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Abstract.

We study quantum mechanical systems of particles with Bose- or Fermi statis-—
tics interacting via two-body potentials of positive type, in thermal equili-
brium. We rewrite partition function, reduced density matrices (RDM's) and
correlation functions in terms of Wiener- and Gaussian functional integrals
(sine-Gordon transformation). This permits us to e.g. apply correlation inequa-
lities. Our main results include an analysis of stability versus instability

in the grand canonical ensemble, and for charge conjugation invariant systems :
upper and lower bounds on RDM's, existence of the thermodynamic limit of
pressure, RDM's and correlation functions, an inequality comparing correlations
with Fermi statistics to ones with Bose statistics, and inequalities which

are important in the study of Bose-Einstein condensation and of superconduc-

tivity.
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1, Notations and Summary of Results,

1.1 An outline of the main results

In this paper we continue our study, initiated in [10], hereafter
referred to as I, of classical and quantum mechanical, continuous systems in
thermal equilibrium., The systems considéred here consist-of two (or more) species
of particles interacting via two-body potentials of positive type,and in many results
an exact charge conjugation invariance is required. In: I we have found new
correlation inequalities of the Ginibre type [137] for classical systems and
quantum mechanical systems without statistics("Boltzmann statistics") which
are charge conjugation invariant., We applied those correlation inequalities to
establish the existence of the thermodynamic limit of (the pressure and) the
correlation (RDM) and imaginary time Green's functions (ITGF).

One basic ingredient in .the proof of those results, in particular of the cor-
relation inequalities, was the use of a combinatiqn of the Feynmann-Kac formula with
the sine-Gordon (or Siergert) transformation. These technical devices play a decisive
rdle in the present paper, as well.

The results of Paper I are here -extended in the following four directions :

(A) Analysis of stability and instability of quantum-mechanical systems in the

grand canonical ensemble,

Let %X(B’Z) denote the grand canonical partition function in a bounded region

A (of volume |p|] ), at inverse temperature f and activity z, By stability

we mean the inequality,

= (B,2z) < exp OQAI)
for suitable g >0 and 2z >0,
By instability we mean, roughly speaking, that, for some g , EJ&(B,Z) has
a singularity in 2z at some finite, positive value z , and = n(B,z) = tow,

for z >z ,
o



See Section 2.

(B) Proof of existence of the thermodynamic limit of the pressure for stable
two-component, charge conjugation invariant systems of arbitrary statistics.
See Section 2.

Remark. In (A) and (B) the particles may have arbitrary spin, and the results

outlined in (A) do not require charge conjugation invariance.

(C) Uniform (in A) upper and lower bounds on RDM's and ITGF's for charge
conjugation invariant systems with Bose statistics and sufficiently small
activity; (Fermi statistics can be treated , too,with our methﬁds, but the
resulting bounds are not particularly useful). See Section 5.
(D) Existence of the termodynamic limit of RDM's and ITGF's of charge conjugation
invariant systems with Bose statistics (below the breakdown of stability). We
also prove a comparison inequality between RDM's with Fermi-resp.Bose statistics
and study the effects of interactions with the electromagnetic field. See Section 5.
In Section 3 we recall and extend the correlation inequalities
of I. In Section 4 we give a simple derivation of Ginibre's formulas(see[12])
for the RDM's and ITGF's by using Gaussian functional integrals, as in [7]

and paper I (sine-Gordon-or Siegert transformation) , in conjunction with

Brownian motion. The sine-Gordon transformation permits a derivation of Ginibre's
formulas for the RDM's from elementary, known facts concerning ideal gases of par-
ticles in an external (purely imaginary) potential. This gives our elaborations

on the sine-Gordon transformation a certain degree of perfection. We also show
how to include interactions with the (classical or quantized) electromagnetic

field in this formalism.



1.2, Some notations and definitions,

The physical systems we study consist of two species of quantum
mechanical particles of mass m, and charge g, ;i=1,2 .(Several of our
results extend however to arbitrarily many specles of particles of arbitrary
masses and charges). These particles interact via two-body potentials. The
potential between a particle of charge q at a point x € R” and one of charge

' at a point x' € RY is given by qq' V(x,x') . Generally V = 3, Hence-

q
forth it will be required (unless otherwise stated) that V be of positive type,
i.e. that it be the integral kernel of a positive quadratic form on LZ(IF).

Moreover, we shall usually assume that V(x,x') 1is continuous in x and x'

and

K= sup V(x,x) < o 1.1)
X €

We are primarily interested in translation-invariant potentials,

V(x,x') = V(x-x") (1.2)

A .
Then V 1is of positive type iff its Fourier transform, V , is non-negative.

Condition (1.1) can be relaxed significantly for classical systems [7,107
and quantum mechanical systems with Boltzmann - or Fermi - (resp. mixed Bose -
and Fermi-) statistics ; see [177].

v
First, we consider systems confined to a bounded, open region Ac R , The

coordinates of N particles of species 1 are denoted (x)N = (xl,...,xN).
xj € A, the ones of M particles of species 2 are (x’)M = (x{, ...,x;{),
x! € A, and d(x), = E d"x , d(x'), = % dvx!' . (1.3)

2S,+1
i
The one-particle Hilbert space for a particle of species i 1is LZ(A” dVx)® T

where Si is the spin of the particle, the N-particle Hilbert space, f$§)

is given by

]



258 +

® N
i1 ey

) (1.4)

€4 is the statistics of those particles ; ¢

wy _ ,.2 v
H LA (L"(Ad x) L

where 1 = +1 : Bose statistics,

4= -1 : Fermi statistics,

The total Hilbert space of N particles of species 1 and M of

species 2 1is :

(N,M) - (N) ® M) 1.4"
Hh H 10 d;,ﬁ 1.a"
(")A 20y o ()
Let A F be the Laplacean on L°(A,d xj ) with zero Dirichlet data

at the boundary OA of A, The Hamiltonian of the (N,M) particle system

is given by -
g 1;1‘ (/2m) P (1/2m,) 1.5,"‘+U((x\,(x')ﬂ) , 1.5)
A 121 i j=1 j 2
where
UGy, ()= T a Vix,x ) + T a5 Vx}, x})
l<i<j<N I 1d<i<m 1
N M
+ I I qquV(xi,xi)
i=1 j=1

For potentials V of interest in non-relativistic physics (in particular if
(N,M)

V satisfies (1.1)), H A is known to be selfadjoint on a dense domain
(28, + 1IN + (28, +1)M N .M
in Lz{ A,dvx)®(N+M)  C i 2 , thus on H :‘: ) , and
exp [-gH T’M) ] 1is trace class, for bounded open A and g > 0. Let r =(x,u)

be the configuration space point of a particle, where p labels one component
. B NPT
of the spin, and (r)N (rl,...,rN). Let A((r}q (r )M’ (r N (t )M ) be the

integral kernel of exp [-B]ifN’M) 7 without statistics, If V 1s continuous

and B>0, is well-defined, positive and continuous in its arguments.
A



We define :
JﬁNdmN —=L -8 JANdcx)N -
Ul IJN
The grand canonical partition function , EA( B,z), is then defined by

oo

. N M (N,M)
2 (B,z,,2,) = I z z, Tr (exp [-p H’ ib
A 122 N,M=0 1 "2 *ﬁf,ﬁ) A
(= =] i o] ZN ZM
= T ¥ 1 2 J’ d(r)N d(r'")
MM M
N=0 M=0 N! M! A
c(“i) U(wz)
B ry . '
= z €1 62 Q’A((r)N(r )M’“l(r)NﬂZ(r )M)
™ € SN
TT2 € SM

where SN is the group of permutations of N elements, ] €1| = |€2| =1,

o(r) the signature of T , n(r)N = (r rn(N)).

I

The term corresponding to N =M =0 is =1. (In the case of Boltzmann statistics,
the sum over permutations is absent . Since the Hamiltonians considered here are
spin-independent, we could take a partial trace over all spin degrees of freedom,
Then higher dimensional representations of the permutation group on x-space wave
functions appear).The pressure of these systems is given by

1
pA(B’zl’ZZ) —IEI log ah(ﬁ,zl,zz) Q.7
and the RDM's by

0, (By2; (X)) (r")yys (?)N(_r-')”)

N+N' M+M'
z z
1 P 1 2
= 2,( g,2) M J d(u) d(') -

N',M'=0 N'! M"! N+ N' M
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z o(my) o(%wyp) B ' ' N = 1 '
m €Syt L Poey R A (@) @y, @5 ) W) )Ty (1) (1))
€ Sy

(1.8)

The definition of ITGF's is more complicated ; see I , Appendix 1.

Definition 1.1

A system is called charge conjugation invariant iff m, =m, =m, S1 = 82 ,
€= €y = e zlszzsz,and qlsq--qz.

Our main mathematical tools for the analysis of the systems introduced here,

in particular of EA(B’ z), pﬁ(ﬁ,z) and ph(g,z;-), appear in Sections 3 and 4.

1.3 Statement of the main theorems

In section 2 we prove, using an idea of Griffiths [14] ,

Theorem A,

For stable charge conjugation invariant systems with arbitrary

statistics and translation-invariant potential , V , the thermodynamic limit

p(g,z) = 1lim_ p,(B,2)
AR A

exists and is independent of the sequence A (only assumed to be increasing).

The limit p(g,z) _has the usual convexity properties.

In Section 5 we extend the results of I by proving

Theorem B.

For stable, charge conjugation invariant systems of Hosons

(¢ =1) the thermodynamic limit of the RDM's

p(B,z;(x)N(x')M 3 Ny (y')M)



= 1lim (B,z;(x\N(x')H 3 () ("))

£t R
exists for all N, M = 0,1,2,.... . It is monotone increasing in z and
bounded above by
( z ﬁ Px.,y ) (% N plx!,y' ) , where
’ ’ 1
N M 1
~ © 1 3 2 2
Bx,y) = £ =, =/, exp [~ |x-y|"/2jg],  and A = Quuw/p)", for
=L A ]

z = z exp(gK/2) < 1.

Remarks.
(1) We show in Section 2.2 that the restriction Z < 1 in Theorem B cannot
be relaxed by much because for large =z Bose-Einstein condensation destroys

stability.

(2) The proof of Theorem B 1is based on a combined use of Brownian motion,

the sine-Gordon transformation (Section 4) and correlation inequalities (Section 3) |,
Whereas the first two techniques can be used to analyze very general systems

of particles of arbitrary spin and statistics, it appears that the correlation
inequalities only hold for charge conjugation invariant systems with Bose statistics.
Theorem B can be extended to Bosons with integral spin. This is a straight-

forward generalization of the techniques developed _in. Sections 3-5 which we.do not
elaborate on; but see Section 4.

(3) Theorems A and B can be generalized to the case where the particles carry

electric charge through which they are coupled to the quantized radiation

field by minimal substitution

* A
Ab oad S (T e B x)) (V. ¢ ie A (x.))] 1.9)
] y e i

-+
Here A 1is the quantized vector potential, and X 1is an ultraviolet cutoff



with the effect that the two-point function of E;ﬂO) is finite. We shall
discuss the generalization of Theorem B to such systems in some detail. Moreover
we shall show that the RDM's of charge conjugation invariant Bose systems
with e # 0 are bounded above by the ones with e = 0, (Section 5) .

(4) Following Appendix 1 of I one can extend the results of Theorem B to the
ITGF's. That permits the reconstruction of a unique KMS state and of the
dynamics in the corresponding KMS representation , in the thermodynamic

limit [23].

(5) Existence theorems for the RDM's and ITGF's of quantum mechanical systems
in the grand canonical ensemble have previously been obtained for various
classes of short range potentials in [12] and for nom-relativistic matter with
Coulomb-replaced by Yukawa potentials in [3] . The methods used there only
work in the dilute regime (small B and z) and for short range potentials.
In comparison, our methods work for arbitrary values of B and an optimal
range of 2z and do not impose restrictions on the range of the potentials.
Moreover, the quantized radiation field can be included in our treatment.
However ,our assumptions of Bose-(or Boltzmann-) statistics and strict charge
conjugation invariance are physically awkward.

(6) Among our further results are ,(see Section 5):

-An inequality saying that for fixed parameters and given potential, the
absolute values of the RDM's with Fermi statistics are bounded above,in
configuration space, by ones with Bose statistics.

- Lower bounds for the RDM's of charge conjugation. invariant Bose gases which

diverge if 2z 1is large enough and

V()1 < O(le_l_s), as Ix| —+o , for some ¢ > 0.

