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Abstract. 

We study quantum mechanical systems of particles with Bose- or Fermi statis-

tics interacting via two-body potentials of positive type, in thermal equili-

brium. We rewrite partition function, reduced density matrices (RDM's) and 

correlation functions in terms of Wiener- and Gaussian functional integrals 

(sine-Gordon transformation). This permits us to e.g. apply correlation inequa-

lities. Our main results include an analysis of stability versus instability 

in the grand canonical ensemble, and for charge conjugation invariant systems : 

upper and lower bounds on RDM's, existence of the thermodynamic limit of 

pressure, RDM's and correlation functions, an inequality comparing correlations 

with Fermi statistics to ones with Bose statistics, and inequalities which 

are important in the study of Bose-Einstein condensation and of superconduc-

tivity. 
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1· Notations and Summary of Results. 

1.1 An outline of the main results 

In this paper we continue our study, initiated in [10], hereafter 

referred to as I, of classical and quantum mechanical, continuous systems in 

thermal equilibrium. The systems considered here consist of two (or more) species 

of particles interacting via two-body potentials of positive type,and in many results 

an exact charge conjugation invariance is required. In I we have found new 

correlation inequalities of the Ginibre type [13] for classical systems and 

quantum mechanical systems without statistics("Boltzmann statistics") which 

are charge conjugation invariant. We applied those correlation inequalities to 

establish the existence of the thermodynamic limit of (the pressure and) the 

correlation (RDM) and imaginary time Green's functions (ITGF). 

One basic ingredient in the proof of those results, in particular of the cor-

relation inequalities, was the use of a combination of the Feynmann-Kac formula with 

the sine-Gordon (or Siergert) transformation. These technical devices play a decisive 

rôle in the present paper, as well. 

The results of Paper I are here extended in the following four directions : 

(A) Analysis of stability and instability of quantum-mechanical systems in the 

grand canonical ensemble. 

Let ≡Λ (β,z) denote the grand canonical partition function in a bounded region 

Λ (of volume |Λ| ), at inverse temperature β and activity z. By stability 

we mean the inequality. 

< exp 0(|Λ| A| ) , 

for suitable β > 0 and z > 0. 

By instability we mean, roughly speaking, that, for some β , ≡N (β,z) has 

a singularity in z at some finite, positive value Z
0

, and ≡ Λ(β,z) = +∞, 

for z > z . 
o 
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See Section 2. 

(B) Proof of existence of the thermodynamic limit of the pressure for stable 

two—component, charge conjugation invariant systems of arbitrary statistics. 

See Section 2. 

Remark. In (A) and (B) the particles may have arbitrary spin, and the results 

outlined in (A) do not require charge conjugation invariance. 

(C) Uniform (in Λ) upper and lower bounds on RDM's and XTGF's for charge 

conjugation invariant systems with Bose statistics and sufficiently small 

activity; (Fermi statistics can be treated , too,with our methods, but the 

resulting bounds are not particularly useful). See Section 5. 

(D) Existence of the termodynamic limit of RDM's and ITGF's of charge conjugation 

invariant systems with Bose statistics (below the breakdown of stability). We 

also prove a comparison inequality between RDM's with Fermi-resp.Bose statistics 

and study the effects of interactions with the electromagnetic field. See Section 5. 

In Section 3 we recall and extend the correlation inequalities 

of I. In Section 4 we give a simple derivation of Ginibre's formulas(see[12]) 

for the RDM's and ITGF's by using Gaussian functional integrals, as in [7] 

and paper I (sine-Gordon-or Siegert transformation) , in conjunction with 

Brownian motion. The sine-Gordon transformation permits a derivation of Ginibre's 

formulas for the RDM s from elementary, known facts concerning ideal gases of par-

ticles in an external (purely imaginary) potential. This gives our elaborations 

on the sine-Gordon transformation a certain degree of perfection. We also show 

how to include interactions with the (classical or quantized) electromagnetic 

field in this formalism. 
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1.2. Some notations and definitions. 

The physical systems we study consist of two species of quantum 

mechanical particles of mass mi and charge qi;i=l,2 .(Several of our 

results extend however to arbitrarily many species of particles of arbitrary 

masses and charges). These particles interact via two-body potentials. The 

potential between a particle of charge q at a point x  RV and one of charge 

q' at a point x'  RV is given by qq' V(x,x') . Generally V = 3. Hence-

forth it will be required (unless otherwise stated) that V be of positive type, 

i.e. that it be the integral kernel of a positive quadratic form on L2(Rv) . 

Moreover, we shall usually assume that V(x,x') is continuous in x and x' 

and 

(1.1) 

We are primarily interested in translation-invariant potentials , 

V(x, x') = V(x-x') (1.2) 

Then V is of positive type iff its Fourier transform, V , is non-negative. 

Condition (1.1) can be relaxed significantly for classical systems [7,10] 

and quantum mechanical systems with Boltzmann - or Fermi - (resp. mixed Bose 

and Fermi-) statistics ; see [17]. 

v 
First, we consider systems confined to a bounded, open region Λ  R . The 

coordinates of N particles of species 1 are denoted (x)N = (x1,.,.,xN), 

xj  A , the ones of M particles of species 2 are (x') = (x1', .,.,x'M ), 

xj  A , and (1.3) 

2Si+1 The one-particle Hilbert space for a particle of species i is L (A, dvx) C 

where is the spin of the particle, the N-particle Hilbert space, 

is given by 

, 
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(1.4) 

where is the statistics of those particles ; i = +1 : Bose statistics, 

i= -1 : Fermi statistics. 

The total Hilbert space of N particles of species 1 and M of 

species 2 is : 

•Let be the Laplacean on 

(1.4') 

with zero Dirichlet data 

at the boundary δΛ of Λ . The Hamiltonian of the (N,M) particle system 

is given by · 

(1.5) 

where 

For potentials V of interest in non-relativistic physics (in particular if 

(N M) V satisfies (1.1)), H * is known to be selfadjoint on a dense domain 

2 v (N + M) (2Sx+1)N+ (2S
2
 + 1)M (N,M) 

in L ( Λ J d x )  C , thus on π , and 

(N M) exp [-βΗ ] is trace class, for bounded open Λ and β > 0. Let r =(x,μ) 

be the configuration space point of a particle, where μ labels one component 

of the spin, and (r)N= (r1,... ,r
N
). Let ψ B((r^ (r')M; (r)N (r')M ) be the 

(N M) 
integral kernel of exp [-βΗΛ ] without statistics. If V is continuous 

β and β > 0 , ψ is well-defined, positive and continuous in its arguments. 
Λ 
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We define : 

The grand canonical partition function , ≡Λ ( β, z), is then defined by 

M 

where is the group of permutations of N elements, | 1|
 =

 |2|
 = 

σ(π) the signature of π , π(r)N = (r r ). 
N π (1) π (N) 

The term corresponding to N=M=0 is ≡ 1. (in the case of Boltzmann statistics, 

the sum over permutations is absent . Since the Hamiltonians considered here are 

spin-independent, we could take a partial trace over all spin degrees of freedom. 

Then higher dimensional representations of the permutation group on x-space wave 

functions appear).The pressure of these systems is given by 

and the RDM's by 

pA(e,z;(rVr')MîirVr'V 

(1.7) 
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(1.8) 

The definition of ITGF's is more complicated ; see I , Appendix 1. 

Definition 1.1 

A system is called charge conjugation invariant iff m1 = m2 ≡ m , S1 S2 , 

l= 2 ≡  ’ Z1 = z2 ≡ z ’ and ql ≡ q = -q2 · 

Our main mathematical tools for the analysis of the systems introduced here, 

in particular of ΞΛ(β, z), ΡΛ(β, z)
 and p.Λ(β, z;-), appear in Sections 3 and 4. 

1.3 Statement of the main theorems 

In section 2 we prove, using an idea of Griffiths [14] , 

Theorem A. 

For stable charge conjugation invariant systems with arbitrary 

statistics and translation-invariant potential , V , the thermodynamic limit 

ρ(β, z) = lim ρΛ(β,z) 
Λ 

exists and is independent of the sequence (only assumed to be increasing). 

The limit ρ(β,z) has the usual convexity properties. 

In Section 5 we extend the results of I by proving 

Theorem B. 

For stable, charge conjugation invariant systems of Bosons 

( = 1) the thermodynamic limit of the RDM’s 

p(β,z;(x)Ν(x')Μ ; (y)N (y')M) 
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exists for all N, Μ = 0,1,2, It is monotone increasing in z and 

bounded above by 

rhere 

z = z exp ( βΚ/ 2 ) < 1. 

Remarks. 

(1) We show in Section 2.2 that the restriction z < 1 in Theorem B cannot 

be relaxed by much because for large z Bose-Einstein condensation destroys 

stability. 

(2) The proof of Theorem B is based on a combined use of Brownian motion, 

the sine-Gordon transformation (Section 4) and correlation inequalities (Section 3) . 

Whereas the first two techniques can be used to analyze very general systems 

of particles of arbitrary spin and statistics, it appears that the correlation 

inequalities only hold for charge conjugation invariant systems with Bose statistics. 

Theorem B can be extended to Bosons with integral spin. This is a straight-

forward generalization of the techniques developed in Sections 3-5 which we do not 

elaborate on; but see Section 4. 

