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This is a collection of three sets of lecture notes : 

"Random Geometry and Yang-Mills theory", to appear in the proceedings of the 

"Colloquium on Random Fields", Esztergoro (Hungary), June 24-30, 1979. 

Θ "Some Results and Comments on Quantized Gauge Fields", to appear in the pro-

ceedings of the Cargèse summer school on gauge theory, Cargèse (Corsica), August 

27- September 7, 1979. 

"On the Construction of Quantized Gauge Fields", to appear in the proceedings 

of the Kaiserslautern summer school, Kaiserslautern (Germany), August 13-24, 1979, 

The purpose of these notes is to give an elementary and leisurely intro-

duction to some mathematical terminology and techniques used in the study of gauge 

field quantization, to review some rigorous results on lattice gauge theory - in 

particular on the quark confinement problem, phase transitions and connections to 

string theories - and to briefly describe some results and methods in the cons-

truction of abelian gauge theories in the continuum limit. 

What looks new in these notes is almost exclusively the result of colla-

boration with D. Brydges and E. Seiler (see (2) refs. 10 and 25) and with 

B. Durhuus (see ref. 7). Numerous discussions with H. Epstein, E. Seiler and 

T. Spencer had a considerable influence. 



The construction of the abelian Higgs model in two space-time dimensions, 

 ref. 25, which is briefly sketched in , Chap. III, has been described in 

two excellent reviews by E. Seiler : seerefs. 8 and 9. 

 is a purely descriptive, introductory pahmphlet. and  contain 

some details, but no proofs for which we must refer the reader to the references 

quoted in the text. 

In  and  the use of random (or stochastic) geometry in the study 

of gauge field quantization is advertized and exemplified. It is indicated there 

why random geometry is a natural mathematical concept and useful tool in other 

branches of theoretical physics, as well, notably statistical mechanics and some 

class of dynamical systems. Examples in statistical mechanics were sketched in 

various seminars and - with Yang-Mills theory as the main subject matter - in a 

lecture at the "28ième Rencontre entre Physiciens Théoriciens et Mathématiciens" 

in Strasbourg, May 17-19, 1979, of which no notes exist. 

For uses of stochastic geometrical methods in statistical mechanics, see e.g; 

— M. Aizenman, "Translation Invariance and Instability of Phase Coexistence 

in the Two-Dimensional Ising Systems", to appear in Commun, math. Phys. jY. Higuchi, 

"On the Absence of Non-Translationally Invariant Gibbs States for the Two-Dimen-

sional Ising System", Preprint 1979. 

— M. Aizenman, F. Delyon and B. Souillard, "Lower Bounds on the Cluster 

Size Distribution ", Preprint 1979. 

- , ref. 22; §§ 3 and 6 of , and other references quoted in the above papers. 

We hope to present a more detailed account of the material described 

in §§ 3 and 6 of  and of some further applications to statistical mechanics 

problems elsewhere. 

Another idea which is advertized in  is the use of renormalization 

group (Block spin) transformations with rigorous error estimates in the proof 

of stability of quantized Yang-Mills theory in two and three space-time dimensions, 



(starting from a theory on a lattice of arbitrarily small mesh). This method 

is not elaborated, in these notes, since the author has nothing concrete or 

definite to say about it. We wish to recommend, however, that the reader con-

sult refs. 29 and 30 quoted in 2. 

Finally, we wish to draw attention to the possibility of describing 

non-linear σ-models and Yang-Mills theory in terms of fields with values in a 

Grassmannian. This observation has found important applications in the construction 

of instanton solutions to the self-dual Yang-Mills equations. See  ref. 6 and 

references given there. We have investigated the use of that formalism for the 

quantization of gauge fields in "A New Look at Generalized, Non-Linear σ-Models 

and Yang-Mills Theory", to appear in the proceedings of the Bielefeld Symposium, 

December 1978, (L. Streit, ed.). Our conclusions were mostly negative, and that 

approach is not discussed in the present notes. We feel it still deserves to be 

kept in mind, however. It may e.g. have further applications on the classical 

level. 



1. 
RANDOM GEOMETRY AND YANG-MILLS THEORY 

Jürg FRÜHLICH 

Institut des Hautes Etudes Scientifiques 

35, route de Chartres 

91440 Bures-sur-Yvette, France. 

This is a very brief report on a one-hour lecture I presented at the 

Colloquium on Random Fields of the Janos Bolyai Mathematical Society. 

For its larger part my lecture was rather experimental : I stated various 

problems and discussed a very few preliminary rigorous results in a branch of 

mathematics and mathematical physics which one might call random (or stochastic) 

geometry. Further more, I pointed out why random geometry is important in the 

quantization of Yang-Mills theory. 

The main reason why my lecture was "experimental" is that I do not know 

any literature about random geometry, yet.(I recently learnt that I should study [13) 

This branch of mathematics may already be alive and well, there possibly 

exist many interesting results, and most problems which I advertized or proposed 

to study may either have been solved before or may be ill-posed. Finally, the few 

rigorous results I sketched may be well-known and/or trivial for the experts. 

Ϯ 
Outline of lecture given at the "Colloquium on Random Fields", Esztergom (Hungary), 

June 1979. 
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The absence of possibly important references at the end of this 

report must be excused by my ignorance and by the circumstance that I spoke about 

recent developments in which I have personally been involved. 

I am somewhat more confident that that part of my lecture concerningthe 

study of (lattice) gauge theories and the uses of random geometry in the study of 

Yang-Mills fields - e.g. expansions in random surfaces, connections to dual strings 

(processes whose state space is the space of closed loops in a lattice), etc.- was 

reasonably serious scientific talking. At least, I concluded from the reactions of 

some parts of the audience that this was the case. 

The ideas expressed in my talk, have grown out of numerous, recent 

discussions and collaboration with E. Seiler, joint work with T. Spencer, experiment-

ing with explaining the main concepts of quantized Yang-Mills theory, provided 

there is such a thing, to different audiences and my reading of "Physics Letters" 

which, towards the end of 1978 and at the beginning of 1979, published a number 

of stimulating papers describing connections between dual strings and Yang-Mills 

theory and some vague probabilistic concepts that might be useful in the study of 

those theories ; notably, [2,3,4,5] and others. 

Topics discussed or mentioned in my lecture included : 

1. Introduction to the main mathematical concepts involved in the study of quantized 

Yang-Mills fields : 

- Random (or stochastic) geometry 

- Phase-space localization (or micro-local analysis) in functional integrals. Problems 

with the compatibility of phase-space localization and local gauge invariance. 

- Renormalization group arguments ; (approximate "block-spin transformations" with 

rigorous error estimates). 
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The latter two techniques are strongly interrelated. The main emphasis of 

the lecture was placed on random geometry. 

2. Combinatorial geometry and combinatorial random geometry with sketches of 

applications. 

3. Probabilistic formulation of Yang-Mills theory in the Euclidean region and 

Osterwalder-Schrader reconstruction. 

4. Connections between v-dimensional Yang-Mills theory and (v-1)- dimensional, 

non-linear σ-models in an external gauge field. 

5. Applications of 4 to the problem of confinement and phase transitions in 

Yang-Mills theory. 

6. Lattice Yang-Mills theory and combinatorial random geometry : Expansion in 

random surfaces and connections with dual string models. 

Short verbal summaries of parts 1-6 and remarks now follow. 

Part 1 : 

Recently, numerous mathematicians (Atiyah, Drinfeld, Hitchin, Manin, 

Schwarz,Singer and others) have initiated a serious study of classical, 

Euclidean (time purely imaginary) Yang-Mills theory; and they have had 

much success: Among other results they have found a linear algebra 

construction of all solutions to the self-dual Yang-Mills equations 

(a system of first order elliptic equations). Since their work received 

much publicity ,detailled references are unneces s ary . See however [6] 

and references given there. In their work the mathematicians have 

used and advertized algebraic topology,differential and algebraic 

geometry ,inverse scattering methods,etc. , all very highbrow for 

a mathematical physicist. 
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Much of the motivation behind this work comes from semi-classical quanti-

zation (formal steepest descent in yet more formal functional integrals). This 

approach to the problem of quantizing Yang-Mills theory can hardly be considered 

very satisfactory, in spite of its great heuristic value and its many partial 

successes ; see e.g. [7] and refs, given there. 

It is a rather wide spread opinion that one only understands those quantum 

theories which are quantizations of some underlying classical theories. (For 

example, many theoreticians have studied the "quantization of solitary waves" in 

two space-time dimensional, non-linear field theories. It is, however, a fact 

that the soliton sectors of the quantized versions of those theories could be 

constructed without knowledge of the solitary wave solutions of the classical 

field equations. See e.g. [8]). 

There are many reasons - and beautiful mathematical theorems - to expect 

that a lot of detailed and explicit knowledge of some classical theory is 

very useful to quantize the theory and derive properties of the quantized 

theory, [9, 10], 

There are however quantum theories without an underlying classical theory. 

A prominent example is the theory of non-relativistic matter at finite density. 

In the realm of relativistic quantum field theory Euclidean field theory, as 

developped by Schwinger, Symanzik, Nelson and others (see e.g. [11]), is a 

direct approach towards constructing relativistic quantum theories.Much of 

Euclidean field theory is a branch of probability theory, in particular the theory 

of random fields and of functional integrals. In quantum field models not involving 

nonabelian gauge fields the Euclidean field theory approach makes use of only trivial 

information about the solutions to the classical, Euclidean field equations 

(=critical points of the Euclidean action). Yet, it serves to prove existence of 
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relativistic quantum fields and supplies a lot of detailed information about 

their properties. Thus it is a natural and useful attempt to try to apply Euclidean 

field theory and Osterwalder-Schrader reconstruction also to the problem of 

constructing and analyzing abelian and non-abelian Yang-Mills (gauge) theories. A 

review of some recent results on the construction of super-renormalizable, abelian 

gauge theories is contained in E. Seiler's contribution to these proceedings. 

It is one of Wilson's achievements to have proposed a direct and 

non-perturbative approach to constructing quantized gauge fields : lattice gauge 

theories [12]. Lattice gauge theories have the advantage of existing, preserving 

the whole structure of a relativistic quantum field theory, except Lorentz 

invariance ,and of trivializing the problems associated with gauge groups of the 

second kind. Moreover they provide an ideal laboratory for testing the properties 

of gauge theories at long distances. It is thus natural that they have been 

studied intensely over the past five years. Mathematically speaking, the study of 

pure (lattice) gauge theories is the study of a particular class of random fields 

over a space of closed loops in the Euclidean space-time (lattice), namely traces 

of "normal (or Ito) ordered" holonomy operators on a (random) principal bundle 

with random connection. (A connection on a fibre bundle is what the physicists 

call a gauge field). A simple theorem says that a principal bundle over a connected 

base space, Γ , and a connection on it are uniquely determined (i.e. up to gauge 

equivalence) by the traces of all holonomy operators on the group of all closed 

loops containing an arbitrary, but fixed point of Γ (i.e. by the unitary characters 

of the holonomy group at some point of Γ ). This is presumably well known. (For a 

proof see e.g. [13].) Thus the study of quantized gauge fields at imaginary time is 

the study of random fields over a space of geometric objects, the closed loops in 

Γ , more precisely the study of random connections on (random) principal bundles 

over Γ . (These statements are only accurate when Γ is a lattice. When Γ is a 
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continuum the situation is somewhat more complicated , but the above 

remarks remain a first order approximation to the truth). Therefore 

quantized gauge fields represent a particular example in the subject 

of random geometry. 

