PHASE DIAGRAMS AND CRITICAL PROPERTIES OF (CLASSICAL) COULOMB SYSTEMS

Jirg FROHLICH and Thomas SPENCER

Institut des Hautes Etudes Scientifiques
35, route de Chartres

91440, Bures—-sur-Yvette (France)

IHES/P/80/36



PHASE DIACRAMS AND CRITICAL FROFERTIES OF (CLASSICAL) COULOMB
5‘|’5'1'I?.'FIE1l

.
Jiirg Frﬁhlichl and Thomas Spencerz
1 Institut des Hautes Etudes Scientifiques
353, Route de Chartres
F-91440 Bures-sur-Yvette

Courant Imstitute of Mathematical Sciences

251 Hercer Street
New ani:, H.Y. loD12

Table of Contents.

1. Introduction. (Stability, thermodynamic limits)

11. Generalities about Classical Coulomb Gases. (Sine-Cordon
transformation, phase diagrams, transitions)

111. Screening and Roughening.

1v. The Kosterlitz-Thouless Transition in the Two-Dimensional
Coulomb Gas.

V. Other Models with Kosterlitz-Thouless Transitions.

+ Lectures presented at the Intermational School of Mathematical
Phyaics "Ettore Majorana"™, Erice, Sicily, June 1980.
(Lectures delivered by J.F.)

* Work partially supported by N5F DMR 79-04355 and A. Slean
Foundation,



1. INTRODUCTION

It seems good to start these lecture notes with the cautioning
remark that, in a sense, their contents do not really Fit into the
topic "Rigorous Atomic and Molecular Physics", although the results
we shall discuss are certainly rigorous and do concern atoms, ions
and molecules to some extent. Traditionally, the underlying theo-
retical framework for atomic and molecular physics is thought teo be
quantum mechanics, and the number of degrees of Ereedom of the ato-
mic and molecular systems which are considered is finite, at least
if the radiation field is neglected which is what workers in that
field do almost always.

In these lecture notes, quantus mechanics is not heard of,
except that some models which we will mention briefly do provide
idealized descriptions of certain quantum mechanical systems. In
those instances, however, we will employ the imaginary=time, Feyn-
man=Kac formailation of quantum mechanics which makes it look like
classical, statistical mechanica.

The basic, theoretical framework underlying our lectures ia
the classical statistical mechanics of systems with infinitely many
degrees of freedom. We think that we do describe methods and re=
sults which are relevant for the physics of systems composed of
very many atoms and molecules, namely for condensed matter physics,
but we leave it to the reader to judge.

Due to various circumstances it was not possible for us to
produce someowhat detailed lecture notes which would include careful
statements of repults, proofs and discussion. Thus we can only hope
the present notes will motivacte the reader to consult the literature
that is gquoted in the text.

1.1. What are Coulomb syvatems 7

The underlying theory for the description of matter composed
of nuclei and electrons forming ions, atoms and molecules is Quan-
tum Electrodynamics (QED). Since in atomic, molecular and condensed
matter physics the energics and velocities of the constituent par-
ticles are usually very moderate, non-relativistic QED [1] ought
te provide a sufficient description. This point of view beara, how-
ever, some problems. Non-relativistic QED cannot correctly amd con-
sistently account for spin-dependent interactioms. In particular,
magnetic dipole interactions among constituent particles and the
interactions of their magnetic moments with the quantized magnetic
field have to be ignored or cutoff in some phenomenological way
in order to prevent the theory from becoming mathematically meaning-
less. Some of these problems are briefly discussed e.g. in [2].

Thus, nen=-relativistic QED can only be expected to be an ac-



curate descripcion if

= nuclear charges are moderate;

- temperatures and densities are wmoderate;

= the interactions between charged particles and the radiation
field do not excite high frequency modes of the electromagnetic
field;

= spin-dependent forces are weak.

For the major part of these notes, spin and the radiation field
will be neglected altogether, leaving us with charged particles in-
teracting via two-body Coulomb forces. We shall call systems for
which these approximations are valid Coulomb systems. Some of the
models we shall discuss would normally not be called Coulomb sys—
tems. However, in those examples it turns out that one can isolate
certain particle=-like excitations with long-range Coulomb interac-
tions. Among those models we shall mention ones which do [eature

an ultraviolet cutoff electromagnetic field : Simplified Landau-
GCinsburg type models of superconductors.

Most of the models appearing in these lecture notes are quite
naive caricatures of more realistic theories. Many of them are
classical lattice models. However, in many instances, neither the
assumption that the models be classical, nor the replacement of
space by a lattice are really importamt, but are made because they
are reasonable, or im order not to obscure the simplicity of an
argument. The only serious requirement is that in order to render
a classical, three=dimensional Coulomb system in thermal equili-
brium mathesatically meaningful, the Coulomb potential must be re-
gularized at short distances. (The lattice is often a pedagogically
and physically attractive regularization).

In spite of all these crude approximations we believe that
the models, methods and results we discuss in these notes have
quite a lot to do with physics and are chosen so as to exhibit cer-
tain interesting physical phenomena in a pure and simple form. (It
is a good tradition in theoretical physics to replace a theory if
it turns out to evade our comprehension by an approximate model
which can be analysed in satisfactory depth).

Our most interesting methods, results and speculations appear
in Sections III =V . Among them is a rigorous version of real-
apace renormalization group techniques powerful enmough to establish
the existence of Kosterlitz-Thouless {plasma + dipolar phase)
transitions in a large variety of situations. Furthermore, we com—
ment on “liquid crystal” phases in hard core Coulomb gases and the
pessible transictions in the three-dimensional Coulomb gas. See
Sections 11.2 and III.

The reader familiar with the basic definitions and notions
concerning Coulomb systems may skip the remainder of the introduc-
tion and proceed to Section 11.



1.2, Stability.

The v-dimensional Coulomb potential is defined to be the
Green's function, V(x,y) ., of a v-dimensional Laplacean, -& . If
particles in a Coulomb system are confimed te a bounded regiom, A ,
some boundary conditioms (b.c.) need to be specified at the boundary,
dh , of the box. (Different b.c. in the Coulomb potential can yield
different thermodynamic limits of the corresponding systems). We
shall consider two types of b.c.

{BCL) In;uln;ig;, or free b.c.

Viz,y) z Vix—-v) 1is the Green's function of the infinite volume
Laplacean. The arguments, x and y , are constrained to be inside
A . Physically, this corresponds to putting up walls at 3A which

are perfect insulators.

(BC2) Conducting, or Dirichlet b.c. :

V(x,y) is the Green's function of the Laplacean with O-Diri-
chlet data at 34 . The physical interpretation of these b.c. is

that the walls of A are perfect conductors.

(In two dimensions, (BCl) and BC2?) can result in different
thermodynamic limits of finite temperature, finite density Coulomb
gases, [3]. We shall discuss further b.c. with yvet more drastie

effects in the thermodynamic limit, "roughening™, in Section III).

For A = mﬁ wé have

1/2|x] , w=1

Vix) = { 1/2% in(L/|x]) , v =2 LRt

1fU“|“[‘{?"3] v wE 3,
where a, is the surface of the (v=1) dipensional unit sphere.

If configuration space is replaced by a lattice, Z¥ , we shall
define the Coulomb potential to be the Green's function of the



finite difference Laplacean (with free-, reap. Dirichlet b.c.}. In-

stead, one could also define it to be the restriction of the conti-
nuum Coulomb potential to the lottice, with Vix = 0) =E 0, The

long range behaviour of the lattice Coulomb potential is still given
by (I.1).

