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This is a collection of three sets of lecture notes @

{:} "Random Geometry and Yang-Mills theory", to appear in the proceedings of the

"Colloquium on Random Fields", Esztergom (Hungary), Jume 24-30, 1979,

(:) "Some Results and Comments on Quantized Gauge Fields", to appear in the pro-
ceedings of the Carglse summer school on gauge theory, Cargdse (Corsica), August

27= Beptember 7, 1979.

(3} “On the Construction of Quantized Gauge Fields", to appear in the proceedings

of the Kaiserslautern summer school, Kaiserslautern (Germany), August 13-24, 1979.

The purpose of these notes is to give an elementary and leisurely intro-
duction to some mathematical terminology and techmiques used in the study of gauge
field quantization, to review some rigorous results on lattice gauge theory - in
particular on the quark confinement problem, phase transitions and connections to
string theories - and to briefly describe some results and methods in the cons-

truction of abelian gauge theories in the continuum limit.

What looks new in these notes is almost exclusively the result of colla-

boration with D. Brydges and E. Seiler (sce {:} refs. 10 and 25) and with
B. Durhuus (see (:) ref. 7). Numerous discussions with H. Epstein, E. Seiler and

T. Spencer had a considerable influsnce.



The construction of the abelian Higgs model in two space-time dimensioms,

@ ref. 25, which is briefly sketched in @. Chap. III, has been described in

two excellent reviews by E. Seiler : ue@refu. & and 9.

() is a purely descriptive, introductory pnhlphlet-ﬁ}lnd @ contain
some details, but no proofs for which we must refer the reader to the references

quoted in the text.

In m and E‘.ﬁ the use of random (or stochastic) geometry in the study
of gauge field quantization is advertized and exemplified. It is indicated there
why random geometry is a natural mathematical concept and useful tool in other
branches of theoretical physics, as well, notably statistical mechanics and some
class of dynamical systems. Examples in statistical mechanics were sketched in
various seminars and — with Yang=Mills theory as the main subject matter - in a
lecture at the "28idme Rencontre entre Physiciens Théoriciens et Mathématiciens"

in Strasbourg, May 17-19, 1979, of which no notes exist.

For uses of stochastic geometrical methods in statistical mechanics see ag:
= M. Aizenman, "Translation Invariance and Instability of Phase Coexistence
in the Two-Dimensional Ising Systems", to appear in Commun. math. Phys.;¥. Higuchi,
"On the Absence of Non-Translationally Invariant Gibbs Scates for the Two-Dimen-

sional Ising System", Preprint 1979.

- M. Aizenman, F. Delyon and B. Souillard, "Lower Bounds on the Cluster

Size Distributiom ", Preprint 1979.

-@, ref. 22; §§ 3 and b6 of @, and other references gquoted in the abowve papers.

We hope to present a more detailed account of the material described
in §§ 3 and 6 of @. and of some further applications to statistical mechanics

problems elsewhere.

Another idea which is advertized in I:D id the use of renormalization
group (Block spin) transformations with rigorous error estimates in the proof

of stability of gquantized Yang-Mills theery in two and three space-time dimensions,



(starting from a theory on a lattice of arbitrarily small mesh). This method
is not elaborated, in these notes, since the author has nothing concrete or
definite to say about it. We wish to recommend, however, that the reader con~-

gult refs. 29 and 30 quoted in -@.

Finally, we wish to draw attention to the possibility of describing
non=linear o-models and Yang-Mills theory inm terms of fields with values in a
Grassmannian. This observation has found important applications in the construction
of instanton solutions to the self-dual Yang-Mills equations. See @ ref. & and
refarences given there. We have inveatigated the use of that formalism for the
quantization of gauge fields in "A New Look at Genmeralized, Non-Linear o-Models
and Yang-Mills Theory", to appear in the proceedings of the Bielefeld Symposium,
December 1978, (L. Streit, ed.). Our conclusions were mostly negative, and that
approach is not discussed in the present notes. We feel it still deserves to be
kept in mind, however. It may e.g. have further applications on the classical

level.




@ RANDOM GEOMETRY AND YANG-MILLS THEORY

Jirg FRONLICH

Institut des Hautes Etudes Scientifiques

33; route de Chartres

914560 Bures-sur=Yvecte, France.

This is a very brief report on a one~hour lecture I presented at the

Colloquivm on Random Fields of the Janos Bolyai Mathematical Seciety.

For its larger part my lecture was rather experimontal : I stated various
problems and discussed a very few preliminary rigorous results in a branch of

mithematics and mathematical physics which ope might call randem (or gtochastic)
geometry, Further more, I pointed out why random geometry is important im the

quantization of Yang-Mills theory.

The main reason why my lecture was "experimental” is that I do not know
any literature about random geometry, yet.(I recently learat that I should study [
This branch of mathematics may already be alive and well, there possibly
sxigt many interesting results, and most problems which 1 advertized or proposed
to study may either have been solved before .or may be ill-posed. Finally, the few

rigorous results I sketched may be well-known and/or trivial for the experts.

Outline of lecture given at the "Colloguium on Random Fields", Esztergom (Hungary),
June 1979,



The absence of possibly important references at the end of this
report must be excused by my ignorance and by the circumstance that I spoke about

recent developments in which ;_hlvc personally been involwved.

I am somewhat more confident that that part of my lecture concerningthe
study of (lattice) paupe theories and the uvses of random geometry im the study of
Yang-Mills fields - e.g. expansions in random surfaces, connections to dual strings
(processes whose state space is the space of closed loops in a lattice), etec.- was
reasonably serious scientific talking. At least, I concluded from the reactions of

some partsof the audience that this was the case.

The ideas expressed in my talk have grown out of numerous, recent
discussions and collabovation with E. Seiler, joint work with T. Spencer, ©Xperiment-
ing with explaining the main concepts of quantized Yang-Mills theory, provided
there is such a thing, to different audiences and =y reading of "Fhysics Letters'
which, towards the end of 1978 and at the beginning of 1979, published a number
of stimulating papers describing connections between dual strings and Yang-Mills
theory and some vague probabilistic concepts that might be useful in the study of

those theories ; notably, [2,3,4,5] and others.
Topics discussed or mentioned inm my lecture included :

|. Intreduction te the main mathematical concepts involved in the study of quantized

Yang-Mills fields :

= Random (or stochastic) geometry

= Phage=space localization (or micro-local analysis) in functional integrals. Problems

with the compatibility of phase-space localization and local gauge invariance.

= Renormalization group arguments ; (approximate "block-spin transformations" with

rigorous error estimates).



The latter two techniques are strongly interrelated. The main emphasis of

the lecture was placed on random geometry.

2. Combinatorial geometry and combinatorial random geometry with sketches of

applications.

3. Probabilistic formelation of Yang=-Mills theory in the Euvclidean region and

Oeterwalder=5chrader reconstruction.

4. Connections between v-dimensional Yang-Mills theory and (v—-1)-dimensional,

non=linear o-models in an external gauge field.

5. Applications of & to the problem of confinement and phase transitions in

Yang=Mills theory.

6. Lattice Yang-Mills theory and combinatorial randem geometry : Expansion in

random surfaces and connections with dual string models.

Short verbal summaries of parts 1-b and remarks now follow.

Part 1:

Recently, numerous mathematicians (Atiyah,Drinfeld, Hitchin, Manin,
Schvarz,Singer and others) have initiated a serious study of classical,
Buclidean (time purely immginary) Yang-Mille theory;and they have had
miuch success:Among other results they have found & linear algebra
construction of all solutions to the self-dusl Yang-Mills equations
(a system of first order elliptic equations). Since their wvork received
much publicity,detailled references are unnecessary.See hovever [6]
and references given there. In their vork the mathematicianz have
used and advertized algebraic topology,differential and algebraice
geometry inverse scettering methods,ete., all very highbrow for

a mathematical physicist.



Much of the motivation behind this work comes from semi=classical quanti-=
gation (formal steepest descent in yet more formal functiomal integrals). This
approach to the problem of quantizing Yang-Mills theory can hardly be considered
vary satisfactory, in spite of its great heuristic value and its many partial

successes ; see e.8. [7] and refs. given there.

It is a rather wide spread opinion that one only understands those quantum
thicories which are guantizations of some underlying classical theories. (For
example, many theoreticians have studied the "gquantization of solitary waves" in
two space-time dimensional, non-lincar field theories. It is, however, a fact
that the soliton sectors of the quantized versions of those theories could be
constructed without knowledge of the solitary wave solutions of the classical

field equations. See e.p. [B]).

There are many reasons = and beautiful mathematical theorems - to expect
that a lot of detailed and explicit knowledge of some classical theory is
vory wseful to quantize the theory and derive properties of the quantized

theory, [9,10].

There are however quantum theories without an underlying classical theory.
A prominent example is the theory of non-relativistic matter at finite densigy.

In the realm of relativistic quantum field theory Euclidean field theory, as

developped by Schwinger, Symanzik, MNelson and others (see e.g. [11]), is a

direct approach towards constructing relativistic quantum theories.Much of
Euclidean field theory is a branch of probability theory, in particular the theory
of random fields and of functional integrals. In quantum field models not involving
nonabelian gauge fields He Euclidean field theory approach makes use of only trivial
information about the solutions to the classical, Euclidean field equations

(=critical points of the Euclidean action). Yet, it serves to prove existence of



relativistic quantum fields and supplies a lot of detailed information about

their propertics. Th;s it is a natural and useful attempt to try to apply Euclidean
field theory and Osterwalder-5Schrader reconstruction also to the problem of
constructing and analyzing abelian and non-abelian Yang-Mills (gauge) thecries. A
review of some: recent results on the construction nf.auper—renurualiaahle, abelian

gauge theories is contained in E. Seiler's contribution te these proceedings.

It is one of Wilson's achievements to have proposed a direct and

non-perturbative  approach to constructing quantized gauge [ields : lattice pauge

theories [12]). Lattice gauge theories have the advantage of existing, preserving
the whole structure of a relativistic quantum field theory, except Lorentz
invariance ,and of trivializing the problems associated with gauge groups of the
sccond kind. Morcover they provide an ideal laboratory for testing the properties
of pauge theorics at long distances. It is thus natural that they have been

studied intensely over the past five years, Mathematically speaking, the study of
pure {(lattice) pauge theories is the study of a particular class of random fields
over a space of closed loops in the Euclidean space-time (lattice), namely traces
of "normal (or Ite) ordered" holonomy operators on a (random) principal bundle

with random copnection. (A connection on a fibre bundle is what the physicists

call a gauge field). A simple theorem says that a principal bundle over a connected
basc space, I' , and a connection on it are uniquely determined (i.e. up to gauge
equivalence) by the traces of all holonomy operators on the group of all closed
loops containing an arbitrary, but fixed point of I' (i.e. by the unitary characters
of the holonomy group at some point of T' ). This is presumably well known. (For a
proof see e.g. [13)]) Thus the study of quantized gauge fields at imaginary time is
the study of random fields over a space of geometric objects, the closed loops in

I , more precisely the study of random cunnﬂﬂti;nl on (random) principal bundles

over T' . (These statements are only accurate when T is a lattice. When T 15 a
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continuum the situaticon is somevhat more complicated,but the above
remarks remain a first order approximation to the truth).Therefore

gquantized geupge fields represent a particular example in the subject
of random geomelry.

The study of random fields is the study of functional integrals.
Making sense of formal functional integrals which determine a Euclidean
field theory,ec.5. & Yang-Mills theory,is called non-perturbative
renormnlization theory. The most impressive contributions to that
theory (in the framewvork of super-renormalizable gquantum field models
not involving gauge fields) are due to Glimm and Jaffe;see e.g. [14,11] .
One key to their suceeps was that they used phase-space localization
to construct funclional integrals,in the form of loecalizing random
fields on eclmasical phase &Epace. They then could estimate partial
functionael integrals over componeénis of the random field properly
localized on phase space:This can be viewed as a "renormalization group
transformation”. One of the high lights of their approach was the
non-perturbative rencrmalization of the A9 quentum field model in

three space-tine dimensions by means of an inductive constructien, [k].

An important elaboration of these ideas which makes their intimate

relation to microlocal analysis and the renormalization group much more transparent

is due teo Gallavocti et al. [15].

Other forms of phase-space localization im functional integrals consist
of partial Fourier-Laplace transforms of measures on distribution spaces and, not
unrelated to that, introducing random fields canonically conjugate to a given
random field. A recent investigation of these techniques in the framework of
Euclidean field theory is [16]. In the case of lattice theories, Fourier-Laplace
transformation of functional measures (the distributions of lattice random fields)

is called "duality transformation". In this context, phase-space localization is

related to partial duality transformations. They have recently been used in a

rather important way in an analysie of Coulomb lattice systems, [17]. (Partial)



duality transformations play a prominent rile in the study of lattice gauge fields.
This is one way of using phase-gpace localization in the study of quantized gauge
fields. Unfortunately, phase-space localization in the sense of localizing (functions
of) a gauge field in classical phase space (the cotangent bundle over Euclidean
space—time I ) which has proven so powerful a tool is = in its conventional form -
incompatible with gavge invariance. This is one major reason why the conmstruction

of quantixed gaupe fields in the continuum limit is so difficult. See E. Seiler's

contribution and [18] for further discussion of these matters.

In passing I should like to emphasize that some sort of phase-
space localization has been the key to numerous,other recent successes
in mathematicnl physics among which I mention the work of V. Enss on

quantum mechanical scattering theory [19] .

The way renormalization group ideas are used in the work of Glism and
Jaffe and of Gallavotti and coworkers roquires the possibility of localizing the
Euclidean random field on classical phase space. Since this appears impossible
in the case of gauge fields, one must find other ways of applying rencrmalization
group ideas which do not require more than the possibility of doing partial
duality transformations. Presently there are no convincing proposals to that
effect, except a general feeling that approximate "block-spin transformations”
(see the contributions of Griffiths and Israel to these proceedings) applied
in conjunction with partial duality transformations to lattice gauge theories

on lattices of arbitrarily small mesh ought to be an important element.

These remarks serve to motivate my aonvictionthat random geomecrry,

phase-space localization in functional integrals and a rigorous version of the

renormalization group will play a crucial rSle in the construction and analysis

of quantum theories of Yang-Mills fields.



Part 2 :

Combinatorial peometry is the study of geometric objects (paths and loops,
surfaces, hypersurfnces, clusters) consisting of the sites, links, plaquettes,
elementary hypercubes of some wv-dimensional lattice, T , and of their topological
and geomelric properties. Moreover, it is the study of fibre - and principal
bundles with base space =T , or = some space Cn{r} of n-dimensional geometric

objects in Ti(n £ v = dim(l)).

Combinatoris]l random (or stochastic) goeometry is the study of stochastic

processcs whose state space is a space, ﬂn{r} ; of geometric objects in T, of
random fields over C;{r} 3 of probability measures owver

f“{T} (or over & fhET}"mﬁ. e.§. squares of quantum mechanical wave functions
me=(

over cn{r} :n=2,3,...,v. Moreover it is the study of random connections (or
holonomy operators) over (random) bundles with base space =T m( T) , or EIFF},

OF +ss Eu{f} » etc... [More ambitiously, one can envisage to :néitrt the lattice
(base space) T and its intrinsic topological and geometric properties into random

variables, too).

I have already explained why and how combinatorial random geometry 15
naturally used in the study of lattice gauge fields ; but see [13,20] for an
extensive discussion and applications. Apart from lattice gauge theories, combina-

torial random geometry is used in

-equilibrium statiscical mechanics : see the contributions of Aizenmann
and Eberlein o these proceedings, the work of Minlos, Piropov and Sinai on
phase transitions ; [21] and refs. given there. A further amusing example is the

"balanced model" of Ising spins discussed im [22] , ete...

~{differentiable) dynamical systems [23],



=diffusion of clusters of "A-particles” in a medium of "B-particles" :
Geometrical properties (size, shape, number of edges and vertices,...) of typical

A=clusters ; diffusion of extended defects in crystals, ete.
=quancum meéchanics of large, extended molecules (polymers), etc.
~dual resonance models (strings),"bag models", ete.
This iz a rather modest selection of fields in theoretical and mathematical

physice to which concepts and techniques of combinatorial random geometry can

probably be applied successfully.

