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Introduction

Beginning with the work of Berezinski [ 1] and Kosterlitz and Thouless
[2], there have appeared mumercus papers discussing the low temperature behavior
of the plane rotator and the Coulomb gas in two dimensions. There is a close
connection between the rotator and the Coulomb gas made precise by Villain [ 3].
Roughly speaking, vortex configurations of the rotator correspond to charges in
the Coulomb gas. (See §§ 2,3 for a review). At high temperature the rotator always has
exponential clustering and the Coulomb gas exhibits Debye screening [4]. In
the case of the two dimensional rotator, the Mermin-Wagner theorem forbids a
spontaneous magnetization, nevertheless there is presumed to be a temperature
Tﬂ below which correlations have only a power fall off. For the Coulomb gas at
low temperature and low activity one expects that there is a phase without scree-
ning. However, there is little that is rigorously known about either of these

twe dimensional models at low temperature.

In two dimensions the Coulomb potential is logarithmic, =~ {Ii}-llaﬂx | -
The long range nature of this potential has the important consequence that it
makes the Coulemb gas "locally" neutral in the following sense : If the distance
between a plus charge and the nearest negative charge is r , then the contribu-
tion of such a configuration to the partition functiom is exp-(B/im)leg r .
Moreover, there is a contribution from the entropy which is . (One factor
of rz comes from choosing the position of the first charge and a factor of r

comes from choosing the position of the second charge). If B > 8w note that

I tvtﬂizw}lag rrjdr g

hence the total contributions of long dipoles is suppressed. (See §3). Thus a
natural starting point for the study of the two dimensional Coulomb gas for

large £ and small fugacity is the study of dipole gases.



This article is primarily devoted to a detailed analysis of dipole

gases in two and three dimensions. For dipoles of fixed length and with a hard
core we show that there is no screening, provided that the fugacicy is small.
More precisely, we show that the charge correlations and the infinitesimal dipole
correlations have a power law decay. In two dimensions we consider dipole gases
in which the dipoles are allowed to assume a finite number of arbitrary lengths.

The fractional charge correlatiom is shown to have a power law decay.

In three or more dimensions we establish the existence of an ordered
phase for large fugacity, provided the dipole potential has short range.
This means that the dipole correlation has a long range order. The
model we analyse for this case allows dipoles to have a continuous orientationm,

but the centers of the dipoles lie on a fixed lattice. If the orientation of

the dipoles are constrained to be discrete we show that, for general dipole potentials,
there is a crystalline phase in two dimensions, as well. The proof of this
is based on a Peierls argument of the sort used in [5,6] to prove

existence of a crystalline state in the two-dimensional hard core Coulomb mono-

pole gas at low temperatures and large activities.

A key ingredient in the proof of our results is the sine-Gordon transfor-

mation. Let us consider a simple example, namely the lattice Coulomb gas with

hard core. Let d"ﬂc be the Gaussian measure with covariance BC ,

Clx,y) = (-8) N(x,y)
and define

U (x,q) = E Clx;,x;) p
n @ ljjfjfﬂ - S | qqu

The transformation for the partition function in a box A is
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The sum I' ranges over X ¥ X;

Similarly the partition function of the lattice dipole gas with discrete

orientation is given by

J] 0 [*z  ©  cos(é(id-¢(k))] au (1.1)
€, il o
Here Ln is the lattice 4t %" and Lt denotes the length of the dipoles. We
use this representation together with Mermin-Wagner [78] type methods to establish
upper bounds on fractional charge correlations and lower bounds om ¢ correla-
tions in momentum space. However if z is not small notice that the resulting
measure in ¢ space is not positive and our estimates break down when applied
to (1.1). For this reason, in two dimensions it is helpful to go to a modified

representation in which (1.1} is replaced by

Igl [1+E::u-{?¢k{jm dug . (1.2)
with
|Z] < const|z| « B 198 A

and &4 is defined in §5. The identity between (1.1) and (1.2) is obtained by using

a mixture of the ¢~ and charge (q-) representations. Since ¢ and q are dual

wvariables, our analyeis can be thought of as a phase space analysis in function

Bpace.



Let us consider the fractional charge correlation,

o gt B(#(0)=4(xD (1.3)

¢

in some more detail. We shall show in two dimensions that, for both the Coulomb

2
x| ™® BI2% ;e all activities

and dipole expectations, (1.3) is bounded below by
£ *»0 . This bound is a consequence of Jensen's inequality. Of course for small
B we know that the truncated correlation in the Coulomb gas clusters exponential-

ly [4] . This means that the truncation must be non trivial, i.e.
o “iuﬁfﬂ}} éa.

Thus < e-3¥(0),

ghould be regarded as an order parameter for the Coulomb or
sine-Gordon models, and we shall see that the role of boundary conditions is
erucial. Our aim is to show that if B is large < Hiu{icu}~¢{=]]} goes to
zero for large x . Thus far we have only succeeded in proving this for dipole
systems, but we believe that our technique will enable us to eventually extend
the result to the Coulomb casa. The technique is to expand the Coulomb gas in
terms of gases of neutral multipoles by means of some sort of "block spin"
transformations. It is important to mote that by the above arguments we have
reduced the proof of existence of such a phase transition to proving an upper
bound on & correlation function, as opposed to the more difficult proofs of lower
bounds. Moreover, the fractional charge correlation is extremely useful in the
analysis of the Coulomb gas in two dimensions, because it really looks like a
charge—charge correlation in a sea of dipoles. An integral charge

in a Coulomb gas would tend to pair with an opposite charge and thus the corre-
lation would behave like a dipole-dipole correlation in a sea of dipoles which

requires a much mwore subtle analysis.



We conclude this introduction with a short summary of the different
sections of this paper : Our main new results are in §§ 4,5 and 7, but see also

§6.

In §2 we review the sine-Gordon (or Siegert) transformatiom, i.e. the
passage from the q= to the d¢~representation, in a form convenient for our
purposes. We also recall integration by parts on function space, in the ¢-re-
presentation, which is important for later sections. Another piece of abstract
formalism, Reflection Positivity (in the ¢ and gq-representations), is reviewed
in Appendix A. It is applied to establish an analogue of superstability estimates
(the chessboard estimates) for classical Coulomb systems and infrared bounds

used to prove the existence of phase transitions with order parameter, (see

§§4 and 7).

In §3 we review the main rigorous results on the two-dimensional
rotator - and Villain models (Theorems 3.1 - 3.5) and describe the Kosterlitz-
Thouless transition (Conjectures 3.2, 3.2%). For comparison, Some Tigorous,
partly new results on general N-vector models, N » 2 , are quoted ((3.18 -
(3.19)). The duality (Fourier) transformation of the rotator - and Villain model
is recalled (Theorem 3.6), and the isomorphism between Villain model and Coulomb
gas is described. That Coulomb gas is shown to be a limiting ensemble of a
family of Coulomb gas ensembles labelled by an activity, z , as z -+ = (§3.3,

Theorem 3.8).

In §4, classical Coulomb gases in different ensembles are studied in
goma detail. In §&.1, the screening properties, the inverse correlation length
(mags), convexity - and decay properties of the charge two-point correlation
and the phase diagrom (existence of ordered states) of those Coulomb gases are
discussed. The main results are summarized in Theorems 4.1 = 4.5. In §4.2,

we specialize to the two-dimensional Coulomb gas. We give several differemt



characterizations of the Kosterlitz-Thouless transition and discuss its rela—
tion to the roughening transition. This complements the discussion of that

transition for the rotator — and Villain model in §3.1, 3.2.

In §5 we study the behaviour of the fractional charge correlation
and the expectation value of the disorder parameter in several different two-
dimensional dipole gases, in particular in a gas of dipoles of various lengths
that mimicks the two-dimensional hard core Coulomb gas at low density (z small)
and low temperature. We prove upper, resp. lower bounds with power law decay.
A method for renormalizing the dipole activities, based on estimating dipole
self-energies and replacing dipoles by neutral multipoles of larger size, is
devaloped, and its working demomstrated. That method combined with complex
translations of the é-variables inm the functional integral expressing the
fractional charge correlation in the ¢-representation yields our main decay
estimates on that correlation. In Appendix B an alternate (purely electrostatic)
method for renormalizing the activities of neutral dipoles is sketched. The
emphasis in §5 is placed on concepts and analytical tools rather than on opti-
mal results. We believe that the techniques of §5 will eventually permit us
to prove convergence of an expansion of the two-dimensional Coulomb pas in
terms of neutral multipole configurations, at low density and low temperature,
degigned to imply the existence of the Kosterlitz=Thouless transition. But

the required combinatorial and refined electrostatic estimates are still missing.

In §6 we establish absence of screening in general dipole gases, in
the unordered phase (Theorem 6.1, Applications 1,2). Our main tool is a gene-
ralized version of the Mermin - resp. Goldstone theorem (Theorem 6.3). The
basic reason why the "Goldstone theorem" applies and there is ne screening
lies in the fact that dipole gases have a spontaneously broken, continuous
syemebry, 4 + § + const., manifest in the ¢-representation. We also use our

version of Mermin's theorem to prove mean field lower bounds on the magnetization



in continuous spin lattice systems (§6, Applicatiom 4).

In §7 we study a general class of lattice dipole potentials, estimate
Madelung constants, i.e. energies of periodic dipole configurations, analyze
the groundstate configurations and prove inmfrared bounds on the truncated
dipole-dipole correlation in momentum space. All this serves to establish the
existence of phase transitioms with order parameter and of ordered states
{oppositely oriented, infinite chains of aligned dipoles) at high density and
low temperature, for wvarious classes of hard core dipole gases. Depending on
dimension and dipole ensemble we use the infrared bound method v > 3 , short
range dipole potentials, orientation of dipoles continuous) or the Peierls -
chessboard method (v > 2 , long range dipole potentials, dipole orientation
discrete). The material in §7 is rather intricate, and we recommend that, in

a firat reading, only the main definitions and results be studied.
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§2. The sine-Cordon or Siegert transformation [9,10] : Fourier transformation
in the charge variables.

In this § we review a well-known formulation of the statistical mecha-
nics of classical gases of particles interacting through two-body potentials of
positive type in terms of Gaussian integrals : Via functional Fourier transfor-
mation the charges of classical particles are traded for conjugate variables.
This formalism has proven to be very useful; see e.g. [ 4,10, 11]. It is a basic
tool of the present paper, as well (permitting localization in "phase space").
W then recall correlation inequalities of [11 ], and integration by parts on
function space [12) , and we give a preview of applications. Im an appendix to

§2 (Appendix A) we review reflection positiviecy [13,6].

2.1 Functional integrals and statistical mechanics, inequalities.

Let € be the configuration space of one classical extended or point
particle. In this paper ( will usually be a lattice, L , in particular
¢ =2" , but for later purposes (see e.g. §§6 and 7) we admit the possibilicy
that C =R’ . Points in C are denoted ¥,¥ss:s5 and dx is the counting

measure on L if C= L , resp. Lebesgue measure on R if CaR .

Let IEE be some lattice and let [’!'::}xIEI be a cover of C by
disjoint hypercubes (squares for v = 2 | cubes for v = 3,...) with sides
parallel to the axes of [ and centered at the sites of [ . The possible posi-

tions of one classical particle are identified with the sites of [ 53

Let qu be some measurable space of distributions, pﬂ s with support
inside 4, + Let d} be some measure on Q. Given a distribution b £ E!u v

we define LI by



= 3. 3 =

p (¥} = p_(y=x) (2.1)

Clearly supp “:E:dh . We define q! to be the space of all distributions P,

obeying (2.1) for some Pa E Qﬂ + and

dr (o ) = di(p ) = dr(p ) (2.2)

A distribution P € qt is interpreted as the charge distribution of a classi-
cal particle located at = . The measure di agsigns an a priori weight to

each charge distribution.

Next, let C(x,y) be the kernel of a positive (semi-)definite quadratic

form, C , on thf.d:} . We assume throughout this paper that
C(x,y) is real=-valued and continuous in x and ¥y. (2.3)

Let Q(C) E:Lzﬁf.du] denote the quadratic form domain of C , and

H the closure of QI{C) in the scalar product

gC

<f,g»_ . = g(f,Cg) , (2.4)
BC thf.dxl

f,g in Q(C) .

Subsequently, B is interpreted as the inverse temperature, and C(x,y)

is the potential between two point particles of charge 1, located at x resp. ¥.

Let ¢ = $(x) be the Gaussian process vith mean 0 and covariance gC

indexed by HEE « The distribution of ¢ is the Gaussian measure

dul$) = d"BE{*}

with mean 0 and covariance @BC .

The expectation in dy is denoted > By definition
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‘iff1}$E =0, *#(flifs}}ﬁﬂ = <f.g* (2.5)

BC *

where #(f) = [ $(x)f(x)dx , and f is a test function (e.g. Schwartz space
C

function) on C . By power series expansion one finds, using (2.5),

ig (L
g #l }}Eﬂ - ixp[‘lfﬁﬂf,f:ﬂc] (2.6)
Wick ordering is defined by
¢ (E),  _ ie(E)_ ig(f) -1
e fge ™ @ e ac (2.7)

We now suppose that p € H for all oy (3 Q, and all x€T.

ec '
Then equations (2.68), (2.7) make sense for £ = [ P » Py € q“ b B 0 except

for finitely many x . From those equations follows

Lemma 2.1.

n iflp, ) n
<N e J2ge = expl-(8/2) L (o .Co )] (2.8)
j=1 i.j=1 “i j
n iglp, )
<mote Gigeo=expl8 I (o ,Co )] (2.9)
j=1 lei<jsn i j

We notice that the r.s. of (2.8) is the Gibbs factor of n classical
particles located at points Xpaeeea® in [ with charge distributions

Py o0 3By interacting through two-body forces with potential Cix,¥) . In
1 n

(2.8) the self-energies of these particles are included, in (2.9) they are

omitted.

Hext, we define functions

ii(ﬁ:}
Fg,) = Iq difp ) e , 2 €L, (2.10)

X
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of the Gaussian process ¢ .

Kote that F{{x} is localized in the hypercube ﬁx (i.a. 1f &(*)
and 4'(*) are two samples in the support of d“ﬁc with 4(y) = ¢'(y) , for

yE& then FH,‘} = FH;,'I,'I . Moreover F:‘.#ﬁ] is obtained from

isp )
F(¢) = | dip Je " by the substitution $(y) = ixﬁr} = ${y-x) . This

o
follows from (2.1}, (2.2). We set

AORIRR LR

where A is a finite subset of [ , and introduce the measure

=1

<Py Fh{ﬂduﬂciﬂ a (2.11)

Expectation in this measure is denoted «<=> (§;F) .

Lemma 2,2

Let A be a bounded region in L . Then

E (B3F) = <F,> = [ 1 da(p expl=(B/2) £ (p_,Cp_,)]
A ABC ey X ol
, “‘Ex} = | 2.12 )
<0 e i» (B:F) = £ (B:F) m diip
{e1 A A x€n  *
n
cexpl-(8/2) I (p_.Co ,)]exp[-8 I (p .Co )]
yy'en ¥ 7 o R
yGe (2.13)
n o~
.expl-{8/2) & (p_ ,Co_ )]
= = = X
;=1 i 1
n i#l’;ﬁi
Clearly, Ehiﬂ-:l-‘} is the partition function, and < i & i ?n{ﬂ;l-'} the
i=1

correlation functions of a system of classical particles in the region A with



= 1.5 =

charge distributions Fx E Q, and interaction potential C(x,y) , at inverse
temperature £ . The expectation ﬂ-ﬁhiﬂj!‘} is the equilibrium expectation.

Lemma 2.2 is a direct consequence of Lesma 2.1; see also [9]10].

Mext, suppose that A(p) is a functiomeomn X Q . We define

x€n *
: -1
<A>, (B;F) = £, (8;F) fr”&"”"x’
exp[-(B/2) I (p_,Co_,)]a(p) (2.14)
v, ¥ €A ¥ ¥
= idle)
- <> {1: Jrunae) e *) O LI

xEA

and (2.14) follows from Lemma 2.1 and Fubini's theorem, (provided di is a

finite measure). The expectation
in!nriﬂ{B;F} » (Loe. Afp) = nlpyl "

is called charge two-point correlation.

Mext, we consider the case vhere
d-'l-{ﬂ-l} - dli‘ﬂx] ; (2.15)
{(2.15) is a neutrality condition expressing charge conjugation invariance.

Lemma 2.3.

Assume that di satisfy the neutrality conditiom (2.15). Then

n iq.{';‘.’lm n iq.(E'IJ
<fle i> (BiF) 2 <1e L 20 o
i-‘l i-.]_

for arbitrary A
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Proof :

By Lemma 2.2, (2.14) and Jensen's inequality,

0 i4(e )
<Ne iz, (8:F)
i=l

n
1,nxp[-ﬂ{lflfuﬁ,ﬂuli}?n{H:F}l
yEA

1]
.expl- (8/2) E (E; Co_ )]
i,J=1 "1 i

By (2.14) and (2.15),

<L (p .00, )7 (B:F) = 0 for all i=l,....m.

yEA i
Finally
. o id(e, )
expl~(8/2) E (o .08 ) =<he 7 e
i,j=1 i _'I i=1 -

Next, we consider two special ensembles. We suppose that di is a

probability measure, and 2z is a positive number.

(Gnhc) We set

F(¢,) = explz [ dilp )cos ¢(p )] (1)
X
{general no-hard-core ensemble), {2.16)
(Ghe) F{lui = 1+z [ dl{n:}cﬂ! i{pll (11)

%

(general hard core ensemble).

Since cos ${p) = cos ¢(=p) , these ensembles are automatically charge

conjugation invariant. The interest in the (Gnhc) ensemble is motivated by
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Theorem 2.4.
n i¢(F )
In the (Gnhc) ensemble (2.16),(I) < W e i ?nfﬂ.zj is monotone
i=]
increasing in z and A and decreasing in BC ; 'Elﬂﬂlzi'n(h:} is decreasing

in £ and A and increasing in BC .

Remark.

As explained in [11], Theorem 2.4 serves to construct the thermodyna-
mic limit, A [ , and to derive monotonicity properties of critical tempera-

tures, susceptibilities, etc. in z and C .

It is shown in [11] that under suitable assumptions on ﬂ“ . di

2 s ¥
and € , the (Gnhec) ensemble has a continuum limig, C+r .

For a somewhat different treatment of the sine-Gordon transformation

and complete proofs see [11]

2.2 Monopole - and dipole gages.

In this section we specialize to monopole — and dipole gases.

(M) For monopoles,
{1:{-{ ﬁ:{}r} g ERY 5

& if C=1L (2.17)
Xy

with & (y) =
x S{x~y) if C=R" .

The measure d) on § is induced by a measure on the real line which we also

denote by diA . A typical example for d) is

di(q) =( £ e _8(q-m))dq (2.18)
oE %
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where {:ﬁl is a bounded sequence of non-negative numbers.
We distinguish three different ensembles :

(Mnhc) , the grand canomical ensemble for monopoles without hard cores obtained

from (2.11) and equ. (2.16), (1) by setting
FHI} = gxplz cos #(x)] , (2.19)

i.e. dl(n“} assigns weight 0 to all distributions P E ql » EXcCept

b EH . The equilibrium expectation f-:-ﬁtﬂ-;l'] is now denoted f—hn[E,z} .

By Theorem 2.4, 1-?“5.:] has a thermodynamic limit, <->(8,z) . The parameter
z is interpreted as the activity of a monopole. The continuum limit of the

{Mnhc) ensemble is discussed im [10,11] .

(Mhc) , the grand canonical ensemble for monopoles with hard cores obtained

from (2.11) and (2.16), (II) by setting
F'Hx] = l+z cos #(x) . (2.20)

The equilibrium expectation is denoted by *E-?h:{ﬂ,:] . Each site x €[ can

be occupied by at most one monopole of charge *1 and activity =z .