We al=zo introduce a dipole potential : The pntenti:l betwean &

dipole pointing im the +a-divection at position x and one point-

ing in the +g-direction at y , both of unit strength, is given by

L]
“uﬂ (%, y) = —{iuiﬂﬁiix.r} (1.2)
where a: = ﬁf;xﬂ e % Loeusa¥ . (On the lattice -31
18 a finite difference derivative). In the continwem,

W must be repularized at short distances : When A =R’

- _— ik (x-
Hna{:-r]' = (iw) vi2 Irl {x r%kukﬂi’k?ﬂ”k :

We roplace " by

Woglmy) = 20y V2 [uik{“'?ﬁkukﬂfkaftk]d”u , (L3

where f is o non-negative function of vapid fall off, so that
]|'I-FIIE[|“r is finite. Of course, regularization is unnecessary

on the lattice,

The Hamilton function {(resp.- operator) of a svstem congisting
of N point particles with masses By eeaamy, o Chatges qu....4q,

and dipole 2omeats W, see0.b, « (where ujacsj # S; is the spin

.th ! g H 1
operator of the j particle), is given by

W L
] 2
™ o 5 smp? y (E.4)
j=1 |
W
(N} = . N 2 n
u L ll]i'-[j'lur{!li ijh* 4 ||i,r%l

(x.~x.)}
lzi':j:ﬂ I:‘.EF]. i I'E- 1 1 #



If interactions with the radiation field, described by a vector po-
tential, A , in the Coulomb gauge (i.e. VA = 0) , arc to beé taken
. 2 H F)

into Accnunt pjfinj is replaced by {pj—qjﬁ[:j]] f!nj ; and a

H
term iEluJ'Eijl s Bix) = (FAA)(x) , is added.

The first basic problem to be studied is the stability problem.

One assumes that m v qg and |h#| are bounded uniformly in

J = lyeeusd and M= 2,3,..., and asks whether

t-l':w"I| > -comst. M , (I.5)
for some finite, N-independent constant. A system satisfying (1.5)
is said to be H-stable. Classical, continuum Coulomb systems of
point particles are never H-stable, unless v = 1 , or qj >0,
for all j . If all charges are positive the system does however
not behave thermodynamically because of the long range of the Cou-

lomb potential. In fact, overall neutrality is important.

For three-dimensional, quantum mechanical systems with uj = 0,
for all j , H-stability has been established, provided all nega-
tively charged particles are Fermions, and is known to fail if all
particles are Bosons. These matters are discussed in W. Thirrings

contribution and in [2].

We emphasize that H-stabiiity depends only on the short range
singularity of the the two-body potential, i.e. H-stability is the
ultraviolet (not the infrared) problem of statistical mechanics; see
e.g. [2,4] . If the Coulomb potential is cutoff at short distances -
as we have done with the dipole potential - H-stability holds, and
the proof is very simple, [5) . Thus, on the lattice, (I.5) is al-

ways Lrue.

Three-dimensional, non-relativistic, quantum-mechanical matter,
with negatively charged particles assumed to be Fermions, coupled
to an wleraviolet cutoff, quant.zed electromagnetic field is stable

if the spin of all particles is zero, but unstable if spin is in=



cluded. It is unlikely that stability is restored when the ultravio-
let cutoff is removed. (We thank Erhard Seiler for a discussion

which helped to clarify this point).

Another notion of stability, equally basic for statistical
mechanics, is  Z-stability : Consider a system of m different spe-
cies of particles, the total number of particles being arbitrary.
The tth species is supposed to consist of particles with mass m,
charge q,,... and activity (= fugacity) = = e UL, uhere

f=1/kT is the inverse temperature and u, the chemical potential,

t
Let Eﬂ{ﬂ.zl....,tm} denote the grand canonical partition function
of this system, the Hamiltonian being given by (I.4). See [4,5.6]

for the definition of EJIL . The system is said to be Z=stable if

- E.|A
il :}:hl‘_ﬂ.!],...,:‘.m} < E-Eu“. | | 2 (I.6)
for some finite constant; |A| is the volume of the box A con-
taining the system.

The notions of H=stability and Z=stability are not equiva=
lent @ The two=dimensional, classical neutral Coulomb pas with Ewo

species of particles of charge #*q is never H-stable, but is

)
s-stable if Eq < &% . This is the result of [4] . (For some ex-
tensions see [6]).

However, if the Coulomb potential is regularized at short dis=
tances, & Coulomb system of finitely many species of Bosons, with
positive and negative charges, is H-stable, but fails to be
~-stable when some of the activities are large enough; (in fuct.Eﬁ

nfinite when some of the activities exceed critical values).
See [7] .

is

Won=relativistic, quantus~mechanical matter in three dimensions,
with negatively charged particles = Fermions, is =-stable [8] ;
{see also [7] ). Classical, H-stable systems are always E-stable,
[53] ¢ in particular classical lattice Coulomb gases are =-stable.



fuantum mechanically, the implication tends to go the other way a-

round) .

1.3. Thermodynamic Functions.

The basic results concerning the exlstence of the thermodynamic
functions of Coulomb systems are dudé to Lieb and Lebowitz [8] . For
various extensions of their methods see [2] and refs. given there,

The problem of the thermodynamic limit is the “infrared problem" of

statistical mechanics, and it is equally hard classically and quan-
tum mechanically. Under certain restrictive conditions, the proof
of existence of the thermodynamic limit for e.g. the pressure of
Coulomb systems is simple, (much simpler tham the preofs in [8],

although the results are not quite as strong) :

A system composed of Im species of particles is said to be

charge conjugation invariant iff

%25 T "zjer * 925 T TY2gm 0 %25 T R25a

and if the system is quantum mechanical the statistics of the par-
ticles in the Ejth and {Ej+l}-l gpecies are the same; for all

j=1,...,m . (If, in addition, the particles have dipole moments,
and

W 4 it is required that have identical discri-

¥2j “H2jel

butionsg, J = lyssssm} .

For charge conjugation invariant systems a simple proof of
existence for the thermodynamic limit of the pressure has been given
in [7] , extending an idea of Griffichs [9]) . For such systems, the
screening properties of the Coulomb potential emphasized in [8,2]
are actually unimportant for the existence of the thermodynamie
limit of the pressure, although sensitive dependence on shape and
boundary conditions must be expected for potentials like the dipole
potential which cannot be screened. As an example, we mention that
in three dimensions the thermodynamic limit of the pressure of a
charge conjugation invariamt system with two-body potential



Vix) = |!|qE,c =0 , of positive type exists, although for ¢ # 1
x|
there is ne screening. See [7] . For additional methods involving

correlation inequalities zee [6] .

I.4. Equilibrium States.

A third basic problem concerning Coulomb svstems is Chie quest=
ion of existence and properties of the thermodynamic limit of equi-
librium states, in particular of the correlation functions of clas-
sical systems, resp. the reduced density matrices or imaglnary=time

Green's functions of quantum mechanical systems.

For a rather large class of classical and quantum Coulomb sys-
tems locally normal equilibrium states in the chermodynamic limit
can be constructed by means of a weak compactness argument, provided

suitable boundary conditions (periodic b.c.) are imposed. (A proof
of this can be based on constructive Field theory methods of Glimm
and Jaffe). In many physically interesting situations not even such
i weak result is known to hold | Moreover, the problem of construc-
ting the time evolution for imfimite Coulomb systems "near equili-
brium" is essentially entirely open, except in very special, physi-

cally unrealistic cages.

After these rather depressing remarks we now recall some posi-
tive results amonmg which the most impressive ones are due to Brydges
[10) and Brydges and Federbush [11] : For a large class of classical,

dilute Coulomb systems in two or more dimensions they have construc-

ted the thermodynamic limit of the correlation functions (with
Dirichlet, i.e, conducting b.c.), and they have established Debye
screening in the form of exponential cluster properties. This remark-
able development is reviewed in detail in the lectures given by

D. Brydges.

Another construction of the thermodynamic limit of correlation

functions, resp. reduced density matrices or imaginary-time Creen's



functions wvalid for all values of the thermedynamic parameters for
which the system behaves thermodvnamically is given in [6,7) . That

method is based on correlation inequalities first wsed in a related

context in [12] . The hypotheses under which theose inequalities are

known to hold are unfortunately rather restrictive :

= Exact charge comjugation invariance.

= The two-body potential is of positive type; (n-body potentials
vanish for m *> 2},

= The system is classical or quantum mechanical with Boltzmann - or

Bose-Einstein statistics.