The study of random fields is the study of functional integrals. 

Making sense of formal functional integrals which determine a Euclidean 

field theory,e.g. a Yang-Mills theory,is called non-perturbative 

renormalization theory. The most impressive contributions to that 

theory (in the framework of super-renormalizable quantum field models 

not involving gauge fields) are due to Glimm and Jaffe; see e.g. [14, 11] 

One key to their success was that they used phase-space localization 

to construct functional integrals,in the form of localizing random 

fields on classical phase space. They then could estimate partial 

functional integrals over components of the random field properly 

localized on phase space: This can be viewed as a "renormalization group 

transformation". One of the high lights of their approach was the 
4 

non-perturbative renormalization of the λφ quantum field model in 

three space-time dimensions by means of an inductive construction, [14]. 

An important elaboration of these ideas which makes their intimate 

relation to microlocal analysis and the renormalization group much more transparent 

is due to Gallavotti et al. [15]. 

Other forms of phase-space localization in functional integrals consist 

of partial Fourier-Laplace transforms of measures on distribution spaces and, not 

unrelated to that, introducing random fields canonically conjugate to a given 

random field. A recent investigation of these techniques in the framework of 

Euclidean field theory is [16], In the case of lattice theories, Fourier-Laplace 

transformation of functional measures (the distributions of lattice random fields) 

is called "duality transformation". In this context, phase-space localization is 

related to partial duality transformations. They have recently been used in a 

rather important way in an analysis of Coulomb lattice systems, [17].(Partial) 
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duality transformations play a prominent role in the study of lattice gauge fields. 

This is one way of using phase-space localization in the study of quantized gauge 

fields. Unfortunately, phase-space localization in the sense of localizing (functions 

of) a gauge field in classical phase space (the cotangent bundle over Euclidean 

space-time Γ ) which has proven so powerful a tool is - in its conventional form -

incompatible with gauge invariance. This is one major reason why the construction 

of quantized gauge fields in the continuum limit is so difficult. See E. Seiler’s 

contribution and [18] for further discussion of these matters. 

In passing I should like to emphasize that some sort of phase-

space localization has been the key to numerous ,other recent successes 

in mathematical physics among which I mention the work of V. Enss on 

quantum mechanical scattering theory [19] 

The way renormalization group ideas are used in the work of Glimm and 

Jaffe and of Gallavotti and coworkers requires the possibility of localizing the 

Euclidean random field on classical phase space. Since this appears impossible 

in the case of gauge fields, one must find other ways of applying renormalization 

group ideas which do not require more than the possibility of doing partial 

duality transformations. Presently there are no convincing proposals to that 

effect, except a general feeling that approximate "block-spin transformations" 

(see the contributions of Griffiths and Israel to these proceedings) applied 

in conjunction with partial duality transformations to lattice gauge theories 

on lattices of arbitrarily small mesh ought to be an important element. 

These remarks serve to motivate my conviction that random geometry, 

phase-space localization in functional integrals and a rigorous version of the 

renormalization group will play a crucial role in the construction and analysis 

of quantum theories of Yang-Mills fields. 
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Part 2 : 

Combinatorial geometry is the study of geometric objects (paths and loops, 

surfaces, hypersurfaces, clusters) consisting of the sites, links, plaquettes, 

elementary hypercubes of some v-dimensional lattice, Γ , and of their topological 

and geometric properties. Moreover, it is the study of fibre - and principal 

bundles with base space = Γ , or = some space C (Γ) of n-dimensional geometric 

objects in Γ;(n < v = dim(Γ)). 

Combinatorial random (or stochastic) geometry is the study of stochastic 

processes whose state space is a space, C(Γ) , of geometric objects in Γ , of 

random fields over C
n
(Γ) , of probability measures over 

CO xm 
C (Γ) (or over C (Γ) ), e.g. squares of quantum mechanical wave functions 
n m=0 n 

over Cn(Γ) ; n = 2, 3, ..., v. Moreover it is the study of random connections (or 

holonomy operators) over (random) bundles with base space = Γ C (T) , or C (Γ) , 
0 1 

or ... C (Γ) , etc... [More ambitiously, one can envisage to convert the lattice 

(base space) Γ and its intrinsic topological and geometric properties into random 

variables, too]. 

I have already explained why and how combinatorial random geometry is 

naturally used in the study of lattice gauge fields ; but see [13,20] for an 

extensive discussion and applications. Apart from lattice gauge theories, combina-

torial random geometry is used in 

- equilibrium statistical mechanics : see the contributions of Aizenmann 

and Eberlein to these proceedings, the work of Minlos, Pirogov and Sinai on 

phase transitions ; [21] and refs, given there. A further amusing example is the 

"balanced model" of Ising spins discussed in [22] , etc... 

-(differentiable) dynamical systems [23], 
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-diffusion of clusters of "A-particles" in a medium of "B-particles" : 

Geometrical properties (size, shape, number of edges and vertices,...) of typical 

A-clusters ; diffusion of extended defects in crystals, etc. 

-quantum mechanics of large, extended molecules (polymers), etc. 

-dual resonance models (strings),"bag models", etc. 

This is a rather modest selection of fields in theoretical and mathematical 

physics to which concepts and techniques of combinatorial random geometry can 

probably be applied successfully. 

In [24, 20] I have tried to initiate a reasonably systematic study of combina-

torial random geometry as it arises naturally in the study of classical lattice 

systems, lattice Yang-Mills fields, lattice string - or bag models, etc. So far 

the results are rather modest, but I believe that these ideas have a future. 

Part 3 : 

Quantization of gauge fields (i.e. of connections, resp. holonomy operators 

on bundles with base space = physical space-time) which is presumably a physical 

necessity is, more mathematically speaking, an attempt at reconciling geometry, 

with probability theory and quantum mechanics. "Random continuum geometry" is the 

name of a mathematical science that is really needed when one tries to construct 

quantized gauge fields (except in the case of gauge fields with an abelian gauge 

group which superficially, or in v< 4 dimensional space-time, is easier). 

Unfortunately, continuum random geometry does - it seems - not exist as 

a well-defined mathematical science, yet, in contrast to combinatorial random 

geometry. One of the reasons why random geometry of geometrical objects in manifolds 

must be very difficult is that, in the continuum, the description of geometrical 

objects like hypersurfaces (or geodesics, minimal surfaces...) in a manifold 

requires the use of parameters and local coordinates. (In contrast, on a lattice 
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they are given by countable sets of sites, links, plaquettes, etc., and there 

is no need for parametrization and local coordinates). 

In random geometry one may wish, for example, to convert n-dimensional 

closed hypersurfaces of a v > n dimensional manifold into parametrization -

independent and coordinate transformation covariant random currents (or operator-

valued currents). Parametrization independence of physical observables and 

states will presumably require detailed knowledge of skew-adjoint representations 

of infinite dimensional Lie algebras and their integrability to unitary representa-

tions of infinite dimensional Lie groups, e.g. the group of gauge transformations 

in a gauge theory (bundle automorphisms) or the diffeomorphism group of the 

circle in dual string theory.(The representation theory of (a central extension of) 

the Lie algebra of this group, called Virasoro algebra, was first studied by theo-

retical physicists, Virasoro and others, interested in quantized fields over a 

space of loops in space-time = dual strings). 

These algebraic and group theoretical problems are very hard ; see [25] . 

Moreover, they are just preliminaries for the development of the subject of 

random geometry proper. They are avoided completely when one studies combinatorial 

random geometry. This is why lattice gauge theories are such an attractive 

starting point for the study of quantized Yang-Mills theories. A reasonable 

program for the construction of a quantized gauge theory in the continuum limit, 

at purely imaginary time, might therefore consist of first constructing the 

expectation values of arbitrary products of traces of arbitrary "normal-ordered" 

random holonomy operators (Wilson loops) for a lattice gauge theory and then 

try to prove the existence of the limit of those expectation values as the 

lattice spacing tends too ,(using e.g. phase-space localization and renorma-

lization group transformations). Apart from proving the existence of the limit 

one major problem will be to show that the limiting expectations, denoted 
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v 
S (CC ) , where C......C are closed, oriented loops in IE , with 
n 1, ..., n 1 , n , 

dist (Ci, Cj) > 0 , for i φ j , are continuous under small, smooth deformations 

of the loops and Euclidean invariant, for all n = 1, 2, 3,..; (S = 1). 

Once this is shown, one can reconstruct from the "n-loop Euclidean 

Green’s functions11 (S (C1,...,C )} a unique, Poincaré-covariant quantum 
n=0 

gauge theory. This is called Osterwalder-Schrader reconstruction [26] . In the 

present context, 0-S reconstruction involves proving some results concerning 

the analytic continuation of representations of Lie groups, resp. Lie semi-groups. 

A useful tool is a theorem that guarantees the existence of unique selfadjoint 

extensions of a large class of unbounded, symmetric one-parameter semi-groups 

on separable Hilbert spaces [27].[The main open problem concerning the recons-

truction of quantum gauge theories from {Sn (C1,..., Cn )} is a sharp 
n=0 

formulation and proof of locality. All other problems can be solved]. 

One can argue that S1(C) tells one something about "confinement 

of static quarks" [12] and S1(C), S2(C, C') about the low-lying mass - and 

spin spectrum of Yang-Mills theory [20] ,i.e. a certain amount of physical 

information can be extracted directly from the Euclidean (imaginary time) 

Green’s functions. See [12, 28, 24, 20] for more details. 

Part 4 : 

This part was a brief report on the recent paper [24] . The main results 

are 

A) a representation of v-dimensional, pure lattice gauge theories as integrals 

of products of (v-1) - dimensional, non-linear σ-models in external gauge 

fields, with applications ; 

B) an expansion of the n-loop Euclidean Green’s functions, Sn (C1,...,C
n
), of 
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lattice gauge theories in terms of random surfaces bounded by the loops, when 

the gauge group is U(n) or 0(n) , n= 1, 2, 3,..., or SU(2). 

When applied to S1(C) this expansion exhibits two complementary mechanisms 

for confinement of static quarks and suggest an intimate connection between 

Yang-Mills theory and the theory of dual strings, including an educated guess about 

the low lying mass - and spin spectrum of Yang-Mills theory : ( "approximate Regge 

trajectories"). See also [20]. 

