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Introduction and summary.

The main result of this paper is the following

Theorem I.

Let # be a separable Hilbert space, and  a linear subspace

dense in & .

-
Consider a semigroup, ( 7_'(_ ){‘ > o , of (possibly unbounded)
o =
linear operators, /:5 , on H# with the following properties :

(1) For each vector é_ e D , there exists ¢& (f) > ¢ such

: , for all t e ‘/_"0, 5(5[}) ,

that _é;- belongs to the domain of /_;_

and

g -'/:'Jvn_ /{_ ﬁ e c/;v_
£ N o

(ii) If & < D ,and s,t, sét belong to /0, ¢ (f)) then 7

°

is defined on 5 g_; , and

[}

AR F) = [, F

(iii) The operators (/’ ) are hermitean.
t 'tz o0

o

Under these hypotheses, the operators /:; have unique selfadjoint

extensions, }—é_ , and (/;) is a semigroup of (possibly unbounded)
¢t=20

selfadjoint operators on x .

O

A precise formulation and the proof of this result are given in

*)

Section I.

It should be noted right away that "locally densely defined", unitary

(semi-) groups, (Ux‘) » do in general not have unique, globally defined

*) Theorem I has been quoted in [1,2] . It is included, together with our

proof, in a forthcoming book by Davies [3] .



unitary extensions; (see Section I.1l).

As a corollary of Theorem I we find a very simple proof of

Nelson's analytic vector theorem; (see Theorem I.3, Section I.2).

Remarks on the semi-analytic vector theorem and a criterion for
essential selfadjointness of the generator of the semigroup (]; ){_ -
constructed in Theorem I on the domain &) conclude Section I.

In Section II we apply Theorem I to the theory of Laplace transforms
and to the proof of the essential selfadjointness of some class of Schrodinger

operators, including Stark Hamiltonians.

Some comments on the kind of problems that motivated us to conjecture
and prove Theorem I may be helpful : These problems concern the reconstruction
of equilibrium (KMS) states and a unitary representation of time translations
from imaginary-time Green's functions in quantum equilibrium statistical
mechanics. Such a reconstruction was achieved by Ruelle [4] under somewhat
restrictive hypotheses. With Theorem I as one basic tool the author found
a general version of Ruelle's theorem, [5] . The results of [5] can be
viewed as an extension of the Osterwalder-Schrader reconstruction theorem in
relativistic quantum field theory [6,7] to equilibrium statistical mechanics.
They have been summarized in a somewhat special context in [8] . Recently,

a result closely related to Theorem I and its applicability to the reconstruct-
ion of equlibrium states from imaginary time Green's functions were redis-
covered by Klein and Landau [9,10]. (The proof of Theorem I presented below

is very different from their's and may have the advantage of being rather

short and entirely selfcontained).

We conclude this introduction by describing a general, mathematical



problem met in the reconstruction of equilibrium states and the time evolution

from Green's functions and the way Theorem I can be used to solve it.

Let V be some topological vector space, and * an anti-linear
conjugation on V . Let (ocf )f 9 be a locally defined semigroup of
endomorphisms of V with the property that for each ve& V , there exists

some & (v) > 0 such that c(.t(v) € V, for all t e [0) 6(3’)) .
Let F be a bilinear formon V X V with the properties :

(a) F 1is continuous in each argument, and

Flv*, v) 2 o

It follows that

1
(v, wp = F(v* w) v
is a positive semi-definite inner product on V .

It is assumed that V 1is separable in the topology determined

by the semi-norm

Vvl = Kv, vy @

(b) For v and w in V, A (W'J od_t (V}) is a measurable function

of t on [OJ a(V)‘] with the property that

bim £ty (7)) = F(4, 7))
O

Fle, ()", ()< = toranr ¢ e [o,s(v)).



- i =

() For 05 w < €(W), 05 s< (V)  ana

02 ¢t < min (E‘[W}—u} E(V}-—-S)

Flo, (), &p oy (V)= F (go, (W), s (V).

The problem is to show that F(W/ aC{, (V)) is the restriction of an

analytic function of one complex variable to the real interval (0, £ (V)} .

Theorem II.

