
SOME COMMENTS ON THE CROSSOVER BETWEEN STRONG AND WEAK 

COUPLING IN SU(2) PURE YANG-MILLS THEORY* 

Jürg FRÔHLICH 

Institut des Hautes Etudes Scientifiques 

35, route de Chartres 

F-91440 Bures-sur-Yvette 

Abstract. 

Some of the main approaches towards an understanding of quark confinement 

are described. One circle of results concerning the confinement of (static) 

quarks at moderately strong coupling and the crossover between the strong 

and weak coupling régime in four dimensional pure Yang-Mills theory with 

SU (2) gauge group are summarized in more detail. In particular, the crossover 

interval is located. 

Some connections between our approach and a theory of non-relativistic 

strings are briefly described. 
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1. It is widely believed that QCD with an SU (3) colour gauge group 

is a good theory of the strong interactions at energies which are not 80 

enormous that grand unification of the fundamental interactions or gravitation 

(e.g. a complicated micro-structure of space-time) would become important. 

QCD is an asymptotically free theory, so that at high energies 

(renormalization group improved) perturbation theory becomes reliable. 

However, at small energies - i.e. large distance scales - QCD is far from 

a conventional free field theory, perturbation theory is not applicable, and 

to date there are no really satisfactory algorithme permitting to calculate 

the low energy behaviour (hadron spectrum, etc.) of QCD. 

Among the important qualitative features of strong interaction 

physics at large distance scales which QCD ought to explain are 

(1) Quark confinement. (The quark fields which transform non-trivially 

under the center Z = ZZ3 of the gauge group G = SU (3) do not couple the 

vacuum to physical one particle states. More generally, there are no physical, 

asymptotic states which transform non-trivially under global transformations 

in Z ). 

(2) The known physical hadrons are "bound states" of two or three (but not 

more) quarks, i.e. of the minimal number of quarks that suffices to construct 

a state transforming trivially under Z . 

Clearly states transforming trivially under the center Z of G 

may still transform non-trivially under "global gauge transformations" in 

G/Z , i.e. they may have colour. However, their colour can be shown to be 

screened by the colour of gluons, [1, 2, 3, 4]. (This observation contains 
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already half an explanation of (2) !). 

In these notes we briefly sketch some approaches towards under-

standing (1). 

2. We simplify this task by studying a (by now standard) caricature 

of the full theory, namely pure Yang-Mills theory with quarks put in as 

external, static colour sources. This caricature is reasonable when one 

studies the behaviour of a theory with very heavy quarks and retains some 

qualitative, prédictive power even in the case where light quarks are coupled 

to the colour gauge field. Moreover, in the estimates presented below, 

colour SU (3) is usually replaced by colour SU (2) . This is clearly an 

unjustified simplification, but it has the virtue that only the confinement 

of q-q pairs (i.e. two-quark bound states) needsto be studied and that 

certain technical estimates simplify drastically. 

3. We shall adopt the Euclidean description of relativistic quantum 

field theory. Euclidean space-time is , with D the (space-time) 

dimension, the gauge group is some compact, simple Lie group G (later on 

= SU (2)) , and Z denotes its center. 

Let xi} i e I be a list of all unitary characters of G , 

and suppose χ o is the character of a faithful, unitary representation of 

G (the fundamental representation when G = (S)U(N) , N = 1,2,3,...). 

Let Ω be the space of at least twice differentiable, oriented 

loops free of self intersections, (i.e. "circles"). 

Given a classical gauge field, A , (a connection), let 

g
 : w ε ε Ω —> gw = P {expfwAµ (x) dxu} ε G (1) 
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denote the map from loops into parallel transportera; (g is a gauge field 

configuration). It has been shown in [5] that, in classical, Euclidean pure 

Yang-Mills theory, the gauge-invariant functions 

{χo (gw) : w ε Ω} 

generate a complete algebra of functions which specify A up to gauge 

equivalence; i.e. they specify the orbit [A] of A under all possible 

gauge transformations. 

Thus, in quantum theory it is natural to try to associate a 

(gauge-invariant) "field operator" with each Xo(g w) (resp. all 

χi (
i є I ), where w is an arbitrary space-like loop. 

Euclidean quantization consists of converting the functions 

Xi (g w)
 into random fields, 

(2) 

where N stands for some "normal ordering" (see e.g. [4,6]), on the loop 

space il Ω. The distribution of these random fields is supposed to be 

given by a probability measure, dµ ([A]) , on some space, o , 

of gauge orbits of all possible connections. 

