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Introduction and summary. 

The main resuit of this paper is the following 

Theorem I. 

Let be a separable Hilbert space, and a linear subspace 

dense in H . 

Consider a semigroup, , of (possibly unbounded) 

linear operators, , on H with the following properties : 

(i) For each vector Φ Є D , there exists ε (Φ)> Q such 

that Φ belongs to the domain of гt, for ail 6 e /Oj ε (f)) 
and 

(ii) If Φ є D, and s,t, s+t belong to [o, ε (Φ)) then Γt 

is defined on , and 

(iii) The operators are hermitean. 

Under these hypotheses, the operators Γt have unique selfadjoint 

extensions, Γt , and ( Γt ) is a semigroup of (possibly unbounded) 

selfadjoint operators on H. 

A precise formulation and the proof of this resuit are given in 

*) 
Section I. 

It should be noted right away that "locally densely defined", unitary 

(semi-) groups, (Ut) , do in general not hâve unique, globally defined 

*) Theorem I has been quoted in [1, 2] . It is included, together with our 

proof, in a forthcoming book by Davies [3] . 
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unitary extensions; (see Section I.1). 

As a corollary of Theorem I we find a very simple proof of 

Nelson’s analytic vector theorem ; (see Theorem I. 3, Section I. 2). 

Remarks on the semi-analytic vector theorem and a criterion for 

essential selfadjointness of the generator of the semigroup (Γt) 

constructed in Theorem I on the domain D conclude Section I. 

In Section II we apply Theorem I to the theory of Laplace transforme 

and to the proof of the essential selfadjointness of some class of Schrödinger 

operators, including Stark Hamiltonians. 

Some commente on the kind of problems that motivated us to conjecture 

and prove Theorem I may be helpful : These problems concern the reconstruction 

of equilibrium (KMS) States and a unitary representation of time translations 

from imaginary-time Green’s functions in quantum equilibrium statistical 

mechanics. Such a reconstruction was achieved by Ruelle [4] under somewhat 

restrictive hypotheses. With Theorem I as one basic tool the author found 

a general version of Ruelle’s theorem, [5] . The résulte of [5] can be 

viewed as an extension of the Osterwalder-Schrader reconstruction theorem in 

relativistic quantum field theory [6, 7] to equilibrium statistical mechanics. 

They have been summarized in a somewhat special context in [8] . Recently, 

a resuit closely related to Theorem I and its applicability to the reconstruct-

ion of equlibrium states from imaginary time Green’s functions were redis-

covered by Klein and Landau [9, 10]. (The proof of Theorem I presented below 

is very different from their’s and may have the advantage of being rather 

short and entirely selfcontained). 

We conclude this introduction by describing a general, mathematical 



- 3 -

problem met in the reconstruction of equilibrium states and the time evolution 

from Green’s functions and the way Theorem I can be used to solve it. 

Let V be some topological vector space, and * an anti-linear 

conjugation on V . Let (t)t 0 be a locally defined semigroup of 

endomorphisms of V with the property that for each v Є V , there exists 

some ε (v) > 0 such that t(v) Є V , for all t Є [0, v) ε (v)) 

Let F be a bilinear fora on V X V with the properties : 

(a) F is continuous in each argument, and 

F (V*, v)  0 

It follows that 

<v,w> ≡ F (v*, w) (1) 

is a positive semi-definite inner product on V . 

It is assumed that V is separable in the topology determined 

by the semi-norm 

v=√<v,v> (2) 

(b) For v and w in V , F (w, t(v)) is a measurable function 

of t on [0, ε(v)] with the property that 

limt0 F(w,t(v))=F(w,v), and 

F(t(v)*, t(v)) < ∞ , for all t Є [0, ε (v)). 
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(c) For 0  u < ε (w), 0  s < ε ( v) and 

0  t < min (ε (w)-u, ε(v)-s) 

F(u(w)*, tos (v))= F (tou(w)*,s(v)). (v)). 

The problem is to show that F (w, t (v)) is the restriction of an 

analytic function of one complex variable to the real interval (0, ε (v)) · 

Theorem II. 