Let V, & F be as above, with F satisfying (a) - (c) .
Eer ) %

Then the function /~ (W) ch (V)) is the restriction of a function

Fw,v(z) analytic in z on the strip 'E_ g ¢ 0 < Re 5 < €& (V)_}
to the real interval (0, & (V'))

a

This is a slight generalization of Theorem II.1, and the proof is

an adaptation of the arguments in Section II.1l. Here are the main-ideas :

Let N €V be the kernel of the inner product <' s > ’

Nl
defined in (1). By (a) , # = V/N , with ” . ” the norm

defined in (2), is a separable Hilbert space. Let é be the obvious injection
map of V into Z¥ with kernel N . By construction, oJ = é(V) is
a dense, linear subspace of x . It follows from (b) and (c) that N is

invariant under (05_6)

. Therefore the equation

t2 0
ﬁf E(v) = E(x,(v)), 05 ¢t <e(v),

o
determines a locally defined semigroup (Ff )‘L" > 0 , on % . Using
(b) and (c) one easily checks that it satisfies the hypotheses of Theorem I.

Thus, it has a unique selfadjoint extension, (/-;_ )f' . Theorem 11
Z 0
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now follows from the spectral theorem for (’/q ‘)
t 't o0

An alternate proof of Theorem II can be deduced from some general
results of Glaser [11]. For applications see [8, 5, 10], and [12] and refs.
given there, (where TheoremsI and II are applied to relativistic quantum

field theory).
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1. Unbounded semighoups, analytic and semi-analytic vectors.

1.1. An unbounded symmetric semigroup on a separable Hilbert space has a
unique selfadjoint extension.

The mathematical structure studied in this section consists of the fol-

lowing objects :

(1) A separable Hilbert space, X ; (vectors in A are denoted by capital Greek

letters, 2.5 . ) s ++. » The scalar product of _{5 with % is denoted by

<.§, 1{/> , and //é'// — |p“<g§' §> is the norm of é . The domain of a linear

operator, A , on H is denoted by D(A) , its range by R(4)) .

(2) A linear subspace, ) , dense in #

o
(3) A_local semigroup (/;) on & with the following properties :
tZ0

(i) (Domain property). For each _gYeoS , there exists some £(§)>0 such that
o ) o
fe D(’C‘)’ for all ¢ € /o, 8(95)) ; f; &  is weakly measurable in ¢
on /[0, 3(2'5)) ; and

s=&m /3_ & = &. (1.1)
£ N0

(ii) (Semigroup law). If s,¢ and s+ 7 all belong to [0,6(;}')) then

/'f'é' e D([i),and
/g{ (/: 25) = /S’“S 7. (1.2)

(iii) (Symmetry). For £ and 4 in & , 05 wu<£(f), 02 s <e(y)
ad 0SS ¢ < min (6(F)- «, c(¢)-s)

ST, T, (GRS =XPB (5 8), 7 ¢ a3



Theorem I.1l.

(-] ]
Let (7[’) Q,(f; )f;;,a)be as specified in (1)-(3), above. Then /—:{_ has

a unique selfadjoint extension, /’; , and (/r;_ }{_ . is a densely defined,
o

selfadjoint semigroup on H .

Proof :

1° Bounds on ///i 55// .
Let 9?62 , and define a function g on [o,s(gﬁ-}) by
gH) = Loy // £ /.

We claim that, for s and <¢ in [0, € (g’;))
j(‘z&%% {{) < % (dq' (5‘)+j(4t)),

We assume that S$=< « . Then by (I.2) and (I.3)

/y'ijé.* ‘}j. 55-/7r2 = <:’7;i4.492 f;; /;; + 1Y 25:;>

fl

1A
NG
b o
A
—
3
ty
AN

< V2 ( {) *‘/f‘/ >

(1.4)

from which (I.4) follows by taking logarithms. An immediate conscquence of (I.4)

a
is that the maximum of g(t), and hence of ///* &//, restricted to the interval

o, e’ , with é‘/< £ is taken at O or E’ . Thus
J



///i £ J|= K swith Kgr= max (&, ///i.« /). (1.5)

o o
2° Construction of a densely defined generator, /7/ , for (/;) g
t20

Let { SM ({')} be a family of functions with the properties :

S >0 $ is C°, fé; (t)dt=1,<ppd, <fof]1.6

n = J (g

(Note that (,(:7—)- S , the Dirac function).