The properties of the quantum theory are coded into the sequence 

of Euclidean Green's functions 

(3) 

(provided , can be shown to satisfy certain 

postulates or axioms discussed in [7]). 
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Of particular importance for the understanding of the qualitative 

features of the resulting quantum theory are the one- and two-loop functions 

S1 (yj (W)) , S2 (yj1 (w1 ), yj2 (w2. )) 

s1 (yj (w)), χj non-trivial on Z , yields information 

on the q-q potential and consequently on the two-quark bound state spectrum 

(in the limit of very heavy quarks);
 S2 (Yj1 (w1), 

contains information about the low-lying mass spectrum of pure Yang-Mills 

theory, [6]. 

4. Let W = wLx
 T be the loop consisting of two "vertical" L x T 

pieces of length T and two "horizontal" pieces, f
 i
 (connecting O 

to (L,0,..., O)) and yf (connecting (0,...,0,T) to (L,0,...,Ο,Τ)) . 

See Fig. 1. 

Fig. 1 

The static q-q potential is defined by 

(4) 

(It may be regarded as an expression of some sort of "nuclear democracy" 

that in a strongly coupled lattice gauge theory s1 (yi (wLxT)) resembles j L x T T 

the transition function, 
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f>T(r<>rf) (5) 

for the diffusion of a non-relativistic string [4,6], so that the (low-

lying) bound state spectrum of two very heavy quarks of mass should 

resemble the excitation spectrum of a non-relativistic string, shifted up 

by 2M ) . q 
Seiler [8] has shown that 

V(L) < const. L , as L→ ∞ . (6) 

Suppose now that one couples quarks of mass M = M-g to 
g r 

the pure Yang-Mills theory described above, with Mq rather large compared 

to a typical (low energy) mass scale of the pure Yang-Mills theory. Let 

X) 
V(L) still be given by (4), but now calculated in the full theory. 

One is entitled to expect that quarks are confined if 

"Energy 

> Energy (7) 

with 

Now, the contribution of the interactions between the two dis-

connected q-q pairs to the r.s. of (7) can be expected to tend to 0 , 

as → ∞ . Thus (7) holds if 

*) _ 
The correct definition of the q-q potential is more involved. 
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2Mg + V(L) 4 Mg + V (const. Μg-1 ), or 

' 

V(L) > const. Mg + const.
 , 

(8) 

as L → ∞ . 

In a non-abelian, pure Yang-Mills theory in D < 4 dimensions 

one hopes to prove 

V(L) / ∞ , as L → ∞, (9) 

or, more ambitiously, 

V (L) > const. L , as L→∞ . (10) 

But if dynamical quarks are coupled to the theory inequality (8) is the 

best that can possibly be true, since breaking the string by the creation 

of a q-q pair is possible dynamically ! 

However, if e.g. (10) holds for the pure Yang-Mills theory one 

may be confident that (8) holds for Mq large. 

5. In the remainder of this note we review arguments in favour of 

(10) for a pure SU (2) Yang-Mills theory in (D < ) 4 dimensions and 

discuss the crossover between strong and weak coupling in the behaviour 

of W (w) ≡ S1 (Yj (w )) , (for
 χ

 j non-trivial on Z ). 
, 

There are various approaches to this problem of which we mention 

three; (the 1/N-expansion, approaches based on consideration of gauge-

dependent Green's functions, e.g. the gluon propagator - sec Mandelstam's 

contribution - high temperature expansions and numerical results are not 

included in our review). 
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(A) The "topological" approach, [9,10] (and [11]). 

We shall (for simplicity) suppose that the gauge group G is 

simply connected and has a discrete center. 

The topological approach is based on analyzing the statistical 

mechanics of excitations in the gauge field configurations g , analogous 

to the defects in ordered systems of bulk matter, which can be characterized 

by topological properties. 

In a four dimensional, pure Yang-Mills theory such excitations 

fall into two classes : 

(Al) Instantons, labelled by the elements of Π3 (G ) , the third homo-

topy group of the gauge group G . Instantons are analogous to point defects 

in a four dimensional ordered system. By themselves, they cannot cause 

confinement of static quarks in the sense of inequalities (9) or (10). 

(They may however yield significant corrections to perturbation theory. 

See Callan’s contribution). 

