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Abstract.

Some¢ of the main approaches towards an understanding of quark confinement
are described. One circle of results concerning the confinement of (static)
quarks at moderately strong coupling and the crossover between the strong
and weak coupling regime in four dimensional pure Yang=Mills theory with

SU(2) gauge group are summarized in more detail. In particular, the crossover
interval is located.

Some connections between our approach and a theory of non-relativistic

strings are briefly described.
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1. It is widely believed that QCD with an SU(3) colour gauge group
is a good theory of the strong interactions at energies which are not so
enormous that grand unification of the fundamental interactions or gravitation

(e.g. a complicated micro-structure of space-time) would become important.

QCD is an asymptotically free theory, so that at high energies
(réenormalization group improved) perturbation theory becomes reliable.
However, at small energies - i.e. large distance scales - QCD is far from
a conventional free field theory, perturbation theory is not applicable, and
to date there are no really satisfactory algorithms permitting to calculate

the low energy behaviour (hadron spectrum, ete.) of QCD.

Among the important qualitative features of strong interaction

physics at large distance scales which QCD ought teo explain are

(1} Quark confinement. (The quark fields which transform non-trivially
under the center Z -EJ of the gauge group ©G = SU{3) do not couple the
vacuum to physical one particle states. More generally, there are no physical,

asymptotic states which transform non-trivially under global transformations

in Z ).

{2} The known physical hadrons are "bound states" of two or three (but not
more) quarks, i.e. of the minimal number of quarks that suffices to construct

a state transforming trivially under 2 .

Clearly states transforming trivially under the center Z of G
may still transform non-trivially under "global gauge transformations" in
Gf/Z , i.e. they may have colour. However, their colour can be shown to be

screened by the colour of gluons, [1,2,3,4). (This observation contains



already half an explanation of (2) ).
In these notes we briefly sketch some approaches towards under-

standing (1).

2. We gimplify this task by studying a (by now standard) caricature

of the full theory, namely pure Yang-Mills theory with quarks put in as

external, static colour sources. This caricature is reascnable when one

studies the behaviour of a theory with very heavy quarks and retains some
qualitative, predictive power even in the case where light quarks are coupled
to the colour gauge field. Moreover, in the estimates presented below,

colour SU(3) is usually replaced by colour SU(2) . This is clearly am
unjustified simplification, but it has the virtue chat only the confinement
of q-E pairs (i.e. two=-quark bound states) needs to be studied and that

certain technical estimates simplify drastically.

3. We shall adept the Euclidean description of relativistic guantum

field theory. Euclidean space-time is E’ » with D the (space-time)
dimension, the gauge group is some compact, simple Lie group G (later om

= SU(2)) , and Z denotes its center.

Let {xiiiﬁf be a list of all unitary characters of G ,
and suppose "Zn is the character of a faithful, unitary representation of

G (the fundamental representation when G = (S)U(N) , W = 1,2,3,...).

Let .ﬂ. be the space of at least twice differentiable, oriented

loops [ree of sell intersections, (i.e. "ecircles™).

Given a classical gauge field, A , (a connection), let

F: welr> g, = P{exﬂ{ﬂﬁfdd’x‘"} e G

(1



denote the map from loops into parallel transporters; (g is a gauge field
configuration). It has been shown in [5)] that, in classical, Euclidean pure

Yang-Mills theeory, the gauge-invariant functions
{ Xo(30): we )}

generate a complete algebra of functions which specify A up to gauge
equivalence; i.e. they specify the orbit [A] of A under all possible

gauge transformations.

Thus, in quantum theory it is natural to try to associate a

(gauge=invariant!) "field operator” with each xﬁ (‘F”J (resp. all

x {;ﬂ-r) ; + & 4 ), where & is an arbitrary space-like loop.
i

Euclidean quantization consists of converting the functions

x‘_ [':'F”:'I inte random fields,

y., (w) = ﬂ(/z; (ﬁm)), (2)

where M stands for some "normal ordering” (see e.g. [4,6]), on the loop

:pnce.l].. The distribution of these random fields is supposed to be
given by a probability measure, d;,u. {'{A}} ; On some spdce, @ ;

of gauge orbits of all possible connections.

The properties of the quantum theory are coded into the sequence

of Euclidean Green's functions

Sal (s Yy @ [ X, Gy (o)A

-
(provided 'ZS“ }h-d " .S,p = { , can be shown to satisfy certain

postulates or axioms discussed in [7]).