Part 5 : 

This part contained further applications of result A) of part 4. It was a 

brief report on some of the results of refs. [29, 30, 31, 24], In these references 

the following lattice models are studied : 

(1) Classical, two-component, neutral lattice Coulomb gases and abelian lattice 

σ-models (Ising-, Potts- and classical rotator models). 

(2) Abelian lattice gauge (Higgs) theories, in particular Landau-Ginsburg type 

theories. 

(3) Non-linear σ-models on the lattice (e.g. a classical, ferromagnetic 

spin system with 4-component spins of length 1). 

(4) Pure, non-abelian lattice gauge theories. 

The main findings contained in the above references have the following flavour 

(i) A rigorous connection between (2) in v dimensions and (1) in (v-1) dimensions, 

and between (4) in v dimensions and (3) in (v-1) dimensions. (For example, the 

one-loop Green's function, S1(C), of a v-dimensional gauge theory can generally 

be bounded above by a product of two-point correlation functions of a σ-model 

in (v-1) dimensions). 
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(ii) As one consequence of (i) one obtains a technique whereby the construction 

of a pure lattice gauge theory with gauge group ZZ2 on the three - and four -

dimensional lattice is reduced to the one of a two- dimensional Ising model with . 

random couplings in one direction, [24]. 

(iii) Rigorous results and conjectures about the phase diagram - phase transitions 

and critical properties - of (1) in two dimensions and (3) in three dimensions. 

(iv) Consequences of (i) and (iii) for the theory of quark and monopole confine-

ment, the Higgs mechanism, etc. in (2) and (4). The following theorem is a 

typical example of results that follow from combining (i) with (iii) : If the 

two-dimensional Coulomb gas undergoes a transition from a high temperature phase 

with Debye screening [32] to a low temperature, dipolar phase without Debye 

screening (for partial results see [17]) then the three dimensional, abelian 

lattice Higgs (Landau-Ginsburg) model undergoes a transition from a superconducting 

phase without confinement of fractional charges and heavy vortices, at small 

values of the electric charge, to a QED phase in which fractional charges are 

confined by a logarithmic potential and the photon is massless, at large electric 

charge. This is shown in [30], 

(v) A comparison theorem relating a lattice Higgs theory with gauge group G to 

a lattice Yang-Mills theory with gauge group = center of G , [29,31]. The theorem 

implies that if the latter confines static quarks then so does the former. As one 

corollary one concludes permanent confinement of static quarks (with non-zero 

"electric charge") in all two-dimensional lattice gauge theories and in three-

dimensional theories with gauge group U(n), n=l, 2, 3,... 

Part 6 : 

This part was an elaboration and application of result B) of Part 4. In 

particular, expansions of two-point correlation functions of non-linear σ-models 

in (v-l) dimensions with fields taking values in a group G, G = U(n), 0(n), 

n-1, 2, 3,..., SU(2), in terras of random walks were used to generate an expansion 
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for the one-loop Green's function, S1(C), of a pure lattice gauge theory in 

V dimensions with gauge group G . These expansions are used to prove exponential 

clustering of correlations in those σ-models, resp. confinement of static 

quarks in Yang-Mills theory. Two basic mechanisms for confinement emerge from 

that expansionand one of them might potentially yield confinement in continuum 

theories. These results can be found in [24]. Some elaborations of them and 

connections with the theory of dual strings are discussed in [20]. 

Final remarks. 

This is my first set of notes to a lecture that does not contain a single 

formula or estimate or state (and prove) a theorem. My only purpose is to verbally 

discuss, explain and advertize some mathematical, in fact probabilistic concepts 

which I believe are going to play a somewhat crucial role in various branches 

of mathematical physics, in particular in quantized Yang-Mills theory which one 

hopes may be the theory of the fundamental interactions (except gravitation) of 

particle physics. These concepts may be labelled by the words : Random (stochastic) 

geometry, phase-space localization in functional integrals, renormalization 

group. 

The papers quoted in the bibliography (not these lecture notes) permit 

the reader to develop his own ideas about what these concepts mean and why they 

might be useful. 
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F-91440 Bures-sur-Yvette 

ABSTRACT 

A few basic facts concerning the geometry of classical gauge 
fields are summarized; in particular, it is asserted that a princi-
pal bundle with connection can be characterized uniquely by its 
"Wilson loops". The quantization of gauge fields is then shown 
to consist of converting the Wilson loops into "random fields" on 
a manifold of oriented loops, a problem in "random geometry". Other 
examples in random geometry are briefly sketched. A general theorem 
permitting to reconstruct quantized Wilson loops from.a sequence 
of Schwinger functionals is stated, the quark-antiquark potential 
is introduced, and "disorder fields" are discussed in general terms. 
The status of the construction of quantized gauge fields in the 
continuum limit is indicated, and some random-geometrical arguments 
are applied to lattice gauge theories and used to derive estimates 
on the expectation of the Wilson loop, resp. the disorder field. 

1. Introduction 

These lecture notes are organized as follows: 

§2. Some elementary facts about the geometry of gauge fields. 

§3. Random (or stochastic) geometry. 

§4. Schwinger functionals and relativistic quantum fields. 

§5. Existence of quantized gauge fields. 

§6. Random geometrical methods in lattice gauge theories. 

§7. Conclusions and acknowledgments. 
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The purpose of these notes is to introduce the reader to some 
basic, conceptual aspects of the problem of constructing quantized 
gauge fields and to summarize some rigorous results concerning 
the general (axiomatic) theory of quantized gauge fields, the 
existence of models in the continuum limit and some physical prop-
erties of lattice gauge theories, in particular the confinement of 
static quarks, the proof of which is based on random geometrical 
methods. This is the content of §6 which, due to page limitations, 
has come out to be too short. (That material will probably be 
treated in more detail elsewhere. Much of it is contained in the 
references quoted in the text). Unfortunately, we were forced to 
omit all proofs and to even state some of the main results in a 
somewhat cavalier way, but the necessary precision can be achieved 
by consulting the references given in the text. Our choice of 
references does not represent a value judgment. It reflects the 
author’s taste and ignorance and a certain emphasis on developments 
in which he has been involved. 

The main problem of quantizing gauge fields and thereby con-
structing a mathematically consistent and physically realistic model 
of the fundamental interactions is among the central problems of 
theoretical physics. We are still far from having complete and 
satisfactory solutions to that problem, and the technical barrier 
separating super-renormalizable from renormalizable theories is 
still not overcome, at all, in spite of the advent of asymptotically 
free theories, the Yang-Mills theories. (Some progress may be in 
sight, though). In view of the main problem these notes and many 
of the references quoted may seem naive; (they certainly are). 
They may however help to see some conceptual and mathematical 
problems through a perspective which we hope is not completely 
useless. 

§2. Some Elementary Facts about the Geometry of Gauge Fields 

In this section we briefly review some mathematical building 
blocks of the theory of classical matter and gauge fields, empha-
sizing some geometrical aspects. For mathematical details see 
e.g. |1| and the notes by Singer and Mitter. In |2 | we have at-
tempted to give a rather detailed, pedagogical "introduction for 
physicists" to this subject which might also be useful. 

Let M be a manifold, the space-(imaginary) time manifold. 

4 
For particle physics one would choose Μ = E4 , but for well known, 

technical reasons one also chooses M = EV or SV , v = 2,3,(4). 

Let G be some compact Lie group, the gauge group. Let V be 
a topological space (typically a vector space carrying a repre-
sentation of G or a homogeneous space) on which G acts as a homeo-
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morphism group. Physically, V is the space of internal degrees of 
freedom of some matter field. 

Let F = (B,M,V,G,π) be a fibre bundle with bundle space B, 
base space M, fibre V, group G and projection π. If V = G, the 
gauge group itself, we shall denote F by P = (P,M,G,π), and such 
a bundle is usually called a principal bundle. For definitions and 
results concerning fibre-and principal bundles see e.g. |l|. We 
propose to view classical matter fields as sections of a fibre bundle 
F and classical gauge fields as connections on a fibre-or principal 
bundle. 

Let {Ω
i} be a covering of M by open, simply connected coordi-

nate neighborhoods such that the bundle space B restricted to 
Ωi is homeomorphic to ΩixV, for all i ε I. 

Let be two coordinate functions. 

Let By definition of a fibre bundle, 

-1 _ 
ξΩ χ

ξ
 x

=h(x) is an element of the gauge group G, depending con-

tinuously on χεΩ^, for all i ε I. The G-valued function h thus 

determines a change of coordinates and is called in physics a 
gauge transformation. Let xεΩ/ΊΩ. . The gauge transformations 

h
ij

(x)
:
 = ^

χ
ξ^

 x
 are called transition functions. They de-j i* j,x 

termine the bundle uniquely and also serve to associate to each 
fibre bundle a principal bundle: the one with the hij 's as its 
transition functions. 

A connection, A, on a fibre bundle is a family of 1-forms 

{ A
(i) }i ε I . with values in the Lie algebra G of G such that A

(i) 

is defined on Ω., i ε I, and for xεΩ,/ΊΩ. ¹ Ø 
i j 

(2.1) 

Moreover, if h is a gauge transformation defined on Ω. , A
(i) 

transforms according to 

(2.2) 
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In physics, A is called gauge field potential. It serves 
to define the notion of parallel transport. To explain this we 
choose some Ω = Ωj , i εI. Let γyx Ω be an oriented curve con-

necting xε Ω to some point y ε Ω. We propose to construct a 

homeomorphism from V into V in terms of A which describes 

the parallel transport of some ϕ(x)εV from x to y along γyx. 

If y = x+dx is infinitely proximate to x we set 

(2.3) 

with 

(in local coordinates; v = dim Μ). 

If γyx is bounded, oriented, continuous and piecewise smooth, 

(2.3) can be integrated along γ , yielding 

(2.4) 

where the r.s. is an infinite product obtained as a limit of finite 
products of factors 

(1+AÎ^ (x
k,m
 )), with | Δ-j. 0, as m → ∞, for all j and k. 

K,m m 

Under gauge transformations, transforms according to 

(2.5) 

and 

(2.6) 

Thanks to equations (2.5) and (2.6) one can now define parallel 
transport on the bundle space B of F as follows: If γ 

parallel transport on B is given by a homeomorphism 

Γ : V → V , with V = π- 1(x) the fibre over x, which is defined 
γ x y x yx 
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by (2.7) 

If γ^
χ
 is not contained in a single coordinate neighborhood Ωi, 

one cuts up γ into pieces γ c. Ω· , with Ω. ∩ Ωi. ¹ Ø , 
yx x x i i . i m+1 m m m+1 m 

and sets 

(2.8) 

with xN = y and = x. By equations (2.5)-(2·7), Γ is 
γyx 

independent of the choice of coordinate neighborhoods and coordinates. 
By the parallel displacement of some Φ(x)εV from x to y along 
γ we mean the element 
yx 

Γ Φ(x) in V . 
γyx y 
yx 

(2.9) 

Next, we propose to characterize a fibre bundle with parallel 
transport in terms of a convenient family of gauge invariant func-
tionals of the connection A. For this purpose we introduce the 
notion of holonomy groups. 

