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Introduction 

Beginning with the work of Berezinski [ 1 ] and Kosterlitz and Thouless 

[2 ], there have appeared numerous papers discussing the low temperature behavior 

of the plane rotator and the Coulomb gas in two dimensions. There is a close 

connection between the rotator and the Coulomb gas made precise by Villain [3]. 

Roughly speaking,vortex configurations of the rotator correspond to charges in 

the Coulomb gas. (See §§ 2,3 for a review). At high temperature the rotator always has 

exponential clustering and the Coulomb gas exhibits Debye screening [4], In 

the case of the two dimensional rotator, the Mermin-Wagner theorem forbids a 

spontaneous magnetization, nevertheless there is presumed to be a temperature 

below which correlations have only a power fall off. For the Coulomb gas at 

low temperature and low activity one expects that there is a phase without scree-

ning. However, there is little that is rigorously known about either of these 

two dimensional models at low temperature. 

In two dimensions the Coulomb potential is logarithmic, ~ (2T)- 1log|x | . 

The long range nature of this potential has the important consequence that it 

makes the Coulomb gas "locally" neutral in the following sense : If the distance 

between a plus charge and the nearest negative charge is r , then the contribu-

tion of such a configuration to the partition function is exp-(B/2T) log r . 

Moreover, there is a contribution from the entropy which is ~ r3 . (One factor 

of r2 comes from choosing the position of the first charge and a factor of r 

comes from choosing the position of the second charge). If B > 8π note that 

f
 e
-(B/2T)log rr3dr < oo 

hence the total contributions of long dipoles is suppressed. (See § 5). Thus a 

natural starting point for the study of the two dimensional Coulomb gas for 

large B and small fugacity is the study of dipole gases. 
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This article is primarily devoted to a detailed analysis of dipole 

gases in two and three dimensions. For dipoles of fixed length and with a hard 

core we show that there is no screening, provided that the fugacity is small. 

More precisely, we show that the charge correlations and the infinitesimal dipole 

correlations have a power law decay. In two dimensions we consider dipole gases 

in which the dipoles are allowed to assume a finite number of arbitrary lengths. 

The fractional charge correlation is shown to have a power law decay. 

In three or more dimensions we establish the existence of an ordered 

phase for large fugacity, provided the dipole potential has short range. 

This means that the dipole correlation has a long range order. The 

model we analyse for this case allows dipoles to have a continuous orientation, 

but the centers of the dipoles lie on a fixed lattice. If the orientation of 

the dipoles are constrained to be discrete we show that, for general dipole potentials, 

there is a crystalline phase in two dimensions, as well. The proof of this 

is based on a Peierls argument of the sort used in [5,6] to prove 

existence of a crystalline state in the two-dimensional hard core Coulomb mono-

pole gas at low temperatures and large activities. 

A key ingredient in the proof of our results is the sine-Gordon transfor-

mation. Let us consider a simple example, namely the lattice Coulomb gas with 

hard core. Let duBC be the Gaussian measure with covariance B C , 

C(x,y) = (-Δ)-1(x,y) , 

and define 

The transformation for the partition function in a box Λ is 
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The sum Σ' ranges over x
i

 # xi . 

Similarly the partition function of the lattice dipole gas with discrete 

orientation is given by 

(1.1) 

Here L
O
 is the lattice 4l Zv and l denotes the length of the dipoles. We 

use this representation together with Mermin-Wagner [7,8] type methods to establish 

upper bounds on fractional charge correlations and lower bounds on φ correla-

tions in momentum space. However if z is not small notice that the resulting 

measure in φ space is not positive and our estimates break down when applied 

to (1.1). For this reason, in two dimensions it is helpful to go to a modified 

representation in which (1.1) is replaced by 

(1.2) 

with 

|—< const| |z| -B log l/2T 

and δφ is defined in §5. The identity between (1.1) and (1.2) is obtained by using 

a mixture of the φ- and charge (q-) representations. Since φ and q are dual 

variables, our analysis can be thought of as a phase space analysis in function 

space. 
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Let us consider the fractional charge correlation, 

i α(φ(0)-φ(x)) 
Φ 

(1.3) 

in some more detail. We shall show in two dimensions that, for both the Coulomb 

and dipole expectations, (1.3) is bounded below by |x|- α-B/ 2T for all activities 

z >_ 0 . This bound is a consequence of Jensen’s inequality. Of course for small 

B we know that the truncated correlation in the Coulomb gas clusters exponential 

ly [4] . This means that the truncation must be non trivial, i.e. 

< e
ίαφ(0)

> # 0 . 

Thus < eίαφ (O)> should be regarded as an order parameter for the Coulomb or 

sine-Gordon models, and we shall see that the role of boundary conditions is 

crucial. Our aim is to show that if B is large < eίαφ(0) - Φ(χ))> goes to 

zero for large x . Thus far we have only succeeded in proving this for dipole 

systems, but we believe that our technique will enable us to eventually extend 

the result to the Coulomb case. The technique is to expand the Coulomb gas in 

terms of gases of neutral multipoles by means of some sort of "block spin" 

transformations. It is important to note that by the above arguments we have 

reduced the proof of existence of such a phase transition to proving an upper 

bound on a correlation function, as opposed to the more difficult proofs of lower 

bounds. Moreover, the fractional charge correlation is extremely useful in the 

analysis of the Coulomb gas in two dimensions, because it really looks like a 

charge-charge correlation in a sea of dipoles. An integral charge 

in a Coulomb gas would tend to pair with an opposite charge and thus the corre-

lation would behave like a dipole-dipole correlation in a sea of dipoles which 

requires a much more subtle analysis. 
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We conclude this introduction with a short summary of the different 

sections of this paper : Our main new results are in §§ 4,5 and 7, but see also 

§6. 

In §2 we review the sine-Gordon (or Siegert) transformation, i.e. the 

passage from the q- to the φ-representation, in a form convenient for our 

purposes. We also recall integration by parts on function space, in the φ-re-

presentation, which is important for later sections. Another piece of abstract 

formalism, Reflection Positivity (in the φ- and q-representations), is reviewed 

in Appendix A. It is applied to establish an analogue of superstability estimates 

(the chessboard estimates) for classical Coulomb systems and infrared bounds 

used to prove the existence of phase transitions with order parameter, (see 

§§4 and 7). 

In §3 we review the main rigorous results on the two-dimensional 

rotator - and Villain models (Theorems 3.1 - 3.5) and describe the Kosterlitz-

Thouless transition (Conjectures 3.2, 3.2V). For comparison, some rigorous, 

partly new results on general N-vector models, N > 2 , are quoted ((3.18 -

(3.19)). The duality (Fourier) transformation of the rotator - and Villain model 

is recalled (Theorem 3.6), and the isomorphism between Villain model and Coulomb 

gas is described. That Coulomb gas is shown to be a limiting ensemble of a 

family of Coulomb gas ensembles labelled by an activity, z , as z -> oo (§3.3, 

Theorem 3.8). 

In §4, classical Coulomb gases in different ensembles are studied in 

some detail. In §4.1, the screening properties, the inverse correlation length 

(mass), convexity - and decay properties of the charge two-point correlation 

and the phase diagram (existence of ordered states) of those Coulomb gases are 

discussed. The main results are summarized in Theorems 4.1 - 4.5. In §4.2, 

we specialize to the two-dimensional Coulomb gas. We give several different 
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characterizations of the Kosterlitz-Thouless transition and discuss its rela-

tion to the roughening transition. This complements the discussion of that 

transition for the rotator - and Villain model in §3.1, 3.2. 

In §5 we study the behaviour of the fractional charge correlation 

and the expectation value of the disorder parameter in several different two-

dimensional dipole gases, in particular in a gas of dipoles of various lengths 

that mimicks the two-dimensional hard core Coulomb gas at low density (z small) 

and low temperature. We prove upper, resp. lower bounds with power law decay. 

A method for renormalizing the dipole activities, based on estimating dipole 

self-energies and replacing dipoles by neutral multipoles of larger size, is 

developed, and its working demonstrated. That method combined with complex 

translations of the φ-variables in the functional integral expressing the 

fractional charge correlation in the φ-representation yields our main decay 

estimates on that correlation. In Appendix B an alternate (purely electrostatic) 

method for renormalizing the activities of neutral dipoles is sketched. The 

emphasis in §5 is placed on concepts and analytical tools rather than on opti-

mal results. We believe that the techniques of §5 will eventually permit us 

to prove convergence of an expansion of the two-dimensional Coulomb gas in 

terms of neutral multipole configurations, at low density and low temperature, 

designed to imply the existence of the Kosterlitz-Thouless transition. But 

the required combinatorial and refined electrostatic estimates are still missing. 

In §6 we establish absence of screening in general dipole gases, in 

the unordered phase (Theorem 6.1, Applications 1,2). Our main tool is a gene-

ralized version of the Mermin - resp. Goldstone theorem (Theorem 6.3). The 

basic reason why the "Goldstone theorem" applies and there is no screening 

lies in the fact that dipole gases have a spontaneously broken, continuous 

symmetry, φ -> φ + const., manifest in the φ-representation. We also use our 

version of Mermin's theorem to prove mean field lower bounds on the magnetization 
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in continuous spin lattice systems (§6, Application 4). 

In §7 we study a general class of lattice dipole potentials, estimate 

Madelung constants, i.e. energies of periodic dipole configurations, analyze 

the groundstate configurations and prove infrared bounds on the truncated 

dipole-dipole correlation in momentum space. All this serves to establish the 

existence of phase transitions with order parameter and of ordered states 

(oppositely oriented, infinite chains of aligned dipoles) at high density and 

low temperature, for various classes of hard core dipole gases. Depending on 

dimension and dipole ensemble we use the infrared bound method (v > 3 , short 

range dipole potentials, orientation of dipoles continuous) or the Peierls -

chessboard method (v > 2 , long range dipole potentials, dipole orientation 

discrete). The material in §7 is rather intricate, and we recommend that, in 

a first reading, only the main definitions and results be studied. 
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§2. The sine-Gordon or Siegert transformation [9,10] : Fourier transformation 

in the charge variables. 

In this § we review a well-known formulation of the statistical mecha-

nics of classical gases of particles interacting through two-body potentials of 

positive type in terms of Gaussian integrals : Via functional Fourier transfor-

mation the charges of classical particles are traded for conjugate variables. 

This formalism has proven to be very useful; see e.g. [ 4,10,11]. It is a basic 

tool of the present paper, as well (permitting localization in "phase space"). 

We then recall correlation inequalities of [11] , and integration by parts on 

function space [12] , and we give a preview of applications. In an appendix to 

§2 (Appendix A) we review reflection positivity [13,6]. 

2.1 Functional integrals and statistical mechanics, inequalities. 

Let C be the configuration space of one classical extended or point 

particle. In this paper C will usually be a lattice, L , in particular 

C = ZV , but for later purposes (see e.g. § § 6 and 7) we admit the possibility 

that C = RV . Points in C are denoted x,y,..., and dx is the counting 

measure on L if C = L , resp. Lebesgue measure on Rv if C = Rv 

Let L C C be some lattice and let {Δx } E L be a cover of C by 

disjoint hypercubes (squares for v = 2 , cubes for v = 3,...) with sides 

parallel to the axes of L and centered at the sites of L . The possible posi-

tions of one classical particle are identified with the sites of L . 

Let Q
O
 be some measurable space of distributions, P

O
 , with support 

inside Δ . Let d λ be some measure on QO . Given a distribution pO € QO , 

we define pX by 
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p
x
(y) = P

O
(y-x) (2.1) 

Clearly supp px C Δ .We define to be the space of all distributions ρ
χ 

obeying (2.1) for some p
O
 € Q

O
 , and 

dλx (px ) Ξ dλ(px ) = dλ(po ) x U 
(2.2) 

A distribution px € Qx is interpreted as the charge distribution of a classi-

cal particle located at x . The measure dλ
x
 assigns an a priori weight to 

each charge distribution. 

Next, let C(x,y) be the kernel of a positive (semi-)definite quadratic 

2 
form, C , on L2 (C,dx) . We assume throughout this paper that 

C(x,y) is real-valued and continuous in x and y . (2.3) 

2 
Let Q(C) C L2 (C,dx) denote the quadratic form domain of C , and 

H
 BC

 the closure of Q(C) in the scalar product 

(2.4) 

f, g in Q(C) . 

Subsequently, B is interpreted as the inverse temperature, and C(x,y) 

is the potential between two point particles of charge 1, located at x resp. y. 

Let φ = φ(χ) be the Gaussian process with mean 0 and covariance BC 

indexed by H
BC

 . The distribution of φ is the Gaussian measure 
BC 

du (φ) = 

with mean 0 and covariance BC . 

The expectation in du is denoted <-> . By definition 
BC 
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<O(f)>BC = 0 , <Φ(f) Φ (g) >βC - <f,g>BC , (2.5) 

where O (f) = f O(x)f(x)dx , and f is a test function (e.g. Schwartz space 

function) on C . By power series expansion one finds, using (2.5), 

= exp[-l/2<f,f>BC] (2.6) 

Wick ordering is defined by 

. ίφ (f ). = ίφ(f) <
e
iφ(f)

>
-l (2.7) 

We now suppose that p H , for all p E Q and all x £ L . 

Then equations (2.6), (2.7) make sense for f = Σ_ρ , p E Q , p =0 except 

for finitely many x . From those equations follows 

Lemma 2.1. 

(2.8) 

(2.9) 

We notice that the r.s. of (2.8) is the Gibbs factor of n classical 

particles located at points χ1,.,.,χn in L with charge distributions 

p ,.,.,ρx , interacting through two-body forces with potential C(x,y) . In 

(2.8) the self-energies of these particles are included, in (2.9) they are 

omitted. 

Next, we define functions 

(2.10) 
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of the Gaussian process φ . 

Note that ί(φ
x
 ) is localized in the hypercube Δx (i.e. if Φ(.) 

and φ'(·) are two samples in the support of duBC with φ(y) = Φ'(y) , for 

y E Δx , then F(φ
x
 ) = F(φ

 x
')) . Moreover F(φ

x
 ) is obtained from 

F(φ) = f dA(po )e by the substitution φ(y) -> φ
x
 (y) = φ(y-x) . This 

follows from (2.1), (2.2). We set 

where A is a finite subset of L , and introduce the measure 

<F
A
>
g
C

1
 ’ 

(2.11) 

Expectation in this measure is denoted <-> (B;F) · 

Lemma 2.2 

Let Λ be a bounded region in L . Then 

(2.12 ) 

(2.13) 

Clearly, EΛ (B; F)(B; F) F) is the partition function, and the 

correlation functions of a system of classical particles in the region A with 
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charge distributions ρ
χ
 € Q

x
 and interaction potential C(x,y) , at inverse 

temperature β . The expectation <->
Λ
 (B; F)(B;F) is the equilibrium expectation. 

Lemma 2.2 is a direct consequence of Lemma 2.1; see also [9,10]. 

Next, suppose that A(p) is a function on We define 

(2.14) 

and (2.14) follows from Lemma 2.1 and Fubini’s theorem, (provided dλ is a 

finite measure). The expectation 

<pxpy>A(B;F) , (i.e. A(p) = pxpy) , 

is called charge two-point correlation. 

Next, we consider the case where 

dλ(ρ
χ
) = dλ(-p

x
) ; (2.15) 

(2.15) is a neutrality condition expressing charge conjugation invariance. 

Lemma 2.3. 

Assume that dλ satisfy the neutrality condition (2.15). Then 

for arbitrary A 
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Proof : 

By Lemma 2.2, (2.14) and Jensen's inequality, 

By (2.14) and (2.15), 

for all i = 1,..., n . 

Finally 

Next, we consider two special ensembles. We suppose that dλ is a 

probability measure, and z is a positive number. 

(Gnhc) We set 

F(O
x
 ) = exp[z f dλ(px )cos φ(ρx )] (I) 

(general no-hard-core ensemble), (2.16) 

(Ghc) F(o
x
 ) = 1+z f dλ(px )cos φ(ρx ) (II) 

(general hard core ensemble). 

Since cos φ(ρ) = cos φ(-ρ) , these ensembles are automatically charge 

conjugation invariant. The interest in the (Gnhc) ensemble is motivated by 
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Theorem 2.4. 

In the (Gnhc) ensemble (2.16),(I) is monotone 

increasing in z and A and decreasing in BC ; <|φ(f)|2 >
A
(B,z) is decreasing 

in z and A and increasing in BC . 

Remark. 

As explained in [11], Theorem 2.4 serves to construct the thermodyna-

mic limit, A / L , and to derive monotonicity properties of critical tempera-

tures, susceptibilities, etc. in z and C . 

It is shown in [11] that under suitable assumptions on , dλ 

and C , the (Gnhc) ensemble has a continuum limit, L -> Rv 

For a somewhat different treatment of the sine-Gordon transformation 

and complete proofs see [11] 

2.2 Monopole - and dipole gases. 

In this section we specialize to monopole - and dipole gases. 

(M) For monopoles, 

Q
Y
 = { d

x
 (y) : q E R} , 

with δx (y) = 

δ if C = L 

δ(x-y) if C = RV 

(2.17) 

The measure dλ on Q is induced by a measure on the real line which we also 

denote by dλ . A typical example for dλ is 

(2.18) 
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where (cm } is a bounded sequence of non-negative numbers. 

We distinguish three different ensembles : 

(Mnhc) , the grand canonical ensemble for monopoles without hard cores obtained 

from (2.11) and equ. (2.16),(I) by setting 

F(Φχ)
 = exp[z cos φ(χ)] , (2.19) 

i.e. dλ(px ) assigns weight 0 to all distributions p £ Q , except 

Ρ
χ
 = . The equilibrium expectation <->^(3;F) is now denoted <->^(3,z) . 