Of particular importance for the understanding of the qualitative

features of the resulting quantum theory are the one- and two-loop functions

,S:, U‘; (w)) , 45; ("1';; (=, i yﬁ (CA U iy

,S; (_}.'; .['w,]') ’ )f} non-trivial on Z , yields information

on the q':i potential and consequently on the two-quark bound state spectrum

{in the limit of wvery heavy guarks): ’S; ('z;:: (:.Ij }_, ‘}g.l (""I ))
contains information about the low-lying mass spectrum of pure Yang-Mills

theory, [6].

4, Let CJ = m.f.r?' be the leop consisting of two "wvertical"
pieces of length T and two "horizontal"pieces, ?«i' (connecting O
to (L,0,...,0)) and Ff (connecting (0,...,0,7) ¢to (L,0,...,0,T)) .

See Fig. 1.

Fig. 1

The static q-q potential is defined by

a e {
V)= V, (L)= ot dim -2 nfs,(Y (0, )] w
(It may be regarded as an expression of some sort of "nuclear democracy"

that in a strongly coupled lattice gauge theory 3! (J:: (Mix?' )’ resembles

the transition function,



Pr (7, %) A

for the diffusion of a non-relativistic string [4,6], so that the (low—
lying) bound state spectrum of two very heavy quarks of mass I!-l{1 should
resemble the excitation spectrum of a mon-relativistic string, shifted up

by IM ) .
¥ q.'!

Seiler [B) has shown that

f’(ﬁ_}s const. Ji, as [ —> e, (6)

Suppose now that one couples quarks of mass g J‘f’, = Hir Lo
the pure Yang-Mills theory described abowve, with Hq rather large compared
to a typical (low energy) mass scale of the pure Yang-Mills theory. Let

"
V(L) still be givenm by (&), but now calculated im the full theory. )

One is entitled to expect that quarks are confined if

- L -
"E“EIH(WF )
< .._.'f_.. "
> Energy (W'-"ﬂ' it J (n
$ 7 >y ¥
-—-I:———--

vith L & M;i 3 £ = ﬂrﬁ;fj

Now, the contribution of the interactions between the two dis-
connected q-q pairs to the r.s. of (7) can be expected to tend to 0O ,

as | =% oo . Thus (7) holds if

") i Sy -
Thke correct definition of the g-q polentinl 18 more invol ved,



- -

=1
zH? + VL) > #MF_ + Viemst. My ), or

V(‘t.r'l > const. M} L :Tnnsf'.,l (8}

as L—*ﬂﬂ

In a non-abelian, pure Yang-Mills theory in J £ & dimensions

one hopes to prove

T;'(.{.)f'w: &g Lo e, (9)

or; more ambitiously,

I:’.[’)‘_J = :nnIf.L , &5 ,E,—"' s | (10)

But if dynamical quarks are coupled to the theory inequality (B) is the
best that can possibly be true, since breaking the string by the creation

of a q-q pair is possible dynamically !

However, if e.g. (10} helds for the pure Yang-Mills theory one

may be confident that (8) holds for Hq large.

5. In the remainder of this note we review arguments in favour of
(10) for a pure 5U(2) Yang-Mills theory in (D% ) 4 dimensions and

digcuss the crossover between strong and weak coupling in the behaviour

of W{N}l ‘sf [‘/}"; {’H,J) ; (for ‘z; non~-trivial en Z ).

There are various appreoaches to this preblem of which we mention
three; (the 1/N-expansion, approaches based on consideration of gauge-
dependent Green's functions, e.g. the gluon propagator - sce Mandclstam's
contribution = high tespeérature cxpansions and numerical results are not

included in our review).



{A) The "topological™ approach, [9,10] (and [11]).

We shall (for simplicity) suppose that the gauge group G is

simply connected and has a discrete center.

The topological approach is based on analyzing the statiscical
mechanics of excitations in the gauge field configurations g , analogous
to the defects in ordered systems of bulk matter, which can be characterized

by topological properties.

In a four dimensional, pure Yang-Mills theory such excitations

fall into two classes @

{Al)} Instantons, labelled by the elements of ?fs (ﬁ) . the third homo-

topy group of the gauge group G . Instantons are analogous to point defects

in a four dimensional ordered system. By themselves; they cannot cause
confinement of static quarks in the sense of inequalities (9) or (10).
(They may however yield significant corrections to perturbation theory.