{Mg) , a general equilibrium ensemble for monopoles obrained from (2.11) by

setting

R

The (Mhc) and (Mg) ensembles generally do not have a well-defined
continuum limit, and their phase diagrams are more complicated than the one
of the (Mnhc) ensemble. The phase diagram of the (Mhe) cnsemble has the Tollowing
features : (i) For small g, z not too large,and C the Coulomb potential,

the equilibrium expectation is unique, and there is exponential Debye screening

[a]l .



= 4.9 =

(i1} For some class of (RP) translation-invariant potentials C ,

2 = o(eb/2 CLO),

and B large, one encounters the formation of a ladder crystal
as shown in [6); see also §4. (iii) It is expected that in two dimensions,

with C the Coulomb potential, there is a dilute, translation=invariant Llow=
temperature phase where screening breaks dowm (formation of dipoles), for 8

large and =z = O(1) . This phase is characterized in §§3 and 4. We hope to prove

its existence predicted in [1 ,2] in a future paper.

The phase diagram of the (Mnhc) ensemble is simpler im so far as
(ii) is absent. The (Mg) ensemble interpolates between (Mhc) and (Mnhc).

In the study of (iii) dipole gases play an imporcant role.

We define analogous ensembles for the dipole gases.

(D) For dipoles,

LU

q - {2-22]
[(q-2)8]_, q ER" , if C=R" ,

-ﬁx} ,rEnﬂ:E‘qu.nr

where in the second case
b a
(g*3) = I qla/ax"), (2.23)

a=1

and it is assumed thon that {ﬁ“E}{u,y] ig continuous in % and ¥y .

The measure di on Q: is induced by, respectively, a measure
di(q,r) on R x4, a measure di(g) on B’ , e.g. di(q) = thqlz-lld“q ;
We set

{érﬁ}{EJ = s{x+r)-${x) . (2.24)

The (Dnhc)- and (Dhe) grand canonical ensembles are then defined as in
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(2.16),(I), (11}, in perfect analogy to the (Mnhc) and (Mhc) ensembles.

An example for a (Dg) ensemble is

(o) = | udi:q}.i[‘q'a’*]“’, «eT. (2.25)
R
-1 )
<=> (B:F) = <F,>_ _«<=F > , with F, = 1 Fi& ) , (2.26)
A A BC A BC A W x

see (2.11) and Lemma 2.2.

The phase diagrams of dipole gases are somewhat simpler than the one
of monopole gases : If C is the Coulomb potential the dipole gases have no
phase with Debye screening, a new result which we prove inm §§5,6 by using the
¢-representation (sine-Gordon transformation) to exhibit a spontaneously broken,
continuous sysmetry : ¢ + ¢+const.. The (Dhc) and (Dg) ensesbles have gene-
rally an interesting low temperature phase : For large density, z = D{n{”ﬂc{ml.
and B >> 1 , an ordered (crystalline) equilibrium state appears, for general

distributions di{q) en R" , including rotation-invarisnt ones (v > 3) ;

(when v = 2 , di sust be assumed to be discrete). This result is proven

in §7 .

2.3. Integration by parts forsmula

In this section we recall a standard integration by parts formula [13].

Let 4 be the Gaussian process determined by

t#tx}hﬁc =0 , f#txiifriiﬂc = BC{x,¥) -

Let F be some measurable funceion of 4{-)} . Then

- aF
@ F>e0 = B Jody Clxy) e ao o (2.21)
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and consequently

H(x)e(y)F__ = BC(x,¥) :F}HE

BC

2
+ 82 [f dzdz'clx,2)C(5 2" ) — T (2.28)

28 (2) 28 (z") BC

The proof of (2.27) and (2.28) is standard : One approximates the Gaussian
functional integral by a finite dimensional Gaussian integral for which (2.27)
and (2.28) are the standard integration by parts formulas. For details see

e.g. [12].

Next, let F = Fh be the multiplicative functional (2.21) defining

the monopole ensemble (Mg) .Then equation (2.2B) gives

G X4()> (BF) = <F ool <ROGIER .

= BC(x,y) = uz JJ ctx,z)Ciy,z")

(2.29)

iq 8 (v)

(] ndi(q )q q , < & > Jdzdz'
uEA WMty vEA 8C

= Clx,y) = g° Jf Clx,2)Cly,2") <q,q,,>, (B;F)dzdz’

and ve have used (2.21) and (2.14).

Here cqlql.:htﬂ:ri is the usual charge=charge correlation {(two=point)

function.

By smearing out both sides of (2.29) we get

et |, (85%) = 8(5,c6) - 8°<| () (D) | %5, (B5F)

in particular,
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<[o(0)| %, (8:F) < B(E,C0) .

Moreover, we conclude from (2.29) that
0], @ 87 g (2.30)

provided <|¢(£)|%> (8;F) 20 for which it suffices that F(s) 20 , (e.g.

0<z<1 in the (Mhc) ensemble).

If C and i—bh{H;F] are translation-imvariasnt (e.g. #*3hPLIH;F} a
translation-invariant thermodynamic limit, or periodic boundary conditions at

#A) then we obtain from (2.30) by Fourier transformation
QUOAC-K)>, (8,F) £ (BEH)™ (2.31)

We now specialize to the (Mnhe) and (Mhe) ensembles. Let

08 i{u}bﬂfﬂ.:} . Eor (Mnhe)
KH =Eu] =

cos $lu) 2>
¢l+= wod 400 (8,2} , for (Mhe)

and
sin &(x) , for (Mnhe)
$(x) sin 8 (x)

l+z cos $(x)

Then

<4 (x)8(y)>(8,2) = BC(x,¥)=B ¢ [du Clx,u)Cly,ulK,  (u)

+8%2? [fau du'clx,u)Cly,u')<S(u)S(u")>, (B,2) .  (2.32)

= Eﬂis.y}-ﬂzﬂEE-qJ{tJ{E*q}{y}ah{B.z} ’
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i.e. in the translation-invariant case

fIE{k]Iz?h{E.al = L2k _(0) -{1;":3‘|&{h}|1}h{3,=} , (2.33)

<|otn) | (8,2) 2 BUE,CD - 872K, () (£,6°F) | (2.34)

Equs. (2.32) and (2.33) are useful in the discussion of Debye screening (sum
rules and upper bound on physical mass) and of absence of long and short range

order in tq“qrriﬁ.zj + See Sectiom &.1.

Of course, the same identities can be applied to dipole gases : For
the (Dg) ensemble on a lattice L one finds in the translation-invariant

case

<(3g)(x) (3¢) (¥)>(8;F) = B(-4C) (x~¥)
{2.35)

8 & ﬂqiixlqjEal*iﬂ;ﬂwij{rﬂ ;

zii,]
with Hli{u} = {aialac*c}{x} the dipole potential. The second term on the r.s.
of (2.35) is positive-definite. When Bi,ﬂ are finite difference derivatives,
and C is the Green's function of the finite difference Laplacean this yields

< (38) (x) (34) (y)>(B,F) = E*:y

-EE L tqitzjqj{:}h{B;F}Hij(:'1} '

zil, ]
where Hll{z—y} is the uvsual lattice dipole potential.
As in the (M) ensembles one may [inally apply integration by parts

on function space in order to prove an idemtity analogous to (2.32) which yields

an inequality analogous to (2.34), namely
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<Jen]® 2 8(f,00 - 8% [ dr@, e K(r8, ) (5,6 07D (2.36)
E=4
i ]

where, in the translation-invariant case,

t:uliﬁri}tﬂ}? (B,z) , for (n h c )
E({r:B,z) =
cnltﬁriliﬂl

* 1oz cun{ﬁri)fﬂl 82 o fox (ko)

Inequality (2.36) together with obvious bounds on K(r;g,z) provide

an easy proof of the absence of screening in dipole gases for B < 0(1/z) :
By a chessboard estimate [14] one can show that

-:EE log ¢
[K(e;8.2)| < c,e .

for some positive constants €€y s and 0 £ 2 21 in the (Dhe)

case. This combined with (2.36) yields absence of screening for B < const. 1/z

and for B sufficiently large, depending on z . In §§ 5,6 we device much stron-
ger methods which prove absence of screeming for all # and z and yield more

explicit information.

Finally, we wish te draw attention to the following upper bound on the
dipole-dipole correlation which follows from a somevhat different form of the
sine-Gordon transformation, used e.g. in [11], by means of integration by parts:

Suppose that F(¢) > 0 (i.e. =z <1 in the (Dhe) ensemble). Then

«a(®a()> (851 g 87 (6,070 (2.37)

v
where q(f) = [ L q:f(j) , and W 1is the dipole-dipole potential.
JEA o=l

For other application of integration by parts see §4. In Appendix A

we review the concept of reflection positivity which plays a basic role

in §§ 3,4 and 7. That appendix may be skipped in a first reading.
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§1. Connections between the classical rotator (XY) model, the Villain model

and Coulomb gases.

3.1. The classical XY model : a review

The rotator - or classical XY model is the following classical lattice

Epin Bystem :

We choose L=Z , ve= 2,3(4,...) . To each gite x E L we assign a

two-component unit vector, Ex + interpreted as a "classical spin” ,

g - ‘si'EiJ = (cos 6, sin0) , o €[0,20] . (3.1)

Clearly

i(8,-6.)

-3-:'33 = cun{ﬂx‘ﬁ?} = Rele | O (3.2)

The a priori distribution of Eﬂ ig the uniform measure on the circle, i.e.

dﬁxfil . The classical Hamilton function of the system constrained to a bounded

region A=l is defined by

- el & L
By sHOY =-L §-5 -ni s

xy xEN
(3.3)

= =T ¢cos(8@ -8 )=-hE cos @
xyeh ol XEA %

where xy are nearest neighbors, and h is an external magnetic Field.

The equilibrium state at inverse temperature g 1is given by the

mEdsure

-1 ‘EHEEJ,".I
ﬂh{ﬂ,h] e n Edﬂ:fh.'l 3 (3.4)
xEA

where Eﬂiﬂ.h} is the partition function chosen such that the measure (3.4)

is a probability measure,
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The expectation in this measure is denoted ﬂn?fiﬂ,h}l y and
- ﬂ EHJH
‘*h (B) h{ﬂ:.h—ﬂ} ;

For a large class of boundary conditions (e.g. free, periodic,...)
the thermodynamic limit
@ iy u:
< M 5: * (B,h) = lim <1 & }H{E'h}
x€EA AAL x€p *

exists for arbitrary Ac L and arbitrary {“: = ‘1,:2}“\&“II . For h# 0,

XY : . : : ; PP T
<=>""(B,h) 1is the unique translation-invariant equilibrium state of the rotator

model [17); morcover, for all 8 for which lim <§1>X (8,h) = 0, <>'(8)
h+o
is the unique translation-invariant equilibrium state [0 . Thus, for B = 2 ,
f-—*‘“l{ﬂ} it unique for all B <= | by Mermin's theorem [B] .
. : .2 XY
Lat m(B,h) = lim = (1/3) log <8 ;5, >" (8,h) , (3.5)
iy o' e
where e is a unit lattice vector in Z' , and let
x(8,h) = zlcﬁnﬁ::“:a,u; ; (3.6)
xE
Hare
XY XY XY 2
S Rl RO I S S CRVIE B2 Sl (- N ] [ (3.7)

m(B.,h) is the inverse correlation length (= mass) and x(8,h) the suscepribility.

If mi{g,h) > 0 then x(@,h) <= .,
The following results are well known :

(i) For real h# 0 w=m{B,h) >0, and m(B,h) = O(h) if m(B) = m{B,h = 0) = O .

Moreover m(B,h) and m{B) are decreasing in B . Therefore, defining EE by

k.- inf{g : m(g) = 0} - (3.7)

we have that m{g) = 0 , for all @& = B, . (3.8)



= 3,3 =

(One sees by a standard high tesmperature expansion that Eﬂ >0 , for all

dimensions v ) . For proofs see [19] .

(ii) For w > 3 there exists E; < = guch that for B > E;

lim ﬁﬁxﬁ {E.hl #0 ; (3.9)
h+a

i.e. there exists a phase transition with order parameter at B8 -E; . and for

B> E; there is at least a full circle of pure phases and there exists a Gold-

Btone excitation. If

tga,g;?xt{ﬂl I"ﬂ'|:l'=|-l':1'r-2m:|' , as x| + =,

then
nzo (3.10)
For B>B_,=m(8) =0 and x(B) == . (3.11)
Finally,
> . (3.12)

C =

These results are proven in [20]. (For v = 2 , En = w . by Mermin's theorem).

(iii) As noted in [21] , the Lebowitz inequalities

"i'-E a KY

. s
1 ﬁ %y

(B) < 04a = 1,2 , {3.13)

dand the inequalities

1 1 I 2 XY

8y z0 , (3.14)
‘2 H H

(proven in [2,23] ) together with Ginibre's inequalities [4] permit one to extend
a remarkable result for the Ising model due to Glimm and Jaffe B4] to the classi-

cal XY model :
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Theorem 3.1

For 6>8_ ., m(B) =0

lim m(B) =0 , lim x(B) == ;
E.FE': Bfﬂt

Far w -3 3 , the expectation

<->X0(g ) = 1im <->"(p)

EiEt

is clustering (i.e. extremal).

Remarks. As pointed out by Gliem and Jaffe 9 (see also [26,27]) Theorem 1.1
proves the existence of a critical point and of a critical XY wmodel with O
masgs, *= susceptibility, but me long range order in ¥ > 3 dimensions. Since

lim x(B) = = , n{g-t} (see (3.10)) satisfies

B‘EE

0:n(g) s1, [27]. (3.15)

Simplifying somewhat one can say that,for h#¥ 0 or v > 3 ,the qualitative under-

standing of the classical XY model is quite perfect. New rigorous results must

therefore be looked for at h =0 in v = 2 dimensions; (v = 1 being trivial).

Much of this paper has grown out of an attempt to prove the following

Conjecture 3.2, (see [1,2,28]).

For w= 2 , E-: £ w
(so that m(g) = 0 for sufficiently large B < =) .

This conjecture would imply that the twvo-dimensional XY-model has a

phase transition without order parameter and an interval :[E:.‘*} of critical

points. Although a complete proof of this conjecture has so far eluded our abilitics
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we hope that this paper uncovers gome basic mechanisms (both physical and mathe-
matical) thact should, in principle, almost suffice to prove it. Of course, Com-
jecture 3.2 is predicted by physical reasoning [1,Z)and renormalization group

calculations [28] . A complete proof might shed new light on that method. Next,

we recall an important imequality proven in [29]
(iv)
Theorem 3.3 . (Mc Bryan = Spencer upper bound)

For arbitrary ¢ > 0 there exists a constant I.'.E < @ guch that the

spin-spin correlation of the two-dimensional XY model satisfies

=[1/(2n+c)g]
Y
S, -5>7(8) ¢ k_(1+]x]) ; 5
Hext, we state a lower bound for gt .
Theorem 3.4.
For the two-dimensional, clasgical XY model
B. > 0,67 , (3.16)

L5

and m(g) > 0 , for all B < 0.&7 .

Remarks .

1. The proof follows from an improved version of [30,31) and will be given elsevhere.

We also remark that a straightforward combination of Theorems 3.1 and 3.1 yields

B, 2 Uzw 4 i.e. ~1/4 of the lower bound (3.16). The mean field bound is 8= 1/2.

2. The exact value of E-c is conjectured to be ™ | , so that (3.16) is as

accurate as can be expected from an expansion method; (our proof of Theorem 1.4
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involves an expansion in the spirit of [0] ; see also Gl ).

3. Consider the N-vector (N-component, classical spin) models, N = 1,2.3,...,
with Hamiltonian given by (3.3), and S € 8™ 1, (=1 is the Ising - and

HN=2 the classical XY model). In [16] we have proven that for v = 2
nH{E]I Zc, exp -cE{HJHJ ' (3.18)

for some positive constants €28y - Using methods of [1] we have been able to

2
show that

BN >3 - (3.19)

Based on approximate caleculations it has been conjectured that _EE{H] -

for w =2 and N >3 see [32] . There is no proof of this !

This concludes our list of rigorous results for the classical XY-model.

As noted in [3] , it is useful to compare the

two~dimensional XY-model with the two-dim. Villain model for which a proof of

Conjecture 3.2 might be a little more accessible and which is isomorphic to a

two=dim. lattice Coulomb gas. Recall that for the XY-model with h = O

~BH(®

Beos(@ =8 )
pr X

I e ¥ . gee (1.7) . (3.20)
xy<h

A

The Villain model is obtained by replacing rEI{B} = axp[f cos 8) in (3.20) and
(3.4) by

v(8) = I exp [-(8/2)(8s2 xm)’] . (3.21)
nex

When necessary we distinguish the XY- amd the Villain model by adding a super=

m__n

script """ when considering the Villain model.
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Note that #E{E-El'} is (up to a constant factor) the integral kernel of
the operator expl(l1/28)4A) , where & is the Laplacean on 51 (= Laplacean
on [0,2x] with periodic boundary conditionms at O amd 2v ). Thus, using

the Trotter product formula,

2n 2n N
v (ae') = ;f: C(N,B) J‘u dg ... qu da,, jEu IEH[Ej-Ej_'_l} -

with g, = 3 and EH-II =§' ; see e.g. [33]

One may therefore view the Villain model as a limit of rotator models
in which each link xy cZ" is occupied by N classical, two-component spins
interacting with their nearest neighbors. This implies that the Ginibre inequa-
lities [24] hold for the Villain model, as noted by Bellissard [34]. (There is
an independent proof invelving duality transformation; see Section 3.2). More-
over, the Lee-Yang theorem [35], the Lebowitz inequalities (3.13) and inequality
(3.14) [22 ,27] clearly remain true, as well. Finally, the method of proof of
Theorem 3.3 (McBryan-Spencer upper bound) can also be applied to the Villain
model. (In fact, the proof [29] of Theorem 3.3 for the Villain model is simpler,
and ope cap set £ = 0 , E:-n = K in Theorem 3.3, as the reader easily checks.

See also §5). In conclusion, all results summarized for the two-dimensional,

classical XY model, in particular (i) and (iii), extend to the two-dimensional

Villain model. Among these we have

Theorem 3.5.

In the two-dimensional Villain model

v

ife -a) ¥
R % > () % K(l+|x|) [1/2xg] .

W . ¥
m(8) >0, for all B <B  , with g 3 10x | [27).

As in the XY woodel we make the
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Conjecture 3.E¥.

In the two-dimensional Villain model, E: cm

Remark. Heuristic arguments based on comparing the dual (Fourier transformed)
Villain model with the dual XY model (see Section 3.2) suggest that Conjecture
3.27 implies Conjecture 3.2; see also [28] . We do not elaborate on this peint,
but emphasize that the machinery developed in this paper for approximate Villain
models can also be applied to approximate XY models, so that the two conjectures

ought to have closely related proofs.

3.2, The dual XY= and Villain models.

In this section we use Fourier transformation in the angles {Hu} in
order to replace the XY - and Villain models in two dimensions by models of clas-
gical, one-component (Isimg type) spins with values in the integers. This is the
wall-known Kramers-Wannier duality transformation. We only present results. For

proofs sea [3 ,28].

Let iafn} : QE{B} - :tp[-(l!iﬂﬂnzl- denote the Fourier coefficients

B
of the functions rE{E) ; vE{ﬁ} , respectively.