By Theorem 2.4, <->^(3,z) has a thermodynamic limit, <->(B,z) . The parameter 

z is interpreted as the activity of a monopole. The continuum limit of the 

(Mnhc) ensemble is discussed in [10,11] 

(Mhc) , the grand canonical ensemble for monopoles with hard cores obtained 

from (2.11) and (2.16),(II) by setting 

F(φχ) = 1+z cos φ(χ) . (2.20) 

The equilibrium expectation is denoted by <->
hc

(3,z) . Each site x E can 

be occupied by at most one monopole of charge ±1 and activity z . 

(Mg) , a general equilibrium ensemble for monopoles obtained from (2.11) by 

setting 

F(ox) = / dX(q)elq*W . (2.21) 

The (Mhc) and (Mg) ensembles generally do not have a well-defined 

continuum limit, and their phase diagrams are more complicated than the one 

of the (Mnhc) ensemble. The phase diagram of the (Mhc) ensemble has the following 

features : (i) For small g, z not too large,and C the Coulomb potential, 

the equilibrium expectation is unique, and there is exponential Debye screening 

[4 ] . 
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(ii) For some class of (RP) translation-invariant potentials C , 

z = 0(ep v ') and B large, one encounters the formation of a ladder crystal 

as shown in [6]; see also §4. (iii) It is expected that in two dimensions, 

with C the Coulomb potential, there is a dilute, translation-invariant low-

temperature phase where screening breaks down (formation of dipoles), for B 

large and z = 0(1) . This phase is characterized in § § 3 and 4. We hope to prove 

its existence predicted in [1 ,2] in a future paper. 

The phase diagram of the (Mnhc) ensemble is simpler in so far as 

(ii) is absent. The (Mg) ensemble interpolates between (Mhc) and (Mnhc). 

In the study of (iii) dipole gases play an important role. 

We define analogous ensembles for the dipole gases. 

(D) For dipoles, 

<4 = 

q(δ -6 ) , r € Δ c C, q £ I , or 

[ (q-3) , q €]RV , if C = IRV , 

(2.22) 

where in the second case 

(2.23) 

and it is assumed then that. (Δ
χ
C) (x,y) is continuous in x and y . 

The measure dX on is induced by, respectively, a measure 

dA(q,r) on IR x , a measure dA(q) on IRV , e.g. dA(q) = 6(|q|2—1)dVq . 

We set 

(S
r

<J>) (x) = φ(x+r) —φ (x) . (2.24) 

The (Dnhc)- and (Dhc) grand canonical ensembles are then defined as in 
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(2.16),(I), (II), in perfect analogy to the (Mnhc) and (Mhc) ensembles. 

An example for a (Dg) ensemble is 

(2.25) 

(2.26) 

see (2.11) and Lemma 2.2. 

The phase diagrams of dipole gases are somewhat simpler than the one 

of monopole gases : If C is the Coulomb potential the dipole gases have no 

phase with Debye screening, a new result which we prove in §§5,6 by using the 

φ-representation (sine-Gordon transformation) to exhibit a spontaneously broken, 

continuous symmetry : φ -+ φ+const.. The (Dhc) and (Dg) ensembles have gene-

rally an interesting low temperature phase : For large density, z = CKe^^^iO) ) , 

and B >> 1 , an ordered (crystalline) equilibrium state appears, for general 

distributions dA(q) on IRV , including rotation-invariant ones (v > 3) ; 

(when v = 2 , dA must be assumed to be discrete). This result is proven 

in §7 . 

2.3. Integration by parts formula 

In this section we recall a standard integration by parts formula [13]. 

Let φ be the Gaussian process determined by 

<φ(χ)>^€
 = 0 , <φ(x)φ (y)>

Bc

 = BC(x,y) . 

Let F be some measurable function of φ(·) . Then 

(2.27) 
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and consequently 

<ϕ(x)ϕ(y)F>
BC

 = βC(x,y) <F>βC 

(2.28) 

The proof of (2.27) and (2.28) is standard : One approximates the Gaussian 

functional integral by a finite dimensional Gaussian integral for which (2.27) 

and (2.28) are the standard integration by parts formulas. For details see 

e.g. [12]. 

Next, let F = F^ be the multiplicative functional (2.21) defining 

the monopole ensemble (Mg) .Then equation (2.28) gives 

<cf>(x)<j>(y)>
A
(B;F) = <F

a>

’J <<f>(x)<Ky)F
A
>^

c 

= BC(x,y) - β
2 JJ C(x,z)C(y,z') 

(2.29) 

= C(x,y) - β
2
 ∫∫ C(x,z)C(y,z’) <qz

qz
,> ̂  (β;F)dzdz' 

and we have used (2.21) and (2.14). 

Here <q q ,> (β;F) is the usual charge-charge correlation (two-point) 
Z Z iV 

function. 

By smearing out both sides of (2.29) we get 

<|ϕ(f)|
2

>Λ(B;F) = B(f,Cf) - β
2
<|(C*q)(f)|

2

>Λ(B;F) , 

in particular, 
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<[φ(£)|
2
>Λ(β;F) < 6(f,Cf) . 

Moreover, we conclude from (2.29) that 

<|(C*q)(f)|
2>Λ (B;F)< β_1(f,Cf) , (2.30) 

provided < |ϕ(f ) |2 >Λ (β;F) > 0 for which it suffices that F(ϕ ) >. 0 , (e.g. 
Λ 

0 <_ z 1 in the (Mhc) ensemble) . 

If C and <->^(β;F) are translation-invariant (e.g. <->Λ=L(β;F) a 

translation-invariant thermodynamic limit, or periodic boundary conditions at 

3Λ) then we obtain from (2.30) by Fourier transformation 

<q(k)q(-k)>
A
(g,F) < (gC(k))

_1 

(2.31) 

We now specialize to the (Mnhc) and (Mhc) ensembles. Let 

Vz(u) -

<cos ϕ(u)>Λ(β,z) , for (Mnhc) 

and 

S (x) = 

sin φ(χ) , for (Mnhc) 

Then 

<ϕ(x)ϕ(y)>(β, z) = βC(x,y)-β
2z ∫du C(x,u)C(y,u)Kβ,

z
(u) 

+β
2
Z
2
 ∫∫du du'C(x,u)C(y,u

,
)<S(u)S(u’)

>
Λ(β,z) , (2.32) 

= βC(x,y)-β
2
<(C*q)(x)(C*q)(y)>Λ(β,z), 
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i.e. in the translation-invariant case 

<|s(k) |
2
>
Λ
(β,z) = 1/z-Kb,z (0) -(1/z

2
)<|q(k)|

2
>
A
(B,z) , (2.33) 

and 

<|ϕ(f)|2>.(B,z) > B(f,Cf) - β
2zΚ (0)(f,C2f) . 

Λ " P, Z 
(2.34) 

Equs. (2.32) and (2.33) are useful in the discussion of Debye screening (sum 

rules and upper bound on physical mass) and of absence of long and short range 

order in <q q >(3,z) . See Section 4.1. 
x y 

Of course, the same identities can be applied to dipole gases : For 

the (Dg) ensemble on a lattice L one finds in the translation-invariant 

case 

<(3φ)°(χ) ΟΦ) (y)>(3;F) = 3(-AC)(x-y) 

(2.35) 

with Wij(x) = (9i9jΔC*C)(x) the dipole potential. The second term on the r.s. 

of (2.35) is positive-definite. When are finite difference derivatives, 

and C is the Green’s function of the finite difference Laplacean this yields 

<(9ϕ)(x)(9ϕ)(y)>(B,F) = βδ 
xy 

where Wij(z-y) is the usual lattice dipole potential. 

As in the (M) ensembles one may finally apply integration by parts 

on function space in order to prove an identity analogous to (2.32) which yields 

an inequality analogous to (2.34), namely 
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(2.36) 

where, in the translation-invariant case, 

K(r;β, z) 

<cos(δr ϕ)(0)> (β, z) , for (Dn h c) 
r 

Inequality (2.36) together with obvious bounds on K(r;β,z) provide 

an easy proof of the absence of screening in dipole gases for β < 0(l/z) : 

By a chessboard estimate [14] one can show that 

for some positive constants c1, c2 , and 0 < z < 1 in the (Dhc) 

case. This combined with (2.36) yields absence of screening for β < const. 1/z 

and for β sufficiently large, depending on z . In §§ 5,6 we device much stron-

ger methods which prove absence of screening for all β and z and yield more 

explicit information. 

Finally, we wish to draw attention to the following upper bound on the 

dipole—dipole correlation which follows from a somewhat different form of the 

sine-Gordon transformation, used e.g. in [11], by means of integration by parts: 

Suppose that F(ϕ) > 0 (i.e. z < 1 in the (Dhc) ensemble). Then 

<q(f)q(f)>Λ(β;F) < β
 -1

(f,W-
1
f) , (2.37) 

V ot cx 
where q(f) = Σ Σ q.f (j) , and W is the dipole-dipole potential. 

jЄA a=l j 

For other application of integration by parts see §4. In Appendix A 

we review the concept of reflection positivity which plays a basic role 

in §§ 3,4 and 7. That appendix may be skipped in a first reading. 
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§3. Connections between the classical rotator (XY) model, the Villain model 

and Coulomb gases. 

3.1. The classical XY model : a review 

The rotator - or classical XY model is the following classical lattice 

spin system : 

We choose L =V , v = 2,3(4,...) . To each site x € L we assign a 

two-component unit vector, ^ , interpreted as a "classical spin" , 
x 

t = (s1,s2) = (cos Θ , sin θ ) , θ Є [0,2π] 
x x x x x * x * 

(3.1) 

Clearly 

(3.2) 

····· » 

The a priori distribution of is the uniform measure on the circle, i.e. 

dθ /2π . The classical Hamilton function of the system constrained to a bounded 

region A  L is defined by 

where xy are nearest neighbors, and h is an external magnetic field. 

The equilibrium state at inverse temperature β is given by the 

measure 

(3.4) 

where ZΛ(β,h) is the partition function chosen such that the measure (3.4) 

is a probability measure. 
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XY 
The expectation in this measure is denoted <->Λ (B,h) , and 

XY XY 
<->

Λ
 (β) = <->Λ(β,h=0) . 

For a large class of boundary conditions (e.g. free, periodic,...) 

the thermodynamic limit 

exists for arbitrary A  L and arbitrary {a = 1,2} . For h ≠ 0 , 
X XЄA 

XY 
<-> (β,h) is the unique translation-invariant equilibrium state of the rotator 

1 XY XY 
model [17]; moreover, for all β for which lim <S > (β,h) = 0 , <-> (β) 

h+o 
is the unique translation-invariant equilibrium state [18] . Thus, for β = 2 , 

XY 
<-> (β) is unique for all β < 00 , by Mermin’s theorem [8] . 

Let (3.5) 

where e is a unit lattice vector in V , and let 

(3.6) 

Here 

<So ;Sx >XY(β,h) = <So .Sx >XY(β,h) - |<S >
XY

(β,h)|2 , 
U A OX o 

(3.7) 

m(3,h) is the inverse correlation length (= mass) and χ(β,h) the susceptibility 

If m(β,h) > 0 then χ(β,h) < oo 

The following results are well known : 

(i) For real h ≠ 0 m(β,h) > 0 , and m(β,h) = 0(h) if m(β) = m(β,h = 0) = 0 

Moreover m(β,h) and m(β) are decreasing in β . Therefore, defining βc by 

βc = inf{β : m(β) = 0} , (3.7) 

we have that m(3) = 0 , for all β > βc . (3.8) 
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(One sees by a standard high temperature expansion that 3 > Ο , for all 
—c 

dimensions v ) . For proofs see [19] 

(ii) For v > 3 there exists 3 < 00 such that for 3 > 3 
= c c 

(3.9) 

i.e. there exists a phase transition with order parameter at 3 =3 , and for 
c 

3 > β
c
 there is at least a full circle of pure phases and there exists a Gold-

stone excitation. If 

<?
ο
,?
χ

>ΧΥ
(β) « |x|

 2+η)
 , as |x| °° , 

then 

η  0 (3.10) 

For 3 > 3C » m(β) = 0 and χ(3) = °° . (3.11) 

Finally, 

3 > 3 . 
C = —c 

(3.12) 

These results are proven in [20 ] . (For v = 2 , βc = 00 > by Mermin’s theorem). 

(iii) As noted in [21 ] , the Lebowitz inequalities 

(3.13) 

and the inequalities 

(3.14) 

(proven in [22,23] ) together with Ginibre’s inequalities [24] permit one to extend 

a remarkable result for the Ising model due to Glimm and Jaffe [24] to the classi-

cal XY model : 
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Theorem 3.1 

For 3 > βc , m(β) = 0 ; 

For v > 3 , the expectation 

is clustering (i.e. extremal). 

Remarks. As pointed out by Glimm and Jaffe [25] (see also [26,27]) Theorem 3.1 

proves the existence of a critical point and of a critical XY model with 0 

mass, 00 susceptibility, but no long range order in v > 3 dimensions. Since 

(see (3.10)) satisfies 

(3.15) 

Simplifying somewhat one can say that,for h ≠ 0 or v > 3 , the qualitative under-

standing of the classical XY model is quite perfect. New rigorous results must 

therefore be looked for at h = 0 in v = 2 dimensions ; (v = 1 being trivial). 

Much of this paper has grown out of an attempt to prove the following 

Conjecture 3.2, (see [1,2,28]). 

For v = 2 , β < °° ; 

(so that m(β) = 0 for sufficiently large $ < °°) . 

This conjecture would imply that the two-dimensional XY-model has a 

phase transition without order parameter and an interval [βc,oo) of critical 

points. Although a complete proof of this conjecture has so far eluded our abilities 
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we hope that this paper uncovers some basic mechanisms (both physical and mathe-

matical) that should, in principle, almost suffice to prove it. Of course, Con-

jecture 3.2 is predicted by physical reasoning [1,2]and renormalization group 

calculations [28] . A complete proof might shed new light on that method. Next, 

we recall an important inequality proven in [29] . 

(iv) 

Theorem 3.3 . (Mc Bryan - Spencer upper bound) 

For arbitrary ε > 0 there exists a constant K < 00 such that the 
ε 

spin-spin correlation of the two-dimensional XY model satisfies 

Next, we state a lower bound for β 
—c 

Theorem 3.4. 

For the two-dimensional, classical XY model 

3 > 0,67 c (3.16) 

and m(3) > 0 , for all β < 0.67 . 

Remarks. 

1. The proof follows from an improved version of [30,31] and will be given elsewhere. 

We also remark that a straightforward combination of Theorems 3.1 and 3.3 yields 

3 > 1/2 π , i.e. ~ 1/4 of the lower bound (3.16). The mean field bound is 3 = 1/2, —c - —c 

2. The exact value of βc is conjectured to be « 1 , so that (3.16) is as 

accurate as can be expected from an expansion method; (our proof of Theorem 3.4 
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involves an expansion in the spirit of [30] ; see also [3 1] ). 

3. Consider the N-vector (N-component, classical spin) models, N = 1,2,3,..., 

-* N-1 
with Hamiltonian given by (3.3), and S Є S ; (N = 1 is the Ising - and 

N = 2 the classical XY model) . In [16 ] we have proven that for v = 2 

mN(B) <. exp -C
2
(β/N) , (3.18) 

for some positive constants
 c

1
,c

2 * Using methods of [30] we have been able to 

show that 

βc(N) >N/2v · (3.19) 

Based on approximate calculations it has been conjectured that βc(Ν) = 00

 » 

for v = 2 and N > 3 ; see [ 32] . There is no proof of this ! 

This concludes our list of rigorous results for the classical XY-model. 

As noted in [3] , it is useful to compare the 

two-dimensional XY-model with the two-dim. Villain model for which a proof of 

Conjecture 3.2 might be a little more accessible and which is isomorphic to a 

two-dim. lattice Coulomb gas. Recall that for the XY-model with h = 0 

(3.20) 

The Villain model is obtained by replacing r (θ) = εxρ[β cos Θ] in (3.20) and 
p 

(3.4) by 

(3.21) 

When necessary we distinguish the XY- and the Villain model by adding a super-

script "v" when considering the Villain model. 
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Note that v(θ-θ’) is (up to a constant factor) the integral kernel of 
p 

the operator exp[(1/23)Δ] , where Δ is the Laplacean on (= Laplacean 

on [0,2π] with periodic boundary conditions at 0 and 2π ). Thus, using 

the Trotter product formula, 

with θo = Θ and ΘΝ+1 = θ' ; see e.g. [33] 

One may therefore view the Villain model as a limit of rotator models 

in which each link xy c v is occupied by N classical, two-component spins 

interacting with their nearest neighbors. This implies that the Ginibre inequa-

lities [24] hold for the Villain model, as noted by Bellissard [34]. (There is 

an independent proof involving duality transformation; see Section 3.2). More-

over, the Lee-Yang theorem [35], the Lebowitz inequalities (3.13) and inequality 

(3.14) [22 ,23] clearly remain true, as well. Finally, the method of proof of 

Theorem 3.3 (McBryan-Spencer upper bound) can also be applied to the Villain 

model. (In fact, the proof [29] of Theorem 3.3 for the Villain model is simpler, 

and one can set ε = 0 , K = K in Theorem 3.3, as the reader easily checks. ε=ο 

See also §5). In conclusion, all results summarized for the two-dimensional, 

classical XY model, in particular (i) and (iii), extend to the two-dimensional 

Villain model. Among these we have 

Theorem 3.5. 

In the two-dimensional Villain model 

As in the XY model we make the 
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, ν 
Conjecture 3.2 . 

. . . . ν 
In the two-dimensional Villain model, βc <

 00 

Remark. Heuristic arguments based on comparing the dual (Fourier transformed) 

Villain model with the dual XY model (see Section 3.2) suggest that Conjecture 

3.2 implies Conjecture 3.2; see also [28] . We do not elaborate on this point, 

but emphasize that the machinery developed in this paper for approximate Villain 

models can also be applied to approximate XY models, so that the two conjectures 

ought to have closely related proofs. 