Our results suggest that such systems are likely to exhibit Bose-Einstein

condensation, and that one ought to be able to even prove this rigorously.

- Various (diamagnetic and other) inequalities for the partition functions



and the RDM's of systems coupled to the electromagnetic field that might be

of interest in the theory of superconductivity.
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2, Stability and Instability in the Grand Canonical

Ensemble, Thermodynamic Limit of the Pressure

2,1 Stability in the grand canonical ensemble

Consider the Hamiltonian HiN’M) on the the Hilbert space Hgﬁ’M\

defined in Section 1.2 , (1.5), (1.4), respectively .

The basic assumption is that el=-1(1.e. the first species of particles consists
of Fermions) and that the interaction potential V 1is chosen such that, for
a given choice of €y the system is H-stable in the sense that for some

finite constant g and arbitrary A.

HiM’N) > 1/2 TEM’N) - B(M+N) (2.1)

as a quadratic form, for arbitrary M and N;

Here T(?’N} is the kinetic energy operator, i.e.
(M,N) M A N A
T, = -3¢ @/2m) p - ¥ @A/2m) A , (2.2)
&= s 2 :
i=1 j=1 ]
see (1.5).
Y,
Definition, A region A C R 1is called regular iff diam Aga'A]llV for some
finite
Theorem 2.1 ,
Let ¢; = -1, €, = *1 , and gq, f 0. Assume that the potential V is
of the form
Vix,y) = Vl(x,y\ + Vz(x-y) (2.3)
such that (2.1) holds for V = Vl,(V2 = 0) , and v, is a function whose
Fal
Fourier transform , V2 , is non-negative and continuous with
A
V2(0\ > 0.
Let m ,m, be positive and z),2, finite.




o

Then there exists a constant c¢ = ¢ (B,zl,zz), finite for all B > 0, such that
EA(B’ZI’ZZ) < exp [c|A]] (2.4)

(E-stability)

for arbitrary, regular regions A .

A possibly novel, simple proof of Theorem 2.1 is given in Appendix A.

Remarks,

(1) The result in Section 2.2 shows that it is important to assume that one species

of particles consists of Fermions,

(2) Theorem 2.1 has an obvious generalization to systems of arbitrarily many

species of particles including Fermions.

(3) As an application, consider the three-dimensional, non relativistic matter

system, with V e.g. the Coulomb potential. We decompose V into two parts,

V= V1+-V2 . with
v, (x) = G/4w|x|)e_u|x| , and

Vz(X‘ = (1/4w|xi ) [l-e44|x‘], for some u > 0.
We assume that one species of particles is Fermions,

Then all hypotheses of Theorem 2.1 are valid. Thus, the grand canenical

partition function of the matter system satisfies inequality (2.4), i.e the

system is "Z-stable".

We have recovered here a result of Lieb and Lebowitz [17]

2.2 Instability in the grand canonical ensemble.

In this section we study a two-component,pure Boson system with dynamics

given by the Hamiltonians H(ﬁfM) ,N,M = 0,1,2,...but in contrast to Section
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2.1 we assume €)% €, 1 . The masses of the particles in the two species
are m ,m, , their charges are 9,54, with q, > 0, q,< 0, their activities

2152y » respectively.

We set m = min{ml,mz},

9 q, (2.5)

z=1/2 [min{zl,zz}] . [ min {1 —ysl“ *q—-}]
1

Moreover,we define EK(B,z)to be the partition function of an ideal, one component

Bose gas of particles with mass m. In Appendix B we prove

Theorem 2.2

Consider the system described above, with €; = ey = 1 and m,z as defined
in (2.5) |

Then 2,(By2,,2,) > E(8,2). (2.6)
Remarks

(1) It is well known that, for arbitrary 2z > 1, there exists ﬁo(z) such that

Ei(B’Z) is divergent for lr"QJ"~0(Z)- Thus, Theorem 2.2 says that for z, and 2z,

large enough depending on q, and 4,5 the two-component Bose systems considered
here are not Z =-stable.

(2) In Section 5 we show that for two-component, charge conjugation invariant

Bose systems with pair potential decaying like |x|-1-8, € >0 , the RDM's diverge

for =z large enough.

2.3 . The thermodynamic limit of the pressure of charge conjugation invariant
systems.
In this section we study general charge conjugation invariant systems
of arbitrarily many species of particles with arbitrary spin and statistics.
All that is important is :

(i) strict charge conjugation invariance.
(i1) =~stability.
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Under the above hypotheses we prove existence of the thermodynamic limit of the
pressure (grand canonical ensemble ), using an idea due to Griffiths [14].

In order to economize on notations we restrict our attention to two-component,
quantum mechanical systems, but our methods work in the general case as well.
Moreover, they are applicable to charge conjugation invariant, classical
systems and, after some modifications, to one-component systems with non-
negative potentials. They are however too simple-minded to permit to study

the dependence of the thermodynamic limit on boundary conditionms.

The main result of this section is

Theorem 2.3

Consider the pressure pA(B,z)= pA(B,z,z) defined in (1.7) of a system

with dynamics given by the Hamiltonians(1.5).Suppose that the system is
% -stable, in the sense of inequality (2.4) , and charge conjugation invariant ,

in the sense of Definition 1.1.

Then p(B,z) = lim pA(B.Z)
MRV

. : . Voo,
exists and has the usual convexity properties, (provided At R in the sense of

Van Hove or Fisher [22]).

Proof . Let A;, A, be bounded ,open subsets of R’ with AN Ay = 9. (2.7)

Let =(B,z) = EA(B,z,z) be the grand canonical partition function. By general
arguments [22] it is enough to show that

EA. U A

LU, @ 2 E B0 6, (2.8)

1 2

provided =-stability holds.
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We introduce the Hilbert space

o (N,M)
H = ® HA (2.9)

A Nm =0

(N, M)
A

We set pu = —B-l log z and define the Hamiltonian HA on Hﬁ by

where H has been defined in (1.4).

- @ [HﬁN’Mlu(N+M)H ] (2.10)
N,M=0

Hy

(N,M)
(N, M) K
with Hﬂl’ the Hamiltonian defined in (1.5) .One convinces oneself by

direct calculation that

—BHA
Eh(B »2) = Try (e e (2.11)
A
(N, M) . . . .
Next, let TA be the kinetic energy operator introduced in (2.2) , and
L]
N,M
T = & (N,M)

T
A N,M=0 A

Given two bounded, open subsets A;, A, as in (2.7) ,we define

W = ® ® (=), x", M, O, )
Ayhz N ,M=0 N, ,M,=0 LT Lt R

(2.12)

“U((x), (x"), )= U((y), ,» (¥y"), )}
B H) N, M,

with the convention that the x- and x'- coordinates are in A; ,whereas the

the y - and y' -coodinates are in A,. Clearly , WA A is the interaction
1°72

energy between the system confined to A; and the one confined to Aj

Since O0- Dirichlet data are imposed on TA’ see (l.5),

(2.13)
Taong = Tt g

_ MY Ay Ay A
(This follows from =-A <=-A - A » a well known inequality ).

By (2.13), and definitions (2.10),(2.12),
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< H, +H (2.14)

H
MYny, S By P HEL T,

Therefore

-gH
Tr (e Aluﬁz) > Tr*f(e
Hy A

-B(H, + H, + W
( I8 A, Al,Az)) (2.15)

Let be the state given by

PA1, 02
~B(H, + H, ) _
Tr,, (e 1Az ) l TrH(— e
Hy A
‘The Peierls-Bogoliubov inequality now gives

~B(H, + HAZ))

Ay

- \
B(Hﬂl + an + Wﬁl,ﬁz,

Tr , (e )

Hi

-B(H, + H (W

-B
Ay JHLZ) e pﬁls‘qz

)
> Tr. (e ) SR (2.16)

Next, we note that if Vl and V2 are two closed, orthogonal subspaces of

a Hilbert space

®n n 8k g (n-k)
[ €
(v1 ® v2) = a vl e v, .

so that

o m L QEQ
=(®V," ) B(HV,°)
m=0 =0

@ n
€
&V e VZ)

n=o

I ve set V.= L2(h.,dx)@e?5*! i=1,2 , and recall (i.4') and (2.9) we obtain
1 1

H =H, ®H (2.17)
MUS, AT,
Furthermore
—B(Hﬂ1+HA2) -BHA1| '-BH&,‘2
e =e ® e (2.18)
Hﬁ VA HA HA
haie? 1 2
Let °a be the state given by
i
-BHAi -1 —-BHAl
TrH (e ) Tr(-e ) ,1=1,2
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By (2.17) and (2.18) p =p P
F Paphy T 0@,

Using in addition (2.16) we arrive at

-B(H + H + W
Try(e Ay Ay ﬁlsﬁz)
A

-BHﬁ -BH
> TrH (e 1) TrH (e
Ay Ay

-Bp, @ p, (W )
A2y ¢ A1 A2 A A (2.19)

Using the product structure of P ® °a , (2.12) and charge conjugation inva-
1 2

riance one sees immediately that pﬂiquhz(wﬁl’n2) = 0. (2.20)

Clearly, (2.15), (2.19) and (2.20) give

-BH
A VA, -BH
TrHJnL m (e ) > TrH (e Al) TrH (e
1 2 Al "‘2

-BH
A2y,

which by (2.11) completes the proof.

Remarks.

(1) If one replaces traces by integrals and the Peierls-Bogoliubov inequality by

Jensen's inequality the above proof yields existence of the thermodynamic limit in clas-
sical, charge conjugation invariant systems ; see [14] ana I.

(2) Consider a system consisting of only one kind of particles interacting via non-

negative two-body potentials, # 0. In the definition of TﬁN’M) and TJnL replace
aA by Eﬁh,defined to be the Laplacean with Neumann boundary conditions.
Then
T >T, + T ,
AIU Az Al Az

Baua, 2 By YR M,

and pﬁldaphz (wﬂl’ﬁz) > 0 . Thus

(3]

P22 un, = By 5,

which also implies existence of the thermodynamic limit.



_l?_.

(3) The strength of the arguments used in the proof of Theorem 2.3 and Remarks
(1) and (2) 1is that they do not impose restrictions on the range of the potentials.
Their drawback is that they do not supply detailled information on the properties

of the limit, p(B,z), such as dependence on boundary conditions, [24]
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3. Correlation Inequalities

First we recall some of the correlation inequalities of I slightly generali-

zed so as to be applicable in our proof of Theorem B , Section 1, which we give in
Section 5. Subsequently we establish some new inequalities related to the ones in
[16,18] which we shall use to compare the correlation functions of systems in a
magnetic field to the ones of systems without magnetic fields ; see Section 5.

Let H be a real Hilbert space, and let C be a (bounded) positive quadratic form
on H .

Let ¢ be the Gaussian process indexed by H with mean 0 and covariance C.

The associated Gaussian measure is denoted duC(¢) ; see [20] . Let (Xj,Sj) s

j =1,2,3,..., be a family of measure spaces, and {p} = {dpj} ;=l a sequence

of measures with the property that dpj is a finite, positive measure on (Xj,Sj),
for all j. Let R(j) » J = 1,2,..., be a family of measurable mappings from Xj

to H , i.e.

k.(j): x €X. =~ E(j)EH (3.1)
j X

such that

7 I dp.(x) exp %—C(E(i), £(i)) < e (3.2)
j=1 %

Following the notations of I , Section 2 , we define

. 6))
t({p},¢ ) 551 ij dp, (x) cos ¢ (277 (3.3)

We introduce a partition function E(C,{p}) by
g(C,{p}) = E({p})=1duc(¢)exp t({p},?) (3.4)

For F € Ll(duc) we define

<F> = <F>{p} = E({p})_lf du,(9) F(9) exp C({p},4) (3.5)

C,{p}

In the following, m, n,1,8... denote vectors in H.
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Theorem 3.1

k
1) it
( < et cos ¢(mJ) > (o} >0
k r
(2) < I cos ¢(m,) ;3 T cos ¢(n,) > =
j=1 ] i=] 1 {0}
k r
< NI cos ¢(nm, It
j=1 (mJ) i=1 cos dlnp) > {o}
k r
- <1
j=lC°3 ¢(mj) = {0} < ifl cos ¢(ni) > {0} 20
(®) «
(3) < e¢ ; T cos ¢(n,) >0} = 0

i=1

Remark . For {p} = {pl,0,0....} Theorem 3.1 is contained in Theorem 3.1 of paper I.