The first and the third hypothesis are physically avkward. However,
the inequalities hold for arbitrary values of B and z and a
large class of potentials including the Coulomb potential and ones
with slower decrease than the Coulomb potential. Moreover, they are
strong enough to provide some general information about the proper-
ties of the thermodynamic limit, [6,7]. They also permit te include
the radiation field and supply some general information of interest
in superconductivity and Bose-Einstein condensation, [7). In spite
of the many cncouraging results alluded to above and discussed in
more detail inm the lectures by Alzenman, Brydges, Lebowitz, Lieb
and Thirring it should be clear that the mathematical foundations
of the theory of Coulomb systems and non-relativistic matter -
scarting from first principles - are still quite incomplete, Seve-
tal copics,such as nop-relativistic QED,may have been undeservedly
neglected.

In the remainder of these notes we shall study highly ideali-
zed systems of excitations with Coulomb interactions about which
detailed statements can be made. We shall concentrate on the dis-

cussion of the Kosterlitz-Thouless transition and other aspects of

the phase diagram of two - (and higher) dimensional Coulomb systems.

10
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I11. Generalities about Classical Coulomb Gases.

Throughout the remaining sections we study classical lattice
Coulomb gases, but many of our results extend o continuum RASER,
provided the Coulomb potential is regularized at short distances,
some also to quantum mechanical gases. We concentrate our attention
on monopole gases but at various places mention results on dipole

We first recall the sine-Gordon (or Siegert) transformation
[3,46,6,13]. The end of the section contains an outlook on what is
discussed in subsequent sections, in particular a phase diagram of
a hard core Coulomb lattice gas in two, resp. three dimensions

which we shall establish in parc.

I1.1: The sine-Gordon transformation.

We consider Coulomb gases on the lattice z" . The Coulomb
potential, V , is the Green's function of the finite difference
Laplacean, & . Unless stated otherwise, free, i.e. insulating,
b.c. are imposcd. (Other b.c. are treated in the references quoted

in the text).

We start by considering systems in a finite region A czV. A

configuration of such a system is a function
qIn:.'L'-*E'!ifl..’!j--q{j} £EZ

where gq{j) 1s interpreted as the total electric charge concentrated
at site J . The a priori distribution of q{j) is given by a mea-
sure di on Z . We shall be interested in the following choices

af di

A) Hard core gas :

dif{q) = (5{ql+z/2[&(q-1)+5{q+1}]}dq , {2.1)

where & is the Dirac functiom and 2z the (bare) activicy.



B) Standard lattice gas without hard cores :

dif@) = ( & 1 (2)8(qn)ldq , {2.2)
n€

where InL:]n is the n"h modified Bessel functiom, i.e. the nth

Fourier coefficient of expizcosd) , and z is a(bare) activity.
C) Villain gas :

dif{q) = { & &(q-n)ldq (2.3)
nE 2

We note that this measure is the limit of lntﬂ_lduq] , 48

g = 4= . with di given by (Z.2}.

Clearly there are other interssting choices for d1 |, but here

di will usually be given by A).

Ell= % Z 16 37 V4]
= % (%,,0-4)7"4,).

The functional Eﬁqﬂ} is the electrostatic self-energy of the con-

(2.4)

figuration 9 self-energies of charges included.

The equilibrium distribution for the configuration q, is

given by

E;r wp [~ E(3, g;i A (3(5))
Z, = [ l-pc, 4] A oAtp il

Note, by a finite redefintion of di , self-energies of charges can

(2.5)

be excluded in the definition of E{qﬂ) i

Hext we congider the Fourier transform of the equilibrium mea=

sure introduced im (2.5). Lert & :#" «R be a Gaussian random
field on Z° with distribution



a:,e.eﬁvfrql’r) = .-’l"r-fe.?ﬁ f%’a (#.a¢)] jf_ﬁf'ﬁrj) ;  (2.6)

where

(448) = -2 (li)=p()",

H—.'-"uﬁl:'
-%
N = det (- Ying)

iz a normalization factor. Mathematically, duﬂ? is defined to be

and

the Gaussian measure with mean O and covariance EY¥ . In one and

two dimensions, du is only defined, a priori, when integrated

gV
against bounded functions of

{$G): sappf bouniad, Z £ (G) = o}, (2.7)

with $(f)a I @(i)I(j) . This is because
J

Pk)= [z (v =2, k)], @

(the Fourier transform of W(j)) 1is not integrable at k = 0 when
vw=1 or 2 . See e.g. [4] for details. Thus

b F) trﬁhﬂF1§§;ﬂ;; F’}‘JLZ.5§33’£E)==¢ﬂ

g, (¢)e 1 (2.9)
JHar 0, Z#G)# 0.

In v 2 3 dimensions, V is positive definite and no constralnts

arise. By (2.4) and (2.9)

B3]
eplREG)= [du,, ()T @0

provided thﬂ} = Iq{j) = 0 when v = 1,2 . (ILE Q{%ﬁ] o,

v = 1 or 2 ,; we set E[qr} ¢ o oand (2.10) remains true). Note
that the variable ¢(j) is conjugate toe the charge variable gq(j).
Thus

13
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Z, = Jepl-pEs, U T 4G)
(2.11)

5 fa;,uﬁ#);_fﬂ NS}

where

i(g.) —.afaf’ﬁf';r)e.i?#_ (2.12)

In the hard core gas (2.1) ,

i f?” — -"'l!I >~ =& f'ﬂssls (2.1%)
Im the standard gas (2.2),
Alp) = ap [ecosd], (2.2
and in the Villain gas (2.3)
Reg) = Z_ 8(p-2mn), -
e L

We denote by *—hn[E.A} both, expectations inm the equilibrium mea-

sure (2.5), and expectations im the (generally non-positive) measure

o A
Z= T AleGG)d (¢). (2.13)
A e ,fifksﬁf
The interpretation of corrclations -F[qﬂ}hﬂiﬂ.lj  where F is a

bounded function of 9, is obvious. (It 15 an expectation of a

sort we are familiar with from lattice spin systems).
In order to interpret expectations such as

Caxp B (£)) (5.A),

note that, by (2.9) - (2.11},
{exp <4 (F) 2 (A.2)=

2" ) enpl-pEg+£)] T dAG3G).

(2.14)
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Thus <exp i#{f}bhiﬂ.l} measures the correlations between external
charges, f£(j)} . located at different sites j € A, which are put in-
to the system from che outside. More precisely, - 1/8 Iusfei*{fj?ﬂ
is the average amount of [ree energy needed to pump the charges
{I{j}}th into a system of charges in thermal equilibrium at in-
verse temperature f . Of particular interest in the following is

the fractional charge correlation

G, (x) =Cexp iy (¢lo)- fl’*‘ﬂ% (3,2) (2.15)

which measures the correlation between two fractiomal charges, one

charge v located at 0 E A and one, -y ; located at x E A,
0<y<l, put into the system. The behaviour of the fractional
charge correlation Eﬂ{x} reflects the screening properties of the
Coulomb gas; see [3] and Sectiom III.

Hext, we briefly sketch how to extend the formalism developed
here to the simplest example of a dipole gas. See [3,6] for more

details. As our dipole potential we choose e.g.

Weg (ry) = — (8.3, V) (x-5), (2.16)

wvhere Eu iz the finite difference derivative in direction o .

Let ﬂ'd e A be some sublattice of A , e.g. A, = eZ'n A .

d
it =1,2,3,... . A configuration of a lattice dipole gas is descri-
bed by a function u, : A, B’ . A 3§ - u(j) ER’ , where u(j)

is the total dipole moment at site j E A, . The dipoles are non=

d
overlapping if L > I . The energy of My is given by

E, (xi]= % é r /u”r'eu}u*"gjhﬁﬁ (<,7), (211

the equilibrium distribution by

Z -a-sr‘p[-ﬁf (/4 ]?‘T dA [ (7)),

where di is a finite measure on Iit ' :-,3+



L&

dA(p) = {8Cx)+2 S(u*-1)}du (2.18)
Combining (2.9) with (2.16) and (2.17) one gets
'gﬂﬁbﬁgz}ﬁ?fif (o0 )] =
uflqi‘a§1;,(%ﬁj'dfzg:t‘-lﬂﬂﬁﬁ{;kldéﬁ;’*{FF?iEﬁthEJ;?‘
where V* S IAI.,,,.H: } , and 3; is the adjoint of an *

For j E hy s lat {ﬁ!j = [g(i) ¢ |i=j| 2 L} . We set

Alip); )= Jdr(u) exp [ (P*4)(5)].