The main significance of instantons is that the structure of the 

physical vacuum depends on their statistical properties in an important 

way, (θ -vacua, [12]). Moreover, if the "activity" (the statistical weight) 

of instantons is sufficiently large they can cause a two-fold vacuum 

degeneracy at θ Π which can be understood in terms of "wall defects". 

The order parameter is given by the "instanton density ”(∞ F(x) F(x) ). 

This has first been noticed in [13, 14]. 

(A2) Vortices, labelled by the elements of ω (G/Z ) . If G is 

simply connected and Z discrete then 
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Π1 (G/Z ) = πo (Z) = z · (11) 

Vortices correspond to codimension 2 defects, i.e. sheets for D = 4 , line 

defects for D = 3 , and for D = 2 point defects ( = two dim. "instantons". 

When D = 2 the vortices also give rise to a vacuum angle θ , with 

iθ 
e ε Z , and a two-fold vacuum degeneracy at θ = π , [13, 14, 4]). 

Vortices are expected (and can often be shown) to play a very significant 

rôle in the mechanism causing confinement of static quarks, in the sense of 

inequs. (9), (10); [9, 10, 15]: 

(i) In two-dimensional theories the statistics of vortices causes permanent 

confinement by a linear potential; [16, 14, 17]. 

(ii) In three-dimensional U(N) theories, N = 1, 2, 3,..., the statistics 

of vortices yields permanent confinement by a potential growing at least 
o 

logarithmically, (V (L) > const. log L , as L → ∞ ) ; [10, 17]. These 

results are rigorous for lattice gauge theories. 

(iii) Mack and Petkova have shown [10] that condensation of vortices, (i.e. 

the probability that gauge field configurations, g , contain vortices is 

large and essentially independent of their length (D = 3) , resp. surface 

(D = 4)) implies linear confinement. In order to make this precise we 

consider a lattice gauge theory : 

Let Λ be a D-dimensional, connected region in Euclidean 

space-time with the property that the boundary δΛ is homeomorphic to 

SD_2x S1 , i.e. 

δΛ = Φ x Ξ 

where Φ can be interpreted as the locus of a closed vortex sheet homeomorphic 
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to SD-2 and is homeomorphic to S . (In [10] such regions Λ are 

called "vortex containers"). gδ be some fixed gauge field 

configuration on δA , let Z(g
 )

 be the
 partition fonction of 

the theory confined to A with given boundary condition , and 

let Z
 z (g) be the partition

 fonction of the same theory but 

with a vortex labelled by Z ε Z added in the interior of Λ . 

Let 

(12) 

Let be the character of a representation of G which is non-trivial on 

Z . Define 

(13) 

Suppose now that, for |z| (= length of Z ) large enough, 

(14) 

uniformly in Λ , provided |Φ| (= surface of Φ ) is sufficiently large 

Then 

(15) 

(If (16) 

for diam (Φ) large enough, then 

(15’) 
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These results (whose proofs are quite simple) are contained in [10]; see 

also [9] . 

For lattice gauge theories with gauge group G replaced by 

Z (i.e. by a finite abelian group) it has been shown that if the probabi-

lity that a vortex (of "thickness" 1 ) of length n (D = 3) , resp. 

surface n (D = 4) appears is bounded above by 

exp{-Kn} , (17) 

with K sufficiently large (depending on D and Z) then 

V(L) < const. , for all L. (18) 

For finite, abelian gauge groups and D < 3 , (17) and consequently (18) 

are known to be true when β ∞ g2. is large, i.e. at weak coupling, 

see [11] , whereas (14) (and hence confinement) is valid for small 

A general formulation of the statistical mechanics of defects 

is presently being developed. (See [6, 11] for a preliminary account). 

A) 

In three dimensional theories the behaviour (17) is usually 

associated with the appearence of super-selection sectors labelled by a 
Λ 

topological charge, Q ε Z , (the character group of Z ). 

More generally, the existence of non-trivial super-selection 

sectors labelled by topological charges in a gauge theory is associated} 

in the Euclidean formulation, with topological line defects labelled by 

the elements of a homotopy group ΠD-2 and a
 non-zero statistical 

weight oc exjb £— con&i. x 
In four-dimensional theories these defects correspond to the 't Hooft-Polyakov 
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magnetic monopoles which appear only in theories with matter fields, 

because of a Lie group vanishes. The mass of a particle in a sector 

with non-zero topological charge can be bounded below by a quantity which 

measures, roughly speaking, a free energy per unit length of an infinitely 

long line defect and which generalizes what one knows as surface tension 

in two-dimensional scalar theories with solitons, [18]. If that mass tends 

to 0 , those particles condense and the corresponding topological charge 

gets confined. (A general analysis of such sectors in terms of "dual alge-

bras" may be found in [19]). 