See also [21] . The proof of the present generalization is a trivial adaptation

of the one of Theorem 3.1 of I which we do not wish to present here. We also

recall that

PRI NN

< cos ¢(m) >C,{p} is decreasing in C, H}. o
C,{ p}

is increasing in C,

where the order relation for C 1is the one of quadratic forms. See I , Corollary

3f2'

Let f(j) be a bounded , real-valued function on Xj, j =1,2,3,... and set

Cloh () 1) = 3 fy dos(0 cos(ea D) + €1 3.7
=1 7

Let = (C,{p},{f}) and < - >C,{p},{f} be given by (3.4) , (3.5) , respectively,

but with €({p},¢) replaced by C({p},{f},¢).

Theorem 3.2

be as above. Suppose

(3), .
Let {f" Yia1 2 <7200y (6} *< 7 7 c,{p},{£)

dpj 3d|pj'l , for all i = 1,2,3,...
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Let a,B be real numbers and m,n vectors in H. Then
< cos ¢ (m) cosp(n) >{p} -< cos(¢(m)+a) cos(p(n) +B) >{p'},{f}
> |< cos ¢(m) >0} < cos(¢(n) + B) > {0'},(£}

"< cos(d (M) > 1y gey< cosp(@) >

Remarks .

(1) Using the identity

k Kk k
I cos a.=(1/2) % cos(Lf e. a.), (3.8)
j=1 J e} j=1 3 3

with ej= +1, 3=1,2,....,k, one obtains trivial generalizations of Theorem
3.2,

(2)As a special case of Theorem 3.2 we note that

<cos ¢(m) Spr =1 cos (¢ (m)+a) (e}, (£}

This inequality permits to compare correlation functions of systems

with Bose-resp. Fermi statistics, with or without couplings to an electro-
magnetic vector potential. See Section 5.

(3) Theorem 3.2 is a variant of recent inequalities due to Lebowitz [16]
and extended by Messager et al. [18].

Qutline of proof (see also I and [18]):

Let ¢1,¢2 be two independent Gaussian processes with mean 0 and covariance C.

Then
<cos ¢(m) cos ¢(n) >{p} - <cos¢(m+a) cos ¢(n+B) >{p} (£}

tl<cos ¢@m) > () < cos(¢(n)+B)>r .y rry = <cos(9(m) + ) >po (gy< cosb(R)>( 4)
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= =({eh T 'E{e 1 {EN T fdu (6, du, (4,) [cosp (m) ¥

cos(¢2(m)+a)]'[cos¢1(n) + cos(@z(n)+B)] .

(3.9)
- , (3 ()3, ()
. exp[jzlij(dpj+dpj)(x)(cos¢1(£x )+cos (¢, (2 7 )+E 7))
R (3)_ (34,03
+ (dpj dpj)(x)(cos¢1(£x ) cos(¢2(£x )+fx N1
Since the partition functions are positive it suffices to show that the
functional integral on the r.s. of (3.9) is non-negative. We define
¥ = 2 (4,46,) b = o5 (¥-X)
VZ 1% 1 - /2 VX
=
1 1
X =77 (7é1%4)) b =77 (0
This transformation is orthogonal in (¢1,¢2)-Space. Thus
duc(¢1)duc(¢2) = duC(W) duc(x) ; see I. Moreover
cosd, (m)+cos(¢,(m)+a) = 2 cos . (¥Y(m)+ E')cos : (x(m)+ E’)
1 2 2 2 V2 20 e
and
cos¢, (m)-cos(¢,(m)+a) = 2 sin 1 (W(m)+-3)sin 4 (x(m)+ =)
1 2 V2 2 VI X 2
Also, since dpj and dpi are real measures with dpj z_dlpil , we have
dp.+dp! >0, dp.-dp! >0, for all j . (3.10)
] ] - ] ]

Inserting all these identities into the functional integral on the r.s. of (3.9),
expanding then the exponential and taking into account inequalities (3.10)

we see that the functional integral on the r.s. of (3.9) can be written as a
sum of terms of the form Iduc(?)duc(x)F(?)F(x) = [IduC(T)F(W)]Z .

with F real-valued. Thus it is non-negative. .

We conclude Section 3 by sketching a simple generalization of
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Theorem 3.1 which is useful for analyzing Bose systems coupled to the quantized
radiation field. Let C({p},{f},¢) be as in (3.7). We now suppose that the
phases f(J) are linear functions of a Gaussian random field A with Gaussian

distribution du(A) , i.e. fij)= A(hiJ)) , for some H-valued functions

h(j) » j = lyeeeg™® . Let

X
E({p}) = fdu,(9) du(a) exp €({p},{A(h)},¢ ) and (3.11)
<>r03 = E{PDTHdu (9) du(a) - exp € ({0}, {A(0)},4) (3.12)

Theorem 3.3

(1) < cos(¢(m) + A(R)) > (0} >0

(2) < cos(4(m) + A(2) ); cos(4(m) + A(M))> > 0

3 < ™D cos g + am)> L <o

Remarks .

(1) The process x = (¢,A) is a multicomponent Gaussian process. Theorem 3.1
applies to multi-component processes; see I. Thus Theorem 3.3 follows from

Theorem 3.1 . Incidentally, the proofs are simple variants of the proof of

Theorem 3.2.

(2) Identity (3.8) yields obvious generalizations of our inequalities. Moreover,

in Theorems 3.1,(2) and 3.3,(2) one may replace cos(¢(m)+A(L)) by ei(¢(m)+A(g));

see I.
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4, Quantum Statistical Mechanics and Functional Integrals

4.1 The uses of Gaussian and Wiener measures

First we recall the functional integral formalism developed in detail in [12,7].

and I. We consider N-particle systems with Hamiltonian

(N) N A
H == izl(llzmi)-‘-\i + U((x)N) , where (4.1)
U((x) )= I q. q. V(x,,x.) ,
N 1<i<j<n iR i (4.2)

and V 1is a positive (semi-) definite two-body potential.

In this subsection the spin (and other internal degrees of freedom) of the particles
plays the rdle of a spectator and is suppressed in our notation.

We propose to express the integral kernel

(N)
A ]

Tﬁ«k)N : (y)N) of the operator exp[-BH in terms of a combination

‘of Wiener integrals which arise by using the Feynman-Kac formula and Gaussian

functional integrals which were used already in the classical case and in I.

The path space of the Wiener measure can be chosen to be

Q= X 1 O (4.3)
1€[0,=) 1

. 3 - - . - . U
where R}; ¥ R  is the one point compactification of R .

Q 1is a compact Hausdorff space, and the Borel sets generate a natural o-algebra
on £ . The Wiener measure Pg(x,y; dw) , conditioned on those paths w € Q
with w(0) = x, w(t = B) = y,and depending only on {w(t): 0<t<Bl,is a

o -additive, finite measure on Q . It is the path space measure of the process
with transition function exp [tA/2m] . The kernel of exp [tA/2m] is denoted by
p;(x,y). We have

B

m (x,y; dw) (4.4)

pﬁ(x,y) = Ig P
B

Let x, (w) be the characteristic function of the subset

{w: w(t) €A, for all 1€ [0,l} cq .
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We set

Ph G6ysde) = X} (@PhGyidw) . (4.5)

This is the path space measure of the process with transition function

exp [tﬁﬁ/2m], where &ﬁ is the Laplacean with O-Dirichlet data at  9A
Let PB(G0), (1 dw) = 1 P
A N’ N’ N m.,

(x. y.; dw.) (4.6)
j=1 J A J! J

J

By the Feynman - Kac formula, see e.g. [19,12] ,

(@) = JQXN'Pﬁ((x)N,(y)N;d(m)N)exp[—Ig dt U((m) )] (4.7)

As in I, we now express exp[-fg dt U((m(T))N) ]

by means of a Gaussian functional integral. Let

V(x,t3x",1t")= V(x,x") §(r-1") . (4.8)

Since the two-body potential V has been assumed to be positive(semi-)definite,

so 1s W. Let L2(I¥+]) = L2(1¥ x [0,8],dvx dt). Let ¢ be the Gaussian process with

g 1

mean 0 and covariance W indexed by LZ(RB . The corresponding Gaussian

measure and expectation are denoted by d“U’ < - zy respectively. We recall

some well-known formulas.
< el¢(f)zv = exp [-(V2) < £,Vf> ]

P IO, o T, S D) o)

(Wick ordering)

From these we obtain

N i¢(f,)
< II: e J 2 ooygE exp[- I < £, ,VE.> ] (4.10)
j=1 1<i<j<N J

We assume temporarily that V(x,y) is continuous in x and y and choose
fj((x,r))= qjﬁ(x-mj(t)) s =Rl s N

This yields



-25-

N iq. fg ¢ (w, (1),1)dr
<m e 3 ] >
j=0 v
= exp [ [% dt U(@(D) ) )} (4.11)
We set s
8 8 ifg ¢ (w(t),1)dT
o 6 (x,y) = Ig Pm A(x,y; dw): e : (4.12)

It should be pointed out that aﬁ Ao (x,y) is really the integral kernel
il |

of the one-particle operator

T{exp-B[-—(l/Zm):}A i¢1 - Wi},

where T denotes time-ordering, i¢T( - ) i¢(+, t) 1is a purely imaginary omne-
particle potential, and W(x) = %—V(x,x).
From (4.7), (4.11) and (4.10) we deduce

N

W (g 9 = < . :

o (X.,y.) >

Inserting this into (l1.6) and (1.8) one obtains an expression for the partition

function and the RDM's in terms of Wiener- and Gaussian integrals.

4.2 Taking into account statistics : an exercise in multilinear algebra

The purpose of this subsection is to express the partition function
and the RDM's (or ITGF's) of systems with Bose-or Fermi statistics in compact form in
terms of Gaussian integrals.("Boltzmann statistics'" has been treated in I.) This will
permit us to apply the correlation inequalities of Section 3 to construct and
investigate the thermodynamic limit (at least for Bose gases) .We start with
stating the main results of this subsection. We consider a system of finitely
many species of particles with Bose -(e¢ = + 1) or Fermi-(e = -1)statistics.

First it is assumed that the particles are spinless, but at the close of this

subsection we show how one can incorporate spin. The Hamiltonian Hi') is
as in (4.1) with m = ... = mil,..., miil } #1% cee B mLqE... = qﬁ""'
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qig_1+ | = eeee T qN , and L is the number of species .
We define
o E:J-l j jB
pfx e (m9z; X,y; ¢) = I z ‘er A (st;dw)
? j=1 j Q ?

-1 ifSs(rB), mar
. I : e :
k=

Sp,e@z38) = [Hd'x oy (@,z3%,%; ¢) (4.15)

We assume (at least temporarily) that
K = sup Y V(x,x) < = . (4.16)
Xx € R

Since by (4.9)

. (B .
tiqfy ¢( w(t),7)dr
|: e 0 = f_exp[(qZIZ)IgV(w(T),m(T))dT]_iexp(quKIZ) s

the series on the r.s. of (4.14) converges absolutely if

P52 <1 . (4.18)

For Fermi statistics one can relax conditions (4.16) and (4.18). See Sections

2 and 5 .But for the time being they are imposed without further mentioning .

Let A = (Aij) be some N x N matrix. We define

N

sMa y= 35 e T A,
€ 1 €S =

N

where o(w) is the signature of the permutation w .

Clearly G(Hz(Aij) = det(A) , G(E; (Aij ) = perm(A) . (4.20)

Theorem 4.1.

Consider a system of % species of (spinless) particles with statistics €k

(4.17)
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mass m, , charge 9 and activity zk,k =1,...,%, in the grand canonical

ensemble at inverse temperature B. Let € = (el,....,el), z= (zl,..,zﬁ).

Then the partition function is given by

'3
EA’Q(B’E) =< exp I Sﬂ,ek(mk S ¢ ) zv , (4.21)
k=1

and the correlation functions by

1 ) 1 [}
py Bz (X' ): cee (X)) 5 (¥): eeer (D))
Ae 1 1, 1, i
[} (1,)
k 3 ..k k |
=< T & (z.5— T B,z 5 X i 5 9 $))> ﬁ’g(ﬁ.g), (4.22)
k k
k=1
where
_1 2"
SN (B, 2) = :'ﬁ,g_(B’E) <—exp [ kEIS‘.L,Ek(mk.zk; Q. D>y

a

For later purposes we explicitly consider the special case of charge-conjugation

invariant systems of two species of particles; see Definition 1.1. We define

Ty (Bsz5a¢) =8)  (m,z3q9) + S, (m,2z; -q9). (4.23)

Theorem 4.1 then takes the form

Theorem 4.1'.