(3) Theorems A and B can be generalized to the case where the particles carry 

electric charge through which they are coupled to the quantized radiation 

field by minimal substitution 

Here A is the quantized vector potential, and ϰ is an ultraviolet cutoff 
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with the effect that the two-point function of Aϰ(0) is finite. We shall 

discuss the generalization of Theorem B to such systems in some detail. Moreover 

we shall show that the RDM’s of charge conjugation invariant Bose systems 

with e # O are bounded above by the ones with e = O, (Section 5) · 

(4) Following Appendix 1 of I one can extend the results of Theorem B to the 

ITGF's. That permits the reconstruction of a unique KMS state and of the 

dynamics in the corresponding KMS representation , in the thermodynamic 

limit [23]. 

(5) Existence theorems for the RDM's and ITGF's of quantum mechanical systems 

in the grand canonical ensemble have previously been obtained for various 

classes of short range potentials in [12] and for non-relativistic matter with 

Coulomb-replaced by Yukawa potentials in [3] . The methods used there only 

work in the dilute regime (small β and z) and for short range potentials. 

In comparison, our methods work for arbitrary values of β and an optimal 

range of z and do not impose restrictions on the range of the potentials. 

Moreover, the quantized radiation field can be included in our treatment. 

However,our assumptions of Bose-(or Boltzmann-) statistics and strict charge 

conjugation invariance are physically awkward. 

(6) Among our further results are ,(see Section 5): 

-An inequality saying that for fixed parameters and given potential, the 

absolute values of the RDM's with Fermi statistics are bounded above,in 

configuration space, by ones with Bose statistics. 

- Lower bounds for the RDM's of charge conjugation invariant Bose gases which 

diverge if z is large enough and 

— 1 —  
lV(x)| < 0(!x! ), as !x! ∞ , for some ε > 0. 

Our results suggest that such systems are likely to exhibit Bose-Einstein 

condensation, and that one ought to be able to even prove this rigorously. 

- Various (diamagnetic and other) inequalities for the partition functions 



-9-

and the RDM's of systems coupled to the electromagnetic field that might be 

of interest in the theory of superconductivity. 
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2. Stability and Instability in the Grand Canonical 

Ensemble, Thermodynamic Limit of the Pressure 

2.1 Stability in the grand canonical ensemble 

Consider the Hamiltonian on the the Hilbert space 

defined in Section 1.2 , (1.5), (1.4), respectively . 

The basic assumption is that ε1= -1. (i. e. the first species of particles consists 

of Fermions) and that the interaction potential V is chosen such that, for 

a given choice of , the system is H-stable in the sense that for some 

finite constant β and arbitrary Λ . 

(2.1) 

as a quadratic form, for arbitrary M and N; 

(Μ N) 
Here T Λ is the kinetic energy operator, i.e. 

(2.2) 

see (1.5). 

Definition. A region Λ  Rv is called regular iff diam Λ<α|Λ|1/v
V for some 

finite α . 

Theorem 2.1 . 

Let 1 = -1, 2 = ±1 , and q2 # 0. Assume that the potential V is 

of the form 

V(x,y> = V1(x,y) + V2(x-y) (2.3) 

such that (2.1) holds for V = ,(V2 = 0) , and is a function whose 

Fourier transform , , is non-negative and continuous with 

Let m
1 ,
m

2 be positive and
 z

1
, z

2 
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Then there exists a constant c = c (β,z1, z
2
), finite for all β > 0, such that 

≡
Λ
(β, z

1
 ,z

2
) < exp [c|Λ|] (2.4) 

(^-stability) 

for arbitrary, regular regions Λ · 

A possibly novel, simple proof of Theorem 2.1 is given in Appendix A. 

Remarks. 

(1) The result in Section 2.2 shows that it is important to assume that one species 

of particles consists of Fermions. 

(2) Theorem 2.1 has an obvious generalization to systems of arbitrarily many 

species of particles including Fermions. 

(3) As an application, consider the three-dimensional, non relativistic matter 

system, with V e.g. the Coulomb potential. We decompose V into two parts, 

V = , with 

(x ) = (1 /4π |x | )e , and 

V
2
(x) = (1 /4π|x| ) [l-e-ul

x
l], for some μ > 0. 

We assume that one species of particles is Fermions. 

Then all hypotheses of Theorem 2.1 are valid. Thus, the grand canonical 

partition function of the matter system satisfies inequality (2.4), i.e the 

system is "≡-stable". 

We have recovered here a result of Lieb and Lebowitz [17] · 

2.2 Instability in the grand canonical ensemble. 

In this section we study a two-component,pure Boson system with dynamics 

(N M) 
given by the Hamiltonians H Λ ,N,M = 0,1,2,...but in contrast to Section 
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2.1 we assume ε1 = ε2= 1 . The masses of the particles in the two species 

are m1,m2 , their charges are q1,q2 with > 0, q2< 0, their activities 

, respectively. 

We set m = min{m1,m2}, 

ql q2 
z = 1/2 [min{z1 ,z2 } ] . [ min {1 - -—, 1“ — }] 

1 z q2 ql 

Moreover,we define Ε°(β,ζ) to be the partition function of an ideal , one component 

Bose gas of particles with mass m. In Appendix B we prove 

Theorem 2.2 

Consider the system described above, with 1 = 2 = 1 and m,z as defined 

in (2.5) . 

Then (2.6) 

Remarks 

(1) It is well known that, for arbitrary z > 1, there exists A
O
(Z) such that 

ΞOΛ (β,z) is divergent for ΛƆΛ
O
(Z). Thus, Theorem 2.2 says that for z1 and z2 

large enough depending on q1 and q2, the two-component Bose systems considered 

here are not Ξ -stable. 

(2) In Section 5 we show that for two-component, charge conjugation invariant 

Bose systems with pair potential decaying like |χ|-
1_ε

, ε >o , the RDM's diverge 

for z large enough. 

2.3 . The thermodynamic limit of the pressure of charge conjugation invariant 

systems. 

In this section we study general charge conjugation invariant systems 

of arbitrarily many species of particles with arbitrary spin and statistics. 

All that is important is : 

(i) strict charge conjugation invariance. 

(ii) ≡-stability. 
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Under the above hypotheses we prove existence of the thermodynamic limit of the 

pressure (grand canonical ensemble ), using an idea due to Griffiths [14] . 

In order to economize on notations we restrict our attention to two-component, 

quantum mechanical systems, but our methods work in the general case as well. 

Moreover, they are applicable to charge conjugation invariant, classical 

systems and, after some modifications, to one-component systems with non-

negative potentials. They are however too simple-minded to permit to study 

the dependence of the thermodynamic limit on boundary conditions. 

The main result of this section is 

Theorem 2.3 

Consider the pressure ρΛ(β,z)= ρΛ(β,z,z) defined in (1.7) of a system 

with dynamics given by the Hamiltonians(1.5).Suppose that the system is 

Ξ -stable, in the sense of inequality (2.4) , and charge conjugation invariant , 

in the sense of Definition 1.1. 

Then 

exists and has the usual convexity properties, (provided ΛΊ Rv in the sense of 

Van Hove or Fisher [22 ]). 

Proof . Let Λ1, Λ
2
 be bounded ,open subsets of RV with Λ1  Λ

2
 = φ . (2.7) 

Let Ξ (β,z) ≡ ΞΛ (β,z,z) be the grand canonical partition function. By general 

arguments [22] it is enough to show that 

≡Λ1 U Λ
2
(
β’

z)
 >

 Ξ

Λι
(β’ζ)ΞΛ

2
(β’ζ) ’ 

(2.8) 

provided ≡-stability holds. 
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We introduce the Hilbert space 

where has been defined in (1.4). 

(2.9) 

We set μ = -β log z and define the Hamiltonian HΛ on Η
Λ
 by 

(2.10) 

(N M) 
with ) the Hamiltonian defined in (1.5) .One convinces oneself by 

direct calculation that 

(2.11) 

(N M) 
Next, let be the kinetic energy operator introduced in (2.2) , and 

Given two bounded, open subsets A1 , Λ2 as in (2.7) ,we define 

(2.12) 

with the convention that the x- and x'- coordinates are in Λ1 ,whereas the 

the y - and y' - coodinates are in Λ2. Clearly , WΛ . is the interaction 
Λ1 ,Λ2 

energy between the system confined to Λ1 and the one confined to Λ2 . 

Since 0- Dirichlet data are imposed on TΛ, see (1.5), 

(2.13) (2.13) 

(This follows from a well known inequality ). 

By (2.13), and definitions (2.10),(2.12) 
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Η
Λ ., Λ < Η

Α
 + Η

Λ
 + W

A Λ Λ1UΛ2 < Λ1 Λ2 Λ1,A2 
(2.14) 

Therefore 

(2.15) 

Let pΛ Λ be the state given by 
Λl ,Λ2 

The Peierls-Bogoliubov inequality now gives 

(2.16) 

Next, we note that if and are two closed, orthogonal subspaces of 

a Hilbert space 

so that 

If we set V.= L2(Λ.,dVx)C2S+1,i=1,2 , and recall (1.4') and (2.9) we obtain 

(2.17) 

Furthermore 

(2.18) 

Let be the state given by 
i 

i = 1,2 . 
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By (2.17) and (2.18) , 

Using in addition (2.16) we arrive at 

(2.19) 

Using the product structure of p
Λ 

 p
Λ , (2.12) and charge conjugation inva-

riance one sees immediately that pΛ pΛ (WΛ Λ ) = 0 (2.20) · 1
 1^‘2. j * 2 * 

Clearly, (2.15), (2.19) and (2.20) give 

which by (2.11) completes the proof. 