Let (V,t ,
 F

) be as above, with F satisfying (a) - (c) . 

Then the function F (w, t (v)) is the restriction of a function 

FW,V (z) analytic in z on the strip {ζ : 0 < ζ < ε (v))} 
to the real interval (0, ε ( V) ) 

This is a slight generalization of Theorem II.1, and the proof is 

an adaptation of the arguments in Section II.1. Here are the main-ideas : 

Let N  V be the kernel of the inner product <· , · > 

defined in (1). By (a) , H = V/N//·//, with //·// the norm 

defined in (2), is a separable Hilbert space. Let Φ be the obvious injection 

map of V into H with kernel N . By construction, D ≡ Φ(V) is 
a dense, linear subspace of H It follows from (b) and (c) that is 

invariant under (t)t0 . Therefore the equation 

determines a locally defined semigroup , on H. Using 

(b) and (c) one easily checks that it satisfies the hypotheses of Theorem I. 

Thus, it has a unique selfadjoint extension, 
(Γt)t  0 

. Theorem 11 
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now follows from the spectral theorem for 

An alternate proof of Theorem II can be deduced from some general 

results of Glaser [11]. For applications see [8, 5, 10] , and [12] and refs. 

given there, (where Theorems I and II are applied to relativistic quantum 

field theory). 
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I. Unbounded semigroups, analytic and semi-analytic vectors. 

I.1. An unbounded symmetric semigroup on a separable Hilbert space has a 
unique. selfadjoint extension. 

The mathematical structure studied in this section consiste of the fol-

lowing objects : 

(1) A separable Hilbert space, H ; (vectors in H are denoted by capital Greek 

letters, Φ
 ,
 Ψ , .... The scalar product of Φ with Ψ is denoted by 

<Φ,Ψ> , and is the norm of Φ. The domain of a linear 

operator, A , on H is denoted by D(A) , its range by R(A)) . 

(2) A linear subspace, D , dense in H . 

(3) A local semigroup (Γt) on H with the following properties : 
Γt)t0 

(i) (Domain property). For each Φ Є D , there exists some ε (Φ)> 0 such that 

for all IS weakly measurable in t 

on [0, ε(Φ)) ; and 

(I.1) 

(ii) (Semigroup law). If and s +t all belong to [0, ε(Φ)) then 

and 

(I.2) 

(iii) (Symmetry). For Φ and Ψ in D , 0  u < ε (Φ) , 0  s < ε(Ψ) 

and 0 t < min (ε(Φ)-u, ε(Φ)– S ) 

(I.3) 
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Theorem I.1. 

Let D , (Γt)t 0) be as specified in (1) — (3) , above. Then Γt has 

a unique selfadjoint extension, Γt , and (Γt)t0 is a densely defined, 

selfadjoint semigroup on H. 

Proof : 

1° Bounds on Γt Φ : 

Let Φ Є D, and define a function g on [0, ε (Φ)) by 

We claim that, for S and u in [0, ε (Φ)) 

g(½s+½u )  ½ (g (s) + g(u))· (I.4) 

We assume that S u . Then by (I.2) and (I.3) 

from which (I.4) follows by taking logarithme. An immediate consequence of (I.4) 

is that the maximum of g(t), and hence of ΓtΦ , restricted to the interval 

, with ε' <ε (Φ) is taken at 0 or ε' . Thus 
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with (I.5) 

2° Construction of a densely defined generator, H . for (Γt)t0 : 
Let {δn (t)} be a family of functions with the properties : 

(Note that δn → δ , the Dirac function) . 
n →∞ 

Given Φ Є D , let n0 = n0(Φ) be so large that 1/n0< ε(Φ) and define 

where the r.s. makes sense as a weak integral. For, ΓtΦ is weakly measurable 

in (see (3) (i)), and for 

by (I.5) and (I.6). Thus, by (I.6), 

(I.7) 

Using (3) (i) and (I.6) we see that 

(I.8) 