For the charge-conjugation invariant systems introduced in (l.4) =-(1.8)

EA’E(B,z) =< exp @ A,E(B z3q9) v (4.21")

pA’E(B.z s (XD (x") s (V) (y‘)M)=

N 3
= < 52 )(Z T2 pA,e(B’Z; xist 399)
(M) a - 1 LI
. 6 € (Z'E OA,E (B,Z, xi’ Yj,"q ¢‘ ) >A,E (B’z)s

| (4.22Y)
where <"‘>A’E (Bsz) = EA,E(B’Z) <—exp EA,E(B’z;q¢)>\V .
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Remarks

(1) The expectation <->A,e( B,z) defined in (4.22') is given by a positive
probability measure, because the "action" EA,E (B,z3q¢) 1is real-valued.

See (4.14), (4.15), (4.23).

(2) If the system is not charge conjugation invariant,as in Theorem 4.1, then
<->A'E(B,§) is given by a complex measure.

(3) E;;ressions for ITGF's similar to the ones given in Theorem 4.1 for the RDM's
can be derived, too, but are more complicated; see Section 4.3.

(4) Spin is incorporated at the end of this section.

Proof of Theorem 4.1.

The opening move in this proof consists of first re-formulating Theorem 4.1
in a more reasonable terminology. It then follows from standard identities of
multi-linear algebra which, for the convenience of the reader, we briefly
review in Section 4.3.

First, we notice that it really suffices to prove Theorem 4.1 for one

species of particles only. The case of many species will turn out to be an obvious

generalization .

We define

A = AB =T exp[-B(~1/2m)AM - i ¢ - 2W) ]
@  m,q¢ p : 1 ™ ' (4.24)

where W(x) = %—V(x,x).

By the Feynman-Kac formula, the integral kermel of Aq¢ is given by

A (x,y) = b x,y) = [ p (x .dm).eiLB¢(w(T),T)dT. (4.25)
qe "’ m,A,qp "’ q m,A St R |

see formula (4.12).

In order to express the kernel of (Aq¢)J we use the following well known

Lemma 4.2,

n+l iqfs¢(w-(T),T)dT
{PB (x. ox.:dw.):ie ©° 3 :
m, A (Kj-p%;5de): :

n
f I dvx.f 3

n
ju1 3 gx(mtD) oy
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= P(n+1)B n iq IE ¢$( w(t+iB),t)dT
[P0 ot T e

Proof. An immediate consequence of the semi-group property of exp [t(V2m)ﬂA]

and the Feynman -Kac formula.
Thus
-1 iqf® g(u(r+kB),1)d
3 ip j 1q) ¢(w(t+kB),t)dT
(a4 Gy = J PP (x,y;dw) 1 :oe -
q Q k=0
This identity and (4.14) yield
© j—]

oh’E(B.z;x,y;¢) = jil

zj(A¢)j x,¥)
= =g 2n(l-zzA¢) (x,y) ,
and
22 o (Byzix,yie) = z{(1-ezA) " A} ( x,y)
az A’E 3 ] ] ¢ d) ] .

Furthermore, by Lemma 4.2,(4.14) and (4.15),

(4.26)

(4.27)

(4.28)

exp Sn,a(m’23¢) = exp Ihd“x pﬂ,e(m.z;x,x;¢) - exp[-EfAdvx:En(l-ezA¢) (x,x)]

= exp[—eTar(l—szA¢)] = det(l-ezA )-s .

¢

In this reformulation , Theorem 4.1 maintains

B,z)= < det(l—aqu¢)"e

EA,e( ﬁv ’

by (4.21) and (4.29) ,and

pA’E(B.z ;(x)N.(y)N)

= (N) _ -1
= < Gs (z{(1 equ¢) Aq¢ } (xi,yj)) >A,a(a’z)’

(N)

where ¢
€

Next, using (4.12),(4.13) and (4.25) , we see that

(4.29)

(4.30)

(4.31)

is defined in (4.19), and <->A E(B,z) in (4.22); see (4.28).
]
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N
8 . (v).) =
vy (s (P= < jzl Ay 50950 % (4.32)

In formula (1.6) we expressed EA(B,Z) by

N
. @ = FoE o 0 faeg i (@grey.
N=0 mES
N
Hence, by (4.32) and definition (4.19) of 52“’ S
g - o (N)
Bpe(Bm) =< I gy JAGOg 87 aA L Gy x ) (4.33)

N=0

and we have interchanged taking (“%U and 1 '%T Id(x)N-—.(This is permitted

Bq2K/2 N=0
ze <1 ; see (4.18)). The equality of the right sides of (4.33)

if
and (4.30) is well known.(In the sense of formal power series it holds in general,

quK/Z

and if =ze <1 both right sides are well defined). See also Section 4.3.

Next, by formulas (1.8) ,(4.32) and (4.19),

DA,E(B’Z; () (¥) )
@ N+N'
= EA,E(B’Z) 1N§-0 EETT“ fd(u)N. é 7 (M
= . o SN+N'
: ?A((K)N(U)N-; m((y) (W) g))
- -1, 1 (N+N")
@2 T <Ja g8 T (aa (v, w03y (4.34)

where (vl,... io gV

’VN’VN+]’. N+N|) = (XI,---,}{N’UI'.--UN')
(wl"'"wN’wN+l""’wN+N')= (yl,...,yN,ul,..L,uN,).

The reader familiar with multi-linear algebra will recognize the r.s of (4.34)
as being identical to the r.s. of (4.31). If we finally insert (4.28) into the

r.s. of (4.31) , the proof of Theorem 4.1 is complete for the case of one species

of particles.The case of finitely many species follows in the obvious way. [

We conclude this subsection by showing how to incorporate spin in this formalism.
Again, it clearly suffices to consider the special case of one species of

particles. The Hilbert space of the spin degree of freedom of one particle

28+] . .

C s with S the total spin. We choose an orthonormal basis {¢u]i‘-9
) 25+1 .
in € labelled by the eigenvalues, p , of one component of the spin operator.
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(N)

The basic fact to be noticed is that the total Hamiltonian Hh , see
(4.1), is spin-independent, (although that is not absolutely crucial for the

existence of a functional integral formalism, as mentioned in Remark (2),Section I

Let r = (x,u), and define

S '
A=A 1 4.24
q¢ q¢® s ’ ( ’s i

) +
where Aq¢ is given by (4.24) , (4.25) ,and 1Sis the unit matrix on ( 5
The integral kernel of A%¢ is given by

S 1y = AS o - '
Aq¢ (rgr ) = Aq¢ ((X3U)a(x s H )) Aq¢(x » X ) Gu

s U

Since Tr 1) = 25+1, we have
g25+1 s ’

Tr 2n(1-czA2¢) = (2S+1) Tr Qn(l-equ¢),so that

—eoaS Y€ _ < -e(25+1)
det (1 equ¢1 det(l-ez Aq¢)

The proof of Theorer 4.1 extends to the case of a system 'of particles with

spin and , together with the above remarks, gives (see also Section 4.3),

Theorem 4,L1"

= - - S -£ = - -€(ZS+]) "
_h(B,z) < det (1 equ¢) ﬁU < det(1 equ¢) >y (4.21")

pﬂ’e(B,Z;(r)N (r')N (4.22")

= < GiN) (Z{I-EZA§¢).—] AS } (ri.’r:;) >A,E (an)!

qé
where

- -1 -e(2S+1)
<-'>A,E(B’Z)=:A (B,z) <—det (l-equ¢) v =

The purpose of the next subsection is to briefly review some multi-linear algebra,
sketch the proof of the above identities and find compact expressions for

correlation functions and ITGF's.
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4.3 Exercises in multi-linear algebra.

Let H be a complex Hilbert space of dimension n < e, {ui}?=0
a complete orthonorml system in H, fl""’fN’ 81«18y Vectors in H.
Let A be a trace class operator on #H , i.e IlAIl1 = Tr |Al < = . The symbol
&, denotes the symmetric tensor product if € = +1 and the anti-symmetric tensor

product if e = -1. We define
QEm @Em
H =H®E....@EH,A

-~ ~— ~—

=A®_...®A,

v

m times m times
0 &0
f'l'ﬁE =C,A°- =1 . For fl""fm in H we set
mg
moE

fj = f1 ®e ....@% f
% m

The scalar product on H € is denoted < . , .>, for all m=0,1,2,...

We introduce an "unnormalized, reduced density matrix" Pe by

pE(gll"'!gN!fl""’fN)

o m N ® (m+N) m N
R ® ®
s ¢ Nl <M u, ® I g ,A° mofu e Mf >
m=0 ™ i ...i j=1 'j % k=1 ji=1 ' k=1
1 m
Lo N m N@
g w0l 1%y, ® ngtg , T (Au. )® T S(Af ) >  (4.35)
m! . . i, € k. 1, e, k

m=0 Byeeeiy j=1 "j k=1 j=1 j k=1

When € = +1 (Bose statistics) we assume that llAfl < 1.

Lemma 4.3.

= . N o -€ . (N) -1
pe(gl""’gﬂ’fl""’fN) = det(l-€4) GE (<gi,(l—EA) Afj >)

Proof. It suffices to prove Lemma 4.3 in the finite dimensional case. The proof

for the infinite dimensional case follows by a standard limiting argument, pro-

vided ||‘cx||1 <o , and [|A]| < 1, when € = +1 .

We first consider Bose statistics, € = +1 , Let £ = £1+i£2 be the

complex Gaussian process with mean O and covariance 1 , indexed by H ; i.e.
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-) - -
Jdu(g) & (f) =0, [du(g) & (f) &(g) = 2< £,g> (4.36)

- n 1.2
where du(g) = (2m) B exp L—%-< £, > ] aHI dEa dEu

is the normalized Gaussian measure.

By (4.35) and (4.36)

= 1

P (g s--'sé sE1s0eey,f) = E e I l - T
1°%1 N’T1 N m=0 cm ¢ fn 7 £(8) E(Af))
1" "m k=1
m —
- ToE(@ ) & (Aui_) du(g)e
j=1 j h|
n —
Note that I g(Ej) E(Auj) =< E,A £> . Thus
j=1

-]

- - 1 m
pl(gl""’gN’fl”"'!fN) = z e I< E!A E>

n=0 2"m!

1 — -
w1 7 E@) E (£ )du(e)

-n N , _ o 1 2
=Qmn Iﬂ=l'5 E(g) E(AL) exp [-1/2< g, (1-A)¢ >lEl d g de
. n
= @™ fexp [-1/2< €, A~a)g > T dE) de.
a=1

.a(T)(< gi,(l-A)_l AE>)

= det(1-0)7" W < g, -0 Af, ).
This completes the proof for e =1,

Next,we consider Fermi statistics, € = =1,
2 . . .
Let y lsw L l,..,n , be totally anti-commuting variables, and let [ -

be the Berezin integral which may be defined by the property that
1. 2 b, a2 n 1 2

f exp < ¢ ,A ¢ > = det (A) ,where <y ,Ay > = I voA Y
a,y=1 e ay Yy

It is known and follows easily from the above definition of the Berezin integral

; see e.g [I]

by differentiation that

© N m 1
= = 1 — 2 — . 2 <y
D_l(gl,.., gN,fl,,..,fN)= I — I I ]'[. d;l(%g v (Aflg.-" lbl(ui.)np (A i_)e ,11;>

m=0 11’ '1mk=l j=1 j 3
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L 2 1 2
= [y (Ek) ] (Afk) exp < ¥ ,(1+A) V° >
k=1

1

- 6(§3(<gi’(l+A)- A fj > )det (1+A)

Remark.
The purpose of introducing the Gaussian =, resp.Berezin integral is merely to
reduce somewhat lengthy combinatorics to known properties of those integrals.

It could be avoided completely.

Next, we introduce the standard Fock space

Fo= @& H i
m=0

and define the operator FE(A) on Feby

Py @em
r (A) = ® A (4.37)
E
m=0
Note that I_(A)T_(B) =T_(A-B) (4.38)
. _d tA
We define dr_(a) = gz T (e )|t=0 : (4.39)

This is Segal's formulation of "second quantization'"; see e.g [II].

As a corollary of Lemma 4.3 we have
Tr(T_(A)) = det (1-eA) "¢ (4.40)

(set N= 0 in Lemma 4.3 and use (4.35) and (4.37). A direct proof of (4.40)

not involving Gaussian-resp. Berezin integrals is easily found:

By analyticity, it suffices to prove (4.40) for self-adjoint A. Both sides in
(4.40) are unitary invariants. Thus one may choose A to be diagonal. Then (4.40)

becomes a trivial exercise).