In R4,201 I have tried to initiate a reasonably systematic study of combina-
torial randon geometry as it arises naturally in the study of clasaical lattice
systems, lattice Yang=Mills fields, lattice string - or bag models, etc. So far

the results are rather modest, but I believe that these ideas have a future.

Paret 3 @

Quantization of gauge fields (i.e. of connections, resp. holonomy operators
on bundles with base space = physical space-time) which is presumably a physical
necessity is, more mathematically speaking, an attempt at Teconciling geometry,
with probability theory and quantum mechanics. "Random continuum geometry" is the
nam¢ of a mathematical science that is really needed when one tries to construct
quantized gauge ficlds (except in the case of gauge fields with an abelian gauge

group which superficially, or in v<4 dimensional space-time,is easier).

Unfortunately, continuum random geometry does - it seems - not exist as
a vell-defined mathematical science, yet, in contrast to combinatorial random
geonetry. One of the reasons why random geometry of geometrical objects in manifolds
must be very difficult is that, in the continuum, the description of geometrical
objects like hypersurfaces (or geodesics, minimal surfaces...) in a manifold

requires the use of parometers and local coordinates. (In contrast, on a lactice
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they are given by countable sets of sites, links, plagquettes, ete., and there

isno necd for parametrization and local coordinates).

In random geometry one may wish, for example, to convert n-dimensional
closed hypersurfaces of a v.>n dimensional manifold into parametrization -
independent and coordinate, transformation covariant random currents (or operator-
valued currents). Parametrization independence of physical observables and
states will presumably require detailed knowledge of skew-adjoint representations
of infinite dimensional Lie slgebras and their integrability to unitary representa-
tions of infinite dimensional Lie groups, e.g. the group of gauge transformations
in a gouge theery (bundle automorphisms) or the diffeomorphism group of the
cirele in dual ctring theory.(The representation theory of (a central extension of)
the Lie algebra of this group, called Virasoro algebra, was first studied by theo-
retical physicizes, Virasoro and others, interested in quantized fields over a

space of loops in space-time = dual strings).

These algebraie and group theoretical problems are very hard ; see [?i};
Moreover, thoy are just preliminaries for the development of the subject of

random geomstry proper. They are avoided completely when one studies combinatorial

random geomeiry. This is why lattice gauge theories are such an attractive
starting point for the study of quantized Yang-Mills theories. A reasonable
program for the construction of a quantized gauge theory in the continuum limic,
at purely imoaginary time, might therefore consist of first constructing the
expectation valuzs of arbitrary products of traces of arbitrary "normal-ordered"
random holowomy operators (Wilson loops) for a lattice gauge theory and then

try to prove the existence of the limic of those expectation values as the
lattice spacing tends to0 ,(using e.g. phase-space localization and remorma-
lization group transformations). Apart from proving the existence of the limit

one major problem will be to show that the limiting expectations, denoted



=] 1=

Sn{i.'-‘l.r-..ﬂ“} , where l:l..”.ﬂn are closed, oriented loops in x’ , with
dist{ﬂi,ﬂj} >0 , for 1 ¢ j , are continuous under small, smooth deformations

of the leops and Euclidean invariant, for all n = 1,2,3,..; E!u = 1).

Onee this is shown, one can reconstruct from the "n-loop Euclidean

Green's functions™ [Sn{ﬂl,.*,,ﬂn]} ® a uniqua, Polncaré-covariant gquantum
n={

gauge Lheory. This is called Osterwalder-Schrader reconstruction [26]. In the
prescnt context, O-3 reconstruction involves proving some results concerning
the analytic continuation of representations of Lie groups, resp. Lie semi-groups.
A ugcful toel is a theorem that guarantees the existence of unique selfadjoint
extensions of o large clasa of unbounded, symmetric one-parameter semi-groups
on scparable Hilbert spaces [27]).[The main open problem concerning the recons-

truction of quantum gauge theories from {Sn{cl.ﬂﬂcnj} * isa gsharp
n=0

formulation and proof of locality. All other problems can be solved].

One can argue that SI{E} tells one something about "confinement
of statie quarks" [12] and 5,(C), 5,(c,c") about the low-lying mass - and
gpin spectrum of Yang-Mills theory [20] ,i.e. a certain amount of physical
information can bo extracted directly from the Euclidean (imaginary time)

Green's functions. See [12,28,24,20] for more details.

Pare & @

This partwas a brief report on the recent paper [2#]. The main results
are
A) a representation of w-dimensional, pure lattice gauge theories as integrals
of products of {Iﬁ.l—l} = dimensional, non=linear o-models in external gauge
fields, with applications ;

B) an expansion of the n=loop Euclidean Green's functions, Enl.'{:l,...,l‘.‘.n}. of
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lattice gauge theories in terms of random surfaces bounded by the loops, when

the gauge group is U(n) or O(n) , n= 1,2,3,..., or SU(2).

When applied to Sl{E} this expansion exhibits two complementary mechanisms
for confinement of static quarks and suggest an intimate connection between
Yang-Mills theory and the theory of dual strings, including an educated guess about
the low lying mass - and spin spectrum of Yang-Mills theory : ("aooroximate Regge

trajectories"). See also [20].

Part 5 :

This part contained further applications of result A) of part 4. It was a
brief report on some of the results of refs. [29,30,31,24]. In these references

the following lattice models are studied :

(1) Classical, two-component, neutral lattice Coulomb gases and abelian lattice

o-models (Ising=, Potts= and classical rotator models).

(2) Abelian lattice gauge (Higgs) theories, in particular Landau-Ginsburg type

theories.

(3) HNon-linear o-models on the lattice (e.g. a classical, ferromagnetic

spin system with 4-component spins of length 1).

(4) Pure, non-abelian lattice gauge theories.

The main findings contained in the above references have the following flavour :

(i) A rigorous connection between (2) in v dimensions and (1) in (v-1) dimensions,
and between (4) in vy dimensions and (3) in (v-1) dimensions. (For example, the
one-loop Green's function, EI{C]. of a wy-dimensional gauge theory can generally

bee Bounded above by a product of two-point correlation functions of a g-model

in {v=1) dimeusions).
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(ii) As onc consequence of (i) one obtains a technique whereby ' the construction
of a pure lattice gauge theory with gauge group E;E on the three = and four -
dimensional lattice is reduced to the one of a two—- dimensional Ising model with

random couplings in one direction, [Eh]‘

{(iii) Rigorous results and conjectures about the phinn diagram - phase transitions

and eritical properties = of (1) in two dimensions and (3) in three dimensions.

{iv) Conseguences of (i) and (iii) for the theory of quark and monopole confine-
mont, the Wigps mechanism, ete. in (2) and (4). The following theoram is a

typical example of results that follow from combining (i) with (iii) : 1f che
two-dimensional Coulowmb gas undergoes a transition from a high temperature phase
with Debye screening [32] to a low temperature, dipolar phase without Debye
screening (for partial results see [17]) then the three dimensional, abelian
lattice Higps (Landau-Ginsburg) model undergoes a transition from a aupernﬁnduﬂtiﬂa
phase without confinement of fractional charges and heavy vortices, at small

values of the electric charge, to a QED phase in which fractional charges are
confined by a logarithmic potential and the photon is massless, at large electric

charge. This is showm in [30].

{¥) A comparison theorem relating a lattice Higgs theory with gauge group G to
a lattice Yang-Mills theory with pauge group = center of G , [29,31]. The theorem
implies that if the latter confines static quarks then so does the former. As one
corollary one concludes permanent confinement of statie quarks (with non-zero
"electric charge") in all two-dimensional lattice gauge theories and in three-
dimensional theories with gauge group U(n), n=1,2,3,...

Part & :

- This part was an elaboration and application of result B) of Part 4. In
particular, vxpansions of two-point correlation functions of non-linear g-models
in {v1) dimensions with ficlds taking values in a group G, G= U(n), O(n),

n=1,2,3,..., S(2), in terms of random walks were used to generate an expansion



for the one=loop Green's function, Slfﬂ}, of a pure lattice gauge theory in

w dimensions with pauge group G . These expansions are used to prove exponential
elustering of coreclations in those o-models, resp. confinement of static
quarks in Yanp-Mills theory. Tyo basic m¢£hani;uu for confincment emerge from
that cxpansion and one of them might potentially yield confinement in continuum
theories. These results can be found in [24]. Some elaborations of them and

‘conncctions wigh the theory of dual strings are discussed in [20].

Final remaris.

This is mv [irst set of notes to a lecture that does not contain a single
formula or estimare or state (and prove) a theorem. My only purpose is to verbally
discuss, explain and advertize some mathematical, in fact probabiliscic concepts
which I believe arec going to play a somevhat crucial rle in various branches
of mathematical physics, in particular in quantized Yang-Mills theory which one
hopes may boe the theory of the fundamental interactions (except gravitation) of
particle physics. These concepts may be labelled by the words : Random (stochastic)

geometry, phase-space localization in funetional integrals, renormalization
E[l’l LIP.
The papers quoted in the bibfingraphy (not these lecture notes) permit

the reader to develop his own ideas about what these concepts mean and why they

might be useful.
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SOME RESULTS AND COMMENTS ON QUANTIZED GAUGE FIELDS

@)

Jirg Frohlich
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ABSTRACT

A few basic facts concerning the geometry of classical gauge
fields are summarized; in particular, it is asserted that a princi-
pal bundle with connection can be characterized uniquely by ics
"Wilson loops™. The quantization of gauge fields is them shown
to consist of converting the Wilson loops into “"random fields" on
a manifold of oriented loops, a problem in "random geometry". Other
examples in random geometry are briefly sketched. A general cheorem
permitting to reconstruct quantized Wilson loops from.a sequence
of Schwinger functionals is stated, the quark-antiquark potential
is introduced, and "disorder fields" are discussed in general cerms.
The status of the construction of quantized gauge fields in che
conciouum limit 15 indicated, and some random=geometrical arguments
are applied to lattice gauge theories and wvsed to derive estimates
on the expectation of the Wilsom loop, resp. the disorder field.

1. Introduction

These lecture notes are organized as follows:

§2. Some elementary facts about the geometry of gauge filelds.
§3. Handom (or stochastic) geometry.

§4. Schwinger fumctionmals and relativistic quantum flelds.
§5. Existence of quantized gauge fields.

§6. Random geometrical methods In lactlece gauge theoriles.

§7. Conclusions and acknowledgments.



The purpose of these notes is to introduce the reader to some
basic, conceptual aspects of the problem of constructing quantized
gauge fields and to summarize some rigorous results concerning
the general (axiomatic) theory of quantized gauge Eflelds, cthe
existence of models in the continuum limit and some physical prop-
erties of lattice gauge theories, in particular the confinement of
static quarks, the proof of wvhich is based on random peometrical
methods. This is the content of §6 which, due to page limitatioms,
has come out to be too short. (That material will probably be
treated in more detail elsewhere. Much of it is contained in the
references quoted in the text). Unfortunately, we were forced to
omit all proofs and te even state some of the main results in a
somewhat cavalier way, but the necessary precision can be achiewved
by consulting the references givem in the text. Our choice of
references does not represent a value judgment. It reflects the
author's taste and ignorance and a certain emphasis on developments
in which he has been involwved.

The main problem of quantizing gauge fields and thereby con-
structing a mathematically consistent and physically realistic model
of the fundamental interactions is asong the central problems of
theoretical physics. We are still far from having complete and
sactiafactory solutions to that problem, and the technical barrier
separating super-renormalizable from renormalizable theories is
still not overcome, At all, im spite of the advent of auyupl:t#call:.r
free theories, the Yang-Mills theories. (Some progress may be in
sight, though). In view of the main problem these notes and many
of the references quoted may seem naive; (they certainly are).

They may however help to see some conceptual and mathematical
problems through a perspective which we hope is not completely
useless.

§2, GSome Elementary Facts about the Geometry of Gauge Fields

In this section we briefly reviev some mathematical bullding
blocks of the theory of classical matter and gauge flelds, empha-
gizing some geopetrical aspects. For mathematical details see
€.g. (1| and the notes by S5inger and Mitter. In 42] we have at-
tespted to give a rather detalled, pedagogical "introduction for
physiciasta" to this subject which might also be useful.

Let M be a manifold, the space-(imaginary) time manifold.

For particle physics one would choogse M = E&* but for well known,

technical reasons one also chooses M = E° or §°

e vo= 2.3,(4).

Let G be some compact Lie group, the gauge group. Let V be
a topological space (typlcally a vecter space carrying a repre-
sentation of G or a homogeneous space) on which G acts as a homeo-



morphism group. Physically, V is the space of internal degrees of
fresdom of some matter field.

Let F = (B,M,V,G,7) be a fibre bundle with bundle space B,
base space M, fibre V, group G and projection =. If V = G, the
gauge group itself, we shall denote F by P = (P,M,G,n), and such
8 bundle is wsually called a prineipal bundle. For definitions and
results concerning fibre-and principal bundles see e.g. 11|, We
propose to view classical macter fields as sections of a fibre bundle
F and classical gauge fields as connections on a fibre-or principal
bundle.

Let { ﬂi%LEI be a covering of M by open, simply connected coordi-

nate neighborhoods such that the bundle space B restricted to
ﬂi is homeomorphic to H1!¥, for all iel.

Let £, £' .3 XV + Illifh} be two coordinate functioms.

£ N

Ll L]
tet £ 2: w £, (x,4). By definition of a fibre bundle,
i % iy
W
En 1“5 sh(x) is an element of the gauge group G, depending con-
el L

tinuously on =xefl,, for all i1cI. The G-valued function h thuos

determines a change of coordinates and is called in physics a
gauge transformation. Let nzﬂgxf&. The gauge transformations

hiiin}: - Ef;fxiiﬁ.: are called transition functions. They de=
termine the bundle uniquely and also serve to assoclate to each
fibre bundle a principal bundle: the one with the h, 's as its
transition functions. 13

A connection, A, on a fibre bundle is a family of l-forms

{ htlﬁlizt with values in the Lie algebra G of G such that &Ei}
is defined on ﬂ.l' iel, and for xcﬂir'\.ﬂj ¢ P
(1) - b (1) e |
A (x) hji{I]h {!thifll hji{:}tdhji}{l} (2.1}
Moreover, if h is a gauge transformation defined on n{i]

*
transforms according to .

() | (Oh

A n LA )y han (2.2)



In physics, A is called gauge field potential. It serves
to define the notion of parallel tramsport. To explain this we
choose some [= ﬂ&. ficl. Let TT:E:H' be an oriented curve con-

necting x€§ to some point vyefl. We propose to construct a

(1)

homeocmorphism B eG from V into V in terms of A which describes

¥
the parallel transport of some #(x)cV from x to y along TF“'
If vy = x+dx is infinitely proximate to x we set
g i = g e e, (2.3)
with AV = ﬂ(;tl]dljr

j=1
{in local coordinates; v = dim M).

If Yyx is bounded, oriented, continuous and plecewise smooth,
{2.3) can be integrated along TFI' yvielding

3:;11 = P { exp J,F A;*”{:H:j 1. (2.4)
¥x yx

where the r.s. is an Infinite product obtained as a limit of finite
products of factors

u+.l.j”{x :mj o)+ with Iﬁilnlhn. as m+ =, for all j and k.

Inder gauge transformations, h, g{il transforms according to
¥X
u i
gi” . gé”h - h 1{?}3,5 Inix), (2.5)
X yx

and 1if "f?: = Iﬂﬂ :I.'i-1

e @ 5l

¥E

“'I;!.r:'n (2.6)

hyy (s

Thanks to eguations (2.5) and (2.6) oné can now define parallel

transport on the bundle space B of F as follows: If Yox S

paralle]l cransport on B is given by a homeomorphism
r : ﬂ: -+ UF' with ?H = :-l{xj the Fibre over x, which is defined

TTH



(1), -1

-£ B i (2.7)
Yyx 8 Brot.x

by T

If ?y: is not contained in a single ceoordinate neighborhood ﬂi’
one cuts up y__ into pleces y o , with i e

yx S T Ty Bl
and sets

T =T r - : (2.8)

Y Y Y ol
yx -1 *w-1™N-2 o g |

wit -y a x, = x. By equations (2.5)-(2.7), s
h x, nd 1 B i (2.5)-(2.7) F? i
¥x

independent of the choice of coordinate neighborhoods and coordinates.