3.2. The dual XY- and Villain models. 

In this section we use Fourier transformation in the angles {θ } in 
x 

order to replace the XY - and Villain models in two dimensions by models of clas-

sical, one-component (Ising type) spins with values in the integers. This is the 

well-known Kramers-Wannier duality transformation. We only present results. For 

proofs see [3 ,28]. 

Λ 2 
Let rβ(n) > ν (n) = c

β
 exp[-(1/2 β)n2 ] · denote the Fourier coefficients 

of the functions rβ (θ) , νβ (θ) , respectively. 
p p 

In two dimensions, define equilibrium expectations of the dual XY - and 

the dual Villain model in a finite volume A (with 0 boundary conditions) by the 

following measures 

(3.22) 

(3.23) 

where dp(ϕ) = ( Σ δ(ϕ-m))Ηϕ , and z(B) , Z(β) are the obvious normalization 
mЄ  A Λ 

factors. Let <->r(β) , <->^(β) denote the expectations determined by dµ
r

 , 

v 2 
dµ , respectively. Let x be the site (n,0) = ne1 Є2 . We define 
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(3.24) 

where fB == rB or vB and q Є (0,1) , and 

(3.25) 

where fB = rB or and k Є Z . 

Note that 

(3.26) 

Let Λ’ = Λ'(Λ) the region corresponding to Λ in the dual lattice. From 

[28, 21] we have 

Theorem 3.6. 

1) 

2) 

4) 

Remarks. For k = 1 one has of course 

For q € Z ,
 <e

 i2 π q(φ(0)-φ(0))
>A'(B)

 = 1 . 

In principle, Theorem 3.6 can be extended to arbitrary correlation 

functions. This establishes an isomorphism between the XY model and the 

3) 
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r-model defined in (3.22) and between the Villain model and the v-model defined 

in (3.23), in two dimensions. 

The Proof of Theorem 3.6 follows by Fourier transformation in the 

variables : xy nearest neighbors in Λ} and application of the lattice 

version of Poincaré’s lemma, 

*8*k = 0 => k = *8φ , (3.27) 

where k is a lattice 1-form (lattice vector field), and φ is a lattice 

(v-2) —form. Thus, in v = 2 dimensions, φ is a scalar, i.e. a function on 

the lattice. For v = 3 , an analogue of Theorem 3.6 holds : Consider e.g. the 

three-dimensional Villain model. In this case, φ is a lattice vector field, the 

components, φxy , (xy nearest neighbors), take values in Z . Thus the dual 

of the three-dimensional Villain model is an abelian lattice gauge theory. 

Next, we discuss another version of Conjecture 3.2, resp. 3.2
V
 which 

involves the dual two-point correlations, i.e. the two-point functions of the 

r- , resp. v model introduced in Theorem 3.6, 3) and 4). Suppose β is very 

small. Then one deduces from (3.22), (3.23) and the small-β- behaviour of rB 

and ν
β
 that, in the presence of 0 (Ξ free) boundary conditions at 8Λ, 

(3.28) 

and 

(3.29) 

uniformly in Λ , for all q € (0,1) . 

The proof is based on a straightforward Peierls contour expansion -
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in the style of [36,4], but much simpler. Incidentally, (3.28) implies (3.29) 

if the model satisfies FKG inequalities [37] which is obvious for the v-model. 

The Peierls contour expansion also shows that 

|<ε
ί,φ(0)

>
ΐ(ν)

(β)|
 „ Q s (3.30) 

uniformly in Λ , for sufficiently small B . (Related results and proofs may 

be found e.g. in [ 4]). In the case of the v-model, (3.30) also follows directly 

from (3.29) and the inequality 

<e
iq(Φ(0)-Φ(x))> |x|-q2B/2π 

A > |x| 
(3.31) 

for Λ and |x| suitably large, which we prove in Section 3.3. 

Thus, in the thermodynamic limit, (3.29) and (3.30) yield 

(3.32) 

as | x | →
 00

 , for all B with 0 < B < Bc
r(V)

 . 

In Section 3.3 we shall see that this temperature range corresponds to 

one in the 2-D Coulomb gas in the (Mnhc) grand canonical ensemble (see 

Section 2.2) with exponential Debye screening. 

Now we consider the B >> 1 regime : For B >> 1 the expectation 

<->v(B) is, heuristically speaking, very close to the Gaussian expectation with 

mean 0 and covariance (-Δ)-1 . To see this, rescale φ → φ' = B-1/2 φ € >B-1/2 Z 

and observe that dp (B1/2→') → dφ (the Lebesgue measure), as B → 00 , (on C°0 ). 

For the Gaussian, <->
c » 

(3.33) 

as |x | → 00 , in contrast to (3.32). 
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Thus we propose 

Conjecture 3.7. 

For the r- and v-models there exist critical temperatures < 00 , 

βν < oo such that, for β > β
 r
c(β

ν
c) , 

(3.34) 

Remarks. 

1) Clearly Conjecture 3.7 is related to Conjectures 3.2, 3.2 . We believe that 

a constructive proof of Conjecture 3.7 will also yield a proof of Conjectures 

3.2, 3.2v and that βrc = βc , B
VC
 = Bvc , but there is no rigorous proof of 

these equations. See also Section 5. 

Conjecture 3.7v appears to be somewhat easier to analyze than the 

"dual" Conjecture 3.2V. §§ 4,5 and 6 are devoted to working up 

. v(r) 
some ideas and methods that should enable one to prove Conjecture 3.7 

2) We emphasize that Conjecture 3.7r(V) really says that the r(v)- model has 

a phase transition with order parameter : For β < βcr(v) , 

whereas for β > βcr(v) 

<e
iqφ(0)

>r

 (v)

 (β) = ο , by (3.34); 

i.e. 
iqφ(O) 

<eiqφ (0)>r(v) (β) is the order parameter. 

Phase transitions with order parameter often tend to be easier to handle than 

ones without. 

[3) The reader familiar with a recent paper of Mack and Petkova [38] should note 

that their modification of the SU(2) lattice gauge theory has an analogue in 
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the 2-D XY model. An adaptation of their estimates shows that, in the modified 

2-D XY model, <e iq φ (0) -φ (x))> (B) → 0, as |x| oo, exponentially fast, 

for large enough B < 00 . This is clearly incompatible with (3.31) and suggests 

that the Mack-Petkova modification has a serious effect on the large-B-behaviour 

of those lattice models]. 

Next, we recall an isomorphism between the v-model and the 2-D lattice 

Coulomb gas (in an (Mg) ensemble; see Section 2.2). 

Note that 

(in distribution sense) by the Poisson summation formula. Clearly 

(3.35) 

with 

We now recall that vB (φ) = exp[-(l/2B)φ 2> ] , so that when dp is replaced by 

dφ , φ(.) is a Gaussian process with mean 0 and covariance (-Δ)-1 . Compa-

rison with the definition of the (Mg) ensemble of Section 2.2, see (2.21)-(2.23) , 

now exhibits the isomorphism. In the charge variables, qA = (qx } , the equi-
X x€ Λ 

librium measure of the 2-D Villain model is given by 

(3.36) 

where CA(x,y) is the kernel of (-ΔA) -1 the finite difference Laplacean 

with O-Dirichlet data at 3Λ , and ZA(B) is the partition function. The proof 

of (3.36) follows directly from (3.35) and (2.23). 



- 3.14 -

It is now clear that <e iq (Φ(0) Φ(Χ))
>

 (B)
 is a

 f
rac

tional charge 

two-point correlation, with q the fraction of the charge of the test particles 

and the charge of the background particles. 

3.3. Comparison of the v-model with the 2-D Coulomb gas in the (Mnhc) grand 

canonical ensemble. 

We show here that the v-model is the z = 00 limit of the 2-D Coulomb 

gas in the (Mnhc) grand canonical ensemble with equilibrium expectation 

<->A (B,z) given by the measure 

(3.37) 

which is obtained from the expectation <->A(B',z) with 0 (Ξ free) boundary 

conditions at 9Λ , defined in (2.16), (I) by rescaling : φ(χ) → φ’(χ) = 2πφ(χ) , 

and setting 

β’ = 4π2β (3.38) 

It is shown in [11] (see also Theorem 2.4,2), Section 2.1) that 

<e iq (φ(0)
 -Φ (x)) > A (β,Z) is monotone increasing in z and A-1 (3.39) 

As remarked in Section 2.1), monotonicity permits one to pass to the thermodyna-

mic limit, A = Z2 , and conclude that< iq(φ (0)-φ (x))>' (B,z) is monotone increa-

sing in z . 

When A is bounded 

(3.40) 

since 
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By (3.39) and (3.40), 

(3.41) 

> <eiq (φ(0)-φ(x))>' (B,Z) (3.42) 

> <eiq (φ(0)-φ(x))>' (B,Z=0) 

= <eiq (φ(0)-φ(x)) >BC 

0(|x| -q2 B/2II, as |x| 
= 0(|x| -q2 B/2II, as |x|→ oo (3.43) 

This proves inequality (3.31) of Section 3.2. Suppose 

now that Conjecture 3.7V holds, i.e. for B > 3cV with BV finite, 

<eiq (φ(0)-φ(x))>V(B)→0, as a. |x| → oo . 

By (3.42), this implies that, for B > Bc (z) with Bc (z) < 3cV , for all z , 

<e
iq (Φ(0)-Φ(Χ))

>
'(B,

Ζ
) →

 0
 , as | x | → oo , 

and <e iqφ (0)>'(B,Z) = 0 

(3.44) 

For B << 1 and z < 00 suitably large, Brydges has shown [4 ] that 

iqφ(0) -iqφ (x) 
<e'iqφ(x)>’(B,ζ) decays exponentially when |x| → 00 , provided 

<—>' (B,z) is a 0-boundary condition thermodynamic limit. (In §4 we show that 

this is false for the "Gaussian" boundary conditions considered in Sections 

2.1, 2.2). 

Brydges’ result and (3.43) prove that, for B << 1 and z < °° 

suitably large, 

|<e iqφ (0) >'(B,
z
)| > 0 . (3.45) 
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Thus we have 

Theorem 3.8. 

Suppose that Conjecture 3.7 holds. Then, for all sufficiently large 

activities z , the 2-D Coulomb gas in the (Mnhc) grand canonical ensemble 

(with 0 boundary condition) has a phase transition with order parameter, 

<e
iqΦ(0)

>
'(β,

z
), from a high temperature (small B ) phase with Debye screening 

characterized by exponential clustering and (3.45) to a low temperature (dipolar) 

phase characterized by slow decay of the fractional charge two-point correlation 

and (3.44). Moreover 

Bc (z)< BcV , for all z < 00 (3.46) 

Thus, a problem somewhat easier than a proof of Conjecture 3.7 is 

to prove that for z > 0 small enough there exists Bc (z) < 00 such that, for 

all B > BC (Z) , (3.44) holds. We present arguments in the direction of a proof 

of this, based on relating, the 2-D Coulomb gas at low temperatures to a 

2-D Coulomb-dipole gas for which (3.44) is relatively easy to prove. See §§ 4,5. 

Finally, we remark that the r-model can also be related to a Coulomb type gas 

which can be studied by the same methods as the (Mnhc) gas. 
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§4. The statistical mechanics of lattice Coulomb gases. 

In this section we review some rigorous results and prove new ones, all 

concerning the two - (and higher) dimensional lattice Coulomb gas in the grand 

canonical ensembles [the (Mnhc) -, resp. (Mhc) ensemble introduced in Section 

2.2] . 

4.1. On screening properties and the phase diagram of Coulomb monopole gases. 

In the φ-representation the equilibrium expectations, <->(3,z) and 

hc 
<->^ (β,z) , of the (Mnhc) , resp. (Mhc) ensemble are given by the measures 

(Mnhc) 

(4 . 1 

(Mhc) 

with dµ
βC
 the Gaussian measure with mean 0 and covariance βC. , where 

C(x,y) is the Coulomb potential with either free boundary conditions (b.c) at 

әΛ , i.e. C(x,y) = x(x)C(x-y)x(y) , C(x) the lattice Coulomb potential, 

or O-Dirichlet b.c. at ∂Λ 

In the first case we say <->
^
 (β,z) has free, in the second case 

that it has 0 b.c.. Physically, free b.c. correspond to confining the gas in the 

interior of perfectly insulating walls, whereas 0 b.c. correspond to perfectly 

conducting walls. (Clearly there are intermediate b.c.). 

We now show that in two dimensions the difference between free and 0 

b.c. is reflected in very different screening properties of the Coulomb gas, 

even in the thermodynamic limit. To see this we consider fractional charge one -

and two-point correlations; (see §§ 3.2, 3.3). 
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Theorem 4.1. 

Let z > O , and in the case of the (Mhc) ensemble z < 1 , (so that 

1+z cosφ (x) > 0 ). 

1) In arbitrary dimension v > 2 and for 0 b.c., there is exponential Debye 

screening if β is small enough. (For V > 3 , this is true for arbitrary β 

and small z ). The fractional charge one-point correlation is non-zero, the 

connected (truncated) fractional charge two-point correlation decays exponentially. 

2) In two dimensions and for free b.c. and all q  (0,1) , all z > 0 , 

<βίςφ(0)>^
ε)

(β(ζ) =
 0

 , (4.2) 

(4.3) 

2 
as |x|→∞ , for arbitrary Λ Ì 2 and all β · 

Remarks. 

There are heuristic reasons to expect that for v ≥ 3 Theorem 4.1, 1) 

is true for all β and that in the thermodynamic limit 0 - and free b.c. 

coincide . As remarked in §3.3, the proof of 1) for the (Mnhc) ensemble is due 

to Brydges [4]. His proof extends to the (Mhc) ensemble, for β << 1 , 0 < Z < 1. 

(We thank D. Brydges for checking some details in his proof for the (Mhc) ensemble) 

Theorem 4.1. 2) shows that in the two-dimensional, free b.c. equilibrium 

states fractional charges are not screened, even in the thermodynamic limit and 

for arbitrary β . The classical Goldstone picture based on the behaviour of 

the functions – z cos φ(χ) , resp. – ln(l+z cosφ(x)) (z < 1) and the Peierls 

argument suggest that for β << 1 

<θ

ί<ΐ(

Φ

(

0)·
φ

(
Χ
))>
(Μ

(β
>

ζ
)

 >
 Mq

(β,z) > 0 . (4.4) 

for all x (i.e. there is "long range order") even for free b.c.. Thus, for 
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β << 1 , the free b.c. expectation in the thermodynamic limit is presumably not 

clustering. A proof of this is expected to follow from the methods of [39,4], 

but we have not checked the details. 

Goldstone and Peierls suggest that the free b.c. state in the thermo-

dynamic limit is of the form 

(4.5) 

with <φ(0)>(hc) (β,z) = 2πm , and 

<F(<f>-m)>
(hc)

(B,z) = <F(φ)>0(hc) (β, z) , 

<->(hc)

0
 (β, z) identical to the 0 b.c. state. 

(4.6) 

From (4.6) it follows that 

(4.7) 

Moreover, <ei qφ(0) > (β,z) = 0 . Hence 

c(N> = 1/2N+1 in (4.5) . (4.8) 

Since the r.s. of (4.7) is not real, for m ≠ 0 and because of (4.8), the decom-

position (4.5) does not represent a decomposition of the equilibrium state of 

the Coulomb gas with free b.c. into physical, extremal equilibrium states. The 

states <->
(hc)

m
(β,z) are unphysical states of the Coulomb gas (in the q-represen-

tation) characterized by complex boundary conditions. Thus the free b.c. state 

is physically different from the 0 - b.c. state ! 

Proof of Theorem 4.1. We have already commented on the the proof of 1). Moreover, 

inequality (4.3) is (3.45) of § 3.3. We are left with proving (4.2). This is 

based on 

Lemma 4.2. Let φ(ρ) = Σφ(x)ρ(x) , ρ  l
1
(2 ) . 
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Then 

0 if Σρ(x) ≠ Ο . 

[Here C(x-y) ≈ (1/2π) lη| x-y | , as | x—y | → ∞ , is the two dimensional lattice 

Coulomb potential] . 

The proof of Lemma 4.2 follows by noting that C(x) = lim[C (x)-(1/2π)lnε] , 

where C (x-y) is the integral kernel of (-Δ+ε ) , via Fourier transformation. 

See [10 ] for an exact statement and proof. 

We now consider the fractional charge one-point correlation. Clearly 

(4.9) 

where ρ(x)  ZZ , for all x  A , and c
ρ
 are combinatorial coefficients with 

the property that 

for all z > 0 . 

Since q  (0,1) , q + Σ ρ(x) = q+n ≠ 0 , for some n = n(ρ) ZZ . By Lemma 

4.2, 

for all -valued ρ on A . This completes the proof of (4.2); hence Theorem 

4.1 is proven. 

Next, we derive an upper bound on the inverse correlation length (mass), 

m (β, z) , of the v > 2 dimensional Coulomb gas in any translation-invariant 

infinite volume state, <->(β,z) , which has screening (and with z < 1 in the 

case of the (Mhc) ensemble). 

In §2.3, (2.29), (2.32) we have shown that under the above hypotheses 
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0 < <|φ(k)|2>(β,z) = β∆(k)–
 1
-β

2
∆(k)

-2

<|q(k)|
2
>(β,z) , (4.10) 

where ∆(k) = [2v-2 Σ cos k ] , k ≠ 0 , is the Fourier transform of the 
i=1 

v-dimensional Coulomb potential. If there is screening then <|Φ(k)|2>(β,z) is 

analytic in k , in particular uniformly bounded. Since ∆(k) = 0(k ) near 

k = 0 . 

