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Abstract.

We study quantum mechanical systems of particles with Bose- or Fermi statis-
tics interacting via two-body potentials of positive type, in thermal equili-
brium. We rewrite partition function, reduced density matrices (RDM's) and
correlation functions in terms of Wiener- and Gaussian functional integrals
(sine-Gordon transformation). This permits us to e.g. apply correlation inequa-
lities. Our main results include an analysis of stability versus instability

in the grand canonical ensemble, and for charge conjugation invariant systems :
upper and lover bounds on RDM's, existence of the thermodynamic limit of
pressure, RDM's and correlation functions, an inequality comparing correlations
with Fermi statistics to ones with Bose statistice, and inequalities which

are important in the study of Bose-Einstein condensation and of superconduc-

tivicy.
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1. Hotatlons and Summary of Results,

1.1 An outline of the main results

In this paper we continue our study, initiated in [10], hereafter
referred to as 1, of classical and quantum mechanical, continuous systems in
thermal equilibrium, The systems considered here consist-of two (or more) specles
of particles interacting via two-body potentials of positive type,and in many results
an exact charge conjugation invariance is required. In I we have found new
correlation inequalities of the Ginibre type [13] for classical systems and
quantum mechanical systems without statistics("Boltzmann statistics") which
are charge conjugation invariant. We applied those correlation inequalities to
establish the existence of the thermodynamic 1imit of (the pressure and) the
correlation (RDM) and imaginary time Green's functions (ITGF).

One basic ingredient in the proof of those results, in particular of the cor-

relation inequalities, was the use of a combination of the Feynmann-Kac formula with
the sine-Gordon (or Siergert) tranaformation. These technical devices play a decisive

rdle ia the present paper, as well.

The results of Paper 1 are here extended in the following four directions :

(A) Analysis of stability and instability of quantum-mechsnical systems in the
grand canonical ensemble,

Let Eiﬂa.:i denote the grand canonical partition function in a bounded region
A f(of volume |p] ), at inverse temperature § and activity =, By stabilicy

wve mesan the lnequality,

Eﬂ(ﬁsﬂ = exp OQAl)
for sultable g >0 and z >0,
By instability we mean, roughly speaking, that, for scme g , Elﬁiﬁ.ti has
a singularity in z at some finite, positive value z and E A(E,l] = fem,

for =z = :ﬁ.



See Section 2.

(B} Proof of existence of the thermodynamic limit of the pressure feor stable
two-component, charge conjugation invariant systems of arbitrary statistics.
See Section 2.

Remark. In (A) and (B) the particles may have arbitrary spin, and the results

outlined in (A) do not require charge conjugation invariance.

(C) Uniform (in A) upper and lower bounds on RDM's and ITGF's for charge
conjugation invariant systems with Bose statistics and sufficiently small
activity; (Fermi statistics cam be treated , too,with our methods, but the
resulting bounds are not particularly useful). See Sectiom 5.
(D) Existence of the termodynamic limit of ROM's and ITGF's of charge conjugation
invariant systems with Bose statistice (below the breakdown of stability). We
also prove a comparison inequality between RDM's with Fermi-resp.bose statistics
and study the effects of interactions with the electromagnetic field. See Sectionm 5.
In Section 3 we recall and extend the correlation inequalities
of I. In Section 4 we give a simple derivation of Ginibre's formulas(see[12])
for the RDM's and ITGF's by using Gaussian functional integrals, as in [7]

and paper I (sine-Gorden-or Siegert transformation) , in conjunction with

Browvnian motion. The sine-Gordon transformation permits a derivation of Ginibre's
formulas for the HDH’I from elementary, known facts concerning ideal gases of par-
ticles in an external (purely imaginary) potential. This gives our elaborations
on the sinme-Gordon transformation a certain degree of perfection. We also show
how to include interactions with the (classical or quantized) electromagnetic

field in this formalism.



1.2, Someé notations and definicions,

The physical systems we study consist of two specles of quantum

mechanical particles of mass m, and charge ii=1,2 .(Several of our

U
resalts extend however to arbitrarily many specles of particles of arbitrary

masses and charges). These parcicles interact via two-body potentials. The

potential between a particle of charge q at a point x € R” and one of charge

q' at a point x' ¢ RY is given by gqq' Vix,x'} . Generally v = 3, Hence—

forth it will be required (unless otherwise stated) that V be of positive type,

i.e that it be the integral kernel of a positive quadratic form on LIEII'.",‘.I -

Moreover, we shall usually assume that V(x,x') {is continuous in x and =x

and

K= sup Vix,x) « = {1.1)
x E

We are primarily interested in translation-invariant potentials,

Vix,x') = Vix-x") (1.2)

Then V 18 of positive type Lff 1ts Fourler transform, ﬁ » 18 non-negative.

Condition (1.1) can be relaxed significantly for classical systems [7,1 07

and quantum mechanical systems with Boltzmann = or Fermi - (resp. mixed Bose -

and Fermi-) statistics ; see [177.
L
First, we consider systems confined to a bounded, open reglon A c R . The

coordinates of N particles of spacies 1 are denoted {:}H = {;1,,..,:"],_

X, E A, the ones of M particles of specles 2 are Ei'}H - (:{, MR L

i H
! €A, md dlx). » Ba¥ L, daxy, = & avar (1.3)

The one-particle Hilbert space for a particle of specles 1 is L:I'f.ﬂ*dul}ﬂ C

where 51 is the spin of the particle, the N-particle Hilbert space, lFi}

is given by

151+1



—iy=

]
y (1.4)

25 +1 B

H) 1

H{UL - L2ipnd'x) B
where €y is the statistics of those particles ; g = 41 : Bose statistlics,
£y -1 : Fermi scatlscies.

The total Hilbert space of N parcticles of specles 1 and M of

species 2 1is :

[N H] - (H) = M) "y
H.'. ’ H 14 HIE.,.J'L (1.4
(')A 2 u (')
iet .ﬂ.j be the Laplacean on L (A,d Ij ] with zero Dirichlet data

at the boundary @A of A, The Hamiltonian of the (N,M) particle system

is given by -
!."H.H] ] A it Y i
Wy e - g e ot Ji!_liuzuz: b BExY, (x),) (1.5)
whiri
UGy, GDy= T 4 Vlxg,x. )+ ¥ 4 Vix, x)
l<si<j< N 1 ldejeM i
M M
+ E L qlqz\'hi.xi}
=1 =1

For potentials V of interest in non-relativistic physice (in particular if

V satisfies (1.11y, HT"H‘ is known to be selfadjoint on a dense domain
(28, +1)N + (25, +1)M
in in A, d'x HE{H+H] @& C % . , thus on Fi"h'ld,,l'bﬂ , and
exp ,[_ﬁ"{:l.!!} 1 1is trace class, for bounded cpen A and g > 0. Let r =(x,u)

be the configuration space point of a particle, whare u labels one component
of the spin, and  (£)y=(rp,..omy). Let § P(r), (5 @) (F), ) be the

integral kernel of exp [-BE:"'H} 1 without statisties, If V 1is continuous

and f=0, 'h is well-defined, positive and continuous in Lits arguments,



We define ;

IHd{r}IH-- E--- £ Iﬂdi:}u—
by oy A

. N,M)
2. (g,z, ,z2,) = E Tr (exp [ E.II[ i )
ABr R a2y 5 I M) VoxP ]
N, H=0 #r‘h A
. N M
= ¥ ¥ A2 = f dlr), dle'),
He0 Me0 N1 M1 A
r.ri*rrl}l cr{ti} .
. x 6 e B lte) (e") i, (2) 7, (1))
my € S 2 A H M*1N2 H
s E SH

where SH is the group of permutations of N elements, | Ell - |E2| =1,

o(x) the signature of m , ﬂ{ﬂH = (r -

The term corresponding to H=M=0 {5 =1, (In the case of Boltzmann statlistics,
the sum over permutations is absent . Since the Hamiltonians considered here are
spin-independent, we could take a partial trace over all spin degrees of freedom,
Then higher dimensional representations of the permutation group on x-space wave
functions appear).The pressure of these systems is given by

ph(ﬁ.ll.tzl -I%] log Hhtﬁ,tl.:z} 1.7
and the RDM's by

“n"“‘“{”H“']'H*{ﬂﬂ{?:'b!}

H+H' M+M'
4 i 5 %
-2 ( p,2) v | diu) diu")
H".H'-ﬂ HYT WY1 H'+M' N Mt



M () g u) Iy (") ')y, D)

2 aln1) ¢ 0(%2) oF ((ry @)y, (e Cut),
A

(1.8)

The definition of ITGF's is more complicated ; see 1 , Appendix 1.

Definition 1.1
A system is called charge conjugation invariant iff m =m Za, 5, " Sy 9

H=e,%e, ¥, =z, 5z, and q, Eq = -q, .

Our main mathematical tools for the analysis of the systems introduced here,

in particular of Ehﬂﬂ. £), pﬂtﬁ.:} and plfg,tavﬁ. appear in Sections 3 and 4.

1.3 Statement of the main theorems

In section 2 we prove, using an idea of Griffiths [147] ,

Theorem A,
For stable charge conjugation invariant systems with arbitrary

statistics and translation-invariant potential , V , the thermodynamic limic

plg,2) = lm p, (8,2)
AMR

exists and is independent of rhe sequence A {only assumed to be increasing).

The limit p(g,z) hes the usual convexity propercies.

In Section 5 we extend the results of 1 by proving

Theorem H.

For stable, charge conjugation inveriant svstems of Bosops

(e = 1) the thermodynamic limit of the RDM's

B E (xdy (x')y 5 (vdy (¥"))



= 1im pﬂ{ﬂ,:;f;‘ﬂf#llﬂ 2 {F}H {y*}HJ

Aty
exists for all K, M=0,1,2,,... . It is monotone increasing in z and
bounded asbove by
{ T - Hx ¥ NirgEg M Sx! , ¥y } 5 wher
m X 5 m P ] P # are
mes, o 37RO preg T b3 n
1
@ 31 g 2 )\ H toi
Plx,y) = & vz o [- |x=¥| /2381, and A= (2pa/pg)”, for
J=1 ]

£ =z exp(pi/2) < 1.

Hemarks.
(1) We show in Section 2.2 that the restriction E <« 1 in Theorem B cannot
be relaxed by much because for large : Bose-Einstein condensation destroys

scabilicy.

{2) The proof of Theorem B 1is based on a combined use of Brownlan motion,

the sine-Gordon transformation (Section 4) and correlation inequalities (Section 1) |
Whereas the first two techniques can be used to analyee very general systems

of particles of arbitrary spin and statistics, it appears that the correlation
inequalities only hold for charge conjugation invarlant systems with Bose statistics.
Theorem B can be extended to Bosons with integral spin. This is a straight-

forward genasralization of the techniques developed in Sections 3-5 which we-do not

elaborate on; but see Section 4.

{(3) Theorems A and B can be generalized to the case where the particles carry
e¢lectric charge through which they are coupled to the quantized radiation

field by minimal substitutiom

T . R .
At~ [(Tt ie A‘{xjm‘v'j t e I{thjmh (1.9)

1.j

Here I is the quantized vector potential, and * 1is an ultraviolet cutoff



with the effect that the two-point function of I:Fﬂ} is finite. We shall
discuss the generalization of Theorem B to such systems in some detail. Moreover
we shall show that the RDM's of charge conjugation invariant Bose systems
with e # 0 are bounded above by the ones with e = 0, (Section 5).

(4) Following Appendix | of I one can extend the results of Theorem B to the
ITGF's. That permits the recomstruction of a unique KEM5 state and of the
dynamics in the corresponding KMS representation , in the thermedynamic

limit [23].

(5) Existence theorems for the RDM's and ITGF's of quantum mechanical systems
im the grand caponical ensemble have previously been obtained for various
classes of short range potentials in [12] and for nom-relativistic matter with
Coulomb-replaced by Yukawa potentials in [3] . The methods used there only
work in the dilute regime (small B and z) and for short range potentials.
In comparison, our methods work for arbitrary values of B and an optimal
range of z and do not impose restrictions on the range of the potentials.
Moreover, the quantized radiation field can be included in our treatment.
However ,our assumptions of Bose-(or Boltzmann-) statistics and strict charge
conjugation invariance are physically avkward.

(6) Among our further results are ,(see Section 5):

=-An inequality saying that for fixed parameters and given potential, the
absolute values of the RDM's with Fermi statistics are bounded above,in
configuration space, by opes with Bose statistices.