We may now define "Correlation functions" and"ITGF'S" . The former are given
by
T = Tr I A Il d| B ( t l'l)
! . - -

j=1 =l
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The latter by

m
<:j1:1dre(iaj)rj > = [Tr r. @ 1.
m T, = T.
'Tr(PE(A)l_Tm * T are,) T @) L AL [ 9 (4.42)

j=1

where 0 ST STy S eeeelT <1, and A = eh , for some operator h with

m
Reh < 0 .
Obviously
m m
<M dr (B,) >, = <M dr_(B,) _ >
=1 e j° A j=1 € ] Tj 0 A >

so that it suffices to calculate the r.s. of (4.42).

By (4.39) and (4.38),

m
-1
< U dI‘E (Bj)T. >A = Tr(Pe(A))
j=1 ]
m =t +T, m . B. T. T,
L Tr(r (A " In qed 3431 3y,
asl..asm j=1 sl-..-sm=0
(4.43)
Next note that
Tr PS(A) = det (I—EA)-S = exp [-e Tr 1n (1-€A)]
Thus, using Leibniz' rule,
< N dr _(B.) > = I N{-el — 2n(1-
j=1 €] Tj - partitions j=1 kECj ask
Cpoevenly | (4.44)
_ m s.B, 1. ,-T.
eal ™m''1om {e d3a J+1 3y }
j=|1 g.=+0e=g =0
1 m

The r.s. can be calculated by using the formulas

d

g Tr Ln (1-eA(s))= - eTr((1-eA(s))”} A'(s)), and
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d -1 -1 =
35 (17eA(s)) "= e(l-eA(s) ~ A'(s)(1-eA(s)) ], with A'(s) = g;A(s).
Finally, we note a connection between correlation functions and reduced density

matrices : Let Bj’ j= 1,...,N, be given by

B.g=< g. g> f., for all € H.
Jg %Vg j? g

Let Pe be given by (4.35) and S by (4.41).

Then
N
pe(gl"°"’gﬂ’fl"'°"fN)= Tr(FE(An <: jzl dFE(Bj): >A s (4.45)

where :-: is the usual Wick order of products of operators on Fef
(The r.s. of (4.45) can be calculated by using (4.41) and (4.44) . Comparison

with Lemma 4.2 then completes the proof of (4.45)).
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5. The Thermodynamic Limit : Uniform Bounds, Existence and Properties

Stability in the grand canonical ensemble and existence of the thermo-
dynamic limit of the pressure have been discussed in Section 2. The main purpose
of this section is to derive upper and lower bounds on correlation functions
which are uniform in A , prove the existence of the thermodynamic limit of
the correlation functions of charge conjugation invariant Bose systems (provided
the activity is so small that the system is stable) and estimate correlation
functions of systems with Fermi statistics by the ones of Bose systems, resp.
correlation functions of Bose systems in a magnetic field by ones of the systems

in zero magnetic field.

Unless mentioned otherwise, the systems are assumed to be charge conju-

gation invariant. The particles may have spin.

5.1 Uniform upper bounds on partition - and correlation functions

The main auxiliary estimates required in this section have been already
derived in I, Section 2.2. Thus, we may be brief. In Section 4.2, (4.17) we
have shown that

inidr¢(w(r),r)

e < exp[quK/2] (5.1)

with K = sup V(x,x) . Furthermore, by (4.5)
XxER

J 2P,y du)

IR ANCRALD
g Q

fin

N2
-(32) " emi-lxyl?250) (5.2)
Using (5.1) and(5.2), we propose to estimate

(M ey (Brzsx,y3q0) | = [2n(l-ezh ) (x,y)| ; see (4.14) and (4.27).

2
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(1I1) Iz-§% PA,E(B.z;X.y;q¢)| = lz{(l-equ¢)—1Aq¢}(x,y)| :
see (4.28).
. = - TE .
(I11) lexp SA’E(m,z,q¢)| = |det(1 Equ¢) |,
see (4.15) and (4.29).

(I) By (4.26), (4.27), (5.1) and 5.2)

© 3j ]
B,Z;X,Y;¢)I s I J—?'I_ |(A )J(xs}')l
.15 a0

[ o, - (
Ase j=
2ym’ /2 ® 2¢/2))3 2,..
(Bm) 7 5 Ueleoa D oy 609
j=1 j
-t p(B,z,q) , where.
v/2 @ 2 J
o8,2,0) = (22) " 5 Uzlex(eqx/2) (5.4)
j=1 J
which is finite, provided |z|exp(8q2K/2) <1. (5.5)

(II) By (4.26), (5.1) and (5.2)

8

-1 h J
) Aq¢}(x,y)lg T |z| |(Aq¢) (x,y) |

I z{ (1- Equ
=1 (5.6)

¢

i~

: B,zsq;x,Y) , wWhere

B85z, 45%,Y)
v/2 o 2 j
= (E%E) . (lZIengﬁg K2 exP(“IX“Y|2/258) s (5.7)
i=1 j

and the r.s. converges if (5.5) is satisfied.

It is trivial to check that (5.3) - (5.7) remain true if Aq¢ is replaced

by A;; (see Section 4.2, (4.24')) , i.e. if spin is included.
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(III) We first present an upper bound that holds fore = %1 :
|det(l-equ¢)—E] < exp|Tr £n(1-equ¢)| < explp (8,2z,9) [A]] , (5.8)

as follows from (4.29) and (5.3). The r.s. of (5.8) is finite if
|z]exp(Bq2K/2) < 1 . Under this condition identity (4.30), i.e.

(B,2) = <det(1-equ¢)_E> (5.9)

Eh,e A

holds rigorously as an equation between holomorphic functions of =z with

[z[ < exp(-quK/Z) , as follows from (5.3) and Lemma 4.3 by a simple limiting
argument. By analyticity in z of both sides in equ. (5.9), this identity
remains true for all =z > 0 for which |(det(1-€qu¢)_E| is bounded uniformly
in ¢, at the least. From Theorem 2.2, (2.5) - (2.6), we know that for € = 1

(Bose statistics) the domain of holomorphy of

-1 -1
<det(1-zA_ ) ldet(1-zA >
(1-zh ) “det(l-z4_g ) >y

does not include the whole positive, real axis. Indeed, given §&§ > O , there

is a bounded region (e.g. a cube) AG such that EA 1(B,z) is divergent at
z = 1+6 , for all A D AG . Therefore det(l-qu¢)-1 det(l-zA_q¢)—1 and
thus |det(1-qu¢)-1| cannot be bounded uniformly in ¢ , for z = 14§ , A D AG

However, for superstable potentials V’Eh 1(B,z) = <det(1—qu¢)-1>‘U exists
for all z > 0).
Next, we set € = =1 , (Fermi statistics). Then
det{(1+zA = det{(l+zA_ ) (1+zA* )}1/2
| q¢)| et{(1+z q¢)( z q¢)}
= exp{1/2 Tr n(l+z(A A )+z2|A |2)} (5.10)
% q¢ q9¢

na

exp{1/2 Tr(z(A +A* )+22|A 12)}
q¢ q¢ q¢

¢
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The inequality follows directly from

and the spectral

Therefore, using

Notice that from

Ln(1+x) <x, for -1 < x < =

theorem. We now notice that

Tr A* = Tr A J xA_ (x,%) d
r N r o \ —a4 X,X) , an

* v v 2
Tr(AQ¢Aq¢) IAd X Ihd yIAq¢(x,y)|

(5.1) and (5.2)

* ) quzK/Z(ZﬂijIZ

Tr(Aq¢+Aq¢ < -—B-— ll\l , and
2
g Bq“K ,mM \v/2
Tr(A Ay S () " “IAl, so that .
1det(1+qu¢)1

2 2
< expl (2Pl K/2 (2 /2, (2,5 84 K(F@?)"lz) Al

B

(5.10) and the Schwarz inequality for <—aw it follows that

. 2
E),-1(8:2)" < <exp z[Tr(Aq¢+A_q¢)]>W

T )
* <exp zzTrIAq |2]>

¢ v

The first term on the r.s. of (5.12) is the partition function of a charge

conjugation invariant quantum mechanical system with "Boltzmann statistics".

Estimates (5.10)

- (5.12) are very crude, (far from being useful when the

potential V has local singularities), but suffice for the purposes of this

paper.

From now

on we study charge-conjugation invariant two-component systems,

as in Theorem 4.1', unless stated otherwise. It is assumed that the activity



- &0 =

z > 0 1is such that

EA,E(B’Z) = <exp EA,S(B,z;q¢)>V

-quKfz

is finite, (e.g. 0 < z < e , for =1, and 0 < z < =, for

e =-1, K< )

By (4.14), (4.15) and (4.23)

(5.13)

EA’E(B,z;q¢) = .E sz 4" x I Pi?ﬁ(x,x,dw)
j=1 A Q
-1 2, (B j-1 8
a2 Iodtv(m(r+k8),w(1+k8))coa(q L f, dre(uw(t+kp),1)) ,
k=1 %so

i.e. EA E(B,z;qd)) is of the form

P fapf (8 cos6(2))) , witn (5.14)
j=l ’J E
ldg:l.| = dor for all j (5.15)
A,j Asj ’ g ’
(compare to Section 3, (3.3)) . In particular € is real-valued and even

A,e
in ¢ .

Theorem 5.1. (Upper bounds)

For ¢ = +1 , z >0

lo,,. (8223 () (XD (M (7|

G{N)G;(s,z.q;xi,yj))aim)(;(B,z,q;xi,yi)) ,

A

[+

- 2 |
with P(,z,q;%,y) .= (EEEbU/Z jil (z ?fgéﬁq K/2)) exp(-|x-y|2/2j3) ,
J
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for 0 < z < exp(—quK/2) ; (see (5.7)) .

Proof. By (5.13)
= -1
<—*A’E(B.ZJ = “A,e(B’z) <— exp Eﬁ,e(ﬂ.z,q¢)§v
is the expectation given by a positive probability measure. Hence
(o), ¢ (Brzs (R (x5 (7)Y |

]
< |6£N)(z- 32 pﬁ’e(B,z;xi,yj;q¢)ﬂ

. lagn)(z. 2

" pﬁ’e(s,z;xi.}’j;-%ﬂ .

Next

M (. 2 : .
IGE (z Y pﬂ,g(s’z'xi’yj’iq¢)l

N
< 6§ )(z g% pﬁ’l(s.z;xi.yj; +q4) | )»

()

. ) and (4.14) (def. of

as one easily deduces from (4.19) (def. of ¢

pA, E(msz;st;tQ‘i’))

Use of formula (4.28) and inequality (5.6) completes the proof. e

Theorem 5.2. (|RDM_1| < RDM,,)

For charge conjugation invariant two-component systems

RGO MCO NS MO I IR CREH COMECD NI MUD I e

i.e. the Bose RDM dominate the absolute values of the Fermi RDM pointwise.

Proof.

By definition (see (4.19))
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Ny, .2 . .
o) (2.5.; pA’e(BsszistsiQ¢))

N
EcI('rr) I )

z z* 3_2. Oﬁ’s(ﬂ.z;xj,yﬂj);i@) ’

where

)
z+ ggch’a(ﬁ,z;X.y;iq¢)

1/2 IinTV(m(T),m(T))

= I EJ_lzJ f P‘]B (x,y;dw) e
j=1 ™
-1 B
cexp(#i I q Io drp(w(t+kB) , 1)) 3
k=0
see (4.14) or (4.28), (4.26).
Thus the even part of
N, .3 . . M, 3 e
6_1 (z 3z DA’_]_(Bszsxistsqu))a_l (z azph’_l(ﬂ,z,xisyj- q¢))
is of the form
T Idlk(m(k))cos(¢(m(k))+9(k)) , (5.16)
k
where {dA }. are positive measures on appropriate function spaces, and

k k=1

B(k) are phases (= 0, or T) . This is to be compared with the even part of

@ .2

Ny, .3 o .. S
§; (z azﬁh’l( LIOLT ) szh’l( 32V 5o ))

which has the form

L Idk&(m(k)) cos(6mPy+er My | (5.17)
k

and by inspection we see that

AL = dlk and g'(k) =0, for all k . (5.18)
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Recalling properties (5.14) and (5.15) of € we thus conclude that the

A,e

correlation inequality of Theorem 3.2 can be used here. A special case of it

is
<coso@™)>, | (8,2) 2 <cos(p(@®)+0"®)s _ (8,2)
with 6"(k) = G(k) or = e(k)+n . Hence
%]
<cos¢(m(k))>ﬁ 1(3,2) = |<cos(¢(m(k))+9 )>A _l(B,Z)| (5.19)

Since <—bn +l(B,z) is even in ¢ , the proof now follows directly from
T

(5.16) - (5.18).