See Callan's comtribution).

The main significance of instantons is that the structure of the
physical vacuum depends on their statistical properties in an important
way, (@ -vacua, [12]). Moreover, if the "activity” (the statistical weight)

of instantons is sufficiently large they can cauwse a two-fold vacuum

degeneracy at g=r which can be understood in terms of “wall defects”.
The order paramcter is given by the "instanton density"(ec #&r Fix) F(x) ,:l

This has first been noticed in [13,14].

(A2} Vortices, labelled by the elements ol ?r_‘. (G/{!) » If G is

simply connected and Z discrete then



F{(%)nn;fZ)-Z. (1)

Vortices correspond to codimension 2 defects, i.e. sheets for D= & , line
defects for D=3 , and for D= 2 point defects ( = two dim. "instantons".
When D=2 the vortices also give rise to a vacuum angle ] , Wwith

E."-EE Z , and a two-fold vacuum degeneracy at =7 . [13,14,4]).
Vortices are expected (and can often be shown) to play a very significant
réle in the mechanism causing confinement of static quarks, in the sense of

inequs. (9), (10); [9,10,15]):

(i} In two-dimemsional theories the statistics of vortices causes permanent

confinement by a linear potential; [16,14,17).

{ii) In three-dimensional U{K) ctheories, N = 1,2,3,..., the statistics

of vortices yields permanent confinement by a potential growing at least
o

logarithmically, (V(L) Z const. log L , as L—+oo) ; [10,17]. These

results are rigorous for lattice gauge theories.

(iii) Mack and Petkova have shown [10] that condensation of vortices, (i.e.

the probability that gauge field configurations, g , contaim vortices is

large and essentially independent of their length (D = 3) , resp. surface

(D= 4)) implies linear confinement. In order to make this precise we

consider a lattice gauge theory :

Let /L be a D-dimensional, connected region in Euclidean

space~time with the property that the boundary aﬂ is homeomorphic to

W = ¢ x2

where f can be interpreted as the locus of a closed vortex sheet homeomorphic



= O =

Lo SD-! and z is homeomorphic to 5] . {In [10] such regions J’H!L are

called "vortex containers"). Let }h‘l be some fixed gauge field
configuration on 3 s let Z. {‘?M} be the partition function of
the theory confined to A wieh given boundary condition }33‘1 , and
let Z: (} ;ﬂ) be the partition function of the same theory but

with a vortex labelled by z & 2. added in the interior of f'l- .

Lot

F;: (faﬁ)= Zr.. (fa‘i)[;’zgz Z" (?M)] _j-’ (12)

Lr:tz be the character of a representation of © which 15 non=trivial om

Z . Define

i (f'&.ri) = ZZ X{z} 'a (‘?M) ; (%

Suppose now that, for )’Ef {= length of ,Z } large enough,

A
sup /P.I (jm)/ g 5 =4, (14)
uniformly inA » provided Jlré-’.‘[ (= gurface of § Y} is sufficiently large.

Then

I:’l(f_)g eonst. L, as L= =, (15)

(1f 5w f.% (fm J/é exp f—i:.nh.rf. d’t’ﬂiﬂ.{é-)-r}" {16)
E

tor diam I:f} large enough, then

Ii,{f.) > const f?:. i; as [ —= oo, ) .
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These results (vhose proofs are quite simple) are contained in [10]; see

also [9] .

For lattice gauge theories with gauge group G replaced by
Z (i.e. by a finite abelian group) it has been showm that if the probabi-
lity that a vortex (of "thickness" 1 ) of length n (D = 3) , resp.

surface n (D= 4) appears is bounded above by
Exp{—Hn]' . £17)

with K sufficiently large {depending on D and Z) then

Pﬂf’ﬂ) < const., for all L. (18)

For finite, abelian gauge groups and D &3 , (17) and consequently (18}
are known to be true when f5 e ﬂ#g;l- is large, i.e. at weak coupling,
&

see [11] , whereas (14) (and hence confinement) is valid for small fﬂ .

: A)
A general formulation of the statistical mechanics of defects

is presently being developed. (See [6,11] for a preliminary aceount).

In three dimensional theeries the behaviour (17) is usually
associated with the appearcnce of super-selection sectors labelled by a

-
topological charge, Q - Z s (the character group of 2Z ).