P —DOO

Given §é.2 s let 97, = na(‘d}')be so large that 1 < E‘(ia-),and define

g =[S, ()7, & ¢,

4]

o
where the r.s. makes sense as a weak integral. For, /;_ é- is weakly measurable

in £ (see (3) (i)), and ///j é‘//g_/{%&g k%<mfor te swppd,,

by (I.5) and (I.6). Thus, by (I1.6),

el =K, . (1.7)

Using (3) (i) and (I.6) we see that

s—dim &= & (1.8)

71 —> oo
Since &) 1is dense in & , the domain

oo

2. = U {8 } (1.9)
Fe o(§)*é A=o

is dense in A , by (I.8) . We note, moreover, that, for each %e.@o, there

exists some & /(5{) such that i/@ D(]?), for all & /(1};"{{/))
Next, we claim that for each '_2’6,-' ‘Q)o and 0= t< Ff(’S{),

ﬁ_ /2' Zé = S—-,A‘/"‘:’an M_Jf__(/i*’{-——/; )%JE '“H/_' f{’

¢ ixo # t (1.10)



o
exists and determines a densely defined, linear operator, /‘/

Since r_:[} e 30 , there exists some é_ € &) and a positive integer

n > n, (i{) such that # = %ﬁ. Therefore ¢ &€ 7-)(/1 ), for 05 € < &"(f}-;ﬁ- E‘é“@).
Thus for 0< A £ %(ff(ié)”f),

L R O P

S8, (- 2)=3. )T, E b5,

in the sense of weak integrals. Here we have used (I.2). By (I.5)

NFC -7 )b+ L8/ 6 F,, Fuasl]

K;E// j/% (‘?u (—"*»/5)‘ 5; /f)) # 5;/(3)/((3
with g»‘?=é ({’(’/}* tf‘) , uniformly in (O < gé-i—@"@//ﬂzf)

As 4 tends to O, the r.s. tends to O , for all » < <o ;

see (I.6). Hence

/_xbm £ (7 fea = e ) == U8 G s

=]

SRSl == AT 4,

in the sense of weak integrals. This proves (I.10). Let

f_/i% s ng~<£ //".z!); _’_%G‘;zog

Note that for each @& QJ{ there is an £ ”(9))-0 such that GeD(/; ,), 0= 'f<<£'”(t9/.
Let now & and ._:': be arbitrary vectors in 09;, ,and 0 < £ < anin (E ”(9],_5;”(}:)).

Then
&.£(7-1)2>= {f(7;-4)8,2).

follows from (I.3) (Symmetry) and the construction of ﬂj ; (represent @ and

E as weak integrals!) Thus ;‘/ = — s-/mz-(/—' ) is symmetric on o@{
£ N0
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a
3° Construction of a selfadjoint extension of //

We now come to the main step of the proof. In 2° we have constructed

o
the generator 4/ and shown that it is symmetric on og?{ . However,

not know, a priori, whether its deficiency indices are equal, i.e. it is not

0
clear, whether f{ has a selfadjoint extension. This difficulty is

we do

circum-

vented as follows, [13] : We identify ¥ with the subspace £ & f_O} of

the direct sum £ = £ & H of two copies of H . Clearly (;82, — 21 @ ‘92,

0

—

. - . -4 o == _
is dense in # . Consider the operator Ii ;’.} on . By (1.10) its

domain contains o@! , and it has clearly equal deficiency indices. Thus it

has a selfadjoint extension, — H , with

;;—// _ “f; o //
g "~ lo dllg

Let Em denote the spectral projection of // associated with the

interval

(1.12)

[“”‘;‘m] , m= 14,23, ----  and set ’L/m = £ /7: Eh ;/qéw Note that
412 '

if ]C’ is a continuous function on /R
E. £ (F) = £(F)s, @),

by the spectral theorem.