= Lower bounds for the RDM's of charge conjugation invariant Bose gases which

diverge if z is large enough and

1

IV(x)| < OClxl ' =), as Ix|l =e , for some £ > O.

Our results suggest that such systems are likely to exhibit Bose-Einstein

condensation, and that one ought to be able to even prove this rigorously.

= Various (diamagnetic and other) inequalities for the partition functions



and the RDM's of systems coupled to the electromagnetic field that might be

of interest in the theory of superconductiwvity.
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2, Stability and Instability in the Grand Canenical

Ensemble, Thermodvnamic Limlt of the Pressure

2.1 Stability in the grand canonical ensemble

EIH.H)

Consider the Hamiltonian \ on the the Hilbert space H:I.H M

defined in Section 1.2 , (1.5), (1.4), respectively .

The basic assumption is that El-—lii.u. the first species of particles conalsts
of Fermions) and that the Interaction potential ¥V 1s chosen such that., for

a given cholce of s the system L8 H-stable in the sense that for some

"2
finite constant E and arbitracy A

M,N)

(M,8)
A A

. > 1/2 T = B(M+N) (2.1)

as a quadratic form, for arbitrary M and K;

Here THE'H] is the kinetic energy operator, i.s.
{M,H) M A N A
T s =7 (1/2m } = 7 (f2m ) ' . {2.2)
: {=] uh & j=l 0y
gee (1,5),

Definition, A region A ® is called regular L{Ef diam A < ulﬂlh" for some

finiee O

Theorem 2.1 .
Let & = -1, €, = +1 , and 9, $ 0. Assume that the potential V is

of the form

Vix,y' = v (x,¥" + 'l.l'zf.-g—-.r': (2.3
guch that (2.1 holds for V = ul.tvz =0 , snd V, isa function whose
Fourler transform , ?I y 1s mon-negative and continuous with

o
|
UIL'EI = 0,

finfice.

Lec m, be positive and Z12%,



Then there exists a constant c = ¢ tﬂ.,ll.:z}, finite for sll g > 0, such that
2 (B2 ,2,) < exp [ca]] (2.4)
(E=stabilicy)
for arbictrary, regular regions A .

A possibly novel, simple proof of Theorem 2.1 is given in Appendix A.

Romarks,

(1) The result in Section 2.2 shows that it is important to assume that one species

of particles conslsts of Feramlons.

{2) Theorem 2.1 has an obvious generslization to systems of arbitrarily many

species of particles including Fermions.

{3) As an application, consider the three-dimensional, non relativistic matter

systea, with V e.g. the Coulomb potential, We decompose V inte two parts.

V= 'I.I',li-'l.‘2 ; with
"’1':11-11;&11:”1:'“"' , and
=148 X
v, (x) = (1/4x|x| ) [1-e ul !], for some | > 0,
We assume that one species of particles is Fermions,
Then all hypotheses of Theorem 2.1 are valid. Thus, the grand canenical

partition function of the matter system satisfies inequality (2.4), 1i.e the

system is "E-stable”.

We have recovered here a result of Lieb and Lebowitz [17] -

2.2 Instability in the grand canonical ensemble.

In this section we study a two-component,pure Boson system with dynamics

given by the Hamiltonians H{Hh’H} H,M = 0,1,2,...but in contrast to Section
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2.1 we assume E™ E," I . The masses of the particles in the two species
are m,m, , their charges are )49, with q; * 0, q,° 0, their accivities

T8, respectively.

We set m = niuill,uz}.

. ) ) | 9, (2.5)
z = |f2 [ulu{:l,nz]-] [ min {1 _?. e q H

Moreover,we define Ei{ﬂ.:}tn be the partition function of an ideal , one component

Bose gas of particles with mass m. In Appendix B we prove

Theorem 2.2

Consider the system described above, with gy = ¢3 = | and m,z as defined
in (2.5) .,

Then 2,(8.2,,2,) > E1(8,2). (2.6)

Remarks

(1) It is well known that, for arbitrary z > 1, there exists nu{:} such that

Ei{ﬂ,l} is divergent for hiﬁuizl. Thus, Theorem 2.2 says that for z and z,

1
large enough depending on q, and Qys the two-component Bose systems considered

here are not = ~stable.

(2) In Section 5 we show that for two-compoment, charge conjugation invariant
Bose systems with pair potential decaying like L;|"'E, € »0 , the RDM's diverge

for =z large enough.

2.3 . The thermodynamic limit of the pressure of charge conjugation invariant

SYysiems.,

In this section we study genmeral charge conjugation imvariant sysCems
of arbitrarily many species of particles with arbitrary spin and statistics.
All that is important is :

(i) strict charge conjugation imvariance.
{ii) T=stability.



Under the above hypotheses we prove existence of the thermodynamic limit of the
pressure (grand cancnical ensemble ), using an idea due to Griffiths [15].

In order to economize on notations we restrict our attemtion to two-component,
quantusm mechanical systems, but our methods work im the general case as well.
Moreover, they are applicable to charge conjugation invariant, classical
systems and, after some modifications, to one-component systems with non-
negative potentials. They are however too simple-minded to permit to study

the dependence of the thermodynamic limit on boundary conditions.

The main result of this section is

Theorem 2.1
Consider the pressure p,(#,2)= p,(B,z,2) defined in (1.7) of a svstem

with dynamics given by the Hamiltonians(l.5).Suppose that the system is
£ -stable, in the sense of imequality (2.4) , and charge conjugation invariant ,

in the sense of Definition I.1.

Then {(B,2) = 1lim p, (B,2)
2 AMRY A

» (provided At R" in the sense of

Van Hove or Fisher [22]).

Proof . Let Ay, A; be bounded ,open subsets of R°~ with AN Ay = 3. (2.7)

Let =(g,z) = En{ﬂ.=.:} be the grand canonical partition function. By general

arguments [22] it is enough to show that

B (8,2} 2 2, (B.2)E, (B.2) , (2.8)
Ay U A, hy Ay

provided =-stability holds.



i ¥

We introduce the Hilbart space

o (M)
H o= & H (2.9)
A wueo P

vhars Hﬁ“'"’ has been definad fn (1.4).

We set | = -E-I log # and define the Hamilctonian HA on HJ,,4 by

iy @ Mo | e
N, M=0

with HiH'H} the Hamiltonian defined in (1.5) .Ome convinces onsself by

(N, M)
Hﬂ

direct calculation that

-gH
Eﬁ[B JE) = Tr*iie

Mext, let TEH'H} be the kinetic energy operator introduced in (2.2) , and

Ay, (z.11)

e N, M
Tﬂ - @B T{ ’
N,M=0 A

Given two bounded, open subsets Ay, Ag as in (2.7) ,we define

= L
W = @ P {ulx), (x"), (y), (), )
Ayha N, ,M.=0 N. M =0 = G LB M
ad | 2172 (2.12)

-u:{=1HIJ:'1HI1- u{{rlﬂi. {r'luzr}

with the convention that the x~ and x'- coordinates are in A; ,whereas the

the ¥y — and %' -coodinates are in A;. Clearly , “h Ay is the interaction
II‘

energy batween the system confined to Ay and the one confined to Ap .

Since 0= Dirichlet data are imposed on T!, gee (1.5},

T + T {2.13)

i
Thavhg = a7 Ty

MY A, Ay A
(This follows from =4 E=4 =4 y @ well known inequality ).

By (2.13), and definitions (2.10),(2.12),



igung < Myt Byt Mg, (2.14)
Therefore
=EH -B(H, + H, + W )
r (e M) 2 o1 1R Tk, (2.15)
g g
Let Py Az be the state given by
-B(H, + H ) _ _
(e M Ayly o <BOH, ¢ )y
Hy T
The Peierls=Bogoliubov inequality now gives
-B(H, +H +W }
Tr , (e LA A
Ha
-B(H, +H, ) ~=Bp (W 3
2T, (e " Az"y o MeA27TALLAR (2.16)

fi

Mext, we mote that if "1 and vz are two closed, orthogonal subspaces of

a Hilbert space

@ n n k {n-k)
¢ v:‘ @ v:h

{v. ®V.) = @&
1 2 Nt

g0 that
I;:u = = A
awlnum -{M" ) BBV, )
i=a

n=o m=a

If we set V.= Liih-.dvx}!ﬂas+l.i-l.1 , and recall (1.4') and (2.9) we obrain
1 1

h ”“} = H ﬁﬁ H (2.17)
Furthermore
'ﬂ(Hnl*HnE] 'EHhIJ "BHlllz
e = @ & e (2.18)
o un | Hy Hy
12 1 i
Let p be the state givem by

A

=EH =1 “ﬂHh
TI-'H (e ) Tr{-e i} y 1= 1,2
Ay



=]lf=

By (2.17) and (2.18) Paghy ™ ﬂntﬁﬁﬂnz

Using in addition (2.16) we arrive at

-B(H, +H, +W )
Tegte PR PR TP
A
~BH -8, B0, @ P, (W )
> Try (e b T, (e Ay o AT Tha T hadp (2.19)
=Sy Ay

Using the product structure of p.ﬂ.l@ pﬂz s (2.12) and charge conjugation inva-

riance one sees immediately that ﬂhlﬂ Py mﬁl""!} = 0. (2.20)
2

Clearly, (2.15), (2.19) and (2.20) give
By,

Tr (e
i Y > Tr
Ay U As - th A

which by (2.11) completes the proof.

Remarks.

(1) If one replaces traces by integrals and the Peierls-Bogoliubov inequality by

Jensen's inequality the above proof yields existence of the thermodynamic limit in clas-

gical, charge conjugation invariant systems ; sea [14) and 1.
{2) Consider a system consisting of only one kind of particles interactimg via non=

negative two-body potentials, ¥ 0. In the definition of TE"'H} and '1‘4,,4 replace

ﬁﬁ by ;j',,d:fin:d to be the Laplacean with MNeumann boundary conditions.

Then
WL R V) P
Bauns 2 By * 5 Yo
and |:|lnI1\@|:|le {Hhhh:} > 0 . Thus
- VY e T

wvhich also implies existence of the thersodynamic limic.



=] T

(3) The strength of the arguments used in the proof of Theorem 2.3 and Remarks
(1) and (2) is that they do mot impose restrictions on the range of the potentials.
Their drawback is that they do not supply detailled information on the properties

of the limit, p(8,z), such as dependence on boundary conditions, [24]



3. Correlation Inequalities

First we recall som of the correlation inequalities of I slightly generali-

zed 60 as to be applicable in our proof of Theorem B , Section |, which we give in
Section 5. Subsequently we establish some new inequalities related to the ones in
[16,18) which we shall use to compare the correlation functions of systems in a
magnetic field to the ones of systems without magnetic fields ; see Section 5.

Let H be a real Hilbert space, and let C be a (bounded) positive quadratic form
on H .

Let ¢ be the Gaussian process indexed by H with mean 0 and covariance C.

The associated Gaussian measure is denoted ducii] : see [20] . Let {Ij.sj} :
j=1,2,3,..., be a family of measure spaces, and {p} = {dpj} _]T-I & BEQUEence

of measures with the property that dpj is a finite, positive measure on {H-.Sj].

]
(i)

for all j. Let & y J=1,2,...; be a family of measurable mappings from Hj

ke H O, i.e.

I'.{J] x E X. - !.{jl'.EH (3.1)
j X

such that
jE‘l J’Hjapj{ﬂ exp 3 c2), 210y < oo (3.2)

Following the notations of I , Section Z , we define

) ()
(H{OND! }EI Iy de5(x) con ¢ (210) (3.3)

We introduce a partition fumetion ZE(C,{pl}) by
2(C, (p)) = 2(lp N =) duy($lexp €({p},9) 3.4)
For F E qu',duc} we define

<F>g o) T <P = 5((0D7 [ duc(e) F(o) exp €({p14)  (3.5)

In the following, m, n,l.E... denote vectors in H.



Theorem 3.1

k
1 1n -
(1) < 2 cos 1{nj} (0} > ©
k r
(2) < I cos ¢(my ; N cos é(n,) > E
j=1 B B L% 1o}
k r
= N ecos i
gag ol By S RE Yo
k r
=<0 czos =
Jeir TR TS SR Sy R
$i2) T
(3) e’} M eos d(n) () =0

i=1
Remark . For {p} = {pl,ﬂ,ﬂ....} Theorem 3.]! 1is contained in Theorem 3.1 of paper [.
Saa also [21] . The proof of the present gemeralization is a trivial adaptation

of the one of Theorem 3.1 of I which we do not wish to present here. We also

recall that

< cos &{m) }ﬂ o} is decreasing in C,

e,{ o) is imcreasing in C,

where the order relation for € is the one of quadratic forms. See I , Corollary
3.2,

Let E{jj be a bounded , f..lﬂ.l“!ﬁ Iu“:tiuln on :j' j - I.,E.!-I--- I-I'I.d- set

e(lp),( £} ;40 = L [y doi(x) ca-triltill + ET‘# (3.7
j=t i

Let 2 (C,{p},{f}) and =< - be given by (3.4) , (3.5) , respectively,

*c,lp}, (£}
but with €({p},s) replaced by C{{p},{f}.4).

