(β, z) cluster exponentially. For small β , 

m (B, z) ≈ Vβz , [10, 11], to be compared with the large β behaviour 

(2.29). What we have described here corresponds to a plasma phase 

of the Coulomb gas. It is discussed in detail in the lectures of 

D. Brydges. 
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We now describe the differences in the behaviour of the two-

and three-dimensional Coulomb gas, including domain II for the two-

dimensional gas. The two-dimensional Coulomb potential between a 

positive and a negative charge separated by a distance l grows 

like (1/2π)ln (l+1) . This is a confining potential, and in the ab-

sence of other charges the two charges form a tightly bound, neutral 

dipole. At finite temperature and density, this dipole may break up, 

due to interactions with other charges in the system. The probabili-

ty of this event can be estimated heuristically as follows : The 

Boltzmann factor of the two charges is 

[- B/2π -ln (4+1)] (2.35) 

The entropy S of the configuration is 

S& l v (2.36) 

where l estimates the order of magnitude of the number of possible 

positions of the negative charge, for a fixed position of the posi-

tive charge, and v is the mean area over which the position of 

the positive charge may vary. It is shown in [15] that v & lP , 

for some p > O . At densities low enough that the lattice structure 
2 

is not felt on large scales, dimensional analysis gives v & l 

Now observe that 

(2.37) 

is summable in l , for B > 2π (ρ+2) , (i.e. for β > 8π if 
2 v & l which is exact in the continuum limit). This means that the 

probability of separating the negative charge from the positive one 

by a distance l tends to 0 , as l → ∞ , "integrably fast", pro-

vided β is large enough, i.e. stable, neutral "molecules" are 

expected to form among which neutral dipoles may be expected to be 

the dominant configurations of the gas if the density is low enough. 

We have shown in [3] that dipole gases have correlations with power 

law decay, i.e. Debye screening breaks down in this low temperature-
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low density dipolar phase. A refined version of this somewhat rough 

picture is justified rigorously in [15] by means of an inductive 

renormalization group scheme. Thus, in two dimensions, domain II 

corresponds to the Kosterlitz-Thouless dipolar phase characterized 

by power fall-off of correlations and scaling. It is clear that -

and why - the mechanism described here fails in v > 3 dimensions : 

The Boltzmann factor for a neutral multipole of point charges, e.g. 

a dipole of lenght l , & exp ( +B/4 π l) , does not tend to 0 , as 

the diameter d (=l) tends to ∞ . For this reason, all neutral 

multipoles are unstable, no matter how small the temperature and 

density are, and the gas is a mixture of free charges forming a 

plasma and "unstable molecules". Therefore one expects that exponen-

tial Debye screening persists throughout a domain in the (B, z) 

plane essentially as large as domain 0 . This is not quite what 

Brydges and Federbush [10, 11] are able to show. Their methods only 

establish screening for small enough densities, depending on the 

value of B . Instead of the Berezinski-Kosterlitz-Thouless tran-

sition which the two-dimensional gas undergoes when (B, z) is moved 

from domain I to domain II one expects that the three-dimensional 

gas exhibits what one might call a roughening transition when β 

and z are increased. We shall briefly comment on this kind of 

transition in Section III. 

We now continue our discussion of the phase diagrams with do-

main III, corresponding to low temperatures and high densities. It 

is characterized by the existence of at least two ordered states, 

<—>
+
(B, z) , with 

(2.38) 

i.e. the charge density is staggered and the charges are arranged 

in a crystal of the NaCl type. On the boundary of region III at 

least three states coexists, two ordered ones and a state describing 

a low density phase. This has been proven in [14] by means of a 

Peierls argument inspired by the one in [16] . An analogous (more 
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difficult) result for hard core lattice dipole gases has been proven 

in [3] . 

It is reasonable to conjecture that domain IV contains a region 

of parameters (B, z) corresponding to equilibrium states that des-

cribe a high density liquid phase with short range order, 

(<q(0)q(x)>(B,z) is staggered in x) , but without long range order 

in the charge-charge correlation <q (0) q (x) > ( B, z) . Presently, we 

know of no analytical method that would permit to investigate domain 

IV rigorously, except that some of the ideas in [15] may be useful. 

This is proposed to the reader as a challenging open problem. 