Next, choose % & zo and define

— (/iaé

by (1.13)

1 M ’

(1.13)

(I.14)
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Since ﬁ’m is a bounded operator on % , we conclude
R ~¢tH - |
¢, (¢) = e "y (0)
— LA —
FaRe ,_zLL (0) by (I.13)

“—‘ef ﬁ/ﬂj

— —tH 7

Because {E }tends strongly to , as > <°, we have

s-lom 4, (¢) = (’1 ) /()

M — oo

for all 0 < 4 < g/(ré) Since g is selfadjoint, it is closed, so

that by taking 72 to oo we obtain

4 (¢) = e_lﬁﬁgz_/o). (1.15)

—¢H /
This equation says, in particular, that for :té & Qo, e (3/) € Ko ]cf?j'}
for 0< 4 < E_‘/[}{) :

Since }Lf is selfadjoint, the spectral theorem permits us to analyti-

cally continue e-{ﬁ (f)to i{' r0< Ret < El(ﬁ)} By analyticity in t

we thus conclude that

e.{.sll/ ( f) 6‘ %/_ @ EO} for all real 5 .
Since 90 is dense in X , we have

e (w0 f0}) ¢ Heic}, (1.16

1 0 <sH
1.e. commutes with €, . We may thus define

0 o
t 0] =
H = [00] H (1.17)



_12_

] o
By (I.12) and (I.16), /—/ is a selfadjoint extension of )L/ . ﬁ{'@ = ///03 s

and by (I.15) and the definition (I.17) of H .

- —tH
/_;_4 4 = e 4 (I1.18)
for allf_%é go’ 0= f<$/(¢).

4° Uniqueness of /7,

a

Let #z and #2. be two selfadjoint extensions of /L/ satisfying (I.18).

Choose an arbitrary 9 e# . Then

> = _ —tH,
Fit)=<K6,7,4) = {6 AL yg>, =12,
is the restriction of functions ,E; (;;_.) = <@) e“‘z H{ 4}> , holomorphic
on {g._ s 0< Re 2 <g/ (r_fé)} , to the real interval ('0} 8/(1&)) .

Since on that interval they agree,
F,(z)= F (=)

for all 2 with (< Rez< 5”(@), by the identity principle for holo-

morphic functions. Thus

<6‘,e£$’qf D= (8 e 4 >,

for almost all real s , (hence for all real § , by continuity), for all & € X
‘S is #H,
and allz_néézo. Since (e ‘ //f) and (e ") are unitary groups,

and .‘Zo is dense, /zpé = Hz .

5° Completion of the proof

—tH o
We define /; = , where // is the unique extension of #

constructed in 3° and 4° . For & :Zio we have

/; 4 = /i S s t<e0d)

see (1.18).
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Clearly, each é-é 2 can be approximated by a sequence fg,-_Z?hj’c Q,‘-o such that

.S'-—,Z'm éﬂ:’- ig; S—,/c'm /25_5;5-?1:/9;%)

P —> 0 qq == oa

for 0= z[' < & (é) Since /; is closed,

/; F = /i F for ost<e(F),

for all 5_66,23
=

We note that it follows from the above proof that the selfadjoint exten-—
-]

sion #/ of H is uniquely determined by the vectors

{Ffg:ost<e'(d)ded}= 4.

Thus '31 is a core for /A . Since

H/‘aj = H/Q , see (I.12) , (1.17) ,
1

]
H is essentially selfadjoint on % .

Theorem I.1 has the following straightforward.

Corollary I.2.

Let /{ be a symmetric operator defined on a domain 05! dense in x .

. / s
Suppose that for all 1}6 49! there exists €& {;é/) o0 such that the equation

.2‘15. d &) =—H &) (1.19)

has a solution (not, a priori, unique) satisfying S{-A‘m {1& (f) = 2& .
NO
é(’z‘) € ogf , for all 0% LL < 6/(1{/). Then /; : #t——> j(é}defines a
(-]

unique selfadjoint semigroup , and #/ is essentially selfadjoint on ﬂt

Proof :

We may repeat the construction in step 3° of the proof of Theorem I.l1 to

construct a selfadjoint operator H (not necessarily unique) on H o X
o
-+ 0 o .
extending . Let ﬁf.= og! @ ng . Since QL (5") =) SX{ , for

-]

o H
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- ~4# 0 _
05 ¢ < 8/("1) and 7‘//5- = . , /f has the property
1 o #H||=
9!

d [4(¢) — [4(¢)
()3
which, as in step 3° above, implies
(%) = (3)
7 o)
As in step 3° it is seen that ';f@jO} reduces H . Thus

- 1 0| —
JW)=e tH ﬁ , with H = H. (1.20)

0 0
a
Since, for a given extension H of H# » (I1.20) holds for every solution 15&‘)
s
of (I.19) with :'é(t’)"‘ 15, as €N 0 , we conclude that the solution of (I.19)

must be unique. The remainder of the proof is contained in the one of Theorem I.1.