<|q(k)|(β,z) = k2G(k) , where G(k) is 

analytic in k and G(0) = β- 1 

(4.11) 

2 
This is a sum rule which implies the well-known fact that <q2

Λ
>(β,z) is 

0(∂Λ) ; ("abnormal fluctuations"). By Fourier transformation, 

Σ ,|x| <q q >(β,z) = 2vβ , so that 
x ZZ 

Σ
 v

|x|2|<q
o

q >(β,z)| > 2vβ– 1, (4.12) 

Let m = m(β,z) denote the inverse correlation length. By reflection positivity 

(more precisely, the existence of a selfadjoint transfer matrix, see Appendix A, 

and the spectral theorem), 

l<q
0
qx>(β,z)| ≤ -<q

o
q
e
>(β,z) e

-(m/√v) |x| 

≤ |<q2 >(β,z)| e-(m/√υ)|x| , (4.13) 

(where e is some lattice unit vector). 

The proof of (4.13), given a selfadjoint transfer matrix, is standard. 

The chessboard estimate [14] then yields 

<q2
0
>(3,z) (4.14) 

The r.s. of (4.14) is a thermodynamic quantity which is easy to estimate : 



- 4.6 -

(4.15) 

where c is some constant bounded uniformly in z . Inequality (4.15) follows 

by writing < Π q >(β,z) as the product of Ξ.(β,z) and an unnormalized 

expectation. Clearly, Ξ
Λ
(β,z) > 1 . The unnormalized expectation is bounded 

above by one where all couplings between different sites have been eliminated by 

means of replacing the Coulomb potential, C , by . Here we use the 

inequality (q,Cq) > ~ (q,q) so that 

(4.16) 

Thus (4.17) 

for some finite constant, a , bounded uniformly in z , and all Λ . Combining 

(4.12) - (4.17) we find 

whence 

β
-1 .

 r
 –β/4v –(v+2) 

m < (C
v
β)

1/V+2
 e

–β/4v(v+2)
 , (4.18) 

for some computable constant Cv independent of z . Thus we have proven 

Theorem 4.3. 

In the v-dimensional Coulomb gas, the inverse correlation length 

m(β,z) is bounded by 

uniformly in z . 
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Remarks. 

Since the dual of the two-dim. Villain model is the z = ∞ limit of 

the two-dim. Coulomb gas in the (Mnhc) ensemble, and (4.18) is uniform in z , 

we obtain that the mass of the dual Villain model is bounded by m
v
(β) < 0(e 

This inequality is comparable with the one for the two-dim XY-model; see §3.1, 

(3.18). 

[For the two-dim Coulomb gas we expect that 

i q
0
q

x
 (3,z)i = min^e e »e ixi ) 

This would imply that m(β,z) < 0(e ) , but we have no proof of this] . 

The final topic of §4.1 is to show that the Coulomb gas in the (Mnhc) 

ensemble, for all z > 0 , or in the (Mhc) ensemble, for 0 < z < 1 , has 

neither short - nor long range order, in the sense that, for n > 0 , 

– <q0qne>
(hc) (β,z) is a positive, convex function which tends to 0 , as → ∞ , 

for arbitrary β and v . This is to be compared with the fact that for 

v > 2 , z = 0(eaβ ) , β » 1 , <q q > (β,z) has long range order, in the 

(Mhc) ensemble [ 6] . 

We have shown in §2.3, (2.32) and (2.33), that for x ≠ 0 , 

<q
o
q
x
>
(hc)

(β,
Z
) = - <S(0)S(x)>

(hc)

(β,z) (4.19) 

with , and 

F (φ (x) ) 

exp[z cosφ)(x)] , (Mnhc) 

1+z cosφ(x) , (Mhc) 

Clearly <S(0)2>(hc) (β,z) > 0 (provided z < 1 , in the (Mhc) case). It is 

shown in Appendix A, (A.3) that for x = ne , e a lattice unit vector, 

n = ΖZ·{0} , 0 < <S(0) S(x) > (hc) (β, z) is convex in x . 
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By (4.19), <q q > (β,z) is negative and concave in x , for 

x ≠ 0 , i.e. there is no short range order. 

We pause for a short digression concerning the transfer matrix, , 

of the Coulomb gas in the q-representation; (see Appendix A) : In [14] it is 

proven that the quadratic form G with integral kernel 

G(x-y) = (-l)^
+-"+xV---yV

<qxV

(hc)

(e(Z) 

(4.20) 

satisfies reflection positivity (see Appendix A). A general theorem then guaran-

tees that, for x = ne , e a lattice unit vector, n €Z{0} , 

G(x) = <q ,n– 1q > , (4.21) 

where is some selfadjoint contraction on a Hilbert space with scalar product 

< , > ; (T is the generalized transfer matrix [6,14] . See also Appendix A , 

Corollary A.3). Now, since <q q >' (β,z) is negative and concave in 

x = ne , n ZZ{0} , (provided z < 1 in the (Mhc) case) , sgn G(x) = (-1)n– 1 , 

i.e. G(x) is staggered. By (4.21), this implies that 0 , (which is 

what is claimed in Appendix A . We recall that the transfer matrix, T, , of 

the Coulomb gas in the φ-representation is non-negative) . 

Next, we establish absence of long range order in cq q >(hc) (β,z) 

In §2.3, (2.33) we have shown that (provided z < 1 , in the (Mhc) case) 

0 < <|S(k)|
2>(hc)(β,z) < const. , for all β . (4.22) 

(the constant is calculated in (2.33)). Thus < | S(k)
 2|>(hc) (β , z) is bounded 

uniformly in k . By the Riemann-Lebesgue lemma, 

< S
0
S
X
> (β ,z) → 0 , as | x| → ∞ (4.23) 

Since <|q(k)| > (β,z) is bounded (for z < 1 , in the (Mhc) case), 

<qoqx>(hc) (β,z) is in l
2

 (ZZ
v
), i. e. |<q0qx>| < o(|x|

-v/2) 

In view of (4.19) we have now proven 
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Theorem 4.4. 

In arbitrary dimension and for all β > 0 and z > 0 , with z < 1 

in the (Mhc) ensemble, 

1) |<q
o

q
x

>(hc)(β,z)|< 0 (IXI V//2), as |x| → ∞ ; 

(absence of long range order) 

2) for x = ne , e a lattice unit vector, 

<q
o
q
x
> (β,z) is negative and concave, for all x ≠ 0 ; 

(absence of short range order). □ 

Remark. It is clear from the proof that Theorem 4.4 is true for arbitrary 

reflection positive pair potentials (not only the Coulomb potential), e.g. the 

Yukawa potential. 

We set Theorem 4.4 in contrast to 

Theorem 4.5 

In the v > 2 dimensional (Mhc) ensemble with z > eaβ (where a is 

a constant estimated in [ 6 ] ) and large β , <qoqx> (β,z) has long range 

order, and there exist at least two extremal equilibrium states <->+ (β, z) , 

with 

<q
x
>±

hc (β,z) = ±(-1) 

Thus in the (Mhc) ensemble there exists, for sufficiently large 

z ≈ e0(β) , a phase transition with order parameter, with at least two extremal 

equilibrium states which break translation invariance spontaneously (crystalline 

structure), for large β · (For some z = z(β) > 1 and large β there are 

in fact three extremal equilibrium states). The proof of Theorem 4.5 can be 

found in [6 ] . In §7 this result is extended to the dipole gases in the (Dhc) 

ensemble. 
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4.2. Characterization of the dipolar phase of the two-dimensional Coulomb gas. 

From §4.1 we conclude that an interesting range of parameters in the 

Coulomb gas about which there are only few rigorous results is v = 2 and 

β large, z > 0 arbitrary, for the (Mnhc) ensemble. 

β large, 0 < z < const., for the (Mhc) ensemble. 

This range of parameters is expected to correspond to a translation-

invariant, dipolar phase of the two-dimensional Coulomb gas without screening. 

In this section we propose to characterize its properties and comment on possi-

ble methods to prove its existence. 

From §3.2 (Remark 2) after Conecture 3.7V) and §3.3 (Theorem 3.8) we 

know that the transition from the high temperature plasma phase with screening 

to the low-temperature, dipolar phase without screening, henceforth called 

P-D transition, is a phase transition with order parameter. The order parameter 

is the fractional charge one-point correlation, <eiqφ(0) (β,z) , q € (0,1) . 

(We shall omit a superscript "he" even when we think of the (Mhc) ensemble to 

which the following analysis applies, too, provided 0 < z < 1 ). We recall 

that, for arbitrary β , 

<ε
ίς(φ(0)-φ(χ))

>(β>ζ) £ const
_
 (1+

|
x
|)-q

2
6/2Tr _ (4.24) 

so that in the screening phase (β small and 0 b.c.) 

<eiqφ(0)>(β
,Z

) > 0 , (4.25) 

because truncated correlations cluster exponentially. The dipolar phase (β large) 

is characterized by 

<6
ί,(Φ(0)-Φ(

χ
))

>(β>ζ) const
.
(1+

|
x
|)-qV/2*

 t (4.26) 
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for some β’ = β'(β,q,z) expected to be strictly positive on {q : 0 < q < 1} 

if β is large enough. 

Thus 
<
eiqφ(0)>(β,

Z
) = 0 , (4.27) 

in the dipolar phase, i.e. <eiqφ(0)>(β, z) is an order parameter for the 

P-D transition. Notice that <Φ(0)-φ(x)>(β,z) = 0 , since <->(β,z) is even 

in φ . Therefore if β' is independent of q (4.26) implies 

<(Φ(0)-φ(x))2>(β,z) > const. β’ln(1+|x|) ; (4.28) 

(expand both sides of (4.26) to second order in q ). 

Next, we note that for x = ne , n = 1,2,3,..., 

<(φ(0)-φ(x))2>(β,z) = 2[<φ(0)
2
>(β,z)-<φ(0)φ(x)>(β,z)] 

< 2<φ(0)
2
>(β,z) , (4.29) 

since <φ(0)φ(x)>(β,z) >0 by reflection positivity. 

2 
Thus <φ(0) > (β,z) is divergent , (4.30) 

in the dipolar phase. 

In conclusion, (4.30) is a somewhat weaker characterization (the infini-

tesimal version of (4.26)) of the dipolar phase than (4.26). It obviously applies 

to the Villain model (§§ 3.2, 3.3) as well. [Specialists in roughening transi-

tions usually prefer (4.30) over (4.26)] 

It is natural to ask whether the order parameter, <e
iqφ

>(β,z) , can 

be related to the derivative of a thermodynamic quantity. To answer this question 

we consider the following Coulomb gas : Let dμ be the Gaussian with 0 

βC Λ (i.e. conducting) b.c. at ∂Λ . Consider the following partition function of a 
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Coulomb gas with particles of charge ±1 and activity z and particles of 

charge ±q and activity ζ : 

(4.31) 

The expectation in the corresponding ensemble is denoted <->Λ(β,z,ζ). (We 

only discuss particles without hard cores. The discussion applies only partially 

to (Mhc) ensembles). 

(4.32) 

be the finite volume pressure. The limit 

exists; see [11] . Next 

(4.33) 

The correlation inequalities of [11] (Sections 3,4) show that 

< cos [qφ(x) ]>Λ(β, z,ζ) is decreasing (4.34) 

when Λ increases and/or ζ decreases. Thus 

is decreasing in Λ and increasing in ζ . (4.35) 

Using (4.32)-(4.35) and convexity of pΛ(β,z,ζ) in ζ one easily 

shows that 

where <->(β,z,ζ) is the thermodynamic limit of <->Λ(β,z,ζ) and 
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F(ζ±) = lim F(ζ±Ɛ) . By (4.34) , 

<cos[qφ(0)]>(β,z,ζ+) = <cos[qφ(0)]>(β,z,ς) , (4.36) 

as the two limits, ζ1 \ ζ and A f ZZ2 , can be interchanged by monotonicity. 

Thus ∂p (β,z,0+) = <cos[qφ(0)]>(β,z,0) , and since <->(β,z,0)= <->(β,z) is 

even in φ , 

(4.37) 

which is the desired relation. 

Therefore the P-D transition can also be characterized by 

∂p/∂ζ (β,z,0+) > 0 , in the P (screening)phase 

∂p/∂ζ (β,z,0+) = 0 , in the conjectured D phase . 

(4.38) 

We now sketch an argument suggesting that (4.27) holds for large β . 

To this purpose, it is useful to compare p with the pressure p given by 

(4.31), (4.32) but where dμβCA = dμβCA has free b.c.. We then apply Lemnna 4.2 

to the r.s. of (4.31) to conclude that Ξ
F
Λ
(β,z,ζ) and hence p

F
Λ
(β,z,ζ) are 

functions of z and ζ , because neutrality of a charge configuration requires 

an even number of particles with charge ±1 and charge ±q , as q  (0,1) . 

Thus pF (β,z,ζ) = lim ρΛ
F(β,z,ζ) is even in z and in ζ . 

For β large enough ( 8πq ) , low order terms in an expansion of 

p (β,z,ζ) in z and ζ about z = ζ = 0 are convergent (i.e. infrared-

finite in the thermodynamic limit) and independent of b.c., i.e. the same for 

0 and free b.c.. Since p is even in z and ζ , the coefficients of 

z , ζ in this expansion all vanish. Presumably, the expansion in z 

and ζ about z = ς = 0 is divergent, but it is reasonable to expect it is 
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asymptotic. 

Thus, we conjecture that for β large enough 

1) p (β,z,ζ) is continuously differentiable in ζ at ζ = 0 , for 0 < z 

small enough. By evenness that would imply (β, z,0) =0 , for small z . 

2) For sufficiently small z and ζ, p(β,z,ζ) = pF (β,z,ζ) . 

By (4.25), (4.37) and (4.38), a proof of 1) and 2) above would also 

imply the existence of a P-D transition. 

Next we give a heuristic argument suggesting that 

ιη(β,z) \|0 , as β βc , with βc ≈ 8π (4.39) 

In [ 1θ], the continuum limit of the two-dim. (Mnhc) Coulomb gas has been cons-

tructed for all β < 4π . By using the scaling properties of the two-dim. Cou-

lomb potential one can show that the inverse correlation length (mass) has the 

form 

m(β,z) = μ(β)z2/(2–β/4π) , (4.40) 

for some function μ(β) > 0 . See [10 ] . 

Perturbative arguments [40] suggest that, after a divergent, additive 

renormalization of the pressure, the continuum limit of the Coulomb gas exists, 

and equation (4.40) remains true, for all β < 8π . Now suppose that μ(β) 

has at most a power law divergence at β = 8π . Then 

(4.41) 

This suggests that, on the lattice, the critical point, βc , of the P-D transi-

tion is ≈ 8π . The point β = 8π also seems to be a critical point in a 

recent, exact study of the sine-Gordon theory which is isomorphic to the conti-

nuum Coulomb gas by Faddeev et al. [41] . 
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In §5 we develop techniques and estimates which we hope are suitable 

to rigorously establish the existence of a P-D transition for the two-dim. 

lattice Coulomb gas in the (Mhc) ensemble and prove inequality (4.26) for large 

β and 0 < z < 1 . In §5 we study a two-dim. dipole gas in a (Dhc) or (Dnhc) 

ensemble for which we prove (4.26) for arbitrary β. The techniques of §5 suffice 

to analyze gases of general, neutral multipoles, provided the activity of multi-

poles of large size is suitably small. 

We therefore propose to approximate the two-dim. Coulomb gas by gases 

of neutral multipoles of arbitrary sizes in a convergent fashion and such that 

inequlity (4.26) remains true in the limit. [Notice that Lemma 4.2 says that 

in principle such an approximation is possible, at least for free b.c. ] . 
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§5. The decay of the charge-charge correlation in dipole gases. 

In this section we study the charge-charge correlation in a sea of 

dipoles. We shall concentrate on two specific ensembles. Let dp (φ) denote 

the Gaussian measure of covariance β(-Δ+Ɛ
2)-1

, in the limit Ɛ→ 0. Here 

Δ denotes the finite difference Laplacean. The first ensemble describes dipoles 

with no hard core, (Dnhc) . 

(5.1) 

where 

α = 1 or 2π , 

and is the partition function. By scaling the constant α can always be 

chosen to be 1, but for notational convenience we will choose α = 2π at one 

place. 

The expectation for dipoles with hard core, (Dhc) , is given by 

"lim Λ t ZZv" of 

(5.2) 

where e ranges over unit lattice vectors and 

The above ensembles are very special cases of those discussed in §2. 

Although we shall prove our results in detail only for the above expectations, 

nearly all our results extend to the more general class of dipole gases discussed 

in §2. In fact, at the end of this section we shall analyze dipoles of arbitrary 

length L and prove the analogue of the following result. 
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Theorem 5.1. Let α = 1 . For all β, z , in the (Dnhc) ensemble, we have 

where 

and ε can be chosen arbitrarily small. Also, for the (Dhc) ensemble, if 

β/8 
| z I e , we have 

with 

As explained in §3, the two point correlation of the Villain model is, 

by duality, equal to 

i(θ -θ ) 
O X V, . V. . 

<e > (β) = <A > (β) 

where 
(5.3) 

and 

fX(i) 

1 , 0 ≤ j ≤ x and = 0 , 

.Ο , otherwise 

(5.4) 

As a first step toward understanding the decay properties of (5.3) we shall 

bound <AX> (β,z) from below in the dipole ensembles (5.1) and (5.2) , with 

α = 2π 
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Theorem 5.2. Let α = 2π . For all β,z in the (Dnhc) ensemble (5.1) we have 

<A >(β,z) > e
–g

 log|x| 
x ’ — 

(5.5) 

For the (Dhc) ensemble (5.2), if |z| e , then (5.5) holds with 

□ 

Remark. To prove Theorem 5.1 we shall use the method of complex translations 

[29] , φ(j) → φ(j) +ia(j) , for suitable a , whereas in the proof of Theorem 5.2, 

we shall apply a real translation, φ(j) → Φ(j)+a(j) . 