In two dimensions, define equilibrium expectations of the dual XY = and
the dual Villain model in a finite volume A (with O boundary conditions) by the

following measures

a(g,) = cz:m:‘lﬁi‘iﬂum-mn“&hum:n . (3.22)
dutie) = 2@ 1 expl-(1/28) ($()-(y))2] T dp(e(x)) , (3.23)
A A %yl £
A

where dp(¢) = {mgﬂﬂﬁfi—ﬂlldi ; and %EE} . %EB] are the obvious normalization

factors. Let 1—:1(5} . ﬁ-rhtﬂj denote the expectations determined by du? B

111-!1:II , respectively. Let x be the site (n,0) = ne, E:Ez . We define
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n=1 £, {8 -f +2ng)
Afgiom = 1 £ E:*” ol (3.24)
m=g B* {m;1) " (m,0)
where fﬂ- = rﬂ or “ﬂ and q € (0,1) , and
‘i n=1 EE{HI,]’.)-Hl,n}-IrH
A(k;0,x) = T = . (3.25)
=g fa{¢-{l,1}-4(m.n}}
where EE';E or ;E and k EZ .
Hote chat
@ AL (1/8) (4 (ma 1) (m,0) )k, ~(1/28)%° |%]
A(k;0,x) = (Il e L} B le (3.26)

Let A" = A'(A) the region corresponding to A in the dual lattice. From

[28 21] we have

Theaorem 3.6.
ik(e =a_)
D o<e  ° %>, (B) = <AT(k50,0)>,(8)
. “ik{ﬂ;ﬂulh: A *nEl .-{1;5}{I#(m.,n-itu.ﬂ}}k,:’lmh-u;zg}gz | x|

=]

: —o(x)) T
3) '=.tr{q;ﬂ+:¢.'l-*ﬁ[3} LI #{x}},hlml
o Aa0,0°Ne) = c.ih}#{m-ﬂ-{x}}};m}

Remarks. For k = 1 one has of course

i =& )
o X - S
<g >(B) = <& Exiﬂta} .

For q €Z , cﬂizwqtﬁ{m-#{:}},“{ﬂ s

In principle, Theorem 3.6 can be extended to arbitrary correlation

functions. This establishes an ilsomorphism between the XY model aod the




- 3.10 -

r-model defined in (3.22) and between the Villain model and the :ul'-w-nlal defined

in (3.23), in two dimensions.

The proof of Theorem 3.6 follows by Fourier transformation in the

variables l“u-&y : ¥y nearest neighbors in A} and application of the lattice

version of Poincaré's lemma,
*30k = 0 = k = %34 i (3.27)

wherea k is a lattice l-form (lattice vector field), and 4 i3 a lattice
(w=2) = form. Thus, in v = 2 dimensions, ¢ is a scalar, i.e. a funcrion on
the lattice. For v = 3 , an analogue of Theorem 3.6 holds : Consider e.8. the
three-dimensional Villain model. In this case, ¢ is a lattice vector field, the
components, *x:r » (xy nearest neighbors), take values in Z . Thus the dual

of the three-dimensional Villain model is an abelian lattice gauge theory.

Next, we discuss another version of Conjecture 3.2, resp. 3.2" which
involves the dual two-point correlations, i.e. the two-point functions of the
r- ., Tesp. v model introduced in Theorem 3.6, 3) and 4). Suppose B is very
small. Then one deduces from (3.22), (3.23) and the small-g- behaviour of i‘ﬂ

and 'irs that, in the presence of O (5 free) boundary conditions at 34

(W)

0 5 <¢(@e(x)>, " () £ OCexpl-n(8)|x|1) , (3.28)
and
. teatsy OO
|<e* (D), l“hj’,, (8)| = oCexpl-m(g) |x|]) , (3.29)

uniformly in A , for all q € (0,1) .

The proof is based on a straightforward Peierls contour expansion =
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in the style of [36,4], but much simpler. Incidentally, (3.28) implies (3.29)

if the model satisfies FKG inequalities [37) which is obvious for the V-model.

The Peierls contour expansion also shows that

I:eiq”mbﬂwiﬂﬂ 2“.1{“} *0 , (3.30)

uniformly in A , for sufficiently small B . (Related results and proofs may
be found e.g. in [ 4]). In the case of the 9-model, (3.30) also follows directly
from (3.29) and the inequality

v

; 2
‘Exq{i{ﬂ}—iixj}}ﬂfﬂ} - || 7% Big (3.31)

for A and |x%| suivably large, which we prove in Section 3.3.

Thus, in the thermodynamic limit, (3.29) and (3.30) yield

- (W) B(T)
el (#1004 0xD) "0 oy |qlqﬂu}, te) |2 > qu}l o (3.32)
as |x| +=, for all 8 with 0<B<g (",

In Section 3.3 we shall see that this temperature range corresponds to
one in the 2-D Couleomb gas in the (Mohec) grand canonical ensesble (see

Section 2.2) with exponential Debye screening.

Mow we consider the 8 >> 1 regime : For B »>> 1 the expectation

ﬂw?“{ﬂ] is, heuristically speaking, very close to the Gaussian expectation with

”21 € E—uz -

mean O and covariance (=4) : « To see this, rescale § + ¢" = B
and observe that dntE”E#'J + d¢ (the Lebasgue measure), as B + = , (on l‘.‘-: ).

For the Gaussian, =P

g

145“2h‘m}-¢'tm, = |=|"qzﬂfiﬂ (3.33)
C g ’

as le + @  in contrast to (3.32).
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Thus we proposa

Conjectura 3.7.

For the 7= and ¥=-models there exist crictical temperatures ﬁE -

0 L%
ﬂn < = guch that, for B > B E(EE) ’

(W)

VOGN, gy 20, an x| += . (3.34)

REemarks.

1} Clearly Comjecture 3.7 is related to Conjectures 3.2, 3.1¥ . We believe that
a constructive proof of Conjectura 3.7 will also yield a proof of Comjectures
3.2, 3.2 and that B’ = 8% = g7 . but there i rigorous proof of

sl Ja an a . Eﬂ » B, jc » ETé 18 N0 TLEOTrous p

these equations. See also Section 5.

Conjecture .77 appears to be somewhat easier to analyze than the

"dual" Conjecture 3.2, §§ 4,5 and & are devoted to working up

gome ideas and methods that should enable one to prove Comjecture J.Tutr:.

2) We emphasize cthat Conjecture 3‘?r{v} really says that the T(¥)}- model has
a phase transition with order parameter : For B < E:{q}.

1<=i”“°3rfcqlcalr zH (B >0,
whereas for g » ﬂz{i}

{a‘“"“hﬂﬂm =0, by (3.34);

. BTW
{eli#in}? {B) is the order parameter.

Phase transitions with order parameter often tend to be easier to handle than

ones without.

[3) The reader familiar with a recent paper of Mack and Petkova [38] should note

that their modification of the SU(2) lattice gouge theory has an analogue in
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the 2-D XY model. An adaptation of their estimates shows that, in the modified
2-0 XY wmodel, tulq{*(u}-¢tleﬁiﬂ] +0, as |x| += , exponentially fast,

for large enough £ < = ., This is clearly incompatible with (3.31) and suggests
that the Mack-Petkova modification has a serious effect on the large-B-behaviour

of those lattice models].

Next, we recall an isomorphism between the V-model and the 2-D lattice

Coulomb gas (in an (Mg) ensemble; see Section 2.2).
Hote that

dp(é) = ( T &(é-mMdé
mk Z

etz &FMy4
€z

{in distribution sense) by the Poisson summation formula. Clearly

A S . TP
qEZ
(3.35)

with difg) = { T &(q=-2mm))dq .
m EZ

Wé now recall that ﬁﬂiil - a:p[={1f2ﬁ]¢2] s 80 that when dp 1is replaced by
d¢ , #(°) is a Gaussian process with mean 0 and covariance {—ﬂ]-l . Compa-
rigson with the definition of the (Mg) ensemble of Section 2.2, sea (2.21)=(2.23) ,

now axhibits the isomorphism. Inm the charge variables, 9, - [ql} s the equi=-
XE A

librium measure of the 2-D Villain model is given by

=1 2
Z,(8) “expl-(B/2)4v” I  q.C,(x,¥)q.] , (3.36)
i X,y in A X A qy

where Cﬁ{x.y} is the kernel of E-lhg-l

with O-Dirichlet data at 3\ , and Enfﬁi is the partition function. The proof

+ 4, the finite difference Laplacean

of (3.38) follows directly from (3.35) and (2.23).
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%

* (B} 1is a fractional charge

It is now clear that -:ai'q (4(0)-4(x))

two-point correlation, with q the fraction of the charge of the test particles

and the charge of the background particles.

3.3. Comparison of the ¥-model with the 2-D Coulomb gas in the (Mnhc) grand
canonical ensemble.

We show here that the V-model is the z = = limit of che 2-D Coulomb
gas in the (Mnhc) grand canonical ensemble with equilibrium expectation

{-:igg,:j given by the measure

=
2, (8,2) " N explz cos(2np(x))]du . (¢) , (3.37)
A xEA BCy

vhich is obtained from the expectation d—}ﬁ{.ﬂ',al with O (= free) boundary
conditions at 3A , defined im (2.16) ,(I) by rescaling : #(x)} + $"(x) = 2mp(x) ,
and setting
B' = 4s8 . (3.38)
It is shown in [1] (see also Theorem 2.4,2), Sectiom 2.1) that

{nlq{"iu}-”“”biiﬁ,ﬂ is monotone increasing in z and h'l_ (3.39)

As remarked in Section 2.1), monotonicity permits one to pass to the thermodyna-
mic limic, A -E‘.z y and conclude that ieiqiitﬂ}m‘!‘l!”}'{ﬂ,zj is monotone lncrea=

sing in =z .
When A is bounded

iq{e(0)=¢(x))

lim <g
z+o

iq“‘{ﬁ}""(ﬂ]:lta z) = <@
h 8

°
=AEHI " {3.40)

Eince vinz q:{cn’{21¢jull+ I 6(¢=m)
mE Z



= 3.15 =

By (3.39) and (3.40),

" v
@l 9OO-400), gy 5 i IUKO0GI) (g oy (3.41)
Em
> l04(0)=80x)) 1 (g (3.42)
5 <l 9O 400, g oy
- cptQ(8(0)-8(x})
g :"E
- zﬂfii
_ D{Ill q } ., a8 |:| E ] 5 {]-'ha}

This proves inequality (3.31) of Section 3.2. Suppose

now that Conjecture 3.7 holds, i.e. for B » Ez with ﬂg finite,

¢
!N, gy 40, as x| + =

By (3.42), this implies that, for & > 6_(z) with 8(z) £ 8. , for all z,
{‘iq{liﬂl“ifll},-{aig} +0 ,88 |x]|+= ,

) {3.44)
and delq+{n}3*fﬂ,=} = 0

For B<<1 and gz <= suitably large, Brydges has showm [4 ] chat
ftiq*tuj;!-iq*illﬁ'{ﬂ.zl decays exponentially when |x| + = |, provided
«=>"(B,z) is a O-boundary condition thermodynamic limit. (In §4 we show that
this is false for the "Gaussian" boundary conditions comsidered in Sections

2.1, 2.2).

Brydges' result and (3.43) prove that, for g << 1 and =z &=

suitably large,

|<ei 950 5.20] >0 . (3.45)
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Thug we have

Theorem 3.8.

Suppose that Conjecture 3.7 holds. Then, for all sufficiently large
activities z , the 2-D Coulomb gas in the (Mnhc) grand canonical ensemble
(with 0 boundary condition) has a phase transition with order parameter,
*eiq¢{n}?'iﬂ+=} s from a high temperature (small @ ) phase with Debye screening
characterized by exponential clustering and (3.45) to a low temperature (dipolar)

phase characterized by slow decay of the fractional charge two-point correlationm

and (3.44). Horeover

B.lz)2 EE v for all z 2= ., o (3.48)

Thus, a problem somewhat casier than a proof of Conjecture 3.7 is
to prove that for z > 0 small encugh there exists BEE:J < = guch that, for
all B = Ec{:} ¢ (3.44) holds. We present arguments in the direction of a proof

of this, based on relating, the 2-D Coulomb gas at low temperatures to a

2=D Coulomb=dipole gas for which (3.44) is relatively easy to prove. See §§ 4,5.
Finally, we remark that the ¥T-model can also be related to a Coulomb type gas

which can be studied by the same methods as the (Mnhe) gas.
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§4. The statiscical mechanics of lactice Coulomb gases.

In this section we review some rigorous results and prove new ones, all
conceérning the two — (and higher) dimensional lattice Coulomb gas in the grand

canonical ensesbles [the (Mnhc) -, resp. (Mhc) ensemble introduced in Sectiom

2-21 .

4.1. On screening properties and the phase diagram of Coulomb monopole gases.

In the 4¢-representation the equilibrium expectations, f-?ﬂ{ﬂ,:] and

-:—:-:': (B,2z) , of the (Mnhec) , resp. (Mhc) ensemble are given by the measures

(Mnhc) Enfﬁnﬂ-l noe” maﬂﬂ"“acnfﬂ

x|
(4.1)
(Mc) (8,2 1 (142 cos $00)dug, @)
xEN i
with d“ﬂc the Gaussian measure with mean O and covariance Ecﬂ , where
A

EAEI':” is the Coulomb potential with either free boundary comditioms (b.c) at

anh , i.e. Eﬂfx.y} = xﬂ{x}C{:-ylxﬂ{yJ s C(x) the lattice Coulomb potencial,

or O-Dirichlet b.c. at a3k .

In the first case we say {_}ihn}

(8,z) has free, in the second case
that it has 0 b.c.. Physically, free b.c. correspond to confining the gas in the

interior of perfectly insulating walls, whereas O b.c. correspond to perfectly

conducting walls. (Clearly there are intermediate b.c.).

We now show that in two dimensions the difference between free and O
b.c. is reflected in very differeat screening properties of the Coulomb gas,

even in the thermodynamic limit. To see this we consider fractional charge one -

and two=point correlations; (see §§ 3.2, 3.3).
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Theorem 4.1.

Let z > 0 , and in the case of the (Mhc) ensemble 2z < 1 , (so that

14z cosg(x) > 0 ).

1} In arbitrary dimension v > 2 and for 0 b.c., there is exponential Debye
screening if £ is small enough. (For v > 3 , this is true for arbitrary @
and small z ). The fractional charge one-point correlation is non-zero, the

connected (truncated) fractional charge two-point correlation decays exponentially.

2) In two dimensions and for free b.c. and all q€ {0,1) , all z2>0,
e.giq”“’r:hﬂ{a,;; -l (4.2)
:aiq“m]-*{ﬂ}}:hﬂfﬂ,:} i“”"rqzﬂﬂil , (4.3)

as |x| + » , for arbitrary A l_:ﬁz and all B8 . g

Remarks .

There are heuristic reasons to expect thart for v 2 3 Theorem b.1, 1)
is true for all £ and that in the thermodynamic limit O - and free b.c.
coincide . As remarked in §3.3, the proof of 1) for the (Mnhc) ensemble is due
to Brydges [ 4]. His proof extends to the (Mhc) ensemble, for B8 << 1 , 0 <z <1 .

(We thank D. Brydges for checking soma details in his proof for the (HMhc) ensemble)

Theorem 4.1. 2) shows that in the two-dimensional, free b.c. equilibrium

states fractional charges are not screened, even in the thermodynamic limit and

for arbitrary g . The classical Goldstone picture based on the behaviour of
the functions - z cos#(x) , resp. - En(l+z cosd(x)) (z < 1) and the Peierls

argument suggest that for B << 1

. o {he)
oSO, " e 2w 2 0 (4.4)

for all x {(i.e. there is "long range order") even for free b.c.. Thus, for
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B << 1, the free b.c. expectation in the thermodynamic limit is presumably not

clustering. A proof of this is expected to follow from the methods of [39,4],

but wé have not checked the details.

Goldstone and Peierls suggest that the free b.c. state in the thermo-

dynamic limit is of the form

N
>Mg oy mtim £ eMenibed g 4y | (4.5)
Feews me=N >

with f#(ﬂ}iirc}(ﬁ,:} e —

< (-m> " (8,2) = ¥ (0> 8,0 ,

{4.6)
{-:;h‘}(ﬁ,t} identical to the O b.c. state.
From (4.6) it follows that
:giq*{ﬂ}::rt}tﬁ.:} = const. e'2%9® (4.7)
Moreover, tei‘q“ﬂ}?{h:}iﬂ.ﬂﬁ = 0 . Hence
e™ o in 4.5 . (4.8)

Since the r.s. of (4.7) is not real, for m# O and because of (4.8), the decom
position (4.5) does not represent a decomposition of the equilibrium state of

the Coulomb gas with free b.c. into physical, extremal equilibrium states. The

-, (he)
m

states < (B,z) are unphysical states of the Coulomb gas (in the q-represen-
tation) characterized by complex boundary conditions. Thus the free b.e. state

is physically different from the 0 - b.c. state !

Proof of Theorem &4.1. We have already commented on the the proof of 1). Moreover,

inequalicy (4.3) is (3.45) of § 3.3. We are left with proving {4.2). This is

based on

Lemma 4.2, Let 4{p) = E4(x)pix) , p E IIEEI.'I .
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Then

expl=8/2 E p(x)C{x~¥)p(y¥)] if Zp(x) =0
ctit[n}} XY

BC

0 if Ip(x) 4 0.

[Here C(x-y) HI{IFIt}lnlzvyl , a8 |x-y| + = , is the two dimensional lattice
Coulomb potential] .
The proof of Lesma 4.2 follows by noting that C{x) = li.tl[ﬂn{l}'{lfi'l'}!-nt] .
EkO

where C:l::ﬂ:-j.f] ig the integral kernel of [-.ﬁ-H:I]-I s wia Fourier transformation.

See [0 ] for an exact statement and proof.

We now consider the fractional charge one=point correlation. Clearly

}?{hc}
A

: - Elo(x) |
:th"{u I:E,:E} = E:hﬂ}{ﬁlll 1 I Epl =

{EHHHD}*HH”, (4,9)
Bc
[e]
where p(x) EZ , for all x € A , and r:_p are combinatorial coefficients with

the property that

glo(x))]
£

[~ «w , forall z> 0.

Since q €(0,1) , q+ [ p(x) =gn ¢4 0, for some mn = n{p)E Z . By Lemma
xEA
4.2,

HWONE), L @), L

BC

b

for all Z-valued p on A . This completes the proof of (4.2); hence Theorem

4.1 is proven. L

Next, we derive an upper bound on the inverse correlation length (mass),
m(g,z) , of the v > I dimensional Coulomb gas in any translation—invariant
infinite volume state, <->(f,z) , which has screening (and with =z <1 in the

caséa of the (Mhec) ensemble).

In §2.3, (2.29), (2.32) we have shown that under the above hypothescs
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1

0 < <|atk)|®>(8,2) = sat) T-g%a (k) 2<|q) |25 (8, 2) (4.10)

v
where A(k) L [2v=2 L cos kil ’ , k #0 , is the Fourier transform of the
i=l
v-dimensional Coulomb potential. If there is screening then <|#(k) [zhiﬂl:.} s

1

analytic in k , in particular uniformly bounded. Since a(k) = D{R-IJ near

k=0 .
<Eﬁ£k1iz*:a,:l = k2G(k) , where G(K) is

(4.11)

snalytic in k and G(0) = 8 1

This is a sum rule which implies the well-known fact that ﬁqi?fi.:} is
0{an) ; ("abnormal fluctuations™). By Fourier transformationm,
IZ

E u|!

B {‘ln‘I:"{B‘:tl - 1\15-1 , S0 that

2y -1
HEmulul [<q_a,>(8,2)| 2 2v8 ", (6.12)

Let m = m{B,z) denote the inverse correlation length. By reflection positivity
(more precisely, the existence of a selfadjoint transfer matrix, see Appendix A,

and the spectral theoram),

" i -('h.p‘i'uﬂ:{
|*quq=>{ﬂ.=1| <q.9,>(B,z) e

A

I‘q: >(B,2) | E‘fﬂi’uﬂui

&

(4.13)
(where e is some lattice unit vecter).

The proof of (4.13), given a selfadjoint transfer matrix, is standard.