Finally, if - instead of the hard core Coulomb gas - the stan-

dard or the Villain gas are considered, domain O extends over the 

whole quadrant {(B, z) : B > O , z > 0} , because in these models 

λ (ϕ) > 0 , so that reflection positivity in the ϕ- and the q-re-
, |2 

presentation and the inequality <|ϕ (k)|z > (B, z) > 0 hold. The 

boundary line z = ∞ of the standard model is the Villain model, 

(e.g. [3]) . Domains I and II extend up to that line. For general 

results on dipole gases, see [3,6]. 

III. Screening and Roughening 

In this section we sketch some of the features of the equili-

brium states when (B, z) is in the Debye-Hückel domain I, resp. in 

0 . Our remarks are intended to be somewhat complementary to the 

lectures of D. Brydges. 

First, we give several different characterizations of Debye 

screening and then we speculate on a "roughening transition" in the 

three-dimensional Coulomb gas. We consider the gases introduced in 

(2.1) - (2.3). 

i) Strong screening, [10, 11] . 

Let Α (ϕ), Β (ϕ) be bounded functions depending only on finitely 



26 

many of the random variables {Φ ( j) } . Let B(ϕ) denote the 
j eZZv x 

translation of Β (ϕ) by a vector x E Ζ ν . Strong screening is the 

statement that 

exponentially fast. 

By interchanging the order of the q- and ϕ-integrations, one 

derives from this exponential clustering of q-correlations. In 

one-dimensional Coulomb gases this strong form of screening always 

fails for suitably chosen A and B . (See the lectures by Aizenman 

and refs. given there). For v > 2 dimensional gases, (3.1) is 

established in [10, 11] in the (B, z)-domain which we have denoted 

by I , and for Dirichlet b.c.. We now interpret this result for the 

fractional charge correlation 

G(x)= < exp i y (ϕ(O)- ϕ (x))> (B, λ)
; 

(3.2) 

0 < γ < 1 , introduced in (2.15) . Let <A; B> be a short hand for 

<AB> - <A> <B> . By (3.1) 

(3.3) 

for some m > 0 , provided (B,z) I . 

Next, we derive a lower bound on G (x) . Let 
A 

and suppose dλ(q) = dλ(-q) (3.4) 

By equations (2.4) and (2.14) 
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(3.5) 

(3.6) 

where (3.5) follows from Jensen's inequality, and (3.6) from the 

fact that <(qA, (-Δ) 1dρ )>A(B, λ) = 0 , by (3.4). Thus, for v > 2, 

G (x) does not approach 0 exponentially fast, as |x| → ∞ . This 

and (3.3) imply that in the thermodynamic limit 

(3.7) 

The interpretation of inequalities (3.3) and (3.7)is that the Cou-

lomb potential of a pair of fractional charges brought into the 

Coulomb gas from the outside is screened exponentially fast by the 

particles in the gas, although their charge is integer. In particu-

lar, the mean free energy needed to bring the pair of fractional 

charges corresponding to dpx into the system does not diverge, 

as | x| → ∞ , as one would at first expect in two dimensions, be-

cause of the logarithmic growth of the Coulomb potential and the 

fact that fractional charges are not screened easily by integer 

charges. Thus the pair of external charges can break up in two es-

sentially free charges. Note that by (3.6), 
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(3.8) 

in three dimensions, for arbitrary B and z , i.e. a fractional-

charge dipole can always break up. In contrast, in one dimension 

(3.9) 

for some constant c which is positive for all B and z . Thus, 

in one dimension the electrostatic potential of fractional charges 

is never screened. 

The behaviour of the two-dimensional gas interpolates between 

the one of the one- and the one of the three-dimensional gas, as 

(B, z) is varied. We have shown in [15] that in domain II, the low 

temperature, low density Kosterlitz-Thouless domain, 

(3.10) 

for some constants a, b and c > 0 . Together with (3. 3) and (3.7) 

this proves the existence of a Kosterlitz-Thouless transition which 

is further discussed in Section IV. 

ii) Screening of integral charges. 

This is (3.1) for observables, A and B , which are periodic 

in ϕ (j) with period 2π , for all j . I.e. the Fourier trans-

forms of A and B only contain integral charges in their support. 

The one-dimensional Coulomb gas generally does screen integral char-

ges, for arbitrary B and z . This is discussed in Aizenman’s 

lectures and refs. given there. 

iii) Weak screening of external charges. 

This notion of screening involves studying the expectation of 

the charge density, q (j) , in the presence of external charges, 

described by a charge density, p (j) , of bounded support, not as-
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sumed to be integer-valued. Let 

We consider 

(3.11) 

We apply integration by parts, namely identity (2.22). This yields 

(3.12) 

Fourier transformation yields 

We now assume that 

by a power E > 0 faster than V (x) decays. This is clearly true 

in domain I, where strong screening (3.1) holds. Then 

so that 

i. e. 