Theortem 3.2
Let [ftj}lftu and <->(y (g} "< % g (p},(f) D248 shove. Suppose

do > alpj*[ for all = 1,2,3,..- -



o

Let a,8 be real numbers and m,n vectors in H. Then

< cos & (m) coséin) }[p] -< cosl(é(m)+a) cos(éi{n) +B) }{p'},[f}

> |< cos ¢(m) }{p} < coe(§(n) + B) > 16"Y . {E)

~ RO gy (0 P ) gy

Remarks .

(1) Using the identicy

k k

N cos n.-{lfi}k E cosl(l e. a.), {3.8)
j=I ¥ e,) j=1 1 3
J
with €= #1,3j=1,2,....,k, one obtains trivial generalizations of Theorem

3.2:-

(2)As a special case of Theorem 3.2 we note that

<eos g(m) >0,y > | < conlp(mva) >0y

This inequality permits to compare correlation functions of systems

vith Bose-resp. Fermi stacisties, with or without couplings te an electro=-
magnetic vector potential. See Section 5.

13) Theorem 3.2 is a variant of recent inequalities due to Lebowitz [16]

and extended by Messager et al. [18].
Outline of proof (see also I and [18] ):

Let brady be two independent Gaussian processes with mean 0 and covariance C.

Then
<cos ¢(m) cos $(n) s P4 = <cos¢ (m+a) cos $(n+g) *{p), (€]

tlscos glm) > g5« conlplnltidoy ) (g = <eostlm) +:0) 20 peye costin) g, )



=] =

-y

= 5o (i), (17} Iducullduc“:![mul{ﬂ +

:nl{ﬁzfl]+ﬂ}]'[:uu¢1{n] * :nu{#i{u]+£}] :
(3.9)

. EIP[jElij{dﬂj*dﬂj1{Ij{tnlilfliél]+¢nl{¢z{l:;]]*f£;]}J

+ fdpj-dpjitxjcnustlcziljm-cnstizilié}1+fi1}111

Since the partition functions are positive it suffices to show that the

functional integral on the r.s. of (3.9) is non-negative. We define
¥ = e (8,49,) ¢ = by (4-x)
72\t | Bl o
1 1
X == (=9 *4,) 4, = 75 (Y0

This transformation is orthogonal in [#l,ﬁzl-upﬂcl. Thus

dvcfillﬂvcfigﬁ - ﬂuﬂiT} duﬂ{x} : gee I. Moreover

coss, (m)+cos (4, (m)+a) = 2 cos ;}! (t(m)+ Decos T}I x(w+ 2,
and

cosd, (m)-cos (4, (m)+a) = 2 sin ;1! (¥{m)+ -;-}ni.n 1}! (x(m)+ %

Also, since dpj and dpi are real measures with dpj 3_d|pi| « we have
dp.+dp: > D ~dp! * 0 , for all . 3.10
nJ nJ >0, dn] nJ,_ J ( )

Inserting all these identities into the functional integral on the r.s. of (3.9),
expanding then the exponential and taking into account inequalities (3.10)

we see that the functional integral on the r.s. of (3.9) can be written as a
sum of terms of the form IduE(T}ducix}FtT}F{x} - EIEHE(¥}F[T}]1 '

with F real-valued. Thus it is non-negative. -

We conclude Sectiom 3 by sketching a simple generalization of



Theorem 3.1 which is useful for analyzing Bose systems coupled to the quantized
radiation field. Let &{{p},{f},4) be as imn (3.7). We now suppose that the
phases I[]} are linear functions of a Gaussian random field A with Gaussian

distribution dufA) , i.e. fij}- A{hij}} , for some H-valued functions

hij;. ® j - 1---!--..‘ + L&t
Z({p}) = [du,(4) du(A) exp E({p),(A(R)},¢ ) and (3.11)
<>y = 2N Hau () du(h) - exp € ({0} (AN 1,0) (3.12)

Theortem 3.3

(1) < cos(o(m) + A(L)) >\ >0

(2) < cos(¢(m) + A(L) ); cos{¢(n) + Ath}ihlp}i 0

(3 < @A, copym ¢ amN> <0

Remarks .

(1) The process yx = ($,A) 18 a multicomponent Gaussian process. Theorem 3.l

applies to multi-component processes; see I. Thus Theorem 3.3 follows from
Theorem 3.1 . Incidentally, the proofs are simple variants of the proof of

Theorem 3.2.

(2} Identity (3.B) vyields obvious generalizatioms of our inequalities. Moreover,

in Theorems 3.1,(2) and 3.3,(2) one may replace cos($(m)+A(L)) by ¢1{¢{-}+ﬂ{l}}:

see [.



&, Quantum Statistical Mechanics and Functional Integrals

4.1 The uses of Gaussian and Wiener measures

First we recall the functional integral formalism developed in detail in [12,7]

and T. We consider N-particle systems with Hamiltonian

am - o iyl (4.1}
A o iEI Ii]'ﬁ'i U{ﬁﬂﬂl ¢ Whers .
U{ix) )= I q; 9, Vix,,x.) |
N I<i<j<n i Sl | {4.2)

and V is a positive (semi-) definite two-body potential.

In this subsection the spin (and other internal degrees of freedom) of the particles
plays the role of a spectator and is suppressed in our motation.

We propose to express the integral kernel

Y:H!}H H fr}H} of the operator exp[-BH{:}] in terms of a combination

of Wiener integrals which arise by using the Feyman-Kac formula and Gaussian

functional integrals which were used already in the classical case and im I.

The path space of the Wiener measure can be chosen to be

ne B , (4.3)
1€[0,=) T

where '.H:["‘ ¥ 8  is the one point compactification of l‘l .

1 is a compact Hausdorff space, and the Borel sets generate a natural o-algebra
on I . The WYiener measure F:fx.r; du) , conditioned on those paths w € 0
with w(0) = x, w(r = B) = y and depending only on {w(t): 0 <t < g}, is a

o —additive, finite measure on 0 . It is the path space measure of the process
with transition function exp [tA/2m] . The kernel of exp [ta/2m] is denoted by

p:f:.r}+ We have

Pﬂtr,ﬂ = I"g (x,y; dw) (4.4)

Let xi {w) be the characteristic function of the subset

{w : w{t) €A, for all r € [0,pll cq .



=T

We set

Ei*n{!.r:du} - x: {u}PE{I,r:duJ . (4.5)

This is the path space measure of the process with transition function

exp [tnﬂle]. where 4" is the Laplacean with O-Dirichlet data at @A .
B . _ B g )

Let Ph[ixlﬁuir]ﬂ. d(w), ) = j:l P-j'h I:j.rj' duj} (4.6)

By the Feynman - Kac formula, see e.g. [19,12] ,

oy (005 (), = J PROCO g, () id () g dexpl=f{ AT D((a(r)) )] (4.7)

As in I, we now express i:pI-Ig drt u{{u{TIIHI ]

by means of a Gaussian functional integral. Let

Wix,tix",1")= Vix,x") &(r-1") , (4.8)

Since the two-body potential V has been assumed to be positive(semi-)definite,
so0 is ¥. Let LE(!FEII - LIIIF x [0,8],d%% d1). Let 4 be the Gaussian process with

mean 0 and covariance W indexed by Latnﬂ"'+ Y+ The corresponding Gaussian

measure and expectation are denoted by diy,, < - %H respectively. We recall

somé wéll-known formulas.

< .“‘”:# - exp [-(V2) < £.VE> ]

& Ei‘{f'}: E 2 .-i‘{f}:'f_x ti*{f} {k'.g}
(Hick ordering)
From these we obtalin
N i#(fjl [ ]
< f: e : expl- E < £, WE.» (4.10)
j=1 v Isicjen - J

We assume temporarily that V(x,y) is continuwous im x and y and choose
f' k] L B j = §EEG a
]{{: 1)) qjﬁix—wEtr}} j=1 N

This vields



N iqj [g ¢tuj{t}.r]dt
< m HEN -] :'-"w
j=0
= exp [~ J® dv vl ) ) (4.11)
We sat g
B
if #lw(t),t)dr
uE A (x,¥) E jﬂ PE plxay; du): e 9 : {&.12)
It should be pointed out that ug i {x,v) is really the integral kernel
of the one-particle operator
Tlexp-8l-(1/2m)a" - i - W1},

where T denotes time-ordering, i¢ ( - ) = i4(-, 1) is a purely imaginary one-
particle potential, and W(x) = % Vix,x).
From (4.7), (4.11) and (4.10) we deduce
N
N o

i=1

Wy (s (D)) = < (x5055) %

.jlh-l-'Qj_‘ .J (ﬁ.l:}}

Inserting this into {(1.6) and (I.B) one obtains an expression for the partition

fupnction and the EDM's in terms of Wiener- and GCaussian integrals.

4.2 Taking into account statistics : an exercise in multilinear algebra

The purpose of this subsection is to express the partition function
and the RDM's (or ITGF's) of systems with Bose-or Ferm statistics in compact form in
terms of Gaussian integrals.("Boltzmann statistics" has been treated in I.) This will
permit us to apply the correlation inequalities of Section 3 to construct and
investigate the thermodynamic limit (at least for Bose games) We start with
stating the main results of this subsection. We consider a system of finitely
many species of particles with Bose =(e = + 1) or Fermi-(e = -1)statistics.

First it is assumed that the particles are spinless, but at the close of this

subsection we show how one can incorporate spin. The Hamiltonian Hj'] is
as in (4.1) with B, = e "W ey Wy #] % eee TG L. =g,

l L=



= 6 =

qit 1+ | e =Gy and & is the number of species .
We define
- E_'i----l i jg
p, . (mz; x,y; ¢) = I z [ RB, (xyide)
® j'l j ﬂ L]
j=1 ijgﬂuf,ﬁkﬂj,r]dr
« 0 % a :
k=0
Spc@zie) = [id'x o, (m,zix,x; ¢) (4.15)

We assume (at least temporarily) that
E £ sup Vix,x) == . (4.18)
xER"

Since by (4.9)

siqff ¢( w(),)dr ) )
l: e 1| < expl(q IIIIE?LMET},meI}dr]_5E=piﬂq Kf2) . (4.17)

the series on the r.s. of (4.14) converges absolutely if
2e™/2 < . (4.18)

For Fermi statistics one can relax conditions (4.16) and (4.18). See Sections

2 and 5 .But for the time being they are imposed without further mentioning .

Let A = {ﬁij} be gome N * N matrix. We define

N
(R) o a{x)
“a Uiy FEEH G A

where o(w} is the signature of the permutation w .

Clearly &{fachij} = det{A) , ﬂtfi taij ) = perm(A) . {4.20)

Theorem 4.1.

Consider a system of I species of (spinless) particles with statistics £ oo




mass m, , charge q, and activity z.,k = l,...,1, in the grand canonical

ensemble at inverse temperature f. Let g = (:l,.....sl}. E= {:]**;.ll}.

Then the partition function is given by

L
_h'g_tﬁ’g = < exp :1 En.:k"\; vE GG ) Ty (4.21)

and the correlation functions by

pm_m.;,;:n':il """‘1’11 . {:rlilil {’L"H’

i (i, )

k k k

= 2 Tl Ech [: .Ekiﬂ'zk } t " y 3™ $))> 'ﬁtﬂ,ij. (5.22)

k=1
where

i
- =1
E,{E' z) = =ﬂ_£{a.y e—exp | hflsn’tk{lrakl g, #)]3g

For later purposes we explicitly consider the special case of charge-conjugation

invariant systems of two species of particles: see Definition 1.1. We define

(a z;q4) = S o (m,2iq9) + S (@25 -q¢). (4.23)

Theorem 4.1 then takes the form

Theorem &4.1'.