The chessboard estimate [14] then yields

1/|a]

<az>(8,2) g lim [< 1 a2>, (8,2)) : (4.14)

AtZZ-  xEA

The r.s. of (4.14) is a thermodynamic quantity which is easy to estimate :



"‘I'liﬁ'-

E 2 |a|
(8,2) : (e T qI. {ﬂfﬁv}q )

qE Z

2
<1 L T ' (&.15)

xep * A

where ¢ is some constant bounded uniformly in =z . Imequalicy (4.15) follows

by writing < 0 qzhﬁiﬂ,zj as the product of = {E.:]'l and an unnormalized
x€p X A

expectation. Clearly, En{ﬂ,ﬂ > 1 . The unnormalized expectation is bounded

above by one where all couplings between different sites have been eliminated by

means of replacing the Coulomb potential, C , by '}_!;1? ﬁqr . Hare we use the
; . 1
inequality (q.Cq) 2 E;-{q,q} s0 that
*HPI--g (q.Cq)] = expl- %; (q,q)]
- -8B 2
Igneup[ o] . (4.16)

Ula| Bl

2
Thus <N q > (B,z) (4.17)
]

for some finite constant, a , bounded uniformly imn z , and all A . Combining

(4.12) = (4.17) we find

=~] 2 ae-ﬂfﬁu

2vp I Iulzt-{mfﬁﬁ}lxl <

xEEE“
whence

H-l < Cul-ﬂiﬁu-(ufi}

y O

1/w+2 e_ﬂ”” (u+2)

m < (C_B) : (4.18)

for some computable constant E“ independent of z . Thus we have proven

Theorem 4.3,

In the wv=-dimensional Coulomb gas, the inverse correlation length
m{f,z) 1s bounded by

-Gvﬂ =1
m(B,z) £ 0(e ") , &, 2Hw(w2)] " ,

uniformly in =z .
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REemarks.

Since the dual of the two-dim. Villain model is the z = = limit of
the two-dim. Coulomb gas in the (Mnhc) ensemble, and (4.18) is upiform in 2z ,
we obtain that the mass of the dual Villain model is bounded by nulr_ﬂ] < D{cﬂwnL
This inequality is comparable with the one for the two-dim XY-model; see §3.1,

(3.18).
[For the two-dim Coulomb gas we expect that

l<q_9, 7(8.2) | 3 -in{u'cﬁa't“fﬂi}|‘|,¢'“5|,|‘*;

bB

This would imply that =m(B,z) < D{eﬂﬂe ) , but we have no proof of this] .

The final topic of §4.1 is to show that the Coulomb gas in the (Mnhe)
ensemble, for all z > 0 , or in the (Mhc) ensemble, for © <z < 1 , has

meither short - nor leng range order, in the sense that, for n > 0,

= ‘iquq“*{hﬂfﬂ,zl is a positive, convex function which tends to 0 , as n + = ,
for arbitrary B and v . This is to be compared with the fact that for
v>2, gm= E{EBE} s B>==1, iqnqnihciﬂ.:] has long range order, in the

(Mhec) ensemble [ 6] .

We have shown inm §2.3; (2.32) and (2.33), that for x ¢ O ,

<a,0> " 6,2) = - <s05(0>" (8,2) (4.19)
with S(x) = i;%i? En F{&(x)) , and
explz cosé(x)] , (Mahc)
Flg(x)) =
l+#z cos¢(x) « (Mhc)
cl Z2_(hc), . ; ;
early <5(0) = tB,z) * 0 (provided =z < 1 , in the (Mhc) case). It is

shown in Appendix A, (A.3) that for x = ne , ¢ a lattice unit wvecter,

n=2~0}, 0= tﬂ{ﬂ}ﬂu}?(hcj{ﬂ.:} is convex in x .
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By (4.19), *qﬂq;{hﬂ (B,z) is negative and concave in x , for

x# 0, i.e. there is no short range order.

We pause for a short digression concerning the transfer matrix, 1'q .
of the Coulomb gas in the g-representation; (see Appendix A) : In [14 it is

proven that the quadratic form G with integral kernel

Illn-q l'l'!u-}'l-—‘ e i

W
Glx=y) = (-1) a,9,> (hed g 1) (4.20)

satisfies reflection positivity (see Appendix A). A general theorem then guaran-

tecs that, for x = ne , & a lattice unit wvector, n EZ~{0} .,

1
G(x) = fqa.'l':- 9> (&.21)

where T is some selfadjoint contraction on a Hilbert space with scalar product

s> 3 {Tq is the generalized transfer matrix [6,04] . See also Appendix A ,

{hE}EE.ﬂ is negative and concave in

Corollary A.3). How, since tqﬁqxh
x=ne , n EEZ~(0} , (provided z < 1 in the (Mhc) case) , sgn G(x) = [~1}n~1 :
i.e. G(x) is staggered. By (4.21), this implies that rqi 0 , (vhich is

what is claimed in Appendix A . We recall that the transfer matrix, T, , of

-]
the Coulomb gas in the ¢-representation is non—-negative).

Mext, we establish absence of long range order in {qbq:?{hﬂjﬁﬂ.ll .
In §2.3, (2.33) we have shown that (provided z < 1 , in the (Mhc) case)
2 (he)

i < <|g[k}| = (g,z) < const. , for all § . (4.22)

{the constant is calculated in (2.33)). Thus f|§{k]zhﬁh=}[ﬂill is bounded

uniformly in k . By the Riemann-Lebesgue lemma,

T I TS and T (S R [ (4.23)
. 2 (he) . p
Since <|q§(k)|"> (B,2) is bounded (for =z < 1 , in the (Mhc) case),
ﬁqaq;‘h“’ta.za is in 1,(2Z') , i.e. |<q9.2] < o(lx|"¥?) .

In view of (4.19) we have now proven
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Theorem 4.4,

In arbitrary dimension and for all 8 >0 and =z > 0 , with z <1

in the (Mhe) ensesble,

1) fquq:?{hﬂt’ﬂ.z}lﬂ olxI™"?), as x| e ;
{absence of long range order)

2) for x=ne , e a lattice unit vector,

hE}{E,:] is negative and concave, for all x+# 0 ;

(

ﬂquqxﬁ

(absence of short range order). o

Remark. It is clear from the proof that Theorem 4.4 is true for arbitrary

reflection positive pair potentials (not only the Coulomb potential), e.g. the

Yukawa potential.

We gat Theorem &.4 in contrast to
Theores 4.5

In the w z 2 dimensional (Mhe) ensemble with z > z'ﬂ (where a is
a constant estimared in [6] ) and large B8 , -:quqzﬁ-hc{ﬂ.ﬂ has long range

order, and there exist at least two extremal equilibrium states :~::E{B,=} "

with
1 2 v
{q ?ht{ﬁ.‘} Z 1(_1}1 N e e . a
x i
Thus in the (Mhc) ensemble there exists, for sufficiently large
z n-eu{ﬂ} » @ phase transition with order parameter, with at least two extremal

equilibrium states which break translation invariance spontanecusly (crystalline
structure), for large B . (For some =z = z(B) > 1 and large B there are
in fact three extremal equilibrium states). The proof of Theorem 4.5 can be

found in [6 ] . In §7 this result is extended to the dipole gases in the (Dhc)

ensemsb e,
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4.2, Characterization of the dipolar phase of the two-dimensional Coulomb gas.

From §4.1 we conclude that an interesting range of parameters in the

Coulomb gas about which there are only few rigorous results is v = 2 and

- B large, z * 0 arbitrary, for the (Mnhe) ensemble.

= B large, 0 < z < const., for the (Mhc) ensemble.

This range of parameters is expected to correspond to a translation-

invariant, dipolar phase of the two-dimensional Coulomb gas without screening.

In this section we propose to characterize its properties and comment on possi-

ble methods to prove its existence.

From §3.2 (Remark 2) after Conecture 3+'.|'1'F,'l and §3.3 (Theorem 3.B) we
know that the transition from the high temperature plasma phase with screening

te the low-temperature, dipolar phase without screening, henceforth called

P-D transition, is a phase transition with order parameter. The order parameter

 198(0)

is the fractional charge one=-point correlation, *{B,z) , q € (0,1) .

{We shall omit a superscript "hc" even when we think of the (Mhc) ensemble to
which the following analysis applies, too, provided O < z < 1 ). We recall

that, for arbitrary @ ,

. 2
e 9001, (g 2y 5> consr. (14]x[y7V B2 (4.24)

g0 that in the screening phase (B small and 0 b.c.)

w55 050, (4.25)

because truncated correlations cluster exponentially. The dipolar phase (B large)

is characterized by

. 2
e RO (D), o 4y < const. (1+|x]) ™ B'f2n (4.26)
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for some B" = B'(B,q,2z) expected to be strictly positive on {gq : 0 < q < 1]

if B is large enough.

Thus %008 0y =g (4.27)

o 194(0)

in the dipolar phase, i.e. *(B,2) is an order parameter for the

P-D transition. Notice that <4(0)-4(x)>(B,2z) = 0 , since <->{B,z) is even

in ¢ . Therefore if §' is independent of q (4.26) implies
<($(0)-4(x)) 2> (B,2) > const. B'ta(1+|x]) ; (4.28)
(expand both sides of (4.26) to second order in q ).

Hext, we note that for x =ne , o = 1,2,3,:::,

‘{+{D}-¢(!J}2*IE.=} Ef*éiﬂﬁ!*EB.ll-fi{ﬂlittlh[E.nll

2¢4(0)%>(8,2) (4.29)

EBaA

since <¢(0)é(x)>(B,z) > 0 by reflection positivity.

Thus <ﬁ{ﬂlz * (B,z) is divergent , (4.30)

in the dipolar phase.

In conclusion, (4.30) is a somewhat weaker characterization (the infini-
tesimal version of (4.26)) of the dipolar phase than (4.26). It obviously applies

to the Villain model (§§ 3.2, 3.3) as well. [Specialists in roughening transi-

tions usually prefer (4.30) aver (4.26))

It is matural te ask whether the order parameter, teiq*{ujr{ﬂ,al s Can
be related to the derivative of a thermodynamic quantity. To answer this question
we consider the following Coulomb gas : Let d”ﬂt be the Gaussian with ©
A

(i.e. conducting) b.c. at 3A . Consider the folbwing partition function of a
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Coulomb gas with particles of charge #1 and activity =z and particles of

charge *q and activity € :

EA{HJ-LJ i oF muﬂxhccm[qﬂﬂ]duﬂﬂ () (4.31)
wEN A

The expectation in the corresponding ensesble is denoted i-:hl‘,ﬂ.z,;}. (We
only discuss particles without hard cores. The discussion applies only partially

to (Mhc) ensembles).

Let p(8,2,8) = 47 tn 2,(8,2,0) (4.32)
be the finite volume pressure. The limit

F{EIII‘-} . Ilim' z Fﬁw-h{-:’
At Z

exists; see [11] . Next

ap
a_a;b' (B,2z,8) = :. -ﬂcﬂ#[qﬂl}lhhtﬂ.:.ci (4.37)

xEA

The correlation inequalicies of []]] (Sections 3,4) show that

fcnl[q*{x}lhhiﬂ.,z,;} is decreasing (5.34)

when A increases and/or [ decreases. Thus

ap
a_qﬁ (B,2z,c) is decreasing im A and increasing in ¢ . (&.35)

Using (4.32)=(4.35) and convexity of ph{E.:,:] in [ one easily
shows that
P i |
(Biz,ct) = lim , — (B,2,02) = <cos[qe(0))>(B,z,ct) ,
o arzt 36

vhere <=>{(f,z,r) 1is the thermodynamic limit of """A{E.E.ﬂ and
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F(Zt) = lim F(Cte) . By (4.34) ,
o

<cos[qe(0)]>(B,z,g+) = <cos[qe(0)]>(g,z.g) (4.36)

as the two limits, (' 'ﬁ L and A FE‘.Z , can be interchanged by momotonicity.

Thus %% (B,z,0+) = <cos[q$(0)]>(p,z,0) , and since <->(f,z,00= <=>(B,z) is

even in & ,

%E—{E,:,D+} = *-1q¢{n}i{ﬂ.=} (4.37)
which is the desired relation.

Therefore the P-D transitiom can also be characterized by

2

St (B,z,0+¢) > 0 , in the P (screening)phase

(4.38)

%E (B,z,0+¢) = 0 , in the conjectured D phase .

We now sketch an argument suggesting that (4.27) holds for large B .
To this purpose, it is useful to compare p with the pressure pF given by

(5.31), (4.32) but vhere d"EE = d“EE has free b.c.. We then apply Lemma 4.2

A
to the r.s. of (4.31) to conclude that E:tﬂ.:.t} and hence p:{ﬂ.t.t} are

functions of ;2 and EE

» because neutrality of a charge configuration requires
an even number of particles with charge £1 and charge *q , as q € (0,1) .

Thus p'(8,2,0) = lin , Ph(8,2,0) is even in = and in € .
A

For @ large enough (& ﬂlq'zﬁ » low order terms in an expansion of
F(F}{ﬂ.:.:] in z and £ about z = =0 are convergent (i.e. infrared-
finite in the thermodynamic limit) and independent of b.c., i.e. the same for
0 and free b.c.. Since pF is even in z and [ , the coefficients of
L 2ntl 2mrtl

. in this expansion all vanish. Presumably, the expansion in =z

and [ about z =g =0 is divergent, but it is reasonable to expect it is
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asymptotic.

Thus, we conjecture that for B large enough

1) ppiﬂ,:,;} is continuously differsntiable in £ at £ =0 , for 0 < =z
F
gmall enough. By evenness that would imply %E- (B, 2,0) = 0O , for small =z .

2) For sufficiencly small =z and ¢, p(B,z,C) = PF{E==1£} .

By (4.25), (4.37) and (5.38), a proof of 1) and 2) above would also

imply the existence of a P-D ctransition.

Next we give a heuristic argument suggesting that
m(g,z) WO , as BAB_, with B w8n . (4.39)

In [ 10), the continuum limit of the two-dim. (Mnhe) Coulomb gas has been cons=
tructed for all B < 4w . By using the scaling properties of the two-dim. Cou-
lomb potential one can show that the inverse correlation length (mass) has the
form

n(B,z)2= y(g)ad (2-B14M) (4.40)

for some function up(B) > 0 . See [lO] .

Perturbative arguments [&0] suggest that, after a divergent, additive
repormalization of the pressure, the continuum limit of the Coulomb gas exists,
and equation (4.40) remains true, for all @ < 8r . NHow suppose that u(g)
has at most a power law divergence at £ = B¢ . Then

lim m{g,z) =0 , for z < 1 (4.41)
gr8x
This suggests that, on the lattice, the critical point, Bn s of the P=D transi-
tion is s Bw . The point £ = Bn also seems to be a critical point in a

recent, exact study of the sine-Gordon theory which is isomorphic to the conti-

nuum Coulomb gas by Faddeev et al, [&41] .
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In §5 we develop techniques and estimates which we hope are suitable
to rigorously establish the existence of a P-D transition for the two-dim.
lattice Coulomb gas in the (Mhc) ensemble and prove inequality (4.26) for large
B and 0 <z <1 . In §5 we study a two-dim. dipole gas in a (Dhc) or (Dnhc)
ensemble for which we prove (4.26) for arbictrary £. The techniques of §5 suffice
to analyze gases of general, neutral multipoles, provided the activity of mulri-

poeles of large size is suitably small.

We therefore propose to approximate the two-dim. Coulomb gas by gases
of neutral multipoles of arbitrary sizes in a convergent fashion and such that

inequlity (4.26) remains true in the limit. [Notice that Lemma 4.2 says that

in principle such an approximation is possible, at least for free b.e. ] .
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§3. The decay of the charge-charge correlation in dipole gases.

In this section we study the charge=-charge correlatiom in a sea of
dipoles. We shall concentrate on two specific ensembles. Let duﬂ{i] denote

the Gaussian measure of covariance ﬂ(-ﬂn:z]'l

y in the limit € =+ 0 . Here
&4 denotes the finite difference Laplacean. The first ensemble describes dipoles
with no hard core, (Dmhc) .

1 I e HIU“I.}

> (B,z) = lim Eh{E,z]I" :

duﬂii} . (5.1)
A

wherea

ua) = L cos a(#(j)-e(j")) ; a=1 or 2w ,
[i=3"|=1

and =, is the partition function. By scaling the constant o can always be
chosen to be 1, but for notational convenience we will choose a = 2n  at one

place.

The expectation for dipoles with hard core, (Dhec) , is given by

"lim At 2’ of

<>, (8,2) = 51 = [ (l+2E cos a(4(D-0(G+e))ddu(9) ,  (5.2)
jEL e

e.8.
vhere e ranges over unit lattice vectors and L = 4Z NA .

The above ensembles are very special cases of those discussed in §2.
Although we shall prove our results in detail enly for the above expectations,
nearly all our results extend te the more general class of dipole gases discussed
in §2. In fact, at the end of this section we shall analyze dipoles of arbitrary

length L and prove the analogue of the following result.
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Theorem 5.1, Let a = 1 . For all g,z , in the (Dnhe) ensemble, we have

5 -, log|y=x|
{.t{'*ﬂr} #tﬁ}}}[ﬂ'::l iﬂE E* 1 .

where

8, = & [8(ze20)]17"

and & can be chosen arbitrarily small. Also, for the (Dhe) ensemble, if
B/8

ig! = 16 ® » W& hawve

. _ = lngl?-zl
el (P=40), o <cye By _

with

¥

2 - g/8,"1
A [1+48z & 1

o

As explained in §3, the two point correlation of the Villain model is,

by duality, equal ro

i(a -8.)
e ° XuV(g) = asT()
(5.3)
whera
1l # ]
A = el 2o, - Ly,
and
1 ' uijli:ﬂ- and jz-ur
05 = (5.4)
0 , otherwise

As a first step toward understanding the decay properties of (5.3) we ghall

baund uﬂ:~ {g,2) f[rom below in the dipole ensembles (5.1) and (5.2) , with

a= Jg
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Theorem 5.2. Let a = 2Zx . For all @,z in the (Dnhc) ensemble (5.1) we have

<4_>(8,2) > ¢ 8 Lo8lxl (5.5)

-1

g ’
z 'iT+ zg*Const.

E+ﬂfﬂ

For the (Dhc) ensemble (5.2), if [z| < , then (5.5) holds with

=1
g = E——-+ Const. z & B/8 -
iw a

Remark. To prove Theorem 5.1 we shall use the method of complex translations
(29] . ¢(3) + ¢(j)+ia(j) , for suitable a , vhereas in the proof of Theorem 5.2,

we shall apply a real ttannlntiqg, #(j) + ¢(3)+alj) .

Proof of Theorem 5.1. For notational simplicity we first set y = 0 . We

apply a complex translation of the field 4, [29] :

$03) » ¢(D+ivalj) , (5.6)

where y depends on the ensemble and is chosen later, and

ali) = ¢(j,0) - c(j.x) , (5.7)

with C the kernel of -ﬁ-l . The function a(j) satisfies the following

relations

Sz fati-a(i)? = ca,mpe
3=3" =1 (5.8)

= a(0)-a(x) ,,..IEEJ&L

#

for large |x| , and for [j-j'| =1
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|ati) - a(i")| < Const. *TIf:T * TT:i |’

(5.9)
lati) - a(G")] < comst. Ixl/151°

Let us first consider the dipole gas in the (Dnhe) ensemble. In this case we
choose

y= (8 42) 1 = g(14g2) T

Under the change of variables (5.6) the exponent of the functional

measure becomes

-(1/26) 3 [o(oriva) (1% + 2 ) sir(ai)-a )
bl

= Wa(0)-a(x)) + i($(0)=¢(x)) .

We estimate the integrand in the functional integral by taking absolute
values, i.e. the real part of the exponent, and using (5.8) and (5.9). The

real part of the exponent is

-(1/28) T (W) () + ® o oD cosh KaCi)-a(3"))
] e B e

2
+ 31‘- (a(0)-a(x)) - y(a(®)-a(x)) .
For |ji] »» v |i==x| »> y , we have by (5.9)

)
cosh[y(a(i)-a(i"] - 1 < (M) - (a(id-a(i*)?

(For |§]| » |j=x| < Oy) , we simply estimate cosh(-)-1 by a constant) .

Thus by (5.8) the exponent is bounded by



'ﬁq-j"

-(1/28) T NP + 2 T cos(4(i=4(3M) + €
j l3-3" =1

= y/[2(1- ey) (a(0)-a(x)) .,
with v = E{1+E:}-1 "
V201~ e > B/2(1+Bzemp) L

for some small ¢ . Integration over ¢ now cancels the partition functien,

and we have

GO0, 8/2x (B e)  loglx|

This completes the proof of Theorem 5.1 for the (Dnhc) ensemble.