The dipole measure in the #4=variables is then given by

ZJ;EA" A ﬁ‘i“};) ‘“ﬁ*"‘fgv (¢) . (2.20)

The definition and interpretation of the sxpectations f—‘h{ﬂ.lj

(2.19)

and correlations tF{un!-ﬂtH.i! y TR ii{?-h]*ﬁ{ﬂil} « h an

R =-valued function on A , is analogous as in the previous case of
monopole gases. Note that, by (2.6) and (2.20), dipole pases have
the continuous symmetry #(«}== ${+} + const. which is always broken
by the boundary conditions. As a consequence one can show [31] that

there exist Goldatone excitations and that correlations in dipole

gases do not decay exponentially.

We conclude this subsection by recalling the standard integra-

tion by parts formula, {e.g. [3] and refs. given there).

We do this for the monopole gases; for dipeles see e.g. [3].

First, we recall the well known identity

J#G) G(#)duyy (4)
=AZVG-4) 55k ey P

(2.21)



L7

which a physicist calls Wick's theorem.

Clearly - ) ) iﬁ
2p)=ifarGlge??.

Thus, by (2.13) and(2.21)

{$G)G#) (BA)=

(2,22)
B2V G- LKL @)+ 50) 631 (5.}

This equation shows that (Lfig)4(j) is the effective potential

felt by an infinitesimal test charge at site j . By setting
G(4) = () and repeating (2.22) one gets

(é@'}#{’i’)%&ﬂ;ﬂ)=ﬁ Vii-<) (2.23)
= BEZV (i ) Vit-m) 3 () 3tm)) (8.%)

If on the r.s. of (2.23) integrations over q and ¢ are inter-

changed one obtains

(#s r’fﬁff’Q (p.A)= s VG-£)
- 8% 3 Vig-) Ve-d<a (#(<))) (aN)

(2.24)

#f3* 2V G=i) Vit-m )<e ($ti))e (dim J,l}@_.l}

for some functions y and o on the real line which are determined
by % and are real-valued if 1 is real, [3] . If } is non-ne-
gative (resp. o "renormalized” versiom of 1 is non-negative, see
Section 11.2) forsmulas (2.23) and (2.24) provide a surprisingly

powerful tool.

Finally, we wish to add a remark on the existence of the ther—

modynamic limit : For a large variety of Coulomb monopole and dipole



gases the correlation inequalities in [6] can be used to construct

the thermodynamic limit of the staces -c-rh{B.J-‘.l g A8 A f B

In particular, assume that

A ()= wp G(#) (2.25)

where Gi{#) is real-valued and of positive type. Impose [ree (in=

sulating)or Dirichlet {(conducting)b.c. on the Coulomb potential WV .
Then

Lim {—2‘ (2.A)s {—>(a,1) (2.26)

ArZ

exists. The limiting state, =«=>{B,A}) , is translation invariant
and, in v > 3 dimensions, clustering, [6] . (In two dimensions it
clusters on observables which are functions of

f?ﬁff}: Iﬂ?Ff bounded |, _;EJ'-';:{)—_- ,:‘,}} ).

Necessary conditions for (2.25) to held are exact charge conjugation

invariance of the system, i.e. di{q) = di(-q) , and positivity of
i(¢) . It is easy to see that (2.25) holds for the standard and the
Yillain gas for which 3 is given by (2.2), (2.3), respectively.
It fails for the hard core gas, although that gas is charge conju=

gation invariant, and Ag) >0, for z < 1

For charge comjugation invariant, strictly meutral systems with
periodic b.c. at 3\ , a translation-invariant, thermodynamic limirt,
w=3(f, k) , can be constructed by passing Lo subsequences. Every li-
miting state obtained in this way has strong regularity properties -
as a state on bounded Functions of the charge variables
[q{jl]_ g reminiscent of superstability estimates. This can be
pruuenlgizmeans of chessboard estimates [3,14) . For any transla-
tion-invariant limiting state, <=>(f,A) , we obtain from (2.23) by
Fourier transformation

18



(IE @I (3,2)= 5 V k) - 82V )*{IF G D)

With (2.27)

D)= [2tv-Fcost*)] ™

oK=7

Existence of thermodynamic limits will not be discussed any further
(see [6=11]), but there certainly are still many interesting open

problems.

I1.2. The phase diﬁlram of lattice Coulomb gases.

We consider the hard core lattice Coulomb gas with 43 given
by (2.1). The equilibrium state of this system is henceforth denoted
by <=>{@,z) . Our purpose here is to describe what is known about
the phase diagram of this interesting system in two and three dimen-
sions. The relevant thermodynamic parametersare the inverse tempe-
rature B and the activity =2z . Here are portraits of the phase

diagrams in v = 2 and } Jdimensions.
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We First discuss common [eatures of the two=- and three dimensional

diagrams and then discuss striking differences known to arise within
domain O .

Domain O is an open region bounded by the lines B =0, z = 0
== and z =" | wieh o > 1f8v (= 1/16 , for v=2 , = 1/32,
for we= 3} . It is characterized by the existence of a translation
invariant state which is a limit of states with periodic b.c. (For
z < 1 that limit is clustering). The charge-charge correlation
<q{0)qlx)={(B,2) tends to 0O , as 1:' v+ = , (absence of long range
order). Furthermore there is no short range order, in the sense

that for % = ne , & & unit lattice vector, n = 1,2,3,...,
<q{0)qine)={k,z} is negative and concave. (2.28)

The local charge, 9, " T q(j) , has abnormal Fluctuation, i.e.
2 JEA
<q,» £ O(an) .
On each line z = z_ = const., the exponential decay rate,
m(g) , of <q(0)q(x)>{d,z) ., the inverse of the correlation length
E(B) , is known to satisfy the inequality

m(B) S const. eds'ﬂ , (2.29)

for some & >0 which depends on z and v . These results are



proven in []].

The basic tools used in the proofs are the existence of self-

adjoint transfor matrices, l.e. reflection positivity in the  #-
i

and q-representations, [3,14] , and the fact that for =z < @

‘G';ﬁ HE/\'(;S;E) s 0, (2.30)

Thus by (2.27)

{13 @)D (p2)< Z}ﬁff‘(ﬁ}]_fg/s".é‘. 5

Absence of long range order and abnormality of the fluctuations of
qQ, follow from (2.31) by Fourier transformation. For z < | ; the
state <=>(f,z) is given by a positive measure in the ¢-variables,

so that (2.30) holds. When 2z » 1 , <—>(8,2z) does not correspond
to a positive measure in the ¢'s , and (2.30) is not obvious. In
order to deal with large bare activities z , 1 < ¢ < ttﬂ s Wi

must apply a simple renormalization transformation : Between two

nearest neighbor sites, i and j , we introduce an additional
; i : S
site, 1] . and replace the factor exp-1/28(¢(i)-¢(i)) in the

Gaussian measure dp u{i) by

B
const. exp- [y (Bi)= PG V* exp-5 (B(5)-+ (F)° d ¥(55)

We then interchange the integrations over ¢- and ¢=-variables,

First inctegrating out all ${3) . ] EE'P « The #§=integrations can

be done explicitly by using the identlties

¥ : . 2
tj"e::irfg ;;_ & r;iij (ﬁﬁ TELEJ ﬂfﬁé
o= " _ 1? (2.32)

2 E‘ﬂ? V5 ” g

— ‘-.rl
where ¥ =(1/2w)E +“ , and cach L stands for a variable ¢(ij)
a=1

2]



associated with the new site in the middle of the link ij . By dif-

ferentiating in q and adding the resulting identities for 3*q we
cbtain 2»  _y {,.?5_‘1& J.:
f:;:f» ra:(?..;ﬁ)#?.}?; e "?/3 o dd

-E_ﬁ?%“'[;casﬁ;;}- (ﬁ%:ﬂ) sfh(gjﬁ_)_?