(B) The "string" approach [20, 21, 22] 

The idea of this approach is that at large distance scales (low 

energies) QCD may approach a kind of "non-interacting asymptote". Of course 

this asymptote cannot be a local free field theory. However, it is feasible 

that it resembles the dual resonance model, i.e. a theory of a free, rela-

tivistic string. 

In order to substantiate such an idea one must first attempt to 

develop a Euclidean formulation of string theory. Here one meets serious 

difficulties, [23], presumably related to the existence of tachyons in the 

B) 
standard formulation. Nevertheless one can write down formai Schwinger-

Dyson equations for n-string Euclidean Green's functions [24] and try to 

compare them with Schwinger-Dyson equations for n-loop Euclidean Green's 

C) 
functions of Yang-Mills theory (scaled to large distances). 

In pure U(N) lattice gauge theory, the Schwinger-Dyson 

equation for w (w) = s1 (y0 ( w )) has the following form : 

Let l be a link (nearest neighbor pair) through which an oriented loop, 

w , passes. Let p be some plaquette, and δp denote the oriented 
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boundary of p and (p') the same four-link loop as àp , 

but with orientation reversed. Suppose contains l . We then define 

w p and w o (dp) by the following diagrams 

Fig. 2 

Then the Schwinger-Dyson equation for W (ω) is [21] *) 

(19) 

The last term on the r.s. of (19) is a "contact terni" : 

δ (ω /w w") vanishes if w traverses only once, 
l 

sl (w / w w
 "
 ) = 1 if w

 '
 and w " are two (disconnected) loops 

with the property that if l is joined twice, with different orientation, 

to w' and w " one obtains the loop w . 

(We note that w ' or w" may be empty, in which case S
2 

is replaced by S1 in the last term on the r.s. of (19). The "contact 

term" is absent if w is free of self-intersections). 

*) Here we must allow w to have self-intersection. 
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Equation (19) is a simple consequence of integration by parts in 

the functional integral expression for W (w) . Similar, coupled equa-

tions can be derived for Sn (y0 (w1), ..., Y0 (wn )), n > Z , [21]. 

Eguchi [21] has argued (using the non-planar character of w o (dp)- 1 and 

the factorization conjecture) that, in the N—> ∞ limit, (19) approaches 

the string equation, (after rescaling B ). This is only correct modulo 

contact ternis, unless at the same time an N —> ∞ limit of string theory 

is taken. 

We note that, for small β , w (w) fulfills a string 

equation, up to errors of O (β2) · This follows easily from 

1+ B Rz X (g) , B small, by taking 

conditional expectations. 

If in the functional measure of the lattice theory [25] 

exp {B Re X (gdp)}
 is replaced by 1 + β Re X (gdp ) , for 

all plaquettes p , with β < X (1 -1 , (which is compatible with 

the existence of a positive-definite transfer matrix) then the class of 

random surfaces labelling terms in the high temperature expansion can be 

described explicitly. 

These observations were used by the author as an argument in 

favour of the claim (Polyakov [21]) that Yang-Mills theory and the string 

theory have the same asymptote, as B \ 0 ,
 (i.e. in the strong coupling 

limit or, hopefully, at large distance scales), resp. & \ 0 ; see [4]. 

Some time ago (Cargèse '79), we proposed to look for a kind of 

"spectral representations" for ( y (∞)) and S2 (y1 (w), Y2(w2)) 

that would provide general information about the possible behaviour of Yang-

Mills theory at large distance scales. An ansatz for S1 (y (w)) compat i bl e 
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with the string equation has been proposed by Polyakov [21], but there are 

no general results, yet. In [4,6] S1 (Yo (w)), with w
 as i n 

Fig. 1 and G = SU (2) , was related (for small B ) to the transition 

function of a non-relativistic string, whose behaviour can be studied 

explicitly. 

Subsequently, Lüscher [22] argued that the string equation for 

s1 (y (w )) would imply the area law. (He neglects however contact 

ternis in that equation) . 