Remark :

It is quite clear that the analogue of Theorem I.1. for unitary groups
*)
is false. To see this we give a counterexample.

2
Let X = L (ﬁ"[‘f,f]) dx a;_y). Let ag be the dense domain consisting
of those square-integrable functions, j"’(x,y) , for which there exists some 5(/)} 0
such that fﬁr,_y): 0 if /xf=_<_. £ (/) .

For each jz p=S 2 we define

((};/)[x,y) = Fle-t,y) , 05 [t/< € (F),

i.e. UL‘ translates f by an amount Z in the x-direction. The locally
L]

defined group (U{-) has, however, infinitely many different globally defined,

unitary extensions from ag to oA . One extension is the obvious one

{
The group of translations in the x-direction, (Uf ) . Another one is defined

~{
as follows : Ué 2 .7{ > J{‘ with

*) An example of this type was suggested to me by M. Aizenman.
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j{&-—t’,y), r'f X< Oj;r—f<0, or X>0,x-¢t>0
f&’y)z (1.21)

f&c-t,—_y)) if x>0,x-tz0,0 x<0,x-t20

More generally, let 5p be a measure preserving map from Z:-!, !] onto Z-'.{, !‘7.

Replace in (I.21) "-y" by "}0{):)" . This yields a globally defined extension

(v;) o (0,)-

1.2. Nelson's analytic vecton theorem [14,152'] .

In this section we show that the methods used in the proof of Theorem

I.1. can be used to give a simple proof of Nelson's analytic vector theorem.

Theorem I.3.

]
Let 7/ be a symmetric operator on a dense domain Qe X , and Hd < D.

Suppose that, for all é-e o , there exists some 2@5—)}0 such that

$ANATEL,, <

n=0
for all 0s A< € (£).

o
Then / is essentially selfadjoint on D

Proof : Let é-é.g . Then

5@)s otm > CH) &

=0

exists forall/f/<€(§). Let Z:‘%@%, z=3@2 , as in the
- 0
proof of Theorem I.l. Then f ;‘? leaves & invariant, and for each

1{‘ = (;é{? ) € g— there e“iStS € (?)"— min (‘ (f})/ 5(14,_)/Luch that
/{'f //[ 2] ""é/ < oo, jfor [/ < E(}_ﬂ)

Since [—# OOJ has equal deficiency indices, it has a selfadjoint extension,

‘ﬂ.““O

I 4
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../-/- . Moreover, for f_ﬂe il
o
-p Lea
16, Ffor all m= 12,3 --"
0

:l:n()

(-H)"4 =
Thus, for /‘f’/< 5('&?) >
— oo ] n
—tH = ~tH)” " [-H# 0
o 1&:2(“/)%_2; ;7[0 3 4. (1.22)

If gé:(f), Fed |, (1.22) yields
_{F FH)
)

0

It is shown as in step 3° that this implies that %630_} reduces /Z{_ . Thus,
10] 5 ~¢H
with ﬁ: [00)/-/ , é({):e §, for /f‘/'< £ (§)

Since iJ/-é'} is uniquely determined by { f?mé: m= 0, I;Z-;'"J‘, one

o

shows as in step 4° above that H is the unique selfadjoint extension of H
-]

i.e. // is essentially selfadjoint on ) u

We do not consider other, well-known reformulations of Theorem I.2,

but see [15]

1.3. A nemarnk on the semi analytic vecton theorem [15] .

Although the material in this section has little to do with the main
theme of this paper it is clearly connected with the one in the previous section.

Moreover the following arguments are very short.