By the parallel displacement of some t[:}:“l from x to v along

Trx we mean the element

r. #(x) in V_. (2.9)
TF‘ ¥
Next, we propose to characterize a fibre bundle with parallel

transport in terms of a convenient family of gauge invariant funec-
tionals of the connection A. For this purpose we introduce the

notion of holonomy groups.

Let x be some point in M, and let Mx) be the manifold of all
bounded, continuous, plecewise smooth, oriented paths, u“. starting

=],
s G ® B
and ending at x, called loops iven uucnlx} let o denote the
same curve as u, but with reversed orientation. ™ [KAx) we
define multiplication as the composition of paths, i.e.
{ml,u;J * munm;, the composition of y with w;- With the ocbvious

equivalence relation imposed, wiﬂu;l = m;lﬂw: = 1, the identity

element in fHx), and fH{x) is seen to be an infinite dimensional
Eroup.

Given a connection A and some loop ulgﬂ{u} ve BBt

=1
= r EG 2. 10
Eu; F'ﬁl,u u“ Enii: ¥ t J

whe re ii is a coordinate nelghborhood containing x, and £ , ATe
®
local coordinates on B. This defines a representation
B wy Cix) = By cG of Mx) en V. The image of Q(x),
X



H:[A.} = { E""r.: w € wx) ), (2.11)

is called the holonomy group of A.

For continuous E,Hl[.lu.} is a closed subgroupe G. If M is
connected H:{M is independent of x, up to conjugacy, and if M is
simply connected H: (A) is connected. If Hluj = G the connection
A 1z irreducible.

Under a gauge transformatiom, h, B, transforms according to

x
b

=1
E +g8 =h"(x)g hix), (2.12)
x m! H:I:

as follows from (2.10) and (2.5)=(2.7). Thus the elements
B, L E:[A.} depend on the choice of local coordinates (the gauge).
x

Let x be a character of G, Then Y, given by

'l"[uxll - ::EB.D )] (2.13)
x

i a character of [Kx).

By (2.12), ‘l'{mx} is gaupe-invariant. We define
nﬂ-...'-:'.ll. w, € fx), to be the infimum of the areas of all smooth
surfaces bounded by o

Theorem Z.1.

Assume M is simply connected. Let Y be an irreducible charac=-
ter of f{x) with the properties:

(1) Y is of positive type on @x).
(2) T{I“] = f, for som¢ natural number n= =,

(3) I‘Hu:l'.'r-nli ﬂ{ntul}‘.l. as im:}};u.

Then there exist an irreducible, connected subgroup
Hz Uin) and a representation h: @, Ky = hu e H of O{x)
w
such that ?{mn} = tr{hu )+ The representation h of f{x) is unique
b4



up to unitary equivalence. Moreover, there exists a connection A

with values in the Lie algebra of H such that hu . Wy £ix), is
x

the parallel transport around W determined by A. 1If H-urtn1u*1

where » is an n-dimensional, t'nir.hful represencation uf some compact,
connected Lie group ¢, and Ueg Uln) then I.'|.“I -l.h:{g ',iI.I , and E'H EG ia

X :: x
unique up to (G-valued) gauge transformations. []

For a proof of Theorem 2.1 see |3|. This resulr says that a
principal bundle with structure group G and a connection om it are
uniquely determined by the numbers llfh o B o i Mx) } 1f ¥ 48 a faith=-
ful, unitary character of G. Uy

Let P be some principal bundle with structure group G, and AL
the space of all continuous, irreducible connections on P. Let G
be the group of all gauge transformations modulo those which take
values in the center of G. Clearly § acts as a transformation group
on .|l.1 . We define the orbit space (0 as AIIG . Given a conmection

Ae AI 3 the corresponding orbit of A under G Is dencted by [A:].
Unfortunately {0 is generally not a linear space, but an infinite
dimensional manifold with rather complicated geometrical properties,
unless G is abelian. This Is an expression of the intrinsic
nop=linearity of non-abelian gaupge fields. Sipger has shown that i'.
is a principal bundle with base space €, fibre G and projection

given by x(A) = [], |4|. (1f M = 57 or 5* A" ts not homecmorphic

to 0= G y Loe. gauge fixing is impossible; see |-f-|_ If M =EY this
conclusion is however not valid).

Since 0 is a manifold one can define a space C{0) of continuous
functions on . The elements of C{0) represent the "observables"
of a classical Yang-Mills theory. "Euclidean guantization" consists,
in a vague sensé, in convercing the elements of C{0) into random
variables. This procedure requires some more explicit knowledge of
the structure of C{0). We thus describe a convenient dense subspace

of C(0): Lert Ac Al and lec B, (A) denote the parallel transport
x
around W determined by A. The functions

Tl.’,m- jAJ: = x{g {A)), w € (i{x), ¥ a character of G, are
“x

gauge Invariant, i.e. depend only on |_-.l'|._-_| and are continuous in [.i.:l
Therefore they belong to C{0).



Theorem 2.2.

Let M be connected and suppose y is some faicthful, unicary
character of G. Then the algebra of functioms generated by

W: = ‘.!'{u:;_ﬁ.}: w ER(x) }
is dense in C(0).
Proof. By Theorem 2.1 the fum:l:in-ﬂlf‘l'(ux;l] } separate points in 0.

e o ta
Moreover Y{HI;A}I - ‘l’(uxlu'.l also b:lnngsﬂii'. and finally

T{ll:.ﬁ.j = gonst. » 0. By theStone=Welerstrass theorem the algebra
generated by W is dense in C(0); (0 is supposed to be compact). -

Remarks.
1. Theorems 2.1 and 2.2 serve as one motivation for viewing
the functions ‘!'{uI:I = ;.;{gu ) as the basic "observables" of a pure

Yang-Hills theory. *

2. Let Hr.i be a denumerable set of bounded, closed, piecewise

smooth, oriented loops, e.g. the loops of some lattice on M. Let
"ﬁ; be the closure of ﬂd under inversion of orientation and composi-

tion of loops; {Ed is a groupoid). Let ':ﬂ {0) be the algebra
d

generated by { Y(uw): mzﬁd }. If all connections in AI are continu-

ous then 'I:I.‘i () Pc{0), (in the supremum topology), as
d
Hd:-ﬂ 12 Q(x), for some xc M, with H connected.

Let ] denote all bounded, oriented loops inm a lattice L.

Approximating C{0) by '.':n () is the starting point of the lattice
L
approximation te Yang-Mills theory.

It would be interesting to make a systematic study of all
convenient, separable approximations to C(0) that could serve to
construct gauge-invariant regularizactions of (Quantized)
Yang-Mills theory.

§3. Random (or Stochastic) Geometry

Throughout these notes we follow the Euclidean (cime purely
imaginary) approach to quantizing relativistic quantum [{ield
theory. In this approach the problem of ficld quantization is
converted into one of constructing random ficlds and functliomal
integrals, (unless there are Fermi fields in the theory which are



ignored in these notes). In cthe Euclidean approach to quancized,
pure Yang-Mills theory the basic random fields turn out to be che
variahles

Y(w) = x?iu?i

studied in §2; Ky is a vnitary character of the gauge group G, w
is a bounded, oriented loop, and g, 1s a "random holonomy operator"

assigned to w. (If the theory also contains a matcer field &,
assumed here to be spinless, transforming under a representation

Ui of G then, in addiction to the variables ¥Y({w), one sust consider

the variables

.t 106,
Yyx
where (*,°) {8 an inner product on the fibre V of the bundle whose
sections are glven by &).

We thus see that in the Euclidean approach co quancized
Yang-Mills theory one wants to construct random fields on spaces of
geometrical objects, the oriented paths and leoopa in Euclidean
space-time. According to Theorem 2.1, the random flealds ¥{w)
are in correspondence with a random connection on a random principal
bundle.

The construction of such randem filelds can thus be viewed as
a problem in a hypothetical branch of mathematics accempting to
combine geometry and probabilicy theory which one might call random

(or stochastic) peomacry.

We now give a short 1list of some problems in random geomecty
and then discuss a few of them in more detall.

1) Convert geometric objects (loops, surfaces, clusters,
holonomy oparators, etc.) into randem variables, resp. random
Currents.

2} Construct stochastlc processes whose state space 18 a space
of geometrical objects.

3) Construct random fields on spaces of geometrical objects.

&) Construct random holonomy operators on a (random) fibre
bundle.

5) Investigate random operators assoclated with a foliation
|6]; ete.



10.

In many situations random geometry is really measure theory
pn infinite dimensional manifolds, or manifolds modulo the action
of some infinite dimensional transformation group, (e.g. a group
of gauge transformations, the diffeomorphism group of the circle
or a sphere, etc.).

0f concern to us are the following specific problems In random
geometry:

(A} Theory of random holonomy operators on randoem bundles with
fixed base space.

{B} Diffusion processes whose state space is a space of loops
or a manifold of open paths with fixed endpoints, (modulo the action
of the group of reparametrizatioms).

(C) Theory of random surfaces bounded by some fixed loops.

These problems are relevant for the understanding of quantized
gauge fields, as we hope to explain in the remainder of these notes.
We emphasize that there are numerous other branches in theorecical
physics which pose their own problems in random geometry. In par-
ticular, statistical mechanics is rich in such problems.

Unfortunately, it turns out that random geometry in the con-
tinuum is very difficult and forces one to study very singular
objects. For example, the holonomy operators of a Euclidean quantized
Yang=Mills theory on v-dimensional space=time, with v > 3 cannot be
expected to be random fields in the precise sense of the word. To
gee this one may consider the free electromagnetic field:

Let A(-) = (Aj(+)y.c00A (+)) be the B’ -valued Gaussian process

with mean 0, 1.e. <A{(-)> = 0, and covariance

<A (0)A_(x)> = § (zn) /2 ]‘ 5 24% (3.1)

jm

One may attempt to define random holonomy operators {(random phase
factors}, B, by

B = exp i +mnj{:}dxj (3.2)

Unfortunately g§ does not E::it a8 8 random field on the space of
o inv & 3,.

loops: g - 0, almost surely,]| To gIﬁt meaning to £, it needs to

be "normal-ordered":

g, = Nig) = "exp [W.(0)|u|] g (3.3)



Here |w| is the length of the loop w, and V_, is the (v-1)-dimensional
Coulomb potential. The r.s5. of (3.3) can be defined rigorously as
a limit of regularized objects if w is sufficiently smooth {C2) and
w4 4. Since A is Gaussian, it is easy to calculate

< H{gU]H{gu.} *, Oneé checks that if the relative positions and

orientatiomsof w and w' are suitably chosen one gets
r Hl:gu}ll{;w,] > - axp E:unal:. dist. {H,NI]-I]’{fﬁr ved) . (3.4)

Thus, the objects N(g ) are too singular to be random fields in the
usual sense of the wofd. For a (heuristic) theory of normal ordering
of h?lTnnIy operators in three-dimensional, interacting theories

see (7.

The above discussion suggests that random geometry im the con-
tinuum may be plagued with serious difficulties. One way of regu-
larizing the objects studied in random geometry is to pass to random
combinatorial geometry by replacing continuum geometry by discrete
geometry (combinatorics); see e.g. |E-1 for some discussion.

We conclude §3 with sketches of three examples of random com-
binatorial geometry.

1. Let P = (P, E“.G,'I} be a principal bundle owver E'. As
discussed at the end of §2, we may approximate the space C(0) of
continuous functions over the orbit space ¢ (the "observables") by
{.‘fi{.ﬂ}, where ﬂl is the set of all bounded, oriented loops in a

lattice L which we choose to be

ez = {x:¢e -]':t E Evl. We assign to each link (nearest neighbor
pair) xy £l an element Bry‘ G. Given we ii, let

g = r <) g . (3.5)
Y xyew =
Let Xy be a character of G. We set
Yiw) = xfilu] (3.6)
The algebra generated by the Y's is dense in Erifﬂ:l. Thus, in order
to convert the elements of Efiiﬂi into random wvariables, it suffices

to construct the joint distribution of the "Wilson loop variables,"
i.e. to construct a measure on { E:y}' The standard propesal |9],

due to Wilson, is the following: Let y be a unitary character of G,
let p denote a plaguette (2-cell) of L = ¢ Eu. dp its boundary.

11.



12.

Let AEC Eu be & bounded set. Define an actlom, .ﬁ.T, by
™

A = - L Re x(g. ) (3.7)
A Sk ap
Let dg denote normalized Haar measure on G,E*0. We define
™
(el o 71 . =BA (3.8)
dy A (g) In e A ﬂdaﬂy
with E:h such that Jdu E:}[B} -1,

By a standard compactness argument one can choose a sequence

- v
['“'n ]n-c- increasing to ¢ Z° such that

du'® (g) = w'-1in d&i}{g} exists. (3.9)
=

(Conditions for existence and unigqueness of the limit du are given
e.g. in |9,10/). The measure dy is now interpreted as the joint
distribution of the random variables [ Y{w):w ¢ HLJ- Of particular

interest im the discussion of the resulting theory are the
Schwinger functionals

sU ¥y y) s b X0 )) }dum{g}jgl *y, !.'gwj} . (3.10)

What we have introduced here is the standard lattice approximation
to quantized, pure Yang-Mills theory |9).

II. Let T‘I_[x.y} be the set of all finite, oriented curves in

L=cz" starting at x and ending at ¥v. This is clearly a countable
set. Let EI be the Hilbert space of functions F on TLf:.yJ with

the property that

L Myl iFey 312 < -, (3.11)
'rxftl'lh,:r] ¥

for some r » 0. Let p be an oriented plaquette.



1E ap[1f # g we define T:y o 2p by the followving figure:

-ﬁa;u

R & 3.0
: ,£LH N, o S

7, T3P

For FE tl define

-u apl- F{"r } if “"T:y v
{EPF] Oy - o 3p is connected; {3.12)
, otherwise.

One may now define a functional Laplacean, ﬂl, as the unique
selfadjoint operator determined by the quadratic form
F+Z% (6§ F,6F) (3.13)
o By
defined e.g. on 'EI,'I" r>0; {‘EI " 52‘1-.“:"
Lec ‘l.l'n be the sultiplication operator on f.z given, for example, by

VP Cv ) = aly, [Flr, ), (3.14)

where |T:y| is the number of links in
The operator sum D +¥,1s still selfadjoint, and it follows from a

general theorem in |ll|. that the kernel {Elp[-t{ﬂ' + }I]}Ih' q’}l

- ' - +
is non-negative, for all TIF’TIT in ['L{x,:p}. Thus exp t{ﬁ'i ‘I.I'u]'
is the transition function of a stochastic process on I‘L{x,]r]. This

process describes the diffusion of an oriented string with fixed
endpoints x and y. It has some significance in the analysis of
confinement in lattice gauge theories, |.'|"f. See also §6. (If the
deformation (ii) in the definicion of T:tjr o ap is omicted, the

resulting process may be of interest in the study of selfavoiding
random walks).

13.



II'. Let 0, be the set of all finite, oriented loops in L;
HL is seill countable. Therefore one may define spaces

11 e Ez t[ti] and operators fp, El, vﬂ, etc. in a similar way as
L] L]

above. There results a model for the diffusion of loops in the
lattice L. For some results concerning a general theory of dif-
fusion of discrete, geometrical objects see E.:E,.|111. (They have
applications in statistical mechanics).

1. Let @, Pl, V +-+- be as in (1I), (II'). we propose to
give an example of a random field 4 on nL To cachwe HL we asslgn an

n=n matrix, #(w), with a priori distribution d% (=) givem by the
2

Lebesgue measure on £" . There exists a random field ¢ the dis-

tribution of which corresponds to the formal measure

du(e) = E-llrp]:-: er( ) * [0+ )¢ J()) ].

. oW t_ztri'{”]*‘{"jjzditu}*

mzﬂl

The measure dy can be constructed as a limit of cutoff measures.
The field ¢ is conveniently described by its "Schwinger functionals"

n
S (¢ . (w)...e (w }) = jﬁu[#) T ¢ (w,) (3.15)
n olﬂl 1 Bnﬂn n j=1 HJEJ h

which one may interpret as Schwinger functions of a lattice string
theory [12).

If the constraints

(8% (wow ) (u)d(u")- 1) (3.16)

il

are inserted inte duy and the couplings are suitably rescaled, the
above theory becomes a lattice gauge theory with ¢ = U{n); see
|11]. This example is admittedly somewhat naive. It may serve
a5 a challenge for a serious study of more interesting random
geometrical models. The most important problem is to find inter-
esting models of this sort for which the continuum limic (cyo)
exists. This is the subject of the renormalization group (“block
spin transformations™) and non-perturbative remormalization.