For the charge-conjugation invariant systems introduced in (1.4) -(1.8)

:ﬂlﬂtﬂ.z'.l = < exp & H‘E{ﬂ z;94) o (4.21")

nh_E{H.z i (%) EH'JIH () {:t'lH]I-

< ﬁmt 23z Py c{ﬂ,!-i g oY ;q8)
& 15-{1:} {I'.a. p.ﬂ. e {Hr::. l‘l..' r =q @ } }' tﬂst}:

(4.22%)

where ot {B,z) = Eﬂl'ﬁ{ﬂ.ﬂ <—exp Eﬂiuiﬂ.z:qﬂﬂ", ;
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Remarks

(1) The expectation c—:-h-r_{ B,z) defined in (4.22') is given by a positive

probability measure, because the "action" ‘ﬁ.E (B,z;q94) is real-valued.

See (4.14), (4.15), (4.23).

{(2) If the system is not charge conjugation invariant,as in Theorem 4.1, then
c-}hrgjﬂ,gj is given by a complex measure.

(3) Expressions for ITGF's similar to the ones given in Theorem 4.1 for the RDM's
can be derived, too, but are more complicated; see Sectionm 4.3.

(4) Spin is incorporated at the end of this section.

Proof of Theorem 4.1.

The opening move in this proof comsists of first re-formulating Theorem 4.

in a more reasonable terminology. It then follows from standard identities of
multi-linear algebra which, for the convenience of the reader, we briefly

review in Sectiom &.3.

First, we notice that it really suffices to prove Theorem 4.1 for one

species of particles only. The case of many species will turn out to be an obvious

generalization .

We define
= ab - A Ao 2
where W(x) = ;— Vix,x).
By the Feynman-Kac formula, the integral kernel of Aq‘ is given by
B
_ B B du)rably #lu(T),T)dT, 4,2
Aqa(xo7) = 0g g qp G) = L Ty (iyidu)re b R . (4.25)

see formila (4.12).

In order to express the kernel of taqﬁ}l we use the following well known

Lemma 4.2,
. B
. n+l 8 I.qfuﬂuj{r}.ﬂd-r
f 285 oy |1, P ppysteg) e 2



. [ plavDe o iq 8 o€ u(xeip), n)ar
A i:l‘“"n"‘“"n«-l:'zh"":' jI_Tu = .

Proof. An immediate consequence of the semi-group propercy of exp [:tua-}n*}

and the Feynman -Kac formuila. -
Thus
. B
. . -1 iqfr ¢lu(T+kB),t)dr (4.26)
(A ‘\}'1 y) = S PP® (x,yidu) Tp ote © 2
9 o k=0

This identity and (4.14) yield

Al e T e
by, eBrztxyie) = I o 2 AT (x,y) (4.27)

3=

== g In{i-czh¢] (x,v) ,

and

z g; Py e (Brzixayie) = ={tI-E=A¢}-I A (x.y). (4.28)
Furthermore, by Lemma &.2,(&.14) and (4.15),

exp En‘ctn.:;il = gxp Iﬂd“x nﬁ.eiu.z;l.:iil - n:pi-ajhd“:inil-c:g¢1 {x,x)]

(4.29)
- Exp[-:Trlnfl—£=A¢}] - dl:[l-::ﬁﬁ}-z =
In this reformulation , Theorem 4.1 maintains
- -
:h.ciﬂ"]' < det{l-c:&q‘j - S (4.30)
by (4.21) and (4.29) ,and
ﬁﬁ_E{E.z px) L))
=<6 Miatei-eza 3V A} txeur)) > (B.2) (4.31)
€ q8 q¢ 17177 ThetTT

where a:”} is defined in (4.19), and <->, (8,2) in (4.22); see (4.28).

Next, using (&.12),(4.13) and (4.25) , we see that



=3{)=

M
B . -
*ﬂ {(:}H’{!}H} < jEI *q* f‘jr?j] 3y {4.32)

In formula (1.56) we expressed Ehtﬂ,t] by

=  (g,z)= T

N
By e 2y S0 d(x), +: () g (x) ) -

N=0 IESH

Bemce, by (4.32) and definicion (4.19) of aé“’ .

. ot (N)

Tt =% _Lg Jay 8 A (xpax ) oy (4.33)

and we have interchanged taking <y and T '%T Id[n]H-.{Thil is permitted
2 =

if 2™ ®2.1 | see (4.18)). The equality of the right sides of (4.33)

and (4.30) is well known.{In the sense of formal power series it holds in general,

ﬂqzufz

and if ze «]1 both right sides are well defined). See also Section 4.3.

Next, by formulas (1.8) ,(4.32) and (4.19),

Dh,:{ﬂ'a= It}H.IvJH]

-1 " 3H+HI
= En,:*ﬂ':} ) fipj--jd{uly. 3

L]
N'=0 NES, ..

AWy T () )

Cuti}

o D i (N+H") .
Z,elBE) n%-u g CLO L (28 (v w))>y (4.34)
where {v[,....uH.v *I""'?H*H'l = {II'+"'HH'“I""uH']
[Fl""'HH'"H+I""'HH4H'1- 6 FEPRTTS A PP

The reader familiar with multi-linear algebra will recognize the r.s of (4.34)
as being identical to the r.s. of (4.31). If we finally insert (4.28) into the
r.s5. of (4.31) , the proof of Theorem 4.1 is complete for the case of one species

of particles.The case of finitely many species follows in the obvious way. -

We conclude this subsection by showing how to incorporate spin in this formalism,
Again, it clearly suffices to consider the special case of one species of
particles. The Hilbert space of the spin degree of freedom of one particle

: S+
is !2 » with 5 the total spin. We choose an orthonormal basis (& ]ﬁ "
T} =t

: 25+1 .
in € labelled by the eigenvalues, u , of one component of the spin operator.



(N}
The basic fact to be noticed is that the total Hamiltonian Hh ; BEE

{(4.1), is spin-independent, (although that is not absolutely crucial for the

existence of a functional integral formalism, as mentioned in Remark (2),Section I

Let r = (x,u), and define

- 2 (4.24")
*sﬂ "qigns aen
whers qu is given by (4.24) , (4.25) ,and isis the unit matrix on € a
The integral kernel of Ai* is given by
5 iy = ab L . - 1 )
ﬁq‘ (r,c") & A-q' ((x,u), (x",0")) -“'q*{“ +X") '5'"'“¢
Since ﬂlESH I:is.'p = 754+], wa have

Tr l‘-n{Iv—Eﬂf“'_l = (2541) Tr in(l-c2A ) ,s0 that

8 .-& _ =e(25+1)
det (] ::ﬁq‘l det({l-ez hq‘]

The proof of Theorerm 4.1 extends to the case of a system of particles with
spin and , together with the above remarks, gives (see also Section &4.3),

Theorem &.L"

5 (B.a) = < deE(1eeAS) % . = Edat(loead_ ) D (4.21")

i e q# v q%

pnIEEB.niEt]H Er']H (4.22")
(M) .8 .-1 .8 '

-< & ({1 c:ﬁq*] Aq* } [ri.tj] o T (B,=z),

where

-:—}H-Ei:ﬂ,z}-zn {ﬂ,:]-li—ddt {i-aﬂq*,’lutus‘”}:ﬁ =

The purpose of the next subsection is to briefly review some multi-linear algebra,
sketch the proof of the above identitles and find compact expressions for

correlacion functions and ITGF's.
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4.3 Exercises im multi-linear algebra.

Let M be a complex Hilbert space of dimension n <, [ui]:-ﬂ
a complete orthonorml syatem in H, fl"””‘fbl’ ByeeeeaBy vectors in H.
Let A be a trace class operator on H , i.e II.MIl = Tr IAl € e . The symbol
&, denotes the sysmetric tensor product if ¢ = +1 and the anti-symmetric tensor

product if e = =]. We define

= 3
£ akn
H -{i@g ..,.ﬂt HJ, A

L ﬂ L 'ﬁ
A g E'e,'

e

m times m timas

o 2
Hﬁgil,ﬁaﬁ E ] . For EI"”En in H we set

HWEE £ £
j=1 R % 'n
% _m

The scalar product on H . is denoted <, ; > ; forall m=0,1,2,... .

We introduce an "unnormalized, reduced density matrix" P, by

FE{El.iiq-.EHpEl......tH}

= m Ha & (o) oy N
¥ E ':"H:“ E < !IEEu. L n Eﬂk o | 3 n E“i'x’z n fhu-
w0 ™ e §el ' F kel jel  'j Tkel
s H m
L '["’*'1"” o :“"ui ntg , ﬁ*uui 5, rb:“"::.-.:k:n > (4.35)
m=g ieeel §u1 7) Tkel T §e1 |

When © = +1 (Bose statistics) we assume that [[A]]l < 1 .

Lemma 4.3.
o ik Eyiaveiy) » dal:fl-tﬁ}-tﬁé“j{{gi,{l‘ch}-l.ﬁ.lj 23

Proof. It suffices to prove Lemma 4.3 in the finite dimensional case. The proof
for the infinite dimensional case follows by a standard limiting argument, pro-—

vided ||All, <=, and [[Al < 1, when £ = +1 .

We first consider Bose statistics, € = +]1 , Let £ = {l+i£2 b the

complex Gaussian process with mean 0 and covariance 1 , indexed by H : i.e.



(=) —_—
fdute) € (£) = 0, [du(E) £ (F) E(g) = 2< £,g> (4.36)

[ 4]
where du(f) = (2n)° " EXp [-% < E,E > ] uEI r.‘l;;:'l n:'u-;fl

is the normalized Gaussian measure.

By (4.35) and (4.36)

p{i.....d S ST A I l =4 =
1 (8 By N Ju PP [ X1 R{CT
] m k=1
m
M E(E ) E (Aug ) dulg)s
j=1 i i
n- -
Note that I E{Ej] E[Auj] = < E,AE> . Thus
j=1
- _ e 3 m
PR yarresBy sl sensagf )@ [ e I{E.ﬁ E>
S At ¥ g0 2%
N
n

. 1 - T
w1 7 5@ € (AL )duce)

-(2v) In E-E{shl E(Af W oexp [F1/2< g, (1m0 alﬁ d E di :
a=1
n
= @)™ fexp [-1/2¢ £, (-A)g > T dE) dE2

L d'u:} {“: ilifl'ﬁ-}-] ﬁ-fj}:‘l

- det(1-0)7" ™ (< g;0 (1-1) ! Af; 2).
This completes the proof for e = |,

Mext ,we consider Fermi statiscics, ¢ = =| .

Let #;.wi 3@ = ly..,n , be totally anti-commuting variables, and let [ -

be the Berezin integral which may be defined by the property that
n

.{ a8xp = 1-'1 »A 1:2 > = dat (A),where -:q.-' ,“.i:- = I ¥ !
ay=l

It is known and follows easily from the above definition of thg Berezin integral

5 "‘u lr ; see e.g [I]

by differentiation that

-l{tli ¥ HHrE ,i!;fﬂj- E -1—' : I n q..l[i) wz[_hrk} n !-P[l.l .th Je <y #-‘P
]

e j=1



=T4=

N
- f n #I{Ek} #i{ﬁfk} EXp < #1,{1+ﬁj ¢2 -

k=]
- W g, aem ™ 4 £y > Yder(1em- .
Remark.

The purpose of introducing the Gaussian -, resp.Berezin integral is merely to

reduce somewhat lengthy combinatorics to known properties of those integrals.

It could be avoided completely.

Next, we introduce the standard Fock space

- "
Fo=@& HE

m=0{

and define the operator T:[h} on FEhy

& m

= 3
) = @ A (4.37)
m={
Note that rt{A}rE{s} -T:{A-B} {4.38)
He define ar_(a) = 5= rE{etﬁzit_u : (4.39)

This is Segal's formulation of "second quantization"; see e.g [II].

As a corollary of Lesma 4.3 we have
Te(r_(A)) = det (1-eA) © : (4. 40)

{set N= 0 in Lemma 4.3 and use (4.35) and (4.37). A direct proof of (4.40)

not invelving Gaussian-resp. Berezin integrals is easily found:

By analyticity, it suffices to prove (4.40) for self-adjoint A. Both sides in
(4.40) are unitary invariants. Thus one may choose A to be diagonal. Then (&.40)

becomes a trivial exercise).

We may now define "correlation functions" and"ITGF's" . The former are given
by
I mdr (4.41)
. 9 .ﬁ & Bd- " ®
< jla dr {nj} = I [Tr TE[LJ] Tr {rni }j i { J}i



The latter by

- -1
<Mgr (8, > = [Ir r. 1° .

= T -,
cre(r ) w1 (dr(s) T_(8) ity (4.42)

j=1

where O LTy ST S reeil T <1, and A = 'h , for some operator h with

Reh < 0 .