Proof of Theorem 5.1. For notational simplicity we first set y = 0 . We 

apply a complex translation of the field φ, [29] : 

φ(j) → φ (j)+iγa(j) , (5.6) 

where γ depends on the ensemble and is chosen later, and 

a(j) = C(j,0) - C(j ,x) , (5.7) 

with C the kernel of -Δ
– 1

 . The function a(j) satisfies the following 

relations 

(5.8) 

for large |x| , and for |j —j ' | = 1 
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|a(j) - a(j')| ≤ Const. | x | / | j |
2

 · 

(5.9) 

Let us first consider the dipole gas in the (Dnhc) ensemble. In this case we 

choose 

γ= (β– 1+z)-1 = β(1+βz)– 1 . 

Under the change of variables (5.6) the exponent of the functional 

measure becomes 

-(1/2β) Σ [ ν(φ+iγa) (j) ]2 + z Σ cos(φ(j)-φ(j ’)+iγ(a(j)-a(j '))) 

j |j-j|= 1 

- γ(a(0)-a(x)) + i(φ(0)-φ(x)) . 

We estimate the integrand in the functional integral by taking absolute 

values, i.e. the real part of the exponent, and using (5.8) and (5.9). The 

real part of the exponent is 

For |j| >> γ, j j —x| >> γ , we have by (5.9) 

(For |j| , |j-x| ≤ 0(γ) , we simply estimate cosh(.)–1 by a constant) . 

Thus by (5.8) the exponent is bounded by 
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with γ = β (1+βz)-1, 

γ/2(1- εγ) ≥ β/2(1+βz+zε β)-1 1, 

for some small ε . Integration over Φ now cancels the partition function, 

and we have 

<ei(Φ(0)-Φ(x))> ≤ e- β/2π(1+βz+2ε β)-1log|x| 

This completes the proof of Theorem 5.1 for the (Dnhc) ensemble. 

Next we turn to the case of dipoles with a hard core, i.e. (Dhc). In 

this case, we first prove a lemma which enables us to take advantage of the 

small effective fucacity of dipoles. 

Lemma 5.3. Let Τ{Φ} be a function of {Φ(j)} with j ≠ j , and set 

(5.10) 

Then 

∫ (1+z COS (Φ(J
o
) - Φ(j1 ) )F dμβ (Φ) 

= ∫ (1+z cos (Φ ( j0) - Φ ( j1)) F dμβ (Φ) 

Remarks. Lemma 5.3 is simply an explicit computation of the conditional 

expectation of cos (Φ(j0)-Φ(j1)), given {Φ(j)} , j ≠ j
0

 · The simplicity 

of the result is due to the Markov and Gaussian property of dμβ (Φ) . 



- 5.6 -

Because of the non-overlapping condition on the dipoles we have the 

identity 

(5.11) 

whenever x and y do not belong to L . 

Proof : The lemma follows by an explicit integration of the Φ(jo) variable. 

This is easy, because the integral is Gaussian : 

where we have used 

∫ exp[-2Φ(j0)2/β+Φ(j
0
) (i+8Φ(J

0
> β) ]dΦ|)(j

o
) 

= ∫ exp (-2Φ(j0)2/β) dΦ (j0)e-iΦ(j0) e 8Φ(jo)2/β 

The proof of Theorem 5.1 for hard core dipoles also follows by complex trans-

lations and taking absolute values. We first apply Lemma 5.3 to re-express the 

numerator and partition function as in (5.11). (We assume that y is near 0 

but x and y do not belong to L . The general case will be discussed 

at the end of this section). Let a(j) be as in (5.7). The inequality 



- 5.7 -

r 0 , 

can be applied to show that for |z[ ≤ 1/16 we have 

provided |j-x| >> 1 and |j —y| >> 1 . Here we have used the notation 

δeΦ (j) = Φ ( j ) -Φ ( j+e) 

and 

δeΦ ( j) = Φ (j)-Φ (j +e). 

Note that since 

a(j)-a(j) = (Aa) (j) = 0 , j ≠ x,y , 

we have 

δ
ε
a(j) = a(j)-a(j+e) = a(j)-a(j+e), 

when j ≠ x,y . 

The Gaussian contribution, after taking absolute values, equals 

C exp(γ2/2β)(a(x)-a(y)) , as in the proof for the (Dnhc) ensemble. The sum 

2(γz)2 j, e Σ (δe a(j))2 is clearly bounded by 

2(Yz)2(a(
x
)-a(y)) . 
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The Φ-integration of the numerator exactly cancels the denominator. 

Collecting all coefficients of (a(x)-a(y)) we see that 

γ = β(1+2βz) -1 is the optimal choice. As in the proof for the (Dnhc) ensemble 

we finally obtain 

which completes the proof of Theorem 5.1. 

Remarks. We have seen that the decay of the charge-charge correlation in the 

dipole gas has a fairly elementary proof using the Φ-representation. If one 

attempts to obtain such results directly in the q- (or gas) representation 

the required estimates appear to be far more complicated. The q-representation 

does have the advantage of making the small activity of the dipoles manifest. 

What Lemma 3 does is to give us a kind of mixed q-Φ-representation; for had 

we integrated all the Φ variables we would have precisely obtained the 

q- (or gas) representation. Thus our approach amounts to.a phase space analysis 

in function space. 

Next we prove Theorem 5.2. We shall consider only the (Dhc) case, 

since the other case is easier. We make the real change of variables, 

Φ(j) → Φ Φ (j)+a(j) , 

with a(j) given by 

a(j) = Ʃ C(j,k) a2f
X
(k) . (5.12) 

Under this transformation, the linear terms cancel, and by Lemma 5.3 the 

exponent of the interaction becomes 
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ΣєjL log(l+z Σ cos 2π(δ Φ(j)+δ a(j)))-F(x) 

where 

Note that (8
1
f
X
) (j) = δ (j ,0)-δ (j ,x) , and 

(5.13) 

Summing a2a(j) over j we see that |x| is cancelled and thus 

F (χ) 

Also we have 

0
1
a)(j) = Z3

1
C(j-k)32f

X
(k) 

= I3
2
C(j-k)(3

1
fX)(k) 

a2c(j)-a2c(j-x) 
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Since a is harmonic (mod.l), δa(j) = δa(j) , (mod. 1). From (5.13) and 

the above equation we see that δa(j) satisfies (mod.l) the estimates (5.8) 

and (5.9). We now introduce the functions Dj(Φ) 

+ sin(2ïïô φ(^))(sin(2ïïô a(j)))}+z 20(6a(j)2) . 

In the last equality we have used the double angle formula and the Taylor 

series for log[l+x] . Now set D = Σ , and then we have using Jensen’s 

inequality 

with (6 a(j))} = δea(j) μ
 mod.1

 · 

Next we turn to the more general case of dipoles of different lengths. 

Suppose we consider the fractional charge correlation in a two-dimensional 

Coulomb gas. Oppositely charged particles will tend to form dipoles of various 

lengths with dipoles of length L having a small effective fugacity 

= exp(- (-β/21 log L ) , but with an entropy proportional to L4. To mimic this 

situation we consider two lattices 
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= d ZΖ
2
 A and L

2
 =[dL ZZ

2
 + φθ)]Π Λ 

Let 

δ-^Φ( j) = Φ(j)“Φ(j+Le) , 

with e - e. a unit lattice vector, and define 
J 

(5.14) 

It is convenient to let and T2 denote the collection of squares 

B1(j) , B2(j) centered at the sites of L
1
 and L2 having sides of length 

d and dL respectively. Note that Π = Ø so that the positions of the 

dipoles do not overlap. 

2 4 2 
The choice z d and z

L
 » L d mimics the entropy since there 

1 L 
2 4 2 

are approximately d , L d dipoles associated to each site of L1 , L2 

respectively. Now we want to replace (5.14) by a similar expression but with 

z , z replaced by effective (renormalized activities, 
1 L 

(5.15) 

This result will be obtained by integrating large blocks of Ø's using complex 

translations. Consider the dipole corresponding to δLØ(j) · For each j € , 

2 
let ζ j (k) be a function on ZZ satisfying 

(5.16) 

and 

(5.17) 
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Define 

b
j
(k) = ζ

 j
 (k)c(k) , k φ L

1
 ; 

b
 j
 (k) = ζ

 j
 (j)c(j) , |k—j | ≤ 2 , j  L

l
 , (5.18) 

where 

c (k) = C (j, k) - C (j+Le, k) · 

Finally we introduce 

(5.19) 

Lemma 5.4. Suppose the observables do not 

overlap with the dipoles of the ensemble. The expectation (5.14) remains unchanged 

if we replace each z and δφ(^) , by z , δφ(j) which satisfy (5.15) and 

(5.19). 

Proof. We first apply Lemma 5.3 to obtain δ
1
Ø and z

1
 . To rewrite 

cos (δL (0)) we make the change of variables 

Ø (k) φ(^+ί βb
o
 (k) (5.20) 

which leaves δ^φ unaffected, because by (5.18) ô^b(j) = 0 . The function ζ 

ensures that functions localized outside {|k| 2L} are unchanged. Thus we 

need to see how (5.20) affects εxρ(ίδ φ(0)) and dy-Χφ) : 
L β 

exp{-L[ ν(φ+ί3ο) ]2(j) 728+10^ (0)-B(b
Q
-b
L
)} 

= exp [-( νφ)(j)2/28+ΐδ^φ(0)~3(b
o
~b^)+E$ (v b)2(j)/2] 
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It is easy to see using (5.16), (5.17) and (5.9) that 

Again by (5.9) we have 

The same argument applies to renormalize cos(ô^c|>(j)) · j  L , j ≠ 0 . 

■ 

Remark. If d 4 is not large it is advantageous to replace (5.13) by 

Ø (k) → φ(k) + i γb (k) with γ small. One can then obtain 

|z | <_ z exp-(yftlog L) , 
1 L· 

without having to choose d very large. For an alternate method see Appendix B. 

Theorem 5.5. If x, y do not overlap with dipole positions, and β is so 

large that | z^ | 1 /4 , | z^ | £1/4 then 

(5.21) 

where 

with Const, independent of β, L,d and <—> is given by (5.14) in the limit 

2 
A = ZZ . 
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Proof. By Lemma 5.4 the substitution z z , δφ δφ applied to the numerator 

and partition function does not change the expectation. Let 

a (j) = c(j,x)-c(j,y) and translate 

φ(j) → Φ (j)+ i j a (j) . 

From (5.19) we have 

δ
L
 (Φ+i a

)
 =

 ^Φ(°)
 + i Y(a(0)-a(L))/2 , 

because Aa(j) = δ (x-j) - δ (y-j) . By (5.9), for j restricted to 

|j-x| < 2jx-y| , 

For |j-x| ≥ 2|x-y| the sum is bounded by a constant, see (5.9). Thus the 

total factor arising from the translation is bounded by 

The optimal choice of γ yields (5.21). 

■ 

Remarks. In the proof of Theorems 5.1 and 5.4 we have used the fact that 

x,y do not : overlap with the dipoles of the interaction This requirement is 

unnecessary, as we now show. For Theorem 5.1 suppose y = 0 and x 4ZZ . 

Consider the factor 



- 5.15 -

If we estimate each term as before, treating it as non-overlapping observable, 

we get the bound 

-g log |x-y| 
E'/E (l+2z)e 

The partition function E' has the factor 

deleted hence, by a simple argument, Ξ*/Ξ <_ 1 . A similar argument applies 

to Theorem 5.4 but here we may need to use the fractional charge of the 

observable so that the observable and interaction dipoles do not cancel. 

It is easy to extend the above results to systems of the form 

We can apply the renormalization of fugacity principle as before. Note that 

4 
there are « L terms in the sum over k, k' in , thus, since we obtain 

from the renormalization of the activity a factor of e
 L/2π we need 

to require β > 8π , so that 

we need 
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and our measure is positive, whence our techniques apply. 

We hope that the techniques developed in this section combined with 

an expansion of the two-dimensional Coulomb gas in terms of neutral multipole 

configurations of arbitrary size and (unfortunately very tedious) combinatorial 

estimates will permit one to prove the existence of a P-D transition in the 

(Mhc) ensemble, before long. For an alternate treatment of the renormalization 

of dipole activities, using purely electrostatic techniques, see Appendix B. 
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§6. The Mermin Argument. 

By establishing a generalized Mermin Theorem we shall prove a lower 

bound in momentum space on the φ two-point function, where the expectation 

is given by (5.1) or (5.2). It is convenient to replace β (-Δ) 1 by 

3(-Δ^+ε) . The subscript Λ indicates periodic boundary conditions at ∂A , 

and ε is an infrared regulator to be removed after the thermodynamic limit 

has been taken. Let 

and let Δ(ρ) be the Fourier transform of -Δ 

Theorem 6.1. Let z, β be as in Theorem 5.1. Then for the (Dnhc) ensemble we 

have 

<|Φ(p)|2> 1 (3 l+z) 1Δ(ρ) 1 (6.1) 

For the (Dhc) ensemble 

<|φ(ρ)|2> 1 (3_1+z) Vp)”1 , (6.1') 

, -, „ -3/8-3/8.2 
where z const, ze /(1-ze ) 

As a corollary to these inequalities we shall show that the correlation 

of two infinitesimal test dipoles immersed in a (Dnhc) or (Dhc) dipole gas does 

not decay integrably fast. 

Before formulating our generalized Mermin-Wagner Theorem we illustrate 

how the methods of the previous section enable us to establish (6.1). In fact 

the standard Mermin Theorem is an infinitesimal form of the results in §5. 

(Similarly, the infrared bounds are an infinitesimal form of Gaussian domination; 

see 120,14] )· Let f be a function on the lattice and set φ(f) = Σ^φ(j)f(j) · 

By subtracting 1 from both sides of the inequality 
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iεφ(f)
> < e

-e
2
3'<f,Cf> (6.2) 

and keeping the second order terms in ε we obtain 

β <f, Cf > ≤ < φ (f) > ; (6.1") 

hence (6.1) follows by letting f (j) = —e
1^ j . Inequality (6.2) follows 

/|A| 

for dipole systems as in §5, using the translation φ (j) → φ(3)+ΐεβ^ , where 

(6.3) 

The estimates are nearly identical to the ones in §5 if we use the 

relation 

Note that this technique (as well as the one that follows) works in arbitrary 

dimension. 

To set up the Mermin argument (infinitesimal form) , let Η(φ) be a 

real function of φ(j) , j belonging to a box Λ , and define so that 

is a probability measure. Let D be a first order differential operator on 

L
2

( 
 |v|

), 

Lemma 6.2. For regular functions F, H we have 

|< [D,F] >| ≤ <tD,[D,H]]>1/,2<|F|2>1/2 

Note, all commutators are functions, because D is first order. 
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Proof. By integration by parts 

< [D, F] > = < F[D, H] > (6.4) 

The Schwarz inequality applied to the right side of (6.4) yields 

< [D, F] > ≤ <|F|
2
>
1/2

 < [D, H] [D, H] >
1/2 

To complete the proof, note that when F = [D, H] , (6.4) becomes 

< [D,[D, H]] > = < CD, H] [D, H] > 

We now specialize to the case where H is .translation-invariant, 

defined in a periodic box A . Let A be a function of one variable and 

a first order differential operator in φ (j) . We set 

(6.5) 

(6.6) 

Theorem 6.3. In the above situation 

<IA(p)I
2
> > < [0

ο
, Α(φ(0))]> h(p)

 1

 . 

The proof follows directly from Lemma 6.2 by setting 

D = |Λ|
_1/2

 Σj e
 1ρ
'^ , F = Â(p) , 

because 

= <[0
ο
,Α(φ(0))]> 

by translation invariance. 
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Note that in subsequent applications we usually pass to the thermo 

. · · Λ ν 
dynamic limit, Λ /* ZZ 

Application 1. 

In the study of the (Dnhc) ensemble we set 

Dj = ∂/∂ φ (j) · (6.7) 

Then 

h(p) = Δ (p) {β l+z<cosô<j> (0)> } 

For A = φ(0) or sin φ(0) , Theorem 6. 3 gives the bounds 

<|Φ(p)|2> ^ l/h (p) , 

respectively, which prove (6.1) . 

Application 2. 

The (Dhc) system considered at the beginning of §5 is only transla-

tion-invariant with respect to a sublattice, 4ZZV . 

For z < 1 the Hamilton function, Η , is 

Then, by Lemma 6.2, 
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Λ Ο 
< | φ (ρ)| > > l/h(p) , where 

whence 

Thus 

<|Φ(ρ)|2> ; (6 1+γ)
 1Δ(ρ) 1 . 

If we replace the dipoles by renormalized ones, trading z for 

- -3/8 . . 
z = ze , the same arguments can still be applied. The resulting estimate 

is 
^ 1| -| o 

<Iφ (Ρ) I > ; (β +Y) Δ(
Ρ

) , with γ < const z/(1-z) which 

is (6.1’). 

Remark. We recall the upper bound (see Theorem 2.4) 

<|Φ(p)|2> < 3 1Δ(ρ) 1 , 

(provided z < 1 in the (Dhc) ensemble). This estimate and (6.1), resp. (6.1*) 

imply that in two or more dimensions 

<t <|(Φ)(P)1
2
> = |βΐΡι-ι|2<|φ(

Ρ
)|2> 

is discontinuous (though bounded) at p = 0 . This discontinuity clearly implies 

that the (8^tj))-two--point correlation function cannot cluster integrably fast. 

From §2, Part 1 we thus conclude that the correlation of two infinitesimal test 
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dipoles immersed in a back ground dipole gas cannot decay integrably fast, 

i.e. there is no screening. (The same is true for the truncated correlation of 

two test charges, as is easy to verify. The result presumably also holds for 

the standard, truncated dipole-dipole correlation, but our arguments do not 

prove this). 