14.
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§4. Schwinger Functionals and Relativistic Quantum Fields

In this paragraph we briefly discuss the question whether
Schwinger functionals of the sort defined im (3.10) and (3.15)
determine a relativistic quantum field theory. The answer te this
question is, for conventional, local field theories, the Osterwalder-
Schrader reconstruction theorem |13,14|. We quote here a generali-
zation of that result which accounts for theories of fields defined
on spaces of geometrical objects such as the "Wilson loops" of pure
Yang-Mills theory. The theorem is first stated for a class of
continuua theories and represents a special case of more general
results of this type |15].

The Euclidean space-time manifold is Eu,u-I.J.-ﬁ. Let DM}
be the family of all oriented C* d-dimensional surfaces in E"
without self-intersections, (i.e., topologically, d-dimensional

spheres), with d <v-2. For w,w' in ﬁ{‘”, Bet

dtm.lﬂ.} = dist (M.H'} = :-i-lﬂu II'-?II-
YEW'
Let ﬂiﬂin ={wgsenein in ﬁmhdiml.w‘j} > 0, for idj ), (4.1)

:ow, 1 F{I,t]:t »0)j=l,...,0}

(d)n,
£ (4.2)

ﬂtd;‘:“ = [{ml. ot .mn}l c

¥We now assume that we are given a sequence of Schwinger func-
tionals { Sni."l'l{ulﬁ T .‘fn{wn}} E—ﬂ with the following properties:

(S1) Sgm1; S, (¥,(uy)seee,¥ (u ) is well-defined on n“‘{“

i
and continuous under small ¢ deformations of ul,..,,u“ im ﬂ“;n.
Moreover, the growth of Isnt‘fliul}.....‘i’“{uu}] , as

d & min di.'_ui,,u JN0, is bounded by ﬂ{exp[:nnal;. dg-e ]'.h,, for some
n 14 b n

g > 0 and constants that depend on n in a suitable way; see |13,15|.
(82) (Oscerwalder=-Schrader posicivity)

Let r be reflection at { t=0 )} and let ¥ - Yr be some reflection map

{in the case of Yang-Mills theory ‘I'r = ¥, the complex conjugation

of ¥)., The N x N matrix C with matrix elements Ei_’l given by

| i i 1 13 ] 3
snil}ﬂ{j}{!l":i] .fl"mﬂ{i},l'] EEE l?l'r{‘ul‘r}l?l{‘ul} - ‘Tn{_j] {Hn{,jj }] L]
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.j = 1,;...H is positive semi-definite, provided

fﬂli+++1mn{k]:| :ntd]n{kji fl:ll-' ll-ll k - 1..- +|-..H= *l.i.a--. -

(53) (Symmetry)
8 le{m }.....T {m )) is symmetric under arbitrary permutations of

its argusents, Iu: all n.

(54) ({(Invariamce)
Let B be 2 prnpcr Euclidean motion. Then

S“{Elimlj.... {m J) =58 {Tliul E],...,En{un.ﬂ}}, for all n.

{(Hera g is the inage of @ under B).

If wve consider a lattice theory we replace (54) by (54'): Invar-
iance under the sym=metries of the lattice.

[{55} (Clustering; see |13|]I
Heuristically, the Schwinger functionals of a Yang-Mills ctheory

satisfv addicional properties, in particular an extended version of
{52) (Dsterwalder-S5chrader positivity) to which we refer as

(52°%%*); see |10,15].

The main theorem about sequences of Schwinger functionals
gatisfying (51)-(54) is

Theorem &.1.

1f [Snfflfull....,Tn{m“}}:E;n satisfies (51), (52) and (54)

then one can reconstruct from those Schwinger functionals a separable
physical Hilbert space H , a vacuum vector {cH, with <G 0> =1,
and a unitary representation U of the proper Poincaré group

P:_ on H with Ua,A)fi= @ {4.3)

for all (a,A)c FI- The spectrum of the generators (P,H) of the

space-time translations is containmed in the forward light cone E+.
If, in addicion, (53) holds there exist "local fields™

Ad}

ylwi¥), we 7, wei :-{i.t}: M:¢t = const. |,

with Lyim:ﬁi.yiw‘:\’il « 0 if w and w" are space=11ke separated.
Lif WS1) 052, (54) and (55) hold then the vacoum U s the only
vector satisiving (4.3), i.c. the vacuum [ uulqug].



A more precise formulation and a proof of this basic theorem
will be given elsewhere, |15|.

Someé of the main tools in the proof of Theorem 4.1 not already
used in |13,14| are: A result concerning the selfadjoint extensions
of symmetric aanigruups |1ﬁ| that serves to construct the represen-
tation of the Poincaré group, and the observation that the Schwinger
functionals determine a state < I, + [ > which satisfies the KHS
condition with respect to the Lorentz boosts, [17|. A somewhat
novel approach to the results of |17| and to proving locality are
consequences of that observation. See |15].

Hext we discuss a few physical properties coded directly into
the Schwinger functionmals. The first is a consequence of extended
Osterwalder-Schrader positivicy 11ﬂ1| in Yang—Hilln theory. In that
theory d = 1, and dl.: is the space of loops in E' diffeomorphic
to circles. Let Wy be a (smoothed version of a) rectangular

loop with sides of length L and T. Assume that (52" Cey |1ﬂ1.15|-
holds. Then BIITtuLxTII is log convex. Therefore

1

1":” = lim - -+ log 51 (Y{um}} (4.4)

Te =
exists, and moreover one concludes

Proposition 4.2
VylL) £ comst. L, as L + =, (4.5)

For lattice theories this inequality has been established in |1$|.

Physically, it says that the potential between a static (infinitely

heavy) quark and a static anti-quark cannot rise faster than linearly.
It was suggested in [?,lll that 5-1 (Y{w)) contains information

about the boundstate spectrum of very heavy quarks, and
EEEY{wI.E{u'}J about the low-lying mass spectrum of pure Yang-Mills

theory.

Next, we sketch the notion of "disorder fields" [19-22|. We
assume that, in addition to the"random Fields" ¥Y(w),w ¢ f{d), there

are "fields" Biy¥), v« hl{"-z-d}. “._,l[ﬂ,!: = j;',"l',l, with joint Schwinger
functions
{s n'm{fI{uli.r--.Tn{unl.ﬂﬁ?ll.-- «Bly }}in m=0" (4.6)

17.



These Schwinger functions are supposed to have properties
analogous to (S1)-(54), but in addicion they are required to have
certain specific discontinuities (which cannot arise in standard
field theories of the Wightman type):

Choose w,ye { {';,L}: t = const. } and let vw{w,y) be the linking
number of w,y. Let |.uE be the translation of w in the t=direcrion.

Then lhﬁgﬁ.'*t“'.f{ul} |I{T}-tii:|

TS
Zy'B ::: S.,.{...,?{m_cl,B[T},..*I (4.7)

In two-dimensional scalar field theories with soliton behavior
and three-or four dimensional Yang-Mills theory one can prove that
JEY Hl = 1, |19-21|. In fact,in Yang-Mills theory, Zyp 18 an

element of the center of the gavge group G which depends on ¥ and
B, |20,22|. An extension of the reconstruction theorem, Theorem
4.1, provides us with fields y(w:Y) and b(y,B), which for
wyyCl{x,t): £t = 0} sacisfy the following formal tise 0 commutation
relations

vluiy)

¥B
(The field b is said to be "dual™ to y).

Y(wiY)b(y:R) = = bly:Bly(uw:Y) {4.8)

For ve 2 d=@0, ve 3, d=1, and v= &, d = 2, {1.e. v=2=d=0)

guch commutation relations have been discussed in |1'i'| and repre=
gentatfons with d = 0 have been constructed for two-dimensional
scalar field theories with soliton behavior, (the sine-Gordon and

the J¢% models). For v= 3, d =1, and v = 4, d = 1 they have been
proposed and interpreted in |20|; see also 't Hooft's contribution to
these proceedings. For v = 2,3,4, d = 0, certain "quasi-free" repre-
sentations have been constructed in a series of remarkable papers

by Jimbo, Miwa and Sato [21]|. Their work shows how powerful rela-
tions like (4.7) may be and has resulced in the calculation of the
correlation functions of the two=dimensional Ising model. For

latelee theories representacions of (45.8) have been constructed for
w o= 2,34, withd = 0,1,1, respeccively, |22].

In |19] properties of the representacions of (4.8) when
yeod deforyve 3 d=o] (prveid, d=32) have been related
te the structure of super-selection sectors of the corresponding
quantus field theories: If :nnﬂt+wylu:?} converges on H to a

nop-zere element of the center of the observable algebra, as
|w|+=, and Zyn ¥ l,then b(x;B) intertwines disjoint super-

seleccion sectors of that algebra. (The two—dimensional case
has been studied from first principles, whereas in higher dimensions

18.



19.

one needs suitable technical assumptions). In [20| 't Hooft

has suggested connections between properties of the representations
of (4.8) in a gauge theory and quark-resp. monopole confinement.

He argues that (4.8) rules out the possiblity that quarks and
monopoles are both confined. This has been elaborated and tested
in models in |22,23,102|. See the contributions of 't Hooft and
HMack to these proceedings.

§5. Existence of Quantized Gauge Fields

In this paragraph we quote some results concerning the existence
of models satisfying the axiomatic scheme of §4. At present, the
only models that fit into that scheme are models of quantized inter-
acting gauge fields-and matter fields-on a lattice of arbitrary di-
mension (see end of §2 and Example (I), §3) and in a continuum space-
time { E") of dimension v = 2, and presumably v = 3. Of course,
the free electromagnecic field im two, three or four dimensions
satisfies (51)-(55). In the continuum only abelian gauge fields
have been constructed so far. If the gauge group is abelian there
are, in addition, lattice theories describing abelian gauge fields
which are conmections on bundles whose base space 1s e.g. the space
of oriented loops in the lactice: To each plagquette p one assigns

an element ¢ P eG,G “=B° u(1), & , with a priori distribution the

Haar measure on G. The action is given by ""h' =E coa [ E 'ap:"
cch pEdc
These theories have Schwinger functionals of random "holonosy
operators” associated with closed lattice surfaces satisfying
(51)-(53), (54'), (in the limit A = ZY%. The models of the type
described in Example (III), §3, (without the constraint (3.16))are
not known to fit into the scheme of §4. (This may be related to
the difficulties which are met in string theories |24|). For

detailed studies of lattice theories see e.g. |9,10].
Let dutljig} denote a limit of the measures ﬁpE:}{g}_ (Example
(1), §3, (3.7)=-(3.9)), as A+ Z'.

For small g, the limit is unique and the Schwinger functionals
have exponential cluster properties; detailed properties such as
confinement can be investipgated by means of high temperature expan-
sions, |9|. Uniqueness of the A»Z" limit can also be proven inm
a class of abelian models, for all B. A few physical properties
of lactice gauge theories are sketched in the next paragraph.

The list of models of quantized, interacting gauge fields in the
continuuae sacisfying (51)=(54) iz scill shorc:

1) The abelian Higgs model (scalar QED) in two space-time
dimensions, |25I.
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2} Spinor QED in two space-time dimensions with massless or
massive fermions and massless or massive photons, |26|. (For a
different approach see |27]).

|3) For spinor QED in three dimensions, a proof of stabilicy
of the theory is announced |28|.

4) For some super-rencrmalizable gauge theories (including
non-abelian ones), T. Balaban has announced a proof of stability
|29| based on a rigorous form of renormalization group - "block
spin" - transformations for lattice theories, extending previous
work due to Gallawvotei, et a1.|3n| for the A¢“ theory in three
dimensions |31] |.

i6. Random Geometrical Methods in Lattice Gauge Theories.

In this paragraph we briefly discuss four examples in lattice
gauge theory the analvsis of which is based on estimacting the joint
distribution of random variables labelled by geometrical objects
such as closed flux tubes or {(interacting) oriented random paths
with fixed endpoints. We sketch some typical steps in that analysis
thereby providing examples for the uses of random-geometrical argu-
ménts in the study of lattice gauge ctheories.

Example 1.

We discuss the behavior of the expectation of the Wilson leop
in a three-dimensional EE lattice theory, (i.e. G = Ez is the

gauge group). This model can be thought of as a Kindergarden
theery of vortices in a type 1l superconductor. The Wilson loop -
dual to the "vortex field" - is the non-integrable phase factor of
the superconducting medium. The action of the model is

A= =-fo0_ .0 - 5 a o =+ ], (6.1)
i ap' " dp xycdp xy' xy

The infinite volume expectation In that model at Inverse coupling
g - see Example (1), 53, (3.8), (3.9) - is denoted < — > a* (It

:aT hT constructed by means of correlation fnequalicies, for all
B |32] ).

Let ¢ be an arbitrary 3-cell {unit cube) in 113. Then

n o, = 1 gince O ? 1, for all xy. We now introduce the
péde =
random phase factors ﬂap as a priori independent varfables, inserting

the constraint = _ & ; With @, = 5 @ (6.2)

a
- 2‘23 ih:"l dc peae ap
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1if o, = =1,

04if o, =1
We set tapu‘[ ap
dp (6.3)

Let w be a rectangle with sides of length L and T parallel to
two coordinate axes. Let @ be the planar surface bounded by w,

i.e., 3u = w . Since ﬂlyz = 1, for all xy,

8 I ® o, =" % @
w xy

- (6.4)
4 o pcw

ap -

This is the "non-integrable phase factor" (Wilson loop) observable
of the mediusm.

Theorem 6.1.

For sufficiently small B

<« 0 :!-ﬁ-l: --u{f;I}

o < . IE] = area of @ .

For sufficiently large g,

< g 3 e-ﬂf|u[]

% , |w| = perimeter of w.

The result for small B follows from a standard high temperature
expansion ]9 « The large B result has first been proven in 33|;
see also |34).

We outline a simple proof.

fLet nlfﬂiﬂipj be the characteristic function of
o, = 1Jﬂ=r',m = =1}. Then

dp
€cg > = {-l}l‘l < ¥ g, > (6.5)
w B N T :
L] pou P
with4_ =lor®, ¢ =e¢, (0.),and || = E_4 . The con-
P v % pew P

scraint (6.2) implies flux conservation, i.e. the total flux
(= # of p's with *p = 1) through each closed gsurface is 0, mod. 2.

Thus all flux tubes, T, are closed.

See Fig. 1: ﬁ‘{] {f’



Given w, each flux tube 1 (closed loop in the dual lactice) can be
assigned a linking number, vi{w,t), (with w), defined mod. 2. Lec

0< Prw{n} = prob. { {3n flux tubes, T eaT o with

|
u{u.ri} =1, ¥l }).

By (6.5) = a, g " PTH{ﬂ}-Prm{11+¥ru{2]*Prm{3}++++ (6.6)

Now to each configuration 4 ={ ipl
contributing to PrH{2n+1} there is one contributing to Pru{zn}
with one flux tube 1, w(w,7) = 1, less,(i.e. ‘F- lﬂipil!,?pztl.
The statiscical weight of one flux tube, 7, i

L 1 { fren |t] = # p's et (uith ¢ =1). (6.7)
Thus Pr_ (2n)-Pr (2n+l) 2 & Pr (2n), with ug1-e'“““t'ﬂm. (6.8)

This yields with (6.6)

£ oy 2@ PrH{D}.

g
Let Pré = gcond. prob. ({ J1: p ET,#p-l, wiw,t) = 1} 3,

given ‘F.* for some p" ¥ p. A simple argument shows that

Prm[ﬂ} > K. {l-PT;}, (6.9)
PE W

and by (6.7) and standard arguments for counting closed flux tubes
through p of a given length one finds

Pr; - l—nnnst* E dist. (p,u) (6.10)

if 8 is large enough. From (6.6)-(6.10) we obtain by a simple
caleculation

= L]
S o g2 const. e o Imi, (6.11)

for large 6 which proves our conctention.
-

Thus if flux tubes have a very small statistical weight,

0=l

the non-integrable phase factor a is = in the average.

22,
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This sitvation is analogous to one met in the Ising model: 1If
contours have a very small statistical weight then 0,0, const.,

uniformly in %=, in the average. Theorem 6.1 has been extended to
the four dimensional U(l) model in |]5l, (the proof being very dif-
ferent).