Remarks. 

(1) If one replaces traces by integrals and the Peierls-Bogoliubov inequality by 

Jensen’s inequality the above proof yields existence of the thermodynamic limit in clas-

sical , charge conjugation invariant systems ; see [14] and 1· 

(2) Consider a system consisting of only one kind of particles interacting via non-

negative two-body potentials, # 0. In the definition of and replace 

by Δ Λdefined to be the Laplacean with Neumann boundary conditions. 

Then 

and pΛ p. (W ) > 0 . Thus 
Λ1 Λ2 Λ1,Λ2 -

— AJUÀ2 — Aj A2 

which also implies existence of the thermodynamic limit. 
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(3) The strength of the arguments used in the proof of Theorem 2.3 and Remarks 

(1) and (2) is that they do not impose restrictions on the range of the potentials. 

Their drawback is that they do not supply detained information on the properties 

of the limit, ρ(β,z), such as dependence on boundary conditions, [24] 
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3. Correlation Inequalities 

First we recall some of the correlation inequalities of I slightly generali 

zed so as to be applicable in our proof of Theorem B , Section 1, which we give in 

Section 5. Subsequently we establish some new inequalities related to the ones in 

[16,18] which we shall use to compare the correlation functions of systems in a 

magnetic field to the ones of systems without magnetic fields ; see Section 5. 

Let H be a real Hilbert space, and let C be a (bounded) positive quadratic form 

on H 

Let φ be the Gaussian process indexed by H with mean 0 and covariance C. 

The associated Gaussian measure is denoted dp (φ) ; see [20] . Let (Xj, Sj) , 
C J J 

∞ 
j = 1,2,3,..., be a family of measure spaces, and {p} = {dpja sequence 

of measures with the property that dpj is a finite, positive measure on (Xj, Sj), 

for all j. Let , j = 1,2,..., be a family of measurable mappings from Xj 

to Η , i.e . 

(3.1) 

such that 

(3.2) 

Following the notations of I , Section 2 , we define 

(3.3) 

We introduce a partition function ≡ (C,{p}) by 

Ξ (C, {p }) ≡ ≡({p})=∫ du (φ)exρ C ( { p }, Φ) (3.4) 

For F  L (duC ) we define 

<F>
C {p}

 = <F>
{p}

 = 1 J ̂ (Φ) FU) exp Œ({p}, φ) (3.5) 

In the following, m, n,1,g... denote vectors in H. 
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(1) 

(2) 

(3) 

Remark . For {p} = {ρ1,0,0....} Theorem 3.1 is contained in Theorem 3.1 of paper 

See also [21] · The proof of the present generalization is a trivial adaptation 

of the one of Theorem 3.1 of I which we do not wish to present here. We also 

recall that 

< cos φ(m) >C, {p} is decreasing in C
, 

φ(l) . . 
< eφ >

C, { p}
 is

 increasing
 in

 C, 

(3.6) 

where the order relation for C is the one of quadratic forms. See I , Corollary 

3.2. 

Let f(j) be a bounded , real-valued function on Xj, j = 1,2,3,... and set 

(3.7) 

Let Ξ (C,{p},{ f }) and < - be given by (3.4) , (3.5) , respectively, 

but with Œ({p},Φ) replaced by C({p},{f}
,

Φ) . 

Theorem 3.2 

Let {f
(j)

}~, and <“>
{p

}
j{f}

 s
< “ >

 C,{p},{f}
 be as above. Suppose 

dp. > dlo.'l . for all i = 1,2,3,... . 
J “ ' J 
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Let α,β be real numbers and m,n vectors in H. Then 

< cos φ (m) cosφ (n) } -< cos (φ (m)+α) cos (φ(η) +β) >{ρ' }. {f} 

|< cos Φ (m) >< cos (φ (η) + β) > 

-< cos (φ (m) + α) > cosφ(η) >{p} 

Remarks . 

(1) Using the identity 

(3.8) 

with ej= ± 1 , j = l,2,....,k, one obtains trivial generalizations of Theorem 

3.2 . 

(2)As a special case of Theorem 3.2 we note that 

<cos Φ(m) >_ | < cos (φ (m)+α) >{p'}, 

This inequality permits to compare correlation functions of systems 

with Bose-resp. Fermi statistics, with or without couplings to an electro-

magnetic vector potential. See Section 5. 

(3) Theorem 3.2 is a variant of recent inequalities due to Lebowitz [16] 

and extended by Messager et al. [18]. 

Outline of proof (see also I and [18] ): 

Let φ1, φ2 be two independent Gaussian processes with mean 0 and covariance C. 

Then 

<cos φ(m) cos φ(η) >{p} -<cosφ(m+α) cos φ(η+β) {f} 

±{<cos φ(m) > {p} < cos (φ (n) + β) >{p'} {f} - <cοs(φ(m) + a) >^ οο3φ(η)>^} 
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= Ξ({p})
 1

Ξ({p’},{f})
 1

 ∫dμ
C
(φ

1
)dμ

C
(φ
2
) [cοsφ

1
(m) + 

os(φ2(m)+α) ] · [cοsφ1(η) ± cos(φ2(n)+β) ] . 

Since the partition functions are positive it suffices to show that the 

functional integral on the r.s. of (3.9) is non-negative. We define 

(3.9) 

This transformation is orthogonal in (φ1,φ2)-space. Thus 

dμC(φ1)dμC(φ2) = dμC(Ψ) dpc(x) ; see I. Moreover 

and 

Also, since dp. and dp! are real measures with dp. d | p! | , we have 
j j j j 

dpj+dpî 0 , dPj-dpî 0
 , for all j . (3.10) 

Inserting all these identities into the functional integral on the r.s. of (3.9), 

expanding then the exponential and taking into account inequalities (3.10) 

we see that the functional integral on the r.s. of (3.9) can be written as a 

sum of terms of the form ∫duC (Ψ)dμC (x)F(ψ)F(x) = [∫du (Ψ)F(Ψ)]2 , 

with F real-valued. Thus it is non-negative. 

We conclude Section 3 by sketching a simple generalization of 
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Theorem 3.1 which is useful for analyzing Bose systems coupled to the quantized 

radiation field. Let C({ρ},{f},φ) be as in (3.7). We now suppose that the 

phases are linear functions of a Gaussian random field A with Gaussian 

distribution du (A) , i.e. f(j)= A(h(j) , for some H-valued functions 
X X 

Ξ({p }) = ∫duc (φ) du (A) exp (C ({p }, {A(h) }, φ ) and (3.11) 

{
p

} = Ξ ∫duc(Φ) du(A) - exp Œ ({p}, {A(h)},φ) (3.12) 

Theorem 3.3 

(1) < cos(φ)(m) + A(l)) > >_ 0 

(2) < cos(φ (m) + A(l) ); cos(φ (n) + A(h))> > 0 
{p}— 

(3) < cos (φ (η) + A(h))> < o 
ip} -

Remarks . 

(1) The process χ ≡ (φ,Α) is a multicomponent Gaussian process. Theorem 3.1 

applies to multi-component processes; see I. Thus Theorem 3.3 follows from 

Theorem 3.1 . Incidentally, the proofs are simple variants of the proof of 

Theorem 3.2. 

(2) Identity (3.8) yields obvious generalizations of our inequalities. Moreover, 

in Theorems 3. 1,(2) and 3.3, (2) one may replace cos(φ(m)+A(l)) by i(φ (m + A (l )) 

see I. 
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4. Quantum Statistical Mechanics and Functional Integrals 

4.1 The uses of Gaussian and Wiener measures 

First we recall the functional integral formalism developed in detail in [12,7] . 

and I. We consider N-particle systems with Hamiltonian 

where (4.1) 

(4.2) 

and V is a positive (semi-) definite two-body potential. 

In this subsection the spin (and other internal degrees of freedom) of the particles 

plays the rôle of a spectator and is suppressed in our notation. 

We propose to express the integral kernel 

(y)
N
) of the operator exp[-βH(NΛ)] in terms of a combination 

of Wiener integrals which arise by using the Feynman-Kac formula and Gaussian 

functional integrals which were used already in the classical case and in I. 

The path space of the Wiener measure can be chosen to be 

(4.3) 

where R v  Rv is the one point compactification of R . 

Ω is a compact Hausdorff space, and the Borel sets generate a natural σ-algebra 

on Ω . The Wiener measure
 ρ

βm(
χ
, y; dω) , conditioned on those paths ω Ɛ Ω 

with ω(0) = x, ω(τ = β) = y,and depending only on {ω(τ): 0 < τ < β) , is a 

σ -additive, finite measure on Ω . It is the path space measure of the process 

with transition function exp [tΔ/2m] . The kernel of exp [tΔ/2m] is denoted by 

pt(x,y). We have 

(4.4) 

Let (ω) be the characteristic function of the subset 

{ω : ω (τ)  Λ, for all τ  [0, β]}  Ω . 