Thus, under this renormalization transformation, the activity,

iligl) , of elq* is mulciplied by cxp—{quIEu} s im particular,

(2.33)

in the hard core gas,

f+ 2 ces .#(;)H f43 ﬂ-‘.ﬂ_.&-.; cos jﬁ-ﬁ‘)

B(<) (1+ 2cosdl<)/—> (2.36)

¥ (<) (1+ 2 Pheo ) - (325,)e "7 sind (i)
(<) - 2 ﬁff‘})’, ie 2"

Hf=if=
In the ¢-variables, the state <—-(B,z) is given by a positive
measure, provided zE-Efﬂuﬂ L.y Lome 2 % EEH » With € = {Eu}'l *

Then (2.34) clearly implies (2.30).

A sequence of renormalization transformations of this type,
driving down bare activities, is a crucial tool in [15]. Sce also

Section IV and § 5 of [3] .

Hext we discuss domain I which is contained in domaim O . Its
main characteristics is the existence of a state with exponential
Pebye screening : The infinite wolume limit, <=>{@,z) , of the
family of states iﬂ"rhfﬁ.ﬂ]] with Dirichlet b.c. exists, and cor-

relations in o—=(fd,2) cluster exponentially. For small @& ,

efg,z) = Bz , [10,11], to be compared with the large # behaviour

{2.29). What we have described here corresponds to a plasma phase

of the Coulombh gas. Tt itg discuseged in detail in the lectures of

. Brydpges.
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We now describe the differences in the bebaviour of the two-
and three-disensional Coulomb gas, including domain II for the two-
dimensional gas. The two-dimensional Coulomb potential betwecn a
positive and a negative charge separated by a distance 1§ prows
like (1/Zn)in(R+l) . This iz a confining potential, and in the ab-

sence of other charges the two charges form a tightly bound, neutral
dipole. At finite temperature and density, this dipole may break up,
due to interactions with other charges in the system. The probabili-
ty of this event can be estimated heuristically as follows : The

Boltzmann factor of the two charges is

exp [ Bhn in (¢+1)] (2.35)

The entropy 5 of the configuration is
S < (2.36)

where § estimates the order of magnitude of the number of possible
positions of the negative charge, for a fixed position of the posi-
tive charge, and v i the mean area over which the position of
the positive charge may vary. It is shown in [15] that v = o
for some p > 0 . At densities low enoupgh that the lattice structure
is= not felt on large scales, dimensional analysis gives v = tI =

How ohserve that

" exp [~ (Ym)tm (¢+1)] .85

iz suspmable in L , for @ > 2e(p+?) , (i.e. for B > 8% if

v oa lE which is exact in the contipuum limit). This means that the
probability of separating the negative charge from the positive one
by a distance L tends to O , as & + = | “integrably fast™, pro-
vided B is large enough, i.e. stable, neutral "wolecules™ are
expected to form among which neutral dipoles may be expected to be
the dominant configurations of the gas if the density is low enough.
We have shown in [3] that dipole gases have correlations with power

law decay, i.e. Debye screening breaks down in this low temperature-



low density dipolar phase. A refined version of this somewvhat rough
picture is justified rigorously in [15] by means of an inductive
renormalizacion group scheme. Thus, in two dimensions, domain II
corresponds to the Kosterlitz-Thouless dipolar phase characterized
by power fall-off of correlations and scaling. It i3 clear chat -
and why - the mechanism described here fails in v > 3 dimensions :
The Boltzmann factor for a neutral sultipole of point charges, e.g.
a dipole of lenght £ , = exp(+8/éri) , does not tend te 0 ; as
the diameter d (=) tends to = ., For this reason, all neutral
multipoles are unstable, no matter how small the temperature and
densicy are, and the gas is a mixture of free charges forming a
plasma and "unstable molecules". Therefore one expects that exponen-
tial Debye screening persists throughout a domain in the (f,z)
plane essentially as large as domain 0O . This is not quite what
Brydges and Federbush [10,11] are able to show. Their methods only
establish sereening for small enough densities, depending on the
value of £ . Instead of the Berezinski-Kosterlitz-Thouless tram-—
sition which the two-dimensional gas undergocs when (H,2) is moved
from domain | to domain Il one expects that the three-dimensional
pas exhibits what one might call a roughening transition when &

and 2z are increased. We shall briefly comment on this kind of

transition in Sectiom T11.

We now continue our discussion of the phase diagrams with do-=
main III, corresponding to low temperatures and high densities. It
is characterized by the existence of at least two ordered states,

‘._:}*{El =J' [ Hi th

{9 (x.l,z [f,r_:j,.=)=i-['-.-r"}mrJ =0 x% (2.38)

= i
i.e. the charge density is staggered and the charges arc arranged

in a crystal of the NaCil type. On the boundary of region IIT at

least three states coexists, two ordered ones and a state describing

a low density phase. This has been proven in [14] by means of a

Peierlas argument inspired by the one in [16] . An analogous (more

24



difficulet) result for hard core latctice dipole gases has been proven
in [3] .

It is reasonable to conjecture that domain IV contains a regiom
of parameters (f;z) corresponding to equilibrium states that des-
cribe a high density liquid phase with short range order,
(<q(0)q{x)>{f,z) is staggered in x) , but without long range order
in the charge-charge correlation <q(0)q{x)>(E,z) . Presently, we
know of no analytical method that would permit to investigate domain
IV rigorously, except that some of the ideas in [15] may be useful.

This is proposed to the reader as a challenging open problem.

Finally, if - instead of the hard core Coulomb gas - the stan-
dard or the Villain gas are considered, domain 0O extends over the
whole quadrant ({8.,z) : 8 >0 , z » O} , because in thess models
I{¢} > 0 , so that reflection positivity in the 4¢- and the q-re-
presentation and the inequality tl;[h]|zniﬁ.z} >0 hold. The
boundary line 2z = = of the standard model is the Villain model,
{e.g. [3]) . Domains I and Il extend up to that lime. For general

results on dipole gases, see [3,6].

111. Screcming and Roughening

In this section we sketch some of the features of the equili-
brium states when (B,2z) is in the Debye-Hickel domain I, resp. in
0 ., Dur remarks are intended to be somevhat complesentary to the
lectures of D. Brydges.

First, we give several different characterizations of Debye
screening and then we speculate on a "roughening transition" in the
three-dimensional Coulomb pas. We consider the gases introduced in
(2.1) = (2.3).

i) Strong screening, [10,11] .

Let A{g).B(¢) be bounded functions depending only on finitely
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many of the random variables (§(j)] o Let 3{-”! denote the
j e

translation of B{¢) by a vector x€ ZY ., Strong screening is the

statement that

A@IBB),> @A) — (AP (3,2 )<BE D (5,2) (3.1)

exponentially fasc,

By interchanging the order of the ¢q=- and 4~integrations, one
derives from this exponential clustering of g-correlations. In

one-dimensional Coulomb gases this strong form of screening always

fails for suitably chosen A and B . (See the lectures by Alzenman
and refs. given there). For v - 1 dimensional gases, (3.1} is
established in [10,11] in the (g,2)-domain which we have denoted
by I , and for Dirichlet b.c.. We now interpret this result for the
fruoctional charpge correlation

Gi)= apiq ($00)- $G6I)D (BN, (3.2)

0 <y <« 1 , introduced in (2.1%) . Let <A:B* be a short hand [or
<AB> - <A> <B> . By (3.1)

G “ix)m <E'. T gﬁfﬂ)j eq. 4 ﬁﬁ}m, .1)1_: :pn:f.enﬂ .r;_: (3.1

for some m>» 0 , provided l_fi',:'.l a1l .
Next, we derive a lower bound on l.‘rﬂl[u} . Let
EPﬂI- E‘{E.u-ijl and suppose  dAlg) = dii=q) (3.4)

By equations (2.4) and (2.14)
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G, x)= Z:'j;ﬂ AX(g (7)) exp[~BE (3. )]
i Lo A Bl
: “4"9* [_ -% (":;.Fux J f'dj_fdl{?wﬂ

2 exp 8 ()(~4) 60 )} (,ﬂ_,:._;«]
*ﬂ?’ﬂfﬁ%ifgkhn; -a) ‘Efﬁxfli

{3.5)