Related, but weaker results have recently been found independently by 

Park. 

Application 3. 

To recover the classical Mermin theorem, consider a vector-valued 

field, φ(j) , and a Hamiltonian function 

(6.8) 

We set D. = ∂/∂3Φ2<j)~Φ2(j) ∂/∂ φ1 (j) , 

A = φ2 (0) 

Then, 

2 
< const, p + e , provided 

Theorem 6.3 now implies (taking ε 'sa 0) 

which is the assertion of Mermin's theorem. Note that for J's with the property 

2 
that J(p) is convex, h(p) is bounded below by αρ , a > 0 , for small p . 

For this reason, Mermin's theorem can in general not be used to prove absence 
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of spontaneous magnetization in v > 3 dimensions, as was pointed out by 

J. Bricmont. 

Application 4. 

Consider the Hamilton function H defined in (6.8) with couplings 

J (j) = - βΚ(j) , 8 > 0 , such that K (j) is reflection-positive, i.e. 

for arbitrary {z.  Œ}. , and ΣK (j) = 0 ; see [14 ] . One example is 

j 
K = Δ , the finite difference Laplacean. 

N . . N 
Let φ = (φ^,...,φΝ>  IR , with a priori distribution d φ . Let 

V > 0 be such that 

J e < «> , for all γ > 0 . 

The infrared bounds of refs. [20,14] say that 

Λ
 2 c

 Λ
 - 1 

<|Φ
α
(p)I > < “(8K(p)) , for P ≠ 0 . (6.9) 

for all α = Ι, ..., Ν . Note that for ε > 0 (in a finite, periodic box, Λ ) 

<
|φ

α
 (ρ)|

2>
 = <|$

α
(ρ)|

2> , for α > 2 , (6.10) 

whereas 

<|Φ
1
(Ρ)|

2
> = <|Φ

1
(Ρ)|

2
> + Μ(ε,β)

2|Λ|δ
ο ρ

 , (6.11) 

with Μ(ε, 6) = <φ^(0)> 
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For K = Δ , -Κ(ρ) = Δ (ρ) « ρ2 , so that 1(2,Δ) = » , but Ι (ν, Δ) < » , 

for ν > 3 . 

By taking the thermodynamic limit (supposed to be ergodic) and inte-

grating (6.10) and (6.11) we obtain from (6.9) 

< (0)2> < $ 1I(v,K) , for a > 2 , 
a = = 

(6.12) 

and 

<Φ
1
(0)

2
> < β

-1
Ι(ν,Κ) + Μ(ε,β)

2
 . (6.13) 

Next, we apply Theorem 6.3 with Dj = Β/δφ^ίί) , 

By (6.6) and (6.8) and our choice of J(j) , 

Theorem 6.3 then gives 

(6.14) 

Comparing this with (6.9) and (6.10) we conclude that 

(6.15) 

This inequality is stable under taking the thermodynamic limit. 
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Now let (6.16) 

Then 

Thus 

By (6.12) and (6.13) the r.s. is bounded above by 

4λΜ(ε, β)2 +4(Ν+2)λβ-1 Ι(ν,Κ)-σ . This and (6.15) yield 

(6.17) 

if I(v,K) is finite. As β → ∞ 

(6.18) 

The r.s. of (6.18) is precisely the value of the spontaneous magnetization pre-

dicted by the naive Goldstone picture ! 

These arguments can be extended in several ways. 

(A) Let V(|Φ|) be an arbitrary, positive polynomial. Applying Gaussian domi-

nation to bound <Φ (0)2m> by 0(β -m) , provided I(v,K) < ∞ , see [20,14] , 

we conclude that 

This and (6.15) generally give as a lower bound for Μ(ε, β) the smallest value 
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predicted by the naive Goldstone picture, up to 0(β-1) corrections. 

(B) Let v = 2 , pass to the continuum limit and choose 

Then 

Let V(||) = λ:(·)2 : - o/2 :*:, where : - : is Wick order with respect to 

-(βK)-1 . This defines a Euclidean field theory model which has been constructed 

and shown to exhibit spontaneous magnetization for sufficiently large β in 

[42] . The arguments described above can be applied to this model, with some 

obvious changes. The analogue of (6.17) is 

(6.19) 

for some δ(β) > 0(!). Here we have used that 

and <:φ
α
(0)2 : >c < 0 , for our choice of Wick order, (see e.g. [20]). 

Thus, for σ > 0 there is a non-zero spontaneous magnetization, in 

accordance with the Goldstone picture. 
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§7. Phase transitions and spontaneous orientation of dipoles in hard core 

dipole lattice gases. 

In this section we show that hard core dipole lattice gases in three 

or more dimensions undergo phase transitions (at small temperatures, as the 

dipole activity is varied), and we exhibit equilibrium states with spontaneous 

orientation of dipoles and broken translational invariance, at small temperature 

and large activity. 

Our proofs of these results are based on reflection positivity (RP), 

established in Appendix A. We use RP as a means for establishing infrared 

bounds from which our results follow in a fairly standard fashion, [20,6] . 

In the case of hard core dipole gases in two or more dimensions with 

the property that each dipole only has finitely many possible orientations 

one can combine RP with a Peierls argument [5, 14] to establish the results 

mentioned above. (We shall not give full details which the reader can easily 

reconstruct from [5,6 ,14] and some hints that we shall sketch). 

This section is organized as follows : In § 7.1 we specify the 

dipole potentials and ensembles considered in the remainder and briefly review 

RP. 

In § 7.2 we establish some important properties of dipole potentials 

and exhibit the groundstates of dipole gases. In a sense Section 7.2 is the 

technical core of §7. It should be read after a first glance at the later 

sections. (We thank B. Simon for some hints concerning the material in 

Section 7.2). 

In §7.3 we establish the required infrared bounds which, in §7.4, 

are applied to prove existence of a phase transition. (We note that for short 
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range dipole potentials, one can use a high temperature expansion to prove 

uniqueness for small β . In the case of long range potentials, inequalities 

of §2 give absence of ordering in the two-point function for activity z < 1 

and uniqueness for z < β -1). 

A few hints concerning the Peierls argument for two-dimensional, 

discrete dipole gases are given in §7.5. 

§7.1. Dipole ensembles and reflection positivity. 

Reflection positivity [13,14] for Coulomb- and dipole gases is 

established in Appendix A. Here we only recall the basic facts. We consider 

the following class of dipole gases : Each site of ZZv may either be empty 

or occupied by one dipole with some dipole moment q  R . The a priori law 

of the dipole moment is given by a probability measure dp(q) on RV . The 

potential energy of a dipole at site i and one at site j is given by 

(q
i
,W(i-j)qj) , (7.1) 

where W(j) is some v x v matrix whose general properties are discussed 

later, and qi, qj are in the support of dp . We have the following examples 

of dipole potentials, W , in mind : 

(a) Let e1,,...,ev be unit lattice vectors in the direction of the coordinate 

axes. We define W(j) , j  ZV , by the equation 

(q.W(j)q') = - (δ δ ,C)(j) , (7.2) 

where (δ F) = F(x+a) - F(x) , and C is some potential on 
a 

L
p
 = {j+q : j ZV , q  supp dp U {0}} . 
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Later it will be necessary to constrain supp dp to a hypercube centered at 

0 with sides parallel to the coordinate axes of length < 1 . 

(b) Let q = λ q/q , 0 < λ < 1/2 , and define W(j) by 

(q.W(j)q') - - |q||q’|(δq,δq' C) (j) , (7.3) 

with C some potential on 

Lλ = {j+a : j  Zv, |a| = λ} . 

(c) W(j) = (Wαγ (j))v α, γ = 1 ’ 
(7.4) 

with Wαγ (j) = - (a2 /axα axγ C)(j) , where C is some potential on R 

A typical example of a potential C is 

C (x) = 
(-Δ+ε) 1(x) , for |x| > 1-2λ 

const. , tor |x| < 1-2λ 

(7.5) 

ε > 0 , 0 < λ < 1/2 . 

Note that by adding a suitable bounded function g supported in 

{x : |x| < 1—2λ} one can achieve that (C+g)(x) is of positive type and 

regular near x = 0 . Thus, the tools of §§ 2-6 are available (are, however, 

quite inessential in this section). 

Henceforth we shall restrict our considerations to the dipole 

potentials introduced in (c) which are restrictions of regularized continuum 

dipole potentials to Zv . Our methods apply equally well to the sort of 

potential defined in (a) and (b) which wo studied throughout most of § § 5 and 6. 
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Let Λ be a periodic box in ZV , viewed as the restriction of a 

periodic box in IRV to ZV , and let WA be an infrared regularized and 

periodized version of W on A , with -» W, as A / ZV , e.g. in the 

quadratic form sense. If W is given in terms of a scalar potential C , as 

in (a) - (c) , and C is given by (7.5) then = (-Δ^ +ε^) 1(x) , where 

is the Laplacean with periodic boundary conditions at 3Λ , and 

(ε^ > 0} is a sequence of infrared regulators . The details of how one chooses 

the periodic approximation, , to W are quite unimportant, but we shall 

require that the W^’s are reflection positive; see inequality (7.13) below. 

The Hamilton function in the periodic box, A , is given by 

Ξ (β/2)(ς,Ν
Λ
ς) 

(7.6) 

The Gibbs expectation, <—> = <—:, is given by the probability measure 

Z'L HAdp(q) , (7.7) 

with dp(q) = Π dp(qi) , and the obvious normalization factor. 

Next, we recall sufficient conditions on W , resp. C which 

guarantee that the Gibbs state, <—> , is reflection positive, [14 ] 

For q E IRV , define 

R
a
q = R

a
(q ) = (-q,...,-q ) (7.8) 

Let be a pair of hyperplanes perpendicular to the α-direction, midway 

in between two lattice planes and bisecting A into two pieces Λ
+
,Λ_ of 

equal size. Let r denote reflection of sites in A at ττ . Clearly 

r Λ = A . We define 
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(Θ q) . = R q . (7.9) 

Let q± = {VjeA
±

 · 

If A is a function of q
+
 we set 

(0
a
A)(qJ = A({0

a
q.}

jeA
_) (7.10) 

In the context of dipole gases the most natural definition of RP of a 

Gibbs state, <—>A , is 

Definition 7.1. The expectation <—>A is said to satisfy RP iff, for an 

arbitrary function A of q
+

 , 

<e
a
A(cl_)A(q

+
)>A > 0 , (7.11) 

for all α = 1,... ,v 

We now give a sufficient condition on and dp for (7.11) to 

hold. 

Proposition 7.2. 

Let dp be chosen such that 

dp(R q) = dp(q) , for all a . (7.12) 

Let Q
+
 = an arbitrary IRV-valued function on A

+
 , (i.e. Qj = 0 , 

for all j E Λ_) . Assume that 

(7.13) 

for all such Q+ , all α = 1,.,.,ν 
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Then <—>. satisfies RP. 

We do not give the proof of Proposition 7.2 which is an adaptation 

of arguments in [14], (Section 3, D). See also §5 of [6 ] ). Instead, we now 

suppose that W is defined as in (7.2) or (7.3) or (7.4). 

Let f be an arbitrary scalar function on 

A
+
  L - if W is as in (7.2) - resp. on 

(7.14) 

A
+
  L - if W is as in (7.3), (7.4). 

(Note that A
+
 is, here, considered a subset of IRV ). Let 9^f(x) = ί(Γ^χ). 

In the following we usually suppress the subscript "A" , unless a 

specific context requires adding it. 

Proposition 7.3. (Reflection positivity (RP)) 

Suppose that W is defined as in (7.2) or (7.3) or (7.4). Let C 

be of positive type, and 

C(r x,r y) = C(x,y) 

(e;f,cf) > ο , 
(7.15) 

for all f’s as in (7.14), for all α = 1,.,.,ν . Then condition (7.13) of 

Proposition 7.2 holds, and <—> is RP in the sense of Definition 7.1. 
□ 

The proof of Proposition 7.3 is given in Appendix A. (A direct 

verification of the fact that (7.15) implies (7.13) can also be found by 

modifying arguments in §5 of [ 6] ). We emphasize that the hypotheses of 

Proposition 7.3 are satisfied for C as in (7.5). In the remainder of §7 we 
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limit our attention to dipole potentials of the form specified in (c), (7.4), 

for some C satisfying (7.15). 

§7.2. Properties of the dipole potential, groundstates of dipole gases. 

Consider the v x v matrix (W^(x)) given by 

(7.16) 

where C is a translation invariant quadratic form, and C(x,y) = C(x-y) 

is its integral kernel. We assume that the hypotheses of Proposition 7.3 (RP) 

are satisfied. 

For this it suffices e.g. that, for jx( > 1-2λ , 0 < λ < 1/2 , 

C(x) has a Källen-Lehmann spectral representation, 

C(x) = f dy (a)(-Δ+a) 1(x) , for |x| > 1-2λ , (7.17) 

where du is some measure on [0,°°) with f(a+1) ^dy(a) < 00 , and Δ is 

the Laplacean with periodic boundary conditions at 3A . Then, for a suitable 

reflection-invariant continuation of C(x) to {x : |x| < 1—2λ} conditions 

(7.15) hold. Moreover, C(x) can be chosen to be of positive type. (All 

this is easy to check). 

The Fourier transform of (see (7.16)) is 

(7.18) 

with C(k) the Fourier transform of C . Let P(k) denote the orthogonal 

projection on , i.e. 
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By (7.18) 

Wc(k) = D(k)P(k) , with D(k) = k2C(k) (7.20) 

Using the spectral representation (7.17), it is not hard to show that one can 

choose C such that 

(A) C satisfies (7.15), so that <—> satisfies RP , in the sense of 

Definition 7.1; 

(B) D(k) > 0 , for all k ; 

(C) D(k) falls off rapidly, as |k| -> °° 

Let W(j) be the restriction of W to the lattice, i.e. j € ZZ . The 

Poisson summation formula expresses the Fourier transform of W in terms 

of &c : 

(7.21) 

Let l be an arbitrary vector on the unit sphere, SV 1 , of IRV . Then there 

exists a sequence (mr }°° cZZv such that 

To see this we propose to choose {m such that |mr| -> 00 , as r 00 . 

In this case 
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for all k € B , the first Brillouin zone (i.e. the dual of 7LV ) . Thus, it 

is enough to show that m/|m|->£ ,as r 00 . This follows by an obvious 

density argument. Finally, since j —~ Jm ~[~ * ^ “
 1>2,3,..., can 

clearly be chosen such that |mr| -*■ 00 , as r – 00 . This proves our contention. 

Next, we note that if (l } is a dense set of points on S , and 

{c
s
}
s=1

 is a summable sequence of positive numbers then Σ c
g
P(£

s
) is a 

strictly positive v χ v matrix. 

By condition (B), D(k) is positive, for all k . Thus 

is strictly positive, for all k £ B . (In contrast, WC(k) = D(k)P(k) is 

singular for all k E IRV ,v > 2) . 

Next, we claim that W(k) is independent of the way C(x) is 

regularized on {x : |x| <1} , up to a constant multiple of the identity. 

For, W (j) = WC (j) , for all j E ZV with Ml = 0 . Moreover, since C(x) 

has been assumed to be symmetric under interchanging x and xy , 

W (0) = c<5 , for some constant c > 0 . The Fourier transform of 

Wc (j)[1—δ. n] is clearly regularization independent, whereas the Fourier 

transform of W (0)δ. Λ
 is equal to cS 

We are now going to choose c in a way that is convenient for our 

purposes. 

Let k = (0,k2,...,k ) . (7.22) 

Then 

(7.23) 
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with (7.24) 

To prove this we recall that 

For α = 1 or γ = 1 we have 

(7.25) 

Since C is even, C(k+27rm) is even in for k as in (7.22) so that by 

(7.25) 

W (k) = 0 , for α = 1 or γ = 1 and α = γ , 

and W11(k) = is given by (7.24). Analogous statements hold when 1 is 

replaced by any α = 2,...,v 

Next, let π € B be the vector with components 

π = ±π(1-δ ) , and set 

Δ = Δ (which is independent of α ) 

(7.26) 

Let Wo(k) = W(k) - Δ1 , (7.27) 

Wo is clearly regularization independent. 

Lemma 7.4. 

For all k € B , Wo(k) > 0 , as a v x v matrix. 
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Proof. 

(7.28) 

where R is the involution ("dipole-reflection") defined in (7.8). 

Let h be an IRV-valued function on the periodic box A . Let 

h
+
 = hx , where A+ are the two halfs of Λ separated by the pair of 

hyperplanes π , and χ. the characteristic functions of A, . Let Θ 

be defined as in (7.9). By inequality (7.13) we have the following Schwarz 

inequality 

-(h,Woh) = -(h.,Woh )-(h ,Woh )-(h ,Woh )-(h ,Woh ) 

< -(h
+
,Woh

+
)-(h_,Woh_) 

+ 2[-(h ,Wo6 h )]1/2 [-(h ,Wo0 h j|1/2 

< -(h
+
,Woh

+
)-(h

+
,wo0 h)-(h_,Woh_)-(h_,wo0

a
h_) 

= -[1/2 (h +Θ h ,W(h +Θ h
A
))+(h +Θ h ,Wo(h +Θ h ))] 

7.29) 

If the sides of A have length 2 , sa = 1,2,3,..., α = 1,.,.,ν , we 

may iterate inequality (7.29) for a new choice of π in both terms on the 

r.s. of (7.29). Proceeding in this way, with all possible choices for TT 

and
 α

 , we arrive at the inequality 

(7.30) 

where h(i)(j) = R(j-i)h(i) . (7.31) 

(If the lengths of the sides of A are even, but not powers of 2, (7.30) 

follows from (7.29) and an optimization argument of the sort used in 

[14 , Section 3]) . 
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We now show that each term on the r.s. of (7.30) vanishes. This 

follows from 

(7.32) 

This identity is proven by a computation : 

with πν as in (7.26), by (7.28) and (7.27). Since this holds for all a 

and γ , (7.32) is proven. 
■ 

Remark. Identity (7.32) shows that any dipole configuration 4 defined by 

= R(j)q , for some q € IR (7.33) 

has vanishing energy density (w.r. to the dipole potential Wo) . By Lemma 7.4, 

O 
q is therefore a groundstate configuration. 