Let x be some point in M, and let Ω(x) be the manifold of all 
bounded, continuous, piecewise smooth, oriented paths, ωx , starting 

and ending at x, called loops. Given ω εΩ(x), let ω1 denote the 
X X 

same curve as ω
x
 but with reversed orientation. On Ω(x) we 

define multiplication as the composition of paths, i.e. 

(ω
x
 , ω’) → ω οω' , the composition of ω with ω’. With the obvious 
x x x x x x 

equivalence relation imposed, ω οω 1 = ω 1οω = 1 , the identity 
x x x x x 

element in Ω(x), and Ω(x) is seen to be an infinite dimensional 
group. 

Given a connection A and some loop ω
χ
εΩ(χ) we set 

(2.10) 

where Ω is a coordinate neighborhood containing x, and are 
i , 

local coordinates on B. This defines a representation 
g: ω εΩ(x) → g εG of Ω(x) on V. The image of Ω(x) , 

x 
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(2.11) 

is called the holonomy group of A. 

For continuous Α,Η
x
(Α) is a closed subgroup  G. If M is 

connected H
x
(A) is independent of x, up to conjugacy, and if M is 

simply connected Η (A) is connected. If H (A) = G the connection 
X X 

A is irreducible. 

Under a gauge transformation, h, g transforms according to ω 
x 

(2.12) 

as follows from (2.10) and (2.5)-(2.7). Thus the elements 
g ε H (A) depend on the choice of local coordinates (the gauge). 

x 

Let χ be a character of G. Then Y, given by 

Y(“x> = X(g
u
 ) 
X 

(2.13) 

is a character of Ω(χ). 

By (2.12), Υ(ωx ) is gauge-invariant. We define 

a(ω) ), ω ε Ω(χ) , to be the infimum of the areas of all smooth 
X x 

surfaces bounded by ω . 
x 

Theorem 2.1. 

Assume M is simply connected. Let Y be an irreducible charac-
ter of Ω(x) with the properties: 

(1) Y is of positive type on Ω(x). 

(2) Υ(1
x

) =

 n, for some natural number n < ∞. 

(3) [Υ(ω
x
 )-n| < 0(a(ω )), as a(ω) 

Then there exist an irreducible, connected subgroup 
H  U(n) and a representation h: ω ε Ω(x) h ε H of Ω(x) X ω 

x 
such that Υ(ω

x
) = tr(h ). The representation h of Ω(x) is unique 

x 
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up to unitary equivalence. Moreover, there exists a connection A 
with values in the Lie algebra of H such that h , ω ε Ω(x), is 

ω x 
X -1 

the parallel transport around ω
x

 determined by A. If H=UΠ(G)U , 

where Π is an n-dimensional, faithful representation of some compact, 
connected Lie group G, and U ε U(n) then h =UΠ(g )U-1, and g ε G is 

ω ω ω 
X X X 

unique up to (G-valued) gauge transformations, 

For a proof of Theorem 2.1 see |3|. This result says that a 
principal bundle with structure group G and a connection on it are 
uniquely determined by the numbers { χ(g ):ω ε Ω(x) } if χ is a faith-
ful, unitary character of G. ωχ 

Let P be some principal bundle with structure group G, and AI 

the space of all continuous, irreducible connections on P. Let G 
be the group of all gauge transformations modulo those which take 
values in the center of G. Clearly G acts as a transformation group 
on A1 . We define the orbit space O as . Given a connection 

G 

A ε AI , the corresponding orbit of A under G is denoted by [A]. 

Unfortunately 0 is generally not a linear space, but an infinite 
dimensional manifold with rather complicated geometrical properties, 
unless G is abelian. This is an expression of the intrinsic I 
non-linearity of non-abelian gauge fields. Singer has shown that A 
is a principal bundle with base space O , fibre G and projection π 

given by Π (A) = [A] , |4| . (If M = S or S4 A is not homeomorphic 
to 0x G , i.e. gauge fixing is impossible; see |4 |. If M = IEV this 
conclusion is however not valid). 

Since 0 is a manifold one can define a space C(0) of continuous 
functions on 0. The elements of C(0) represent the "observables" 
of a classical Yang-Mills theory. "Euclidean quantization" consists, 
in a vague sense, in converting the elements of C(0) into random 
variables. This procedure requires some more explicit knowledge of 
the structure of C(0). We thus describe a convenient dense subspace 

of C(0): Let A ε AI and let g (A) denote the parallel transport 
x 

around ω determined by A. The functions x 
Y(ω ;A): = χ(g (A)), ω ε Ω(x), χ a character of G, are x ωx x 

gauge invariant, i.e. depend only on [A] and are continuous in [A]. 
Therefore they belong to C(0), 
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Theorem 2.2. 

Let M be connected and suppose χ is some faithful, unitary 
character of G. Then the algebra of functions generated by 

W: = { Υ(ω ;A) : ω ε Ω(χ) } 
X X 

is dense in C(0). 

Proof. By Theorem 2.1 the functions { Y(ω ;A) } separate points in 0 

-1 to 
Moreover Υ(ω

χ
;Α) = Y(ω

χ
 ;A) also belongs W, and finally 

Y(1 ;A) = const. > 0. By the Stone-Weierstrass theorem the algebra 
generated by W is dense in C(C0; (0 is supposed to be compact). 

Remarks. 
1. Theorems 2.1 and 2.2 serve as one motivation for viewing 

the functions Υ(ω ) = x(g ) as the basic "observables” of a pure 
x 

Yang-Mills theory. 
2. Let Ωd be a denumerable set of bounded, closed, piecewise 

smooth, oriented loops, e.g. the loops of some lattice on M. Let 

be the closure of Ωd under inversion of orientation and composi-

tion of loops; (Ωd is a groupoid). Let (0) be the algebra 

— d I 
generated by{Y(ω): ω ε Ωd }. If all connections in A are continu· 

ous then C (0) C(0), (in the supremum topology), as 
_ _ d 
Ωd / Ωↄ Ω(x), for some x ε M, with M connected. 

Let Ω
L
 denote all bounded, oriented loops in a lattice L. 

Approximating C(0) by C (0) is the starting point of the lattice Ω
L 

approximation to Yang-Mills theory. 

It would be interesting to make a systematic study of all 
convenient, separable approximations to C(0) that could serve to 
construct gauge-invariant regularizations of (quantized) 
Yang-Mills theory. 

§3. Random (or Stochastic) Geometry 

Throughout these notes we follow the Euclidean (time purely 
imaginary) approach to quantizing relativistic quantum field 
theory. In this approach the problem of field quantization is 
converted into one of constructing random fields and functional 
integrals, (unless there are Fermi fields in the theory which are 
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ignored in these notes). In the Euclidean approach to quantized, 
pure Yang-Mills theory the basic random fields turn out to be the 
variables 

Υ(ω) = Χγ(ω), 

studied in §2; Χγ is a unitary character of the gauge group G, ω 

is a bounded, oriented loop, and g
ω
 is a "random holonomy operator" 

assigned to ω. (If the theory also contains a matter field Φ, 
assumed here to be spinless, transforming under a representation 

Uϕ of G then, in addition to the variables Υ(ω), one must consider 
the variables 

(ϕ(y),U$(g )Φ(X)), 
Yyx 

where (·,·) is an inner product on the fibre V of the bundle whose 
sections are given by Φ). 

We thus see that in the Euclidean approach to quantized 
Yang-Mills theory one wants to construct random fields on spaces of 
geometrical objects, the oriented paths and loops in Euclidean 
space-time. According to Theorem 2.1, the random fields Υ(ω) 
are in correspondence with a random connection on a random principal 
bundle. 

The construction of such random fields can thus be viewed as 
a problem in a hypothetical branch of mathematics attempting to 
combine geometry and probability theory which one might call random 
(or stochastic) geometry. 

We now give a short list of some problems in random geometry 
and then discuss a few of them in more detail. 

1) Convert geometric objects (loops, surfaces, clusters, 
holonomy operators, etc.) into random variables, resp. random 
currents. 

2) Construct stochastic processes whose state space is a space 
of geometrical objects. 

3) Construct random fields on spaces of geometrical objects. 

4) Construct random holonomy operators on a (random) fibre 
bundle. 

5) Investigate random operators associated with a foliation 
|6|; etc. 
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In many situations random geometry is really measure theory 
on infinite dimensional manifolds, or manifolds modulo the action 
of some infinite dimensional transformation group, (e.g. a group 
of gauge transformations, the diffeomorphism group of the circle 
or a sphere, etc.). 

Of concern to us are the following specific problems in random 
geometry: 

(A) Theory of random holonomy operators on random bundles with 
fixed base space. 

(B) Diffusion processes whose state space is a space of loops 
or a manifold of open paths with fixed endpoints, (modulo the action 
of the group of reparametrizations). 

(C) Theory of random surfaces bounded by some fixed loops. 

These problems are relevant for the understanding of quantized 
gauge fields, as we hope to explain in the remainder of these notes. 
We emphasize that there are numerous other branches in theoretical 
physics which pose their own problems in random geometry. In par-
ticular, statistical mechanics is rich in such problems. 

Unfortunately, it turns out that random geometry in the con-
tinuum is very difficult and forces one to study very singular 
objects. For example, the holonomy operators of a Euclidean quantized 
Yang-Mills theory on v-dimensional space-time, with v > 3 cannot be 
expected to be random fields in the precise sense of the word. To 
see this one may consider the free electromagnetic field: 

Let Α(·) = (A1(·),···(·)) he the IR
V-valued Gaussian process 

with mean 0, i.e. <Α(·)> = 0, and covariance 

(3.1) 

One may attempt to define random holonomy operators (random phase 
factors), g , by 

ω 

(3.2) 

Unfortunately g does not exist as a random field on the space of 
ω when v > 3. 

loops: gω = 0, almost surely, To give meaning to gω it needs to 

be ’'normal-ordered”: 

g → N(g ) = "exp |\v (0)|u)|J g " . ω ω C ω 
(3.3) 
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Here |ω| is the length of the loop ω, and is the (v-1)-dimensional 
Coulomb potential. The r.s. of (3.3) can be defined rigorously as 
a limit of regularized objects if ω is sufficiently smooth (C2) and 
v <_ 4. Since A is Gaussian, it is easy to calculate 
< N(g^)N(g^,) >. One checks that if the relative positions and 

orientations of ω and ω' are suitably chosen one gets 

< N(g )N(g , ) > ~ exp [const. dist. (ω,ω') 1], (for v=4). 
ω ω 

(3.4) 

Thus, the objects N(g ) are too singular to be random fields in the 
usual sense of the word. For a (heuristic) theory of normal ordering 
of holonomy operators in three-dimensional, interacting theories 
see |7|. 