Obviously

m =
<N dr {8.) > = <N dr (s,)_ _ .>*

so that it suffices to calculate the r.s. of (4.42).
By (4.39) and (4.38),

- -1
<N dr {anT > = rr:rE{A!}

A
j=1 i
m I-t_ +t, o g, B, r. . -1
. 2 mra ® 'n ged Wy
a:1++aq= j=1 'I"*-'m-n
(4.43)
Next note that
Tr T_(A) = det (1-¢A) © = exp [-¢ Tr 1n (l-cA)]
Thus, using Leibniz' rule,
T dr (e, b 1 (~e I == to(l
< M I (B > = =g — Eml-
j=1 £ 1I:_‘i A partitions j=1 kECj a'k
Cprreesby (4.44)
m 8.8, 1. .=-T.
eA™a'T1 o (e J Ja I J}TH }
jIl 1-----'n¢

The r.s. can be calculated by using the formulas

gi Tr £ o (1-cA(s))= - cTr((1-cA(s)) ' A'(s)), and
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d =l =1 o
FUImEA(s)) T = e(l=eA(s) " A'(8) (T-eA(s)) ™, with A'(s) = La(s).
Finally, we note a connection between correlation functions and reduced denmsity

matrices : Let Bj* j= 1,...,H, be given by
n].s- < gj.gh Ej' for all g € H.

Let Pe be given by (4.35) and o by (&.41).

Then
_ H
ﬂ‘{ﬁl......EH.EI......EH]' Trfrtﬁﬁﬂ <3 1E| drtlﬁj]: b& . (4.45)

where $=: is the usual Wick order of products of operators on F-:‘
(The r.s. of (&.45) can be calculated by using (4.41) and (4.44) . Comparison

with Lemma 4.2 then completes the proof of (4.45)).
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5. The Themndm‘: Limit : Uniform Bounds, Existence and Prngnrtie:

Stability in the grand canonical eénsemble and existence of the thermo-
dynamic limit of the pressure have been discussed in Section 2. The main purpose
of this section is to derive upper and lower bounds on correlation functions
which are uniform im A , prove the existence of the thermodynamic limit of
the correlation functions of charge conjugation invariant Bose systems (provided
the activity is so small that the system is stable) and estimate correlation
functions of systems with Farmi statistics by the onmes of Bose systems, Tesp.
correlation functions of Bose systems in a magnetic field by ones of the systems

in zero magnetic field.

Unless mentioned otherwise, the systems are assumed to be charge conju=

gation invariant. The particles may have spin.

5.1 Umiform upper bounds on E:.rl:il:im:l. = gnd correlation functions

The main auxiliary estimates required inm this section have been already
derived im I, Section 2.2. Thus, we may be brief. In Sectiom 4.2, (4.17) we

have shown that

qu:du (wlt) 1)

| e | < expleg’®/2) (5.1}

with K= sup V(x,x) . Furthermore, by (4.5)
*ER"

18 : jB z
JHF-.A{:I?IM} i IEF- {“n:fn'du..l

v/fl
-(?—:) eup{-lr-ylz.l"ijﬂ} (5.2)

Using (5.1) and(5.2), we propose to estimate

(1) |pn E{a.:;u.y:qul - ltn{l-z:ﬂq'][u,y}1 : pee (6.14) and (4.27).
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] . y o oy =1 c
(I1) I=EP‘._’E{H.=.:.:.!.=|¢}I |z{(1 ::-t“} h“lfr..:r}l 3
see (4.28).
(111) lexp S,  (mziq9)| = [der(l-eza ) °|;

see (4.15) and (4.29).
(I} By (4.26), (4.27), (5.1) and 5.2)

- * |z |
!ﬂﬁltiﬂlzl“lfri” £ I JTL “ﬂq'l (x,¥) |

$=1
f2 = 2 i
2nm\” K/2 P
(3 ”‘é‘{ﬁ}ﬁ“ D7 exp(-|x-y| /258) (5.3)
< plg,z,q) , where
wfl = 2 j

wo.e + (2 7 Ulempelum) 5.0

J=1 ]
which is finite, provided |z|exp(sq’R/2) <1 . (5.5)

(I1) By (4.26), (5.1) and (5.2)
b s £ [zl e
j=1 qé
(5.6)

=]
|zl (1 uhq*} .l:"

<plB.z,qix,y) , where

';{Elle;llfj
wf2 = 2 j
E (sz-l ey ki2 expt=|x-y|%12j8) , (5.7)
i=1 i

and the r.s. converges if (5.5) is satisfied.

It is trivial to check that (5.3) = (5.7) remain true if .lu.'" is replaced

by ﬁ;; (see Section 4.2, (4.24')) , i.e. if spin ie included.
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{III) We first present an upper bound that holds fore = £1 :
1dEt{1-¢:Aq‘}'5| < exp|Tr :n{l-clhq‘}| < explo (8,2, 90 [A]] (5.8)

as follows from (4.29) and (5.3). The r.s. of (5.8) is finite if

1:]¢:p{BqEHIE} < 1 . Under this condition identity (4.30), i.e.
- =E
B (B,z) = tdul:(l-tu“} W {5.9)

holds rigorously as an equation between holomorphic functions of z with

|z| « e:p{~aq1u;z} , a8 follows from (5.3) and Lemma 4.3 by a simple limiting
argument. By analyticity in z of both sides in equ. (5.9), this identity
remains true for all z > 0 for which I{dat{lﬂzzjh‘}-zl is bounded uniformly
in 4, at the least. From Theorem 2.2, (2.5) - (2.6), we know that for ¢ = 1

(Bose statistics) the domain of holomorphy of

-1 a1
dec{l-z4& =z h

does not include the whole positive, real axis. Indead, given & * 0 , there

is a bounded region (e.g. a cube) A such that {B,z) is divergent at

8 *h,1
-1

5 - Therefore detilﬂsﬂq*1_1 dzt{l'ﬂi"q*} and

thus ldettl-:ﬁh*}-1| cannot be bounded uniformly in ¢ , for =z = 1+ , A3 A,

z= l+§5 , for all A2 A

}1-1

fHowever, for superstable potentials "-',Eh l(ﬁ,:) - -:d:l:(l-:h“ ?r." exists
for all z > 0).
Hext, we get ¢ = =1 , (Fermi statistics). Then
- ® ,.1f2
|d¢:{{1+:nq¢}[ det{{l+:&q‘}{1+zlq*}]
¥ 2 2
= 5.10
exp(1/2 Tr in(l+z(A_ +4  )+z |Ah'| n (5.10)

T T
s exp(1/2 Te(z(A  +A oz |A | D))
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The inequalicy follows directly from
tn(l+x) € x , for -l < x <=

and the spectral theorem. We now notice that

-
v
Tr A = Tr A = [ d
SN ¢ W fﬂ *A ‘{u,x] , and

- o y ] 2
Te(h, A, J'Ad x j'nd y|.h“{n.ﬂ|

Therefore, using (5.1) and (5.2)

2
oar) g BVKIEZEVIT|0) | an

Tr{hq# g

L]
qut mm v/2
Tt{ﬂq*ﬁqi} < g ) |A] . so that

(5.11)
idut{l+=ﬁq*1|

Bq K/2 (2xmy /2

< expl(ze 2

2
+(2212)e “t-?l"“llhll

Notice that from (5.10) and the Schwarz inequality for “y it follows that

zh_.lliﬂ.::n2 < Laxp =[Tr{aq*+a_ ) 1>

q¢ " W
(5.12)

* <exp lzrrlﬁqglzlhﬂ

The first term on the r.s. of (5.12) is the partition function of a charge

conjugation invariant quantu=m mechanical system with "Boltzmann statistics".

Estimates (5.10) - (5.12) are very crude, (far from being useful when the

potential V has local singularities), but suffice for the purposes of this

paper.

From now on we study charge-conjugation invariant two-componment systems,

as in Theorem 4.1", unless stated otherwise. It is assumed that the activity
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£ > 0 is such that

-

ﬂuﬂiﬂiaj = <axp :hlciarliw‘]}‘f

2
is finite, (e.g. O <z < g By R/2 s for e=1 , and 0 < z < =, for

e==1,K=<w=) .

By (4.14), (4.15) and (4.23)

“ 5=l
€, Bz = & S— ) &x [ #f xia0)
. jeu1 J A g ™ T
-13)

=1 2 B j=1 B
n 2172 Iudrv{u{t*hﬂl.u{1*kﬂ11cu’(q ¥ Jg drglult+kp), 1)) ,

k=1 k=

i.e. € (B,z;q8) is of the form
AE

£ [dpf .(€) costet))) | with (5.14)

j.'l- hllj E-

ldgy | = dgy & » for all j (5.15)
Alj ¥ g

(compare to Section 3, (3.3)) . In particular Ih is real=-valued and even

s E

in & .
Theorem 5.1. (Upper bounds)

For ¢ = 21 , >0,

loy,c tBems (xdy G (y) (v

A

s {;‘E‘""'“i-”;]‘]‘ﬂf"} (olgrzaqixfay))

~ ¢ 2y /2)y)
with P(8,2z,q;%,y) = 12;—“3”2 jil Eﬁﬂw'wﬂwfﬂja} '
4
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for 0 <z < E:Ff-ﬂqzﬂle i (see (5.7)) .

Proof. By (5.13)
Ha,:“"" - Eh_t{ﬂ.n}_l <“— exp :n,c”'““}’w

is the expectation given by a positive probability measure. Hence
oy, (Bazi o)y (") (v |

K ]
: Iﬁf__ :{l' a—!l' pﬁ.tcﬂ'#;:il?j;q"}"

2

T
az pml_rfﬂ- l’l"‘i -:fj l-q*]I

. 1
|ﬁ£ (z-

Rext

L) P ’ .
|6, (= 5% pn‘EEH.E.Ii.:I’j.tQH!

. ]
58 G R AT DI PE

(H}}
£

as one easily deduces from (%.19) (def. of & and (§.14) (def. of

Py, Eim.n:.r:iqﬂ) .

Use of formula (4.2B8) and inequality (5.6) completes the proof. .

Theorem 5.2. (|RDM_;| s ROM_,)

For charge conjugation invariant two-component systems

Loy g (Bazs GO (s D (DD 2, 4 (Bazs (g ) Y)Y | s

i.e. the Bose RDM dominate the absolute valucs of the Fermi RDH pointwisc.

Proof.

By definition (see (4.19))
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(H) 3 : :
EE t:‘a_:' pnltlﬂnt.ﬁi;'}'juiqﬂ}

H
- I EEF':.'} m E* -.-.-i;'_ Dﬁ.E{E'EE:j'r'{jj :tq"l L]

nES, j=1 L
where
; .!. B,.z: - h]
z 3;”}..:{ s EF X Yiae
. ; 1/2 [1Barvu(n) ule))
= I gl lsj J Fjﬁnfhr:ﬂu} e o
j=1 6
j-1 8
- exp(ti [ q j'u dré{w(t+kB),T)) ;

k=0

see (4.14) or (4.28), (4.26).
Thus the even part of

(W), a3 : i (M, 3 el Slie
5_1 (: 5E pﬂ,'ItB't':i'Fj'q*}}ﬁ-i {z'ﬁ'ph-_ltﬂlzi“ibrji q‘}’

ig of the form

£ fa, @®)cos(ea®)ree ™) , (5.16)
k

where [dhk]:_l are positive measures on appropriate functiom spaces, and

ﬂ(ﬂ are phases (= 0, or 7) ., This is to be compared with the even part of

]

Ny, &
ﬁl (= e

; coyys (M, 3 N
I:'ﬂil{':l'-i1!||'j1 .}jﬁl {t Eﬁnjlf ?:i‘}.j‘ }:'

which has the form

£ fan @®) cos(aa™@)ear®@) , (5.17)
k

and by inspection we sea that

d;i = d;k and g'{k] =0 , for all k . (5.18)
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Recalling properties (5.14) and (5.15) of :h e e thus conclude that the
]
correlation inequality of Theorem 3.2 can be used here. A special case of it

is
fﬂalﬂn{k}}*hrliﬂ.:} 2 ﬂcw{«i{n{”}+E“{I"".'l‘*h:_1{E.=l

(k)

wik) _ E{k} or = 8" '+x . Hence

with @
qcnn+[m{k}i?niliﬂ.m} 4 |;cﬁl{‘{,tkl]+Bn1,ﬁi_1{5’=3| {(5.19)

Since — 41{5.1} is even in ¢ , the proof now follows directly from

(5.16) - (5.18).

Remarks.