(3.13) 

where Q (p) = Σρ (l) = p (0) is the total charge of p . This says 

that the external charges, {p (l)}l E ZZ v , are screened complete-

ly, asymptotically, by particles in the system (even if p is not 

integer-valued). Stronger statements, e.g. on the decay of the ef-

fective electric field of p , are obtained if the decay assump-

tions for I (j)+i < ϕ (0) > (B, λ) , as | j | → ∞ , are refined. For a 

related, "axiomatic" discussion, see [17] . 

By using the sine-Gordon (ϕ-) representation, it is easy to 
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see that an evaluation of I (j) in mean field approximation leads 

precisely to the Debye-Hückel equation. The methods of Brydges and 

Federbush [10, 11] can be used, in principle, to estimate systematic 

corrections. 

iv) Dipole layers. 

An interesting variant of the discussion in iii) is the follow-

ing : Let 

.V 
where Λ is a square array in the j = 0 plane. The state 

<—> (B, λ) an infinite volume state with Dirichlet b.c., describes 

a v-dimensional Coulomb gas in the presence of an infinite, planar 
j v 

dipole layer located on the j = 0 plane. We wish to estimate 

the effective potential 

(3.14) 

In vacuo, the graph of as a function of m ≡ jv is as shown 

in Fig.3. 

Fig. 3 
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If the particles in the Coulomb gas form a perfect plasma the graph 

of ψ has the shape displayed in Fig. 4, 

Fig.4 

and exponentially fast. (3.15) 

One way of analyzing transitions in the three-dimensional Cou-

lomb gas in domain 0 of Fig.2 is to investigate the behaviour of 

ψ (m) for different values of (β, z) . It seems likely, that one 
Y 
can prove (3.15) in the domain of convergence of the expansion of 

[10, 11] . (For the Villain gas (2.3) a proof is actually simple). 

Outside domain I, ψ (m) may approach 0 only like some inverse 

power of |m| , (or have the shape shown in Fig.3). We have no 

idea of how to prove this. It is more rewarding to replace γ by 

-iy and -iϕ ( j ) by ϕ (j) . One then considers the function 

(3.16) 

which is real-valued. For the Dirichlet b.c. state of the Villain 

gas in the thermodynamic limit, the graph of ψ iy is just as 

shown in Fig.4, with ψ_iy. (m) → 0 , exponentially fast, provided 
. iy | m | → ∞ 

β is small enough. m | 

However, there are indications that 

(3.17) 

if B is large. This phenomenon would be the analogue of the 

roughening transition in the three-dimensional Ising model [18] . 

In two dimensions, (3.17) is the expected behaviour for all B , 

but the surface tension, positive for small B , is expected to 
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vanish for large B . The functions ψ_iy (m) and 

have nice physical interpretations in the three-dimensional Villain 

gas in the ϕ-representatioji, (i.e. the "discrete Gaussian model"), 

and, for γ = 1/B , in the dual U(1) lattice gauge theory. (In 

the Coulomb gas only ψ , resp. <e iα (Φ(m) Φ ( m) ) > (B, λ) have a 
γ γ 

natural, physical interpretation). These matters will have to be 

discussed in more detail, elsewhere. 

IV. The Kosterlitz-Thouless Transition in the Two-Dimensional Cou-

lomb Gas. 

In this section we briefly sketch a rigorous argument [15] 

establishing the Berezinski-Kosterlitz-Thouless transition [19] in 

a class of models, including the two-dimensional Coulomb gas, the 

plane rotator and higher dimensional, abelian lattice gauge theories. 

The main idea is to use the sine-Gordon (ϕ-) representation 

to rewrite correlations in the Coulomb gas as convex combinations 

of correlations in dilute gases of neutral multipoles of variable 

size, at random positions. Such gases are known not to exhibit Debye 

screening [3, 15] . Here we study the behaviour of the fractional 

charge correlation G (x) defined in (2.15) which we discussed al-

ready in Section III. 1. 

Our aim is to sketch the proof of (3.10), i.e. 

(4.1) 

ε ' β 
for some c > 0 , provided z < e b and B > B , for some 

e’ >0 and Bc < ∞ ; (a and b are finite positive constants). 