The above discussion suggests that random geometry in the con-
tinuum may be plagued with serious difficulties. One way of regu-
larizing the objects studied in random geometry is to pass to random 
combinatorial geometry by replacing continuum geometry by discrete 
geometry (combinatorics); see e.g. |8| for some discussion. 

We conclude §3 with sketches of three examples of random com-
binatorial geometry. 

I. Let P = (P, lEV,G,Tr) be a principal bundle over IΕν. As 
discussed at the end of §2, we may approximate the space C(0) of 
continuous functions over the orbit space 0 (the "observables") by 
C
ΩL

(0), where Ω
L
 is the set of all bounded, oriented loops in a 

lattice L which we choose to be 

ε Z = { x: ε 1x ε Zv}. We assign to each link (nearest neighbor 
pair) xy ε L an element g ε G. Given ω ε Ω

L
, let 

(3.5) 

Let Χγ be a character of G. We set 

Υ(ω) = χγ(8ω) (3.6) 

The algebra generated by the Y's is dense in CΩL (0) . Thus, in order 

to convert the elements of C (0) into random variables, it suffices 

to construct the joint distribution of the "Wilson loop variables," 
i.e. to construct a measure on { gxy }. The standard proposal |9|, 

due to Wilson, is the following: Let χ be a unitary character of G, 

let p denote a plaquette (2-cell) of L = ε ZV, ∂p its boundary. 
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Let ΛϵεZ be a bounded set. Define an action, A by 

(3.7) 

Let dg denote normalized Haar measure on G, β>0. We define 

(3.8) 

with such that Jdp^(g) = 1. 

By a standard compactness argument one can choose a sequence 

{ Λ } increasing to ε Zv such that 
n n=o 

exists. (3.9) 

(Conditions for existence and uniqueness of the limit dp are given 
e.g. in |9,10|). The measure dp is now interpreted as the joint 
distribution of the random variables { Y(ω):ω ε ΩL }. Of particular 

interest in the discussion of the resulting theory are the 
Schwinger functionals 

(3.10) 

What we have introduced here is the standard lattice approximation 
to quantized, pure Yang-Mills theory |9|. 

II. Let Γ
L
(x,y) be the set of all finite, oriented curves in 

v 
L = ε Z starting at x and ending at y. This is clearly a countable 
set. Let l2 r be the Hilbert space of functions F on Γ

L
(x,y) with 

the property that 

(3.11) 

for some r > 0. Let p be an oriented plaquette. 
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If 9ρπγ
χ
^ ¹ Ø we define γ

xy
 o ∂p by the following figure: 

(i) 

(«) 

For F ε l2 define 
2, r 

(δ F) (γxy ) = 
ρ xy 

F (γxy ο ∂p) -F(γ ) if ∂p∩y ¹ Ø xy xy xy 

and o ∂p is connected; 

0, otherwise. 

(3.12) 

One may now define a functional Laplacean, D1as the unique 

selfadjoint operator determined by the quadratic form 

F → Σ (δ F, δ F) l2, , 
P 

(3.13) 

defined e.g. on l2 r > (l2
 =

 l2 r=0). 
Let be the multiplication operator on given, for example, by 

(V F) (γ ) = α |γ | F (γ ) , 
α xy xy xy 

(3.14) 

where γ is the number of links in γ 
xy xy 

The operator sum D1+Vα is still selfadjoint, and it follows from a 
general theorem in |11 | that the kernel (exp [-t (D..+V )] ) (γ ,γ' ) 

-L α xy xy 

is non-negative, for all γ
χy

, γ
χy

 in Γ
L
(x,y). Thus exp-t(P^+V^) 

is the transition function of a stochastic process on T^(x,y). This 

process describes the diffusion of an oriented string with fixed 
endpoints x and y. It has some significance in the analysis of 
confinement in lattice gauge theories, |7|. See also §6. (If the 
deformation (ii) in the definition of γ ο ∂p is omitted, the 

xy 
resulting process may be of interest in the study of selfavoiding 
random walks). 
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II'. Let Ω
L
 be the set of all finite, oriented loops in L; 

Ω
L
 is still countable. Therefore one may define spaces 

r
 =

 ^2 and operators δρ
, D1 Vα, etc. in a similar way as 

above. There results a model for the diffusion of loops in the 
lattice L. For some results concerning a general theory of dif-
fusion of discrete, geometrical objects see e.g. |11|. (They have 
applications in statistical mechanics). 

III. Let Ω. , D , V ,... be as in (II), (II') . we propose to L 1 α 
give an example of a random field Φ on Ω

L
. To each ω ε Ω

L
 we assign an 

nxn matrix, Φ(ω), with a priori distribution dΦ(ω) given by the 
2 

Lebesgue measure on Cn2 . There exists a random field Φ the dis-
tribution of which corresponds to the formal measure 

dp 

The measure dp can be constructed as a limit of cutoff measures. 
The field Φ is conveniently described by its "Schwinger functionals" 

(3.15) 

which one may interpret as Schwinger functions of a lattice string 
theory |12|. 

If the constraints 

(3.16) 

are inserted into dp and the couplings are suitably rescaled, the 
above theory becomes a lattice gauge theory with G = U(n); see 
|11|. This example is admittedly somewhat naive. It may serve 
as a challenge for a serious study of more interesting random 
geometrical models. The most important problem is to find inter-
esting models of this sort for which the continuum limit (ε ο) 
exists. This is the subject of the renormalization group ("block 
spin transformations") and non-perturbative renormalization. 
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§4. Schwinger Functionals and Relativistic Quantum Fields 

In this paragraph we briefly discuss the question whether 
Schwinger functionals of the sort defined in (3.10) and (3.15) 
determine a relativistic quantum field theory. The answer to this 
question is, for conventional, local field theories, the Osterwalder-
Schrader reconstruction theorem |13,14|. We quote here a generali-
zation of that result which accounts for theories of fields defined 
on spaces of geometrical objects such as the "Wilson loops" of pure 
Yang-Mills theory. The theorem is first stated for a class of 
continuum theories and represents a special case of more general 
results of this type |15]. 

The Euclidean space-time manifold is lEV,v=2,3,4. Let Ω(d) 

be the family of all oriented C∞ d-dimensional surfaces in Ev 

without self-intersections, (i.e., topologically, d-dimensional 

spheres), with d <v-2. For ω,ω’ in Ω(d), set 

(4.1) 

(4.2) 

We now assume that we are given a sequence of Schwinger func-
tionals { S

n
(Y1(ω1) ,... . ,Υn(ωn) ) }

∞

n=0
 with the following properties: 

(SI) is well-defined on 

∞ 

and continuous under small C deformations of ω1,...,ωn in 

Moreover, the growth of |sn (Y(ω1),...,Υn (ω )) |, as 

d ≡ min d (ω. , ω ) ̂ 0, is bounded by 0 (exp [const. d-α ) , for some 
n i¹j i n 

a > 0 and constants that depend on n in a suitable way; see |13,15|. 

(S2) (Osterwalder-Schrader positivity) 
Let r be reflection at { t=0 } and let Y Y

r
 be some reflection map 

(in the case of Yang-Mills theory Y = Y, the complex conjugation 

of Y). The N x N matrix C with matrix elements given by 

S ( u)1 /. v ),...,Y* (ωi1 ),Y] (ω^,.,.,Υ^,.νίω^/.ν)), n(i)+n(j) n(i),r n(i),r'’ l,rv l,r'’ lv Γ , ’ n(j)v n(j)"’ 
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i,j = Ι,.,.,Ν, is positive semi-definite, provided 

(u)k,...,u)k
(k)

) for all k = 1,...,Ν; N=l,2,3... . 

(S3) (Symmetry) 
Sn(Υ^(ω^),...>γη(ωη)) is symmetric under arbitrary permutations of 

its arguments, for all n. 

(S4) (Invariance) 
Let β be a proper Euclidean motion. Then 
S (Y (ω,),...,Y (ω)) = S (Y (ω- ) ,... ,Υ (ω J), for all η. nil ηη η 1 1,3 ηη,ρ 
(Here ω

0
 is the image of ω under 3)· 
β 

If we consider a lattice theory we replace (S4) by (S4'): Invar-
iance under the symmetries of the lattice. 

[(S5) (Clustering; see |13|)] 

Heuristically, the Schwinger functionals of a Yang-Mills theory 
satisfy additional properties, in particular an extended version of 
(S2) (Osterwalder-Schrader positivity) to which we refer as 

(S2ext’); see |10,15|. 

The main theorem about sequences of Schwinger functionals 
satisfying (S1)-(S4) is 

Theorem 4.1. 

If { S (Y (ω-, ) ,. . . ,Υ (ω )) } _ satisfies (S1), (S2) and (S4) 
n 1 1 n n n=0 , 

then one can reconstruct from those Schwinger functionals a separable 
physical Hilbert space Η , a vacuum vector ΩεΗ, with < Ω, Ω > = 1, 
and a unitary representation U of the proper Poincare group 

p| on H with U(a,A) Ω = Ω, (4.3) 

t -+■ 
for all (a, Λ) ε P . The spectrum of the generators (P,H) of the 

space-time translations is contained in the forward light cone V . 

If, in addition, (S3) holds there exist "local fields" 

γ(ω;Υ), ωε Ω(d) ωΓ { x= (x, t) ε MV : t = const.}, 

with [y(ω;Υ),y(ω';Y' )J = 0 if ω and ω* are space-]ike separated, 
[it (S1),(S2),(S4) and (S5) hold then the vacuum Ω is the only 
vector satisfying (4.3), i.e. the vacuum is unique]. 
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A more precise formulation and a proof of this basic theorem 
will be given elsewhere, |15|. 

Some of the main tools in the proof of Theorem 4.1 not already 
used in |13,14| are: A result concerning the selfadjoint extensions 
of symmetric semigroups |16| that serves to construct the represen-
tation of the Poincare group, and the observation that the Schwinger 
functionals determine a state < Ω, · Ω > which satisfies the KMS 
condition with respect to the Lorentz boosts, 117 j. A somewhat 
novel approach to the results of j17| and to proving locality are 
consequences of that observation. See |15|. 

Next we discuss a few physical properties coded directly into 
the Schwinger functionals. The first is a consequence of extended 
Osterwalder-Schrader positivity |101| in Yang-Mills theory. In that 
theory d = 1, and Ω(d) is the space of loops in EV diffeomorphic 
to circles. Let ωLxT be a (smoothed version of a) rectangular 

loop with sides of length L and T. Assume that (S2ext. .), |101 ,15|, 
holds. Then (Y (ω-LxT)) ) is log convex. Therefore 

(4.4) 

exists, and moreover one concludes 

Proposition 4.2 

Vy(L) <= const. L, as L ·> ». (4.5) 

For lattice theories this inequality has been established in |18|. 
Physically, it says that the potential between a static (infinitely 
heavy) quark and a static anti-quark cannot rise faster than linearly. 