(1) Using Theorem &4.1" and (4.24"), Section 4.2, the extension of Theorems

5.1 and 5.2 to systems of particles with spin is straightforward. Moreover, we

can see generalizations to ITGF's; see Section 4.3,

(2) For Fermi statistics, the upper bound on the RDM's given in Theorem 5.1 is
poor and fairly uninteresting. Uniform upper bounds on RKDM's (or ITGF's),

smeared out with test functions, follow from the boundedness of Fermion creation-
and annihilations operators (a consequence of the canonical anti-commutation

relations), as is well known.

(3) In the same sense as Theorem 5.1, Theorem 5.2, i.e. domination of Fermi
ROM's by Bose RDM's, may be regarded an uninteresting and physically obvious
statement. We still feel that it is somewhat remarkable that it is true mathe-

matically.
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Theorem 5.3. (Lower bounds)
. s (H) d . "
ﬂnilfﬁdifﬂﬂfl Wi S lr "y 2 <8y T2y nh_,_tﬂ.z.:iﬁj.q#}}

s ﬁim |:l-' ‘a—a; Fl'llllfﬁlﬂi:ii}'j;'q*}}?‘.

]

In view of (5.14), (5.15) amnd (5.17), (5.18) this is a direct conse-

quence of the correlation imequality in Theorem 3.1. -

It should be noted that Theorem 5.3 can be proven more directly by
using Jensen's inequality and a trivial inequality on permanents at the right

places, rather than the #&—=functional integral and & correlation inequality.

Mext, we show that the r.s. of the inequalicy in Theorem 5.3 diverges
if =z is large enough and A tends to R’ s provided the potential V falls
off sufficiently rapidly. We are indebted to M. Campanino for suggesting to us

the main idea in the following argument.

First, we consider the two-point RDM, g, I(E,z;:,r} , (the case of a
L]

general (2M,2M)-point RDM being similar). By Theorem 5.3 we have

Py, 1 BN Y) 3 <2 :—z By, (Bazix,yitqeday

= E :j | Fi (x,vida) .

j=1 0 (5.20)
2 j=1 (]
.expl=(q~/2) £ [ div{w(t+ke),u(r+28))]
k;i=0 o
I

We propose to show that, for =z large enough, the r.s. of (5.20)

diverges, as | fi]f + Let e, be the unit vector in the direction of y=-x ,

(resp. the unit wvector im the positive l-directiom if y = x) .
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Let B be some positive number. We define a sequence of points

ﬁi =x + 1/2 kRe k = 0,1,2,... (5.21)

II:II
Define k_ by the property that ninty-ﬁél = |y-£' | . Since
o k kn

&8 45l =12 ®,
ly=g; | £ /4R (5.22)
[}

Given an integer j * 0 , define kl > kn by the equation

j=1 , or
H¢-1+Ifk1"kﬂ*1} - ;
J
j+kﬁ-1
i.a. ky = [ 7 ] , where [al (5.23)

is the largest integer <a . If j < kn ’ kl is not defined. We now define

a sequence of points {Ek]i-l as follows :
=g

j+kn-l
For kl -— F Et = Eé y for k % hl s o
and = Eik g o Bor k) < kg -1 .

1

itk

For k) =5 -l,tk - ti » for k< hl ’ s
5.2
and Ek = Eihl-k+l , for 11 <k £ j-1
~—
¥

Fig. 1
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Let 5: be the ball of radius R centered at g . Let j be such that

S<eA , for k=l,...,jl,all jg 5y (5.26)

Then, for kn <] = jﬂ §

P18 xyyide) = %) PRxiyidw)
' (5.27)
j=1

2 0 X W) eBuyiaw
n=o  Sp

where ¥

;u}fw} is the characteristic function of

{wiw(r) €5 , for nB £ v £ (n+l)B}

Hext,

i1 =1

Oz [° ar vie(eokd) w2 ] 1 ™ ()
i=0 o n=g E:

Lk

-1

£ L o max  B[Vixy) | (5.28)
1=0 x€Sy , YES,

Lék

We now assume that

c(¥) = max I | Bax 1|1."{:|:,,j"_l| (5.29)
k t=l x€51°,yes:

is finite. Here E;l.k is the ball of radius R centered at l;',; s k= 0L, 2c000

Condition (5.29) constrains the fall off of the potential V , as |[x-y| + =,

It is fulfilled e.g. if W¥(x,¥) = W(x-y) , where W is a bounded, continuous

function on W with

|Wix}| < const. |1!-1-E ., for some €> 0 . (5.30)

Under these hypotheses on ¥V the proof of (5.29) follows immediately from (5.21).
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By (5.20) and (5.27) - (5.30) ,

i
i -iatee(v)

Py p(Bazix.¥) 2
Al ok

(5.31)

i-1
Jo 1 X 2P,y

n=oa EH

The integral on the r.s. of (5.31) is easy to estimate from below : Define

a= min [ dnf P® L (Emide) , (5.32)
€52 S ¥ m, sy
where FF:H“ is the sphere of radius R/? centered at x + % e 3
BOTEOVETD
a' =min [ P® . (g.yide) . (5.33)
S
E€S. ) 4
where 3' is the sphere centered at 1!1({j_l+£j_z} + Since
fﬂ g t{,n,dnﬂ is the kernel of exp [g;-nsl , where ns is the Laplacean

with O-Dirichlet data at 35

a>»0 and a' >0, for all R>0 (5.34)

From (5.31), the Markov property amd (5.32), (5.33) we deduce

J F
o 1 (Bozixy) 2 3= 1" (zae™ Be(V), ] (5.35)
j=k
o
As A AR | j.ﬂ. tends to 4= |, and the r.s. of (5.35) approaches
2 k
=-q Be(V). %o
foe ) (5.36)
=q Be(V)

l=zae
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Clearly (5.36) and hence Py 1{3,::‘:,?1 diverge when
L]

2
z > minte Lo P°Y)y  gorall x and y . (5.37)
R

It is not hard to extend the above arguments to the (2ZN,2M) point
ROM's : If {:}H - {;'jH . ¥y - {y'}H one can simply use the Holder inequa-
lity with respect to the expectation - 1{5.:} to show that
L]
ghjl{ﬂ,a:{x]H{x]H;{yjﬂ{yﬂ}] diverges if pﬁllfﬁ.::x.yl diverges. For general

q?Be (V) (B (N+M-1)

RDM's apnd =z > miu{nnla , for some & > 1 ,
R

Py Bz (k) (x") i (¥) 0w (¥')y has a divergent lower bound. (The details of
L]

this generalization, as well as estimates on & are rather straight-forward
and are left to the reader). Finally we remark that spin can be included, as

is obvious from Theorem &4.1".
We summarize in

Theorem 5.4.

For a charge-conjugation invariant system of two species of Bosons

of charge q and spin § interacting via a (spin-independent) two-body poten-

tial V with the property that o(¥V) , defined im (5.29), is finite, the

RDM's pml{ﬂ,:.; {r}H{rl]H;{?}Hﬁ'l}H] diverge, for arbitrary points

{:IH.{:'}H.{r}H.{v']H » provided z is large emough (depending on B,V,...).

Hemark.

This result suggests that charge-conjugation invariant two-component
Bose gases must have Bose-Einstein condensation when the density is large.
Physically speaking, we expect oppositely charged particles to form neutral
"molecules™ at large density. But our results are clearly not even quite a

beginning of a rigorous theory of Bose-Einstein condensation. An interesting

open problem in an attempt towards a rigorous theory of B-E condensation is :
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Prove an upper bound (infrared bound) on Eh ltﬁ.:;k.-k} ; for small momenta
]

k40, e.g. in terms of the ideal Bose gas two-point RDM .

5.2. Existence of the thermodynamic limit : Bose statistics

j-1
n
k=o

]
Let Gj[w} E tlp[quﬂ | dr V(e(r+kB),u(t+kB))] {5.38)
o

Recall that in the notation of (5.13), (5.14)

2 8 .
_J" Id' % I“Fi’htlr“r*ﬂ}c (w)

o
E
wn

E, . (B,z:q%)
Al S

i
j=1
« cosl E

q f: drg(u(T+ke),T))
k=a

£ Jdoh (©costee3)) (5.39)
j-I. »]

. 1 . j8 .

L.e. dpﬂuj is ;?uren ]Ty ‘rdu:: Inﬂjt‘-”}P-’ﬂ{I-I*d‘”} ,.H'itll

Eiﬂn[:,xgdm} = :iﬁim}Pisfl,x;dm} . By definition, :iB{uJ is pointwise mono=
®

tone increasing in A , i.e. if A" 2 A
ig - JB B
1i;h (w) = Ii+{m} - 1i () > 0, so that

1 1 1
.=z 4d . > . 5 .4l
Ao g 290,598,320 é3:40)

Thus, for A' 2 A,

B Idni.ﬂhdﬁtlcniﬁflgj}} : (5.41)

lﬂ._liﬂ.ziqil - th_liﬂ.::qil + i

i 1
for some positive measures d = =
F nhl I-hl]

Theorem 5.5 (Existence of the thermodynamic limit)

Under the hypotheses of Theorem 5.1 (i.e. for 0 < z < 2, with

z > exp(-Bq’K/2)) and €= 1, i.e. Bose statistics,
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iiﬂmﬂ Py, 1Bz (g (xD s (r) (r" )= gy (B2 () (") () (y") )

exists and has the same spatial symmetries as the Hamiltonian. In particular,

if Vv is invariant under Euclidean motions then so are the RDM's Py for

all N and M .

Froof.

By Theorem 5.1, it is enough to prove that
nh’I{E.::{1]H{t'}ﬁ;{rlﬂ{y'}u} is monotone increasing in A. Theorem 5.5 then

follows by standard argusents: see [22] and I.

As asserted im (5.17), (5.18)

5:“&-3- By, 10 %Yy ,qﬂbﬁ{m{v-— By, 10 3%]a¥ 394))

is of the form

@™y cosp(a™)y (5.42)

E Jdx
K kA
and it is shown by the same arguments that we used to prove (5.40) that the

maasures dj are monotone increasing im A (5.43)

LY

We now define

<> (8;8,2) = E(si8,2) " + < exp[€,,(B,2;q4)* s s LT

(i)
{E]cuu¢E1 ¥
j=1 A'sd v

where =(s;pg,z) 1is the obvious normalization factor.
From (5.43) and Theorem 3.1, (1) follows

dekrn[nﬂ}} <conp(m ) )> (a38,2) (5.44)
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is monotone increasing in A . Furthermore

3 (3 . - | . (k) , S} I
3o <cosé(m’)>(s;8,2) jElIdph,rh:fii cos¢(m ") ;cosp(L." " )>(s;8,2)

and the r.s. 18 non-negative, by Theorem 3.1, (2}. Integrating over s from

(k)

0 to 1 them shows that <cossim }}n l{ﬂ,:} is monotone increasing im A .

This property together with (5.44) yield monotonicity of the RDM's im A .
| |

Theorem 5.6. (MHonotonicity in 2z and WV )

Under the same hypotheses and for arbitrary A l_:‘ﬂf .

(1) pﬁllﬁﬂ.a;{xiH{:'}H;{y}H{y'}H} is monotone increasing in =z ;

(2) if V is translation invariant with V(0) = K < =, and for

7 o BRI,

2 = g

r By 1{5.?111!}“{1:'1":{?}HEF‘IH} decreases when V increases as

a quadratic form.

Proof .

{1) This follows from Theorem 3.1, (2), by the arguments used in the proof of

Theorem 5.5; see also I, Theorem QM, §1.

(2) The proof of this is identical to the ome of Corollary 3.2, (1), 63 of
paper I, except for notational complications. (The basic ingredients used are
Theorem 3.1, (2) and the fact that the covariance W of & increases if V

increases in the quadratic form sense).

Generalizations.

Theorems 5.5 and 5.6 also hold for Bosons with spim. This is checked
vith the help of Theorem 4,1", Section 4.2. Moreover, one can apply the arguments
used in this section to general ITGF's, with identical conclusions. To see this

one makes use of the machinery outlined in the last part of Section &.3. By a
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general reconstruction theorem, the ITGF's in the thermodynamic limit uniquely

determine a B-KMS5 state and the dynamics of the infinite system in thermal

equilibrium.