Since D is dense in H, the domain 

(I.9) 

is dense in H, by (I.8) . We note, moreover, that, for each Ψ є D0, there 

exists some ε'(Ψ) such that Ψ є D(Γt), for all t є [)) 
Next, we claim that for each Ψ Є D0 and 0  t <ε' (Ψ), 

(I.10) 
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exists and determines a densely defined, linear operator, H 

Since Ψ Є D0 , there exists some Φ є D and a positive integer 

n  n0 (Φ) such that Ψ = Φn. Therefore Ψ є D Γt), for 0  t < ε (Φ) 1/n≡ε'(Ψ). 
Thus for 0 < h  ½(ε'(Ψ)- t), 

(I.11) 

in the sense of weak integrals. Here we have used (I.2). By (I.5) 

with ε"=½ (ε' (Ψ)+t) , uniformly in 0 < h  ½(Ɛ'(Ψ)-t)· 

As h tends to 0 , the r.s. tends to 0 , for all n < ∞ ; 

see (I.6). Hence 

in the sense of weak integrals. This proves (I.10). Let 

Note that for each θ є D1 there is an є" (θ)>0 such that θ є D(Γt ), 0t< ε" (θ) 

Let now θ and Ξ be arbitrary vectors in D1 , and 

Then 

follows from (I.3) (Symmetry) and the construction of D1 ; (represent θ and 

as weak integrals!) Thus is symmetric on D1 . 
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3° Construction of a selfadjoint extension of H . 

We now corne to the main step of the proof. In 2° we have constructed 

the generator H and shown that it is symmetric on D1 . However, we do 

not know, a priori, whether its deficiency indices are equal, i.e. it is not 

clear, whether H has a selfadjoint extension. This difficulty is circum-

vented as follows, [13] : We identify H with the subspace H  {0} of 

the direct sum H ≡ H  H of two copies of H. Clearly D1 = D1  D1 

is dense in H. Consider the operator on H. By (I.10) its 

domain contains D1, , and it has clearly equal deficiency indices. Thus it 

has a selfadjoint extension, – H, , with 

(I.12) 

Let Em denote the spectral projection of H associated with the interval 

[-m,mτη ] , m = 1,2,3,....., and set Hm = EmH=EmHEm. Note that 

if ƒ is a continuous function on  

= ƒ (H)E
m

= f(Hm) , (I.13) 

by the spectral theorem. 

Next, choose Є Do and define 

(I.14) 

Then by (I.10) 

by (I.12) 

by (I.13) 
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Since Hm is a bounded operator on H, we conclude 

by (I.13) 

by (I.14) 

Because {Em} tends strongly to 1, as we have 

for all 0t < ε' ' (Ψ) . Since e is selfadjoint, it is closed, so 

that by taking m to ∞ we obtain 

(I.15) 

This equation says, in particular, that for Ψ є D
0

, 

for 0t < ε'(Ψ) . 

Since H is selfadjoint, the spectral theorem permits us to analyti-

cally continue e-tH (Ψ0) to { t : 0< R et < ε' (Ψ)} By analyticity in 

we thus conclude that 

for all real s . 

Since D0is dense in , we have 

(I.16) 

i. e. 
H 

commutes with e . We may thus define 

H ≡[1 0 0 0] H . (I.17) 
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By (I.12) and (I.16), H is a selfadjoint extension of H , H/D1= H / D1, 

and by (I.15) and the definition (I.17) of H , 

(I.18) 

for all Ψ D0, , 0 t< ε '(Ψ)· 

4° Uniqueness of H 

Let H and H2 be two selfadjoint extensions of H satisfying (I.18). 