In [16] A. Sokal has rediscovered and extended the following

Theorem BS (Nevanlinna [17] )

Let J‘ be a function analytic in the circle

Cz = {a ; Rez ™l > K“‘}

and satisfy N—1

£G)= 3 aget e R, (@), with [R&)]s ALTN! [e]"

=0
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o0
R
. . . t
uniformly in N and in 2 € C2 . Then 3(’5)52 dk';/' converges for

-1 = . -
[t/< & "and has an analytic continuation to ,S'é = %{-; dist (f)RT,_)< b ff ,

and f can be represented by the absolutely convergent integral

) = z"f;““_za (¢)dt,

for any 8 € CR . In particular, f(8) is uniquely determined by

{aﬁ.}é:ﬂa , for all BGCR. o

The name "BS" of this theorem is intended to recall that it is funda-
mental in the theory of Borel summability. Here it is applied to prove

Theorem I.4.

o
Let H be a positive operator on a domain Z dense in £ , with

-]
//JE 9 Suppose that, for each ‘f_gé A , there exists some E(é)) O such

that
[~ =]

S 2 AT E) < =, forall 05 A< £CE). -

M=0 (n '/)Z

(]
Then /L/ is essentially selfadjoint on g

o
Proof : Since }/ is positive, it has a positive selfadjoint extension,

H ; see [15] . Let ﬁéz , 1&6 4 , and consider the function
f(a)_—: (351 e-& H§> analytic in 2 for Reza >0. 1ts boundary value on

the imaginary axis is a continuous function. Furthermore
j—:é )= (4, CH)" e,"”_gz:)
= (o )" D
= (AT E)

-]
because H is an extension of 4 , and //”QQ /. Using the fact that

{l

-2
//e /-/// = , for Rea > 0 , and (I.23), we see that the hypotheses
of Theorem BS are satisfied. Thus j{(&) is uniquely determined by (and

computable in terms of)

“% =(7,e/) <1ik’(__/;;)lé ig_> (1.24)
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i —itH
By taking the boundary value we see that %(‘5{)"<‘.¢)3 fg') is uniquely
og
determined by fa’é 'F/Q , given by (I.24). Since Q  is dense in K
=0

it follows that e_“cﬁ is uniquely determined by

{<?{))(ﬁ/;’)k§> : ‘-‘é e?f, §6 '3) ‘é=011121“'_}.

Therefore H 1is the unique selfadjoint extenion of H , i.e. H 1is essen-

tially selfadjoint on D .

By combining Theorem I.l. with Theorem BS one obtains

Theorem I.5.

Let (73 ) (/-' )L‘z ) satisfy hypotheses (1) - (3) of Theorem I.1. Let

H be the unique selfadjoint generator of (/— ) £ o constructed in Theorem

I.1. Assume, moreover, that for each éé )

d™ 2
- ag.m Ty /_ é- exists, for all n= 122, 3 -,
£ NO ot ¢

and for £ > 0 small enough, depending on _5 -

Z //[dn Z.}FJ“/ L (1.25)

Then H/oa is essentially selfadjoint, i.e. J  is a core for H

Proof : Let é. and 1L be in ,ﬂ) 0= 'Z'(‘nu'n (&'(2;7;5['1(’)} Consider the

£, g = b1z 3) =L 8

By Theorem I.l. it is the restriction of a function,]ﬁ & (2), analytic in 2
Fl

for 0< Rez < min (E(gr), E/:ré))to real values of Z . Assumption (I.25)

wmd (b, L HTED = KTab, W78 [s T 10T &

together with (I.5), show that ‘7‘14 & [,é) satisfies the hypotheses of
7

Theorem BS, with R< min (E‘(y}-)) & (1&)) . Thus j':; J (%) and its

boundary value J{'j’;f (-f.'s), s real, are uniquely determined by {d,n §n=o with

R AC XA DR RN %I S
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.

. ..‘:H ) ) .
Since e. 13 a unitary group, and S is dense in W ,(e is uniquely

determined by 'jff -r.s) . 1& and é in 8 , and thus by
f(é}{-/ é}-‘f;@"’" 53,%=0,4z,3,----} -

Remark : The point of our use of Theorem BS is not so much that it gives the
above short proofs of Theorems I.4 and I.5, but that it really provides us with

. -
a constructive tool to calculate & Hé- , for éé ,,8 , namely

> -1
D HORTY

where B§ (s)= Z s* )z (.__A/) § , and the integral on the r.s. of

(I.26) converges in norm under the hypotheses of Theorem I.4. and weakly on oJ

under the ones of Theorem I.5.

The techniques of this section can also be used in the context of deri-

vations on operator algebras [5]

II. Miscellaneous applications of Theorem I.1.

*)

II.1 An application of Theorem 1.1. to the theory of Laplace thansforms.