(4.4) 
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We set 

(4.5) 

This is the path space measure of the process with transition function 

exp [tΔΛ/2m], where is the Laplacean with O-Dirichlet data at ∂Λ . 

Let (4.6) 

By the Feynman - Kac formula, see e.g. [19,12] , 

As in I, we now express exp[- ∫ άτ ((ω(τ))Ν) ] 

by means of a Gaussian functional integral. Let 

W(x,τ;x',τ’)≡ V(x,x') δ(τ-τ’) . (4.8) 

Since the two-body potential V has been assumed to be positive(semi-)definite, 

so is W. Let L2(I^^) = L2(I^ x [0,3],dVx dx). Let φ be the Gaussian process with 
p 2 11 

mean 0 and covariance W indexed by L (]R ). The corresponding Gaussian 
β 

measure and expectation are denoted by duw, <

 - >W respectively· We recall 

some well-known formulas. 

(Wick ordering) 

(4.9) (4.9) 

From these we obtain 

(4.10) 

We assume temporarily that V(x,y) is continuous in x and y and choose 

fj((x,r))= qjδ(x-ω,(τ)) , j = 1,.., N . 
j j j 

This yields 
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We set 

(4.11) 

(4.12) 

It should be pointed out that (x,y) is really the integral kernel m,Λ,φ 

of the one-particle operator 

Τ{θχρ-3[-(1/2πι)Δ
Λ
 - iφr - W]}, 

where T denotes time-ordering, iφr( · ) ≡ iφ(·, τ) is a purely imaginary one-

particle potential, and W(x) =y V(x,x). 

From (4.7), (4.11) and (4.10) we deduce 

(4.13) 

Inserting this into (1.6) and (1.8) one obtains an expression for the partition 

function and the RDM's in terms of Wiener- and Gaussian integrals. 

4.2 Taking into account statistics : an exercise in multilinear algebra 

The purpose of this subsection is to express the partition function 

and the RDM's (or ITGF's) of systems with Bose-or Fermi statistics in compact form in 

terms of Gaussian integrals.("Boltzmann statistics" has been treated in I.) This will 

permit us to apply the correlation inequalities of Section 3 to construct and 

investigate the thermodynamic limit (at least for Bose gases) .We start with 

stating the main results of this subsection. We consider a system of finitely 

many species of particles with Bose -(ε = + 1) or Fermi-( = -1)statistics. 

First it is assumed that the particles are spinless, but at the close of this 

subsection we show how one can incorporate spin. The Hamiltonian HΛ is 

as in (4.1) with = ... = mi mi
 +1 = ... = m ,q = = qi 

i z-\ N 1 h 
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+
 1 =....= qN , and l is the number of species 

We define 

5Λ
>ε

(π.,ζ;Φ) = /A
d x p

A,e
(m,z;x,x;

 ^ (4.15) 

We assume (at least temporarily) that 

(4.16) 

Since by (4.9) 

(4.17) 

he series on the r.s. of (4.14) converges absolutely if 

(4.18) 

For Fermi statistics one can relax conditions (4.16) and (4.18). See Sections 

2 and 5 .But for the time being they are imposed without further mentioning . 

Let A = (A..) be some N x N matrix. We define 
ij 

where σ(ττ) is the signature of the permutation π . 

Clearly ) = det(A) , (Aij ) = perm(A) . (4.20) 

Theorem 4.1. 

Consider a system of l species of (spinless) particles with statistics k. , 
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mass mk , charge and activity zk,k = 1,···,l, in the grand canonical 

ensemble at inverse temperature β. Let  = (ε1,....,εl), z = (z1,.,,zl). 

Then the partition function is given by 

(4.21) 

and the correlation functions by 

(4.22) 

where 

For later purposes we explicitly consider the special case of charge-conjugation 

invariant systems of two species of particles; see Definition 1.1. We define 

ŒΛ
 ε

(β, z;qΦ) = SΛ, ε + SΛ, (m, z; -qΦ) · (4.23) 

Theorem 4.1 then takes the form 

Theorem 4.l'. 

For the charge-conjugation invariant systems introduced in (1.4) -(1.8) 

ΞΛ,ε(β’z) = < exp Œ Λ,ε(β z;qφ)
 >w ’ 

(4.21') 

ΡΛ,ε(β’Ζ ;(X)N (χΙ)Μ ;(y)N (y’V = 

where <->Λ, ε (β,z) = ΞΛ, (β,z) <—exp œAj£ (0,ζ;ςφ) >w . 

(4.22) 
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Remarks 

(1) The expectation <->. ( B,z) defined in (4.22') is given by a positive 
A ,  

probability measure, because the "action" ₵Λ,Λ,
 ε

 (β, z;qφ) is real-valued. 

See (4.14), (4.15), (4.23). 

(2) If the system is not charge conjugation invariant,as in Theorem 4.1, then 

<->Λ (β, Z) is given by a complex measure. 

(3) Expressions for ITGF's similar to the ones given in Theorem 4.1 for the RDM’s 

can be derived, too, but are more complicated; see Section 4.3. 

(4) Spin is incorporated at the end of this section. 

Proof of Theorem 4.1. 

The opening move in this proof consists of first re-formulating Theorem 4.1 

in a more reasonable terminology. It then follows from standard identities of 

multi-linear algebra which, for the convenience of the reader, we briefly 

review in Section 4.3. 

First, we notice that it really suffices to prove Theorem 4.1 for one 

species of particles only. The case of many species will turn out to be an obvious 

generalization . 

We define 

(4.24) 

where 

By the Feynman’Kac formula, the integral kernel of A is given by 

(4.25) 

see formula (4.12). 

In order to express the kernel of (Aqφ)
j
 we use the following well known 

Lemma 4.2. 
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Proof. An immediate consequence of the semi-group property of exp [t(1/2m)ΔΛ] 

and the Feynman -Kac formula. 

Thus 

This identity and (4.14) yield 

(4.26) 

(4.27) 

and 

(4.28) 

Furthermore, by Lemma 4.2,(4.14) and (4.15), 

eXp S
Λ,
 (m, z;

Φ) = exρ J
A
dVx Ρ

Λ £

 (m,z ;x,x;φ) = exp[-c/
A
dV

x

 ln (1-ε zAφ) (x,x)] 

(4.29) 

= exp[-eTr£n(l-ezA )] = det(l-ezAj ε . 
Φ φ 

In this reformulation , Theorem 4.1 maintains 

Ξ
Λ,ε

(3,ζ)= < det(1_ez
^

)_e>
v · 

by (4.21) and (4.29) ,and 

(4.30) 

p. (β,ζ ;(x) ,(y) ) 
Λ,ε * N N 

(4.31) 

where δν is defined in (4.19), and <->. (3,z) in (4.22); see (4.28) 
0 il j ε 

Next, using (4.12), (4.13) and (4.25) , we see that 
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In formula (1.6) we expressed ΞΛ(β,z) by 

(4.32) 

(Ν) 
Hence, by (4.32) and definition (4.19) of δ , 

(4.33) 

oo 1 f 
and we have interchanged taking <-> and Σ Jd(x)—.(This is permitted 

βα2Κ/2 N=0 
if ze <1 ; see (4.18).). The equality of the right sides of (4.33) 

and (4.30) is well known.(In the sense of formal power series it holds in general, 
2 

8q"K/2 
and if zeP <1 both right sides are well defined). See also Section 4.3. 

Next, by formulas (1.8) ,(4.32) and (4.19), 

ρΛ,ε(β’ζ: (x)N’(yV 

(4.34) 

where (V1,···>VN>
V

N+j»···»
V

N+N») (x1,·*XN, U1»·**
U

N») 

(W1,...,wN,wN+J,...,wN+N') = (y1,...,yN,u1,...,uN'). 

The reader familiar with multi-linear algebra will recognize the r.s of (4.34) 

as being identical to the r.s. of (4.31). If we finally insert (4.28) into the 

r.s. of (4.31) , the proof of Theorem 4.1 is complete for the case of one species 

of particles.The case of finitely many species follows in the obvious way. 

We conclude this subsection by showing how to incorporate spin in this formalism. 

Again, it clearly suffices to consider the special case of one species of 

particles. The Hilbert space of the spin degree of freedom of one particle 

2S+1 . 
1S ₵ > with S the total spin. We choose an orthonormal basis {φ } 

u u=-S 
2S+1 

in ₵ labelled by the eigenvalues, μ , of one component of the spin operator. 
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(N) 
The basic fact to be noticed is that the total Hamiltonian , see 

(4.1), is spin-independent, (although that is not absolutely crucial for the 

existence of a functional integral formalism, as mentioned in Remark (2),Section 1 

Let r = (x,u), and define 

(4.24') 

2S + 1 
where A , is given by (4.24) , (4.25) ,and 1 is the unit matrix on ₵ 

q<p S 

s · · The integral kernel of A . is given by 
qφ 

Since Tr (1) ) = 2S+1 » we have 
Œ2S+1

 S 

so that 

The proof of Theorem 4.1 extends to the case of a system of particles with 

spin and , together with the above remarks, gives (see also Section 4.3), 

Theorem 4.1." 