Choose an arbitrary θ є H Then 

is the restriction of functions , holomorphic 

on { Z : 0< Re z < ε ' (Ψ)} , to the real interval (0, ε" (Ψ)) 
Since on that interval they agree, 

F, (z) = F2 (z) 

for all z with 0 < Re z< ε' (Ψ), by the identity principle for holo-

morphic functions. Thus 

for almost all real s , (hence for all real S , by continuity), for all θ є H 

and all Ψ є D0. Since (e is H1) and (e is H2) are unitary groups, 

and D0 is dense, H1 = H2 

5° Completion of the proof 

We define Γt=e-tH , where H is the unique extension of H 

constructed in 3° and 4° . For Ψ є D0 we have 

soc (I.18). 
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Clearly, each Φ Є D can be approximated by a sequence {Φn} Є D0
 such

that 

s-lim Φn=Φ , s-lim Γt Φn = Γt Φ , 

for 0 =t <ε (Φ) · Since Γt is closed, 

ΓtΦ=ΓtΦ ,
 for

 0t<ε (Φ), 

for all Φ ε D. 

We note that it follows from the above proof that the selfadjoint exten-

sion H of H is uniquely determined by the vectors 

{Γt Ψ : o  t < ε' (Ψ), Ψ є D0} = D1. 

Thus D1 is a core for H . Since 

H/D1 = H/D1 

H is essentially selfadjoint on D1 . 

Theorem I.1 has the following straightforward. 

, see (I.12) , (I.17) , 

Corollary I.2. 

Let H be a symmetric operator defined on a domain D1 dense in . 

Suppose that for all Ψ Є D1 there exists ε' (Ψ) > 0 such that the equation 

Ψ (t) = - H Ψ (t) (I.19) 

has a solution (not, a priori, unique) satisfying 

Ψ (t) ) Є D1 , for all 0  t < ε' (Ψ) · Then Γt : Ψ  Ψ (t) defines a 

unique selfadjoint semigroup , and H is essentially selfadjoint on D1 

Proof : 

We may repeat the construction in step 3° of the proof of Theorem I.1 to 

construct a selfadjoint operator H (not necessarily unique) on 

extending . Let D1 = D1 D1. Since Ψ (t)Є D1, for 
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0  t < ε' (Ψ) and has the property 

which, as in step 3° above, implies 

As in step 3° it is seen that reduces // . Thus 

Ψ(t) = e-th Ψ,
 with (I.20) 

Since, for a given extension H of H , (I.20) holds for every solution Ψ (t) 

of (I.19) with Ψ (t)s→ Ψ , as t  0 , we conclude that the solution of (I.19) 

must be unique. The remainder of the proof is contained in the one of Theorem I.1. 

■ 
Remark : 

It is quite clear that the analogue of Theorem I.1. for unitary groups 

*) 
is false. To see this we give a counterexample. 

Let H = L2 (x[-1,1], dxdy).
 ?

 dx dy) . Let $ be the dense domain consisting 

of those square-integrable functions, ƒ(x,y) , for which there exists some ε Cf)> 0 
such that ƒ (x,y) = 0 if /x/  ε (f) . 

For each ƒ Є D we define 

i.e. Ut translates f by an amount tt in the x-direction. The locally 

defined group (Ut) has, however, infinitely many different globally defined, 

unitary extensions from D to H. . One extension is the obvious one : 

The group of translations in the x-direction, (U1t) . Another one is defined 

as follows : with 

*) An example of this type was suggested to me by M. Aizenman. 
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(I.21) 

More generally, let be a measure preserving map from [-1,1i] onto [-1,1]. 

Replace in (I.21) "-y" by "jP(y)" · This yields a globally defined extension 

of 

I.2. Nelson's analytic υector thzorem [14, 15a] . 

In this section we show that the methods used in the proof of Theorem 

I.1. can be used to give a simple proof of Nelson*s analytic vector theorem. 

Theorem I.3. 

Let H be a symmetric operator on a dense domain D  H , and H D - D. 

Suppose that, for all Є D , there exists some Є (Φ) > 0 such that 

for all 0λ<ε (Φ)· 

Then H is essentially selfadjoint on D . 

proof : Let Φ Є D. Then 

exists for all /t/<ε(Φ). Let H=HH, D=DD, as in the 

proof of Theorem I.1. Then leaves D invariant, and for each 

there exists ε (Ψ)=min (ε (Ψ1), ε (Ψ1)) that 

for 

Since has equal deficiency indices, it has a selfadjoint extension, 
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– H . Moreover, for Ψ є D 

Thus, for /t/ < ε (Ψ) , 

(I.22) 

(I.22) yields 

It is shown as in step 3° that this implies that H{0} reduces H. Thus, 

with for /t/<ε (Φ). 