Remarks.

(1) Using Theorem 4.1" and (4.24'), Section 4.2, the extension of Theorems
5.1 and 5.2 to systems of particles with spin is straightforward. Moreover, we

can see generalizations to ITGF's; see Section 4.3.

(2) For Fermi statistics, the upper bound on the RDM's given in Theorem 5.1 is
poor and fairly uninteresting. Uniform upper bounds on RDM's (or ITGF's),

smeared out with test functions, follow from the boundedness of Fermion creation-
and annihilations operators (a consequence of the canonical anti-commutation

relations), as is well known.

(3) In the same sense as Theorem 5.1, Theorem 5.2, i.e. domination of Fermi
RDM's by Bose RDM's, may be regarded an uninteresting and physically obvious
statement. We still feel that it is somewhat remarkable that it is true mathe-

matically.
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Theorem 5.3. (Lower bounds)

oy, 1 B>z (R (X (M (") 2 <6§N)(z-% Py, 1 (Br23%;,Y5309))

® . . 3 : .
. 51 (z 3z pﬁ,l(B’z’xi’yj' q¢)))-w

Proof.

In view of (5.14), (5.15) and (5.17), (5.18) this is a direct conse-

quence of the correlation inequality in Theorem 3.1.

It should be noted that Theorem 5.3 can be proven more directly by
using Jensen's inequality and a trivial inequality on permanents at the right

places, rather than the ¢—functional integral and a correlation inequality.

Next, we show that the r.s. of the inequality in Theorem 5.3 diverges
if z 1is large enough and A tends to R’ , provided the potential V falls
off sufficiently rapidly. We are indebted to M. Campanino for suggesting to us

the main idea in the following argument.

First, we consider the two-point RDM,pA 1(B,z;x,y) , (the case of a

general (2N,2M)-point RDM being similar). By Theorem 5.3 we have

3
pr,1Br23%Y) 2 <z 3 py 1 (By23X,Y35300) %y

= I zj | Piﬂ (x,y3dw)
ju]_ 1] E (5.20)
-1 8

[ dtV(u(t+kB) ,w(t+28))]

. exp[-(q%/2) 't
;=0 o
e

k
k

We propose to show that, for 2z large enough, the r.s. of (5.20)
diverges, as | f\Ey . Let e, be the unit vector in the direction of y-x ,

1

(resp. the unit vector in the positive 1l-direction if y = x) .
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Let R be some positive number. We define a sequence of points

gy =X+ 1/2 kRe; , k =0,1,2,... (5.21)
Define ko by the property that minly-£i| = !y-5ﬁ0| . Since
&g, Enl = /2R,
ly-¢; | < 1/4 R (5.22)
o

Given an integer j > 0 , define k1 > ko by the equation

j=1 , or
k0-1+2(k1-k0+1) = )
J
j+k0-1
i.e. k, = [__E___] , where [a] (5.23)

is the largest integer < a . If j < ko . kl is not defined. We now define

a sequence of points {gk}J-l as follows :

k=0
j+k0-1
For kl =— Ek = Eé , for k < kl .
(5.24)
- 1 -
and E = €2k1-k » for k; <k 2j-1
J*k
For kl = 2 -1 ,Ek - EIL ’ for k : k.l s
(5.25)
- L] -
and Ek EZkl*k+1 » for k; <k gj-1 :
~
l r
X -Ek

Fig. 1
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Let S; be the ball of radius R centered at g, - Let j  be such that

s: SA , for k=1,...,5-1, all jgj, . (5.26)

Pi?n(x.ysdm) = xia(w) Pﬂ%x’y;dw)

‘1 (5.27)
j= i
>z x™ W) pFx,y;dv
= n m
n=o S
R
where xén)(w) is the characteristic function of
{w:w(t) € S, for nB < 1 < (n+1)B}
Next,
-1 g j-1
[z f° dv vo(esd) o(rr2e)] T ™ )
2=0 o n=o SR
2#k
j=1
<z , max o B{V(x,y)| (5.28)
=0 xESR . yESR
L#k
We now assume that
c(V) = max I ax ilv(x’Y)' (5.29)
- [ 1
k 2=l x€S;°,y€s}
is finite. Here Sék is the ball of radius R centered at é Al =R 1N 2 s

Condition (5.29) constrains the fall off of the potential V , as |x-y| L
It is fulfilled e.g. if V(x,y) = W(x-y) , where W 1is a bounded, continuous

function on R’ with

I’I'E

|[W(x)| < comst. |x , for some € >0 . (5.30)

Under these hypotheses on V the proof of (5.29) follows immediately from (5.21).



- 47 -

By (5.20) and (5.27) - (5.30) ,

iy
Py, 1(Br2i%y) 2 X
I=k

. . 2
i Pag L Bc(V)
(5.31)

j-1 ‘
o 1 x® W p,yaw
n=o SR

The integral on the r.s. of (5.31) is easy to estimate from below : Define

o= _min Lg &n IQPB L(Ensdw) (5.32)
£€Sg/2 R/2 m,Sg
where ‘ER/2 is the sphere of radius R/2 centered at x +‘% e s
moreover
a' =min PB ._l(g,y;dm) : (5.33)
& Q m,S%
t€5%/2

where §R12 is the sphere centered at 1/2(£j_1+gj_2) . Since
pb (E,n3dw) 1is the kernel of exp [E—-QS] , where ﬂs is the Laplacean
Q@ m,S 2m

with O-Dirichlet data at 39S

@a>0 and o' >0, for all R>0 (5.34)

From (5.31), the Markov property and (5.32), (5.33) we deduce

. 2 '
1 -
pﬁ. I(BQZ;XsY) ; a_ EA (zcr.e q BC(V))J (5.35)
’ o j"k
o
As ANAR jA tends to += , and the r.s. of (5.35) approaches
2 K
-q"Bc(V) %o
(zae ) (5.36)

2
l-zae—q Be(V)
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Clearly (5.36) and hence Ch 1(B,z;x.Y) diverge when

2
z > min(a-leq BC(V))

R

, for all x and vy . (5.37)

It is not hard to extend the above arguments to the (2N,2M) point
RDM's : If (K)N = (x')M . (y)N = (y')M one can simply use the Holder inequa-
lity with respect to the expectation e 1(B,z) to show that
-

pﬂ,l(ﬂ’z;(XJN(X)N;(Y)N(YN)) diverges if pﬂ’l(B,z;x,y) diverges. For general

- 2
RDM's apd z > min(a led PC(V)ysB(N+M-1)

R
. ] . ] . -
pA’l(B,z,(x)N(x )M,(y)N,(y )M has a divergent lower bound. (The details of

, for some 6§ > 1,

this generalization, as well as estimates on & are rather straight-forward
and are left to the reader). Finally we remark that spin can be included, as

is obvious from Theorem 4.1".

We summarize in

Theorem 5.4.

For a charge-conjugation invariant system of two species of Bosons

of charge q and spin S interacting via a (spin-independent) two-body poten-

tial V with the property that c¢(V) , defined in (5.29), is finite, the

RDM's N 1(B,z;(r)N(r')M;(?)N(?')M) diverge, for arbitrary points
)

(K)N,(x')M,(y)N,(y')M , provided z is large enough (depending on g,V,...).

Remark.

This result suggests that charge-conjugation invariant two-component
Bose gases must have Bose-Einstein condensation when the demsity is large.
Physically speaking, we expect oppositely charged particles to form neutral
"molecules" at large density. But our results are clearly not even quite a

beginning of a rigorous theory of Bose-Einstein condensation. An interesting

open problem in an attempt towards a rigorous theory of B-E condensation is :
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Prove an upper bound (infrared bound) on Sﬁ l(B,z;k,-k) , for small momenta
]

k # 0, e.g. in terms of the ideal Bose gas two-point RDM .

5.2. Existence of the thermodynamic limit : Bose statistics

i-1 B
Let Gj(w) = I exp[q2/2 I dt V(w(t+kB) ,w(t+kB))] (5.38)
k=0 o

Recall that in the notation of (5.13), (5.14)

C, l(B,z;q¢) = I Er-fd X f PJB (x,x; dm)G (w)

j=1 4
j-1
.cos( X q I dt¢(w(t+kB),T))
k-
- ()
=z IdpA . (E)cos(0(2.77)) (5.39)
j=1

: 1 S v iB . .

i.e. dpA,j is given by Id X IQGj(w)Pm’A(x,x,dw) , with

PiBﬁ(x,x;dw) = xis(w)PiB(x,x;dw) . By definition, xis(m) is pointwise mono-
>

tone increasing in A , i.e. if A' DA

Xﬂ'f\ ({.IJ) = Xﬂ?(m) = X?\B(w) > 0 s SO that

. 20. (5.40)
Thus, for A' > A,

(J))

(B,z3q¢) = €, 1(Brz300) + z Idph.  (E)cosé (L, , (5.41)

Crrs1 5o1

for some positive measures dp1
A AT

Theorem 5.5 (Existence of the thermodynamic limit)

Under the hypotheses of Theorem 5.1 (i.e. for 0 < z < z, with

. = exp(—BqZKIZ)) and € =1, i.e. Bose statistics,
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Lim |, 5y 3 (8025 Gy (s Dy (r1y)= 6y (825 Gy (s Gy

exists and has the same spatial symmetries as the Hamiltonian. In particular,

if V 1is invariant under Euclidean motions then so are the RDM's Py » for

all N and M .

——

Proof.

By Theorem 5.1, it is enough to prove that

. " . ' . . . .
Fh,l(s’z’(x)N(x s N v )M) is monotone increasing in A. Theorem 5.5 then

follows by standard arguments; see [22] and I.

As asserted in (5.17), (5.18)

(N) ) s . ™, 3 cee! e
61 (z""a"; Da'\’l( 3‘{isy:])q¢))61 (z'az pﬁ,l( ,xist:Q‘f’))

is of the form

3 fdhk,A(m(k))cos¢(m

k

and it is shown by the same arguments that we used to prove (5.40) that the

measures d\ , are monotone increasing in A . (5.43)
]

We now define

> (s38,2) = E(s38,2) " + < explC,,(B,z3a0)+ 5 Idp}.,ﬂ,,j(a)cos‘p(aéj)n»‘y

where =(s;B,z) 1s the obvious normalization factor.

From (5.43) and Theorem 3.1, (1) follows

far,  @®) <coss@®)>(a38,2) (5.44)

k,A
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is monotone increasing in A . Furthermore

3% <c03¢(m(k))>(s;8,7-) = jEIIdpi..,h.'jts)%ow(m(k));c08¢(£éj))>(8;8.2)

and the r.s. is non-negative, by Theorem 3.1, (2). Integrating over s from

(k)

0 to 1 then shows that <cos¢(m )>A l(B,z) is monotone increasing in A .

This property together with (5.44) yield monotonicity of the RDM's in A .
=

Theorem 5.6. (Monotonicity in z and V)

Under the same hypotheses and for arbitrary A t;_']R\J .

(1) pﬁ,l(ﬂ.z;(x)N(x')M;(y)N(y')M) is monotone increasing in z ;

(2) 1if V 1is translation invariant with V(0) = K < =, and for

2
= e Bq Klzz

Z e y . ' :
z , ;h’l(ﬂ,z,(x)N(x )M,(y)N(y )H) decreases when V increases as

a quadratic form.

Proof.

(1) This follows from Theorem 3.1, (2), by the arguments used in the proof of

Theorem 5.5; see also I, Theorem QM, §1.

(2) The proof of this is identical to the one of Corollary 3.2, (1), §3 of
paper I, except for notational complications. (The basic ingredients used are
Theorem 3.1, (2) and the fact that the covariance W of ¢ 1increases if V

increases in the quadratic form sense).

Generalizations.

Theorems 5.5 and 5.6 also hold for Bosons with spin. This is checked
with the help of Theorem 4.1", Section 4.2. Moreover, one can apply the arguments
used in this section to general ITGF's, with identical conclusions. To see this

one makes use of the machinery outlined in the last part of Section 4.3. By a
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general reconstruction theorem, the ITGF's in the thermodynamic limit uniquely
determine a B-KMS state and the dynamics of the infinite system in thermal

equilibrium.