(4.21") 

(4.22") 

where 

The purpose of the next subsection is to briefly review some multi-linear algebra, 

sketch the proof of the above identities and find compact expressions for 

correlation functions and ITGF's. 
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4.3 Exercises in multi-linear algebra. 

Let H be a complex Hilbert space of dimension n < ∞, {UI}NI=0 

a complete orthonormal system in H, vectors in H. 

Let A be a trace class operator on H , i.e ||A||1 = Tr !A! < ∞ . The symbol 

denotes the symmetric tensor product if ε = +1 and the anti-symmetric tensor 

product if ε = -1. We define 

m times m times 

The scalar product on H is denoted for all m = 0,1,2,... . 

We introduce an "unnormalized, reduced density matrix" p by 

p(gl> · · · * · ,fN) 

When ε = +1 (Bose statistics) we assume that ||A|| < 1 . 

Lemma 4.3. 

Proof. It suffices to prove Lemma 4.3 in the finite dimensional case. The proof 

for the infinite dimensional case follows by a standard limiting argument, pro-

vided || A||1 < ∞ , and || A|| < 1 , when ε = +1 . 

1 . 2 We first consider Bose statistics, ε = +1 . Let ζ = ξ +iξ be the 

complex Gaussian process with mean 0 and covariance 1 , indexed by H ; i.e. 
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(') . _ 
∫du(ξ) ξ (f) = Ο, ∫du(ξ) ξ (f) ξ(g) = 2< f,g> (4.36) 

where 

is the normalized Gaussian measure. 

By (4.35) and (4.36) 

Note that Σ ξ(uj) ξ(Auj) = < ξ,Α ξ > . Thus 
j = l j j 

This completes the proof for ε = 1 . 

Next,we consider Fermi statistics, ε = -1 . 

1 2 
Let Ψ Ψ „ >

α = 1,··,η , be totally anti-commuting variables, and let ∫ -(Jt (X 

be the Berezin integral which may be defined by the property that 

12 1 2 n 1 2 ∫ exp < ψ ,Α ψ > = det (A),where <ψ ,Αψ2 > * Σ Ψ A Ψ ; see e.g [I] , α αγ γ a ,γ ■ 1 ' ' 
It is known and follows easily from the above definition of the Berezin integral 

by differentiation that 



-34-

Remark. 

The purpose of introducing the Gaussian -, resp.Berezin integral is merely to 

reduce somewhat lengthy combinatorics to known properties of those integrals 

It could be avoided completely. 

Next, we introduce the standard Fock space 

and define the operator r
(
A

)
 on

 Fby 

(4.37) 

Note that Γ
ε
(Α)Γ

£
(Β) =Γ

ε
(Α·Β) (4.38) 

We define (4.39) 

This is Segal’s formulation of "second quantization"; see e.g [II]. 

As a corollary of Lemma 4.3 we have 

Tr(r(A)) = det (1-εΑ)  ; (4.40) 

(set N= 0 in Lemma 4.3 and use (4.35) and (4.37). A direct proof of (4.40) 

not involving Gaussian-resp. Berezin integrals is easily found: 

By analyticity, it suffices to prove (4.40) for self-adjoint A. Both sides in 

(4.40) are unitary invariants. Thus one may choose A to be diagonal. Then (4.40) 

becomes a trivial exercise). 

We may now define "correlation functions" and"ITGF's" . The former are given 

by 

(4.41) 
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The latter by 

(4.42) 

where 0 < τ1 < τ
2
 < < τ <1, and A = eh , for some operator h with 

Reh < 0 . 

Obviously 

so that it suffices to calculate the r.s. of (4.42). 

By (4.39) and (4.38), 

(4.43) 

Next note that 

Tr Γ (A) = det (1-εΑ) ε = exp [-ε Tr 1n (1-εΑ)] 
ε 

Thus, using Leibniz' rule, 

(4.44) 

The r.s. can be calculated by using the formulas 

Tr l n (1-A(s))= - Tr((1-A(s)) 1 A'(s)), and 
ds 
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Finally, we note a connection between correlation functions and reduced density 

matrices : Let Bj , j= 1,.,.,Ν, be given by 

Bjg = < gj,g> fj, for all g  H. 

Let p be given by (4.35) and <—>>A by (4.41). 

Then 

(4.45) 

where is the usual Wick order of products of operators on F . 

(The r.s. of (4.45) can be calculated by using (4.41) and (4.44) . Comparison 

with Lemma 4.2 then completes the proof of (4.45)). 
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5. The Thermodynamic Limit : Uniform Bounds, Existence and Properties 

Stability in the grand canonical ensemble and existence of the thermo-

dynamic limit of the pressure have been discussed in Section 2. The main purpose 

of this section is to derive upper and lower bounds on correlation functions 

which are uniform in Λ , prove the existence of the thermodynamic limit of 

the correlation functions of charge conjugation invariant Bose systems (provided 

the activity is so small that the system is stable) and estimate correlation 

functions of systems with Fermi statistics by the ones of Bose systems, resp. 

correlation functions of Bose systems in a magnetic field by ones of the systems 

in zero magnetic field. 

Unless mentioned otherwise, the systems are assumed to be charge conju-

gation invariant. The particles may have spin. 

5.1 Uniform upper bounds on partition - and correlation functions 

The main auxiliary estimates required in this section have been already 

derived in I, Section 2.2. Thus, we may be brief. In Section 4.2, (4.17) we 

have shown that 

(5.1) 

(5.2) 

Using (5.1) and (5.2), we propose to estimate 
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(II) 

see (4.28). 

(III) |exp SΛ, (m,z;qφ)| = | det (1-εzΑqφ) ε| ; 

see (4.15) and (4.29). 

(I) By (4.26), (4.27), (5.1) and 5.2) 

(5.3) 

< p(β,z,q) , where 

(5.4) 

which is finite, provided z|exp(βq2K/2) < 1 . (5.5) 

(II) By (4.26), (5.1) and (5.2) 

<p(β,z,q;x,y) , where 

(5.6) 

p(β,z, q;x,y) 

(5.7) 

and the r.s. converges if (5.5) is satisfied. 

It is trivial to check that (5.3) - (5.7) remain true if A is replaced 
qφ 

s 
by A (see Section 4.2, (4.24')) , i.e. if spin is included. 



(III) We first present an upper bound that holds for ε = ±1 : 

|det(1-ezA | < exp|Tr ln(1-ezAqφ) | < exp[p (β,z,q) |Λ| ] , (5.8) 

as follows from (4.29) and (5.3). The r.s. of (5.8) is finite if 

2 
|z|exp(βq K/2) <1 . Under this condition identity (4.30), i.e. 

(5.9) 

holds rigorously as an equation between holomorphic functions of z with 

|z| < exp(-βq K/2) , as follows from (5.3) and Lemma 4.3 by a simple limiting 

argument. By analyticity in z of both sides in equ. (5.9), this identity 

remains true for all z > 0 for which | (det(1-ε zA^)"8 | is bounded uniformly 

in φ, at the least. From Theorem 2.2, (2.5) - (2.6), we know that for ε = 1 

(Bose statistics) the domain of holomorphy of 

does not include the whole positive, real axis. Indeed, given δ > 0 , there 

is a bounded region (e.g. a cube) Λ such that Ξ. Ί(β,z) is divergent at 
δ Λ, 1 

-1 -1 
z = 1+δ , for all Λ Ɔ Λδ . Therefore det(1-zA ) det(1-zA ,) and 

6 qφ -qφ 

thus |det(1-zA ) cannot be bounded uniformly in φ , for z = 1+δ , Λ 

(However, for superstable potentials V,ΞΛ, 1(β,z) = <det(1-zA ) exists 

for all z > 0). 

Next, we set ε = -1 , (Fermi statistics). Then 

(5.10) 
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The inequality follows directly from 

ln(1+x) < x , for -1 < x < ∞ 

and the spectral theorem. We now notice that 

Therefore, using (5.1) and (5.2) 

(5.11) 

Notice that from (5.10) and the Schwarz inequality for it follows that 

(5.12) 

The first term on the r.s. of (5.12) is the partition function of a charge 

conjugation invariant quantum mechanical system with "Boltzmann statistics". 

Estimates (5.10) - (5.12) are very crude, (far from being useful when the 

potential V has local singularities), but suffice for the purposes of this 

paper. 

From now on we study charge-conjugation invariant two-component systems, 

as in Theorem 4.1’, unless stated otherwise. It is assumed that the activity 
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z > 0 is such that 

2 
_gq 2 

is finite, (e.g. 0 < z < e 4 , for ε = 1 , and 0 < z < ∞, for 

ε = -1 , K < ∞) . 

By (4.14), (4.15) and (4.23) 

(5.13) 

i.e. (₵Λ, (β,z;qφ) is of the form 

(5.14) 

(5.15) 

(compare to Section 3, (3.3)) . In particular ₵Λ,  is real-valued and even 
it ,  

in φ . 

Theorem 5.1. (Upper bounds) 

For  = ±1 , z > 0 , 

ΙρΛ,ε(β’Ζ;(Χ>Ν (xV(y)N(y,)Ml 
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for 0 < z < exp(-βq2 K/2) ; (see (5.7)) . 