More generally, the existence of non-trivial super-selection
sectors labelled by topological charges in a gauge theory is associated,

in the Euclidean formulation, with topological line defects labelled by

the elements of a homotopy group ﬂfh_ﬂz and a non-zero statistical

weight o< exp {— const, x -fgn;f".l{j ;

In four-dimensional theories these defects correspond to the "t Hooft-Polyakov
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magnetic monopoles which appear only in theories with matter fields,
because ?r: of a Lie group vanishes. The mass of a particle in a sector
with non-zero topological charge can be bounded below by a quantity which
measures, roughly speaking, a free emergy per unit length of an infinitely

long line defect and which generalizes what one knows as surface temsion

in two-dimensional scalar theories with solitons, [18]. If that mass tends
to 0 , those particles condense and the corresponding topological charge
gets confined. (A general analysis of such sectors in terms of "duwal alge-

bras" may be found in [19]).

(B) The "string" approach [20,21,22]

The idea of this approach is that at large distance scales {low
energies) QCD moy approach a kind of "non-interacting asymptote"™. Of course
this asympiote cannot be a local free field theory. However, it is Eeasible
that it resembles the dual rescnance model, i.e. a theory of a free, rela-

tivistic string.

In order to substantiate such an idea one must first attempt to
develop a Euclidean formulation of string theory. Here one meets Serious
difficulties, [23], presumably related to the existence of tachyens in the
standard fnmtatinn?}ﬂwnr:hclcn one can write down formal Schwinger-
Dyson equations for n-string Euclidean Green's funcrions [24] and try to
compare them with Schwinger-Dyson equations for mn-loop Euclidean Green's

functions of Yang-Mills theory (scaled to large distances). ©

In pure U(N) lattice gauge theory, the Schwinger-Dyson

equation for }t’r (w) = ,5-;_ f’.yn rf""-"'-” has the following form :

Let f be a link (nearest neighbor pair) through which an oriented loop,

& , passes. Let p be some plaguette, and ﬁ'p denote the oriented



= ]_3 -
~f 1
boundary of p and f::'i‘p} the same four-link loop as :jp i

but with orientation reversed. Suppose Ep contains -J « We then define

LA 'af and e (Bpj_f by the folloving diagrams

P wedp

-

t
..--"'"'".' '.
g fl\
£
2 - '

H wu(aFJ
Fig.
Then the Schwinger-Dyson equation for W{{d} is [21] "
Viw) = ‘E- pza:.g { W(wedp)= W (we(ap))} (19)

tL 3 b (wf0l0") S, (Y, @), Yulw").

# oyl
e, o

The last term on the r.s. of (19) is a "contact term” :

T

%.Ifﬂ fe “J l-*') vanishes if & traverses J only once,
Eﬂ, (ﬂ'fﬁi:ﬂ”) = f if @' and @ are two {disconnected)loops
with the property that if -ﬂ is joined twice, with different orientation,
to &' and H#nne obtains the loop & .
{(We note that w! or m# may be empty, in which case SE

is replaced by S, in the last term on the r.s. of (19). The "contact

term"” is absent if & is free of self-intersections).

*) Here we pust allow & to have self-intersection.



L F R

Equation (19) is a simple consequence of integration by parts in
the functional integral expression for ﬁv‘r{'w) . Similar, coupled equa-
tions can be derived for ,5; (}: {ﬂf_,:; . ';J";. fr,-:,_;rn ,])J n 2z 2 F [21].
Eguchi [21] has argued (using the non-planar character of &le {'E‘p,}“f and
the factorization conjecture) that, in the N—+ oo limit, (19) approaches
the string equation, (after rescaling F }. This is only correct modulo
contact terms, unless at the same time an N —> oo limit of string theory

ig taken.

We note that, for small ﬂ M W {'m) Fulfills a sEring
equation, up to errors of ﬂ (Iﬁl‘) . Thie follows easily from

exp {BRe(3)} = 1+ AReX(p) + B wwall, by taking

conditional expectations.

If in the functional measure of the lattice theory [25]
exp fﬁﬁg;{’{:’} _Jj' is replaced by f+ﬁﬁ:ﬁf}a},) , Eor
all plaguettes p , 'H.i.th ;’3 /’{ f'f} , {which is compatible with
the existence of a positive—definite transfer matrix) then the class of
random surfaces labelling terms in the high temperature expansion can be

described explicicly.