Mext we turn to the case of dipoles with a hard core, i.e. (Dhe). In
this case, we first prove 2 lemma which enables us to take advantage of the

amall effective fucacity of dipoles.

Lemma 5.3. Let F{¢} be a function of (¢(j)} with j #j  , and set

A Te I I S B¢ )) (5.10)

4] v
li=3,|=1

¥ = “-E-fﬂ

J 14z cos(a(j ) = $(i)IF dug(4)

= | {14z cnsl.';l.'ju} - i{jlﬂf duﬂ‘{ﬂ a

Remarks. Lemma 5.3 is simply an explicit computation of the conditional

expectation of ““'“fju}'“h” , Biven [a(j)} , j ¢ in . The simplicity

of the result is due to the Markov and Gaussian property of :quH} .
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Because of the non-overlapping condition on the dipoles we have the

identity

[ 1[4z T cos(a(i)=s(j+e)) el @Iy, (4
JEL e
(5.11)

= | 1 [14T £ cos(B(i)-s(j+e)))let FIITHN gy g
jeL @

whenever x and y do not belong to L .

Proof : The lemma follows by an explicit imtegration of the i{jul variable.

This is easy, because the integral is Gaussian :

is(i) -tiiqu—iijllzfﬂﬂ
e n e dg(j_)
[1-4,, =1

(803 )-4(i0) /28 e 186

= o e di{iﬁ]e & L
i

where we have used

[ expl-2603 ) 7 +6(3,) (1484 (3,2 /)14 (5 )

f= 2
" ig(i ) Beli ) /e
- [ exp(-20G )5 raeG e B e e T 0 /
| |

The proof of Theorem 5.1 for hard core dipoles also follows by complex trans=

lations and taking absolute values. We first apply Lesma 5.3 to re-express the
numerator and partition function as in (5.11). (We assume that ¥ is near O
but % and y do not belong te L . The general case will be discussed

at the end of this section). Let a{j) be as in (5.7). The inequality



= 5 7 m

2 2
|e+ib| < ¢ + g?-i_rnh 1o « T 0

can be applied to show that for |z| < 1/16 we have

1 l+z E cul[‘ﬁ?{j}*l ¥ ﬁl{j”‘ |
&

- ¥ 2
< (14T L cnu@{j}}mah{ﬁ{jm.e."""u“ﬂ
L]

o 2wsain?
£ (l+#z L tnlfitﬁfj}}}e ;
&

provided |j-x| >> 1 and |j-y| >> 1 . Here we have used the notation

§,4(3) = 3(3)-4(j*e)

and
64000 = #(i)-4(j+e) .
Mote that since
AM-ali) =7 @G =0 , §dxy ,
we have

Fa(3) = ali)-a(j+e) = a(i)-aljve) ,
when j ¢ x,y.

The Gaussian contribution, after taking absolute values, equals
c EHFI1;IEEJIBIxJ~.{y}} . a8 in the proof for the (Dunhc) ensemble. The sum
E{T;}E ¥ {ﬁen{j}}l is clearly bounded by
ise

2(v2) 2 (alx)-aly)) .
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The g-integration of the numerator exactly cancels the denominator.

Collecting all coefficients of (al(x)-alr)) we see that
Y™ Efl*zﬂihhl is the optimal choice. As in the proof for the (Dnhc) ensemble

we finally obtain

(8 00-4(y)) - (8/20) (14482) " Log|x-y]|

»<C
which completes the proof of Theorem 5.1. [ ]

Remarks. We have seen that the decay of the charge-charge correlation in the
dipole gas has a fairly elementary proof using the ¢-representation. If one
attempts to obtain such results directly in the q- (or gas) representation

the required estimates appear to be far more complicated. The g-representation
does have the advantage of making the small activity of the dipoles manifest.
What Lemma 3 does is to give us a kind of mixed q-é¢-representation; for had
we integrated all the 4 variables we would have precisely obtained the

q= (or gas) representation. Thus our approach amounts to.a phase space analysis

in function space.

Hext we prove Theorem 5.2. We shall consider only the (Dhe) case,

since the other case is easier. We make the real change of variables,
#{3) + ¢(i)ral]) ,
with a(j) given by

alj) = ¢ {:ii,k]azf‘(ﬂ : (5.12)

Under this transformation, the linear terms cancel, and by Lemma 5.3 the

veponent of the interaction becomes
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I log(lez T cos 2n(_8(j)+8_a(i)))-F(x)
JEL e

wvhiere

F(x) = 51-5 {z (va)? (5)+|x|-2 L alj) @, (j))
J ]

= o5 (Ixl+ T (3,2 GG

]

Mote that HLI“} (i)

6(j,0)-5(j,x) , and

(300013 = 3 3,C(5-k) (3,£7) (k)
- T (350 G-RE* (k)
k
= I (AC) (j-K)E"(K)
k
- © (370 (G- £4 00
k

= =£7(3)- 1(3,0) (j-kX3, £ (k)
k
- —f":;j].-ala:ulﬂlf:{j-nl .

Summing aza{j,‘p ovar j we see that |:|t] is cancelled and thus

Fix) m log|x|

in

Also we have
(3 a) () = £3,C(i-k), £ (k)

X
= £3,C(j-k) (3,f 1k}

3,(§)=3,C(j=x)

(5.13)
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Since a is harmomic (mod.l), E;{j} = fa(j) , (mod. 1). From (5.13) and
the above equation we see that 8&a(j) satisfies (mod.l) the estimates (5.8)

and (5.9). We now introduce the functions Dj{+}

Bj = logll+z £ cos Etii:ili}*ﬁeﬂ(iiil
e

- logl[l+z ¢ :nsfirE:;Tj}}]
e

-z I {nuamﬁrjn{mamanuj}}-u

+ ain{IHdEin}}[liﬂ{lwﬁen{jj}J]+; Eﬂ{ﬁn{jﬁz}

In the last equality we have used the double angle formula and the Taylor

series for log[l+x] . Now set D = E Hj , and then we have using Jensen's

inequality

<A _>(B,2) = fE_n*{E.z}t_F{“}

-7 const. I (8,a(i)}] - (1/2v8)10g|x|
jse

| %

| ¥

EIF[-(E%E + z const.)log|x|] ,

Hith {'En.-{j:'}l - 'G.-l{j} ¥ mod.l .

Next we turm to the more general case of dipoles of different lengths.
Suppose we consider the fractional charge correlation in a two-dimensional
Coulomb gas. Oppositely charged particles will tend to form dipoles of various
lengths with dipoles of lemgth L having a small effective fugacity

fexp (- é% log L } , but with an entropy proportional to Lﬁ . To mimic this

sltuation we consider two latcices
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2 2

L, =dZ" N & and I.2 = [dL Z +{%.u:l]nn

1

§4(3) = #(i)-e(j*Le) ,

with & = 'i a unit lattice wvector, and define

7 (#(x)=4(y)) _qj‘n a 4N T Q1 5 4(3))
<a - - = +E, COB ] * cos 4
LN 171 jer, LoE
1 2
i
5 ($0x)-4(y))
LI duﬂt¢} L) {5.1"]

It is convenient to let Il and Ii denote the collection of squares
ﬂlijl » B,(j) centered at the sites of Ll and 12 having sides of length
d and dL respectively. Hote that Ll n LE = % 80 that the positions of the

dipoles do not overlap.

The choice :1 P dz and z l.'t"n!2 mimics the entropy since there

are approximately dz = ].id2 dipoles associated to each site of Ll " LE

respectively. Now we want to replace (5.14) by a similar expression but with

e B replaced by effective (renormalized activities,
— -g/8 = C log L
0 <& < ze B/ i O £z <z Const. exp[-{g- —§%!£5 —%E——] (5.15)

This result will be obtained by integrating large blocks of ¢'s using complex
translations. Consider the dipole corresponding te & ¢(j) . For each jEL, ,

lec ﬂj{k} be a Eunction on 121 satisfying

.00 = 1, |kl < s ¢ =0, |-kl 22 (5.16)

and

j w;j{kjl 5{:“:“' LETHOESE (5.17)
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Define
bok) =g etk , kET,
bj{t} L tj{.]}‘:[.]} r |E"j| ii » J E 11 * (5.18)
vhere
c(k) = C(j,k) - C{ij+Le,k) .
Finally we introduce
§,4(3) = 19b, (k) 0 (k)=4(§)+4 (j+Le)
E;F{ij = §(i)=¢(i+e) (5.19)

Lemma 5.4. Suppose the observables do not

overlap with the dipoles of the ensemble. The expectation (5.14) remains unchanged

if we replace each z and &§(j) , by = , §¢(j) which sacisfy (5.15) and
{5.19).

Proof. We first apply Lemma 5.3 to obtain $ and ?1 . To rewrite
cn:(&Lﬂﬂ}} we make the change of variables

¢lk) + glk)+i gb_(k) (5.20)

which leaves El_t unaffected, because by (5.18) E_IE[j] = 0 . The function
ensures that functions localized outside {|k| ¢ 2L} are unchanged. Thus we

need to see how (5.20) affects n:p{iELﬂﬂlJ and d.uﬁu-}:

exp{-L[ 7(¢+i8b) 1% (§) /28418 4 (0) =B (b b, ))

= expl-L(%) (i)’ /28418 §(0)=B(b_-b )+IBE ) () /2)
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It is casy to see using (5.16), (5.17) and (5.9) that

: (o P00 - § 3 [ewe) () e)’ (o)

k

v

x 'E E( "i"l:}zli'l:}t:l:i}mnn:h

< }E: log L+Const.

Again by (5.9) we have

£ (myia - (e 1iaa) = ¢ [9-ce) 12 (k)
k kEL.l

< log L Const.
d

The same argument applies to renormalize cnn{6L¢£j}} . JE LI s J4 0.

Remark. If d > 4 is not large it is advantageous to replace (5.13) by

4(k) + p(k)+iyb(k) with y small., One can then obtain

|z,| < 2 exp-(yBlog L) ,

without having to choose d wvery large. For an alternate method see Appendix B.

Theorem 5.5. If x,¥ do not overlap with dipole positions, and B is so

large that |';1|:1|H. . |:2| <1/4 then

i3 (40)-4(y))
n

e

i c:ﬂ.‘EF log|x-y| (5.21)

whe i

)
dI

- Ennut-]-l =

g = o= [148

with Const. independent ¢f g,L,d and <> is given by (5.14) in the limit

A=zt
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Proof. By Lemma 5.4 the substitution 2z + z , &4 + &4 applied to the numerator

and partition function does not change the expectation. Let

a(j) = e{j,x)-c(j,¥) and translate

$C3) + o)+ i T a(h) .

From (5.19) we have

6, (o+i 7 a)(0) = B #(0) + iv(a(0)-a(L))/2 ,

because Aa(j) = &(x=j) - &(y=j) . By (5.9), for j restricted to

li-x| < 2|==y| ,

Z
2 2 2 1
T E |l5 Lﬂ.fj} | E.-TZL E Const. (lj_x]'

JEL, JEL,

1
STy

2 EunSt.luill-!l
Y

o Id2

For |j-x| > 2|x-y| the sum is bounded by a constant, see (5.9). Thus the

total factor arising from the translation is bounded by
z,+z.
y_ (Y log|x-y|
{ & [-E‘I +* ﬁ;{'-'-;!-'} Eﬂﬂ.ﬂt.]} P

The optimal choice of ¥ wyields (5.21).
]

Remarks. In the proof of Theorems 5.1 and 5.4 we have used the fact that
x,y do nog overlap with the dipoles of the interaction This requirement is

unnecessary, as we now show. For Theorem 5.1 suppose y = 0 and x € 4% .

Consider the factor
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GHHOI=0D) (o b os(a0)-b(e))

- I8 | 2 126004140

=
2
2

p otle(e)-4(x))
e

If we estimate each term as before, treating it as non-overlapping observable,

we get the bound

-8, log x|
'/

(1+2z)e

The partition function E' has the factor

(1+z T cos($(0)-4(e)))
[ -]

deleted hence, by a simple argument, 2'/Z < 1 . A similar argument applies
to Theorem 5.4 but here we may need to use the fractional charge of the

observable so that the observable and interaction dipoles do not cancel.

It is easy to extend the above results to systems of the form

n (l+z_ L cos (¢(k)-¢(k")))
j€L, kik'€B, (i)

x 0 (l+z; L cos(¢(k)=#(k"))) .
j€L, kyk'€8,(j) |
5 gl |z

We can apply the renormalization of fupacity principle as before. Mote that
there are l'll'I.‘cll terms in the sum over k,k' in 32 ; thus, since we obtain
from the renormalization of the activity a factor of a Plog Li2s we need

to require g > Bn , so that
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8
ﬁn -i-;lnal.

=2L <1, for large L,

and our measure is positive, whence our techniques apply.

We hope that the techniques developed in this section combined with
an expansion of the two-dimensional Coulomb gas in terms of meutral multipole
configurations of arbitrary size and (unfortunately very tedious) combinatorial
estimates will permit ome to prove the existence of a P-D transition in the
(Mhe) ensesble, before long. For an alternate treatment of the renormalization

of dipole activities, using purely electrostatic techniques, see Appendix B.
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f6. The Mermin ATgument .

By establishing a generalized Mermin Theorem we shall prove a lower
bound in momentum space on the ¢ two-point function, wvhere the expectation
is given by (5.1) or (5.2). It is convenient to replace H(-d}_l by
ﬂi-ﬂh+£1-1 . The subscript A indicates periodic boundary conditions at 3A ,
and €& is an infrared regulator to be removed after the thermodynamic limit
has been taken. Let

A7V g airetiP
JEA

L]

+(p)
and let A(p) be the Fourier transform of -4 .

Theorem 6.1. Let =z, be as in Theorem 5.1. Then for the (Dnhc) ensemhle we

have

3 ®> 2 8 e Tyt (6.1)
For the (Dhc) ensemble

Jip | > e e, (6.1%)

I8 1-ze BI82

where x < const, ze e

As a corollary to these inequalities we shall show that the correlation
of two infinitesimal test dipoles immersed in a (Dnhe) or (Dhe) dipole gas does

not decay integrably fast.

Before formulating our generalized Mermin-Wagner Theorem we illustrate
how the methods of the previous section enable us to establish (6.1). In fact
the standard Mermin Theorem is an infinitesimal form of the results in §5.
(Similarly, the infrared bounds are an infinitesimal form of Gaussian domination;
see Po,14] ). Let £ be a function on the lattice and ser ¢(f) = Ejﬂj.'lﬂj] .

By subtracting 1 from both sides of the inequalicy
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-..1'
ca?SHE), o OB O (6.2)

and keeping the second order terms im €& we obtain

B'<f,CE> < <p(D)>> ; (6.1)

hence (6.1) follows by letting £(j) = e

@ . Imequalicy (6.2) follows

/Al
for dipole systems as in §5, using the translation ¢(j) -+ t{j}+£ts'nj , where

- T I C(.i"EG") (6.3)
!l

The estimates are nearly identical to the ones in §5 if we use the

relation

2 {'jh'j-:'2 = =<a,par = <f,CE>
|§=3"|=1

Note that this technique (as well as the one that follows) works in arbitrary

dimension.

To set up the Mermin argument (infinitesimal form), let H{&4) be a

real functiom of #(j) , j belonging te a box A , and define Z, so that

A

i m 3;1 I RasE 100
JEA
is a probability measure. Let D be a first order differential operator on

[.2{ IF.“‘IJ.
Lemma 6.2. For regular functioms F,H we have

|<ln,F)>| < <lo, (BH11>12<|p| 25112

Hote, all commutators areé functionms, because D is first order.
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Proof. By integration by parts

<[D,F]> = <F[D,H]> . (6.4)

The Schwarz inequality applied to the right side of (6.4) yields
<n,Fl> < <|F|%Y? 58T [o,0151/2
To complete the proof, note that whem F = ID,E] y [B.4) becomes

<[p,[D,8]]> = <[D,H] [D,H]> ™

We now specialize to the case where H 1is translation-invariant,
defined in a periodic box A . Let A be a function of one variable and ﬂj

a first order differential operater im ¢(j) . We set

A = |A7Y2 1 o3P sy , and (6.5)
jEA
h(p) = £ e Pde(p. . [p ,0]]> . (6.6)
JEM i

Theorem 6.3. In the above situation

- 2 -
<|Ap) | 3 <ID,,A(4(0230> n(p) " .
The proof follows directly from Lemma 6.2 by setting
o = |n|"1.||r2 Ej E‘lp'jnj , E= E{P} =

because

<[D,F]> = |A]™} L<[D; AN ]>
J

- {[D‘nlﬁ-f"{n‘}}]‘ ¥

by translation invariance.
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Hote that in subsequent applications we usually pass to the thermo-

dynamic limit, A A Z° .
Application 1.
In the study of the (Dnhc) ensemble we set
I:I-j = 3fae(3) . {6.7)

Then

hip) = A{p){B ‘+z<cosss(0)>)

For A = ${0) or sin &(0) , Theorem 6.3 pgives the bounds

st 2 Unip) ,
<|sin (p)| %> z <cos ¢(0)>/nip) ,

respectively, which prove (6.1) .

Application 2.

The (Dhec) system considered at the beginning of §5 is only transla-

tion-invariant with respect to a sublattice, ¥ A
For z <1 the Hamilton functien, H , is

(1/28) £ OD(7 - & log(i+z cos 6,4()) .
J€n jE& ZAK

Let D, be as in (6.7) , D = |I'L|-”2 I l-p+jnj , and
j

Fe a2 0 - e
]

Then, by lemma 6.2,
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<3 1% > 1/n(p) , where

hip) = <[D,[D,H]]>

F : 2
- I ELp{h-]} i H

£ EICEHE

= 8 lagp) + g(p) , where

= z r_nﬂ{vﬁlﬂ'ﬂ}} EE lill“‘l”ﬂ}}z
glp) =@ /&)(p)< ¥ S
l+z ma{alun}} [1+2 :u-:nsluum
=1 = 2z
whence h{p} < (& "+y)alp) , with vy 2 ST S
& (1=-z)

Thus

i@ 1% > ¢ v e !

If we replace the dipoles by renormalized ones, trading z for

T =ze /8 , the same arguments can still be applied. The resulting estimate
is
2 =1 e =] -1 ; - - 2 :
<|¢(p)|®> 2 (B 47) a(p) " , with ¥ < const z/{1-E)° which
is (6.1").

Remark. We recall the wpper bound (see Theorem 2.4)

a5 8 Tam ™,

(provided z < 1 in the (Dhe) ensemble). This estimate and (6.1), resp. (6.1°)

imply that in two or more dimensions
ip ,
F .
e m|s = e P <im |

ie discontinuous (though bounded) at p = 0 . This discontinuity clearly implies
that the {ﬂlﬂ-m-puint correlation function cammot cluster imtegrably fast.

From §2, Part 1 we thus conclude that the correlation of two infinmitesimal test
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dipoles immersed in a back ground dipole gas cannot decay integrably fast,

i.e. there is no screening. (The same is true for the truncated correlation of
two test charges, as is easy to verify. The rvesult presumably also holds for
the standard, truncated dipele-dipole correlation, but our arguments do not

prove this).

Related, but weaker results have recently been found independently by

Park .

Application 3.

To recover the classical Mermin theoresm, consider a vector—valued

field, ;{j}  and & Hamiltonian function

He= £ J(-EFEVUE Dres, (1) . (6.8)
Lyl

We set nj = tlij} afa¢2{jl-¢2(jlafa¢1{jl -
A= 4,00 -

Then,

h(p) & £|1=cos p+j||3(3)||<dc0)-Feir>|ee
1
< const. p2+ c , provided

fD i <o, <[30)]em
]

Theorem 6.3 now implies (taking ¢ ™w Q)

<4, (0)>
]
P

ﬂlitp]|z} > const.

which is the assertion of Mermin's theorem. Note that for J's with the property
that jtp} is convex, hip) is bounded below by u.pE goa >0 , for amall p .

For this reason, Mermin's theorem can in general not be used to prove absence
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of spontaneous magnetization in v > 3 dimensions, as was pointed out by

J. Bricmont.

Application 4.