A more detailed and ambitious program for understanding the 

relations between Yang-Mills and strings is being pursued by Gervais and 

Neveu [20] to whose contribution we refer the reader for more details. 

6. Next, we discuss a third approach to the study of confinement 

based on an "expansion in random surfaces". These surfaces can be thought 

of as describing the history (or trajectory) of a non-relativistic, open 

ended string, with end points tied down at 0 and l = (L, O, ..., O) 

in a time -(xD- ) interval [o , T ] . I.e. the surfaces are made 

out of intermediate States of that string. 

(C) The "string history" approach, [4]. 

The starting point is a rewriting of the pure lattice Yang-Mills 

theory, with a gauge group G , on ZD in terms of a product (extending 

over all values, u , of xD ) of non-linear G X G & -models on the lattice 

ZD-1 1 in random external gauge fields. 

A gauge field configuration g is given by a collection {g xy } 

of group elements gxy ε G attached to links xy (ordered pairs of 
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nearest neighbors) in ZD whose a priori distribution is given by the 

Haar measure, dg , on G . Wilson's action [25] is 
xy 

(20) 

and the Euclidean functional measure, dµ , is given by 

*) 
(21) ; 

– 2 
where z is the partition function and

 go
 . Let 

denote the expectation with respect to dµ 

We now introduce horizontal and vertical gauge fields, namely 

gxy = : hij(u) ’ for x = (i, u) , y = (j, u) , 

g = : v.(u) , for x = (i, u) , y = (i, u+l) , 
xy 1 

(22) 

• . · D-1 
with i, j in Z 

We define an (auxiliary) action 

(23) 

and a probability measure 

(24) 

*) We take it forgranted that the r.s. of (21) is constructed as a limit 

of measures with space-time (volume)cutoff. Some lirait always existe [4]. 
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with V. ε G , dv. the Haar measure on G , and (b, t) ε Gx G . 

We set 

(25) 

Clearly, (23) is the action of a G X G non-linear 6 -model in an 

external gauge field (b, t) on the lattice ZD-1 , and (24) is the corres-

pondis Euclidean functional measure. 

It follows directly from (20), (22) and (23) that 

(26) 

This identity, and (21) and (24) yield 

(27) 

D-1 
Given an oriented path f C Z , let 

denote the path-ordered product of hij ' s in G along y , i.e. the 

parallel transporter associated with y . Let U be a unitary representation 

of G of dimension dU. , with character X0. Let ω = wLxT be the 

oriented loop depicted in Fig. 1, with bottom part and top part y . 
y i f 
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We define the matrix elements 

B = U (hy (u=0))n
 m0

 , 
n m0 yi n0

 m0 , 
O O 

and 

Let be a sequence of labels of 

matrix elements; nu, mu = 1, ..., dU . Clearly 

(28) 

where 0 = (Ο, ..., Ο) , l = (L, 0, ..., 0) ; see Fig. 1. 

It follows from (25), (27) and (28) that 

Identity (29) and various general consequences concerning confinement have 

been found in [4] . In particular, if for some & > 0 

(30) 

uniformly in (b, t) , then 
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L .y* 

is^y.c^r^l « Cû
”^

r(2
 * , <·

β

· 

V (L) > &-L , as L—> 
(31) 

Inequality (30) implies that U , and thus X0 , are non-trivial on the center 

Z of G ; [4] . In [4], an expansion of <U (V0-1)* U(Vl)*>e(b, t) 
in terms of random paths, y , joining 0 to l has been developed for 

G = U (N) , 0(N) , N = 1, 2, 3,..., and G = SU (2) . 

For G = SU (2) and X=X the isospin 1/2 character, our expansion 
X=X0 

has the following particularly simple form : 

> 6 (b, t) 

(32) 

Here y is an arbitrary, connected path of links in Z D-1 starting at 0 

l, y-1 
and ending at l , y is the same path, but with reversed orientation 

(i.e. y : l —> 0 ) , /y/ is the number of links in y 

(counted with multiplicity), and 

where Z(b, t) (y) is a certain path-dependent partition function; 

see [4]. 