We now show that, in certain cases, the inequality of Lemma 7.4 can 

be improved. For this purpose one must first pass to the limit A =ZV . 

Let l be some unit vector in IR
V

 . Let Wo(m,k) , k = (k2,...,kv) , be 

the partial Fourier transform of Wo(j) with respect to (j2,...,jV) ; 

j 1 Ξ m E Z . 

We set Vk(m) = -(l,Wo(m,k)R
1
l) . (7.34) 
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Then inequalities (7.13), resp. (7.15) clearly imply the following inequality 

for V : 

(7.35) 

for arbitrary {z \°° a Œ , i.e. V-* is a translation-invariant, reflection 

positive two-point function. Such two-point functions are known to have the 

following spectral representation 

(7.36) 

See e.g. § 5 of [6] . 

The Fourier transform of V^-(m) in m is therefore given by 

(7.37) 

for some constant c = ck . (see §5 of [ 6 ], discussion of Model 5.3). From 

(7.37) follow 

V->(0) > Vk(k1) , for k
n
 φ 0 

V£(V > \(π) » for k1 = 1 7T , 

(7.38) 

provided Vk-(m) Φ 0 , for some |m| >1 , 

and Vk-(m) -> 0 , as |m| -> °° 

(7.39) 

For Vk>(m) as defined in (7.34), (7.39) is checked easily. Thus, we have 
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Proposition 7.5. 

(1) as in (7.26)) , 

if k φ ± π(1-δ ) , for some μ 

(2) 

if k φ ± πδ , for some μ 

Proof. 

By (7.38), (7.34) and the definition (7.8) of , 

(i) for k1 Φ 0 

(ii) for k1 = ± π 

(iii) for k1 = 0 

(iv) for k1 = ± π . 

Next, using first (i) and then (iv) with 1 and a interchanged, we see that 

and if k = ±π[1-δ-, ] , for some μ , at least one of the inequalities is 

strict, so that 
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, and exchanging 1 and a , 

if k = ±π[1-δ ] , for some μ 

This proves (1). To prove (2) we apply (ii) and subsequently (iii) 

with 1 and a interchanged. This gives 

and if = ±πδ^ , for some μ , at least one inequality is strict. 

■ 

We now consider the specific energy of some periodic, two-dimensional 

dipole configurations, arising in estimating contour probabilities in a 

Peierls argument; see Section 7.5. (The subsequent inequalities extend to 

arbitrary dimensions, v > 2 . In order to economize on notations we only 

consider v = 2) . 

(I) We define a dipole configuration, q
I
 , by q

(I)
 = (1,0),q^ . = (-1,0), 

(f ψ ) ; for general j Ç.ZL , let qj be given by consecutive reflections 

of (q^^,q^^) in lines parallel to the 1- and 2-axes (between sites), i.e, 

if j2 is even 

if is odd . 

Given an arbitrary pair (qo,q^
Q
 1)) of vectors in IR2 , we set 
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and for 22 = 4n+l,4n+2 , 

n Ç.7L . The IR -valued function, q , on Z2 obtained in this way is called 

"periodic extension of (q ,q, . )" . 

(II) q(II) is defined as the periodic extension of 

(III) q(III) is defined as the periodic extension of 

(IV) q is obtained from 

(V) q is obtained from 

(VI) Finally q(VI) = 0 is the periodic extension of 

We now introduce the specific energies ε , r = I,...,VI , of these 

configurations : 

(7.40) 

Proposition 7.5 has the following 
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Corollary 7.6. 

(1) ε1 = ενΙ = 0 

(2) εr > 0 , for r = II, III, IV, V . 

Proof. By Fourier transformation of the r.s. of (7.40), εI = Wo((0,±TT)) - 0 , 

ε = 0 , because q = 0 . 

For r = II, IV, V , the proof of (2) is a simple variant of the 

arguments used in the discussion of Model 5.3, §5 of [ ] : By Fourier trans-

formation and the fact that q is periodic, ε is easily seen to be of 

the form 

(7.41) 

where r 
is a discrete set of momenta in B , Cj > 0 , for j = l,...,J

r 

and 

Suppose now that q(k) is the Fourier transform of a (periodic function 

q on Z . If q (k) = 0 and q (k) <χ ô (k--(0,±Tr) ) then q α q · But 

q^r^ q(I) r = II, IV, V . Thus there exists j such that 

supp q(r)(k) 3 kV. , and kr = (0,±π) , for r = II, IV, V . By (7.41) and 

Lemma 7.4 , 

and, by Proposition 7.5, the r.s. is strictly positive. 

Next, we note that 
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(7.42) 

We recall that the 1-component of is invariant under translations in 

the 1-direction. Thus, (7.42) implies 

This and translation invariance of Wo now imply ε
III

 = e
IV

 + e
V
 which 

is strictly positive by what we have already proven. 

D 

Corollary 7.6 is going to play an important role in the estimation of 

contour probabilities in the Peierls argument; see Section 7.5. 

Next, we want to determine the set S cz B of momenta k such that 

Wo(k
s

) is singular, i.e. has at least one zero eigenvalue. A momentum 

ks E S is called a singular momentum. Let [TT^
0
^] be the set given by 

and all its 2V ^-1 periodic images. 

By periodicity, Wo(k) = ίί0(π^α^) , for all k E [π^α ] . Since 

Wo (π^) = Wo (π^) =0 , γ = 1,.,.,ν , Wo(Y^) has a zero eigenvalue, 

for all a = l,...,v , i.e. 

(7.43) 

We now pose the problem to show that 

(7.44) 

and to determine the behaviour of Wo(k) for k in the vicinity of 

for some a . We think that this problem can be solved for a very general 
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class of dipole potentials obeying inequality (7.13), (i.e. reflection posi-

tivity). Unfortunately, the analysis in the general case appears to be rather 

subtle, and we therefore limit our considerations to a nearest-neighbor dipole 

potential. 

Let r = (x21+···+x2v) · For v > 2 , the Coulomb potential is given 

by const. r-(v-2). We set C(x) = r-(v-2), for r > 1. Consider the dipole 

potential 

(7.45) 

The Coulomb potential is obviously a reflection positive two-point function 

(du (a) = δ (a)da in (7.17)) and thus satisfies (7.15). Therefore the 
o 

restriction of WC to , W , satisfies (7.13). The proof of the following 

lemma is trivial. 

Lemma 7.7. 

Let W satisfy (7.13). Then W' , defined by 

W’(j) = 

W(j), |j| < l 

o, |j| > 1 

satisfies (7.13). 

More generally, if V(j) is an arbitrary reflection positive two-point 

function then V' , given by V'(j) = V(j) , for |j| <1 , V’(j) = 0 , 

otherwise, is reflection positive, as well. 
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Let eα be the unit lattice vector in the α-direction, and peα 

the orthogonal projection onto eα. Then, for Wc as in (7.45), 

W'(0) ∞ 1 , and W’(j) = 0 , for |j| > 1 

(7.46) 

By Lemma 7.7, W’ satisfies (7.13). 

The Fourier transform of W’ is given by 

(7.47) 

where Δ (k) = 2[v- Σ cos kα ] , c is some constant. Note that W'(k) is a 

diagonal matrix (in the obvious basis). We define 

W°(k) = W'(k)+[c+2(v-2)(3v-2)]l (7.48) 

Then so that our normalization condition is satisfied. 

The eigenvalues of W°(k) are given by 

(7.49) 

Equ. obviously shows that the only zeros of λα (k) are the points in 

[π(α)] . Moreover, λµ (π (α)) = 4v(v-2) > 0, for μ ≠ α. Finally, 

λα (k) > δ (v-2) dist (k, [π (α) ])2 , δ ≈ 1 , 

for k near one of the points in [π (α) ] . We summarize in 
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Lemma 7.8. 

For ŵo as in (7.46) - (7.48) , 

For k E S , ŵo (k) -1 exists, and (ŵo (k) -1) = ŵo (k) -1 is bounded uniformly 

in the complement of any small, open neighborhood of [π (µ)] . Finally 

0 < (ŵo (k) -1) = ŵoαα (k)-1 < [δ(v-2)dist(k,[π(α)])2]-1, δ ≈ 1 , for k 

near [π(α)] 

For general dipole potentions, WCαγ = - ∂2 /∂xα ∂xγC, where C is 

given by (7.17) (with supp dµ C {0} U [ε,∞) , ε > 0) one can show without 

major efforts that 

for some unitary matrix with the property that 

(7.50) 

We make the following 

Conjecture 7.9. 

For the general class of dipole potentials discussed here, 
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and 

(7.51) 

for some finite ε 

We remark that the groundstate configurations, q , of a dipole 

potential W° must satisfy 

supp q c S 

For the potential Wo introduced in (7.46) - (7.48) or for some Wo for 

which Conjecture 7.9 holds, supp qα = [π(α)] , if q is a groundstate 

configuration, i.e. q is given by 

qj = R(j)q , q E IRV ; see (7.33). 

The following is a portrait of a two-dimensional ground state configuration 

In the next three sections we show that under suitable conditions 

the ordering persists at sufficiently small temperature and large activity. 
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§ 7.3. Infrared bounds for dipole two-point functions. 

We now return to the discussion of the dipole lattice gases specified 

in § 7.1, (7.4), (7.6), (7.7). We assume that the a priori distribution, dp , 

of the dipole moment satisfies 

dp(Rαq) = dp(q) , for all a ; see (7.12). 

Moreover, W is supposed to be reflection positive in the sense of inequality 

(7.13). 

If we replace dp by 

dpo(q) Ξ e(e/2)Aq2dp(q) (7.52) 

and W by Wo = W-Δ1 , with Δ = Δ , defined in (7.26), (7.27), the 

Gibbs expectation <—> , see (7.7), remains unchanged. Moreover, 

dpo(Raq) = dpo(q), and 

(7.53) 

where see (7.27), (7.28) and (7.32). 

Proposition 7.2 (reflection positivity of <—> ) permits one to derive 

the usual chessboard estimate, see [L6,14 , 6], which, by a general argument 

[14] yields the following 

Theorem 7.10. (Gaussian domination) 

Let h be an arbitrary IR -valued function on ZZ . Then 
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-β(q,Woh)> < e (β2/2)(h,Woh) 
(7.54) 

Outline of proof. 

We temporarily assume that dpo(q) = P
O
(q)d

V
q , with p

O
  L1(R

V
) 

and Po(q)
 >

 0 , almost everywhere. We consider 

(7.55) 

Define Fh(q) = P
o
(q-h)/p

o
(q) . By a change of variables (q+h→ q) one gets 

Next notice that 

Vh)(V = = Wr/ 
FR h^qr » 

(7.56) 

since, by (7.53), p (Rα q-h) = po (q-Rα h) . The chessboard estimate [14, 6] 

thus gives 

(7.57) 

By reversing the change of variables in all terms on the r.s. of (7.57) 

(qj → qj+R(j-i)hi ), we obtain from (7.55) - (7.57) 

with hj(i)
 =

 R(j-i)hi · The last identity in (7.53) and (7.55) show that 

ZΛ(h
(l)

) = ZΛ(0) = ZΛ , so that 
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Vh) i h 

This is a rewriting of (7.54). 

The case of an arbitrary measure dpQO obeying (7.53) follows from 

the special case treated above by a limiting argument. 

Next, we replace h by eh in (7.54), expand both sides to second 

order in  , subs tract 1, divide by 2 and take ε ¯ 0 . This yields 

(using the normalization condition for WO) 

<|(q,WOh)|2> < β 1(h,W°h) . (7.58) 

Let S be the set of singular momenta of W° , (i.e. W°(k
s
) has zero 

eigenvalue for ks  S ; see § 7.2). Let h be of the form 

h = (W°)- 1g , 

with supp g  S = 0 . Then (7.58) yields 

<|(q,g)|2>
 < β- 1(g,(w°)- 1g) . (7.59) 

Upon Fourier transforming both sides of (7.59) one finds 

Corollary 7.11 (Infrared Bound) 

0 < Q(k) < β_1 W°(k)- 1 , for k  S , (7.60) 

in the sense of an inequality between positive matrices. Here Q(k) is 

the matrix defined by 
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Q(k)αγ = <qα(k)qγ(k)> (7.61) 

It is standard to transfer (7.54) and (7.60) to the thermodynamic 

limit. 

For the nearest neighbor potential W' defined in §7.2, (7.46) - (7.48), 

and, more generally, for any reflection positive dipole potential for which 

Conjecture 7.9 holds we can sharpen Corollary 7.11 in the following way : By 

Lemma 7.8 (resp. Conjecture 7.9), it is enough that the function g in 

inequality (7.59) has the property that 

gα(k) = 0 , for k  [π(α)] (7.62) 

Define a matrix-valued distribution, M(k) , by 

(7.63) 

with m > 0 , for all α = 1,.,.,ν . Then inequality (7.59) and (7.62) 
a 

yield, after Fourier transformation, 

0 < Q(k) < β 1 W°(k) 1+M(k) (7.64) 

in the sense of inequalities between positive, matrix-valued distributions, in 

particular 

(7.65) 

for some m > 0 . 
a = 

Fourier transformation of (7.65) shows that 
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(7.66) 

as |j|→ ∞
 9

 i.e. <—> is not an extremal Gibbs state if mα > 0 , for 

some α = 1,.,.,ν . In the last two sections we show that, under suitable 
v 

assumptions on W and dp , Σ mα > 0 , for β sufficiently large. We 

close by noticing that if <—> is the thermodynamic limit of states <—>>^ 

which are symmetric under exchanging coordinate axes, (i.e. Λ is a hypercube) 

then m1 = ··· = mv , and <—> is a mixture of at least 2v extremal 

Gibbs states, <—>>, which break translation invariance and are characterized 

by 

<
qj

>(X
'
) = (7.67) 

where :λ = 1,...,2v,...} are vectors obtained from some vector 

 RV by applying arbitrary rotations around the origin which leave 

the unit cube centered at the origin invariant. This follows from the assumed 

symmetry of <—>> , by the general theory of decomposition into extremal states. 

<q20> 
§ 7.4 Lower bounds on 

In this section we establish uniform lower bounds on <q20> which we 

then exploit in conjunction with the basic infrared bound (7.64) of § 7.3 

(and uniqueness for small β or small activity) to complete the proof of 

existence of phase transitions at small temperatures, as the activity is 

varied, in v > 3 dimensions. 

We follow the standard strategy [20] . Consider the nearest-neighbor 

dipole potential W° defined by 
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W°(j) = 

for |j| = 1 

2(v-2)(3v-2)1 , for |j| = 0 (7.68) 

0 , otherwise , 

where pe is the orthogonal projection onto a unit lattice vector, eα ; 
a 

see (7.46) - (7.48) , § 7.2. By the basic infrared bound, inequality (7.64) 

of § 7.3, 

(7.69) 

with 

Integrating both sides of (7.69) in k over the first Brillouin 

zone yields 

(7.70) 

For the potential W° specified in (7.68), we may apply Lemma 7.8, § 7.2 to 

estimate 

I(v,W°) = ∫ dVk tr W°(k) 1 

B 
(7.71) 

That lemma shows that 

I(v,W°) is finite for v > 3 (7.72) 

(We note that (7.69), (7.70) and (7.72) also hold for each dipole potential 

for which Conjecture 7.9 is true). Thus 

(7.73) 
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When v > 3 it suffices to prove e.g. a uniform (in β ) lower bound on 

<q2o> in order to show that the long range order M is strictly positive. 

Let Xδ be the characteristic function of {q  RV : |q| < δ}. By the chess-

board estimate and the fact that (q) = χδ(Rαq) , for all a , we have 

(7.74) 

Suppose now that 

(7.75) 

From (7.74) and (7.75) we get 

(7.76) 

In order to derive (7.75) we use the following estimates. 

< sup HΛ(k) || Σ |q(k) | 2 

Similarly, 

Η
Λ Ϊ -llw

A
ll } Uil2 · 

Thus 
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(7.77) 

and 

1Z/|Λ| , -ce/2)|lw|I |q|2 
Z ' 1 £ J e dp(q) . (7.78) 

Now, for all dipole potentials considered in this paper, 

(7.79) 

For the potential W° defined in (7.68) this estimate can be improved : 

Since W°(k) > 0 (see Lemma 7.4), 

m(δ,β) < (∫xδ(q)dp(q))(∫ e
 (B/2

||
W
°|| |q|2dp(q))-

 1
 , (7.80) 

and from Proposition 7.5, (2) and the fact that W° is diagonal, 

||w°|| = w°1
1
((π,o,...,o)) , 

so that by (7.68), and (7.47), (7.48) , 

|| w° || = 8(v-2) (v-1) . (7.81) 

Suitable hypotheses on dp together with (7.73), (7.76), (7.80) and (7.81) 

suffice to show that 
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in the appropriate range of β’s . 

We now consider an example of a distribution dp corresponding 

to a (Dhc) ensemble : 

dp (q) = [δ(q)+zδ(|q|-Q)]dVq (7.82) 

Choosing δ < Q we have 

∫xδ(q)dp(q) = 1 , and 

where μ = u(v,Q) = 4(v-2)(v-l)Q2 

(7.83) 

Thus 

Μ > Q2ze βu(1+ze 3μ)”1-3 1I(v,W°) . (7.84) 

Thus, for z = zoeβu, 

M > Q
2
Z
O
(1+Z

o
) 1-$ 1I(V, W°) > 0 , 

for 3 > I(v,W°)(1+z )z XQ 2 . 