Consider the Hamilton function H defined in (6.8) with couplings

J(j) = -BK(j) . B > 0 , such that K(j) is reflection-positive, i.e.

Z 2 E R 4]y iy=dgeeeeaiy=iy) 2 0,
i jez¥s(1/f2,..., 4 24 17122 iy=ly
i‘l!_jl }ﬂ

for arbitrary E:i € I}i g and EK(j) = 0 ; see [14] . One example is

1 b
K=4 ; the finite difference Laplacean.

Let ;- “1"""‘“:' EEH ; With a priori distribution dE¢- . Let

v > 0 be such that

12
| E'?{F3[1E1|+| % <=, forall y>0.

The infrared bounds of refs. [20,14] say that

< @)% 5 -@KENT | for phoO. (6.9)

for all a= 1,...,H . Hote that for ¢ *» 0 (in a finite, periodic box, A )

rliuip}iznt = tiiﬂ(p}lzn  for a2z 2, (6.10)
whereas
. 2 - 2 2
<o, (P> = <|4, (P> + M(e,B)"|A[6 g (6.11)

O.p

with M{eg,8) = ‘iliﬂ}?

Let I(w,K)= [ d'pkep) !t .
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For K= 4 , -i{p] = Ap) ma pE s #0 that I(2,A) == _ but I(v,A) €=
for v > 1.

By taking the thermodynamic limit (supposed to be ergodic) and inte-
grating (6.10) and (6.11) we obtain from (6.9)

q“{ulz: 8w, , for a>2, (6.12)

A

and

qlm}z: 8 10w, K) + Mle,8)° . (6.13)

L

Next, we apply Theorem 6.3 with Dj - Bfﬂ#zfjl s

Fo=Aep) = [A]7Y7 1 &Py ()

JEA

By (6.6) and (6.8) and our choice of J(j) ,

2
h{'ﬂ-} - -Ei{PI § of M b

a¢2{u}1
Theorem 6.3 then gives

4, (0) -
«:|¢.2(p}|2> > 2t > h(p) :
34, (0)

a*v(|30 1

= [-BK(p) + < gt
34, (0)

(6.14)

Comparing this with (6.9) and (6.10) we conclude that

£
<2 Vijel0 » »0 . (6.15)

atz[ulz

This inequality is stable under taking the thermodynamic limit.
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Now let (8 = a31% 3 [3]%+conse. (6.16)
2’y 2002

Then = - 40§ 48145 o
5

Thus

5 N
cvdio)y il @ + & <y (%]
B, (0) a2

* Elﬂizfnizr &g

By (6.12) and (6.13) the r.s. is bounded above by
=] : ;
-EF'-H{E,E}E+#{H+E}JLE Kv,K}=0 . This and (6.15) vield

M(c,B) > ”'ﬁ‘“*ﬁilﬂrllt“‘“’ }1;2
-%@- conat, B} (6.17)
if I(v,K) is finite. As B + =
M(e,=) > %-J’%T : (6.18)

The r.s. of {6.18) is precisely the value of the spontaneous magnetization pre-

dicted by the naive Goldstone picture |

These arguments can be extended in several ways.

{A) Let VH'“] be an arbitrary, positive polynomial. Applying Gaussian domi-
pation to bound qn[ﬂ.'lz-:c by D{:E-n}, provided I(v,K) <= , see [20,154] .

we conclude that

2.t 2
‘ﬁlﬂgy)"' -% {Hntﬁrﬂ}rulﬂltu}” - :m't‘ﬂ-l &
34, (0) L

This and (6.15) generally give as a lower bound for M(¢,p) the smallest value
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predicted by the naive Goldstone picture, up to 0{5'1} corrections.

{B) Let w = 2 , pass to the continuum Ilimit and choose

«) = @D L Fearc1.

Then ) dp k(p)lem
lp|st

Let "”l:” - 1:{:*:]21 - % :;4: » Where :=: is Wick order with respect to
'[E-F-'.I'I + This defines a Euclidean field theory model which has been constructed
and shown to exhibit spontancous magnetization for sufficiently large £ in
[42] . The arguments described above can be applied to this model, with some

obvious changes. The analogue of (6.17) is

Me,B)z 3 Bl (6.19)

] x . SElepren n-1,
W Jutﬂ-l H min{'ﬂ} Tip

and 1ﬁ:nt-‘:l'.-l:l}z::-‘: < 0 , for our choice of Wick order, (see e.g. [201]).

for somse &(R) >0 (!} . Here we have used that

Thus, for o > 0 there is a non~zZero spontanecus magnetizatiom, im

accordance with the Goldstone picture.
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§7. Phase transitions and spontanecus orientatien of dipoles in hard core

dipole lattice pases.

In this section we show that hard core dipole lattice gases in three
or more dimensions undergo phase transitions (at small temperatures, as the
dipole activity is varied), and we exhibit equilibrium states with spontaneous
orientation of dipoles and broken translational invariance, at small temperature

and large activity.

Our proofs of these results are based on reflection positivity (RP),
established in Appendix A. We use RP as a means for establishing infrared

bounds from which our results follow in a fairly standard fashion, [20,6) .

In the case of hard core dipole gases in two or more dimensions with
the property that each dipole only has finitely many possible orientations
one can combine RP with a Peierls argument [5, 14] to establish the results
mentioned above. (We shall not give full details which the reader can easily

reconstruct from [ 5,6 ,14] and some hints that we shall sketch).

This section is organized as follows : In § 7.1 we specify the
dipole potentials and ensembles considered in the remainder and briefly review

RF.

In § 7:2 we establish some important properties of dipole potentials

and exhibit the groundstates of dipole gases. In a sense Section 7.2 is the
technical core of §7. It should be read after a first glance at the later
sections. (We thank B. Simon for some hints concerning the material in

Section 7.2).

In §7.3 we escablish the required infrared bounds which, in §7.4,

are applied to prove existence of a phase transition. (We note that for short
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range dipele potentials, one can use & high temperature expansion Lo prove
uniqueness for small @ . In the case of long range potentials, inequalities
of §7 give absence of ordering inm the two—point function for activity =z < 1

1

and uniqueness for 2z <@ ).

A few hints concerning the Peierls argument for two-dimensional,

discrete dipole gases are given in §7.5.

§7.1. Dipole ensembles and reflection positivity.

Reflection positivity [13,14] for Coulomb- and dipole gases is
established in Appendix A. Here we only recall the basic facts. We consider
the following class of dipole gases : Each site of Z" may either be empty
or cccupied by one dipole with some dipole moment g ER’ . The a priori law
of the dipole moment is given by a probability measure dp(q) on R’ . The

potential energy of a dipole at site i and one at site j is given by
{qi-uli'ﬂqj} » (7.1)

where W(j) is some v = v matrix whose general properties are discussed
later, and 9 qj are in the support of dp . We have the following examples

of dipole potentials, W , in mind :

(a) Let &1,...,% be unit lattice vectors in the direction of the coordinate

axes. We define W{j) , j ez’ by the egquation
(q.W(jlq"') = - Mqﬁq.EHjl s (7.2)
where iﬁnF}  F(x+a) - F(x) , and C is some potential on

Ly = (i*a 3 ] ez’ , q € supp dp U {0}] .
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Later it will be necessary to constrain supp dp to a hypercube centered at

0 with sides parallel to the coordinate axes of lemgth <1 .
(b) Let § = A ﬁT , 0 <A<1/2, and define W(j) by

(@,¥()a") = = lalla" | (8,85, €2 (3) (7.3)
with C some potential on

L, = {j+a : j €&, |a] = 4} .

A
(e) LSV IER NS DR D (7.4)
with “E?tj} - - tazfaxnaxTE}{jj , where C is some potential on )

A typical example of a potential C is

(-a+e) 1 (x) , for |%| = 1-2a
Ci{x) = (7.5)

CORSEL . . Faor |n| < 1=2}

e>0,0<A<1f2.

Note that by adding a suitable bounded function g supported in
{% : |x%| < 1-2A} one can achieve that (C+g)(x) is of positive type and
regular near x = 0 . Thus, the tools of §§ 2-6 are available (are, however,

quite inessential in this section).

Henceforth we shall restrict our considerations to the dipole
potentials introduced in (¢) which are restrictions of regularized continuum

dipole potentials to z" . Our methods apply equally well to the sort of

potential defined in (a} and (b} which we studied throughout most of §§5 and b.
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Let A be a periodic box in z” » viewed as the restriction of a
periodic box in R" to Z' , and let Hﬁ be an infrared regularized and
periodized version of W on A , with W, + W, as A’zY |, e.g. in the
quadratic form sense. If W is given in terms of a scalar potential C , as
in (a) = () , and C is given by (7.5) then C, = (-a" +e")7 () , where
dn is the Laplacean with periodic boundary conditioms at 3A , and
(e > 0) isa sequence of infrared regulators . The details of how one chooses

the periodic approximation, “-ﬂ. » to W are quite unimportant, but we shall

require that the Hﬁ'l are reflection positive; see inequalicty (7.13) below.

The Hamilton function in the periodic box, A , 18 given by

(8/2) I (q.,W, (i-i)q.)
A {.3e8 L0 ]
(7.6

(8/2) (3,4,q)

The Gibbs expectation, =—>

=y s is given by the probability measure
z e Mhan (q) (7.7)
with dp{g) = 0 dp{qj} , and E-ﬁ. the obvious normalization factor.

Next, we recall sufficient conditions on W , resp. C which

guarantee that the Gibbs state, <> , is reflection positive, [14 ]

For q €R’ , define

1 1
an. - Hﬂ.[q I"'lqul"'lqui - {"ll r--*rﬂur---r"'qv} (7.8)

Let L be a pair of hyperplanes perpendicular to the so=direction, midway
in between two lattice planes and bisecting A into two pieces -'I.‘_,-'I.__ of

equal size. Let r denote reflection of sites in A at S Clearly
e |

r A = A& . We define
B *
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{ﬁuq}j - Huqruj . {(7.9)

L - {q.}.
¢ 9 " 93},

If A is a function of q, we set

(8,0 (a) = ACl8,8;)5¢, ) (7.10)

JEA_

In the context of dipole gases the most natural definition of RP of a

Gibbs state, oy g is

Definition 7.1. The expectation <—*, 1is said to satisfy RP iff, for an

A
arbitrary function A of q, »
cﬂqhiq_iﬁﬁq+1*ﬂ >0, (7.11)

for all o = 1,...,%

We now give a sufficient condition on Hﬂ and dp for (7.11) te

hold.

Proposition 7.2.

Let dp be chosen such that
dptﬂuq} = dp(q) , for all a . (7.12)

= W ;
Let q+ {qi}th+ be an arbitrary B -valued functiom on ﬁ* . [L.e. Ql = 0 ,

for all JEA) . Assume that

- I {qi.wii-rujknuu.] >0, (7.13)
i,j o

for all such q; 211 a = 1,...,v
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Then ﬁ—ﬁh gsatisfies HP.

We do not give the proof of Proposition 7.2 which is an adaptation
of arguments in [14], (Section 3, D). See also §5 of [6 ] ). Instead, we now

suppose that W is defined as in (7.2) or (7.3) or (7.4).

Let f be an arbitrary scalar function on

AN ip - if W is as in (7.2) - resp. on
(7.14)
A, D Ll - 4if W is as in (7.3), (7.4).

(Note that A, is, here, considered a subset of R" ). Let B!f(x) = £(r_x).

In the following we usually suppress the subscript "A" , unless a

gpecific context requires adding ic.

Proposition 7.3. (Reflection positivity (RP))

Suppose that W is defined as in (7.2) or (7.3) or (7.4). Let C

be of positive type, and

E{rﬂ:.rﬂr] = C{x,¥)
(7.15)
IE&I.CE} d L1 I

for all f's as in (7.14), for all a=1,...,v . Then condition (7.13) of

Proposition 7.2 holds, and <> is RP in the sense of Definition 7.1. e

The proof of Proposition 7.3 is given in Appendix A. (A direct
verification of the fact that (7.15) implies (7.13) can also be found by
modifying arguments in §5 of [ 6] ). We emphasize that the hypotheses of

Proposition 7.3 are satisfied for C as in (7.5). In the remainder of §7 we
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limit our attention to dipole potentials of the form specified in (c), (7.4),

for some C satisfying (7.15).

§7.2. Properties of the dipole potential, groundstates of dipole gases.

Consider the v = v matrix {H:1{:}} given by
W (0 = - GYatao) (0, for all xE€R® (7.16)

where € is a translation invariant quadratic form, and C(x,¥) = Clx-y)

is its integral kernel. We assume that the hypotheses of Proposition 7.3 (RFP)

are satisfied.

For this it suffices e.g. that, for |x| » 1-24 , 0 <) < 1/2,

C{x) has a Kdllen-Lehmann spectral representation,

C(x) = [ dula)(-t+a) () , for |x| > 1=2x (7.17)

where dy is some measure on [0,=) with f{:tl}-l

dufa) <= , and A is
the Laplacean with periodic boundary conditions at 3A . Then, for a suitable
reflection=invariant continuation of C(x) to {x : |[x| < 1=23} conditions

{7.15) hold. Moreover, C(x) can be chosen to be of positive type. (All

this is easy to check).
The Fourier transform of HET{:} (see (7.16)) is

= C 7.18B
ﬁiﬂtu} k& ECK) (7.18)

with C(k)} the Fourier transform of C . Let P(k) denote the orthogonal

projection on TET g Lals

o lel=2
P = [k k



o
By (7.18)
WE(k) = DORIPGK) , with B(k) = k2C(k) (7.20)

Using the spectral representation (7.17), it is not hard to show that one can

chooge C such that

{A) € satisfies (7.13), so that =<==> gatisfies RF , in the sense of

Definitiom 7.1:

(B) D(k) > 0 , for all k ;

(C) D(k) falls off rapidly, as |k| + =

. 5 . . = W
Let W(j) be the restriction of W o the lattice, i.e. j EZ . The

Poisson summation formula expresses the Fourier transform of W in terms

nfﬁ‘::

W(k) = I Uﬁt(kl-?.rm}

m g
(7.21)
= ¥ uﬁ{k**lln}?{k*-!n m)
mEX
Let ¢ be an arbitrary vector on the unit sphere, 5“-1 , of R’ . Then there

exigts a sequence !':111_}'III t e such that
r-

k+itm
r

— %l ; AR T+ wm
[k*lﬂnr|

To see this we propose to choose {-r] such that |'r| - w . AF T +w

In this case

|2%m_|
[k|/[k¢2mm | +0 , snd —— =+ 1 ,
Ikiliurl
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for all kK € B , the first Brillouin zone (i.e. the dual of Z¥ ) . Thus, it

is enough to show that Iﬂ-rflnrl + L ,as r+= , This follows by an obvious

Am m
density argument. Finally, since [i;FT--TEET g A ®m Lo ey {-rl can
T r

clearly be chosen such that |nr| «m a8 r+ =, This proves our contention.

w=1

Next, we note that if {tﬂ}' is a dense set of points on 5§ , and

g=]

{:n}:_l is a summable sequence of positive numbers them E En”"sj is a

strictly positive v X v matrix.

By condition (B), Bik) is positive, for all k . Thus

k+2mm
]

Wik) = E “E{k+1wml PETE;E;;T

m EZ

is strictly positive, for all k € B . (In contrast, an[h] = DikIP(K) is

singular for all k ER® v > 2) .

Next, we claim that W(k) is independent of the way C(x) is
regularized on {x : |x| < 1} , up to a constant multiple of the identity.
For, Hn'r'{j} = H:Tlfj} . for all j ez’ with |i] # 0 . Moreover, since C(x)
has been assumed to be symmetric under interchanging x" and x! .

HnTiﬂ} = cﬁuﬂ » for some constant ¢ 2 0 . The Fourier transform of

H:thill—ﬁj ﬂJ is clearly regularization independent, whereas the Fourier
]

transf F W : i 4
nsform a u‘rm”].ﬂ 1% equal to l‘.'d-ﬂT

We are now going to choose ¢ in a way that is convenient for our

purposes.

Let k = fﬂ,kl,...,hv} . (7.22)

Then f 8 T 0 --e 0
Nik) = | o P . (7.23)

0
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2 z
with o, = I  (2vm) C(k+2mm) (7.24)
mez’ L

To prove this we recall that

ﬁhv{k} £k +2mm ) (k +2vm ) C(k+2mm)

m E I

For a=1 or y=1 we have

o
—
=
L=
i

" Egulml {kud-Imu} C{k+2mm) (7.25)

Since € is even, C(k+2wm) is even in my for k as in (7.22) so that by

(7.25)

Hu?{k} =0, for a=1 or ¥y=1 and a ¥y ,

and Hllik} i ﬁk is given by (7.24). Analogous statements hold when 1 is

replaced by any a = 2,...,;v .

Kext, let 'l“l:| EB ba the vector with cosponents

(a)
I? = 11[1-4“} ; and set
(7.26)
& = A (which is independent of a )
e
Let WOtk = W) - a1, (7.27)

W is clearly regularization independent.

Lomma 7.4.

Forall k€B, W(k)l>0, asa v xv matrix.
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Proof.
TR 1
Let R(j) = TR, (7.28)
a=

where R is the invelution ("dipole=-reflection") defined in (7.8).

Let h be an R -valued function on the periodic box A . Let

h = hxh » Where A_ are the two halfs of A separated by the pair of
. . 1

hyperplanes Lo and Xy the characteristic functioms of hr » Lat Eu
be defined as in (7.9). Bf‘inequality {7.13) we have the following Schwarz
inequality
=(h, W) = =(n W% )= (h_,Wh_)-(h, W% )-Ch_, W)
< =(h, W0 )= (h_,W"h_)
(7.29)
+ 20=(h,w% b 2 [=(h_,u% b gif2
a + = a -
— — n - -
< ~(h,,W'h)=(h, W% b )=(h_,w"h_)-(h_,W% h_)
= =[1/2 (h+8_h ,W(h,+e h))+(h_+0_h_,W (h_+5 b )]
s
1f the sides of A have length 2 ° , L LeZedsnnny O ™ Liisssy 5 We
may iterate inequality (7.29) for a new choice of L in both terms on the
r.5. of (7.29). Proceeding in this way, with all possible choices for L
and , , we arrive at the inequality
1 (1) (i)
=(h, W) < r =" Wy (7.30)
: * TAT ien
(i) . o
where B*"7(3) = R{j-i)h(i) . (7.31)

(If the lengths of the sides of A are even, but not powers of 2, (7.30)
follows from (7.29) and an optimization arguient of the sort used in

[i4 . Section 3]) .
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We now ghow that each term om the r.s. of (7.30) vanishes. This

follows from

r WO(e-i)R(i) = O (7.32)
iEA

This identity is proven by a computation :

[ £ Wo(2-i)R(i)]
i€n oy

= I Wo(1-
2 (L iluTE{i]TT
r ¥
- b Wiy (-1)"PY
i€n oy
3 e
o (=130 oo (Y) .
(-1) W (n }nT o,

with 'IT} as in (7.26), by (7.28) and (7.27). Since this holds for all a

and v , (7.32) is proven.
=

Remark. Identity (7.32) shows that any dipole configuration § defined by

ﬁj = R(j)q , for some q ER (7.33)

has vanishing energy density (w.r. to the dipole potencial ) . By Lemma 7.4,

'5 is therefore a groundstate configuration.

We now show that, in certain cases, the inequality of Lemma 7.4 can
be improved. For this purpose one must first pase to the limit A =2 .
Let g be some unit vector in B . Let W'(m,K) , Kk = {kz,....k“] + be
the partial Fourier transform of Hntj} with respect to {jz....,j“} :

jI:mEE,

We set Vplm) = =(2,W° (m,K)R;2) . (7.34)
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Then inequalities (7.13}), resp. (7.15) clearly imply the following inequality

for WV :
I E Velmn-l)z_ = 0 (7.35)
m,n>1 n kK a8 g
for arbitrary (z }n e, i.e. vp is a translation-invariant, reflection
-

positive two-point function. Such two-point functions are known to have the

following spectral representation

1
Va(m) = [ an{a.i}x|“|'1 , for |m| > 1. (7.36)
=1

See e.g. § 5 of [8] .