Since Φ (t) is uniquely determined by {HmΦ:m=1,2,...}, one 

shows as in step 4° above that H is the unique selfadjoint extension of H , 

i.e. H is essentially selfadjoint on D. 

We do not consider other, well-known reformulations of Theorem I.2, 

but see [15] 

1.3. A remark on the SEMI analytic vector theorem [15] . 

Although the material in this section has little to do with the main 

theme of this paper it is clearly connected with the one in the previous section. 

Moreover the following arguments are very short. 

In [16] A. Sokal has rediscovered and extended the following 

Theorem BS (Nevanlinna [17] ) 

Let ƒ be a function analytic in the circle 

CR = {z : Rez-1 > R-1} 
and satisfy N-1 
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uniformly in N and in Z Є CR Then 

converges for 

/t/< b-1 and has an analytic continuation to 

and ƒ can be represented by the absolutely convergent integral 

for any z Є CR . In particular, f(z) is uniquely determined by 

for all z Є CR . 
R 

The name "BS" of this theorem is intended to recall that it is funda-

mental in the theory of Borel summability. Here it is applied to prove 

Theorem I.4. 

Let H be a positive operator on a domain dense in H , with 

HDD. Suppose that, for each Φ Є D , there exists some ε (Φ)) > 0 such 

that 

(I.23) 

Then H is essentially selfadjoint on D 

Proof : Since H is positive, it has a positive selfadjoint extension, 

H ; see [15] . Let ΦЄD , Ψ Є H, and consider the function 

ƒ(z)=<Ψ,e-1Φ> analytic in z for Rez > 0 . Its boundary value on 

the imaginary axis is a continuous function. Furthermore 

because H is an extension of H , and HmDD. Using the fact that 

//e-zH// 1, for Rez > 0, and (I.23), we see that the hypotheses 

of Theorem BS are satisfied. Thus ƒ (z) is uniquely determined by (and 

computable in terms of) 

(I.24) 
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By taking the boundary value we see that ƒ (it)=<Ψ,e-itHΦ> is uniquely 

determined by {ak}k ∞=0, given by (I.24). Since D is dense in H, 

it follows that e-itH is uniquely determined by 

Therefore H is the unique selfadjoint extenion of H , i.e. H is essen-

tially selfadjoint on D. . 

By combining Theorem I.1. with Theorem BS one obtains 

Theorem I.5. 

Let (H, D, S) , (Γt )t 0) satisfy hypotheses (1) - (3) of Theorem I.1. Let 

H be the unique selfadjoint generator of (Γt)t0 constructed in Theorem 

I.1. Assume, moreover, that for each Φ Є D 

exists, for all n = 1, 2, 3,..., 

and for λ > 0 small enough, depending on Φ , 

(I.25) 

Then H / is essentially selfadjoint, i.e. D is a core for H 

Proof : Let Φ and Ψ be in D, 0t< min (ε (Φ), ε(Ψ)). Consider the 

function 

By Theorem I.1. it is the restriction of a function , ƒ Ψ, Φ (z), analytic in z 

for 0 < Rez < min (ε (Φ), ε (Ψ)) to real values of Z. Assumption (I.25) 

and. 

together with (I.5), show that ƒΨ, Φ(z ) satisfies the hypotheses of 

Theorem BS, with R < min (ε (Φ), ε (Ψ)). Thus ƒΨ, Φ (z) and its 

boundary value ƒ Ψ, Φ (is), s real, are uniquely determined by with 
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Since (eisH) is a unitary group, and D is dense in , (eisH) is uniquely 

determined by ƒΨΦ (is) , Ψ and Φ in D, and thus by 

{<Ψ, Hn Φ>} : Ψ,Φ in D, n=0, 1, 2, 3,...} 

Remark : The point of our use of Theorem BS is not so much that it gives the 

above short proofs of Theorems I.4 and I.5, but that it really provides us with 

a constructive tool to calculate e-tH Φ, for Φ Є D, namely 

(I.26) 

where , and the integral on the r.s. of 

(I.26) converges in norm under the hypotheses of Theorem I.4. and weakly on D 

under the ones of Theorem I.5. 