We use the ϕ-representation (2.11), (2. 12), (2. 1') of the hard core 

gas : Thus <—> A (B, z) denotes the expectation in the measure, 

(signed for z > 1) , 
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(4.2) 

and we impose free (i.e. insulating) b.c.. The more interesting case 

of Dirichlet b.c. is only slightly more difficult; see [15]. 

The lower bound in (4.1) has already been established in Sec-

tion III, so we concentrate on the proof of the upper bound. We note 

that, by the ϕ → -ϕ symmetry of (4.2) 

(4.3) 

where 

with 

(4.4) 

Our proof of (4.1) is based on applying the following elementary 

identities to I (ϕA) : 
α Λ 

(4.5) 

(4.6) 

and 

(4.7) 
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A function p of finite support contained in Λ with values in 

{+1, -1} is called a charge density, and Q (p) ≡ Σp (j) is the total 

charge of p ; p restricted to a proper subset j of supp p is 

called a constituent of p . A family of charge densities with dis-

joint supports is called an ensemble. 

First (4.5) is applied to 

(4.8) 

where cξ (o) = dm1 , each charge density p εE 1(o) has support on 
εm 

a single site, j(p) , where it takes the value l, 

U. j (p)} = Λ , and K(o) (p) = z . 

p є ε1 

The rules for applying (4.5) are as follows : Group all p’s 

in ε1 in pairs (p1, p2) supported on nearest neighbor sites in 

an otherwise arbitrary way. For a given pair (ρ1, ρ2) apply (4.5) 

to 

The result is then inserted on the r.s. of (4.8), for all possible 

(ρ1, ρ2) , and the resulting expression is expanded out. This yields 

with c > O , for all m , and each p on the r.s. of (4.9) is 
ε (1) 
εm 

supported on one site, with a nearest neighbor site empty, or on a 

pair of nearest neighbors and takes values ±1 . Notice that each 

application of (4.5) to a pair (p1, p2) produces a term, 
(0) 1 2 

1+3K (o) (ρ1) Κ (o) (p2) cos ϕ (p1-p2) , with the property that the total 

charge Q (p1-p2) vanishes. The density p' = p1-p2 interpreted 

as a neutral dipole. Another term that is produced is 

1+3K(o)(p1) cos ϕ)(p1) which has the property that the charge p2 
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has been eliminated. Thus the resulting ensembles, E(1) , tend to 

contain neutral dipole densities and tend to be sparser than E1(o) . 

This is a feature common to all subsequent steps in an inductive 

expansion of I (ϕ A ) : During those steps charge densities p, p' 

are combined to larger densities p+p' , with a chance of 1/2 that 

the total charge is lowered, or one of the densities p, p' is eli-

minated which makes the ensemble sparser, at the prise of increasing 

the unrenormalized activities, K (p) , by factors of 3. 

In the next step, the p’s in each E(1) are paired among 
m 

each other or with αdρ , and identities (4.5), resp. (4.6) are 
ox 

applied to all such pairs, the resulting expression is expanded and 

yields a class {E (2)} of ensembles derived from {E(1)} by combi-
m m 

ning densities ρ, ρ' , with dist (p,p’) dist (supp p, supp p’) = 1 , 

to a larger density p±p' , resp. cancelling either p or p' , 

for all m' . After a finite number of steps, depending on an inte-

ger k = 1, 2, 3,..., in this inductive scheme one obtains 

(4.10) 

k is the union 
where c k > 0 , for all m , and each ensemble E is the union 

T- k m 
m k k. 

two sub-ensembles NR and JK , defined as follows : m m 

Define the diameter, d (p) , of a charge density p in some 

ensemble E to be the smallest integer of the form 
l 

2 , l = 1, 2, 3,..., such that supp p can be covered by a single 
2 

square in ZZ with sides of length d (p) . Furthermore, d(p*) is 
m 

defined as the diameter of ρ* + αdρ 
m ox 

k 
The sub-ensembles are now defined by the properties : 

a) 
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b) each p E N is neutral, i.e. Q (p) = 0 ; 
m 

k 
c) For all p, p' in N , p ≠ p' , 

m α 
dist (p, p') > M min (d(p) , d (p ' ) ) , for some constants Μ > 0 

and a Є (3/2, 2) , e.g. a = 5/3 , to be chosen appropriately, 

[15]. ( Here dist (p, p') ≡ dist (supp p, supp p') ) . 