(7.85) 

Equivalently, if β > I(v,Wo )Q-2 then 

Μ > 0 for z0 > (Q2βI(V,W°)_1-1) 1 . (7.86) 

V 
Since Μ = Emα , with mα > 0 , for all α , Μ > 0 implies that mα > 0 , 

, a a 
α=l 

for at least one a . As remarked at the end of § 7.3, there then exist at 

least 2v extremal Gibbs states, <—>, with 

<q.>(λ) = R(j)q(λ) , 
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for some non-zero vectors q(λ)Rv, λ = 1,...,2v,... related to each 

other by sequences of 90° rotations. We remark that the results proven in this 

and the last section for the nearest-neighbor dipole potential W° defined 

in (7.68) can be extended to all dipole potentials for which Conjecture 7.9 

can be proven. 

Finally, we point out that for the nearest-neighbor dipole potential 

W° defined in (7.68), resp. (7.46)-(7.48) a standard high temperature ex-

pansion yields uniqueness and exponential clustering of <—>> at small 

values of β , for all z . If W is a lattice dipole potential of arbitrary 

range chosen such that W(k) is invertible for all k  B (see § 7.2) we 

can use inequality (2.35), § 2 to show that for z < 1 

Q(k) < (βW(k)) 1
 , 

where Q(k) = <qa(k)qγ(k)> 

This inequality (with the Riemann-Lebesque lemma) proves absence of long 

range order in the two-point function, <qoqj> , for all β and all z < 1 . 

(The techniques of § 5 may permit to extend this to all z < e°(β)). 

§ 7.5 Two-dimensional dipole gases : the Peierls argument 

In two dimensions the techniques of §§ 7.3 and 7.4 are certainly 

not applicable. However, for a very general class of dipole potentials 

satisfying reflection positivity (see (7.13), (7.15), § 7.1) and discrete 

distribution dp , 

e.g. dp(q) = [ô
o
(q)+z1{ô(q-Qe1)+6(q+Qe1)} 

+ z
2
(6(q-Qe

2
)+6(q+Qe

2
)}]d2q 

u.o/; 
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one can use the Peierls-chessboard method, see [5 ,14 ,6 ] , to establish 

ordering for sufficiently large β, z1 and · This method can be used in 

arbitrary dimension v > 2 , as long as the symmetry group leaving dp 

invariant is discrete. This is of considerable interest as long as Conjecture 

7.9 is unproven for long range dipole potentials. We briefly sketch the 

method for v = 2 and dp as in (7.87). Details and generalizations to 

v > 2 and a large class of dp are straightforward and can be inferred from 

the references quoted above. Let 

1 , q = ± Qe1 (i.e. q = ↑ or ¯ ) 

Xu 
d , otherwise. 

Xr 
z 

1 , q = ± Qe2 , (i.e. q = or <- ) 

0 , otherwise 

*o 

f 1 , q = o (i.e. q = φ ) 

) , otherwise. 

Where convenient we identify {0,u,d,r,l} with {0,1,2,3,4} . We define 

P
s
(i) = XgWi)^) » 

with R(j) = Π , and R as in (7.8), § 7.1. One then checks, using 
a a 

(7.9), (7.10),a§ 7.1 , 

Θ P(j) - P (r j) , (7.88) 

for all s and all α = 1,... ,V . For dp given by (7.87) 
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Po(j)+Pu(j)+PdÜ)+Pr(j)+P£(j) = 1 » (7.89) 

for all j 2ZZ2 . 

We choose W to be a general, reflection positive dipole potential 

of the type studied in § 7.2 for which, in particular, Corollary 7.6, § 7.2 

is valid. We then choose <—> to be a some limit of a sequence of periodic 

states, <->
Λ · These states (and thus any limit) satisfy reflection positi-

vity (see Propositions 7.2, 7.3, § 7.1), permitting to apply the chessboard 

estimates [14] , and are symmetric under exchanging u with d and r 

with l . Thus 

<p
u
(j)> = <Pd(j)> , <P

r
(j)> = <Pl(j)> , for all j . 

Furthermore 

<P
u
(j)> > <p

r
(i)> , for z

1
 > z

2
 . 

Thus 

<p

u
(j)> = <pd(j)> > 1/4(1-<Po >) . (7.90) 

In order to prove that <—> violates clustering (i.e. is not extremal), we 

propose to show that 

<P
u
(0)P

d
(j)> < e-

 Κβ
 , for all j , (7.91) 

and -Κ'β 
<P > < e , (7.92) 

for some positive constants K and K' and all β · Obviously, (7.90) -

(7.92) prove that for β large enough <Pu (O)Pd (j) >→<P ><Pd> , as | j |→∞ · 
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By (7.88) and the chessboard estimate, 

Now , where 

εI is the groundstate energy defined in (7.40), § 7.2. We choose such 

that 

(7.93) 

This yields (7.92). 

To prove (7.91) we apply the standard Peierls argument : By (7.89), 

where Ω is an arbitrary, bounded square in ZZ2 , containing 0 and j . 

The r.s. is then expanded and resummed, using 0 < Pα(j) < 1 , for all 

and j . This yields, after taking Ω ↑ ZZ2 , 

where γ labels an arbitrary contour γ ZZ consisting of finitly many 

pairs of nearest neighbors (i,i') separating 0 from j . (See [5, 14 ] 

for precise definitions). Here 

α = α' = 0 , or a # α' , for all (i,i') . (7.94) 

Applying the chessboard estimate to the r.s. as in [14 ] , using (7.88) we 

obtain the upper bound 
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(7.93) 

where a and α’ are as in (7.94), the product on the r.s. of (7.95) extends 

over all "horizontal" nearest-neighbor pairs, with a,α’ depending only on 

(-1)1 , and |γ| is the number of pairs in γ . Each term under the sum 

on the r.s. of (7.95) is a thermodynamic quantity that can be estimated 

explicitly. One sees by inspection that 

-1/2 
with Γ00=z1-1/23 , and 

(7.96) 

where the energy densities , r = I,...,VI are defined in (I) - (VI) 

and (7.40), § 7.2. When α # a' , r(a,a')  {II,III,IV,V} . By Corollary 

7.6, § 7.2, 

εΓ - εI > 0 , for r = II,III,IV,V . 

Thus (7.97) 

for some constant K" > 0 , and α,α' as in (7.94). The main inequality (7.91) 

follows from (7.95) - (7.97) , by the usual combinatorial arguments; see 

e.g. [5, 14]. 

This completes the proof that <—> violates clustering for large β . 

We emphasize that the range of the dipole potential W is arbitrary, 

and that only the discrete nature of dp (not the explicit choice (7.87)) 

was important, throughout § 7.5. 
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Appendix A : Reflection Positivity (RP) 

This appendix briefly reviews reflection positivity for monopole and 

dipole gases in both the φ- and q-representations. We assume the reader has 

some familiarity with reflection positivity as developed in [13,14] 

Let L
O
 be the hyperplane x° = 1/2 lying between the points of the 

lattice L = ZZv and define r to be reflection through Lo . We set 

L
+
 = {xL : x° > 1} 

L_ = {x  L : x° < 0} 

and denote by F± functions of {φ(x)}
x
L 

Definition. A quadratic form C on l2(L) is called reflection positive (RP) 

if C(x,y) = C(rx,ry) and 

<6f,Cf>
£
2
(L) -° » supp f Œ L+ » 

where 

(θ f)(x) = f(rx) 

By general properties of Gaussian measures [15] we have 

Proposition A.1. If C is RP then for A € F+ 

< ΘΑ A>BC > 0 

where 

(θΑ){φ(x)} = Α{φ(rx)} . 
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Remark. For C= β(-Δ+ε ) 1 , Prop. A.l follows from the fact that 

1 2 
exp(- -7Γ-- (φ—φ ’ ) ) is the kernel of a positive operator corresponding to the 

2p 

transfer matrix. 

Corollary A.2. For the monopole gas ensemble (Mg) with F satisfying the 

neutrality condition 

dλ (q) = dλ(-q), and Λ = rΛ , 

we have 

<θΑ A>Λ(β;F) > 0 . 

Proof. Let FΛ. = Π F(φ(j)) and let Λ± = Λ  L± . Since F is real and 

FΛ = FA/A_ ’ with FΛ_ = θ(FΛ
+

} , 

<θΑ A>Λ(β;F) = <FΛ>
 1

<6(AF
A
 )(AF

A
 )>

gc
 . 

By Proposition A.1 both factors on the right are positive. 

Remark. Suppose that the limiting state, 

is translation-invariant; (see the remarks after Theorem 2.4 . Then 

it admits a positive semi-definite transfer matrix, Tφ . See [13,14]. 
TΦ 

Define a scalar product on the space, F
O
 , of functions 

A,B,... of {φ(x) : x = (x1,... ,xV)  L , x1 = 0} by 

<A,B> = <AB>(β;F) . 
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Let Bx be the translate of B by the vector x € L . Then for A, B in Fo 

(A.1) 

Let e be a unit vector in an arbitrary direction of L , e.g. the x1-di-

rection, and let A ε Fo .It then follows from (A.l) and the positivity of 

T that 

<AAne > (β;F) = <ΑΑ|n|e > (β ; F), and (A.2) 

<AAne > (β;F) is convex on n = 0,1,2,... . (A.3) 

This is applied in §4. 

Next, we reformulate Corollary A.2 in the q-representation. Let 

q± = {qx : x ε L±  Λ}, and define 

(0q)x = -qrx 

(θA){q
x

} = A{-q
rx

} 

(A.4) 

Corollary A.3. Consider the monopole gas ensemble. Assume that C is RP, 

dλ(q) = dλ(-q) and Λ = rΛ. For an arbitrary function A (q+) we have 

<θΘΑ A>Λ(β;F) ≥ 0 

Proof. This may be seen by applying Corollary A.2 to the function 

where dP is an arbitrary, complex measure on R. The sign change in 

θq (r.s. of (A.4)) comes from complex conjugation. 
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By general arguments [13,14] there exists then a selfadjoint transfer 

matrix, Tq. On can deduce from (A.3), (A.4) and (2.29) that is not 

positive, in contrast to the transfer matrix, Τϕ, of the monopole gas in 

the ϕ - representation. See §4. 

We now turn to the discussion of RP for the dipole gas in the 

(Dg) ensemble. 

Let ϕ be the Gaussian process over RV with mean 0 and covariance 

BC . Let L = L ZZv be the simple cubic lattice of mesh L(= 1,2,3,...) . 

We define = {x ε IRV : x° = 0} . Let 0o be a finite, closed set of 

points contained in a square with sides of length <L parallel to the axes 

of L , centered at the origin 0 ε L . 

The translate of 0 to a site x ε L is denoted 0x . We define 

So± = (f : supp  O ±}, and (A. 6) 

Fo(±) the functions of (φ(χ)}
 x

ε o(±) 

Definition : 

A quadratic form C on L2 (IRv) is said to be 0+ - RP iff 

C(x,y) = C (rx,ry) , for all x,y in 0+, and 

(θf,Cf) ≥ 0, for all F ε SO+. (A.7) 
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Examples. 

1. Clearly C = (-Δ+ε) -1 is 0
+
 - RP . 

2. Let d = dist (0
+
,0-) . By (A.5) , d > 0 . Define C'(x-y) by 

integral kernel of (-Δ+ε) -1 if |x-y| ≥ d 

C' (x-y) = 
g(x-y) , if |x-y| < d , 

(A.8) 

for an arbitrary function g . 

Then C' is 0
+
 - RP . The proof is : 

(0f, C'f) = (θf, Cf) , for all f ε So+, 

because C'(x-y) = C(x-y) when |x—y| ≥ d , and 

dist (supp f, supp θf) ≥ dist(0
+

, 0-) = d. 

3. Let C = (-Δ+ε) -1, where Δ is the finite difference Laplacean on 

l2 (ZΖν) , and let 0o be an arbitrary subset of sites in ZZv of 

distance ≤ (L/2) to 0 . Then C is 0
+
 - RP . 

[A general way of constructing 0
+
 - RP C's can be inferred from 

[14]] . 

We now recall the definition (2.25), (2.26) of the (Dg) ensemble 

We choose F of the form 

(A. 9) 

see (A.6). 

For δ as in (2.24), (A.9) holds if 
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supp dA Ç 0 , e. g. supp dX c {q: | q | y) . (A.10) 

In accordance with (2.24), (2.25) and Proposition A. 1 we define 

(A.11) 

where, for q = (q°,q1,...qV 1) , 

Rq= (qo ° 1 v-1 
(A.12) 

Moreover 

(0q) = Rqrx (A.13) 

That this definition of the reflection of dipole moments is the right one can 

be understood by viewing a dipole as two oppositely charged monopoles and then 

applying (A.4) . 

(fig.1) 

We now suppose that 

dX (q) = dX(Rq) (A.14) 

which is again some sort of neutrality condition. Assuming (A.9), (A.11) and 

(A.14) we find 
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(0F)(φx) = Ρ(φrx ) , (A.15) 

for all x € L
+

 . 

Using Proposition A.1 and (A.15) we conclude 

Corollary A.4. 

Assume (A.9), (A.11) and (A.14). Suppose that Λ = rA is reflection-

invariant. Then for all A £ fo+Q 

+ 

<ΘΑ A>
A
(B;F) > 0 . 

Remark. 

We note that Corollary A.4 remains true for the (Dn he) and the 

(D h c ) ensembles with L =ZZV , 0+ = L+ , and (6q φ)(x) = φ(χ+q)-φ(χ) , 

where q is an arbitrary lattice unit vector, and dX obeys (A. 14). The 

proof follows from the fact that exp[z cos(φ-φ')] , resp. 1+z οos(φ-φ') , 

z > 0 , are obviously the integral kernels of positive quadratic forms (the 

Fourier transforms of exp z cos φ and 1+z cos φ are non-negative) , by 

the arguments used in [16]. 

Next, let A be a function of q
+

 , where 

q± = {qx £ supp dλ}xcL+ (A.16) 

we aerine 

(ΘΑ)(q_) = A(0q_) (A.17) 

Mimicking the arguments used to prove Corollary A.3 - mutatis mutandis - and 

(A.13), (A.17) we get 
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Corollary A.5. 

Under the hypotheses of Corollary A.4, 

<0A.A>
A
(3;F) >, 0 , 

for arbitrary functions A only depending on q
+

 . 

Further discussion and important applications of Corollary A.5 

(infrared bounds and existence of phase transitions) can be found in §7. 
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Appendix B : Complex translations and electrostatics 

Let Σ be a connected, bounded region in ZZv and p some charge 

density inside Σ such that 

dist(supp ρ , 9Σ) > 0 

Let C (x) = £C(x-y)p(y) (Bl) 

Notice that Cp is linear in p . 

We now look for a charge density σ = σp on 9Σ with the property 

that 

Cp (x) = C (x) , for x € 9Σ U Σε , (B2) 

. c 
with 9Σ the boundary and Σ the complement of Σ . If (B2) holds then, by 

linearity, 

C p(
x
) -

 c
Q(x) =

 c
 σ

(x) = 0 , for x e 3Σ U Ie . (B3) 

Moreover, 

(-AC )(x) = p(x) , for x ί 9Σ , (B4) 

since σ(χ) = 0 , for x £ 3Σ 

Thus C ρ_
σ
 is the potential created by p with O-Dirichlet data 

at 9Σ, i.e. 

(B5) 

where CD is the Green's function of -Δ with O-Dirichlet data at 9Σ . By 

applying the Laplacean with free boundary conditions to both sides of this 

equation we find 
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(-AC )(x) = -σ(χ) = (-ACDp)(x) , x ΠΣ , 

i. e σ(χ) = (ACDp)(x) , for x £ 8Σ 
P 

(B6) 

Next, notice that 

(B7) 

because C^(x,y) > 0 and p(y) > 0 . Moreover C^(x) = 0 for x £ 9Σ U Σc2 . 

Thus 

(B8) 

By the lattice version of Gauss' theorem, 

(B9) 

Thus, combining (B.8) and (B.9) and using linearity, i.e. 

(B10) 

we find 

(B11) 

Next, we compute electrostatic energies. We set 
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(B12) 

For the purpose of renormalizing the activity of small dipoles we wish to 

compute Ep - Eo . Using (B12) and summation by parts we find 

E -Eo = 1/2 EA(Cp +CO )(x) V(Cp -Co ) (x) 

= 1/2 Σ( ρ(χ)+σ(χ) )Cp-o (x) (B13) 

= 1/2 Σ p(x)Cp-o (x) , 

and we have used (Bl) and (B3) . Thus 

(B14) 

which follows from (B11). 

We now show how these considerations can be applied to renormalize the 

fugacity of isolated dipoles. We note that, for arbitrary p , 

iφ ( p) -βΕρ 
so that 

(B15) 
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Let now p be the charge density of an isolated dipole moment r located at 

the origin of Z2 , i.e. 

p(y) = δ(y) - δ(y-r) (B16) 

r 
Choose for Σ e.g. a spherical region centered at the point r/2 of mean 

radius |r| . Then 

(i) 

(ii) Σ| p(x)|=2, and 

(iii) 

for some constant K independent of |r| . Thus 

(B17) 

Bv construction, see (B2), Cp (x) = C (x) , for x 6 3Σ U fC . Moreover, the 

dipole is isolated, in the sense that there is no other dipole inside Σ . 

Therefore we may replace 

1+z cos (δ φ) (0) = 1+z cos<l>(P) 

by 1+z cos φ(σ) , with σ supported on 

(B18) 

z < z οχρ[-(β/2·ΐτ) log j r | +βΚ] 

We have thus found a purely electrostatic substitute for the technique used to 

prove Lemma 5.3
 }

 5Λ 
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