Proof. By (5.13) 

is the expectation given by a positive probability measure. Hence 

ρΛ,
ε

(β*ζ;(χ)Ν (x')
M
;(y)

N
(y’)

M
)| 

Next 

(N) 
as one easily deduces from (4.19) (def. of δ ) and (4.14) (def. of 

p (m,z;x,y;±φ)) . 
Λ ,  

Use of formula (4.28) and inequality (5.6) completes the proof 

Theorem 5.2. (|RDM_1| < RDM
+1

) 

For charge conjugation invariant two-component systems 

PAi-i
(e,z;(x)

N
(x,)M;

(y)N
(y,)M

)l £PA>+I
(6

’
Z;(X)

N (
x
')M;

(y)
N
(y
'V 

i.e. the Bose RDM dominate the absolute values of the Fermi RDM pointwise 

Proof. 

By definition (see (4.19)) 
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where 

see (4.14) or (4.28), (4.26). 

Thus the even part of 

is of the form 

(5.16) 

∞ 

where are positive measures on appropriate function spaces, and 

(k) θ(k) are phases (= 0, or π) . This is to be compared with the even part of 

which has the form 

(5.17) 

and by inspection we see that 

(5.18) 
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Recalling properties (5.14) and (5.15) of ₵Λ,  we thus conclude that the 

correlation inequality of Theorem 3.2 can be used here. A special case of it 

is 

<cos<j>(n/
k
^)>

A
 (β,z) > <cos(<t>(n/

k
^)+0"^)>

A
 -
1
(β,z) 

with 0"(k) = θ(k) or = θ(k)+π . Hence 

<cos(|)(in ;)>Λ 1($>z) > | <cos (φ(ιη
 ;

)+θ ) >Λ _χ(3,ζ) [ (5.19) 

Since <—>>
 +1

(β,z) is even in φ , the proof now follows directly from 
Λ, ±1 

(5.16) - (5.18). 

Remarks. 

(1) Using Theorem 4.1" and (4.24'), Section 4.2, the extension of Theorems 

5.1 and 5.2 to systems of particles with spin is straightforward. Moreover, we 

can see generalizations to ITGF’s; see Section 4.3. 

(2) For Fermi statistics, the upper bound on the RDM's given in Theorem 5.1 is 

poor and fairly uninteresting. Uniform upper bounds on RDM's (or ITGF's), 

smeared out with test functions, follow from the boundedness of Fermion creation-

and annihilations operators (a consequence of the canonical anti-commutation 

relations), as is well known. 

(3) In the same sense as Theorem 5.1, Theorem 5.2, i.e. domination of Fermi 

RDM's by Bose RDM's, may be regarded an uninteresting and physically obvious 

statement. We still feel that it is somewhat remarkable that it is true mathe-

matically. 
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Theorem 5.3. (Lower bounds) 

Proof. 

In view of (5.14), (5.15) and (5.17), (5.18) this is a direct conse-

quence of the correlation inequality in Theorem 3.1. 

It should be noted that Theorem 5.3 can be proven more directly by 

using Jensen's inequality and a trivial inequality on permanents at the right 

places, rather than the φ-functional integral and a correlation inequality. 

Next, we show that the r.s. of the inequality in Theorem 5.3 diverges 

if z is large enough and Λ tends to RV , provided the potential V falls 

off sufficiently rapidly. We are indebted to M. Campanino for suggesting to us 

the main idea in the following argument. 

First, we consider the two-point RDM, pΛ 1 (β,z;x,y) , (the case of a 

general (2N,2M)-point RDM being similar). By Theorem 5.3 we have 

(5.20) 

We propose to show that, for z large enough, the r.s. of (5.20) 

diverges, as A Λ↑R
V

 · Let e1 be the unit vector in the direction of y-x , 

(resp. the unit vector in the positive 1-direction if y = x) . 
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Let R be some positive number. We define a sequence of points 

ξ' = x + 1/2 kRe1 , k = 0,1,2,... (5.21) 

Define ko by the property that min|y-ξk'| = |y-ξk'| | . Since 

(5.22) 

Given an integer j > 0 , define k1 > k
o
 by the equation 

i .e. (5.23) 

is the largest integer < a . If j < k
o

 , k1 is not defined. We now define 

a sequence of points {ξk}j-1 k=o
 1

 as follows : 
ξk}j-1 k=o k=o 

(5.24) 

(5.25) 

Fig. 1 
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Let SkR be the ball of radius R centered at . Let j be such that 

(5.26) 

Then, for k < j < jjΛ, , 

(5.27) 

where (
ω
) is the characteristic function of 

(ω:ω(τ)  S , for ηβ < τ < (η+1)β) 

Next, 

(5.28) 

We now assume that 

(5.29) 

is finite. Here S'KR is the ball of radius R centered at ξk' , k = 0,1,2,... K k 

Condition (5.29) constrains the fall off of the potential V , as | x-y | → ∞. 

It is fulfilled e.g. if V(x,y) = W(x-y) , where W is a bounded, continuous 

function on RV with 

(5.30) 

Under these hypotheses on V the proof of (5.29) follows immediately from (5.21). 



- 47 -

By (5.20) and (5.27) - (5.30) , 

(5.31) 

The integral on the r.s. of (5.31) is easy to estimate from below : Define 

(5.32) 

where is the sphere of radius R/2 centered at 

moreover 

(5.33) 

-

where S , is the sphere centered at 1/2(ξj-1+ξj-2) 1+ξj-2 ) . Since 

∫ΩPβms (ξ, n; d S(ξ,η;dω) is the kernel of exp [β Δ ] , where ΔS is the Laplacean 

with O-Dirichlet data at ∂S , 

a > 0 and α' > 0 , for all R > 0 (5.34) 

From (5.31), the Markov property and (5.32), (5.33) we deduce 

(5.35) 

As A , j tends to +∞ , and the r.s. of (5.35) approaches 

(5.36) 
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Clearly (5.36) and hence pΛ, 1(β,z;x,γ) diverge when 

(5.37) 

It is not hard to extend the above arguments to the (2N,2M) point 

RDM's : If (x)N = (x')M , (y)N = (y') ) one can simply use the Hölder inequa-
N 

lity with respect to the expectation <—>. 1(β,z) to show that 
Λ, 1 

Ρ
Λ 1(β,z;(x)N(x)N;(y)N(yN)) diverges if ρ

Λ 1
(β,z;x,y) diverges. For general 

DTM'Ss -1 q2βc(V))δβ(N+M-1) δ ^ 1, 
RDM s and z > min(α e )δ , for some δ > 1 , 

R 

PΛ 1(β,Z;(X)
N
(X’)

M
;(y)

N
,(y')

M
 has a divergent lower bound. (The details of 

this generalization, as well as estimates on δ are rather straight-forward 

and are left to the reader). Finally we remark that spin can be included, as 

is obvious from Theorem 4.1". 

We summarize in 

Theorem 5.4. 

For a charge-conjugation invariant system of two species of Bosons 

of charge q and spin S interacting via a (spin-independent) two-body poten-

tial V with the property that c(V) , defined in (5.29), is finite, the 

RDM’s ρΛ 1(β,z;(r)N(r’)M;(r)N(r’)M) diverge, for arbitrary points 

(X)N' (x')Μ, (y)N, (y')M , Provided z is large enough (depending on β,V,...). 

Remark. 

This result suggests that charge-conjugation invariant two-component 

Bose gases must have Bose-Einstein condensation when the density is large. 

Physically speaking, we expect oppositely charged particles to form neutral 

'‘molecules” at large density. But our results are clearly not even quite a 

beginning of a rigorous theory of Bose-Einstein condensation. An interesting 

open problem in an attempt towards a rigorous theory of B-E condensation is : 
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Prove an upper bound (infrared bound) on pΛ, 1(β,z;k,-k) , for small momenta 

k # O , e.g. in terms of the ideal Bose gas two-point RDM . 

5.2. Existence of the thermodynamic limit : Bose statistics 

Recall that in the notation of (5.13), (5.14) 

(5.38) 

(5.39) 

i.e. dp1Λ,j is given by JdVx / G. (ω)Ρ^ (χ,χ;άω) , with 
Λ, j Ω J m,Λ 

Ί fi Ί R i β I O 

Pjp (x,x;doi) = χ, p (u>)PJ P (x,x;du)) . By definition, χ* (ω) is pointwise mono-
m, Λ Am A 

tone increasing in Λ , i.e. if Λ' Ɔ A 

(5.40) 

Thus, for Λ' Ɔ Λ , 

for some positive measures 

(5.41) 

Theorem 5.5 (Existence of the thermodynamic limit) 

Under the hypotheses of Theorem 5.1 (i.e. for 0 < z < zc with 

2 z
c
 > exp(-βq K/2)) and ε = 1 , i.e. Bose statistics, 
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exists and has the same spatial symmetries as the Hamiltonian. In particular, 

if V is invariant under Euclidean motions then so are the RDM's , for 

all N and Μ . 

Proof. 

By Theorem 5.1, it is enough to prove that 

1(β,z;(x)N(x')M;(y)N(y')M) is monotone increasing in Λ. Theorem 5.5 then 

follows by standard arguments; see [22] and I. 

As asserted in (5.17), (5.18) 

is of the form 

(5.42) 

and it is shown by the same arguments that we used to prove (5.40) that the 

measures dλk, Λ , are monotone increasing in Λ . 
k· , A 

(5.43) 

We now define 

where Ξ(s;β,z) is the obvious normalization factor. 