5.3. Ela:trumagnati: fields.

The coupling of a quantum mechanical particle with electric charge e
to & classical or quantized electromagnetic vector potential I - (Al....,lhj

ig achieved by the usual minimal substitution

9. = afaxd m 3, - deA, ,

J J 3
(5.45)
A A o ®
A" w a0 = [ (3.=iaA,) (3.=ieh;)
j=1 J J J
s 2 (M,5) > : L
The kinetic energy operator Tﬂ defined in (2.2) is replaced by
M N
™M oL azepdt - £ anzapat . (5.46)
A X i=1 i4  j=1 joh
; ; ; ; ’ ; (M,N)
The total Hamiltonian is given by the previcus expression, except that ‘I'.,L

is replaced by T{H;H] + From now on we impose the Coulomb (radiation) gauge
AA
on & g 1a@,
v
Ay =0, (F-K)(x,t) = T A (xt) =0 (5.47)

i=1

Wext, we recall the path space formula for exp[-B({-(1/Z :ﬂﬁ; +W)] , where W

is & bounded one-particle potential. The integral kernel of this operator is

given by the following modified Feynman-Kac formula :

v : 8
J P: ﬂtx.r;dujexp[iEjE fﬁjtuit].t}duJit}]!xp[-f deWiw(x))] ., {5.48)
i e =] o

where Iﬁj{m{r},T}dmj{r} is defined as an Ito stochastic integral; the defini-

tion is unambiguous,thanks to the Coulomb gauge conditiom (5.47). See e.g. (11] .
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(A convenient way of deriving and interpreting (5.48) is also provided by the
lattice approximation : Replace B by aX , establish (5.48) on the lattice
aZ’ and then pass to the limit a WO , This program is carried out e.g. in

[41).

If the external vector potential is classical and stationary then
Rate) 1) = Klulo))

is an B -valued function on 0 which does not explicitly depend on v . IE

X is the quantized vector potential in the Coulomb gauge them A(x,7) is
interpreted as the corresponding Euclidean field with periodic boundary condi-
tions at T = 0,6 . It is a Gaussian, R’ -valued, divergence-free random field
with mean 0 and covariance I:rfi{x-x",r-r'} , the transverse Euclidean

(z imaginary time) propagator of the free electromagnetic Field which is perio-
dic in 1=1' with period B. As is well known this corresponds to an inverse

temperature B equilibrium state of the free e.m. field. The corresponding

Gaussian measure ("the law of I“] is denoted dnH{I] :

In order to avoid all problems with uwltraviolet renormalizations, an
ultraviolet (high fregquency) cutoff ian the spatial directions is imposed upon

I s with the effect that
Idu"{hni{x,:uj::'.rf} - nfjcn-:*.:-:*} (5.49)

is regular at (0,0) . In this case all future formulas of this section are

free of Wick ordering (of powers of A) and of counterterms, without ultra-
violet divergences arising.

We now define the analogue of the one-particle operator .ﬁ.q* = _A.:‘q‘

introduced in (4.24), (4.25), Sectiom 4.2 :
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; a/2fParviu(n) u(n)
Ay 100 = J P® . (x,y;du)e o

q# a m, A
(5.50)

B
. axp [igq] dréfult),1) + I ie Ih (ele) ,hdu (1))
o i=1

We then sat

:h.tm,zgq“}h = =¢{Tr m(l—tﬂqhxh Tr ta(l-czd_ -I}

= j-l. #
= S 3 [ R (x,x;dw)C, (u) -
ju1 7 a ™A 3 (3.51)

j=1
+ cos[ I (q j drd(wi{T+kB) 1) + E & IA {u(t+kB,t)du {1+kﬂ}i]
k=o i=1

:  d7 Ja -:::-muu“’:n . ntn‘”}} :

P
ju1 A i

where Gjiul is the Wick ordering factor defined in (5.38), and the last

expression is a short hand for the complicated third expression.

Hext, let
Eh.E{E'EiI} = <gXp I:..“E (ﬂ.,:;qﬁI};‘r . (5.52)
a"ﬁ% Fﬂﬁiﬁrﬁiﬂrfi@“x} - ‘{{lTlﬁq‘.I’-lhq*,I}'::'r}

- E‘SE; [-dntlTﬂq"I}]tI'}r} = (5+53}

sea (4.27), (4.28). The correlation functions in an external vector potential,

I y 8re then given by

By, (B2 (Do (30

E iEw:-I} {H}': F'h Eiﬂllllil? l‘:I"lI]:'

. E{H}£ TP :{E z;x! .ri.qi ;K1) exp £, iﬂ.t.qt.lﬁi ' (5.54)
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and the correlation functions of the fully quantized system by

By, e Brzi e (D)

. ctot.
“AGE

ikeh.

{Hj$]-l jd.E{I}E ﬂ’:fﬂiliI} {5.55]

8y 1 (Bazi Oy v oa (y ) )

with ZC(8,2) = Ja"Dyz, (B,2:b) . (5.56)

We now discuss the following three problems :
(1) Diamagnetic inequality for partitiom functionm 1] .
{I1) Diamagnetic inequalicty for RDM's .

(II1) Existence of the thermodynamic limit of the RDM's of non-relativistic

quantum alectrodynamics.

{1} We begin by recalling Simon's diamagnetic inequality [II] , i.e.
RO P EANCEL RN ORI (5.57)

It must be esmphasized that (5.57) holds for general Bose systems, without the
assumption of charge-conjugation invariance. In the formalism adopted in the
present paper the proof of (5.57) proceeds as follows : Notice that

ﬁiq# iI{x,!) , defined in (5.50) is of positive type as a function of § and
L]

X . Thus -Tr tu{l-lﬁ!q‘I:I] and consequently exp=Tr ln{l-Ihiqﬁ.iI} are of
positive type in 4 and 1. Since ﬁ-ﬂi is Gaussian,
E|Il IEE.:;I} is of positive type in i. (5.58)

(See [4], §5 for details concerning related arguments). We emphasize that (5.58)
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really holds for general Bose systems of arbitrarily many species of Bosons
of arbitrary spin, as long as the spin of the particles is mot coupled to the

electromagnetic field. Clearly (5.58) implies Simon's inequalicty (5.57).
Since de{I} is Gaussian (i.e. of positive type)

-tntttﬂlz;‘l‘:l.} 5 Idﬂ.ﬂ.tI}

h,1 EE.-!:I*IH_}

Zx,1

is of positive type in the classical, external field, I:l. + 50 that

oy (Beniky ) 5 50 (6, = 207" (6,2) . (5.59)

This says that

if the interactions of the spin of Bosons with the electromagnetic field is

neglected then systems of arbitrarily many species of Bosons of arbitrary spin

react diamagnetically to an external electromagnetic field, I:l .

(IL) Next, we prove a related result for the RDM's of charge-conjugation

invariant Bose systems.

Theorem 5.7. (Diamagnetism in RDM's)

Assume :hnrﬂp-cnniggn:iun invariance. Then

(1) |ﬂn liﬂiiitﬁ}ul---1{?+}t{i:}| h ﬂ'n l{ﬂrai{“}.ﬂi-l H-{.'I"“r'H}
(2} |Fﬁi_ltﬁi:i{x\}ﬂi"‘**‘i(}r“}uifﬂ =ph 1(511;(:}H1i-+1{y+]=-£}
Proof.

(1) In view of (5.51) and (5.50), (5.53) (1) reveals itself as a special case

of Theorem 3.2. (The role of the phases a,{fl in Theorem 1.2 is played by
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W

I iefA, (w(t+k8) ,1)du" (t+kB), k = 0,1,2,...).
=]

See also (5.17) and (5.18).

(1) This is a straightforward generalization of Theorem 5.2 with a very similar

proof which we permit ourselves to leave to the reader. s

We remark that Theorem 5.7, (1) can be generalized inm the same way as
(5.57) is generalized to (5.59), and again spin can be included if not coupled
to A . Mext, suppose the electromagnetic field is quantized. Since

Eh 1[5,:;1} is of positive type in i ¢ 1t has the general form
L]

¥ =,
] ﬁuhiﬁizlith} » for some dp, > O . By Theorem 3.1, (2) we therefore have

<cos If?b’niltﬂ*‘} 5 Ei?t*tﬂ.:}-l [dn® (X)cos I{?}.En:l{ﬂ+=;xl

> | do® (Kycos KB ,

and since 11 = 2 lim E-z{lquua::} .
Ead

<II£f1II*h'1{a.=i < Ja® Ry | AH|* = (F.0%D (5.60)

This is a trace of the famous Higgs mechanism (in solid state physics discovered

by Anderson. For related resultssee [&] ).
(II1) As a generalization of Theorem 5.5, Section 5.2, we have

Theorem 5.8. (Existence of the thermodynamic limit in noo—relativistic QED}.

For charge-conjugation invariant systems,

ph+l{ﬂ'ti{IJH{I'1H;{FIH{y+1H;¥} s defined in (5.55) is monotone increasing in

A and = and decreasing when n’ increases, in the quadratic form sense. In

particular; the limiting RDM's
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ul{ﬁrt:-"“""} = ki:’mnuﬂh.ltﬂlt: L] -]

exisat if z < -xp{-ﬂqzlfi} '

Proof. By (5.55), uniform upper bounds on Py IEE,:;[:}H,...,{y*}H;I} follow
[
directly from Theorem 5.7, (1), Theorem 5.1, and the trivial inequality

| A

ateub] g5 60 .

A, 1

The proofs of monotonicity im A,z and p? is the same as the ones of Theorems

3:5 and 5.6 if one uses instead of Theorem 3.1, (2) Theorem 3.3.

More details concerning a related result may be found in [4] .
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6. Some Open Problems and Qutlook

The following five topics may be worth being studied within the functional

integral formalism developed in this paper.

(1) Behavior at small values of z and B8, decay of correlations in the thermo-

dynamic limit, cluster expansion [3,12] , screening properties [2] .

(2) Analysis of phase diagram based on studying the behaviour of the "action"
Sﬂ.:{-’z;‘} (resp. €, ElE.:;q#} ; see Section 4.2) as a functional of & .
]

Reliability of naive Goldstone picture with & as order parameter.

(3) Further study of Bose-Einstein condensation (e.g. for charge-conjugation

invariant systems), in continuation of the results given in Theorems 5.3, 5.4.

(4) Continuation of analysis of non-relativistic (quantum) electrodynamics and

superconductivity for non=relativistic Bosons.

(5) Existence of the classical limit (K ™0) of RDM's and other correlation

functions.

We conclude with a few comments on some of these circles of problems.

(1) The functional integral formalism developed in this paper would in principle
permit to apply the Glimm-Jaffe-Spencer cluster expansion [26] te the quantum
mechanical gases considered in this paper, provided £ and 2z are suitably

small, and the potential V is of rapid decrease.

This may improve the results of Ginibre [12)] and simplify the techniques
of Brydges-Federbush [3) , but one cannot expect that the results of Brydges-
Federbush [3] can be improved in this way. (We notice that the applicability of

the cluster expansion does not require charge=conjugation imvariance).

More interesting is the question whether quantum mechanical gases of

particles interacting via regularized Coulomb potentials will have Debye screening
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[2] for timy values of g . In principle, a combination of the methods developed

in this paper and in [2] ought to yield insight in this problem.

(Z) One can imagine that one may extend the Glimm-Jaffe-Spencer version of the
FPeierls argument [22] and their mean-field comtour expansion [27] to the systems
considered in this paper, by viewing the auxiliary random field 4 as an order
parameter (the analogue of the Ising spin in the conventional Peierls argument).

Related to this is the discussion of the properties of

. 1
5(¢) = lim —— 5 (¢) , (6.1)
aam” [A] A
1 o |
Sy o (mEid) + 5N, 9) |, or (6.2)
S5,(8) =
€, (B,ziq8) + {4V 4) (6.3)
A Pr R el TR
for fields ¢ which are constant on R  x[0,8] .(The functionals Sﬂ . and
L]
T are defined in Section 4.2). This supplies an analogue of the Goldstone
picture. For S|II as in (6.3) and a translation invariant potential V we
obtain
P B 2
- =1 = q v(0) ;
2am, v/ 2 gd 2 1 4
5(9) = - (5 I SR )" cos(iBqs)

(6.4)
- %ﬂu}-l#z
Heuristically, one expects that if $(0) is the unique global minimum of 5(&)
the infinite volume equilibrium state is unique. If there are degenerate absolute
minima for some values of z and B(c = -1) then the equilibrium state is
presumably not extremal (i.e. degenerate). This situvation is met in a system of
Fermions on a lattice (R  +Z ) with attractive interactions, resp. in the

quantum—mechanical Widom-Rowlinson model om the lattice,with Fermi statiscics.
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The combination of a lattice with Fermi statistics remders such systems stable.
The functional integral formalism for lattice systems with attractive potentials
is obtained from the one developed in Section & by using Brownian motion on the

lattice and replacing

B
expliq IEdT¢{M{+kE}.T}] by explq | dré(uir+ks,®)] .
o o

For ¢ = -1 and strictly positive lattice spacing the resulting expressions
make sense. The formalism may be useful to develop a microscopic theory of Cooper

pair formation for lattice electroms.