The techniques of this section can also be used in the context of deri-

vations on operator algebras [5] . 

II. Miscellaneous applications of Theorem I.1. 

II. 1 An application of Theorem I.1. to the theory of Laplace transforms. 

Let F(t)) be a distribution on the interval [β0,β]
.

 Without loss of 

generality we setβ
0
= 0,β=2π. Lt . Let be the space of C∞ test func-

tions, ƒ , with Supp ƒ C (0,π). We propose to study that class of functions, 

F, which have the positivity property 

∫ƒ(t) F (t+s)ƒ (s)dt·ds 0, (II.1) 

for all L+, + , and which are such that ∫f(t)F(t+s)f(s)dtds F continuous 

in ƒ in a topology of L+ in which L+ is separable. Thanks to (II.1), 

(g,ƒ)<g,ƒ>≡∫ g (t) F(t+s) ƒ(s) dt ds, 

ƒ in L+, equips L+ with a continuous inner product. Let N be its 

kernel. Then 

*) The following discussion was motivated by a general theorem, due to V. Glaser [11] 
brought to our attention by H. Epstein who emphasized connections between Glaser's 
resuit and Theorem I.1. 
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is a separable Hilbert space. Let 

Φ : f  L+  Φ (f )  H 

be the natural map from into L+ into H Clearly D ≡ Φ L+) is dense in H, 

by construction. Given a test function, ƒ , let ƒt be defined by 

ft (s) = f (s-t). 

Note that, for each f Є L+, , there exist positive nurabers Є (ƒ) and Є' (f ) 
such that 

ƒt є L+, for - ε'(ƒ) < t < ε (ƒ), (II.2) 

and, for g and ƒ in and 

(ε' (f), ε' (g)) < t < min (ε (f), ε (g)), 

<g, ƒt> = ∫g(u) F(u + s)
 f

(s-t) du ds 

= - ∫ g(u'-t) F (u'+s')ƒ (s') du' ds' 

= <gt, ƒ>. 
(II.3) 

Thus the mapping :ƒƒt, ƒ Є L+, leaves N invariant. This 

permits us to define a semigroup (Γt)t0 on D by 

Clearly, (II.4) 

if t, s and t+s are in [0, ε (f)) . Moreover, since for all f Є L+, f-tЄL+, 
for 0  t < ε' (f ), 

(II.5) 
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By (II.3)-(II.5)
J
 (Γt)t0 satisfies hypotheses (1) – (3) of Theorem I.1. 

Therefore it has a unique selfadjoint extension = e . We now have 

∫g(u) F(u+s +t£) f (s) duds 

= <e-t'HΦ(g), e-t"HΦ (ƒ)>, 
for t=t'+t" , 0t'<ε(g) , 0t"<ε(ƒ). By the spectral 

theorem we thus have analyticity in the strip {t : 0< Ret < ε(f)+ε(g)} . 
By choosing g=ƒe.g= δn, n=1,2,3,... , where the functions 

δn were introduced in step 2° of the proof of Theorem I.1, and appealing to 

standard limiting arguments [6,7] we recover the following resuit, 

originally due to Widder [18] , which is a special case of Glaser's theorem. 

Theorem II.1 

The distribution F is the restriction of a function, denoted F(z), 

which is analytic in the strip 0 < Rez < 2·π , to the interval z = t real, 

0<t<2π , and F(t)=∫e-tλ dµ(λ), for some positive measure dµ on · 

Remarks 

1) We are informed that Klein and Landau [9] have recently used Theorem II.1 

to give an alternate proof of Theorem I.1. (Our study of the relations between 

Theorems I.1 and II.1 is however independent of theirs). 