From (5.43) and Theorem 3.1, (1) follows 

(5.44) 
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is monotone increasing in Λ . Furthermore 

and the r.s. is non-negative, by Theorem 3.1, (2). Integrating over s from 

(k) 
0 to 1 then shows that <cosφ(m )>Λ, 1 1(β,z) is monotone increasing in A . 

This property together with (5.44) yield monotonicity of the RDM's in Λ . 

Theorem 5.6. (Monotonicity in z and V ) 

Under the same hypotheses and for arbitrary Λ  , 

(1) p
Λ
 (x)

N
(x')

M
; (y)

N
(y')

M
) is monotone increasing in z ; 

(2) if V is translation invariant with V(0) ≡ K < ∞, and for 

Λ 2 M· / Λ 

z = e
 q

 z , ^(3,”z; (x)N(x')M; (y)N(y ')M> decreases when V increases as 

a quadratic form. 

Proof. 

(1) This follows from Theorem 3.1, (2), by the arguments used in the proof of 

Theorem 5.5; see also I, Theorem QM, §1. 

(2) The proof of this is identical to the one of Corollary 3.2, (1), §3 of 

paper I, except for notational complications. (The basic ingredients used are 

Theorem 3.1, (2) and the fact that the covariance V of φ increases if V 

increases in the quadratic form sense). 

Generalizations. 

Theorems 5.5 and 5.6 also hold for Bosons with spin. This is checked 

with the help of Theorem 4.1", Section 4.2. Moreover, one can apply the arguments 

used in this section to general ITGF's, with identical conclusions. To see this 

one makes use of the machinery outlined in the last part of Section 4.3. By a 
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general reconstruction theorem, the ITGF’s in the thermodynamic limit uniquely 

determine a β-KMS state and the dynamics of the infinite system in thermal 

equilibrium. 

5.3. Electromagnetic fields. 

The coupling of a quantum mechanical particle with electric charge e 

to a classical or quantized electromagnetic vector potential A = (Α1,.,.,Αv) 

is achieved by the usual minimal substitution 

(5.45) 

(Μ N) 
The kinetic energy operator TΛ (M, N) defined in (2.2) is replaced by 

(5.46) 

(Μ N) 
The total Hamiltonian is given by the previous expression,except that TΛ (M, N) 

is replaced by T(M, N) . From now on we impose the Coulomb (radiation) gauge 
Λ,Á 

on A , i.e. 

(5.47) 

Next, we recall the path space formula for exp[-β(-(1/2 m)ΔΛA +W)] , where W 
A 

is a bounded one-particle potential. The integral kernel of this operator is 

given by the following modified Feynman-Kac formula : 

(5.48) 

where JAJ (ω(τ) ,τ)dwj (τ) is defined as an Ito stochastic integral; the defini-

tion is unambiguous,thanks to the Coulomb gauge condition (5.47). See e.g. [II] . 



- 53 -

(A convenient way of deriving and interpreting (5.48) is also provided by the 

lattice approximation : Replace RV by a ZV , establish (5.48) on the lattice 

aZV and then pass to the limit a ̄  O . This program is carried out e.g. in 

[4]). 

If the external vector potential is classical and stationary then 

Α(ω(τ),τ) = A(ω(τ)) 

is an RV-valued function on Ω which does not explicitly depend on τ . If 

A is the quantized vector potential in the Coulomb gauge then Α(x,τ) is 

interpreted as the corresponding Euclidean field with periodic boundary condi-

tions at τ = 0,β . It is a Gaussian, RV-valued, divergence-free random field 

β 
with mean 0 and covariance Dij(x-x’,τ-τ'') , the transverse Euclidean 

ij 

(Ξ imaginary time) propagator of the free electromagnetic field which is perio-

dic in τ-τ' with period β. As is well known this corresponds to an inverse 

temperature β equilibrium state of the free e.m. field. The corresponding 

Gaussian measure ("the law of A") is denoted dmβ(A) . 

In order to avoid all problems with ultraviolet renormalizations,an 

ultraviolet (high frequency) cutoff in the spatial directions is imposed upon 

A , with the effect that 

(5.49) 

is regular at (0,0) . In this case all future formulas of this section are 

free of Wick ordering (of powers of A ) and of counterterms, without ultra-

violet divergences arising. 

We now define the analogue of the one-particle operator 

introduced in (4.24), (4.25), Section 4.2 : 
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(5.50) 

We then set 

(5.51) 

where Gj(ω) is the Wick ordering factor defined in (5.38), and the last 

expression is a short hand for the complicated third expression. 

Next, let 

(5.52) 

(5.53) 

see (4.27), (4.28). The correlation functions in an external vector potential, 

A , are then given by 

(5.54) 
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and the correlation functions of the fully quantized system by 

(5.55) 

(5.56) 

We now discuss the following three problems : 

(I) Diamagnetic inequality for partition function [II] . 

(II) Diamagnetic inequality for RDM's . 

(III) Existence of the thermodynamic limit of the RDM's of non-relativistic 

quantum electrodynamics. 

(I) We begin by recalling Simon's diamagnetic inequality [II] , i.e. 

(5.57) 

It must be emphasized that (5.57) holds for general Bose systems, without the 

assumption of charge-conjugation invariance. In the formalism adopted in the 

present paper the proof of (5.57) proceeds as follows : Notice that 

A
 ,

 defined in (5.50) is of positive type as a function of φ and 

. Thus -Tr ln(1-zA
+c
^
 +

-j) and consequently exp-Tr ln(1-zA
+c
^
 +

^) are of 

positive type in φ and A . Since <—>>^ is Gaussian, 

(5.58) 

(See [4], §5 for details concerning related arguments). We emphasize that (5.58) 
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really holds for general Bose systems of arbitrarily many species of Bosons 

of arbitrary spin, as long as the spin of the particles is not coupled to the 

electromagnetic field. Clearly (5.58) implies Simon’s inequality (5.57). 

β 
Since dmβ(A) is Gaussian (i.e. of positive type) 

is of positive type in the classical, external field, , so that 

This says that 

(5.59) 

if the interactions of the spin of Bosons with the electromagnetic field is 

neglected then systems of arbitrarily many species of Bosons of arbitrary spin 

react diamagnetically to an external electromagnetic field, 

(II) Next, we prove a related result for the RDM’s of charge-conjugation 

invariant Bose systems. 

Theorem 5.7. (Diamagnetism in RDM's) 

Assume charge-conjugation invariance. Then 

(1) 

(2) 

Proof. 

(1) In view of (5.51) and (5.50), (5.53), (1) reveals itself as a special case 

of Theorem 3.2. (The role of the phases α,{f} in Theorem 3.2 is played by 



- 57 -

See also (5.17) and (5.18). 

(2) This is a straightforward generalization of Theorem 5.2 with a very similar 

proof which we permit ourselves to leave to the reader. 

We remark that Theorem 5.7, (1) can be generalized in the same way as 

(5.57) is generalized to (5.59), and again spin can be included if not coupled 

to A . Next, suppose the electromagnetic field is quantized. Since 

“A is positive type in A , it has the general form 

∫ dpΛ(h)e , for some dpΛ > 0 . By Theorem 3.1, (2) we therefore have 

and since 

(5.60) 

This is a trace of the famous Higgs mechanism (in solid state physics discovered 

by Anderson. For related resultssee [4] ). 

(III) As a generalization of Theorem 5.5, Section 5.2, we have 

Theorem 5.8. (Existence of the thermodynamic limit in non-relativistic QED). 

For charge-conjugation invariant systems, 

ρ
Λ,1(β,z

;
(
χ
)
Ν
(x

,
)Μ

;
(
y
)
Ν
(y

'
)
Μ
;
f) , defined in (5.55) is monotone increasing in 

Dβ 
A and z and decreasing when Dβ increases, in the quadratic form sense. In 

particular, the limiting RDM's 
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2 
exist if z < exp(-βq K/2) . 

Proof. By (5.55), uniform upper bounds on 1(β,z;(x)N,...,(y')M;f) follow 

directly from Theorem 5.7, (1), Theorem 5.1, and the trivial inequality 

The proofs of monotonicity in Λ, z and is the same as the ones of Theorems 

5.5 and 5.6 if one uses instead of Theorem 3.1, (2) Theorem 3.3. 

More details concerning a related result may be found in [4] . 
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6. Some Open Problems and Outlook 

The following five topics may be worth being studied within the functional 

integral formalism developed in this paper. 

(1) Behavior at small values of z and β, decay of correlations in the thermo-

dynamic limit, cluster expansion [3,12] , screening properties [2] . 

(2) Analysis of phase diagram based on studying the behaviour of the "action" 

SΛ,  (m, z; φ) (m,z;φ) (resp. ₵ (β,z;qφ) ; see Section 4.2) as a functional of φ . 
Λ ,ε Λ,ε 

Reliability of naive Goldstone picture with φ as order parameter. 

(3) Further study of Bose-Einstein condensation (e.g. for charge-conjugation 

invariant systems), in continuation of the results given in Theorems 5.3, 5.4. 

(4) Continuation of analysis of non-relativistic (quantum) electrodynamics and 

superconductivity for non-relativistic Bosons. 