5.3. Electromagnetic fields.

The coupling of a quantum mechanical particle with electric charge e
to a classical or quantized electromagnetic vector potential %= (Al""’Ab)

is achieved by the usual minimal substitution

3. = 3/3x) » 3. - ieA,
b i’

J
(5.45)
A A v *
A"w» AT = T (9.-ieA.) (9.-ieA.)
x j=1 J J J ]
. ” (M,N) g . :
The kinetic energy operator TA defined in (2.2) is replaced by
(M,N) A B A
T == T (1/2 m)A - I (1/2 my)a’ : (5.46)
AR i=1 i,k j=1 ik
. SRR T . . (M,N)
The total Hamiltonian is given by the previous expression,except that TA
is replaced by T(M;N) . From now on we impose the Coulomb (radiation) gauge
AA
on X Spise:
> > E
Ab =0, (V-A)(x,t) = L BiAi(x,t) =0 (5.47)

i=1

Next, we recall the path space formula for exp[-B(-(1/2 m)ag +W)] , where W

is a bounded one-particle potential. The integral kernel of this operator is

given by the following modified Feynman-Kac formula :

v : B
J Pi (o ysdw)explie 3 IAj(w(T),T)de(T)]exp[-f dtW(w(t))] (5.48)
Q j=1 o

where fAj(w(T),r)de(T) is defined as an Ito stochastic integral; the defini-

tion is unambiguous,thanks to the Coulomb gauge condition (5.47). See e.g. [11] .
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(A convenient way of deriving and interpreting (5.48) is also provided by the
lattice approximation : Replace R’ by az’ , establish (5.48) on the lattice

aZ’ and then pass to the limit a W O . This program is carried out e.g. in

(4D

If the external vector potential is classical and stationary then
R, = Rw()

is an R’-valued function on Q which does not explicitly depend on t . If

X is the quantized vector potential in the Coulomb gauge then K(x,f) is
interpreted as the corresponding Euclidean field with periodic boundary condi-
tions at T = 0,8 . It is a Gaussian,imy-valued, divergence-free random field
with mean O and covariance qg(x-x',r-T') , the transverse Euclidean

(= imaginary time) propagator of the free electromagnetic field which is perio-
dic in t-1t' with period B. As is well known this corresponds to an inverse

temperature B equilibrium state of the free e.m. field. The corresponding

Gaussian measure ('"the law of K") is denoted de(K) .

In order to avoid all problems with ultraviolet renormalizations,an
ultraviolet (high frequency) cutoff in the spatial directions is imposed upon

-+ .
A , with the effect that

B

Ide(K)Ai(x,T)Aj(x',T') = D (x-x',1-1") (5.49)

is regular at (0,0) . In this case all future formulas of this section are

. . -+ .
free of Wick ordering (of powers of A ) and of counterterms, without ultra-
violet divergences arising.

We now define the analogue of the one-particle operator A , = AB
q¢ m,q¢

introduced in (4.24), (4.25), Section 4.2 :
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: a%/2fatv (o) ,0(0)
Agy 1) = ngm’A(x,y;dm)e o
(5.50)

B v
. exp [iqf dt¢(w(t),T) + I ie IAg(w(T),t)dmg(ri]
o =1
We then set
EA’E(B,Z;q¢;K) = —¢{Tr £n(1-equ¢’3?+ Tr 2n(1—szA_q¢’_K)

j-1

j J'du J'PjB ( s dw) 3
z X x,x;dw)G. (w)
Q m, A ]

—
[ Y

(5.51)

j-1 v
« cos[ I {q IBdT¢(m(t+kB),T) + Le IAg(m(T+kB,T)dm£(T+kB)}]
k=0 o =1

n
I ™ 8

-1 (3) (1
& j’dpﬂ’j(ﬁ)cos(éa(f,E ) + A(hE ))

j=1

where Gj(m) is the Wick ordering factor defined in (5.38), and the last
expression is a short hand for the complicated third expression.

Next, let

EA,e(B’Z;I) = <exp l‘-i.‘,e(l?:,z;qq>;3)>W R (5.52)

z"aéz' Daﬁ(ﬁ.z;x,y;w;x) = Z{(1'EZAq¢,K)-1Aq¢,I}(x’Y)

= z—;}-z- -etn(leza, PIxy) (5.53)

see (4.27), (4.28). The correlation functions in an external vector potential,

X , are then given by

pﬁ’E(B.Z; (X)N’ vee ,(Y')M;K)

- gh,a(a,z;K)"1<5:N)(z-§z- pA’E(B.z;xi.yj;qu))
. G(M)(z-gﬂ

- 32 DA’E(B,Z;X{,yi;qqa;K)) exp CAﬁ(ﬂ.z;qct,Ib . (5.54)
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and the correlation functions of the fully quantized system by

R CIETICOMRPITCAD MY )

_tot. -1 . B4 ik(E). .
=E . (8,z) " fdm" R)e :A’E(B,z,x) (5.55)

TNPLCIL T CONRPRNCR MY Y

with EE?;(B,Z) - jde(K)sA’E(s,z;X) : (5.56)

We now discuss the following three problems :

(I) Diamagnetic inequality for partition function fr1] .
(I1) Diamagnetic inequality for RDM's .

(III) Existence of the thermodynamic limit of the RDM's of non-relativistic
y

quantum electrodynamics.

(I) We begin by recalling Simon's diamagnetic inequality [I] , i.e.

NNCED EE RN NNCION (5.57)

It must be emphasized that (5.57) holds for general Bose systems, without the
assumption of charge-conjugation invariance. In the formalism adopted in the
present paper the proof of (5.57) proceeds as follows : Notice that

A+q¢ +Z(x,y) , defined in (5.50) is of positive type as a function of ¢ and
X . Thus ~-Tr gn(l'ZAiq¢,iK) and consequently exp-Tr 1“(1'ZA¢q¢,¢Z) are of

positive type in ¢ and X . since <> is Gaussian,

v

2, 1(s,z;I) is of positive type in X . (5.58)

(See [4], §5 for details concerning related arguments). We emphasize that (5.58)
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really holds for general Bose systems of arbitrarily many species of Bosons
of arbitrary spin, as long as the spin of the particles is not coupled to the

electromagnetic field. Clearly (5.58) implies Simon's inequality (5.57).

Since de(K) is Gaussian (i.e. of positive type)

_tot.

. — B - .
SIS IEN LU CS NGRS © S
is of positive type in the classical, external field, Kcl , 80 that
~tot. . Ltot. A _ otot.
By Bz ) 208,28 = 5017 (8,2) (5.59)

This says that

if the interactions of the spin of Bosons with the electromagnetic field is

neglected then systems of arbitrarily many species of Bosons of arbitrary spin

react diamagnetically to an external electromagnetic field, Icl .

(IT) Next, we prove a related result for the RDM's of charge-conjugation

invariant Bose systems.

Theorem 5.7. (Diamagnetism in RDM's)

Assume charge-conjugation invariance. Then

(1) EALCI O NP A I V] B N CRH O PPN C A
(2) I, _1(B,z;(X)N.---,(y')M;fﬂ N 1(8,2;(X)N,---,(y');¥)
Proof.

(1) In view of (5.51) and (5.50), (5.53), (1) reveals itself as a special case

of Theorem 3.2. (The role of the phases «,{f} in Theorem 3.2 is played by
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v
I iefA, (w(T+kB),1)du" (1+k8), k = 0,1,2,...).
2=1

See also (5.17) and (5.18).

(2) This is a straightforward generalization of Theorem 5.2 with a very similar

proof which we permit ourselves to leave to the reader. ™

We remark that Theorem 5.7, (1) can be generalized in the same way as
(5.57) is generalized to (5.59), and again spin can be included if not coupled

to X . Next, suppose the electromagnetic field is quantized. Since

g (B,z;K) is of positive type in A , it has the general form
ALl P YP

A =
f dpﬁ(ﬁ)elz(h) , for some dpA > 0 . By Theorem 3.1, (2) we therefore have
<cos K(¥)>A,1(s,z) = EET:'(B,Z)-I famP &) cos K(f).aﬂ’l(s,z;x)

> f de(K)cos K(f) .

and since x2 =2 lim 5-2(1-aosax) .
ENO

<& 1%, 8,2 g [’ B KD | = 0D (5.60)

This is a trace of the famous Higgs mechanism (in solid state physics discovered

by Anderson. For related resultssee [4] ).
(III) As a generalization of Theorem 5.5, Section 5.2, we have

Theorem 5.8. (Existence of the thermodynamic limit in non-relativistic QED).

For charge-conjugation invariant systems,

pﬁ,l(ﬂ,z;(X)N(x')M;(y)N(y')M;f) , defined in (5.55) is monotone increasing in

A and 2z and decreasing when Dp increases, in the quadratic form sense. In

particular, the limiting RDM's
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p,(Byz3...) = 1lim p, - (B,z;...)
1 ﬁﬂﬂy A,l

exist if =z < exp(-squIZJ .

Proof. By (5.55), uniform upper bounds on °p 1(B,z;(x)N,...,(y')M;¥) follow
]
directly from Theorem 5.7, (1), Theorem 5.1, and the trivial inequality

|eiK(¥)=

01 (8,234) .

8,280 | < Ep

The proofs of monotonicity in A,z and D? is the same as the ones of Theorems

5.5 and 5.6 if one uses instead of Theorem 3.1, (2) Theorem 3.3.

More details concerning a related result may be found in [4] .
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6. Some Open Problems and Outlook

The following five topics may be worth being studied within the functional

integral formalism developed in this paper.

(1) Behavior at small values of z and B, decay of correlations in the thermo-

dynamic limit, cluster expansion [3,12] , screening properties [2] .

(2) Analysis of phase diagram based on studying the behaviour of the "action"
SA e(m’2;¢) (resp. Eh E(B,z;qd)) ; see Section 4.2) as a functional of ¢ .
» ]

Reliability of naive Goldstone picture with ¢ as order parameter.

(3) Further study of Bose-Einstein condensation (e.g. for charge-conjugation

invariant systems), in continuation of the results given in Theorems 5.3, 5.4.

(4) Continuation of analysis of non-relativistic (quantum) electrodynamics and

superconductivity for non-relativistic Bosons.

(5) Existence of the classical limit (KNO) of RDM's and other correlation

functions.
We conclude with a few comments on some of these circles of problems.

(1) The functional integral formalism developed in this paper would in principle
permit to apply the Glimm-Jaffe-Spencer cluster expansion [26] to the quantum
mechanical gases considered in this paper, provided B and =z are suitably

small, and the potential V 1is of rapid decrease.

This may improve the results of Ginibre [12] and simplify the techniques
of Brydges-Federbush [3] , but one cannot expect that the results of Brydges-—
Federbush [3] can be improved in this way. (We notice that the applicability of

the cluster expansion does not require charge-conjugation invariance).

More interesting is the question whether quantum mechanical gases of

particles interacting via regularized Coulomb potentials will have Debye screening
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[2] for tiny values of B . In principle, a combination of the methods developed

in this paper and in [2] ought to yield insight in this problem.

(2) One can imagine that one may extend the Glimm-Jaffe-Spencer version of the
Peierls argument [22] and their mean-field contour expansion [27] to the systems
considered in this paper, by viewing the auxiliary random field ¢ as an order
parameter (the analogue of the Ising spin in the conventional Peierls argument).

Related to this is the discussion of the properties of

S(¢) = lim | —— 5,(6) (6.1)
AR (A
S, (m,z;¢) + S(4.W.14) , or (6.2)
ﬁ,l-: » &y 2 ] .'.k »
SA(¢) =
-, (8,2508) + 2(0.V, ¢) (6.3)
h,e » » 2 ] A ]
for fields ¢ which are constant on R x[0,B] .(The functionals SA . and
T  are defined in Section 4.2). This supplies an analogue of the Goldstone
picture. For SA as in (6.3) and a translation invariant potential V we
obtain
. B 2
: B =i = q V(0) :
2mm,v /2 g .
s(¢) = - EMYIT 5 ¢ (z & )7 cos(iBae)
B jul jl'i'\J 2

(6.4)
-1.2
+ 2907

Heuristically, one expects that if S(0) 1is the unique global minimum of S(¢)
the infinite volume equilibrium state is unique. If there are degenerate absolute
minima for some values of z and B(e = -1) then the equilibrium state is
presumably not extremal (i.e. degenerate). This situation is met in a system of
Fermions on a lattice (B@‘-*E?) with attractive interactions, resp. in the

quantum-mechanical Widom-Rowlinson model on the lattice,with Fermi statistics.
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The combination of a lattice with Fermi statistics renders such systems stable.
The functional integral formalism for lattice systems with attractive potentials
is obtained from the one developed in Section 4 by using Brownian motion on the

lattice and replacing

expliq IBdT¢(m(+kB),T)] by explq IBdT¢(w(T+kB,T)] g
o o

For € = -1 and strictly positive lattice spacing the resulting expressions
make sense. The formalism may be useful to develop a microscopic theory of Cooper

pair formation for lattice electronms.