(3.6)

ap [pp* (Ve)-VE))]

wheere (3.5) follows from Jensen's inmequality, and (3.6) from the
fact that -{qﬂi{—ﬁ]‘lﬁﬁnn}ﬁﬂ{udij =0 , by (3.4). Thus, for v > I,
G(x) does not approach 0 exponentially fast, as |x| + = . This
and (3.3) imply that in the thermodynamic limit

G{fx} -}—-k f<e q‘ﬂ"#{ﬂ}> (",G'j 1)/2’} ﬂ (3.7)
x| —» o0

The interpretation of inequalicies (3.3) and (3.7)is that the Cou-
lomb potential of a pair of fractional charges brought into the
Coulomb gas from the outside is screened exponentially fast by the

particles in the gas, although their charge is integer. In particu-

lar, the mean free energy needed to bring the pair of fractional
charges correspending to ﬁp”n into the system does not diverge,
ad |x| + m o oas one would ar first expect in two dimensions, be-
cause of the logarithmic growth of the Coulomb potential and the
face that fractional charges are not screened ecasily by integer
charges. Thus the pair of external charges can break up in two es-
gsentially frec charges. Note that by (3.6),
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(—}(x}m const. > exp f*,sar-’ Vio)] > o (1.8)

in three dimensions, for arbitrary 8 and =z , i.e. a fractional-

charge dipole can always break up. In contrast, in one dimension

exp Eﬂ?‘?ﬁf]é G(x) s exp [-</x/], (3.9)

for some constant ¢ which is positive for all B and =z . Thus,
in one dimension the electrostatic potential of fractional charges

15 never sercensd.

The behaviour of the two=dimensional gas interpolates between
the one of the one= and the one of the three-dimensional gas, as
{8,2) is waried. We have shown in [15] that in domain 11, the low

temperature, low density Kosterlitz-Thouless domain,

a(fﬁf;f)—‘ﬁfﬁrg G(x)= -ﬁ({;f;{)-:j {3.10)

for some constants a,b and ¢ > @ . Together with (3.3) and (3.7)
this proves the existence of a Kosterlitz-Thouless transition which

is further discussed Im Section IV.

ii) Screening of integral charges.

This is (3.1} for observables, A and B , which are periodic
in $(j) with period 2» , for all j . l.e. the Fourier trans-
forms of A and B only contain integral charges in their support.
The one=dimensional Coulomb gas generally does screen integral char-
ges, for arbitrary § and =z . This is discussed in Aizenman's

lectures and refs. given there.

111) Weak scruunlng_u[ external charges.

This notion of screening involves studying the expectation of
the charge density, q{j) & in the presence of external charges,

described by a charge density, p(j) . of bounded support, not as-



sumed to be integer-valued. Let

Z ()= <P (5.
We consider
Ilf)= Z ([o)“’(.,- J(,ﬁa:;)e"?”f”’):’ﬁ.ﬂ (3.11)
We apply imtegration by parts, namely identity (2.22). This yvieclds
If;'}=r,»3.ZV(}—4’}ff{?J | A
L2 (a0 P> a0
Fourier triansformation vields
I (k)=p3 Vi J?FEH Z(e) -f{? (é}e‘ﬁféfrﬂﬁj}

We now assume that

1) = - P (@),

fxf —a oo
by a power ¢ = 0 faster than Vi{x) decays. This is clearly true
in domain 1, where strong screening (3.1) holds. Then

A -~
I(k) V)0, as [k]—> 0 50 cthat

ALFPJ)=0= Q)+ @) G0 PO (5,3)

;'-"_?—'— -z-(’f’,j_f\/?-fjjEll?gffob{fa,i)= - Q{F), (3.13)

whicra QI[.;.:I ® Faliy = ;fﬂ'} i the vocal |"I|.'11'I|..= of [+ T This says

that the external charges, 1p{E!Pt € 7y are screened complete-
Iy, asymptotically, by particles in the system (even if » is not

pnteger=valued) . Stronger statements, e.g. on the decay of the ef-
fective electric field of p , are obtained if the decay assump-
tions for N(j)+i<g(D)>(B,12) , as |j| == , are refined. For a

related, "axiomatic"™ discussion, see [17] .

By using the sine-Gordon (§-) representation, it is easy to

9



gce that an evaluation of TI(j) in mean field approximation leads

precisely to the Debye-Hickel equation. The methods of Brydges and

Federbush [10,11] can be used, in principle, to estimate systematic
corrections.

iv) Dipole lavers.

An interesting variant of the discussion im 111} is the follow=
ing : Let

D, 1#)m, T g e BHI9G:71)

cZ?

where A is a iqulrn array in the _'i_"I = 0 plane. The state
E— Ehfir J fr J;L}
......‘} .[:,gj.l_} = i - < ? > s
ArZ" (D, (ré)>(e)

e=»(#,A) an infinite volume state with Dirichlet b.c., describes

a w-dimensional Coulomb gas in the presence of mminfinite, planar
dipole layer located on the jjﬁI = 0 plane. We wish to estimate
the effective potential

P, (f)= --?‘é{ijéf;fl}%‘ (3,2). (3.14)

In vacuo, the graph of W¥ as a function of m = j¥ is as shown

in Fig.3.




1f the particles in the Coulomb gas form a perfect plasma the graph

of wv has the shape displayed in Fig. &,

¥r 4

e

= o

Fig.4

and #Ti_'m] — 0 , exponentially fast. (3.15)
jmf e

Doe way of analyzing transitions in the three-dimensional Cou-

lomb gas in domain O of Fig.2? is to investigate the behaviour of
.p*im} for different values of (8,z) . It seems likely, that one
can prove (3.15) in the domain of convergence of the cxpansion of
[10,11] . (For the Villain gas (2.3) a preof is actually simple).
Qutside domain 1, #T{l} may approach 0 only like some Inverse
power of Fu[ ¢ [or have the shape shown in Fig.3). We have no
idea of how to prove this. It is more rewarding to replace ¥ by

=iy and =-i4(j)} by &(j} . One then considers the functiom

?.;&, (m) = f{g <"F5 f’-}m‘}éq [}a,l) (3.186)

which is real-valued. For the Dirichlet b.c. state of the Villain
gas in the thermodynamic limit, the graph of **i? is just as
shown in Fig.4, with #_h{m}—l’ 0 , exponentially fasc, provided

F 1z small enough. |‘|"

Howewer, there are indications that
i& : {’.,HJ__;. +3- a3 m—>r F oo {3.17)
-.,taﬂ - r

if B is large. This phenomenon would be the analogue of the

roughening transition in the three-dimensional Ising model [18] .

In two dimensions, (3.17)} is the expected behaviour for all & ,

but the surface tension, positive for small @£ , is expected to
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vanish for large £ . Thne functions ¢ (m) and

iy
‘ot (@ (m)— @(=m)) .i,}
e (B
-""I
have nice phyeical interpretations in the three-dimensional Villain
gas in the ¢-representation (i.e. the "discrete Gaussian model"),
and, for vy = I/E , in the dual U{I) lattice gauge theory. (In

the Coulomb gas only ¢, » resp. cpiml#(m)=¢(-m))

31{3.11 have a
natural, physical inmterpretation). These matters will have to be

discussed in more detail, elsewhere.

I¥. The Kosterlitz=Thouless Transition in the Two=Dimensional Cou=
lomb Cas.

In this section we briefly sketch a rigorous argument [15]
establishing the Berezinski-Kosterlitz-Thouless transition [19] in
a class of models, including the two-dimensional Coulomb gas, the
plane rotator and higher dimensional, abelian lattice gauge theories.

The main idea is to use the sine=Gordon ($=) representation
to rewrite correlations im the Coulomb pas as convex combinations
of correlations in dilute gases of neutral multipoles of variable
gize, at random positions. Such gases are known not to exhibit Debye
screening [3,15) . Here we study the behavieur of the fractional
charge correlation G(x) defined in (2.15) which we discussed al-

ready im Seetion 111.1.

Our aim is to sketch the proof of (1.10), 1.e.