(5) Existence of the classical limit (h¯O) of RDM’s and other correlation 

functions. 

We conclude with a few comments on some of these circles of problems. 

(1) The functional integral formalism developed in this paper would in principle 

permit to apply the Glimm-Jaffe-Spencer cluster expansion [26] to the quantum 

mechanical gases considered in this paper, provided β and z are suitably 

small, and the potential V is of rapid decrease. 

This may improve the results of Ginibre [12] and simplify the techniques 

of Brydges-Federbush [3] , but one cannot expect that the results of Brydges-

Federbush [3] can be improved in this way. (We notice that the applicability of 

the cluster expansion does not require charge-conjugation invariance). 

More interesting is the question whether quantum mechanical gases of 

particles interacting via regularized Coulomb potentials will have Debye screening 
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[2] for tiny values of β . In principle, a combination of the methods developed 

in this paper and in [2] ought to yield insight in this problem. 

(2) One can imagine that one may extend the Glimm-Jaffe-Spencer version of the 

Peierls argument [22] and their mean-field contour expansion [27] to the systems 

considered in this paper, by viewing the auxiliary random field φ as an order 

parameter (the analogue of the Ising spin in the conventional Peierls argument). 

Related to this is the discussion of the properties of 

(6.1) 

(6.2) 

(6.3) 

for fields φ which are constant on Rv x[O,β] .(The functionals SΛ,  and 
Λ, , 

are defined in Section 4.2). This supplies an analogue of the Goldstone 

picture. For as in (6.3) and a translation invariant potential V we 

obtain 

(6.4) 

Heuristically, one expects that if S(0) is the unique global minimum of S(φ) 

the infinite volume equilibrium state is unique. If there are degenerate absolute 

minima for some values of z and β(ε = -1) then the equilibrium state is 

presumably not extremal (i.e. degenerate). This situation is met in a system of 

Fermions on a lattice ( IRV → ) with attractive interactions, resp. in the 

quantum-mechanical Widom-Rowlinson model on the lattice,with Fermi statistics. 
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The combination of a lattice with Fermi statistics renders such systems stable. 

The functional integral formalism for lattice systems with attractive potentials 

is obtained from the one developed in Section 4 by using Brownian motion on the 

lattice and replacing 

For ε = -1 and strictly positive lattice spacing the resulting expressions 

make sense. The formalism may be useful to develop a microscopic theory of Cooper 

pair formation for lattice electrons. 

(4) Non-relativistic quantum electrodynamics is a subject that has been unde-

servedly neglected. Most problems one may wish to pose are still open. 

- Do atoms coupled to the (ultraviolet regularized) quantized radiation field 

have discrete groundstates ? What is the correct mathematical description of 

the resonances corresponding to the excited, atomic states ? 

- Do non-relativistic, interacting Bose gases exhibit the Meissner effect typical 

of a super-conducting state, at suitable density and temperature ? Do such 

systems exhibit the formation of vortices ? Do non-relativistic, interacting 

Bose gases coupled to the quantized radiation field exhibit the Higgs mechanism 

in a strict sense of the word ? 

(5) For bounded regions, A , the existence of the classical limit can be proven 

for the RDM's of the systems analyzed in Sections 4 and 5.1. If one sets 

/ 2 2 
zh = z.(2πβh) and if one replaces Δ by h Δ , the RDM's converge to the 

corresponding classical correlation functions studied in paper I. If one uses 

the functional integral formalism of Section 4 and appropriate estimates 

the proof is particularly straightforward. The exchange of A ↑ RV and h ̄  0 

is, however, non-trivial. (One could use a cluster expansion). 



- 62 -

Appendix A. Proof of Theorem 2.1. 

for l = 1,2 . 

(A. 1) 

Recall that V = V1+V2 , where V2(x,y) ≡ V2(x-y) is a function with 

non-negative, continuous Fourier transform, V2 , and V2 (0) > 0 . (A. 2) 
2 

Without loss of generality we may assume that 

q
2
 > 0 . (A. 3) 

Finally we recall that the statistics of the first species of particles is 

Fermi statistics, i.e. 

ε1 = -1 ’ 
(A. 4) 

but  = ±1 . 

By inequality (2.1) and hypothesis (2.3) 

(A.5) 

~ 2 2 
Since V2(k) > 0 , there exists a finite constant B (= max(q21,q22).V(0)) such 

that 

(A.6) 

For the proof of Theorem 2.1 we need 
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Lemma A.1. 

Suppose that q2N > 2|| Μ , and xj  Λ, xi  Λ , for j = 1,...,Μ 

and i = 1,...,N . Then 

for some finite constants > 0 and 

M 
Proof. We use some arguments due to Ruelle [23] . Let n1 (x) = Σ q1δ(x-xj) , 

N 1 j=1 1 J 
n
2(x) = Σ q2 δ (x-x!) , with x.  Λ , x!i  A , for j = 1,...,Μ and 

i=1 2 1 j i 

i = 1 N . 

Let 

Clearly 

(A. 7) 

Next 

. [n
1
(y)+n

2
(y)] . 

By power series expansion of e ip.x and the hypothesis that A be 

regular, i.e. 

max | x| < α|Λ|1/vv
V
/ , for some finite a , 

XΛ 



provided Λ 3 0 (which can be assumed due to the translation invariance of V2) 

we have 

|η
1
(ρ)+η

2
(ρ)|

2
 > max(O,G(p)) , with 

G(p) = (2π)-
ν
/2
2 [∫ dvx(n1 (x)+n

2
(x))]2 Λ 1 2 

- (2π)-v /2
22
 [∫ d

V
x( |n

1
 (x) | +|n

2
 (x) | ) ]

2
[eα|

p
|Λ|1/vv -1] 

Λ 1 2 

Since by hypothesis q2N > 2 | q1 |Μ , 

Let f(p) ≡ max(0,l-9[eα|p|-1]) 

Clearly f(p) is a non-negative, continuous function with 

supp f = {p : |p| < α
 1

 ln(10/9)} compact. 

By (A. 8) and (A. 9) 

Thus, using (A.7) and the inequality 

(A.8) 

(A. 9) 

(A.10) 

(A.11) 

which holds, since ||M < (q2/22 )N by hypothesis, we obtain 
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wi th 

which is strictly positive if |Λ| is sufficiently large, because 

lim V(k| Λ|
-1/ν

 ) = V(0) > 0 , for |k| < ∞ , and ∫dvkf(k) > 0 , by (A.10). 

|Λ|↑∞ 

We are now in a position to prove Theorem 2.1. By (A.5) and the definition 

of Ξ
Λ(β, z1, z2) -

 see
 (1.6) -

(A.12) 

where zl= zlexp(βB) , l = 1,2 . 

(A.13) 

where [a] is the largest integer < a . 

By (A.6) , 

(A.14) 
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where = exp(βB) and d2^ = max(1/2, z2exp(βB)) , and we have used the inequa-

lities 

for some d3 < ∞, for both, ε2 = -1 and = +1 

Next we apply Lemma A.1 to obtain 

Now, choose γ > 1 to be so large that 

(A.15) 

In that case, 

(A.16) 
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—
 C2 

with d4 = max(2,2z
2
 e2 ) , and we have used (A.15), the Schwarz inequality 

4 2 
2 1/2 

for series, the inequality (Σ a a2n)1/2 < Σ a , with a > O , in that order. 
n = η η = 

By (A.12), (A.14) and (A.16) 

where z 

Finally, since all vectors in have Fermi statistics, 

for some constant d5 which is finite when z < ∞ . This completes the proof 

of Theorem 2.1. 
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Appendix B. Proof of Theorem 2.2 

In Theorem 2.2, q1 > 0 , q
2
 < 0 , ε

1=
ε

2
=1, (i.e. both species 

have Bose statistics), z1 > 0 , > 0 . One sets 

m = min {m1,m2} 

(B.l) 

see (2.5). Let 

(B. 2) 

(B. 3) 

By (B.1) , 

(B. 4) 

We define 

(B. 5) 

The second factor stands for the spin wave function that is an eigenvector of 

the 1-component of the total spin operator with maximal eigenvalue, for example 

Obviously 

(B. 6) 

with HΛ
(M

’
N)
 given by (1.4), (1.4'). By (B.4) and (B.6) , 

Let z = min{z1,z2} . By definition of
 ≡Λ(β,

Ζ

1

,Ζ

2)
 and (B.7) , 

(B. 7) 
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(B.8) 

(B.9) 

where 

with 

(B.10) 

Without loss of generality we may assume q1 > |q2| . From (B.8) and (B.9) we 

now obtain 

(B.11) 

where z = 1/2 z(l + 1----1-) , and 
q1 

(B.12) 

In (B.11) we have used that 

We now express in terms of a Feynman-Kac integral (see 
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Section 4.1). Then we apply the Jensen-Symanzik inequality with respect to the 

Wiener measure. Subsequently one may "undo" the Feynman-Kac integrals. This 

yields 

(B.13) 

. exp[- β < U((.)K,{p})>0] , 

with 

Next, we apply Jensen's inequality with respect to ∫ Π dλ(pi) - , using the 
i=1 i 

fact that ∫dλ(p) = 1 . This yields 

Finally, 

= 0 , by definition (B.12) of dλ 

This completes the proof of Theorem 2.2. 
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