The Fourier transform of V:(w} in m is therefore given by
! 2 -1
Oplk)) = e42 [ do(h,Bdcos k=1) (14a"~2heos k)T, (7.37)

for some constant ¢ = e - {see §5 of [ 6 ], discussion of Model 5.3). From

(7.37) follow

vI{n} > uittl} . for kl g0
{7.38)
Eitulw > ﬁhcn} . for k dftw ,
provided Vg(m) # 0, for some |m| 1,
(7.39)
and ﬂr{l} + 0 , as |ﬂ| - @ N

Far ?E{u} as defined in {7.34), (7.39) is checked casily. Thus, we have
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Propogitien 7.5.

(1) o k) > W vy a0, o' uin (2280 ,
if i“ gt 1{1*5E“} ; for some uw .
a
- ]
(2) WO (k) < WD ((0,000,0,% 7,0,...,0) ,
if ku ot rﬁnu , for some u .
Proaf.

By (7.38), (7.34) and the definition (7.8) of R

s
(i) ‘ﬁflm,i} > =il (k; k) , for k, #0

(ii) -3 0K > W a,K) , for Ky Few

(iii) ﬁzﬂ;u.ii > W kK, for Kk #0

(iv) ﬁgﬂ{kl*i} > i:u{w,i} , for ky dtw .

Next, using first (i) and then (iv) with 1 and a interchanged, we see that

(1

I]{ktlkzl' --1kql---1-k“}

=0
2 W O0ky,nn ik ik )

H‘:l{u!kzu'llfﬂ'.r.q-.kuj i LB X

1

1

W (=

and if Eu ¢ iﬂll-ilpl , for some y , at least one of the inequalities is

strict, so that
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E?I{k} * 0 , and exchanging 1 and & ,
& A (- 4 P
WLl > W (') =0,

if kl-l # tt[l—ﬂuH] , for some § .

This proves (1). To prove (2) we apply (ii) and subsequently (iii)

with 1 and a interchanged. This gives

u‘:lcu} < uilz-.uz..n.uﬂ,..,,hu}
< "":1{"“1-""“"'*“‘1«:}
E wes : i:lf'l'.uxri+uu'} *

and if kl.l ¥ ind for some u , at least one inequalicy is scrice.

g '
=
We now consider the specific energy of some periodic, two-dimensional
dipole configurations, arising in estimating contour probabilities in a
Peierls argument; see Section 7.5. (The subsequent inequalities extend to
arbitrary dimensions, v > 2 . In order to economizZe on notations we only

consider w = 2} .

(I} We define a dipole configurationm, qI . by q::n = (1,0) (1) = (=1,00,

o, 1)
{+ ¢« ) ; for general j EEE . lac qgn be given by consecutive reflections
of {qill.qglllil in lines parallel to the 1= and 2-axes (between sites), i.e.
(1) e Ty
G o« o« = (1,00 if j L8 even

(1) A P
q{jl'jzj (-1,0) if i is odd .

Given an arbitrary pair Equ'qiu ”',I of vectors inm H.E , Wi set
§
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T T o (R = 4o-1,4
qul-JI} 1 By 9, » for j, = 4n=1,4m

iy J,m1

and R R, o 1y * for jz = 4o+l bnv2

Wijadad ™

n EXZ . The Ez—valued function, q , on E: obtained in this wvay is called

1] " " ] 1]
periodic extension of {qu'q{u.l}} :

(I1) q”n is defined as the periodic extension of

(11) (IT)
. % (1,0 , Ua,1) (1,00 , (t+4)
(I1I) . ; :
(1I1) q is defined as the periodic extension of
15111} - (1,0) , qE;I:; - (0, 1) , (++ or ++)

vy '™ is obtained from

ot - a0 , qE:?{} - (0,0) , (+ &)
(V) -:|W:I is obtained from
qivj = (0,1) , q::ili = (0,0) (+ @)

(VI) Finally q{vI} = 0 is the periodic extension of

v V1
q; 1) (V1)

= {ﬂuu} - q{ﬂ.l} L] [H ﬁ}

We pow introduce the specific energics e s T =1,...,VI , of these

configurations :

r - 1 {r) w2 ii (r}
e = lim L (q; "MW ({i-j)q; ") (7.50)
iz TN i,jen + A i

Proposition 7.5 has the following
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Corallary 7.6.

(2) g >0, for r = II, III, IV, V.

Proof. By Fourier transformation of the r.s. of (7.40), b= Wio,sm)) =0,

VI

= 0 , because qVi E D .

H

For r = II, IV, V , the proof of (2) is a simple variant of the

arguments used in the discussion of Model 5.3, §5 of [ ] : By Fourier trams-

formation and the fact that q{r} is periodic, &' is easily seen to be of
the form
Ie
efmop el WD, rer, v, v, (7.41)
1=1

where [kr}irl ig a discrete set of momenta in B , c; >0, for j = li....d_

and c lim I |q | .
n+ﬁ“|| i

Suppose now that E{k] is the Fourier transform of a (periodic funection

q on EEE « LF EEEE} = 0 and Elik} « 5(k=(0,+w)) then gq = q{I} . But

q{r}i q[I}. r=1I, IV, ¥V . Thus there exists ]n such that

supp 370 31§ , and kT £ (0,27 , for © =1L, IV, V. By (7.41) and
o [a]
Lemma 7.4 ,

e" 3 e; Wy (ks D
il 7

and, by Proposition 7.5, the r.s. is strictly positive.

Mext, we note that

#
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W (0ky)) = WL ((0,k;)) =0, =m sk, <w (7.42)

2 2

(111)

We recall that the l-component of q is invariant under translations im

the l-direction. Thus, (7.42) implies

{II1}

. 3 ]
m " EE.I,_ qi .ﬂ.,lE{L J'.'lftlj- 3

I

This and translation invariance of Hi now imply Ml IV 4 ¥ whicn

is strictly positive by what we have already proven.
L]

Corcllary 7.6 is going to play an important rGle in the estimation of

contour probabilities in the Peierls argument; see Sectiom 7.5.

Mext, we want to determine the set S B of momenta h, guch that
ﬁﬂ{hij is singular, i.e. has at least one zero eigenvalue. A momentum
(a)

ks €E 8 is called a singular momentum. Let [t{u}] be the set given by

and all its 2Vl periodic images.

{“)] . Since

By periodicity, W (k) = Py | for all k€ [x
EET{:(H}} - ﬁ:u{'{a}} a0, m Liviesy 4 ﬁﬁivtn}] has a zero eigenvalue,

iﬂr Ill a - 1.1-r-r+,'|||‘ » 1+E‘+

W
U [+ <5, (7.43)
a=1

We now pose the problem to show that
v

u =] -5, (7.44)
as=]

and to determine the behaviour of W°(k} for k in the vicinity of [v'™]

for some o . We think that this problem can be solved for a very general
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class of dipole potentials obeying inequality (7.13), (i.e. reflection posi-

tivity). Unfortunately, the analysis in the general case appears to be rather
subtle, and we therefore limit our considerations to a nearest-neighbor dipole
potential.

2,1/2

'
Let ¢ = {:1+*~++:u

. For v » 2 , the Coulomb potential is given

by const. 1.'-":""'-2:II « We ser C(x) = r-':"'-zl‘I » for v > 1 . Consider the dipole

potential
Z
c 2 ={v=2)
H {:_ e e——
o) Itax
dEI lnll‘r.
m [y=2) _lEUfZ = g fu=2}) W (7.45)

The Coulomb potential is obviously a reflection positive two-point function
(dyfa) = ﬁntl}dn in {(7.17)) and thus satisfies (7.15). Therefore the

restriction of W° to Z' , W ,sacisfies (7.13). The proof of the following
lemma is trivial.
Lemma 7.7.

Let W satisfy (7.13). Then W' , defined by

W'(j) =

o , il =1
gsacisfies (7.13).
More generally, if V({j) is an arbitrary reflection positive two-point

function them V' , given by V'(j) = V(i) , for |j| =1, V'(j) =0,

otherwise, is reflection positive, as well.
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Let e  be the unit lattice wector in the a-direction, and Pa

[+ ]
the orthogonal projection onto ¢u . Then, for W° as in (7.45),
= [+ §
Wi} = (v=2)1 =w(w-2) L j p, » for li]l =1,
a=1 a
[7.46)

W'(0) =1, and W' (j) =0, for |j| > 1

By Lemma 7.7, W' satisfies (7.13).
The Fourier transform of W' i3 given by
o W
W' (k) = =[(v=2)A(Kk)+c]l = 2v(v=2) L P, COS Eﬁ . (7.47)

a=1 "o

W
where A(k) = 2[v= L cos kh] y © 18 some constant. Mote that W'(k) is a
a=]1
diagonal matrix (in the obvious basis). We define

Wok) = W (k)+ler2(v=-2) (3v-23 11 (7.48)
Then iﬂnixtu}i = 0 , 80 that our normalization condition is satisfied.
The eigenvalues of W (k) are given by
A (k) = i:n{u} = (v=2) [6v=4-4(k)-2vcos k_] (7.49)

Equ. (7.49) obviously shows that the only zeros of lu[k] are the points in

[H{u}] . Moreover, lu{r{u]] = 4yf{y=2) >0 , for pt a . Finally,
A 00 3 sndistl, @D, sm,

for k near one of the points in ['{u}] . We summarize in
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Lemma 7.8.

For #° as in (7.46) - (7.48) ,

W
§= u[a®] .

a=1

For K E S5, HD[E}-I exists, and {ﬁﬂ{h}_lﬁ - ﬁ;ﬁk}ﬂl is bounded uniformly

pp

in the complement of any small, open neighborhood of [’{H}]

. Finally
0 < GPay L 2 -l : (6) 1o 2i=1

(k) 7}, =W, (k) " 2 [S(v=-2)dise(k,[="""1)°] , 6l , for k
Chd

near

For general dipole potentions, H;T = = azfa:“axTc , where C is
given by (7.17) (with supp dy < {0} U [c,®») , ¢ » 0) one can show without

major efforts that

MO -ee 0
Wik) = uik)| o Ay} 0 UK,

R A, (k)
for some unitary matrix with the property that

lim UCk) = §

ay
k+[iE“j]
lim Uik} = §& ) (7.50)
fa ay
k.‘l'[ 2 th'.l ]

lim lu(k} = [
h*[iiu}] J

We make the following

Conjecture 7.9.

For the general class of dipole potentials discussed here,
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0 <3 07! < ogise, (D72, (7.51)

for some finite &

We remark that the groundstate configurations, gq , of a dipole

potential W' must satisfy

supp 4 § .

For the potential W? introduced in (7.46) - (7.48) or for some W for

(a)

which Conjecture 7.9 holds, supp § = [w '] , if q is a groundstate

configuration, i.e. q is given by
q; = R(j)g , qE€R’ ; see (7.33).

The fpllowing is a portrait of a two-dimensional ground state configuration :

In the next three sections we show that under suitable conditions

the ordering persists at sufficiently small temporature and larpe activity.
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§ 7.3. Infrared bounds for dipole two-point functions.

We now return to the discussion of the dipole lattice gases specified

in § 7.1, (7.4), (7.6), (7.7). We assume that the a priori distribution, &

of the dipole moment satisfies

dp{Rﬁq} = dpi(g) , for all a ; see (7.12).

Moreover, W is supposed to be reflection positive in the sense of inequality

(7.13).
If we replace dp by

2
do_(q) = o(B/DM 4o (g (7.52)

and W by W' = W-Al , with & = &
o
, see (7.7), remains unchanged. Moreover,

() * defined in (7.26), (7.27), the
Gibbs expectation <>

dp (R q) = dpo_(q) , and

ﬁ:uit{“jj = O , for all = , so cthat

L WO (e-i)}R(i) = 0
{EA

v o j
where R(j) = 0 nn“ : see (7.27), (7.28) and (7.32).

a=1

Proposition 7.2 (reflection positivity of t—bﬁ} permits one to derive

the usual chessboard estimate, see f6,14, 6], which, by a general argument

[14] yields the following

Theorem 7. 10, (Gaussian dosination)

Let B be an arbitrarcy i -valued function on %Y . Then
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2
R ICHVR < ot /2) (1, W) (7.54)

Qutline of proof.

We temporarily assume that dpﬁtq} - pﬂ{q]d“q , with L € Llﬂfﬁ
and Pn{q} * 0 ,; almost everywhere. We consider

Je-sfzfq+h,w“{q+h}}

Z,(h) = m dp_(q,) (7.55)

1LEN
Define Fh{q] = pn{q-hlfpﬂtqj . By a change of variables (q+h + q) one gets
-8/2(q.%%q)
Z,(h) = Je mF (q.)de (q.)
A i€n hi I Tt

Hext notice that

{“urh’{"j} - thaqu} = F (R q « )

[1 ] I-'u]

= Fg nl9, jl . (7.56)
a a

since, by (7.53), pD{th—h} = puiq—ﬂuh} . The chessboard estimate [l&, 6]

thus gives

-8/2(q,W"q)
| e B nF {(g.)do (q.)
iEA hi i - Rl |

i {Je“ﬂfth.ﬂpq} 1 F 1/ A]

i€En JEA

e . " T.57
< Etl_ljhi{q]}d%ﬁql}} ( )
By reversing the change of variables in all terms on the r.s. of (7.57)

{qi + qj+R(j*i}hi}.w: obtain from (7.53) = (7.57)

2 5 nz,eOHYIA
LEA
with hgij " ﬂ{j-ijhi . The last identity im (7.%3) and (7.55) show that
Eﬂ[h b En[ﬂj En « 50 that
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Z,(h) = 2, .
This is a rewriting of (7.54).

The case of an arbitrary measure do_ cbeying (7.53) follows from

the special case treated above by 4 limiting argument.
[

Mext, we replace h by ch in (7.54), expand both sides to second
order in ¢ , substract 1, divide by :2 and take ¢ % 0 . This yields

(using the normalization condition for W)
<@ ¥°m % < 87 %) . (7.58)

Let 5 be the set of singular momenta of T . (i.e. ﬁpck!] has zero

eigenvalue for k. ES : see § 7.2). Let h be of cthe form
h= W7
with supp g N S = O . Then (7.58) yields
<@ 2 87 e ™ e (7.59)
Upon Fourier transforming both sides of (7.59) one finds

Corollary 7.11 (Infrared Bound)

0<Qk) <8 W, for kES, (7.60)

in the sense of an inequality between positive matrices. Here ﬁ(k] 18

the matrix defimed by
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), = 4 07 (k) (7.61)

It is standard to transfer (7.54) and (7.60) to the thermodynamic

limict.

For the nearest neighbor potential W' defined in §7.2, (7.46) - (7.48),

and, more generally, for any reflection positive dipole potential for which
Conjecture 7.9 holds we can sharpen Corollary 7.11 in the following way : By

Lemma 7.8 (resp. Conjecture 7.9), it is enough that the functiom g in

inequality (7.59) has the property that
8%(k) =0, for kE (lady (7.62)
Define a matrix=valued distribution, M{k) , by

I-I{It]nl - ﬁu m

E v P& (ﬂ]ﬁ{h-p} ’ (7.63)
n

with m oz 0, for all a=1,...,v . Then inequality (7.59) and (7.62)

yield, after Fourier transformation,

0 <tk <t W0 oo |, (7. 64)

L4
L3

in the sense¢ of inequalities between positive, matrix-valued distributions, in

particular

- 2. =lao,. -1
0z <[qk)|"> g8 (@) +m T s(k-p) (7.65)
| | aa uFE['En]]

for some m > 0 .
u-

Fourier tronslormation of (7.65) shows ol
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r ¥
aa _qyy Wi
95> ~ 8, (-1) . (7.66)
as |j| += , i.e. <> is not an extremal Gibbs state if m >0 , for
some a= 1,...,v . In the last two sections we show that, under suitable
W
assumptions on W and dp , L m_ >0, for B pufficiently large. We
a=]

close by noticing that if <> s the thermodynamic limit of states <,

which are symmetric under exchanging coordinate axes, (i.e. A is a hypercube)

then W, ® s mm and <= is a mixtura of at least 2v extremal
Gibbs states, ﬂ—ﬁtA] s which break translation invariance and are characterized
by

‘qj*tll = R{j]qfli " (7.67)
where {qtl} tA ™ ], ..pdv,e..]) are vectors obtained from some vector

q(l} Em’ by applying arbitrary rotations around the origim which leave
the unit cube centered at the origin invariant. This follows from the assumed

symmetry of <> ., by the general theory of decomposition into extremal states.

§ 7.4 Lower bounds on tqi:

In this section we establish uniform lower bounds on ﬂq:? which we
then exploit in conjunction with the basic infrared bound (7.64) of § 7.3
(and uniqueness for small § or small activity) to complete the proof of
existence of phase transitions at small temperatures, as the activity is

varied, in > 3 dimensions.

We follow the standard strategy [20] . Consider the nearest-neighbor

dipole potential W° defined by
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W
[ (v=2)1 =w(v=2) I jupe , for |j] =1

W) = § 2(e=2) (-1 , for |j| = 0O (7.68)

0 , otherwise ,

where P, is the orthogonal projection onto a unit lattice vector, e
@
sea (7.46) - (7.48) , § 7.2. By the basic infrared bound, inequality (7.64)

of § 7.3,
0 < <|qk)|%> = er G) < 8 er @00 e £r MO (7.69)

with M{(k) =& m E 8 (k-p) .
oy ay a ﬁ[,{u}]
Integrating both sides of (7.69) in k over the first Brillouin

zone vields

W
0<<q> B S d% tr (k) M Em (7.70)
= L a=]

For the potential W specified in (7.68), we may apply Lemma 7.8, § 7.2 to

estimate

1w, W™ 2 | d'k er P00 (7.71)
B

That lemma shows that

I(v,W’) is finite for v > 3 (7.72)

(We note that (7.69), (7.70) and (7.72) also hold for ecach dipele potential

for which Conjecture 7.9 is true). Thus

W
0 < ‘qi” :leltu,H"]+H »with M= Em . (7.73)
a=1
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Whem v 2 3 it suffices to prove e.g. a uniform (in B ) lower bound on

iq:? in order to show that the long range order M is strictly positive.

Lat :I{ﬁ be the characteristic function of [q Eﬂu : |q] < &§}. By the chess-

board estimate and the fact that xE{q} = 1E(an}  for all a , we have

1/|a|
“%509.)%) *jgnxﬁtqj}}h
/A

=1 ¢ =(B/2)(q,W,q)
= l‘.zn _Fi A j:nxﬁtqj}dp{qj}}

m, (4,8)

Suppose now that

lim  m,(§,8) = m(8,6) <1 .
¥ A

From (7.74) and (7.75) we get

tqib > 8% (1-n(8,8)) > 0

In order to derive (7.73) we use the following estimates.
Hy = (B/2)(q.W,q) = T (@(k),W, (K)3(K))
k
< sup [l 0 [ 21300 |
k k

2
=lw, |l £ la;l
A jea b

Similarly,

2
H, = =|w.| £ |q,]
A AT qen 2

(7.74)

(7.75)

(7.76)
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-H
e "1 xﬁ{q.:dp{q-:11;|“[
JEA J 3

/2|, lllal?
£ Jlﬁ{qje dﬂ{q’ M {7-??}

and

-@8/2|wl| |al?
217 14] > J e dp(q) - (7.78)

How, for all dipole potentials considered in this paper,

Ha |[W, || = [[W]] <= . Thus
V. e

@/2)w |ql®

=(8,8) £ (fxylade do(q)) .

{7.79)
f DI fal?y 031

For the potemtial W' defined in {7.68) this estimate can be improved :

Since W(k) > 0 (see Lemma 7.4),

2
-(8/2)||W°|] |al (gL (7.80)

m(8,8) & (Jug(adde(q))(] e
and from Propositiom 7.5, (2) and the fact that W° is diagonal,
|IH¢I|- ﬁ‘:‘l{c“lﬂ"“lﬂ}} #

g0 that b}‘ {?lﬁﬂ'jj -'-Ild {?1#?]1 {?-'ﬁﬂ] ]

W] = 8ew=2) (v=13 . (7.81)

Suitable hypotheses on  dp topether with €F.73), (7.00), (7.800 amd (7.HI)

guliive to sluwe that

M2 sup 6°(1-n(8,8)) - 87 1(v,H%) 0,
5
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in the appropriate range of g's .