P < Glx)< & (4ex1) " (4.1)

- 1
for some ¢ > 0 , provided =z < e B

and # » Bc » for some

' >0 and B, <= 3 (a and b are finite positive constantas).
We use the §-representation (2.11), (2.12), (2.1') of the hard core
gas : Thus A—-A{H.:} deénotes the expectation in the measure,

{signed for = = 1) ,

12



-
Zﬂ ;‘E‘n (1+2 cos(4)) ﬁf’/“ﬁiﬂ" (@), (4.2)

and we impose free (i.e. insulating) b.c.. The more interesting case

of Dirichlet b.c. is only slightly more difficulc; see [15].

The lover bound in (4.1) has already been established in Sec=
tion ILL, so we concentrate on the proof of the upper bound. We note
that, by the & -+ =4 symmetry of (4.2)

6, 6)= 23" [1,(4) duyy, (9, .3

whiere

L, (¢ )= cos #(ﬁﬁ?ﬁ%g (1+2cesd(4)),

(4.4)
with J.F“(;i-)'—‘ ﬂ‘f&i"n_é;g)} 0< r< 1.

Our proof of (4.1) is based on applying the following elementary
identities to I “.ﬁ] ;
a

(1+ K, cosac, (1 + K coset,)= 4,20 (1+3K, cos e,)

Kcmf 2
{4.5)
+ Y (1+3K K, cos (¢, £, )
Ems f
cosal, f’_fl"..".}fﬂinﬁﬂ-’ )=£_ 2 f'-r.-q:-s.-.:‘r .-r-,i:;;ﬂ.; (.,.f',a.f;_,:yl)]
- (4.6)
amnd
(Cosat # K, cos (e + o, N1+ £, nnﬂ,)
= fj (cosat, + .;i’,-i:.", cof r:t.',ip.ﬂ.f))
(6.7)

+ % 2 §(cosa, + 3K, cos (o +Ecty )) #
E=qs4

(cosad, + 3;{;.15:'! cos Ir'nﬁ-a'l""’":i* E oty }”’

EE
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A function p of finite support contained in A with values in

{#1,-1} is called a charge density, and Q{p)} = Ip(j) is the total
i

charge of ¢ ; p restricted to & proper subset of supp p is
called a constituent of p . A family of charge densities with dis-

joint supports is called an ensemble.

First (4.5) is applied to

Lo (#4)= 2 S @ f*‘iﬁig‘aﬂx.;g M{Hﬁ:f"’(’;‘,&.}fﬂ“?‘f’r")){n.nn

where ¢ -  each charge density p has support on
n £ " harge densi e8!

a single site, j{p) , where it takes the value 1,

U:n}[j{p}} = & ., and l{“}(u] - ,

33

1
The rules for applying (4.5) are as follows : Group all p's
in E:n} in pairs {pl.uzl supoorted on nearest neighbor sites in

21 apply (4.5)

(1# K(pr) cos dler ) (1# K s )eos (. )

The result is then inserced on tne r.s. of (§.8), for all possible

on otherwise arbitrary way. For a given pair {ﬂl'ﬂ

Lo

{Dl,ull o and the resulting expression is expanded out, This yields

I-ur.' Gél. J -Z EE i) fﬂsﬁé (e 4F{’-:‘.‘m‘ ;IE'EFE (I "Eﬁ%ﬁ} c"sfi {F-’!-i{ﬁ .9)
m i

with ':E'El'.l =0 , For all w , and each » on the r.s5. of (4.9) is

m c : ;
pupported on one site, with a nearest neighbor site empty, or on a
pair of nearest nelghbora and takes values :1 . Hotice that each
application of (6.5) to a pair (p

]+]Etn}{pl}ﬂia}(ﬂzltn!¢{ul—ﬂ

l.uz} produces a term,
1] , with the property that the total

charge Q{Hi‘ﬂz} vanishes. The density p° ¢ P10y is interpreted
as a neutral dipole. Another tera that i1s produced is

t+]Htu}{p1}E¢i¢{aj] which has the property that the charge by



has been climinated. Thus the resulting ensembles, Eill ; tend to
contain neutral dipole densities and tend te be sparser than Efu}+

This is a feature common to all subsequent steps in an inductive
pans i [ | : ing tho L densities pup’

exXpansion o u{‘h] During ¢ BLeps charge densitie [ gl

are combined to larger densities ptp' 4 with a chance of 172 that

the total charge is lowered, or one of the densities p,p' is eli-

minated which makes the ensemble sparser, at the prise of increasing

the unrenormalized activities, K(p) , by factors of 3.

(1)

In the next step, the p's in each E- are paired among

cach other or with uﬁpu: o and idencities (4.5), resp. (5.6) are
applied to all such pairs, the resulting expression is expanded and
¥iclds a class IE:?}} of ensembles derived from IE:I}} by combi=

ning densities p,p' , with dist{p,p") dist(suppp, suppp’) = 1 ,

L] "

to a larger demsity p2p' , reap. cancelling either p or p i

for all =" . After a finite number of steps, depending on an inte=

ger k= 1,2,3,..., in this inductive scheme one obtains

ZaCh)= Zas Toa o (12K (p)s$(p))-

am kﬁn (4. 10)
+
- (eos (e8p,, ) # K (o2, ) cos B (£ # <00ur))
where g 0, for all m , and each cnaemble E; is the union

£
(R TE luh"uﬁnvmhlrﬂ H: and iﬁ . defined a8 follows 2

Bafine the diaseter, dip} , of a charge density p in some
ensemble £ to be the smallest integer of the form
It. i = l,2,%,..., such that supp g can be covered by a single
square in ﬁg with sides of length d(ps) . Furthermore, dtn:} is

defined as the diameter of v +udg
[i1] X

k ; §
The sub-ensembles Hm are now defined by the properties

a) N3N
n.

k=1 0
m m
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b)Y each ¢ € HE is neutral, i.e. Qlp) = 0 ;

c) For all p.,p' in H: v o fa'
dist(p,p') 2 H min{d(p),d{p'))" , for some constants M > O
and a € (3/2,2) , e.g. a = 5/3 , to be chosen appropriately,
[15). { Here dist(p.p') = dist(supp p, supp p') ) .

d) disc(o,o") z WG)® | for all p €N and all 0" €15 . g

The expansion described between (4.9) and (4.10) terminates for
all p's in Hﬁ # for all m , because the p's im H: are meu-
tral, see b), and far separated from other charge densities, see c),
d).

The sub-ensembles J: are defined by

) Fawka-p , Fura-;
m . ] m m m

ii}) Ffor arbitrary densities p and " # p in Jz W
dist(p,0") 2 2",

for all = . Thus, k labels a distance scale. Identity (&.10) and

properties a) = d) , resp. i) = i1) are obvious for k = O ; and

we have already outlined how they are checked for k = 1 . In order
to do the induction step, k= k+l , we aplit J; into two disjoint
subsets, ﬁJi and *J: s Wwhere ‘J: has the property that, given
any o El:‘]:. + there exists some g" € J; , wWith

k. <k » k

dist{p,p') - Ik*i . We met hJ: - Jﬂ jm . Densities in J- are
scparated from other densitics in J: by a distance = Ek'I and
will participate in the expansion only on scales o Next, a

charge density p € 1]: is paired with some p* € {J: for which
. k]l
discip,p') < 2

applied to the factors labelled by (o.0") , and the resulting ex-

. Then identity (4.5), resp. identity (4.7) is

pression is expanded. This operation increases the activity of the
resulting density by a tactor of 3. Subsequently a new pair of den-



sities within distance < Ih+1 from each other is formed, etc...

After finitely many operations, (4.10) is recovered, with %k in-
creased to k+#1 . See [15] for details. By induction in % and a

series of combinatorial arguments one obtains

Theorem 1, [15] .

(1) -z;: rﬁﬂ), fu‘": EEH g}:wm”?: I’f+£(€)fus Eﬁ{{g» .
- (eos Bl Bou) + K@) cos (Bl 8,0 ),

L

where ¢, >0, for all m ; all p's in H. s except possibly
m

one density p = Pe which is charged, are neutral amd satisfy comn=

ditions b) = d) formulated above,

(2} For all iJ'E-H'n1.|.'ll'ﬂ i

- nip)
!{(la};; EIFIEEP[C'Z-ZA..({’)], (4.11)

where |u| = [Eutj}l i An{al iz the minimal number of 2" = 2"

J
squares necessary to cover the support of o , nfp) < :‘:nd{p]u o

and ¢, ¢' are finite constants independent of Hu .