2) In statistical mechanics, functions F of the type characterized in Theorem 

I.5 arise in connection with KMS States. They have the following additional 

property : 

F(t) = F(2π-t), (II.6) 

(in particular, F is periodic). By Theorem II.1 and (II.6). 

F(t) = ∫e-λt dµ (λ) = F (2π-t) = ʃe- λ(2π-t) dµ
(λ̸), 
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i. e. 

F(T)½ʃ[e-λt+e-λ̸(2π-t)]dµ(λ) 
If we set 

dρ(λ)≡λ(1-e-2πλ)dµ(λ) 

we obtain 

F(t) = ʃdρ(λ)[1-e-2πλ]-1 (2λ)-1[e-λt+e-λ(2π-t)]. 

This is an integral representation of F(t) in terms of the Green’s functions 

Of , λ ≠ 0 , with periodic boundary conditions at t = 0, 2π 

(Physically speaking, these Green’s functions correspond to harmonic oscillator 

two-point correlations at inverse temperature β = 2π). 

II.2 Some apptications to quantum mechanics. 

(1) First, we sketch an application of Theorem I.1. to non-relativistic quantum 

mechanics. See also [9] for some general, independent but related results. 

Theorem I.1. can be used to construct natural self-adjoint extensions of 

Schrodinger operators which are unbounded below, e.g. the Stark Hamiltonian. 

Consider, for example 

H=L2 (3N), D = D(3N). (II.7) 

Points, , in 3N represent the coordinates of N particles, i.e. 

We define 

(II.8) 

Let ΩN = ΩxN be the path space for the Wiener process associated with 

Ho ; see e.g. [19]. Let be the Wiener measure determined 
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by H , conditioned on paths ω(τ)N  ΩN, 0 τ, with the 

properties ω(o)N=XN) ω(τ)N=YN. 

Let V(xN) be e.g. a continuons function on 3N, with 

(I.35) 

Then, for ƒ Є D (3N) and t>0 sufficiently small, f
t
 , defined by 

(I.36) 

with is in . 

To show this, one first regularizes V at ∞, ( VVR,, 

/VR(xN)/R), but we suppresses such regularization and the discussion of 

R∞ which is straightforward. Note that 

where pτ (xN,ZN) is the intégral kernel of , and we hâve used 

Jensen’s inequality with respect to t-1∫tdτ– . From this and the well known 

decay properties of pτ (xN,zN) assertion follows easily. We leave it 

as an exercise to the reader to verify that the locally defined, symmetric semi-

group given by satisfies all hypotheses 

of Theorem I.1. (This is conveniently done by introducing the regularization 

VVR and then taking R∞ . Theorems I.2 and I.5 can be used to 

construct domains of essential self-adjointness for H="Ho+V", defined as the 

unique, selfadjoint generator of (Γt)t0 
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Among applications we mention that the above observations yield natural 

selfadjoint extensions of general Stark Hamiltonians [20] or of the Hamilto-

nian with [21,15b] , etc.. Using 

Ito stochastic integrals, as e.g. in [19] , electromagnetic vector potentials 

can be included. The techniques outlined above can also be applied when 

and 

This is seen by noticing that the intégral kernel of e-τHo in 

x-space is positive and has exponential decay (a consequence of the Payley-

Wiener theorem). 

(2) One can ask whether the two - (resp. several) Hilbert space technique used 

in the proofs of Theorems I.1 (see step 3°) and I.3 can be applied to other 

problems. In a general context, this method has been discussed in some detail 

in Achieser-Glasmann [13] . Davies and Simon [22] have recently used those 

techniques to prove absence of singular continuous spectrum for some class of 

Schrodinger operators, (the "twisting trick" in [22] ). One can think of other 

applications in the same spirit ; (e.g. the decoupling of local singularities 

from long range potentials). Another example is a two Hilbert space proof, due 

to Nelson, of von Neumann's theorem saying that if C/ is a densely defined, 

closed operator on H then c*c and CC* are selfadjoint. The method has 

been frequently applied in operator algebra theory. 
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