It was suggested in |7,11| that S1(Y(w) contains information 

about the boundstate spectrum of very heavy quarks, and 
S2 (Υ(ω),Υ(ω')) about the low-lying mass spectrum of pure Yang-Mills 

theory. 

Next, we sketch the notion of "disorder fields" |19—22|. We 
assume that, in addition to the"random fields" Υ(ω),ω ε Ω(d) , there 

are "fields" Β(γ), γ ε Ω(V- 2- d) (O : = Ev) , with joint Schwinger 
functions 

{ Sn,m(Yl(wl) * * * * ,Υη(ωη) ,B(Y1) , · · ·, B (Yn) ) }oo

n,m
=()· (4.6) 
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These Schwinger functions are supposed to have properties 
analogous to (S1)-(S4), but in addition they are required to have 
certain specific discontinuities (which cannot arise in standard 
field theories of the Wightman type): 

Choose u),yc { (x,t): t = const. } and let ν(ω,γ) be the linking 
number of ω,γ. Let ωe be the translation of ω in the t-direction. 

ε 
Then lim S. .(...,Y(ωe ),Β(γ),...) 

(4.7) 

In two-dimensional scalar field theories with soliton behavior 
and three-or four dimensional Yang-Mills theory one can prove that 
|B| = 1, |19-21|. In fact,in Yang-Mills theory, is an 

element of the center of the gauge group G which depends on Y and 
B, |20,22|. An extension of the reconstruction theorem, Theorem 
4.1, provides us with fields y(co;Y) and b(Y,B), which for 
u),YC{(x,t): t = 0} satisfy the following formal time 0 commutation 
relations 

(4.8) 

(The field b is said to be "dual" to y). 

For v = 2, d = 0, v = 3, d = 1, and v= 4, d = 2, (i.e. v-2-d=0) 
such commutation relations have been discussed in |19| and repre-
sentations with d = 0 have been constructed for two-dimensional 
scalar field theories with soliton behavior, (the sine-Gordon and 
the models). For v = 3, d = 1, and v = 4, d = 1 they have been 
proposed and interpreted in |20|; see also 't Hooft's contribution to 
these proceedings. For v = 2,3,4, d = 0, certain "quasi-free" repre-
sentations have been constructed in a series of remarkable papers 
by Jimbo, Miwa and Sato |211 . Their work shows how powerful rela-
tions like (4.7) may be and has resulted in the calculation of the 
correlation functions of the two-dimensional Ising model. For 
lattice theories representations of (4.8) have been constructed for 
v = 2,3,4, with d = 0,1,1, respectively, |22|. 

In |19| properties of the representations of (4.8) when 
v=2, d = 0 or v = 3, d=l (or v = 4, d =2) have been related 
to the structure of super-selection sectors of the corresponding 
quantum field theories: If const.y(w;Y) converges on H to a 

non-zero element of the center of the observable algebra, as 
|ω|->°°, and zyB 4 l, then b(x;B) intertwines disjoint super-

selection sectors of that algebra. (The two-dimensional case 
has been studied from first principles, whereas in higher dimensions 
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one needs suitable technical assumptions). In |20| 't Hooft 
has suggested connections between properties of the representations 
of (4.8) in a gauge theory and quark-resp. monopole confinement. 
He argues that (4.8) rules out the possiblity that quarks and 
monopoles are both confined. This has been elaborated and tested 
in models in |22,23,102|. See the contributions of 't Hooft and 
Mack to these proceedings. 

§5. Existence of Quantized Gauge Fields 

In this paragraph we quote some results concerning the existence 
of models satisfying the axiomatic scheme of §4. At present, the 
only models that fit into that scheme are models of quantized inter-
acting gauge fields-and matter fields-on a lattice of arbitrary di-
mension (see end of §2 and Example (I), §3) and in a continuum space-
time ( ΊΕν) of dimension v - 2, and presumably v = 3. Of course, 
the free electromagnetic field in two, three or four dimensions 
satisfies (S1)-(S5). In the continuum only abelian gauge fields 
have been constructed so far. If the gauge group is abelian there 
are, in addition, lattice theories describing abelian gauge fields 
which are connections on bundles whose base space is e.g. the space 
of oriented loops in the lattice: To each plaquette p one assigns 

an element e 6P eG,G e=g. U(l), 22n, with a priori distribution the 

Haar measure on G. The action is given by cos 

These theories have Schwinger functionals of random "holonomy 
operators" associated with closed lattice surfaces satisfying 
(SI)-(S3), (S4'), (in the limit Λ = Zv). The models of the type 
described in Example (III), §3, (without the constraint (3.16))are 
not known to fit into the scheme of §4. (This may be related to 
the difficulties which are met in string theories |24|). For 
detailed studies of lattice theories see e.g. |9,10|. 

Let du(e) (g) denote a limit of the measures d(e)^(g), (Example 

(I), §3, (3.7)-(3.9)), as At ZV. 

For small 8, the limit is unique and the Schwinger functionals 
have exponential cluster properties; detailed properties such as 
confinement can be investigated by means of high temperature expan-
sions, 19| . Uniqueness of the Af*Zv limit can also be proven in 
a class of abelian models, for all 8· A few physical properties 
of lattice gauge theories are sketched in the next paragraph. 

The list of models of quantized, interacting gauge fields in the 
continuum satisfying (S1)-(S4) is still short: 

1) The abelian Higgs model (scalar QED) in two space-time 
dimensions, |25|. 
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2) Spinor QED in two space-time dimensions with massless or 
massive fermions and massless or massive photons, |26|. (For a 
different approach see J 27|). 

|3) For spinor QED in three dimensions, a proof of stability 
of the theory is announced |28|. 

4) For some super-renormalizable gauge theories (including 
non-abelian ones), T. Balaban has announced a proof of stability 

j 29 j based on a rigorous form of renormalization group - "block 
spin" - transformations for lattice theories, extending previous 
work due to Gallavotti, et al.|30| for the λφ4 theory in three 
dimensions j 311 |. 

§6. Random Geometrical Methods in Lattice Gauge Theories. 

In this paragraph we briefly discuss four examples in lattice 
gauge theory the analysis of which is based on estimating the joint 
distribution of random variables labelled by geometrical objects 
such as closed flux tubes or (interacting) oriented random paths 
with fixed endpoints. We sketch some typical steps in that analysis 
thereby providing examples for the uses of random-geometrical argu-
ments in the study of lattice gauge theories. 

Example 1. 

We discuss the behavior of the expectation of the Wilson loop 
in a three-dimensional 7L2 lattice theory, (i.e. G = Z2 is the 

gauge group). This model can be thought of as a Kindergarden 
theory of vortices in a type II superconductor. The Wilson loop -
dual to the "vortex field" - is the non-integrable phase factor of 
the superconducting medium. The action of the model is 

(6.1) 

The infinite volume expectation in that model at inverse coupling 
β - see Example (I), §3, (3.8), (3.9) - is denoted < — > . (It 

can be constructed by means of correlation inequalities, for all 
e 1321 ) . 

Let c be an arbitrary 3-cell (unit cube) in Z3 . Then 

π σap =1, since σ = 1, for all xy. We now introduce the 
pc9c ap 
random phase factors σap as a priori independent variables, inserting 

the constraint (6.2) 
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We set 
(6.3) 

Let ω be a rectangle with sides of length L and T parallel to 
two coordinate axes. Let ω be the planar surface bounded by ω, 

i.e. 8ω e ω . Since σ = 1, for all xy, 

σ = ΤΓ σ = π 
xycu pern 

(6.4) 

This is the "non-integrable phase factor" (Wilson loop) observable 
of the medium. 

Theorem 6.1. 

For sufficiently small B 

<σ >B<e-o(|w| w |) , | ω| = area of ω . 

For sufficiently large 3, 

<O >B> e-o(|w|) |w |) , | ω | = perimeter of ω. 

The result for small B follows from a standard high temperature 
expansion |9| . The large B result has first been proven in |33|; 
see also 134 . 

We outline a simple proof. 

Let v1/o(
σo

ap ) be the characteristic function of 

{ σap = 1}/{σap = -1}. Then 

(6.5) 

with φp = 1 or 0, cop = co ( σap ), and The con-

straint (6.2) implies flux conservation, i.e. the total flux 
(= # of p's with = 1) through each closed surface is 0, mod. 2. 

Thus all flux tubes, τ, are closed. 

See Fig. 1: 



22. 

Given ω, each flux tube τ (closed loop in the dual lattice) can be 
assigned a linking number, ν(ω,τ), (with ω), defined mod. 2. Let 

0< Pr w(η) = prob. ({En flux tubes, τ1,.,.,τn , with 

ν(ω,τ1) = 1, Vi } ) . 

By (6.5) < σw >B = Prw (O)-Prw (1)+Prw (2)-Prw (3)+... (6.6) 

Now to each configuration φ = {p } 

contributing to Prw(2n+1) there is one contributing to Prw(2n) 

with one flux tube τ, ν(ω,τ) = 1, less,(i.e. φp= 1+φp = 0,¥ρετ). 

The statistical weight of one flux tube, τ, is 

Œe-B|t|, where | τ | = # p's ετ (with φp=1) . (6.7) 

Thus Prw (2n)-Pr (2n+l) > a Prw (2n), with a>l-e- const.B>o. (6.8) 

This yields with (6.6) 

< σ >B > a Prw (0). 

Let Pr'p = cond. prob. ( { 3
 τ :

 P
 ε τ

 » Φρ
=

1 , v (ω, τ ) = 1} ), 

given φp ,, for some ρ' # ρ. A simple argument shows that 

(6.9) 

and by (6.7) and standard arguments for counting closed flux tubes 
through p of a given length one finds 

pr,
 <

 -const. 3 dist.(ρ,ω) (6.10) 

if 3 is large enough. From (6.6)-(6.10) we obtain by a simple 
calculation 

< σ >B _> const. e-const.' 1 | , 

for large B which proves our contention. 

(6.11) 

Thus if flux tubes have a very small statistical weight, 

the non-integrable phase factor σ is <x e- O(ΙωΙ), in the average. 
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This situation is analogous to one met in the Ising model: If 
contours have a very small statistical weight then σ

0
σ
χ
Œ const., 

uniformly in x, in the average. Theorem 6.1 has been extended to 
the four dimensional U(l) model in j35 | , (the proof being very dif-
ferent) . 

More realistic models of superconductors in three (and four) 
dimensions are discussed e. g. in |l02|,and refs.. 

Example 2. 