These observations were used by the author as an argument in
favour of the claim (Polyakov [21]) that Yang-Mills theory and the string
theory have the same asymptotec, as :ﬁ ¥ @, (i.e. in the strong coupling

limit or, hopefully, at large distance scales), resp. llﬂf w 0 ; see [4].

Some time ago (Cargése '79), we proposed to look for a kind of

"spectral representations” for .S.f (yf;.: ;F‘J and .51 {’_}*} (ﬂi }’_. yg {f'-"; /’)

that would provide general information about the possible behaviouwr of Yanp-

Mills theory at large distance scales. An amsatz [or ..% {jﬂ"fu}} compal il
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with the string equation has been proposed by Polyakov [21], but there are
no general results, yet. In [4,6] ,5; .["]f" {’H J_.;' , with & as in
Fig. 1 and G = 5U(2) , was related (for small {'6 )} to the transition

function of a non~relativistic string, whose behaviour can be studied

explicitly.

Subsequently, Luscher [22] argued that the string equation for

Ef (y{’m‘}) would imply the area law. (He nmeglects however contact

terms in that equation).

A more detailed and ambitious program for understanding the
relations between Yang-Mills and strings is being pursued by Gervais and

Neveu [20]) to whose contribution we refer the reader for more details.

&, Next, we discuss a third approach to the study of confinement
based on an "expansion in random surfaces". These surfaces can be thought
of as describing the history (or trajectory) of a nom=relativistic, open
ended string, with end points tied down at 0 and £ = l,’.i., @, 0)
in a4 time = rxn-,] interval f:?_, T} «» L.e. the surfaces are made

out of intermediate states of that strimg.

(C) The "string history" approach, [4].

The starting point is a rewriting of the pure lattice Yang-Mills
theory, with a gauge group G , on En in terms of a product (extending

ever all values, u , of ).'n ) of non-linear G X G & -models on the lattice

D=1

2 in random external gauge fields.

A gauge field configuration g is given by a collection {;rj}

of group elements E'r_r € G attached to links xy (ordered pairs of



- I8 -

nearest neighbors) im RD whose a priori distribution is given by the

Haar measure, dgw s on G . Wilson's action [25] is

YN
AL =-2 ke X (g ) (20)
ol ¥
,ﬂﬁ
and the Euclidean functional measure, ﬂ!;g.c. . i8 given by

iz = AT ‘
du(3) = £ ‘e Sl ‘F)??"ﬂrﬁ 21y

ry ¥

where B 1is the partition function and f.g#_: ﬁ -2 . Let

_‘_‘} = fu-- d;# l-‘;g'_] denote the expectation with respect to ﬁ.';,u.

We now introduce horizontal and vertical gauge fields, namely

E}I}I' - 3 ]'Iij{'l-l-}  for == (i,u) , ¥y = (J,u) ,
(22)

3“ - ui{u} , for x = (i,u) , ¥ =(i,u+l) ,

vith i,j in 27}

We define an (auxiliary) action

=-Z Re}f{'ﬂ:qé‘;p&f ) (23)

”EJ -IEE

and a probability measure

Z e e Ai"L’H v)

[ 3
dp 9 1!-,! (4,¢) T dy, o

<

*) We take it forgranted that the r.s. of (21) is constructed as a limit

of measurecs with space=time {wlw]rutnl’l. Some limit always exists [4].
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with h: &= G ¥ i:I!.llir the Haar messure on G , and fﬂ,f}éﬁﬂ ﬁ

We set
ff.—.)‘{’&,i-) = f——- a.’fﬂr;j (v). (25)

Clearly, (23) is the action of a G % G non-linear & -model in an

D=1

external gauge field (b,t) on the lattice Z , aod (24) is the corres-

ponding Euclidean functional measure.