We now consider an example of a distribution dp

to a (Dhe) ensemble i

Chooging & < Q@ we have

Thus, for z = :ﬂ-

do(q) = [8_(q)+z8(|q|-01d"g

Iﬂ'fﬂfiﬂlupllhlzdp{q} > leze M

where u = u(v,Q) = 4(v=-2) (v=1)Q°

M > QPze B eze B g 10,00

Bu

Mz Q%2 (102 ) Te (v, W) 5 0,

for B » I{u,Hﬂ}fl+=n}t;lﬂ_2

Equivalently, if & > I(uw,W)Q 2 then

M>0 for z, > (QBI(wM) '-1)”

v

Since M= Em , with =3 0 , for all

a=1 °

for at least oné o

least 2w

=

1

M>0

¥

implies that =

corresponding

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)

>0 ,

. As remarked at the end of § 7.3, there then exist at

extremal Gibbs states,

<. =
I;I.I

()

= Riilq

(2)

=0 [:.' }

s with
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for some mon=zero vectors q{ll E]f;, Lo L e B ralated to each
other by sequences of 90° rotations. We remark that the results proven in this
and the last section for the nearest-neighbor dipole potential W' defined
in (7.68) can be extended to all dipole potentials for which Conjecture 7.9

can be proven.

Finally, we point out that for the nearest-neighbor dipole potemtial
W® defined in (7.68), resp. (7.46)=(7.48) a standard high temperature ex-
pansion yields uniqueness and exponential clustering of <> at small
values of g , for all z . If W is a lattice dipole potential of arbitrarcy
range chosen such that i{k} is invertible for all k € 8 (see § 7.2) we

can use inequalicy (2.35), § 2 to show that for z <1

Q) < @REnT

where Q00 = <4"(" (0>

This inequality {(with the Riemann-Lebesque lesma) proves absence of long
range order im the two-point function, ﬂqﬂqu ;, for all B and all =z <1 .

{The cechniques of §5 may permit to extend this to all z < uu{ﬂll "

§ 7.5 Two-dimensional dipole gases : the Peierls argument

In two dimensions the techniques of §§ 7.3 and 7.4 are certainly
not applicable. However, for a very general class of dipole potentials

gatisfying reflection posicivicty (see (7.13), (7.15), § 7.1) and discrete

distribution dp

2. 8. dp(q) = lﬁn{q}ﬂl[Mq-mlhﬁ{q-ﬂkl.‘rI
{7.87)
+ ;I{ﬁiq-q:2}+ﬁ{q+q£zll]d2q
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one can use the Peierls-chessboard method, see [5 ,14,6 ] , to establish
ordering for sufficiently large 8, z and zy - This method can be used in
arbitrary dimension v > 2 , as long as the symmetry group leaving dp
invariant is discrete. This is of considerable interest as long as Conjecture
7.9 is unproven for long range dipole potentials. We briefly sketch the
séthod for v = 2 and dp as in (7.87). Details and generalizations to

w > 2 and a large class of dp are straightforward and can be inferred Erom

the references quoted above. Let

l1,qm=3# Qal {i.e. g= %+ or )

K-u L
d 0 , otherwige.
(1, q= % Qiz s (l.e. qu=+ or +)
'.I:I -
t 0 ; otherwise
(1 ,q=0 (i.e. q=#8)
-
l 0 , otherwise.

Where convenient we identify {0O,u,d,r,t} with {0,1,2,3,4]1 . We define
P ()} = x'{HEJquJ »

W vill
with R(j}) = 1 H: y and Hh ag in (7.8), § 7.1. One then checks, using
a=1
(.9, (7.10), § 7.1,

ﬂn?iij} - P‘[tnj} ' (7.88)

for all & and all a= l;...3v .+ For dp given by (7.87)



P, (I)+B, (D4R, (I)#R_(i)+R, () = 1 , (7.89)

for all j €Z° .

We choose W to be a general, reflection positive dipole potential
of the type studied in § 7.2 for which, in particular, Corollary 7.6, § 7.2
is valid. We then choose <—> (o be a some limit of a sequence of periodic
states, e PR These states (and thus any limit) satisfy reflection positi-
vity (see Propositions 7.2, 7.3, § 7.1), pemmictting to apply the chessboard

estimates [14] , and are symmetric under exchanging w with d and r

with ¢ . Thus
:Pu{j}} = :Fd{jl: . 1Pr(j}h = tPL{j}h , for all j .

Furthermore

B

crutj}: cPr[j]} « for

Thus

e m <R dde > Ti4(1=<P 5) . (7.90)

In order to prove that <—> wviolates clustering (i.e¢. is not extremal), we

propose to show that

<P, (0)F (§)> g (7.91)

Fid
(]
-
Fh
=
L |
-
=
i
i e
-

[ 8
]
-

and :Fn: (7.92)

for some positive constants K and K' and all B . Obviously, (7.90) -

(7.92) prove that for B large enough tPu[u}pd[j]?1ﬁh¢p“;¢Pd5 , a8 ]j| -,
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By (7.88) and the chessboard estimate,

<> < lim, <N P G-l Al lim, (zh:'”“l ;
@ "zt ojen” A At T
o
Now z, > ali"m e |l , where

:I is the groundstate energy defined in (7.40), § 7.2. We choose z, such

that

1.2 i
;1-'BE Wim gl o Bu, ¥ log z, = sk'+elo?y . (7.93)

This yields (7.92).

To prove (7.91) we apply the standard Peierls argument : By (7.89),

4
<P (0)P (j)}> = <P (O)P,(j) I ( EP (i))>
o uTTd  jen ~ (0,§) a0 ® '
where [ is an arbitrary, bounded square in Rz , containing 0 and j .
The r.s. is then expanded and resummed, using O 5 Pu{j} <1, for all
and j . This yields, after taking ﬂ.a""ﬁ‘.z :

<P (Q)P,(j)> i< I P AP 1Y)
u d ¥ {i,i")€Ey a a

2 i g g
where 4 labels an arbitrary contour y X consisting of Finitly many

pairs of nearest neighbors (i,i") separating O from j . (See [5. 14 1
for precise definitions). Here

a=g'" =0, or a # a' , for all (i,i"} . (7.94)

Applying the chessboard estimate to the r.s. as in [14 ] , using (7.88) we

obtain the upper bound
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P OG> s T mx lm < 1 (Dp 0TI/ (7.95)
y a,a' ME™ (i,i")=A
where a and a' are as im (7.94), the product on the r.s. of (7.35) extends
over all "horizontal” nearest-neighbor pairs, with a,a' depending only on
{-I..'li'1 , and |y| is the oumber of pairs in ¥y . Each term under the sum
on the r.s. of (7.95) is a thermodynamic quantity that can be estimated

explicitly. One sees by inspection that

tim, < 1 b e @012 g vl (7.96)
pmzd e © e A = oo
with T . 12 , and
ao = ]

| ettt ¢‘Hfi{5rcn'nlj'lllqz

ok o Eor a¥a' ,

where the energy densities et , = I ..., VI are defined im (I} = (VI)

and (7.40), § 7.2. When o # o' , r{a,a") € {IL,III,IV,V} . By Corollary
7.6, § 7.2,

¥ -¢el 20, for r = IIIILIV.V.

i
[ iuﬂ

Thus max T s
a,a'" aa

' {7.97)

for some constant K" > 0 , and a,a" as inm (7.94). The main inequality (7.91)
follows from (7.95) - (7.97) , by the usual combinatorial arguments; see

e.g. [5, 14].

This completes the proof that <—> violates clustering for large 8 .

We emphasize that the range of the dipole potential W 1s arbitrary,
and that only the discrete nature of dp (not the explicit choice (7.87))

was important, throughout § 7.5.
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Appendix A : Beflection Positivity (RP)

This appendix briefly reviews reflection positivity for monopole and
dipole gases in both the ¢- and q-representations. We assuse the reader has

some familiarity with reflection positivity as developed in [1314] .

Let Lﬁ be the hyperplane x° = 1/2 lying between the points of the

lattice L =" and define r to be reflection through I"n « We set
L, ={x€L:x">1}
L_-{:EL::":_D} .

and denote by i"t functions of {‘H“”:Eli 4

Definition. A quadratic form C on 12{11 is called refleccion positive (RP)

if C(x,y) = C(rx,ry) and

‘Eficfilzfl} E"'_ Q0 » Bupp | = !-+ »

where

(BE) (x) = E{rx)
By general properties of Gaussian measures [15] we have

Proposition A.1. If C is RP then for A € F+

< BA ‘“ﬂciﬂ

where

(Bad (@ (x)} = Afo(rx)]) .
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Remark. For C= B{=A+c }-1 s Prop. A.l follows from the fact that
exp (- %Eii—i'lzl is the kernel of a positive operator corresponding to the

transfer matrix.

Corollary A.2. For the monopole gas ensemble (Mg} with F satisfying the

neutrality condition

di{gq) = di{-q), and A = rjp

we have

<BA &>, (B;F) 20 .

Froof. Let Fn = [ F{$(3j)) amnd lec ﬁ: = A Lt . Since F is real and

JEA

+ = - +

<BA A>, (BIF) = :rnm'ltatiiﬁ+}tarh‘J=H¢ 3

By Proposition A.l both factors om the right are positive.

KEemark. Suppose that the limiting stacte,

<=>(B;F) = lim <=>_ (B;F)
A A

A=ri
is translation-invariant; (see the remarks after Theorem 2.4 . Then

it admits a positive semi-definite transfer matrix, TIIL . See [13,14].

Define a scalar product on the space, Fn , of Functions

Ailicin ot o Bty B L a el by

<A, B> = <AB>(g;F) .
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Let B_ be the translate of B by the vector x € L . Then for A,B in Fn

1

-'-IBIPEE;P] - m.h‘ili“ in 2 g (A1)
(CTE TR

Let @ be a unit vector in an arbitrary direction of L , e.g. the Hl-di-

rection, and let A € Fﬂ « It then follows from (A.l) and the positivity of

TIIr that

*ﬁhnliiﬂiFJ - ‘AﬁlulibiﬂiF] y and (A.2)
ﬂihﬂar{ﬂ:F} is convex on n = 0,1,2,... . (A.3)
This is applied in §4.

Mext, we reformulate Corollary A.2 in the gq-representation. Let

q, = {qx: x € Lt N A}, and define
{qul = -qf:l'.
(A.4)

(BA) {qx] = qu“!

Corollary A.3. Consider the monopole gas ensemble. Assume that C is RP ,

di{q) = di({-q) and A = rA . For an arbitrary function h(q+1 we have
<BA A>, (B;F) 2 0

Froof. This may be seen by applying Corollary A.2 to the function

iq #(x)
Als,) = | dB(q,) 1 e EF ,
<€ L *
.'

IL,

where dF is an arbitrary, complex measure on R . The sign change in

g (r.s. of (A.4)) comes from complex conjugation. ™
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By general arguments [13,14] there exists then a selfadjoint transfer

macrix, Tq » On can deduce from (A.3), (A.6) and (Z.29) that Tq is not

positive, in contrast to the tramsfer matrix, T , of the monopole gas in

¢
the # -representation. See §4.

We now turn to the discussion of RF for the dipole gas in the

(Dg) ensemble.

Let ¢ be the Gaussian process over RB® with mean 0 and covariance
BC . Let L =LZ" be the simple cubic lattice of mesh L{= 1,2,3,...) .

We define E: - {x €ER" : x° i-ﬂ] . Let ﬂ'ﬂ be a finite, closed set of
£

points contained im a square with sides of length <L parallel te the axes (A.3)

of L , centered at the origin 0 € L .

The translate of ﬂp to a site x € L is denoted ﬂ'“ . We define

Sﬂ = {f : supp fEﬂ'I} ; and (A.B)

0 the functions of {¢(x) }::E{? .
{+) (+)

Definition &

A quadratic form C on LS(R”) is seid to be 0,-RP iff

C{x,¥) = C{rx,ry) , for all =x,v¥ in ﬂ+ s and

(0£,Cf) >0 , for all F € Su . (A.T)
.‘.
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Eﬂleu.

1. Clearly C = {-\.ﬁ.—lt]-l is ﬂl* - QP .

2. Let d = diec(0,,0) . By (A.5) , d >0 . Define C'(x-y) by

integral kernel of {—bﬂ‘.]_l if  |x-vy| 2d

C'(x-y) = (A.8)
glx=y) , if |x=y| <4,

for an arbitrary function g -
Then C' is ﬂ+-lt£" . The proof is :

(0f,C'f) = (8f£,Cf) , for all £ € Sﬂ "

+

because C'(x-y) = C(x-y) when |[x-y| > d , and

dist(supp £ , supp Of) = disc(0,,0) =4,

3. Let C = {—ME}-I s where A is the finite difference Laplacean on
II{EUI , and let ﬂ'“ be an arbitrary subset of sites in z" of

distance <(Lf2) to O . Then C is ﬂ’ - RP .

[A general way of constructing Iﬂ+ - RP C's can be inferred from

[14]]

We now recall the defimitiom (Z2.25), (2.26) of the (Dg) ensemble :
We choose F of the form

108 _4)(x)

Flg,) = [di(q) e 1 £ F (A.9)

0 b

X

see (A.6).

For &q as in (2.24), (A.9) holds if
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BUpp dlE'ﬂu , e.g. supp di € {q:]|q] :%] p (A.10)

In accordance with (2.24), (2.253) and Proposition A.l we define

8 0, 18 #) (rx)
q

Ble - @ ; (A.11}
vhere, for q = tqn.ql*...qurl] .
Ry = (9% heeeamg” ) (A.12)
Moreover
EEq]I = qu (A.13)

That this definition of the reflection of dipole moments is the right one cam

be understood by viewing a dipole as two oppositely charged monopoles and then

applying (A.4) .

ﬂnnnﬂpnlu Edipﬂla
1] =
%
| S0
. .

1 Ly L Ly (fig.1)
Fx rq

b rx Q\E

We now suppose that

di({q) = di(Rq) (A.14)

which is again some sort of neutralicty condition. Assuming (A.9), (A.1l) and

(A.14) we find
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{HFII+H} - Ft#rni v (A.15)
for all x E t+ .
Using Proposition A.l and (A.15) we conclude

Corollary A.4.

Assume (A.9), (A.11) and (A.l4). Suppose that A =~ rA is reflection=-

invariant. Then for all A E Fﬂ
*

<BA 4>, (BiF) 20 .

We note that Corollary A.4 remains true for the (Dn h c ) and the
(D hc) ensembles with L=z , 0, = L, , and (8.9 (x) = (x+a)=e(x) ,
where q is an arbitrary lactice unit vector, and dA obeys (A.14. The
proof follows from the fact that explz cos(¢-¢')] , resp. l+z cos(é-¢") ,
£ * 0, are obviously the integral kernels of positive quadratic forms (the
Fourier transforms of exp z cos ¢ and l+z cos ¢ are non-negative) , by

the arguments used in [ 148].

Hext, lec A be a function of q, vhere

q, = qu € supp d*}xEL . (A.16)
4
We define
(BA) (q_) = Afdq_ ) (A 17)

Mimicking the arguments used to prove Corollary A.3 - mutatis mutandis - and

(A.13), (A.17) we get
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Corollary A.5.

Under the hypotheses of Corollary A.4,
<BA'A>, (B;F) 20,
for arbitrary functions A only depending on q, -

Further discussion and important applicatioms of Corollary A.5

(infrared bounds and existence of phase transitions) can be found in §7.



= B,] =

Appendix B : Complex translations and electrostatics

Let I be a connected, bounded regiom in #Z  and p some charge

dengity inside I such that
dist{supp o , 9E) > O
Let ﬂpi:l = EC(x=-y)p(y) (B1)

Hotice that EP ig linear in p .

We now look for a charge density o E up on #F with the property

that

':p‘:“]' =c_ (x) , for x €L U ¥ (B2)

with 3f the boundary and Ec the complement of £ . If {(B2) holds then, by

linearity,

- - - c
-:p{:]l cﬂl[:l {:”{x} 0, for x€ 3z U E* . (B3)

Moreover,

lf-nﬂp_ul'fﬂ = o{x) , for x £ af , (B4&)

gince o(x) =0 , for x € 3L .

Thus Ede is the potential created by p with O-Dirichlet data

ar 3L, i.e.

H ‘ﬂ'(“} E En{lﬂ = I ED{I,}‘} ely) {B5)
b p yEL

where C° is the Green's function of -4 with O-Dirichlet data at 3L . By
applying the Laplacean with free boundary conditions to both sides of this

equation we find
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= - - - D
{ AEFEH:&] —o(x) = ( ac )(x) , x € 3 ,

i.e a(x) = {e.-:];jm , for xEIE . (B6)

Hext, notice that
cn{u} > 0 if » 0 (B
o e ' Pz W

because Enihﬂ' >0 and ply) >z 0 . Moreover Entu} =0 for x € 3L U £°

Thus

D D,.
afx) = (ac ) (x) = L c(j)zo0. (B8)
5" il

By the lattice version of Gauss' theorem,

Eo(x) = E agi(x)= I pofx) . (B9)
xEE HEJE xEE

Thus, combining (B.8) and (B.9) and using linearity, i.e.

= L RRAE (B1D)
”lh"‘pr, lul':"I EF':'ﬂx
we find
E lotxd]| £ £ L |o i (x|
xEIE x€3E  yer Pl
(B11)
. Elet]| .
YEL

Rext, we compute electrostatic Em!r;ieu. We sat
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1/2 L p{x)C(x=y)p(y)

¥

= 1/2 L :(!}['.‘F{r.}

= 1/2 T (-8¢ ) (x)C (x) (812)

1/2 £ (WO fr:}
X

For the purpose of renormalizing the activity of small dipoles we wish to

compute Ep - Eu » Using (Bl2) and summation by parts we find

r.p-r.ﬂ = 1/2 EW(C ;r:ﬁ}[!}ﬂﬂ p—ﬂﬂ}h}
= 1/2 E{ p(x)*a(x))C _(x) (B13)

=g

= 1/2 I:{u}cﬁix} '

and we have used (Bl) and (B3} . Thus

m
i
m
W

> E - 1/2 £ |z plx)Clx=y) | |o(¥)|
¥ x (E14)

1

B - mAX 1!2':.:{1:}{:[!—?}“ E | elz)]) ,
I’EH zEL

which follows from (B11).

We now show how these considerations can be applied to remormalize the

fugacity of isolated dipoles. We note that, for arbitrary p ,

: -gE
1:-:1*'":'}:-“ =g F . so that

RN 1/2 max |E pmc{rﬂl-:z M:}I:

=RE
————{——-(—)—Etni""- YEIL x
gitlar, =

® BC {B15)
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Let mow p be the charge density of an isolated dipole moment r located at

the origin of ?Ez .
ply) = &(y) = &(y-r) {B16)

Choose for I e.g. a spherical region centered at the point % of =mean

radius |r|] . Then

(i) B == C00) w 5= log| |
(ii) | px)]| = 2, and

(iii) max |Lp(x)Cix-y)| < K,
yEa L

for some constant K independent of |r| . Thus

tei*{ﬂ}

[
E =E -{E/n)1 [ (B17)
expgl 2 u] - —.7—L.:\‘}1‘|I “}aﬂc < expl=(8/2n)log|r| + gK]

By construction, see (B2}, Gp{x} - Eﬂ{n} . for x € AL U EE . Moreover, the
dipole is isolated, in the sense that there is no other dipole inside I .

Therefore we may replace

1+z :u-{ﬁrij{nj E l+z cos¥(P)

by 1+z cos §(o) , with o supported on b
3, o =0, I |o(w)] <2, and ' (B18)
®EJIE ¥EAL

t g = oxp[~(g/2w)log|r|+gK]

We have thus found a purely electrostatic substitute for the technigue used to

prove Lemma 5.3 ,5.4
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