More realistic sodels of superconductors in three (and four)
dimensions are discussed e. g. in |1ﬂ2|,lnd refs..

Example 2.

We consider pure Yang-Mills latcice theories with gauge group
G = Un) or S{n), n = 2,3,.... BSee Example (I), 53, (3.5)=-(3.9),
and we set =1 and choose im (3.7) ¥ to be the character of the
fundamental representation. Moreover,

Y{w) = x(sul. (6.12)

We study the behavior of §,(Y(w)) =< Y(w) *g in B.
Let w = QT be a rectangle in the (1,v) plane with sides of length
L and T, and let V, (L} be the function (qq potential) defined in
(4.4). It is easy to show that, for w=2, YE{LI * const. L, for

all B; (i.e. permanent confinement by a linear potential).
For v=3, G=U(n), n=1,2,3,...,

ETIL} » const. log (L+l); see |36].

There are arguments in support of

UT{LJ 2 const. L, for G = U(n), SU(n),

n=2.3..., v=3. An interesting case is G=5U0(2), v=3 or 4. Inm |?[
the following somewhat remarkable identity has been proven: Let
L be a family of oriented paths,

{ ?E : 1< us T)starting at the site (0,...,0,u), ending at

(Ly0;...,0,u) and lying in the plane T [x:x¥ = u), Let {TIFI
- Lk

be the path obtained by reversing the orientation of $: . Then

Elﬁfﬂﬂ] E< Yw) s

I
- el § Ha"{u—u.gh{u}lhf_}.
Eidl=w u=]1
T
-7 xBy
u=0 T“ oy

(6.13)

E =1 %
w1



where TE is the bottom face and YTil the top face of

wy B (u) =g, xyex ), and F(g"(u-1) 8 tu}l-r ) ia o o

invariant fun:tinn of thﬂ "horizontal" gauge fields g {u-l}rg (u)
depending on : The r.s. of {(6.13) can be viewed as a sum over

joint correlations of interacting random paths {(forming a "random
surface" L). In mean

Fe"u-1),8" () |v,) - e~olvy (6.14)

with a > =la [(2v=3) (v-1) (4v=4)"2g].

Thus £f B< 5 (v=3), resp. B¢ 3 (vd) (6.15)
b ![”}Lxr} *a & efﬂ(lwi}. (area decay), (6.16)

by (6.13) and (6.14). Condition (£.15) is not nearly necessary for
area decay, because (6.14) is only & rough estimate and because the

factor I ¥ig T £.-1) on the r.s. of (6.13) provides for strong
=l Tu “{Tn}
additional damping of < Y(u )%,
T

« I e -0 Uy 8 v i . (6.17)
u-

We expect that an improvement of the estimates in |7,37| taking into
account that factor ought to permit to show that
) ?{ML”T _EEIMIJ, for all g when w=3. ([The situation for

vey ia technically less well underastood).

1 ?B < g

Mext, recall Example (II), 53, (3.13), (3.14). Choose x=0,
y=({L,0,...,0), t= T and approximate exp [}t{ﬂ1+ﬂu]] by

(exp [-t/TD ] exp [- e/ V] (6.18)

If we write out (6.18) as a sum over products of matrix elements
labelled by paths '[lwlIII ETlI:,y} and compare with (6.13), (b6.14) and

(6.17) we see that for suitably small § and a proper choice of t
and a

€ Yl ,0) >y & exp {—:w +V ;|[| {TT.-,“ ).

Connections between lattice gauge theories and the diffusion of
strings or loops of this sort might have Interesting consequences

4.
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for the heuristic understanding of the string dynamics in Yang-Mills
theory.

Example 3.

We consider the behavior of the disorder parameter in a
three={or four) dimensional S5U(2) lattice gauge theory with dis-
tribution di{g) as proposed by Mack and Petkova !EEI: di(g)
is given by
43(g) = lim 5 Z;"

6 (v yxlgyy))duls), (6.19)
At Z

3 cel  Apec

with dutg) = du () as 1n (3.8), (3.9).

The expectacion inm di is denoced < — PE, One is incerested
in the behavior of the expectation of the disorder parameter,
< E{ru!} *>"y with 1 as depicted in Fig. 2:

B
0 “{s0,1) x= (o0, /x])
Let ¢ = Y%(l+sgn x (g. )). The constraint » @€ {( » yx(g. )) enforces
E L [ dpec ?

that E ¢ =0, mod. 2. Thus fp may be interpreted as a :Ez flux
dpec

through p, and only closed flux tubes are compatible with the con-
straint; as in Example 1. The statistical weight of a closed flux

rvhe, 1, is boundea by e-hm:‘ll".r with k()= as =, as follows
from a chéssboard estimate |[38|. Expanding < —-1; in flux tube

configurations it is a fairly simple matter of counting flux tubes

of given lengths passing through Ty U0 Prove that when e_ktﬁ}i$
sufficliently small (i.e. B large)
€ Blr ) an g '_u”'“. {6.20)

see |22,23|. (In outline we have followed here |23|). One can
show, by comparison with the Rz sodel ,

« ¥_ 0 }é £ E'u“ld”’
Pea g

for @ small enough, see |22|, and by arguments very similar te these

where np = EEN X tgap],
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used in Example 1,
E-n-:|m[}_ -

< ®_g > 2 o = g,
p:uF g
for large B.
Example 4.

1
Let G=U(N) M= 1,2,3,.... Let THIM} “ N xH{gu] with Xy the
character of the fundamental representation of U(N).

One is interested in an expansion of

S (g(oy)senns X)) = < B ¥ (u)) >, in povers of 1.

To leading order in i, < &) o)) >,

correlations are suppressed in the N = = limit. The problem is to
idencify and compute the H = = limig of < ?H{u} bﬂ and to then

determine systematic corrections to Sn’ in particular to

factorizes, l.e.

< Tﬁ{m} }E' in the form of power series in %-. A somewhat heuristic
calculation [39] ylelds
< THENJ o T E wig,N,I}, (6.21)

E:dE=y

where { E: 3L = w} are all surfaces built of oriented plagquettes

(2-cells in Z") bounded by the loop w, and w(f,N,I) are the weights
of these surfaces. One can argue Tiﬂ,#ﬂl that, to leading order in

%. only simply connected, normal surfaces, E; with 3 = w contribute
to the r.s. of (6.21). The weights of these surfaces are
= BXp [_—dE lz| J, with |Z| the total area of £. Moreover surfaces of

higher genus (with handles) are suppressed by powers of lf W
HZ
|39,40|.
In spite of these preliminary findings a systematic expansion
in ﬁ is migaing. To do that one must first find geometrical char-
acterizacions of all surfaces contributing to a given order in 1fH'

determine their weights and sum up their contributions. This
appears to raise very subtle problems in the comblinatoarial peometry
af larciee surfaces and combinatorios. A altermate approveh based
on the techniques sketehed in Exomple 2 hos been sapggestod Do |?|}.
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For a more detaliled analysis and refs. see E. Witten's contribu-
tlon, and for results concerning the g-expanalnn Parisi's contribu-
tion te these proceedings.

Related problems arise in the statistical mechanics of discrete
polymers, of crystal growth, ete. A great deal of knowledge in com-
binatorial geometry required for the solution of such problems seems
to be missing, at least among physicists.

§7. Conclusions and Acknowledgments.

Here are some important open problems which are presumably
central to the further development of quantized Yang-Mills theory.

(1) Proof of ultraviolet stability of quantized, non-abelian
Yang-Mills theories and commections to renormalization group argu-

ments. Use of "block spin" transformations. (Important progress
in this direction in the super-renormalizable case has been announced
by Bakaban |29]). See also |25|-|27|, |30, |[31].

(2) Construction of algoricthms permitting rigorous error esti-
mates for the calculation of large scale (low energy) phenomena such
a5 quark confinement, absence of coloured physical states (colour
screening), Regge behavior of resonance spectrum, quark bound states,
im QCD. (Along these lines one would like e.g. to test the validicty
of "instanton physics," set up calculable 1f,- and b*ﬂ:pﬂnﬂiﬂnﬂ and

prove their asymptotic nature, exteénd the methods sketched im §6,
Example 2, to the continvum limit, find rigorous connmections to dual
resonance models|see the contribution by J.-L. Gervais and A. Neveu|,
BLC. ).

(3) Investigation of comservation laws and complete integrabil-
ity (at the classical and gquantum mechanical level) of pure, non-
abelian Yang-Mills theory. (Existence of Bicklund transformations,
conserved currents?)

(4) Application and extension to theories with non-trivial
S5-matrix of the methods of Jimbo, Miwa and S5ato to Yang-Hills theory.
(Their methods are based on using Schwinger=-Dyson equations for the
Schwinger functionals discussed in 54 and the discontinuity proper=
ties (4.7), in conjunction with expressing the fields vy in terms of
the disorder fields b; see [21]).

In conclusion I wish to thank my collaborators, D. Brydges,
B. Durhuus, E. Seiler and T. Spencer for all they have taught me and
the joy of collaboration. They should have written these notes.
Special thanks are due to H. Epstein, G. Mack and E. Seiler for
numerous, very valuable discussions and encouragement. 1 also thank
the organizers of the Cargése School for inviting me te participate
and lecture and for financial support.
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O THE CONSTRUCTION OF QUANTIZED GAUGE FIELDS

®

Jirg Fréhlich
Institut des Hautes Etudes Sclentifiques

91 440 Bures=-sur=Yvette / France

ABRSTRACT

We give a very elemontary introduction to the geomctry of
clasaical gauwge fields. The "observablos®™ ol claszical g Dhenory
are isclated, amd discrete approximations are discusscd. We bhien
proesent a general formulation of quantized Yang-MLlls theory amd
state 4 reconstruction theorem. Subsequently we exemplify the go-=
neral scheme in terms of lattice theories. Some bagic propertios -
= ponfinement, phase transitions, ectc. = of lattice thoories
are discussed, and copnections o dual resonance madels are
gsketched, We finally outline the maln steps in the construction of
the two-dimensional, abolian Higgs model in the continuus = ol
thermodynamic limit.

These lecture notes sussarise a4 small portion of some recent

work on the description and construction of guantirzod gawvge ficlds

[1 = 7] . For its major part that work has been done in colla-
boration with D. Brydges and E. Sciler. There are two excellont
reviows [B8,9] by E. Sellor which the reador who does not want be
read the original publications i8 advized to consult. Some concept-
uval and foundational aspects of quantized Yoang-Hills theory are
discussed in [10,11].



COMTENTS :
I. Introduction
I.1. Classical gauge fields

Iiis. Some facts about the goometry of fibre bundles
I.3. A tontative, goneral formulation of gquantized
Yang=Millas theory
II. lLattice gauge theorlios
I11.1. Some of the basics about lattice gauge theoricd

I1.2. On the phase diagrom of some lattice gaugo thoeor oo
I1.3. Connections to dual rosonanco moddols

II1. Remarks on_the continuum limit of tho abollan Higgs model in
two space=-time dimensiong

I11.]1. External [(c=pumber) Yang-HMills fields
111.2. Inteqration over the gauge field (abelian case) and ro=-
moval of cutoeffs

IV. A look into the future of the subjoct

Sections I.1. and I.2. have an elemontary, introductory
character. (The advanced reader should skip them). They aro,
however, quite useful as a plece of motivation of Ehe baufic
concepts discussed in Sections 1.3, and II.1. The remainlng
secticns are skecchy, and the reader should consule [1=-19] .

. ITHTRODUCTION

In this section wo try to Introduco thoe main mathematical
and pliysical notions concerning gauge ficlds.



I.1. Classical gauge fields
Classical abellan and non-abellan gauge fields have beon used
implicitly in physics for a long time, pnamely ln the classical
mechanics of rigid bodies; ("3 index symbols®). I fllustrate this
point by means of an example which I learnt from E. Sciler and
which serves to explain the concept of a principal bundle,

Consider a spherical ball of radius @ rolling on a4 twa
dimenslonal Ricmannian surface, M, which wo ooy choeosse for simplie-
ity to be che Euclidean planc. ("Rolling"™ means that the point of
contact with the plane on the ball is at rest at cach Instant).

The orientation of the ball is described by a threo-frame attoched
Lo hhg ball; the position of its center of mass by two coordipates
(x" ,xc).

We propose to describe the motion of that threo-Fframe as the
ball is rolling along an arblitrary curve Y c M.

3 2

1" Tix', )

Flg. 1

The components of the wectors 1°,2' and 3° in the basis 1,2,3
are given by the column voctors of an orthogonal matrix, Bix,y).
At the point p = (x!,%x2) € M the bkall is rolling in the diroction

(x),x4) tangential tv the curve Y+ It thus rotates arcund the
axis & (x!,%x%), the unit vector orthogonal to ¢ (x!,x2), If the
tntnlldilplnctmant af the center of mass is di the rotation angle
is p=! 4R,



Fig. 2

Let L = (g elipslig) be the usual yunerators of rotations aroumd
the 1= ; &=y pesp. J= axis. Then the infinltosimal rotation ol the
ball is given by
i 2 £
B{:Ird: T T I:].+dntxl,1a: } E{:‘,xz}, (I.1)
whero

1 1.1 2 Fi 2.1 2
di = b (x ,x JdE , dx = ¢ (% ,% )di,

and
i 2 - 1 2 " -
l*d]-i{!*!]-id-nt:t.!:l‘Lllldt
1 2 -
= L+ (& l.:-u:lf:r: ”'J. = I:Et:ltl.xziLI:I 1] id:
2 L .2
Ed+ £ A ix .x Jd.:j. (I.2}
=1 3
Thus
1 2 -1 2 .
A (x",x ) =p e L, = 1,2. {1.3)
i 1=y M .

The |-form A=(A},A;) with values in sold)}, the Lic algebra of
50(3), given in (I.3), is called a connection (on a "principal
50(3) bundle with base space M").

The CcoOmMponents a®" -{h? .a: } defined by

1 1 =7

a, = 0, dz‘n -

al’ =0 (1.4}
- 2

nf--n !"2'“'

are called veiotor [orential,



Mextk, imagine the ball is rolling arcund a small rectangle with
sides parallel to the 1- and the 2- axis of loength n, 4 , redpectivoe-
1y

- ax'ndx®

¥ |

i & &

Fig. 3

We propost to dotorminge the total rotation, AR, of the Lall altor
ane round trip along the carve v doeplcted o Flg. 31 Lo scoond or-
der in € and 4 . A simple calculation gives
AR = 1 - [A A ] ced
1 2
-1+ n'ElLE-L 1 exd
1

=1- p L, £+v

2
% EOP L de oA, (r.5)
i,jup 3

i-

i.e. Fij = [hi.nj} =pn L

2 1
If the radius, p, of the ball depended on {s-:I v Yy dumap = pilx .x‘gli
4 const., we would find

. Y ; BT =
| ¥, ¥ || 4
lf“tx o - i=—ji- t:'.xi - {xl.x )
bx th
4 [aj.Aj] iy, (1.6}
1 2 1 z.-1 2
with A, (x°,x ) = pix ,x") L €y Ly (1.7)

i=|
a

The 2- form F is called curvature,its components ¥ _ in the basis

‘LI'LE'LI! of so(3) are called fieid strength. i)

Suppose now that, at cach poist p =1x1,x2} of the plance M, wo

introduce a new coordinate SYstem I“p,E“Fr]“F related to the system



1,2,3 by an orthogonal transformation O =0({x! x?}. ‘he orlentation
of the frame 1',2',3" relative te 1" , 3" 3" is thus given by
an orthogonal matrix r r P

O, 3 2 £.=1 1
Bix ,x ) = ﬂ!ul.# i Bix .321+

By (I.1}, (I.2] we have

Butu1+dul.uz*dx2! = 1 idﬂn{xl.H?}I B“iui,:zl, (1.8)
whare
1 + dhutui,:zi = ﬂtxl+dx‘.xi+dlzlwt{l +dH1H1,uz]]Dlx1,le;
2 (1.9}
e T AY (x,xt)md.
=1 7
Hence
n? o %) = oixt,x%) ) “1{“1r“2‘ oix' %%}
_ i 2
= nt:l'“'z] 1 .:.i.l:!!.“..".l'l;.-] (1, 148
i

1 2 1 2
The mapping O:M —+ S0(3),(x ,x ) +* Ofx ,x ) 18 called o qouge
transformat lon.