It follows directly from (20), (22) and (23) that

AM(g)= 5 (A" (hiw)

=1
+ A niuay A I

This idemtity, and {21) and (24) wield

o g ™ st
du(zg)=2 “Eﬂ{exﬁz:!sﬂﬁj_f (% ( J)]t:fﬂ-d{;f (as)

(27)

e
: Zfﬁr'ujﬂm*b!? d‘{?ﬁ&’— SR (wrt)) (v («)) .}

-1
Given an oriented path 3"‘ [ Z » let

A= T D4
7 Yer G
denote the path-ordered product of hij‘s in G alun,g,;'i ; 1.2. the
parallel transporter associated with 3"- « Let U be a unitary representation
of G of dimension du, s With character ﬁ:n . let W= &) be the

IxT
oriented loop depicted in Fig. 1, with bottom part 3‘_ and top part F} .
€



We define the matrix elements

B, . = Ulh, («=0))

HI m#
b |
and ;i"' = U(,{ (-u:: TJ)
i Wy Ry
Let .... = {(ﬂ#;mg ) }“d o be a sequence of labels of
matrix elements; “l.l"mu B L dU . Clearly

rr

Xk )= 2 B T

(z8)

--".rn-

yr{yr;;(ﬁ)'f)h RACACVN }

B ald .u -u'-r.l' b

where 0 = (0,...,0) , 4 = (L,0,...,0) ; see Fig. 1.

It follows from (25), (27) and (2B) that

5 fJf (”MT‘U= <;’T (ﬁ‘ﬂ“?_),>i;g (29)
- Y
= Z Z fﬂ- {E‘ ﬁdﬂ‘ra{fuﬂzﬁfh.»!{fﬂﬂﬂif‘{’{# (“"}}'

o R

B T { U, Uy, . SRGIAG1)

™% ’"f”? = set s

— 3 T I|||' < =f > >V’l
Z Boum, Ty KU, VG, SHEIRG)
Identicy (29) and various genmeral cun!EQthcE! :unt&rn;ng Eﬂnfineuent hawve

been found in [4] . In particular, if for some oL >0

/(U(P’ 'f)] U{F >(I5f)/5 canct & nf-.l'_, £50)

uniformly in (b,t) , then
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r -—-«l'T
f%(}ﬂ(ﬂtﬂ-.u/‘__: cornst. € , e

(31)

FL) 2 ol es Le

Inequality (30) implies that U , and thus :xn' are non-trivial on the center
&
Z of G [4] . In[4 i ={
o ; L4 n [4], an expansion of <U(lﬂ; )* U(;ﬁ)ﬁ} ﬂ,ﬂf}
in terms of random paths, a‘* y joining 0 to {_',' has been developed for

G=UN), Oo(N), N=1,2,3,..., and G = 50(2) .

For G = SU(2) and‘l’-;[' the isospin 1/2 character,our expansion
]

has the following particularly simple form :

CUC s Ut D7 (4,8)

(22)

e ~lp/-1
=ﬁﬂ.r§ , Go-g Ul b)) T3 ) s £, (6¢)

Here 7* is an arbitrary, connected path of links in z 71 starting at 0
; =1
and ending at ‘Lﬁ ; J" is the same path, but with reversed orientation

(i.a. J"hf.' {’—P o ) B fg"! is the number of links in ?"

{counted with multiplicity), and
|
Falbt)= 2. Z4e (r),

where !{h ﬂfa"} is a certain path-dependent partition function;

see [4].

Let J‘ﬂ be a path in Hﬂ = EII’=-¢{}' Etarting at
+
(0y...,0,u) and ending at (L,0,...,0,u) , and let 3“'_“ be the same

path as 3" but pushed up by one step to the hyperplane H . We set
)

utl

+ -1
o= By o Ypm Vr.
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+ —
Finally, let fﬂd-.l" o 3"‘ o be the loop obtained by
i
composing 3"“:: ¢ with ?ﬂ# !

From (29) and (32) we now obtain the follewing remarkable,

exact identity :

JH ,;E: TLI ' Y e f

Alfo,, 00, = &, & T, B (2(0-1))

(33)

.E:; yM
. <ji¢ i@ﬂ(qf(«),#f’-wfy,zﬁfﬁ;ﬂ: 1)};{ (ﬁ; ;T’>

The r.s. can be interpreted as a sum over intermediate states,
' ; ¥ J‘T_ (i.e. a history ) of a non-relativistic string
with initial state 3"‘ . BE xﬂ = 0 , and final state 3" g @t
£ F

¥ =T . (This is justified even semi-quantitatively when fsﬂ- 15 smallj;

[4,6]).
In [4] the following estimate on F has been established :

&

"In measure™

¥

05 F, (Ala) Rlart))s exp [~ 7, 1] | I

with

e 5w Oh [(zﬂ—.i)[’f?—f)(’#ﬁ—#-)-%,,]‘
Thus, when ﬂ=3, of >0 -r'f ;"Sn{#’/.ﬂ;

{35)

and when ﬂ: 41., el > O ".f! z,g‘ == ".5""4___
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From (34) and straightforward combinatorics we obtain

_’J?:n J;"'f — '-L
Z (2 (3-!,’) {"; af‘-‘ﬂ’}‘,ﬁ{ﬂ*fﬂ"é consSt 2 & ,(38)
Fro»pf o

i.e. the & -model two-point function satisfies inequality (30); see (32).