We consider pure Yang-Mills lattice theories with gauge group 
G = U(n) or SU(n), n = 2,3,.... See Example (I), §3, (3.5)-(3.9), 
and we set e=l and choose in (3.7) χ to be the character of the 
fundamental representation. Moreover, 

Υ(ω) = x(gw ). (6.12) 

We study the behavior of S1(Y(w)) =< Υ(ω) >B in 3· 

Let ω = ωLxT T
 be a rectangle in the (l,v) plane with sides of length 

L and T, and let Vy(L) be the function (qq potential) defined in 

(4.4). It is easy to show that, for v=2, V (L) _> const. L, for 

all B; (i.e. permanent confinement by a linear potential). 
For v=3, G=U(n), n=l,2,3,..., 

(L) _> const, log (L+l) ; see | 36 | . 

There are arguments in support of 

νγ(L) ̂  const. L, for G = U(n), SU(η), 

n=2,3..., v=3. An interesting case is G=SU(2), v^3 or 4. In |7| 
the following somewhat remarkable identity has been proven: Let 
Σ be a family of oriented paths 

(γEu : 1< u< T}, starting at the site (0,...,0,u), ending at 

(L,0,...,0,u) and lying in the plane π = { x:xv = u }. Let (γE-1 )-

be the path obtained by reversing the orientation of . Then 

S1(Y(w)) Ξ < Y (ω) >β 

(6.13) 
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where is the bottom face and the top face of 

ω, gh (u) = {gxy : xy ε TTU }, and F(gh (u-1) gh (u)|γu ) is a gauge 

invariant function of the "horizontal" gauge fields g (u-1),gh (u) 
depending on γu . The r.s. of (6.13) can be viewed as a sum over 

joint correlations of interacting random paths (forming a "random 
surface" Σ). In mean 

F(g
h
(u-1),g

h
(u)|Y

u
) ~ e

 a|Y
u|, (6.14) 

with a > -ln [(2v-3)(v-l)(4v-4)- 13] · 

Thus if resp. (6.15) 

< Y(w)
LxT

) >B < e-
 -0

(|w|), (area decay), (6.16) 

by (6.13) and (6.14). Condition (6.15) is not nearly necessary for 
area decay, because (6.14) is only a rough estimate and because the 

factor π x(gy (gyeu o(yEu)-1 Eu) -l) on the r.s. of (6.13) provides for strong 

additional damping of < Υ(ωLxT)>β, 

(6.17) 

We expect that an improvement of the estimates in |7,37| taking into 
account that factor ought to permit to show that 

< Y(ωLxT ) >B <_ e-o -0(|ω|), for all B when v=3. (The situation for 

v=4 is technically less well understood). 

Next, recall Example (II), §3, (3.13), (3.14). Choose x=0, 
y=(L,0, . . . ,0) , t œ T and approximate exp [-t (D1+Va) ] by 

{ exp [ - t/TD1 ] exp [- t/T va] }
T (6.18) 

If we write out (6.18) as a sum over products of matrix elements 
labelled by paths YXy

e
£
 x

(x,Y) and compare with (6.13), (6.14) and 

(6.17) we see that for suitably small B and a proper choice of t 
and a 

< Y(WLXT) >B < exp [-t.(D1+Va)] (ΥZT,ΎEo )· 

Connections between lattice gauge theories and the diffusion of 
strings or loops of this sort might have interesting consequences 
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for the heuristic understanding of the string dynamics in Yang-Mills 
theory. 

Example 3. 

We consider the behavior of the disorder parameter in a 
three-(or four) dimensional SU(2) lattice gauge theory with dis-
tribution dy(g) as proposed by Mack and Petkova |22 |: du(g) 
is given by 

(6.19) 

with dp (g) = du(1)(g) as in (3.8), (3.9). 

The expectation in du is denoted < >~B. One is interested 
B 

in the behavior of the expectation of the disorder parameter, 

< Β(τ ox ) >~, with τox as depicted in Fig. 2: 
ox ’ as depicted in Fig g. 

B 

Let The constraint enforces 

that Σ Φp = 0, mod. 2. Thus Φp may be interpreted as a Z2 flux 
6pec P P 

through p, and only closed flux tubes are compatible with the con-
straint; as in Example 1. The statistical weight of a closed flux 

tube, τ, is bounded by e k(B)|T|, with k(B)7 oo as β/°°, as follows 
from a chessboard estimate | 38 |. Expanding < — >~B in flux tube 

configurations it is a fairly simple matter of counting flux tubes 

of given lengths passing through τox to prove that when e- k(B) is 
OX 

sufficiently small (i.e. B large) 

< B(tox ) >B < ox B = (6.20) 

see |22,23|. (In outline we have followed here |23|). One can 
show, by comparison with the 72 model, 

where σp = sgn χ (gap ), 
P dP 

for B small enough, see |22|, and by arguments very similar to those 
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used in Example 1, 

for large B· 

Example 4. 

Let G=U(N) ,N = 1,2,3, Let Υ
Ν
(ω) = 1/N XN (gw) with XN the 

character of the fundamental representation of U(N). 

One is interested in an expansion of 

in powers of 

To leading order in < jttn1 Υn(ωj) >B factorizes, i.e. 

correlations are suppressed in the N = °° limit. The problem is to 
identify and compute the N = °° limit of < Y (ω) >B and to then 

determine systematic corrections to Sn, in particular to 

< Υn(ω) >B B, in the form of power series in . A somewhat heuristic 

calculation | 39| yields 

(6.21) 

where { Σ: 8Σ = ω } are all surfaces built of oriented plaquettes 

(2-cells in Zv) bounded by the loop ω, and w(B,N,E) are the weights 
of these surfaces. One can argue |39,40| that, to leading order in 

only simply connected, normal surfaces, Σ, with 8Σ = ω contribute 

to the r.s. of (6.21). The weights of these surfaces are 
oo exp [-dB |M| ], with | Σ | the total area of Σ. Moreover surfaces of 

higher genus (with handles) are suppressed by powers of 1/ 
|39,40|. /n2 

In spite of these preliminary findings a systematic expansion 

in is missing. To do that one must first find geometrical char-

acterizations of all surfaces contributing to a given order in l/,n , / N 

determine their weights and sum up their contributions. This 
appears to raise very subtle problems in the combinatorial geometry 
of lattice surfaces and combinatorics. (An alternate approach based 
on the techniques sketched in Example 2 has been suggested in |7 | ) . 
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For a more detailed analysis and refs. see E. Witten’s contribu-
tion, and for results concerning the 1/v-expansion Parisi's contribu-
tion to these proceedings. 

Related problems arise in the statistical mechanics of discrete 
polymers, of crystal growth, etc. A great deal of knowledge in com-
binatorial geometry required for the solution of such problems seems 
to be missing, at least among physicists. 

§7. Conclusions and Acknowledgments. 

Here are some important open problems which are presumably 
central to the further development of quantized Yang-Mills theory. 

(1) Proof of ultraviolet stability of quantized, non-abelian 
Yang-Mills theories and connections to renormalization group argu-
ments. Use of "block spin" transformations. (Important progress 
in this direction in the super-renormalizable case has been announced 
by Baiaban | 29|)- See also |25| — j 27 |, | 30|, | 311 , 

(2) Construction of algorithms permitting rigorous error esti-
mates for the calculation of large scale (low energy) phenomena such 
as quark confinement, absence of coloured physical states (colour 
screening), Regge behavior of resonance spectrum, quark bound states, 
in QCD. (Along these lines one would like e.g. to test the validity 
of "instanton physics," set up calculable 1/N- and 1/v-expansions and 

prove their asymptotic nature, extend the methods sketched in §6, 
Example 2, to the continuum limit, find rigorous connections to dual 
resonance models|see the contribution by J.-L. Gervais and A. Neveu|, 
etc.;. 

(3) Investigation of conservation laws and complete integrabil-
ity (at the classical and quantum mechanical level) of pure, non-
abelian Yang-Mills theory. (Existence of Backlund transformations, 
conserved currents?) 

(4) Application and extension to theories with non-trivial 
S-matrix of the methods of Jimbo, Miwa and Sato to Yang-Mills theory. 
(Their methods are based on using Schwinger-Dyson equations for the 
Schwinger functionals discussed in §4 and the discontinuity proper-
ties (4.7), in conjunction with expressing the fields y in terms of 
the disorder fields b; see |21j). 

In conclusion I wish to thank my collaborators, D. Brydges, 
B. Durhuus, E. Seiler and T. Spencer for all they have taught me and 
the joy of collaboration. They should have written these notes. 
Special thanks are due to H. Epstein, G. Mack and E. Seiler for 
numerous, very valuable discussions and encouragement. I also thank 
the organizers of the Cargèse School for inviting me to participate 
and lecture and for financial support. 
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ON THE CONSTRUCTION OF QUANTIZED GAUGE FIELDS 

Jürg Fröhlich 
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91 440 Bures-sur-Yvette / France 

ABSTRACT 

We give a very elementary introduction to the geometry of 
classical gauge fields. The "observables" of classical gauge theory 

are isolated, and discrete approximations are discussed. We then 
present a general formulation of quantized Yang-Mills theory and 
state a reconstruction theorem. Subsequently we exemplify the ge-
neral scheme in terms of lattice theories. Some basic properties -
- confinement, phase transitions, etc. - of lattice theories 
are discussed, and connections to dual resonance models are 
sketched. We finally outline the main steps in the construction of 
the two-dimensional, abelian Higgs model in the continuum - and 
thermodynamic limit. 

These lecture notes summarize a small portion of some recent 
work on the description and construction of quantized gauge fields 
[1 - 7] . For its major part that work has been done in colla-

boration with D. Brydges and E. Seiler. There are two excellent 
reviews [8,9] by E. Seiler which the reader who does not want to 
read the original publications is advized to consult. Some concept-
ual and foundational aspects of quantized Yang-Mills theory are 
discussed in [10,11]. 
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CONTENTS : 

I. Introduction 

1.1. Classical gauge fields 
1.2. Some facts about the geometry of fibre bundles 
1.3. A tentative, general formulation of quantized 

Yang-Mills theory 

II. La11i ce gauge theor ies 

II. 1. Some of the basics about lattice gauge theories 
II.2. On the phase diagram of some lattice gauge theories 
11.3. Connections to dual resonance models 

III. Remarks on the continuum limit of the abelian Higgs model in 
two space-time dimensions 

III.1. External (c-number) Yang-Mills fields 
III.2. Integration over the gauge field (abelian case) and re-

moval of cutoffs 

IV. A look into the future of the subject 

Sections 1.1. and 1.2. have an elementary, introductory 
character. (The advanced reader should skip them). They are, 
however, quite useful as a piece of motivation of the basic 
concepts discussed in Sections 1.3. and II. 1. The remaining 
sections are sketchy, and the reader should consult [1-9] . 