It follows vasily from the definition of curvature that

4] 2 1 1 2 1 2

l"'L1 Fij[x e YO Lx ) (I:113%
From tha oxample discussod hore the reador can, in principle, ab-
ltrﬁ:t most basic notlons concerning principal bumndles. But soce
[12].

1 1 2=
(% ,x })=0(x ,x )

Hoxt we single out a vector k € 52 (the unit sphere) attachod
to the ball, i.c. over ecach point pEM we have a two-sphore of pousgib-
le positions of K . The motion of the vector ¥ as the ball is
rolled from (x!,x?) to (xl+ax!,x?+dx?) 1s clearly described by

itn:fdﬂl,xzrdx?} - ll+njtnl,xzjd!j}§1:l*xg} [L.12)

e howe started here to apply the summat don eonvention) .

Thiggr 1 e .1.';-::|I1I|"|.'I!l||l Aoaletermipaesd Wil o anel b prwranl 1=l
Fransgsaed ol ko

L]
Unmdor gauge cransiormations, o, K ol bous ]y Eromsiorme:
according to the cquation



U RRC S o N I (1.13)

]
This cransformacion law leaves (I.12) form=invarianc &Ff AR
is given by (1.10).

This example can be generalized as follows: Suppose the mass
density of the ball is not rotation invariant. Then the ball will
have a moment of inertia, 8 , which is a symmetric temsor of rank 2
not proportional to a multiple of the identity. With respoct fo
rotations of the bhall, 0 transforms according to a dircct sum of
the trivial (tr 8) and a spin 2 (0-« 1r 6 +1) representation.

More generally. the ball may have some intrinsic propertles describod
by a quantity 4 that transforms according to some reprosentation

U of 50{3) when the ball is rotated. It will be no surprisc tn

learn that thn parallel transport of % from (x).x") to

(xl4ax! ,x24ax?) is given bay

+!:I+du1,u2+d!2] = :qu:njt:',12116n11+:x1.x3h* (.14}

and the gauge transformations by
2 =
ﬂlxl.x o= Uiﬂﬁxl.xz] 51[;'.:21. (1.1%9]

What we have discussed here can be extended to the case whoreo M is
a general two-dimensional manifold (surface). In this way one can
picture many basic notions concerning fibre- and principal bundlos
with connection,

We end this section by briefly desecibing how Lhe notions
developed in the context of the rolling=ball example apply Lo
classical field theory.

let M be some manifold, physically the space- (imetinary) tine:

manifold. We consider o classical, physical system escribod by
soms Fleld ¢ on M., The fleld & is supposed to have Soms: inLecyal
"degrees of freedom”™ described as follows: For cach point x=i M,
#i{x) is an element of somc topological space V,, homeomorphic

to some fixed space V. Typically, V is a vector - or a homogoneous
space. We also suppose that we are given a topological group G
of homeomorphisms of V, physically speaking a group of internal
symmetries. We are describing herc what the mathematicians eall
a fibre bundle (with basc space M, fibre Vv and group G), and + is
called & cross-section of this bunile. For the moment {(and in all
cxamples discussed in subsequent scctions) we may imagine that
V=V, for all ¥, and that the bundle is homecmorphic to M=V,
(This is however _not 50 e.q. in the theory of the Wu=-Yang up.guotic

monopole or the ¥Yang-Mills instant ns on the Four sphoro) .



If one tries to make a dynamical theory of the field ¢+ one must
be able to couple ¢ (x) to ¢ (y), for x4y, i other words, one must
be able to compare 4(x) and #y), for xdy. However, a priori, the
points in fibres over distinct points of the base space M cannot be
compared, unless there is a notion of parallel-transportimg * (x)
from x to y along a curve Y,, joining x to y. (In the example of
the ball, parallel-trannpnrt¥ﬂq consisted of rolling). IF M is
a manifold, i.e. continuous, parallel transport can only be
defined if G is & Lie group. In that case, suppose we are given
a l=form A on M with valuea in the ILie algebra 3 of G.

Given #(x}, let & [(y,%) denote the parallel transport lor -
digplacesant) of ¥({x) from x to v along ¥.

If % and ¥ = ¥édx are Infinitely proximate the parallel]l dis-
placemant, *(x+dx,x),; of ¥(x) from x to x+dx is defined by the form-
ula

]

blx+dx,x] = {i“ + ﬂjtxldx YoRix), J= da.... W (1.16)

The l-form A is the conneoction or gauge field. (In the example of
the ball "parallel displacement” is the same as rolling).

Equation (I.16) permits to calculate & _(y,x), without v being in=
finitely proximate to x, see Section II.2, and to define the co=
variant gradient: Let t be same wector in the tangent spoacn at X.
HWe set

-1
£ t‘i'n;.: (x) = lim h  (*x+ht,x)- 40x) ).
]-
i (1.17)

= (V) I1x) + Alx) #ix).

(If M is not flat the expression in the middle requires some cbviocus
changes) .

i
It i3 easy to see that, (with 315 Jaxly,

P = [vﬂ, vaj. Py " ainj-ajai+{ai.aj} {I.18)

corresponds to Whab was called curvature in the rolling=ball

s e

Gauge translormations are homoomopphl sms

) @ W === L
x =

$ownd A Lol onm abssspel by Las



ax)  — #"pg = noo " e, '
" 3 » (1.19)
Ath] =+ AK) = Bix) OAGRIEGI=hi%) "L (h) (x)

N

: ¢ .
VT B0 = mT @), (1. 20)

[the covariant Elein-Gordon efquationd .

One may wish to {ntroduce dypamics for the conpection A, ltzelf,

rrrrrr

equations_

?h*F = (. [1.:21]

(If F = [“A.' ".‘-'AI the cqguaticns

wn+ (aF) = O (T.22)

are automatic, They are called Bilapchi_ldeptitics).

For discussions of classical field equations, sec o.g. [t]]
and refs. given there. They will not be studied in the present
notes.

The basic ansatz of present day slementary particle physics
(without gravitatiopal interactions) is to Jdescribe matter in
terms of guantized versions of Flelds that are cross-mections
of fibre bundles with conpnection aml tho fumlnmontal interactions
af matter in terms of gquantized wversionn of Clese copmectlons. e
present choices for G are such that It equals or conbalng as o

subgroup

SUIJHEul

® SU2T) w 010
our Wiz

k electromag. ™ bR

Although it is appealing that present day physicéd of matter
and its fundamental interactions has become intrinsically goo-
metrical it remains unsatisfactory that two kinds of geomotrics
are involved, Riemannian (or affine) geometry in gravity, the
geametry of fibre bundles in strong and electrowecak [nteractions.
Moreover, there 1s no convincing | heoretical arqument as to what
the right fibre bundle (the right gauge group GF of clementary
particle physics is.

We shall henceforth igmore those problems and proceed to
sketch some rigorous results concerndng quontom Fleld theorios that
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are based on fibre bundle goomotry.

Tads Some facets about the geomotry of Fibre bundlos

The intuitive concept of [ibre= and principal bumndlcs has boon
developed in Section I.1. What the mathemuticians understansl by e
words can be looked up e.g9. in [12]). For our purpuses the Lol lowlisg
may suffice:

Lot M be the physical space- (imaginacy)time manifold. lot WV
be a topologlical space with a topological group G of homcomorphil sme
of ¥ into fitself. Throughout thess notes G will be a compact lde
group. Points in H are dencted %,¥s... % donotes a point in W,
and h, g, «.. clemonts of G. A _fibre hgn_:_ﬂi'? over M with fibre V
and group ¢ consiuts roughly of a bundle space F with projection n
guch that, for all p&F, n{p)EM, and for all xCHW vV i=n""(x), the
fibre over x, lo homeormorphic to V.

For each x€M, there is_an open nelghborhood it ¢ M of x  and
a homeomor phium t,“ flmy == lm} such that s, ¥ =x, and
B, 04 s=by (%, 1) 1s a homeomorphiism [rom Vo te V. If £, Ly o
yg.’t, are two homcomorphisms from ¥ to V, then hiy)=fF2lre” is
supposed to be a continuous function of Y& with values in G.

The functions h arc called gouge transformations. Flnally, for

i =1
yEIN' El-?:-l.l {311" Eﬂ."j‘ Enl ¥

iA supposed to be a continuous, G-valued function of ¥. It is callod
transition fumnction.

If ¥ happens to be the group G, we cpeak of a principal bundlo
(with base space M). The group G is called gauge group.

It follows from thoeoes defimitions that bundles can be charactk-
crized by moans of thoir tronsition [unetions:

Lee {iI, l'f:l be a cover of M by open neighborhoods with khe
proper by thnt in: all iCl thore exists a homcomorphism

=]
1 u
!:ﬂi ﬂ:! - ml'
with all the propertics speciCied o the above definiclon. For

0.rel. = ¢ § m

i !..j T let gij gtti'.f.
al

denote the trangition function. ‘iwo sets of transition functions

{TIJ il 1“11 }
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determine equlvalent bundles LfF

=1
Iy gy Ny

with hj (%) a G=valued functlon on ﬂj.

‘hia poermits to assoclace wich each fibre hu:ndluT = {F; M,
¥, G, =) a principal hu:adle"? s (P, H, WV = G, G, =): I?im this
principal bundle with the same transitlon functions a6 T, See[12]
for dotails,

I (1. 240

qij =

Examplatd: (1) Mobius strip (base space Elu cirele, fibrol-1.1],
groupZzl; (2) F = HuV, 6 ={1} , »{{x,4}) = x; this iu calied the
product bundle; (3) The J-sphore 53 is a principlo Dundle with basoe
space 5¢, fibro §!% 0(1) and group U{1).Incidentally, thiu is the
bundle space of the instanton of the two-dimensional € Flo-mslel and
of the Wu=Yang monopale,

{4} Interescing examples arfse in the theory of (unctlons of complex
variables,

Hext, we consider fibre bundles with connections, i.o, wo ro-
consider the notion of parallel transport {or = displacomont).

I.Et?l- (F, M, V, G, n) and {Hi!ii‘_I be as abuve.

We suppose G ls a (compact] Lie group with Lie algobira Wi disd S
that all transition functions are continuously differchitiable on
their demaln of definition.

A connection, A, on F is & family of |=forms
hu:,

i€l
with values inl} gsuch that AI“ ig defined on 03,001, and lor
xC-ﬂiru_]ha,
[i) ) =] o |
A (%} = q . [Z}A ()g,  (xl=g, (=) {dg ix)
| L3 il il (1.25)
& =] (1 o=
E;”_ {X}A *”"11{” qji{xj Id'!]jiHn!

Moreover; if h Is a gauge transformacion defined on '..'...I'l.h:l'

transforms according to '
hi Ly _

_i -
h{”h I

i
A b k. (1. 26

We haveo atartnﬂ. horo, to use the notation

A=l A de : (1.17)



Wwe shall see that a connection is proclisely what we nood to define
parallel tranaport on F.

Moxt, let Q g!i-'i!i-.fﬁr some IET, be some opon subscot of M.
Restricted to 2, F is hoscomorphic to

Eﬁ m 0 ® W7,

First we define parallel transport on ﬂ%.

Let » &0 % (x)E V., We want to define the parallel trangport,

g fix), of #(x) from x to YE D
¥X
along a curva Tyx © i, with q_f & G a homecmorphism from V onto V¥,
X

{L}. Cuppoge ¥ = x+4y iz infinitoly

given the connection A = A
proximate to x. Then

q?ﬂ #(x) I B e, i *i{x): -HVMJ:H #(x), (1.2m)
with W 3y
Aix) = T A (=) dx

3=1

This equation can be intograted along any oriented, continuous,
piecewise smooth curve yyy © I connecting x E @ with y € 0.

To see thls woe may temporarlily assume thac i is flat, l.e. @1 is a
subsot of EHY.

M
K, K
Let {illt_i]'--1 ":T}-'H be a family of ordered segquoncoes of points
on Tyy with tﬁt propecty that
3 k
X =X, X =Y fN-" ﬂ.ll k -y I|2|3J--—-| and
! M
‘k. k AT e
dist ﬂ*“i-rl o, as k -+ o , for all L-'l....,Hh—i.
Then
1 k kK k
g‘r = 1im i ‘b[l“*ﬂnj Exl'l I:ni”-:i;i"j] {1.29)
yH ks o hnﬂk
The physicists like the following cospoct Curmsula
g, =P {uan‘ A, (x)dz?) (1.30)
‘Fw‘ p ]
|

¥



A3

a3 an abreviation for the r.s. of (1.29); (P:= "path ordering™).
It follows from (I.26) and (I.29) that, under a gauge LransTormatbon
h, g trangforms according bo
h .
q el | = h 1!'1’] q bix). (r.31)
Tyx v Yyx

This is the basic proporty that pormits us to define paralloel trana=
Fort on F in terms of g. It is given by o homcomorphi sm

r :+Vv, ===V, defined
P v 0

=
r = | q f. (1.3}
1]
Y e iy 'I':_,: L, X

Hote that if L. and E1' aro two homcomorphisms rolatod by a gawgo
transformation, i.o. hiy) = €. = 34 : € G then

2.y
f, =gy 9 Ln‘i " b iyl N £h
o % " tqu-“ I i X ]
-g'_ _g' g e
iy Ty,u Hx

i.o. r'l’ y 18 independent of the choice of coordinates (the gaugo).
E:quutimﬁ (1.25) and (I.33) permit us to define Iy y for curves Ty
that are not contained in a single coordinate nelqﬁhurhm::l Myt O
CULs up Yyx into curves

contained in « with

ni {a)

L ]+ @ and sots

ﬂi in}n ilast

r = [ r r (1.34)

¥ ¥ ¥ ¥
iy =1 *n-1%n-2 2%y

with ® =¥, %, = %. By (1.25), (1.31}) amd {(I.33) thiz ia a eon-
siscent doefinition.

tme may now ask the guestlon umiber whot copdi ELops dooes

r (resp.q_ )
Yox Vi



-Ay-

depend on the path yyx only through the endpoints x and y.
We first discuss this guestion locally, fer Yo in a simply
connected, open set 1 € iy, for some iE I.

In this case the answer s very simple: If and only if g

iz of the form Vx

g9, = hiy hix) ! {1.35)
¥

Clearly (I1.35) is sufficient. To see that It is necoessary one
chooses a point x5 € §1 and sets hixg)l = . One then chooses a
family, I"ﬂu ,of piucewise smooth, orien curves, Y, starting at
X, with  the property that each x € I is contained in precisely

aone line ¥y E L."D. Lec il‘"‘a be the porticon of v with endpoints Xg
and x. We set

1" [“] = = -
gT}IH
=}

Let x and y be arbitrary points in 01 and yyy 4 path
connecting them. Since gy only depends on the endpoints of ¥

L = g q= v L.0,
b b | ¥
¥X, ¥& x5
=1 -1
*i,r o 'f!; 'i'; = hiy} hix}

which proves (1.35).

The curvature, F, of a connection A is defined by

Fedh +#+ANMNB, (1.3G)

l.e. P, = ELAJ - -':Ijhi * |A1.-Aj] : see also (I.18).

We now claim that for (I.33) to hold it is necessary and
sufficient that F vanishes on {1 .
(In the example of the rolling ball this can only happen inm the
limit o = pixl,x?) — = , for all (x!,x%) € ).
A proof of this last assertion cap br vhtalned (rom the following
consideration that ifa of imdepend-at interest: Fiok o curve 3y @0,
Paramet el e 1?:: by o funict fom e

x{s) = {:I'h'-.'r....,:.vqnl:l, wRac,
with =) = %, 21} = y,
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How consider a function
[=1,1] = [-1,1] — @, (=t} — x(s,t)

which is smooth in t and such that xfo,t) = ¥, x{il,t) = ¥, [for all
t, and x(s,0) = x{8). Lat ¥ (£} be the curve parametrized by
#xi{s,c). (It is a deformation of Tyx leaving the endpoints §fixed) .
We propose to calculate

d

T qTr!Et]. Lat Txﬁu',ti:{u.t} ba thae portion of r?x{t} starting
at xis,t) and ending at =[{a',t)l. Using [(1.29) it is easy to sec
that

1 an ]
i |
Lo, o [ama [ttan,en 2t ilime g
¥ o x5, L) A%
"THE'HH {1.37)

It is & simple exercise in integration by parts to show that

1
J ds g ( 22 (xts, )= [va] tets,en))
Tyxis, t) B
(=]
. s, t) (1.38)
s gT = ’
xilm, b

for any differentliable funckion % on [0 . If we sot

i
Yik(s.E1) = Ay lxls, e)) 3“—%&"

in (I.38) and use (I1.36),(XI.37), we find

1 i )
4 Lo O 3T
= % e -Ju‘ 9, [F Foyixist)) ]
] o it (a,E)
% ET (1.39)
xis, t)x

Incidentally, by differentiating both sides of (1.7 with rospect
to t, applying (1.38) with

1
= dx” ia,L) i (8, k)
¥ (zls,.t)] thtwts.t11 o T .