Thus, if of > O the trivial estimate

[ (ﬁ}.,p ot )/ = o (37)

is sufficient to prove (31) , i.e. confinement. However, from [26] we infer

that for D= 41, (é;f")= {fx_f) and ﬁ'.} L.04

-/r/-1
Z {(ﬂ(ﬂ'f}) F‘;"(&Jf‘)i const, > II?’ (38)
r:0—

i.e. the two-point function of the three-dimensional, non-linear & -model
has long range order. In [4] arguments have been discussed which suggest that
{38) ramains true for a large class of (ij)aé (f‘, f) ., when

jda::" f of . {In the case G = U(1) , (38) follows from a result

of Guth [27] for large ;‘Gn ). Therefore inequality (37) is too rough
to prove confinement at values of fﬂ-& for which the three-dimensional
€-model has long range order. (It would give the perimeter law). In this
regime another mechanism of quark confinement takes over : The mean values

of "the random phase factors" /zﬂ (?futf Z ?‘:;") » b= O, T

may be so small that confinement follows again.

Thus (34), (35) and (38) lead to the conclusion that the

crossover between strong coupling (where inequalities (30) and (34) hold)

and weak coupling (where confinement must be due to cancellation of random phasc




--II_

factors) for D = & must take place at () & q/jn < f (i.e.
16 ':'.'/5 = 2’@ s 2 ) , in excellent agreement with numerical
! e

results.

Elaborating on [4] we have recently derived a series of estimates
based on (33) for the behaviour of the average of the random phase factors :
In the average (with respect to "_";“‘ J one has, for example ,

A A Vr.pot Vo-1
Ir';i-/?:.. (ﬁﬂ' :'?"_f)é /7 (‘Eﬂﬂﬁ!t .E/ga) 2 (39)
ks e e =g

which 1s valid for all ﬂr- {Here ﬂrn {r‘]ufﬂ is the length of the symmetric
difference of ' and 3" } .

1f /ﬁn < 'F,':,'- ig sufficiently small, and on the r.s. of
{33) one replaces the Fr

¥ I
3 s by the r.s. of (34) and the %p (gr;-.f #;u-IJ i

by the r.s. of (39) one obtains an expression closely related to the path
space representation of the transition function FT (?;_ : Tf) for

the diffusion of a non-relativistic string , [4,6] .

In conclusion, I wish to thank D. Brydges, B. Durhuus, G. Mack
and E. Seiler for pleasant discussions and E. Brézin, J.-L. Gervais and
G. Toulouse for inviting me to participate at the Les Houches workshop and

convincing me to write lecture notes, (which they might now regret).

Notes

A) By this we mean the equilibrium statistical mechanics (and diffusion
theory) of a gas of interacting defects, labelled by elements of homotopy
groups. It looks promising to try to describe such gases by effective,
generalized lactice gauge theories; (seec e.g. B. Julia and G. Toulouse,

J. Physique-Lettres 16, 395, (1979), [6,11].)
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B) D. Weingarten considers "Euclidean" lattice string theories, parametrized
by matrices, uﬂr , attached to links xye ED . The a priori distribution
of lejr is Gaussian, the action consists of a sum over terms coupling four
’Uw'l , Xy 9p . An alternative proposal studied by the author (unpubl.)

consists of assigning to each link xy a matrix with anti-commuting (Grass-

mannian) matrix elements. This eliminates the patheleogies found by Welngarten,
but it is not clear, vet, whether the resulting models are good approximations

to lattice gauge theory.

C) There is an alternative approach to relate Yang-Mills-to string theory,

inspired by a suggestion of Nielsen and Olesen : In a four-dimensional gauge
theory one could try to relate the vortex sheets bounded by a "t Hooft loop
[9] to histories of relativistic strings. This might be promising in a phase

of some gauge theory (with matter fields),vhere ZI-monopoles are confined.
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