Let yµ be a path in HΜ = {xD = µ } starting at 

+ 
(0,..., 0, u) and ending at (L, 0, ..., 0, u) , and let y be the same 

path as yµ but pushed up by one step to the hyperplane Hu+1 .We set 
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Finally, let be the loop obtained by 

composing 

From (29) and (32) we now obtain the following remarkable, 

exact identity : 

(33) 

The r.s. can be interpreted as a sum over intermediate States, 

,
 y T-1 1 (i.e. a history ) of a non-relativistic string 

with initial State , at xD = O , and final state y , at 

x = T . (This is justified even semi-quantitatively when B is small; 

[4, 6]). 

In [4] the following estimate on F has been established : 
y 

"In measure" 

0 < F (h (u), h(u+1))< exp [— &/yu/]
 , 

y u 

with 

& > – ln [(2D-3)(D-1)(4D–4)
 1B0].} 

(34) 

Thus, when D = 3
 ,
 & > O A

 <

 4/3 , 

and when D = 4 , & > 0 B ,< 4/5. 
(35) 
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From (34) and straightforward combinatorics we obtain 

(36) 

i.e. the 6 -model two-point function satisfies inequality (30); see (32). 

Thus, if & > 0 the trivial estimate 

(37) 

is sufficient to prove (31) , i.e. confinement. However, from [26] we infer 

that for D = 4,
 ,
 (b, t) = (1, 1) and 

(38) 

i.e. the two-point function of the three-dimensional, non-linear & -model 

has long range order. In [4] arguments have been discussed which suggest that 

(38) ramains true for a large class of (b, t)# (1, 1) , when 

>
 1. 01 0 1 . (In the case G = U (1) , (38) follows from a resuit 

of Guth [27] for large ). Therefore inequality (37) is too rough 

to prove confinement at values of βo for
 w

ich the three-dimensional 

6-model has long range order. (It would give the perimeter law). In this 

regime another mechanism of quark confinement takes over : The mean values 

of "the random phase factors" X ( g + *. -/ ) , µ = 0, .... , T 
X y ' 

may be so small that confinement follows again. 

Thus (34), (35) and (38) lead to the conclusion that the 

crossover between strong coupling (where inequalities (30) and (34) hold) 

and weak coupling (where confinement must be due to cancellation of random phase 
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factors) for D = 4 must take place at 0. 8 <Bo < 1 (i.e. 

1.6 < β = 2Bo < 2 ) , in excellent agreement with numerical 

results. 

Elaborating on [4] we have recently derived a series of estimates 

based on (33) for the behaviour of the average of the random phase factors : 

In the average (with respect to du) one has, for example , 

(39) 

which is valid for all
 Bo

 . (Here || y o(y') // is the length of the syrametric 

difference of y and y; ) . 

If A < 4/5 is sufficiently small, and on the r.s. of 

F 

(33) one replaces the y s by the r.s. of (34) and the 
yu 

by the r.s. of (39) one obtains an expression closely related to the path 

space representation of the transition function (yi , yf ) for 

the diffusion of a non-relativistic string , [4,6] . 

In conclusion, I wish to thank D. Brydges, B. Durhuus, G. Mack 

and E. Seiler for pleasant discussions and E. Brézin, J.-L. Gervais and 

G. Toulouse for inviting me to participate at the Les Houches workshop and 

convincing me to write lecture notes, (which they might now regret). 

Notes : 

A) By this we mean the equilibrium statistical mechanics (and diffusion 

theory) of a gas of interacting defects, labelled by elements of homotopy 

groups. It looks promising to try to describe such gases by effective, 

generalized lattice gauge theories; (see e.g. B. Julia and G. Toulouse, 

J. Physique-Lettres 16, 395, (1979), [6, 11].) 
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B) D. Weingarten considere "Euclidean" lattice string theories, parametrized 

by matrices, U , attached to links xy C ZD . The a priori distribution 
xy 

U is Gaussian, the action consiste of a sum over terms coupling four 

U 's , xy c d p. An alternative proposai studied by the author (unpubl.) 
xy 

consiste of assigning to each link xy a matrix with anti-commuting (Grass-

mannian) matrix elements. This eliminates the pathologies found by Weingarten, 

but it is not clear, yet, whether the resulting models are good approximations 

to lattice gauge theory. 

C) There is an alternative approach to relate Yang-Mills-to string theory, 

inspired by a suggestion of Nielsen and Olesen : In a four-dimensional gauge 

theory one could try to relate the vortex sheets bounded by a 't Hooft loop 

[9] to histories of relativistic strings. This might be promising in a phase 

of some gauge theory (with matter fields),where Z-monopoles are confined. 
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