d) dist (p, p") > Md (p)a , for all p ε N and all p" ε Jk . r-· 
= m m Li 

The expansion described between (4.9) and (4.10) terminates for 

all p's in Nk , for all m , because the p's in Nk are neu-
m m 

tral, see b), and far separated from other charge densities, see c), 

d). 
k 

The sub-ensembles J are defined by 
m 

i) 

ii) for arbitrary densities p and p' / p in J , 
m 

dist(p, p') > 2k , 

for all m . Thus, k labels a distance scale. Identity (4.10) and 

properties a) - d) , resp. i) - ii) are obvious for k = 0 , and 

we have already outlined how they are checked for k = 1 . In order 
k · · 

to do the induction step, kk+1 , we split J into two disjoint 
> k < k < k m 

subsets, J and J , where J has the property that, given 
m , m m . < k m k 

any p E J , there exists some p' E Jm , with 

, k+l , >
 7
k jk < jk > jk 

dist (p, p ) <2 .We set J = J ~ J . Densities in J are 
m m k m k+lm 

separated from other densities in J by a distance > 2 and 
m , = k+1 

will participate in the expansion only on scales > 2 . Next, a 

charge density p E Jk is paired with some p' ε <Jk for which 
k+1 m m 

dist (p, p') < 2 . Then identity (4.5), resp. identity (4.7) is 

applied to the factors labelled by (ρ, ρ') , and the resulting ex-

pression is expanded. This operation increases the activity of the 

resulting density by a factor of 3. Subsequently a new pair of den-
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k+1 
sities within distance < 2 from each other is formed, etc... 

After finitely many operations, (4.10) is recovered, with k in-

creased to k+1 . See [15] for details. By induction in k and a 

series of combinatorial arguments one obtains 

Theorem 1, [15] . 

(1) 

where c.. > 0 , for all m ; all p' s in N , except possibly 
N m 
m 

one density p = which is charged, are neutral and satisfy con-

ditions b) - d) formulated above. 

(2) For all p ε N , p ≠ p , 
m c 

(4.11) 

where |p| = Σ|p(j)| , A (p) is the minimal number of 2n x 2n 

j 
squares necessary to cover the support of p , n (p) < c' lnd (p)a , 

and c, c' are finite constants independent of N 
m 

(3) If some p ε N contains a constituent p, such that 
m 1 

dist(p1,p-p1) > 2Md (p1)
a
 then Q (p1) ≠ 0 . □ 

Remarks. Part (1) follows from (4.10) by induction in k , and 

(3) is a fairly simple consequence of conditions b) - d) satisfied 

by N . The hard part is (2) : Since, by condition a) above, each 
k N is an inductive limit of a family {N . , . }, , . , each 

m n (m, k) k = l, 2, 3,... 
neutral p E N belongs to some N , for a finite k . Thus, the 

m m 
term 1+K (p)cos ϕ (p) is produced after a finite number, N , of 

applications of identiy (4.5). That identity then yields 
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p N . . 
K (p) < z|p| 3N , and a somewhat complicated estimate on N yields 

(4.11). (Same comment on term labelled by p* ) . The interpretation 
n (p) m 

of the quantity c . Σ A (p) is that of an entropy of p . See 
n=o 

also (2.36). For details we refer to [15] . 

Next, we note that 

(4.12) 

Since the algebraic structure of the expansion of I (ϕA) is inde-
α A 

pendent of a , the expansions of ZA and ZA GA involve the same 

Nm , p* and cN . For free b.c., the contribution of all terms 
mm N m 
containing a factor Κ (ρc) cοs ϕ (ρc) , Q(Pc) ≠ 0 , to the r.s. of 

(4.12) vanishes; see (2.9). Thus 

(4.13) 

where all p’s in N' and p* are neutral, for all m . 
m m 

Our goal is now to replace Π (1+K(p)cos ϕ (p)) by a new 

product 

(4.14) 

where p is a renormalized charge density, and ζ (ρ, β) a renorma-

lized activity, without changing the values of and . An 

essential ingredient in the proof of (4.1) is that (4. 14) defines 

a positive function of ϕ . This is manifestly true if 

ζ (ρ, β) < 1 , for all p ε N' and all m . 
m 

(4. 15) 

One of the main technical results of [15] is that p can be chosen 
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ε 'B 
such that (4.15) holds for z < e , for some e' > 0 , and β 

large enough. 