(3) If some p E N contains a constituent ey such that

dist[nl.p—nlj > Emfpl}“ then qful} 0 . o

Remarks. Part (1) follows from (4.10) by induction in k , and
(1) is a fairly simple consequence of conditions b) - d) satisfied
by Hm « The hard part is (2) : Since, by condition a) above, each
Hﬂ is an inductive limit of a family t”:{m.hllkﬂl.z.li.,. ., each
neutral p € H- belongs to some HL , for a finite k . Thus, the
term 1+K{p)cosgip) is produced after a {inite number, N , of

applications of identiy (4.5). That identity then yields

i
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Kip) = zlnle , and a somewhat complicated estimate on N yvields

(4.11). {Samc comment op term labelled by p; } . The interpretation
oL

of the quantity ¢ * I A“[p} is that of an entropy of o . See

=g
also (2.36). For details we refer to [15] .

Hext, we note that

EE;H=’ u113;¢w1: {?ﬁl]’ﬁgﬁﬁdlf1fgh}l
ka} “!ﬂ ::-*I {iéﬂs}d{gﬁﬁﬁI?-fJﬂt}.

Since the algebraic structure of the expansion of Iutﬁﬁ} is inde-

(4.12)

pendent of o , the expansions of HA and zhﬁﬁ involve the same

H . p® and e . For free boc., the contribution of all cerms

m m H-

containing a factor H{nc}rnliinc] . n{hrl # 0, to the r.s. of
(4.12) vanishes; see (2.9). Thus

fI (ﬁﬂ}f/ﬂﬂyfﬁﬂﬂzc ! _f.‘ﬁ"” " I+£ﬁa}:uﬁ{'pﬂ
{4.13)
: (ﬂjﬁ{&ﬁfﬂ)f- ﬁf{f’: }cds;ﬁ({::: +d5€m))%rfgj

where all a's Im H; and u; are neutral, for all m .

dur goal is now te replace n (I+K{p)cose{p)) by a new
||E”"“1.'l
product m - m

F'—’fi,.. o {'.f+ 5(ep) cos@ (7)), (4.14)

where o is a renormalized charge density, and ©(p,A) a renorma-
lized activity, without changing the values of Eh and Z.G . An

A
essential ingredient in the proof of (4.1) is that (4.14) defines

a positive function of & . This is manifestly true if
Lip.B8) =1 , for all p € H; and all m . (4.15)

One of the main technical results of [15) is that ; can be chosen
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L]
such that (4.15) holds for z < e e y for some ¢' >0 , anﬂ!ﬂ

large enough.

The idea of the remormalization o =+ p is as follows : First,
we carry out the renormalization tramsformation described in Section

I1.2, (2.32) = (2.34). Mext, ler p E H; contain a charged consti-

tuent oy separated from ey by a distance > M . Then pl ig
replaced by a new charge density 7y concentrated near the surface
of a domain Il containing supp 1 but not intersecting

uupp{p-pli s in such a way that the electrostatic interactions of

) and Ul with PPy

This is achieved by a change of variables on the r.s. of (4.13),

and all other p' € H; are unchanged.

$Ljhe 1(]}'iﬂﬂ (i} s for some real function a - This is the

1 l
method of complex translations introduced in [20] . As a result,
E{plecossilp) is replaced by Exp[-E{E{ul}“E{ul]}]Kfp]tuaﬁiu1+p—nl},

where Ei(p') is the electrostatic emergy of o' ; see (2.4). In

erder to locate the charged constituents of some p € ”; + one
uses part (1) of Theorem 1. Let Sn{pj be a minimal collection of
2"e2" squares needed to cover p , and let S;Ep] be defined as

fse o (p): dist(s,s) 2 22", for all 4 s in &, (o)},

By Theorem 1, (3}, each s E SA{nl covers a charged constituent,
o of p ., The renormalization procedure described above is now
applied to S for each s € 5;{#} ¢ im such a way that SuppY

n+1_2nil

is contained in the interior of a 2 square covering & .

This permits one to apply the sume renormalization transformation
inductively on all length scales " +» 1 < m < nfp) . One obtains

Theorem 2, [15] .

For a = 3/2 , H large enough and for all m ,



K, ) <os Blomt % Bax) dptgy (#)
where /~ (ﬁ) -FEF? ['_f+ E(F;ﬁjmsgﬁ(p).} (4.16)

and

ea e/ 7 (p)
5(pp) f{['[a)-: e,?a E'PZ card &/ u’}:ﬂ %)

- - I

with " independent of Hﬁ =
We now sketch, how Theorems | and 2 are used to prove (4.15)

and the upper bound on G(x) in (4.1). First,one proves a combina-

torial lemma saying that, for a < 2 , there exists some "' > 0

such that
= (p) nie}
jlﬂ(’ +Z c-ra'(-ef (F))E ¢ Z A ({JJ (4.18)
with "' lndependent of H; ; BEE I15]
nip)
Moreover, E hn{p] 2 const.indi{s) . {45.19)
n=o

It now follows from (&4.17), (&4.11), (&.18) and (4.19) that for

r' .
E < ow B , for some c¢" » 0 , there exist constants c > 0 and

d « = pguch that

E(epn) = cx‘p[— (c'fs-d') £n J{F}]: (4.20)

which proves (4.13) for B » dfc . The inductive renormalization

transformation described above can of course be applied to

cos(dp ) amd cos{p®*+ép ) , too, for all m . Together with
X -} ox

(4.15), i.e. F_(4) 7 0, this yields
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EAGA (x) = Zﬂﬂr IF"_ f;ﬁ) (s’rasﬁ(ﬁl_f;;) +
gt cas?.’n{/.?: ’LJFuxJJ f-‘l;uﬁp- (¢)

(8'+5") [F,, (%) ity (#), w.m

A

whera

0< 5, 5" 5 exp[- (cpp-d)4n (],
and s min (ﬂr(ffﬂ J’d?({ﬂ:' + JE”)JE f.:rf’{i.u]

with O = :T ¢, for O «y <1 , (sgee (4.4)). It follows immedi-
ately from (4.16) and (2.9) that

S ) iy, (B) 5

S, (4)(t+ K(eh) cos $ (s ) d gy (#)= 2,

so that, with (4.21) and (4.22),

Z,6,(x) s 2 wp[-(qp-d)tnlxl] 2,

whichs for & large enough, vields (4.1), by taking A j'.EE . To=

gether with the material in Section 111, i), in particular (3.1)
and (3.7}, this completes the proof of existence of a Kosterlibz-
Thouless transition in the hard core Coulomb gas, as (B,2z) is

varied.

V. Other Models with Hnaﬁsﬂlitﬁrlbguleaa Transitlons.

Here 1g a list of models for which transitions of the Koster-
litz=Thouless type (as sowe thermodynamic parameters are varied)

are sstablished in [15] .

1} Hard core-, standard=- and Villain Coulomb gas in two disensions.

al



2) The two-dimensional plane rotator model. It is shown in [15] that,
for large enough B8 , ¢;;=;!1fﬂ} > l[1+[u[}_t , in zero external
field, for some finite ¢ . An upper bound with power fall-off was
previously proven in [20] . Some further results may be found in

[21] .

3} The two-dimensional En models, for m large enough : Existen-
ce of a massless phase for T_< T « T, » for some finite, positive

S

4} The two-dimensional solid-on-s0lid model, for which it is shown
e.g. that {I_"f{m-xp{::};lz} > atn|x| , ac sufficiently high tempera-

Lures.

5) A three-dimensional, non-compact lattice Higgs model (a Landau-
Ginsburg lattice theory) for which the existence of a transition
from a superconducting, massive to a massless QED phase is verified;
(see also [22] and refs.).

6) The [our-dimensional, pure U{l)=-lattice gauge theory : Break-
down of confinement for large B . This was first showm in [23] ,

by a more complicated argument.
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