(4) Non-relativistic quantum electrodynamics is a subject that has been unde-

servedly neglected. Most problems one may wish to pose are still open.

- Do atoms coupled to the (ultraviolet regularized) quantized radiation field
have discrete groundstates ? What is the correct mathematical description of

the resonances corresponding to the excited, atomic states ?

- Do non-relativistic, interacting Bose gases exhibit the Meissner effect typical
of a super—conducting state, at suitable density and temperature ? Do such
systems exhibit the formation of vortices ? Do non-relativistic, interacting

Bose gases coupled to the quantized radiation field exhibit the Higgs mechanism

in a strict sense of the word ?

(5) For bounded regions, A , the existence of the classical limit can be proven
for the RDM's of the systems analyzed in Sections 4 and 5.1. If one sets

z“ = z-(ZWBh)“/2 and if one replaces A by ‘HZ& , the RDM's converge to the
corresponding classical correlation functions studied in paper I. If one uses

the functional integral formalism of Section 4 and appropriate LP  estimates
the proof is particularly straightforward. The exchange of A,f:m? and K\ O

is, however, non-trivial. (One could use a cluster expansion).
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Appendix A. Proof of Theorem 2.1.

2
Let U, ((x),, (x") ) = z qq V,(x;,x)
L M N 1<i<i<M 1 217
(A.1)
M N
+ I g, Vixl,x!) + [ I q.q, V, (%.:,x.) ,
lgi<jeN 2 O T T

for % =1,2 .

Recall that V = V1+ V2 , where Vz(x,y) = Vz(x-y) is a function with

non-negative, continuous Fourier transform, 62 , and 32(0) =2NOR" (A.2)
Without loss of generality we may assume that
q2 >0 . (A.3)

Finally we recall that the statistics of the first species of particles is

Fermi statistics, i.e.

e, =-1 |, (A.4)

By inequality (2.1) and hypothesis (2.3)

HIEH’N) > 'ﬁ'ﬁM-N) - B(M#N) , with
(A.5)
ﬁﬁM,N) = %_Tiﬂ.ﬂ) + U, ((x)y 5 (%))

Since ﬁz(k) > 0 , there exists a finite constant B (= max(qi,qg)-v(o)) such

that

UZ((X)M’(X')N) > -B(M+N) ; see [22] (A.6)

For the proof of Theorem 2.1 we need
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Lemma A.l.

Suppose that q2 2|q1|H » and xJ €A, x1 €A, for 3 =1,...,M

and i=1,...,N . Then

U, (G, (x)) 2 ) N/A] = e,N

for some finite constants ¢y > 0 and c) -

M

Proof. We use some arguments due to Ruelle [23] . Let nl(x) = I qls(x-x ),

N j=1
n (x) = I qzﬁ(x-x ) , with xJEIA . x' €A, for j=1,...,M and

i=1
o L FSER | [
Let ﬁg(p) - (zﬂ)ﬂ)lz f n, (e -ip- XY

A
= (211)_\’/2 Zgq e'P ¥ '
Kk %
Clearly
Uy (G (x)y) = f d'x f Py (0, 940,y (0))V, Gy () ()41, ()
- qi V(O)M - q2 V(O)N
= J&% U, (0) [0 (p)+1, () |2 (A.7)
2
- qi V(M - q; V(ON .
Next
-~ -~ 2 - 2 -1 =
18248, @) | = @0 ™/2 [ &x TP [ Pyln) Gyyn, o))
o, (40, (] .

By power series expansion of e 'P'¥  and the hypothesis that A be

regular, i.e.
1/v . .
max |x| < afA| , for some finite a ,

xEN



—Gh =
provided A 3 O (which can be assumed due to the translation invariance of vz)’
we have

|2, @)+, (@) |* 2 max(0,6(»)) , with

c(p) = 2m) ™72

[IA&) K(nl(x)*'n‘.z(x.‘ﬂ)]2 (A.8)
1/
- @n™/? [Iﬁdux(|n1(x)|+|n2(x)|)]2[ealpl A

Since by hypothesis qu = ZIqIIM ’

Id“x(nl(x)+n2(x)) = qM+q,N ;-% q,N , and )
(A.9)
v 3
Jd x(|nl(x)fﬂn2(x)[) = |q1|M+q2N S5 LN .
Let f(p) = max(O,l-?[eqbl-ll) - (A.10)
Clearly £(p) 1is a non-negative, continuous function with
supp £ = {p : [p]| < a L ¢n(10/9)} compact.
By (A.8) and (A.9)
- 1/v
15, @ +a,@ % 2 e/ L @m? max(0,1-9- [21PHA1 717
= a0 ™2 L @m? (|| . (A.11)

Thus, using (A.7) and the inequality
29(0)M+q> V(O)N < q2 V(0) (1+|q, | /2q,)N
9 LY) =9 91744,

which holds, since |q1[M < (qZIZ)N by hypothesis, we obtain
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0,0, 2 @0 V2 L @ m? [a8, @[] Vp) - e,
2
A (21:)”"/2 T—r J& v 1A Wryew) - c,N
2
fe ¢y ﬁ = c2N s

. 2
with c, = 4q, V() (1 + [q1|/2q2) and

-1/

c, = (2n) '3 min  V(k|A|TV) [ kE(K)

g |k|;a'12n(1o/9)

which is strictly positive if lA] is sufficiently large, because
lim G(klnl'”") =V(@©) >0, for |k| <o , and Jd’kf(k) > 0 , by (A.10).
|A| pe
]
We are now in a position to prove Theorem 2.1. By (A.5) and the definition

of EA(B'zl’z2) - see (1.6) -

o gy (M>N)
- - N A
:ﬁ(B’zl’ZZ) < I X z) 2 Tr ey N)(e ), (A.12)
M=0 N=0 HA )
where E£= ziexp(BB) , 2. =1,2 .
-] 'ﬁ' o
Next, . *= I *+ L ,with Nz [2[q1|M/q2] , (A.13)
N=0 N=0 N=N+1
where [a] is the largest integer <a.
By (A.6) ,
¥ 'ﬁ(M;N)
Lz, o, (8 Moo
N0 2 H
r(M,0) & _ 8 ,0,8)
M 2 A N 3 A
< cl1 Tr (M 0)(e ) & d Tr ©, N)( )
N-O HQ
B M,O0
zlqllqu M ) d3IAI
< (d (2d ) e , (A.14)
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where d1 = exp(8ﬁ3 and d2 = max(1/2, zzexp(Bﬁj) , and we have used the inequa-

lities
X I (R ) ~ - 8 (0,
N 2 A N 1N 2 “A
T d2 Tr © N)(e ) < (2d2) z (EJ Tr © N)(e )
N=0 lﬁ ¢ N=0 HY™»
g, aglal
2|{q,|M/q, d,|A
< (2d2) 1 2 3 3 )
for some d3 < =, for both, €) = -1 and € = +l .
Next we apply Lemma A.l1 to obtain
- N _B-ﬁv(M,N) _ % T;(\M’O)
r z, Tr (e ) < Tr (e Dy
N=N412  HMN) y (M,0)
A A
N SN -c1N2/|h| - g—T(O’N)
o | I z, e e Tr © N)(e )]
{N:q2N32|q1|M} Hy™?
Now, choose y> 1 to be so large that
N
z, e 2 e 1 <1/2 . (A.15)
In that case,
o,N
N SN -clN2/|A| - % Tﬁ M)
z zye " e Tr © N)(e )
qZN;2|q1|M Hy
[y|A]] N cN - 8 p(0M
= 2 2 A
< I zye”Tr g N)(e )
N=0 HA E
: rooamtr e 2h
N=Ty[A[ 141 e
111 ) S @ 3 -8 Tio,n)
N=0 N=0 HA g

d. |A]
2(d,-1)"" d;"""e 3T (A.16)

L7
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c

with d& = max(Z,ZEé e 2) , and we have used (A.15), the Schwarz inequality

for series, the inequality (I aatrzl)l/2 I a

A

0 with a >0, in that order.

By (A.12), (A.14) and (A.16)

d |ﬁ|
= 1y 1 Ylhl 3
“ﬁ(B’zl’z2) < 4(d4 1) d4 e

. u _ 8 ,04,0)
- L z Tr ™ 0)(3 2 A )
M=0 Hisas?
A
2|q,1/4,

where 2z = max(zl,zldl(Zdz)

Finally, since all vectors in HEM'O) have Fermi statistics,

M,0
R
£ z Tr o 0)(e: ) S e
M=0 HA 2

ag |

for some constant d_ which is finite when 2z < @ . This completes the proof

of Theorem 2.1.
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Appendix B. Proof of Theorem 2.2

In Theorem 2.2, q, > o, q, < o, €, =€, = 1, (i.e. both species

have Bose statistics), z, >0, z, >0 . One sets

1 2

m = min {ml,mz}

) 9 9
z = 1/2[m1n{zl,zz}]'[min{1 -—,1--=}1, (B.1)
by 9
see (2.5). Let
M N
':fﬁmN) =- I o Ao g Lath ) ang (B.2)
. m i : 2m ]
i=1 J=1
(M,N) _ ~(M+N) ' :
LN i Uy > ()Y . (B.3)
BY (B-l) ’
(M,N) _ ~(M,N)
HA < H!_1 (B.4)
We define
&_ (M+N)
'Hﬁ“*“’ -2, x) ! QL (B.5)

The second factor stands for the spin wave function that is an eigenvector of

the l-component of the total spin operator with maximal eigenvalue, for example.

Obviously
(M+N) (M,N)
Ay € Hy ’ (B.6)
with ”ﬁu'm given by (1.4), (1.4'). By (B.4) and (B.6) ,
- (MsN) _ (H'N)
TrH (u, ) (exp[=8H 7T > Trﬁ(m_u) (exp[-gH, 1 (B.7)

A A

Let z = min{zl,zz} . By definition of EA(B’ZI’ZZ) and (B.7) ,
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L M+N
- — ~(M,N)
§,(8,2,,2,) > I z Tr, xy(exp[-gH i)}
A 1’727 = M,N=0 ﬂh(M+N) A
(B.8)
© K
X ~(K-N,N)
= I z I Tr (exp[-gH D
k=0 w0 H & 8
.z @t & o (exp[-gH KMy
= k=0 N0 1 H ® A
2 @D f 1 56 ma)+5(pq,))
= I (z/2 n (8(.-q,)+8(p.—q dp. .
T PR i 379277485 (B.9)
-6, ({oh)
. TI"H (K) (e ) ’
A
where () =T+ vy W61
(B.10)
with U((x),,{p}) = z p. p.V(x;,x.) -
K 1ci<j<K 1] 1’7]
Without loss of generality we may assume q; 2 |q2| . From (B.8) and (B.9) we
now obtain
( D& Ba -6 (L o)
E,(Byz,,2 > L z mdx(p.) Tr (e ) (B.11)
A 1°°27 = v o i=1 i Wn (K)
q
where z = 1/2 z(1 + %L) , and
1
192171 [%2] . _
da(p) = (1 + 1 ) ( 4 8(p-q;) + 6(pq,))dp . (B.12)

In (B.11) we have used that

q
@+ L2hare) < 66e-ap + s(oa,a0
1

~(K
-6 (b
We now express Tr (K)(e ) 1in terms of a Feynman-Kac integral (see
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Section 4.1). Then we apply the Jensen-Symanzik inequality with respect to the

Wiener measure. Subsequently one may "undo" the Feynman-Kac integrals. This

yields
68 ({oh) 67 ()
Trﬁ(K) (e ) 2 Try(!() (e )
A A (B.13)
. exp[- B < U((o)K,{p})>0] ’
: -B’ff\K) =1 -B’ff()
with S0 [Trﬂ(K)(e )] Tpn(K)(e =) .
A A
K
Next, we apply Jensen's inequality with respect to [ II dk(pi) - , using the
i=1
fact that J[dA(p) = 1 . This yields
~(K)
© -BT
K A
g.(Bs2z,,2,) > Lz Tr (e )
TR e -y!EK)
K
-[exp =g [ I dx(p)<U((-)p,{pD>) 1 .
i=1

Finally,

K
J LA )<y, >,

3 1) fare) p far(p) ot <V(+,)>,

0 , by definition (B.12) of d4dx .

This completes the proof of Theorem 2.2.
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