Let /~(¢)be a distribution on the interval Z%%)/ﬁj . Without loss of
oo
generality we set/jn: o}ﬁ.—.—. 2m . Let 4_/_ be the space of C test func-
tions, j( » with Swpp f"c—(o,;gl We propose to study that class of functions,

/ , which have the positivity property

ff-?;} F(f'}"S)f/S)a/T.LCKS = 0} (11.1)

for alljfé J_ﬁ » and which are such that ff{tf‘) F({fS)ffﬁ')q/éc{J is continuous

in jZ in a topology of 4§+_ in which ﬂ:* is separable. Thanks to (IL.1),
(5.2) 0> 9.2 > = [9@) Fltrs) £6) dt s,

in , equips J with a continuous inner product. Let be its
) F P + p

kernel. Then X = 14//!/' Y

*) The following discussion was motivated by a general theorem, due to V. Glaser [11]
brought to our attention by H. Epstein who emphasized connections between Glaser's
result and Theorem I,1.
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is a separable Hilbert space. Let

G fed > FF) e X
be the natural map from 4‘ into K . Clearly A= é—({;) is dense in &

by construction. Given a test function, f , let f; be defined by

£ G)= #G-¢).

Note that, for each fe 4 , there exist positive numbers é_‘/f} and é'/(f/

such that

JZ; e {* , for e/ (#)< ¢t < £(#), (11.2)

and, fordq and f in 4 and
—men (£/02) €'(3))< t < min ((F), €(2)),

(g, 53 = [g(e) F (rs) f(s-8) duc dls
= f}(ﬂ’-—{) F/-a.’ﬂ-:")f(r’)a/a’a{_g’
= <;L“ /> (I1.3)

Thus the mapping : fl—-) %1.‘ ~ fﬂe 16+ , leaves ./V invariant. This

[=]
permits us to define a semigroup (Q){_a on O by
0

/ié.(f)= é-@-:l); For all fe 442015-{“56‘7-

s LG EF)= )= T, F (). e

if f,S and Z‘."':‘S' are in [0, SG")/ . Moreover, since for all f'e d/.z,,, ’ffe"{.p
for 0st< e'l(¥) >

)= T, £(£,). -
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By (11-3)—(11-5),(1f; ) satisfies hypotheses (1)-(3) of Theorem I.1l.
. t2 o0
¢4
e

Therefore it has a unique selfadjoint extension {; = . We now have

Sgte) Flurstt) £6)dwds
=< g05), T E (2D,

for 'é= L‘I-f- f” , 05 f’(’é’. Ci) , 0= f”< £ (f} . By the spectral
theorem we thus have analyticity in the strip {‘f 0< Ret < é'[f)?‘ 6'(07)5 5
By choosing ;’:f?;g 5” , = 2,2,3,---- , where the functions
é;: were introduced in step 2° of the proof of Theorem I.1,and appealing to

standard limiting arguments [6,7] we recover the following result,

originally due to Widder [18] , which is a special case of Glaser's theorem.

Theorem II.1

The distribution /E is the restriction of a function, denoted Fé) .

which is analytic in the strip O< Rea < 27C , to the interval 2 = # real,

O<t <27 ,and F(f):fe—fﬂq//a/}\),for some positive measure C{/u._g_tl R.

Remarks :

1) We are informed that Klein and Landau [9] have recently used Theorem II.1

to give an alternate proof of Theorem I.l. (Our study of the relations between

Theorems I.1 and ITI.1 is however independent of theirs).

2) In statistical mechanics, functions /4 of the type characterized in Theorem
I.5 arise in connection with KMS states. They have the following additional

property :

Flt) = Fler-¢), qee)

(in particular, F is periodic). By Theorem 11.1 and (I1.6).

- -¢)
Fle)= fe Xt dua)= Fam-t)= fe ren A (1),



- 22 -

i.

Ft)= L [ e A 1)

If we set
do@)= A (1-e 7 )du(a)

we obtain

Fle) = fdf (A)[!—Q_ZIAJ_I(ZA ]"1@—Af+ SAbr-tl]

This is an integral representation of;p-(f) in terms of the Green's functions
4% 2
of (—E + A ) . 9.9/: O , with periodic boundary conditions at *= 0,27,

(Physically speaking, these Green's functions correspond to harmonic oscillator

two-point correlations at inverse temperature /5 = 27),

I1.2 Some applications to quantum mechanics.