The idea of the renormalization p → p is as follows : First, 

we carry out the renormalization transformation described in Section 

II.2, (2.32) - (2.34). Next, let p ε Ν' contain a charged consti-
m 

tuent p1 separated from p-p1 by
 a distance > 2M . Then p^ is 

replaced by a new charge density concentrated near the surface 

of a domain containing supp p1 but not intersecting 

supp (p-p1) , in such a way that the electrostatic interactions of 

p1 and σ1 with p-p1 and all other p' ε N' are unchanged, 
ill m 

This is achieved by a change of variables on the r.s. of (4.13), 

Φ ( j ) → Φ ( j ) + ia (j) , for some real function a . This is the 
P1 p1 

method of complex translations introduced in [20] . As a result, 

Κ (ρ) cοs ϕ (ρ) is replaced by exp[-β (Ε(ρ1)-Ε(σ1))] K(p)cos ϕ (σ1+ρ-ρ1), 

where E(p') is the electrostatic energy of p ' ; see (2.4). In 

order to locate the charged constituents of some p ε N' , one 
m 

uses part (3) of Theorem 1. Let S (p) be a minimal collection of 
n n n 

2 x2 squares needed to cover p , and let S' (p) be defined as 
n 

{s E &n (p): dist (s, s') > 2M2 &n, for all s' ≠s in &n (p)}. 

By Theorem 1, (3), each s £ S'n (p) covers a charged constituent, 

Ps , of p . The renormalization procedure described above is now 

applied to p , for each s ε S' (ρ) , in such a way that suppo 
s n n+1 n+1

 S 

is contained in the interior of a 2 x2 square covering s . 

This permits one to apply the same renormalization transformation 

inductively on all length scales 2n , 1 < n < n (p) . One obtains 

Theorem 2, [15] . 

For a > 3/2 , M large enough and for all m , 
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where (4.16) 

and 

(4.17) 

with c" independent of N ' . 
m □ 

We now sketch, how Theorems 1 and 2 are used to prove (4. 15) 

and the upper bound on G (x) in (4.1). First, one proves a combina-

torial lemma saying that, for a < 2 , there exists some c"' > 0 

such that 

(4. 18) 

with c"1 independent of N' ; see [15] . 
m 

Moreover, A (p) > const.lnd(p) . 
n = 

(4.19) 

It now follows from (4.17), (4.11), (4.18) and (4.19) that for 
ε ' β z < e , for some ε' > 0 , there exist constants c > 0 and 

d < ∞ such that 

(4. 20) 

which proves (4. 15) for β > d/c . The inductive renormalization 

transformation described above can of course be applied to 

cos (dp ) and cos (p*+dp ) , too, for all m . Together with 
ox m ox 

(4. 15), i.e. F (ϕ) > 0 , this yields 
m = 
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(4. 21) 

where 

0 < S, S < exp [- (CyB-d ) ln l], 

and (4. 22) 

with 0 < c < c , for 0 < γ < 1 , (see (4. 4)). It follows immedi-

ately from (4. 16) and (2. 9) that 

so that, with (4. 21) and (4. 22), 

Ζ
Λ
 G
Λ
(X) < 2 exp [- (cyB - d) ln|x|] Z

A 
2 

which, for β large enough, yields (4. 1), by taking Λ Z2 . To-

gether with the material in Section III, i), in particular (3.3) 

and (3.7), this completes the proof of existence of a Kosterlitz-

Thouless transition in the hard core Coulomb gas, as (β, z) is 

varied. 

V. Other Models with Kosterlitz-Thouless Transitions. 

Here is a list of models for which transitions of the Koster-

litz-Thouless type (as some thermodynamic parameters are varied) 

are established in [15] . 

1) Hard core-, standard- and Villain Coulomb gas in two dimensions. 
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2) The two-dimensional plane rotator model. It is shown in [15] that, 

for large enough B , <s
o
 sx > (B) > a (1+|x|) , in zero external 

field, for same finite c . An upper bound with power fall-off was 

previously proven in [20] . Some further results may be found in 

[21] . 

3) The two-dimensional ZZn models, for n large enough : Existen-

ce of a massless phase for T_ < T < T
+
 , for some finite, positive 

T_, T+. 

4) The two-dimensional solid-on-solid model, for which it is shown 

e.g. that < (ϕ (0)-ϕ(x ))2> > aln|x| , at sufficiently high tempera-

tures . 

5) A three-dimensional, non-compact lattice Higgs model (a Landau-

Ginsburg lattice theory) for which the existence of a transition 

from a superconducting, massive to a massless QED phase is verified; 

(see also [22] and refs.). 

6) The four-dimensional, pure U(l)-lattice gauge theory : Break-

down of confinement for large β . This was first shown in [23] , 

by a more complicated argument. 
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