{4) Hon-relativistic quantum electrodynamics 15 a subject that has been wnde-

servedly neglected. Most problems one may wish to pose are still open.

= Do atoms coupled to the (ultraviolet regularized) quantized radiation field
have discrete groundstates 7 What is the correct mathematical description of

the resonances corresponding to the excited, atomic states 7

- Do non-relativistic, interacting Bose gases exhibit the Meissner effect typical
of a super-conducting state, at suitable density and temperature ? Do such
systems exhibit the formation of vortices ? Do non-relativistie, interacting

Bose gases coupled to the quantized radiation field exhibit the Higgs sechanism

in & strict sense of the word ?

{5) For bounded regions, A , the existence of the classical limit can be proven
for the ROM's of the systems analyzed in Sections 4 and 5.1. If one sets

vi2 and 1f one replaces & by ~hzb , the RDM's converge to the

zy = =~ (2nBh)
corresponding classical correlation functions studied in paper I. If one uses
the functional integral formalism of Section & and appropriate LF estimates
the proof is particularly straighcforward. The exchange of ﬁf]lt“ and Ry 0O

ig, however, non-trivial. (One could use a cluster expansion).
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Appendix A. Proof of Theorem 2.1.

2
Let U ((x),(x') ) = I q; V¥, (x.,x)
£y ¥ jcicie s e
(A.1)
2 = 2
* I g, Wxi,x)+ £ E q.q, V,(x.,.x),
leicjeN © b B e ga ¥ARTETY

for &= 1,2 .

Recall that V = FI* "2 , where Uzil.y} 5 UEEIF?} is a function with

non-negative, continuous Fourier transform, ﬁi » and ﬁzfu} *0 . (A.2)
Without loss of genmerality we may assume that
1, >0 . (A.3)

Finally we recall that the statistics of the first species of particles is
Fermi statistics, i.e,

g, ==1 , (A.4)
but £, = £ .

2

By inequality (2.1) and hypothesis (2.3)

Hi“'“] > ﬁiﬂ*n} - B(M#N) , with

{A.5)
"{H.H} - l tH!H} [
Hh =3 T, + HE[{:}H g (x ]Hl

Since ﬂztkj > 0 , there exists a finite constant E'I- ml:{qi.qg}-ﬂtﬂ}} such

that

Uy ((x)yo (x') ) 2 -B(MeN) ; see [22] (A.6)

For the proof of Theorem 2.1 we need
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Lesma A.l.

Suppose that qzﬂ > ?qufH ., and :] E A, :i EA, for = 1,...,M

apd i = 1,...,8 . Thea

U, (€= (x)y) 2 ¢y N7]A] = e,N

for some finite constants € 0 _and €y

H
Proof. We use some arguments due to Ruelle [23] . Let “1{=J = I qlﬁ{x-xj} "
M i=1
ni{:} - ifl qzﬁ{rxij , with ij.n'I. " x£ EA, for j = 1,...,M and
i ® ], ..a,H
Let El{p} = {II}qJHI | nﬁ{:}--lpixilx
A
- @02 £ qelP % :
k
Clearly

Uy (R () = [ d'x [ d'y(n, (0 +n, ()Y, (ey) (n, (1) 40, (1)
- qf V(O)H - qg v{0o)N
= Jd°p ,(p) |n, () +3, (p) |* (A7)

- qf V(O)M - q; V(OIN .
Hext
2 -ip-
18y @8, % = @02 [ &x T [ d'yln Gayen, ey

i [u1{1)+n2{r}l :

By power series eéxpansion of u-ip'x and the hypothesis that A be

regular, i.e.

max |x| < :||1'I||I"r"'r , for some finite a ,
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provided A 3 0 (which can be assumed due to the translation invariance of V,),

we have

|8, ()+8,(p) | 2 max(0,G(p)) , with
Gip) = (EI}#JI ”hd" ::l_'nl{u}i-nz[:;]}]z (A.8)
Li
= {2]}'91"-1 ”nﬂuﬂﬂﬂl[ﬂJ*|nz(ﬂ]}]z[#ﬂﬂ |ﬂ.| -1)

Since by hypothesis q.N 2 2|q,|M ,

[d%x(n, ()40, (x)) = qMeq,N 3 % q,N , and )
(A.9)
3
[d'x(|n ()| dny (x) [} = Jq [Meq ¥ 2 5 a8 .
Let f(p) = max{ﬂ,l—ﬂ[eubl-lll . {A.10)
Clearly f£(p) is a non-negative, continuous Efunction with
supp £ = {p : |p] < u.-l En(l0/9}} compact.
By (A.B) and (A.9)
& D ~/2 1 2 alpl 18|
|2 (e, (p) |© 2 (20)7'F 7 (g ¥)° max(0,1-9-[e -1
- @021 gm? ea]MVp) . (A.11)

Thus, using (A.7) and the inequality
2y(0)Meq> VOIN < q= V(O (1+|q,|/2g,)
9 1 =% %1749

which holds, since |ql[H < {qzﬂ I8 by hypothesis, we obtain
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= 2 1

Uy (R0 2 @0 ™2 3 @? [0, (Al e - ey

s
—j2 1 ¢ - -
e M %T%I' J@T, AP0 e - e

H1
i tl TET - ciH ¥
i 2
with ¢, = q; V(0)(1 + |q1t32q2} and

2
q 2
= (2n) /2 2 oy omin V(a| LAy rd ke
|k|:u tn{l0/9)

vhich is strictly positive if |ﬂ] is sufficiently large, becauss
tim  Ve|a] V) = V(o) >0, for |k| <= , and [d'KEGK) > 0 , by (A.10).
A A= W
We are now in a position to prove Theorem 2.1. By (A.5) and the definition

of Eh[B.:l.::] = gea (l.6) =

R gy (M)
2, (8,2,2)) § T X PR T o (@ Ay, (A.12)
H=0 N=0 Hh :
where -Ei- ztaupEEB] o N i e
- ﬂ' ™
Next, I *= f *+ E ,with W= [zquiqul ; (A4.13)
N=0 N=0 NaN+1
where [a] is the largest integer < a .
By (A.6) ,
_=(M,H)
E.'E N e (e Eﬁi )
A
< d Tr {e-.%.ri“'ull Eldﬂ Tr {- % T:D'H]
=9 om0 s gl )
t
" 20,10, 0 T 100 4l
< :dltzdz} ) (A.14)
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where di = e:p{'ﬂ-ﬁj and dI = max(1/2, ?zupﬂﬁ} , and we have used the inequa-

lities
= _B_ _(o,N) o _ B (0,0
: QT ol e ap" = B e o te R
N=0 li ' H=0 W10
A
2|q, [M/q, d,]|A]
cgE L T aT g

for some dj < = for both, €, ™ =1 and € = +1 .

Hext we apply Lemma A.l to obtain

- N - - £ 10460
e 22 T onm @ ) 3 T*Hin.ult' !

il
_B .r{u,ﬂ'.l

2
o €N =e N°S|A]
N "2 1 2 31

| I E, & @& Tr (e
2 0,
{H“I;H:zl‘lﬂﬂl Hi )

How, choose y2> 1 to be so large that

= By Ty
T, e e < 1/2 . (A.15)

In that case,

N -e N/ |A] - £ r:“'"}

=N “a
yo.m e )
A

T :2 1] i Te
qzﬂ:l Iq]. II'I

B (08

[y[A[] N e,N 2T,

L z, e TrH{u’H}(e
A

A

E=0

" . _ B (0,
: /Y 1e (e Ay
" Nely[a]141 Hi“'“‘
_ 8 (0N

[v]a]] e 5T,

( E (22, % Y e
N=0 N=0 H

d. |a]
.3

(o,m
A

s 2(d,-1) 7 d:|“ : (A.16)
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c
with dﬁ = max(!,!?& e I} s and we have used (A.15), the Schwarz inequality

1}112

for series, the inequality (I a

<L a s vith & >0 , in that order.

Br t*nl:}l {*!Iﬁ} .nd {i+lﬁ}

dylA|
" _av=1 y|A] 3
dh{alllllzj : #{dﬁ 1) d# E
- M - B T{H,N
- 2 A
Hiu z Trﬂfﬁ.ﬂ]ia ¥ i
A
- S 2]q, /4,
vhere z = nl:{:l,nldliidzj )
: . . uiM,0) P
Finally, since all vectors inm Hh have Fermi statistics,
-] - E (Hlﬂ}
3 e d|A]

I zTr

(e ] e =
HeD Hi“”"’} 2

for some constant d5 which is finite when z < = , This completes the proof

of Theorem 2.1. .
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Appendix B. Proof of Theorem 2.2

In Theorem 2.2, 9 > 0, q, <0, £, =c, " 1 , (i.e. both species

have Bose statisties), =z, >0 , 2. >0 . One sets

1 2

m = min (m ,m,)

= lfilnin[tl,nzll+ﬁlin[l - ;i s 1= %f]] i {(B.1)
see (2.5). Let

EIH*"} - - {?1 =y - j;l 4 s, and (B.2)

'HEH'“} -'T:“*“} + U000, » (1)) . - (B.3)
By (B.1) ,

H:H'H} < H:H'm (B.4)
We define

AR w2, ﬂﬂl{mﬂ}a c (.5)

The second factor stands for the spin wave functionm that is an eigenvector of

the l-component of the total spin operator with maximal eigenvalue, for example.

Obviously
-H'A(H'FH.'I - H:H.H.'I : .
with HW given by (1.4), (1.4"). By (8.4) and (8.6) ,
Trﬂ' {HIHI iil’:p[-ﬁ‘H:.H.H}lj t Trﬁ{m] {!q[_.ﬂhtnllﬂl} (8.7)

A A

Let z = min{z,,z,} . By definition of Z,(8,2,,2,) and (B.7) ,
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- M+N

= - )]
 (Bu2y42,) 2 £ ZT T exp[-sH ]y
A L*"2 M, N=0 H;tﬁﬂﬂﬁ A
{B.B)
= K
X (K=N,N)
- I T Tr (expl[-gi ™ """ 1)
k=0 ¥=0 W, (K) A
E ] E
— 1y K K (E-N,N)
> 1 (@D L ()T (exp[-aH 1
K=0 o BH, 0 3
-f'm“;“r.{p Y+8( pi-q,))d
= F z n 8dp.—q, ) +6{ p;—q Bi
£t §=1 i"M 1 2 i (B.9)
-6y ({ o))
* Tl.'ﬂ, EH-} ‘:.E } ]
A
where (e = Fi + 0y +lo} ) o
{(B.10)
ith U{(x), ,{p}) = L V(% ,x,)
WA Xigelp 15i<j<K R Bt Bl
Without loss of generality we may assume 9 2 qul . From (B.8) and (B.9) we
now obtain
( s 2 @& 1 4A(e,) {iﬁxumi (B.11)
E, Bz, .2 * I =z N ditp.) Tr a : B.11
A 172" = oo =1 i nrﬁl[:}
vhere =z = 1/2 =z(1 + l;gl] , and
1
1.-1 |9
dap) = (1 + Jq—il-} {% §(p-q,) + &(pq,))dp . (B.12)

In (B.11) we have used that

q
( + %}dxm < (8omq)) + 8(pra))dp

-8 ([ o}
a Cheb) .
We now express Tr [HJ{E Y in terms of a Feynman-Kac integral (see
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Section 4.1). Then we apply the Jensen-Symanzik inequality with respect to the

Wiener measure. Subsequently one may "undo" the Feynman-Kac integrals. This

yields
. -s‘i[ﬁ”up]:-} { -ﬁj“}
r & > Tr e
(K) - {K)
ﬁ.ﬂ. ﬁ.ﬂ. (B.13)
= EIFE"' H = “{{‘}lllp]}}n] ¥
-n'f:} w1 -1
with o, - [Tr hxjtt y] T;H{I]{n -} .
E
Next, we apply Jensen's inequality with respect to II[ :IJ;I_'rJ-i]- = , using the
i=]
fact that Idl{p} = 1 . This vields
~(K)
= =BT
E.(B,z,,2 ) > L - Te (e A )
A 1 Km0 7 (K)
K
lexp =g [ 1 di(p )<U((-)p . {oD)>g 1 .
i=]

Finally,

Iiu dilo <u((- ). L el =g
=]

In.:l-|=

(8-1) [dr@) o faa(p") o' <V(-,0)2,

=0 , by definition (B.12) of dX .

This completes the proof of Theorem 2.2,
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