(1) First, we sketch an application of Theorem I.1. to non-relativistic quantum
mechanics. See also [9] for some general, independent but related results.
Theorem I.1. can be used to construct natural self-adjoint extensions of
Schrodinger operators which are unbounded below, e.g. the Stark Hamiltonian.

Consider, for example

X = /_Z(RM), Q= J(r*"). (I11.7)

. ) 3N :
Points, XN , in K represent the coordinates of /V particles, i.e.
_ > 2 4.2 3 3 .
X”—- (XH ki XN )} Xf = (xj)xj)xj)éﬁ. We define
He->(4%, )4, , A= " P - (11.8)
° ,Z, ( Z’";') s’ ¢ (a,g)z (axt)* " (ax})*

xN
Let hﬂay = J2. be the path space for the Wiener process associated with

+
// ; see e.g. [19] . Let ;D (Zfé)N’) be the Wiener measure determined
[2]
K1y
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by Ho , conditioned on paths {J(Z’)” € LQN , 0= &= % , with the
properties 0-‘(0%"-‘ Xy, @ (t‘)ﬂ =Yy

3N
Let V(XN) be e.g. a continuous function on ﬁ, , with

¥
[V,)] < a2 };Z + b. (1.35)
F=1

Then, for fe J (KBN) and £>0 sufficiently small, £

72 Go) ¢
- W (T C{t‘
E‘/‘Zéa’iyy(dw”)e /; A }”) j f(y”)a’y” ’
N

£ defined by

(1.36)

N
with ‘{)’A/E T d%y. » isin & .
7=t 7
To show this, one first regularizes V at oo , ( V/-—)- VR ’

/]/R (XN )/é R ) , but we suppresses such regularization and the discussion of

R Aloo which is straightforward. Note that

4
[l [§ 7 o, )R VEEE Y 1, ) oy,

‘ -tV ) 4
=7 -jfd,t' f//br("'w’z’k) = ' /’b{ T(‘E,wyy)/;/yﬂ)/‘{yfu dz,,

T
where 2 6(”/ Z-,N) is the integral kernel of & ®, and we have used
-1
Jensen's inequality with respect to o fa{ft—-— . From this and the well known
. r ° . . .
decay properties of /»o x”) aﬁ) our assertion follows easily. We leave it
as an exercise to the reader to verify that the locally defined, symmetric semi-
o o
group (/_' ) given by / "‘7{62(&3”)&]{‘ €A satisfies all hypotheses
t/t2o ¢
of Theorem I.1l. (This is conveniently done by introducing the regularization
V —> VK, and then taking R _720) . Theorems I.2 and I.5 can be used to
N N
construct domains of essential self-adjointness for H= Hof-V, defined as the

o
unique, selfadjoint generator of (/; ] .
t2o
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Among applications we mention that the above observations yield natural

selfadjoint extensions of general Stark Hamiltonians [20] or of the Hamilto-
N
. . > 12 é .
nian with VC\( )= —-Z a. /X-/ , @&. > ©0 [21,15] , etc.. Using

Ito stochastic integrals, as e.g. in [19] , electromagnetic vector potentials

can be included. The techniques outlined above can also be applied when

N
7 -
}4:%(_4}% 1P ), >0, 850,
and 0<?} <7, V(X”)g._ d_Z:/)-(;-/+£
#=1 —TH,

This is seen by noticing that the integral kernel of &€ in
X-space is positive and has exponential decay (a consequence of the Payley-

Wiener theorem).

(2) One can ask whether the two - (resp. several) Hilbert space technique used
in the proofs of Theorems I.1 (see step 3°) and I.3 can be applied to other
problems. In a general context, this method has been discussed in some detail
in Achieser-Glasmann [13] . Davies and Simon [22] have recently used those
techniques to prove absence of singular continuous spectrum for some class of
Schrodinger operators, (the "twisting trick" in [22] ). One can think of other
applications in the same spirit ; (e.g. the decoupling of local singularities
from long range potentials). Another example is a two Hilbert space proof, due
to Nelson, of von Neumann's theorem saying that if C: is a densely defined,
closed operator on % then C*C and C C* are selfadjoint. The method has

been frequently applied in operator algebra theory.
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