IE

and using the Bianchi identity
ar + [aA,F] =0 (1.40)

one may caloulate

dE

dtz TY#{t]

(For a slightly cumbersome way of caleculating this soa e.a. 3% ],
The physicists have heen interested in eqguations for

g2
h f—
PooE,

L]

q v

¥
y:!tl.....tt....}

because they suggest formal connections between Yang-Hills theory
and dual resonance models [15)]. To the author these connections
appear,; however, somewhat superficlal).

As a simple corollary of equation (I.39) we have:

g depends only on x and y Af and only if F =0, (I.41)

T‘:’#
Suppose now we are given two connections A,A" on § such that

F EFIA =F(AR') E F',

Quesation: MAre A and A' gauge-equivalent, inm the sense of eqgu.(I.26]7
Unless G is abelian, the answer is: In general they are not gauge-
equivalent. (The reader can find a simple cxample of this by study-
ing the rolling-ball exanple!} This is an aspect of the intrinsic
non-linearity of non-abeélion gauvge Ficlds.

The "globalization" of the above considerations is only straight-
forward 1f the base space M is simply connected. (Recall the Dohm-
Aharonov effect) .

We now skip some material roughly identical to the one in (:) . B2,
(2.9) through end of § Z. The correspond nce is given by

(1.42) — (2.10)

(1.43) ot (2.11)

(I.54) - (2.13)
Theorem (1.45) «—= Theorem 2.1
Theorem (I.47) =—>» Theorem 2.2
Remarks 1), 2) =—s Remarks 1,2 .
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1.3 A tentative general formulation of guantized

Yang=Mills theory

Let M =-II" be Euclidean space=-time. Let G denote the gaoge
group. Every principal bundle with base space M{RY (s equivalent
to a product bundle, f.¢. we may consider M xG to be the bundle
space. Motivated by Theorem (I.47), Section I.2, we regard the
funceions Y0®) = yxiggw ), where 3 is an arbitrary unitary character
af G as the basic "filalds" of a Euclidean gauge thoocry on M with
gauge group G. The purpose of this secticn is to proposs a schome
for quantization of such a theory by which the ¥(®)'s are con-
verted into random fields on the space L of all oriented, smooth
loops on M.

If one studies the example of free electromagnetism in wed
dimensions as a theory of loop observables, the so called Wilson
loops it becomes clear that one should require all loops in L to
be at least twice continuously differentiable; oriented closed
loops which are free of self-intersections,; ("solfavoiding loops™).
From now on L will bo understoca to be the space of all loeops
which have this proparty. (Classically, for a Epacemt of continu-
ous, drreducible gauge fields on M; the algebra gencrated by
{Y(2) = x{gEI +#E L) s still dense in cW,if x is faithful),



-8

We propose to discuss guantized gauge theories in terms of
Buclidean Green's - or Schwinger functionals

Enirliﬁi}' ‘Tl ‘n{fn]‘] “rj(rj'} - Ij{gfj“r

corresponding to “"guantized versions” }'j {E_j} of the functions
¥ j{r 11.

First, we describe this program heouristically.

"W ey (1.48)

Let U-I&ux ke (F (x) P
(TRS)

denote the classical Euclidean Yang=Mills action. (It is assumed

here that G is & subgroup of some unltary matrix group. Then the r.s.

of (I.48) is well defined). Let d [A] denote a formal “Lebesgue

measure”™ on the orbit space () of (very rough) gauge fields modulo

gauvge transformations. Consider the formal probability measure on

£ given by

du ([a]) = 27
J cButlaly

4 e'ﬂum‘]’ﬂla]. {1.49)

with Z = a[al,
which, mathematically, is perfectly meaningless.

Heuristically, the Schwinger functionals are given by the
Euclidean Gell 'Mann=Low formula

I
S“wllﬂil.".,r“ifnn -J dy ![Al;ﬂl ijtfjn . (1.%0)

L]
In the case of free electromagnetism, (I.49) and (I.50) can be

glven a rigorous, mathematical meaning Lf one defines HIY( J) by

d

NIY(E)] = exp [1§nu:u: dx (1,51}
)

where K -1 lim Yyn|x|
%]+ o

is a divergent (normal ordering) constant, nnd[:!-| is the length of
¥ . (We have chosen A, to be real-valued here.(I.50) and (1.51})
have to be understood as limits of regularized objects. See [ 5]
for scme general considerations concerning (I.51) ). Im this
example one can see explicitly that 5, (¥, IE‘I], R !“;:E“: I
diverges when

Al 2 ) min |x-y| tends to .U, unloss =2,
i i i
% EEL
- RS



The remainder of this section is contained in (:} , B4
of (E} are unfortunately somewhat different. Here is a key :

® 2

0
Ly

.LI'I.

>

® ()

({¥M2)
(YM3)
(YM3")
(YM4)
(YM5)

Theorem (I.553)

(1.56)
(I.57)

Lk

- 447-

r @

(51}
(54}
(52)
T ey
(83)
{55)

Theorem &.1

(4.4)
(4.5)

. The notations
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IT. LATTICE GAUGE THEORIES

One of the main virtues of lattice gauge theories iz that they
represent a gauge-invariant regularization of continuum gauge
theories for which Schwinger functionals cxiast satialying propertics
(¥YM1), (¥YM3) , (¥YM1"), [YM4), (¥YMOL) 800 Section T.3,and (YM2Zy) Invariance
under all those Euclidean motions which leave a lattice &,
typically

e ZY = (x :c-‘:: e 2") , € * o, invariant,

This is still ensugh for the reconstruction of a guantim
mechanical system, as described in Theorem (I.55), with tho ox-
ception of full Poincard covarlance of the resulting theory.

As a consequence, only a weak form of locality is verificd for
lattice theories. See [1,21-23)] .

In order to understand the basic structure and intrinsic
properties of lattice gawge theories one is advised to go back to
Remark 2}; following Theorem (I.47), Section I.2: Let

Az Ly {EI‘EE""'I

be all finite, orliented closed loops composed of links of a lattico
.-t.;'g L Iu. Lot

c, n
Ly
denote the algebra of functions on the orbit space, @, of continu-

ous, classical connections (gauge potentiala) on Buclidean space-
tise, BY, modulo gauge transformations, gonerated by

f'!'jlf'! = :;ing!} 1 B E Ll} .

with xy arbitrary irreducible, unitary characters of the gauge
group G.

Clearly, C;, " is a separable approximation to the space
C{N of all "observables" of a classical gauge theory.

The idea is now to convert the elements of

c.

Ty
into random variables distributed according to a probability
measurg dy {a positive, normalized; continuwous lincar functional

on € & ) with the proporty thoc the Schwinger Functionals
i
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snwl{flh..., rn{E‘nn = j du jﬂI 't‘j{,E"j‘n (E1.1)

satisfy properties (YHI}, (YM2 },{¥M3)=(¥YHG}, (with the possible
gxception of (YM5) = r:lual:ar].na = uniquenetss of the vacuwm) .

Thus, we are really trying to construct random flelds ¥4 on
the loop space Ly of a lattice ! having the mathematical structure
determined by (YMIg)-(¥YMG6y), (with (YMn,)=(¥YMn), except for n=2).
Given the values of all ?E ¥ , e Ly, a simple variant of Theorem

(I.45) shows that they determine a “lattice gauge Fiold®

g = {qwec t erBI}
which is unique up to gawge transformations. Here By is the sct of
all line segmonts, bixy),whose endpoints, x and y, are "noarcst
neighbors" in L, The h's are called bomds or links. A variant
of Theorom (I.47) shows that the closure of

ELl:EJ'p
is the space of all gauge-invariant functions of

= t € A
9= {9, *xy EB)
{We know from Section II1.2, (I.31), that a gauge transformation
g — gh‘ is given by a function; h; on % with valucs in the gawge

group G, and

i =1
= I h .
f;ﬁ [y} qp: {x} }

Lat
nd
Xyc ¥
denote an ordercd product along an oriconted losp (or curve) 2 .
Fram the above discussion we infer that
(11.5)

'rju';': = X, (g}, where g, = 1 D,

nyc
and g is the lattice gauge field determined {up to gauwge trapas-

formations) by the values of the Y4(#€)'s, € L;. From now on
the random variables !’J{EI are called Wilson loops.

X ¥
"J'j ¥

Other examples of random fields on a loop-space, Ly, arc
supplied by the lattice approximation to (Euclidean) dual re-
sonance = or string models l26]. Among the main goals in the study
of lattice gauge theories are

(Al Let¥= LxT be a rectanjulsr loop with sides parallsl ko two
axes of £ of length I, roesp. T.
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1
‘p.l'j{L}I 1im -i-lu-g EIE‘IJELRTH: (I1.3})

T =+ =

gea {(I1.56). Investigate the proporties of VWi(Ll; as L == , in
particular for those characters h:‘-":i of G which are non-trivial
on_ the centor 3.,5 of G.

This is the famcus problem of static quark confinement (resp.-
liberation). See [21,22,23,25,1,27,5,6,7] .

(B) Investigate the "excitation spectrum" [energy-momentum
spectrum of low-lying "particles") im

sl:rj:an and s?wjt.‘e.‘r. fj{r_'n;

see e.9. [5,24,26]. This will supply information on the particle-
and bound state content of lattice Yang-Mills theory.

(C} Improve the analysis im (A) and (B) in such a way that the
results are uniform in the lattice spacing ¢,(E=c I_"""l.

(D} For L=c z” fand v = 2,3, (d7)), exhibit lattice gawge theories
{ether than free electromagnetism) with the property that the limits
as € % o, of the Schwinger functionals S, (Y (¥ y)...., ¥, (¥p)),
ne 1,2;..., exlst and satisfy (YM1)-(YMG) if the mcasurcs

{dp = d"g}cm
are correctly rencrmalized and the Wilson loops, &'j{x',]n. are
correctly normal ordered. See [1,3,4] and [20] for results or
progress in this direction.

Remark concerning matter ficlds,

For pedagogical reascons we shall oenly consider bosonic matter
in these notes; but ses iI*EE,jE,IGI . Given a gauge group G, a
lattice matter field ¢ is a random field on the lattice £ with
values in a Hilbert space Vv (usually finite dimensional)l that
carries a unitary representation U% of G (as an endomorphism
group) . Thus

$: XEL —= $(x) E ¥V,
Gawge transformatlons of # are aof course defined by

h ] L]
§ = &, ¥ (x] = U [hix)} wix}, (I1.4})

where h takes values in G. The random variables
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L +
¥ ) st ) s, withg =1 Dg,

Xy HW?HY
{11.5]

Yy © B; a connected, oriented curve starting at y and ending at x,
are gauge-invariant.(These notions correspond to what is developod
at the end of Section Y.l and in Section 1.2].

I1.] Some of the hasics absut lattiee gauge theor iou

General results may be found in [1,2.21,22,23,25] . The
general ansatz for the measures diu = dupe is the lattice version
af tha Euclidean Gell'Mann-Low formula (I.49%) {including a matter
field #):

- By (%,9)

=1
dp: ($,g) = E£ @ kg I:Itt.. (11.6])

where

EE - ]E-ml: H.q}nq D*E ; Dy = n dg:?,
xyc B

with Hc - HE Zv and dg Haar measure on G,

¥ = [ dp (%),
c xﬁczu [ =
with 'Illi'l'E a G-invariant probability moeasure on WV, and
YH B
= 1.7
UE (49} u " (g} + UE [4,.q) {1 ]

a lattice action.

wilson [21] was the first to propose lattice gauge theoories
and explicit expreasions for (IT1.6) and (II.7). In the introcduction
to Saction I1 we have proposed to view the lattice gauge fFiold
Ty 88 arising from a "nice" coantinuua gauge Fleld [(econnection)

= P [exp ] ljla‘pdzj] N
b %, v)

A, via g £g

Ky bix,¥) (11.8)

see (I.30), Section I.Z.

This is particularly useful if the continuum gauge fiold A
is known to exist as a random [(ield with the desired proportios;
as is the case for Free electromagnetism (G o= (1) ). In Elis
case We may @7, ochoose A Bo bee o Gaugslan ramdos Ffleld with sean
Oy~ Agixd> g o O, amd cowiarian

iy} > »D.5 (xy, (11.9)

'l:l.i{!I H.j_ ¢ i3
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t
where D”t::}. t o, is the Fourier trnnazgzl-m af

P ght e
{&ij == jdpz + i 3]‘1 l:pzwzl I»:r ljilx 1:’;1. (IX.10)

Here t zo labels an ultraviolet cutoff, and u o ia a bare masa
introducing an infrared cutoff, As long as * Oy Oyy 9iven

by (I1.B) is well defined for A as in (11.9) .{II 100 ¥n arbitrary
dimenion v . For p>o; the resulting lattice W1} theory is not
gauge—-invariant; but when p=o, gauge invariance is restored even
for t>o; see [1,31] . These observations are useful in the construct-
ion of the two-dimensional abelian Higgs model in the contimwem
limit [1,3,4 ] which we sketch in Section 111, For G non-abelian
and v >2, no such construction of a lattlice approximation is known.
Instead one recurs to (II.6) and (II.V) with

“'!I‘H and l'.lII|

4 c
conventionally given by
Y™ w=d

u = = F = | Ir.mi
f E e X o) 9 xﬂﬂpﬂ A (X1.11)

where x is a faithful, unitary character of G, (e.g. the charactor
of the fundamental represcntation If G is a unitary matrix group),
and p déencotes the unit squares (plaguettes, with boundary po=

four links) in e ZY;

u':- (1/28) E ¢

=2 ”
yxEB

& - .
& [x) - U tg“:»ﬂ-_.-l || r (11,12

and

2 s
a, 0% wp [t Sl ol 2 -aclf ol 0] e, araay

where il denotes a Wick order, and 49 iz the Lebagque measurs
an V.

In order to start with a well defined expression, ono First
restricts the summation cn the r.s. of (II.11) to plagquettos p
contained in some bounded set AccEY and the one on the r.s.
of (II1.12) to links xy ¢ A . By (II.6) this yields a cutoff mcasure
dug pAl#,9). Tf A belongs to a sequence of hypercubos and pericdic
boufidary conditions are imposcd at 30 then a weak Limit,
iy (#a), (the thermodynamik limit), of the masures i, dd.al
as At ¢ &Y, can o constructed by a stamiard cospsetnend
argumscnt. The lattice Schwinger |unctions
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fc) E 1
5 ? Jllpp? rT*+e
L g, oo
n m bk
- | au, . @ 0 v Mo Yy ) (T1.14)
' =1 k=1 k k

cbey properties (YM1), (YM2,), (¥YM3}, (YM4) and (YMO) (modified in
the obvious manner to account for the

y® !~|rIIL J=variables) .

¥
Clustering (¥YM5) may fail in general, but is known to hold e.g.
for small B[22] . Thus, lattice gauge fields exist, for arbitrary
G and arbitrary space-time dimension w.

Among numercus, very general results we mention the following
two which turn ocut to be important.

(1) Universality of diamagnetism [1,2] :

Define

M
2 . (g1 = |o " A% py (11.15)
£, £

Let A be a rectangle and impose pericdic b.c. at dA. Then

| 2 ig)| = z. a1, {11.16)

£l
g = | means g#? = {deneity in G, for all xv).

Inequality (IT.16) holds no matter what gauge group G is
chosen and even if Fermionic matter (leptons or quarks) is coupled
to the gauge fileld. It expresses the fact that matter behaves dia-
Eginat1=111¥ under coupling to gauwge Fields. Inequality (IT.16)

does generally not survive ultraviolet renormalizations necessary
for taking c%o , unless the vacuum polarization is finite (i.e.

v & 3}, (There are related inequalities for pure Yang-Mills
theories mentioned in [5] which appear to be renormalization-

independent) .

Hext, suppose that G is abelian. Without loss of generality
woe may assume that G =& ,n=2,3,4..., or G = U{1). Then we may
introduce polar coordinates

q”? - 1151? . ﬂ:":!lr E I?

ig
i!.’n:'l-l‘:l ®a niﬂ:- 2n.
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Let .y PLcos(éL a.mr] |
dm_{a) = lim  Z_,° e PcA xyCp n da,
Al f

with 448 the Lebesgue measure on [ﬂ,z—;], or let

dm ﬁta]- - ch:'t'hia] be the restriction of the

11.17
Gausslan measure introduced in (I1.9), (II.10) { '

to the variables "ny = I A, (z) dzj.

]

bix,y)

{2) Correlation Inequalities [1,2,27,6] :

Let G = In or UW(ll), dmg as in (I1.17), and < - >
the expectation given by the probablilicy measure
H
= &
- m:.n{ s8]

du'E ﬁu.a} =m(Z* ¥ i dut {a) D"'r_ ¢ I1I.¥B}

' E.f
with AC :Eu. Let F and G e in the multiplicative cone gencrated
by r(f), fix) = o, coa [alg) + G(h}).

Then

PG> -<F>»<G>» 2 o (11.19)
For applications, see e.g. [2,4] .

Hext, wa conslder a general lattice theory described by
a measure as in (II.6) with action as in (IXI.7),(IL.11) amd
{11.12). Suppose that the representation U% of G on V is trivial
on the center ¥~ of the gauwge group. Let < - >gz denote the
expectation determined by the measure du, given in (II.G).
Let <-—=> denote the expectation im the pumjﬁ lattice gauge
theory with measure
ﬁf'-l.'.“-. X (ra )
-1 P ap
:II.I: (7} = lim [ &" i ] [+ 4 (1I.20)

hi:z‘d‘ Erﬂ
whare 1“.1, e 35 , For all xy, anwd dt 1= Haar moasure r;||l|j' G -
Than

< 1 vj{jej} > v < T.‘lfJ’ > - (r1.21)
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Proof and applications are given in [G]. A special case of (11.21)
was first proven in [27] .

The arguments used in the proofs of such inequalities are
patterned on Ginibre's mothods [28]) .

IT.2 ©On the rhase diagram of some lattice gauge thoorios

Rigorous results on "high temperature”sxpansions [P amall)
in lateice gauge theories are established in [22]. It is proven
there that if B is small cnocugh and Xy is non-erivial on the
CEREeY gh aof the gauwge group G the “"guark-antiguark potentisl™ Ui
defined in (II.3) satisfica

“j L} & const. L (11.22)
Moreover,; the Higgs mechaniam L8 For lattice theorics analyzod in
that reference, too. In [5,23] there are general arguments sug-
gesting that ¥, (1) = const.,; uniformly in L if ¥y s trivial
an the :rntnr.jﬁ. Guth has announcoed that the four-diecnslonal
pure U{l}) lattice thoory [(in the 50 called VWillain form) has
a phase transition as [ is varied: For @@ small (IT.22) ia walid,
for @ large V4(L) £ const.. The proof is bascd on a combination
of correlation inogqualitics (of the type proven im [1,2] ) and
a high temparature expansicn. Similar results wore proeviously
proven for the &, thouries in theeand four dimensions and arc
discussed in Guorra's contribution where the reader can also find
references to the original articles of Guerra et al.

In [6] the author has applied inequality (II.21) to prove that
in all two-dimensional Yang-Mills thoories Vi (L) const, L fur
all characters T] which are non=trivial on the korncl of the ro=
pPresentation U* bsed in the matter actlon (Ti.12).

This extends results of [2,30] . It is also shown in |6
that far chrec-dimensiconal Uin) theories with |._:‘1il trivial on 1UI1)

]
€ ¥y
'I.Fle} > congt log { L + 1), {11.23)

if “? is non-trivial on O(1).

4

In [2,5] connections between lattice gauge theories on o &'
and non-linear o-models on ¢ ZY"! have beon found. The following
models are inveatigated there:

{1} Classical, two-compomnent , noutral Coulosb gascs ol
abwe] o o=malele (Tsing .z”" anel clasnieal XY mwsbelnd.
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{ii) Abelian lattlce Higge theories, in particular Landau-
Ginzburg typo theories.

(iii) Mon-linear lattice-o-models {e.g. the classical Ofd4)
lattice model).

{iv) Pure, non-abellian lactice gauge theories.
The results are of cthe following kind:

{a) Rigorocus connoctions botwoon [LL) im v dimensions and
(1} in w-1 dimensions, and botwoon (iv) in v dimensions and (iii)
in v=1 dimensions. E.g., E|{fj{ }i of a v-dimonsional gauge theory
can generally be bounded abowve by {an integral of) a product
of two=point functions of a [(v-1)-dimenslional g-model. An ecxamplos

wie méntion:

1f the two-dimensional Coulomb gas has a transitlon from a
high temperature plasma phase with Debye screoning [31] to a low
temporature, dipolar phase with power low doecay, as expectoed, thon
the threc-dimensicnal Landau-Ginzburg (aboellian Higgs) lattice
thecry has a transition from a superconducting phase without
confinomont of fractional charges, massive photons and vorticos,
at small electric charge, to a QED phase with massloess photons and
confined fractlional charges, at large eleckric charge. This is
shown in [2]. It is alse shown there that Guth's result for U(1)
implies the existence of a superconductor = QED transition in a
four-dimensional Landau-Ginzburg lattice thoory, with liberated
magnatic monopoles in the QED phasa.

For further rosults on phase transitions in lattice gauge
theories see [5,27,32] and Guerra's contribution to these pro-
cesdings, Some other, general consequences of correlation incqualit=
ias in lattice gauge thoorios [confinomont,; Higgs moechanism,...)
are given in [2,4].

11.3 cConnections to dual resopance malels

Recently many connéctiocns betwoen (lattice) Yang-Mills
theories and string (dual rescnance) models have boen proposed
[33,14,15,26,34] . It has been suggested that lattlce Yang-Mills
theory is a theory of random surfaces [33,5,15,34] related to
the lattice theory of dual strings (e.g. [11,34]) ). Such a
connection would be wseful as a starting point for an investigation
of the particle spectrum of pure Yang-Mills theory.

e} In [5] an expansion of the n-loop Schwinger functionals

S, Y (1) eeea ¥y (¥0) ) of pure lattice Yang-Mills theories

in terms of random surfaces bounded by the loops l‘_'inu,ﬂn has boon
derived when the gavwge group G ic Uin) or Oin), n = 1,2,3,...,0°0
S0{2).
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For G = S0(2) this has provided rather powerful lowsr bounds on the
potential ‘-'j{LI (g = 8pdn 12 character) and has rovealed an
interesting connection with the theory of interacting random paths
and non-relativistic stripgs, A method for obtalning upper-lounds
on V4(L) has also been suggested there.

ITI. REMARES OH THE CONTINUDUM LIMIT OF THE ABELIAN
HIGGS MODEL IN W0 SPACE-TIME DIMENSTOMS

The only continuum gawge thoorices sacisfying propertics
(¥M1) = (¥YMG) (ecxcept possibly (YM5) ) of Section 1.3 are

- free eloctromagnecism in arbitrarcy dimension
- massive spinor QED [18,19] in two spaco-
- the abelian Higgs model [1.3.4]] time dimensions.

The situation concerning two- and thres-dimcnsional, super=-
rencormalizable (abelian and non-abelian) gauge theories looks
fairly promising; see the contributicons of Balaban and Magnen=
sénkor to [20] .

This situation is thus not overly oncouraging. We prescnt
a few remarks on Higgas models. For somo goneral information alsout
constructive quantum field theory see [OQFT].

115.1 External (c-number) Yang-Mills fields

in [3] weak convergence of the mecasures

R L
!Eﬂ*niﬂ“ 14 - l!l-:bL , 4% EMgo, (TL.24]
has been shown forve= 2 and
)
g = P [oxp J- Aodz) v.'ll:'-'I }.
x¥ Bix,y] :

with Alz) H8lder continuous in 2, and
G = Ui}, SU{2}, cee,

The proof of convergence [(for various boundary conditions) iu
rather complicated. In principle, it can be extended to w =1,

but this has only boen done if the self=Ilnteracticn of % vanishes,
l.e.3 =0 in (II.13).

The following elements are crucial in the proof: h“hﬂ.

be the finlte difference covariact laplaceasn on &, (A) By
with periodic or O-Dirichlet bowedary conditliona av 24,



s

2

@  lea s m |l & e 0 e,

wherea n'ﬂis the uswal finite difference Laplaccan on &, (A) with
the same b.c.. A proof of this "diasmagnetic inequalicy™ can Lo

found in [1]and refs. given there,

4] ] Convorgence of

-4 s oy
in various trace ideals, and L? convergence of
£ 2 =1 )
(=4 :' '+ m } U ix,y) for e

The proof involves showing real analyticity in A and using a
Meumann series expansicn in A for "small® A; see [ 3] .

ich Et:+ 2. =1

3 ml) mt::*

2
det ( (-4 m) ) a 1;
this is a special case of the diamagnetic inequality (II.16) duc
eriginally to R. Schrader and R. Seiler.

{d)

det ( (-a, + 21"l a2t )

(£) 2. =1__(F) 2
*

z lim det [ [-ﬂn m} (A +m ) )

c%No

exists for H&lder-continuous A, Ve2; see [1].

Thoese clomonts somowhat cloverly combined with the diamagnotic
inequalivy (II.16), the original Helson-Glimm method (proviog
stability of P(#)s theories, sce [cprr] ana refs.given therc)
and numerous;lengthy cestimates yield a proof of (11,24},

For

vwe= 2, G =01}, dﬂtfll =dm Al

:JLFP
the Gaussian measure defined in (1I1.9),(11.10),o0mnc derives EFrom
(I.24) that the weak limit of the moasurcs

du (% a)

Eilitip

exists, as € Vo, for t>o,p £0. This follows from the diamagnetic
inequality (II.16) and (II.24) by lebesgue dominated convorgonee.
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IT1.2 Reomoval of cutelf=s

In order to show that the weak limit of the scasures

du , as ¢t Yo,

.H-I.].- dp:_.'.r_'u

£ WO
exists one must do an ultraviolet oxpansion [4 ], involving a

truncated [(high=momontum) perturbation expansion which cxhibits
cancellations of divergent Feynman diagroms with countortorms,

-lllltl 1-|

The ultravioclet expansion ls applied to unnormalized expoce-
ations

F
z,ﬂ.i'-'-i LI{ - faC, H ’
where < -— Moty is the expectation obtained from Adup, e,
and Zp,t,u 18 the natural continuum partition function.
In the following Aand y are suppressod temporarily. The
initial form of the expansion is roughly

M
g < F> = 5 |z CF>» =% <P ¥, 1I1.25)
r'H tH n=l I::n t1'1. tn-] tn—l

with tn * o ®mome suitable constant.
The differences,

= “ F 2 - = £ F » .
:n tn tn-l n=1

are then interpolated in a somowhat sophisticated way that depends
on n and irvolves "changes of h-covariance® and "integrations by
part on function space" with subsequent cancellations of divergont
diagrams; see [3,4] .

One obtains an upper bound on

it £ F > - 2 < F >

t

n l:J'l. 1:rl.-l 1l'n.—l

of the form:

n ] cllog & }E
i n B n
c n t.{ e nli {log £ )

i=1 n

oL,
This proves convergence of (II.:L), for tn - uxpt—n.rl,nfr‘:l.
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A technically subtle part in the proof of ehe upper bounda is the

estimation of large Feynman diagrams. (There one makes use, among
many cther things, of (a) ). Convergence of the ultraviclet ex-
pansion suffices to show that

£F > = 1im CP >
A
s E o

axists, for A bounded and pzﬁ .

LI T

Subsequently one uses fairly standard sethods to establish
upper bounds on

< F :h.“
that are uniform in A and p . Thanks to the correlation ilnequalities
(1.19) one has monotonicity in land w ., for a total set of random
variables, F. Thus, the limits A 1l22 and ¥ + o exist. The
existence of the O-bare-mass limit, u +o, i yot ancother manifestat-
ion of the well established experience that constructive Field
theory methods never create artificlal infrarod problems (which
might be regarded as one of its modest triumphs).

To date it is only known that the Schwinger functionals

& 1

sn'm {2111511. I W”ﬁ'lhm:
n m

ol T T nrjj i r*w: ) >
4=1 w1 k'K

of the limiting expectation < — > matisfy properties (YM1) = [TM4),
(YME) (without normal ordering of ¥, 's,Y ¥'8) so that they dotor=
mine a relativistic gquantum field tﬂnnr'_.r (Theorem(1.55), Scction
I.3), but detailed , physical information is lacking, (e.q.

Higgs mechanism 7).

IV. A LOOK INTO THE FUTURE OF THE SUBJECT

In the Buclidean approach to quantized Yang-Mills theory one
proposes to convert (the traces of) holonomy operators on a prin-
cipal bundle inte random flelds on a loop space over physical
space-time, Thus, one attempts, in fact, to construct stochastic
processes and random fields on spaces of geocmetrical objects, the
closed locpa in physical space-time. This is an instance of
combining gecmotry and probability theory, f.e. a problem in
random gecmétry. Random geometry still appeats to be an undor-
developed branch of mathematles, (For other examples in ramlom
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geometry see e.g. [10,11] and refs, given there).

A number of conceptual problems arises:E.g. is there a reason-
able notion of “"distribution-valucd connections"™, or, in othor
words, is there a geometric interprotaticn of "normal-ordered"
holonomy cpearators, (sSee Section I.3), ete..

Gavge fields (i.e. the gauge orbita, [A] , of connections,
A, or the traces of holonomy cperators) are fntrinsically non=
linear fields (at least in the non-abelian case). Constructive
guantum field theory methods have so far not had much success
ag a means of studying non-linear fields. One of the main reasons
might be that non-linear flelds cannot be localized on classical
phase space, a technical device that has so far appeared to be
crucial for non-perturbative renormalization, [35] . In the
analysis of [1,3,4] outlined in SBection III and in [8,9] the non-
linearily of gauge fields has been circumvented in a somewhat
unnatural way. Presumably, this is enly possible if the gauge
group is abelian, and the gavge field couples to a4 conserved current.
Even then the price to be paid is a fairly clumsy and tedicus analy-
sis,

We have tried to explain the underlying geometric reascns
why the lattice approdimation is a natural gauge-invariant re=
gularization of contipuum Yang-Mills theory (End of Bection 1.2,
introduction to Section II). What remains to be seen is how cne
can do hard analysis [(non-perturbative repormalization) starting
from lattice theories., The popular magic word is: Renormalization
group ("block spin®) transformations. This has first been ad-
vertized by Kadanoff and Wilson. A rigorous program of this sort
has been described by Balaban in |20]. The program can only be
regarded as really succossful if one eventually achieves a pof-
perturbation renpcrmalizacion of a four-dimensionsl, non-super-
renormalizable, asymptotically frees gasge thoory.

Another approach, dus to Jimbo, Miwa and Sato [17] is based
on analyzing the monodromy structure of the Schwinger funeticnals
of the loop variables, Y, (¥ ), and the dual ("discrder”™) variables.
The gensral monodromy praparttan of the Schwinger functicnals
follow from "topological commutation relations". One then studies
monodromy preserving deformations and uses the Schwinger-Dyson
equations for the Schwinger functionals.

In some examples (ec.g. the bwo=dim. Ising model) , with (res
Schwinger-yson equations=, Jimba, Miwa and Sate have earried oul
their program, with fmpressive soococss, Ope sight bope Cleal e
exist "poni=lecal®™ conserved euroomtbs b Yomg=Mille theory yiceld i
relations botween Sclwimger P bilomals whd ch eebnlorce Cloe
J-M-E program in a Suitablo way.
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But this is mere speculation.

2,
3.

12.

13.

14.
15.

16,

In conclusion, the author wishes te thank D. Brydges and E.
Seiler for the joy of esllaboration and H. Epstein and E. Seiler
for many most valuable discussions. He thanks the arganlzers

of the Kalserslautern school for inviting him to give lecturcs.
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