I. INTRODUCTION 

In this section we try to introduce the main mathematical 
and physical notions concerning gauge fields. 
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1.1. Classical gauge fields 

Classical abelian and non-abelian gauge fields have been used 
implicitly in physics for a long time, namely in the classical 
mechanics of rigid bodies; ("3 index symbols"). I illustrate this 
point by means of an example which I learnt from E. Seiler and 
which serves to explain the concept of a principal bundle. 

Consider a spherical ball of radius P rolling on a two 
dimensional Riemannian surface, M, which we may choose for simplic-
ity to be the Euclidean plane. ("Rolling" means that the point of 
contact with the plane on the ball is at rest at each instant). 
The orientation of the ball is described by a three-frame attached 
to the ball, the position of its center of mass by two coordinates 

(x1,x2). 

We propose to describe the motion of that three-frame as the 
ball is rolling along an arbitrary curve Ύ c M. 

Fig. 1 

The components of the vectors 1 ',2 * and 3' in the basis 1,2,3 
are given by the column vectors of an orthogonal matrix, B(x,y). 
At the point p = (χ*,χ2) G M the ball is rolling in the direction 
t (x^,x2) tangential to the curve Y· It thus rotates around the 
axis n (x1,x2), the unit vector orthogonal to t (χ1,χ2). If the 
total displacement of the center of mass is d i the rotation angle 
is p-1 df . 
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Fig. 2 

Let L = ( Ig , L2 I L^ ) be the usual generators of rotations around 
the 1- , 2--, resp. 3- axis. Then the infinitesimal rotation of the 
ball is given by 

112 2 12 12 
B(x +dx , x +dx ) = (1+dR(x x2 ) ) B(x x2 ), (I. 1) 

where 

dx1
 1 1 1 2 2 2 1 2 
dx1 = t (x x2 )dl , dx2 = t2 (1 ,x2 )dl, 

and 

(I.2) 

Thus 

(I.3) 

The 1-form Α={Αγ,Α2) with values in so(3), the Lie algebra of 
S0(3), given in (1.3), is called a connection (on a "principal 
SO (3) bundle with base space Μ"). 

The components a.a ~ (aa1 ,aa2 ) defined by 

a3 = o d.4) 

are called vector pc)tenti.il. 
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Next, imagine the ball is rolling around a small rectangle with 

sides parallel to the 1- and the 2- axis of length E, 6 , respective-

ly. 

dx1 Ad χΖ 

Fig. 3 

We propose to determine the total rotation, AR, of the ball, after 
one round trip along the curve γ depicted in Fig. 3 to second or-
der in e and 6 . A simple calculation gives 

AR = 1 - [A1 ,A2 ] E· 6 

= 1+ P-2 2 [ L2 ' L 1 ] £.S 

= 1 - P- 2 L3 ε · 6 

(1.5) 

l. e. Fij . = [Aij , A j ] = p 2V3 

If the radius, p, of the ball depended on (x ,x2 ), i.e.p = p(x1 , x 
# const., we would find 

+ L Ai , A j J (x1 , x2 ) , (1.6) 

with Aj(x1 ,x2 ) = P(x1 ,x ) Σ eij Li (1.7) 

The 2- form F is called curvature,1ts components Faij.. in the basis 
(L1 ,

 Tj
2 ,
 L

3 )
 so(3) are called field strength. 

Suppose now that, at each point p =(x1 ,x2 ) of the plane M, we 
introduce a new coordinate system 1" ,2" ,3" related to the system 
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1,2,3 by an orthogonal transformation Ο =0(χ1,χ2). The orientation 
of the frame 1',2',3' relative to 1"p ,p2",3" is thus given by 

an orthogonal matrix p' p' p 
012 12-1 12) 

B (x1 , x2 ) = Ο (x1 , x2 ) B (x1 , x2 ) . 

By (I.1), (I.2) we have 

Ο 1 1 2
 Ί

 2) (1 0,1 2 ) 0,1 2 
Bo (x1 +dx1 ,x2 +dx2 ) = (1 +dRo (x ,x2 )) B (x ,x ), (I.8) 

where 

012 1122-1 12 12 
1 + dRO (x1 , x2 ) = 0(x1 +dx1 ,x2 +dx2 )-1 (1 +dR(x1 ,x2 ))0(x1 ,x2 ), 

(I.9) 

Hence 

Ο x 1 2 ,1 2-1 1 2 1 2 
A (x1 ,x2 ) = O(x1 ,x2 )-1 Aj (x1 ,x2 ) Ο (x1 ,x2 ) 

Ί j 

(I.10) 

12 12 
The mapping 0:M — >- S0(3), (x1 ,x2 ) *—> 0(x1 ,x2 ) is called a gauge 
transformation. 

It follows easily from the definition of curvature that 

0 12 12-1 12 12 
F.,(x1 , x2) =0 (x ,x2 ) Fij j (x1 , x2 ) 0 (x1 , x2 ) 
ij ij 

(I.11) 

From the example discussed here the reader can, in principle, ab-
stract most basic notions concerning principal bundles. But see 
[12]. 

-> r- 2 
Next We single out a vector k C S2 (the unit sphere) attached 

to the ball, i.e. over each point pCM we have a two-sphere of possib-
le positions of k . The motion of the vector k as the ball is 
rolled from (χ1,χ2) to (x1+dx1,x2+dx2) is clearly described by 

-> 1 12 2 12 j ->-, 1 2 
k (x1 +dx1 ,x +dx ) = (1+Aj(x1 ,x2 )dxj )k(x1 ,χ2 ) (I.12) 

(We have started here to apply the summation convention). 

Thus the connection A determines what one calls parallel 
>· - - -

transport of k . 

Under gauge transformations,O, k obviously transforms 
according to the equation 
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kO (X1 , X2 ) = Ο-1 (x1 ,x2 ) k (x1 ,x2 ). (1.13) 

This transformation law leaves (I.12) form-invariant if AAO 
is given by (1.10). 

This example can be generalized as follows: Suppose the mass 
density of the ball is not rotation invariant. Then the ball will 
have a moment of inertia, Θ , which is a symmetric tensor of rank 2 
not proportional to a multiple of the identity. With respect to 
rotations of the ball, 0 transforms according to a direct sum of 
the trivial (tr ϴ) and a spin 2 (Θ- 1/3 Tr ϴ · 1 ) representation. 
More generally, the ball may have some intrinsic properties described 
by a quantity Φ that transforms according to some representation 
U of SO(3) when the ball is rotated. It will be no surprise to 
learn that the parallel transport of Φ from (x1,x2) to 
(x1+dx1,x2+dx2) is given by 

Φ (x1 +dx1 , x2 +dx2 ) = (1 +U (Aj (x1 , x2 ))dxj) Φ(x1 , x2), (1.14) 

and the gauge transformations by 

ΦO (x1 ,x2 ) = U(O(x1 ,x2 ) -1)Φ(x1 ,x2 ). (1.15) 

What we have discussed here can be extended to the case where M is 
a general two-dimensional manifold (surface). In this way one can 
picture many basic notions concerning fibre- and principal bundles 
with connection. 

We end this section by briefly describing how the notions 
developed in the context of the rolling-ball example apply to 
classical field theory. 

Let M be some manifold, physically the space-(imaginary) time 
manifold. We consider a classical, physical system described by 
some field Φ on M. The field Φ is supposed to have some internal 
"degrees of freedom" described as follows: For each point x(M, 
Φ(x) is an element of some topological space Vx, homeoinorphic 
to some fixed space V. Typically, V is a vector - or a homogeneous 
space. We also suppose that we are given a topological group G 
of homeomorphisms of V, physically speaking a group of internal 
symmetries. We are describing here what the mathematicians, cull 
a fibre bundle (with base space M, fibre V and group G), and Φ is 
called a cross-section of this bundle . For the moment (and in all 
examples discussed in subsequent sections) we may imagine that 
VX=V, for all xEM , and that the bundle is homeomorphic to MxV. 
(This is however not so e.g. in the theory of the Wu-Yang magnetic 
monopole or the Yang-Mills instantons on the four sphere). 
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If one tries to make a dynamical theory of the field Φ one must 
be able to couple Φ (x) to Φ (y) , for x#y, in' other words, one must 
be able to compare Φ(x) and Φ(y), for x#y. However, a priori, the 
points in fibres over distinct points of the base space M cannot be 
compared, unless there is a notion of parallel-transporting Φ (x) 
from x to y along a curve yyx joining x to y. (Intheexample of 
the ball, parallel-transporting consisted of rolling). If M is 
a manifold, i.e. continuous, parallel transport can only be 
defined if G is a Lie group. In that case, suppose we are given 
a 1-form A on M with values in the Lie algebra oj of G. 

Given Φ (x) , let Φy (y,x) denote the parallel transport (or -
displacement) of Φ(x) from x to y along y. 

If x and y = x+dx are infinitely proximate the parallel dis-
placement, Φ Mx+dx,x), of Φ(x) from x to x+dx is defined by the form-
ula 

Φ (x+dx, x ) = (1v + Aj. (x) dxj ) Φ(x), j= 1,..., v. (1.16) 

The 1-form A is the connection or gauge field. (In the example of 
the ball "parallel displacement" is the same as rolling). 
Equation (I.16) permits to calculate Φ y (y,x), without y being in-
finitely proximate to x, see Section II.2, and to define the co-
variant gradient: Let t be some vector in the tangent space at x. 
We set 

(1.17) 

= ( V Φ) ( x ) + A ( x ) Φ ( x ) . 

(If M is not flat the expression in the middle requires some obvious 
changes). 

d 
It is easy to see that, (with di = d/dx1), 

F = [VA, VA], Fij = diAj-djAi+[Ai,Aj] (1.18) 

corresponds to what was called curvature in the rolling-ball, 
example. It is called curvature (2-form) or field strength. 

Gauge transformations are homeomorphisms 

h (x) : V -> V ; 

Φ and A transform according to 
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Φ(x) -> Φh(x) = h (x)-1 Φ(x) , 

A(h) -> Ah(x) = h(x) -1 A (x) h (x) -h (x)-1 (Vh) (x) 
(1.19) 

The dynamics of Φ can be specified with the help of a field equation, 
e.g. 

VA (VA Φ ) (x) = m2 Φ (x) , (1.20) 

(the covariant Klein-Gordon equation). 

One may wish to introduce dynamics for the connection A, itself. 
A prominent example of field equations for A is the Yang-Mills 
equations 

VA · F = Ο. (1.21) 

(If F = [VA , VA ] the equations 

VA · (*F ) = 0 (1.22) 

are automatic. They are called Bianchi identities). 

For discussions of classical field equations, see e.g. [13] 
and refs. given there. They will not be studied in the present 
notes. 

The basic ansatz of present day elementary particle physics 
(without gravitational interactions) is to describe matter in 
terms of quantized versions of fields that are cross-sections 
of fibre bundles with connection and the fundamental interactions 
of matter in terms of quantized versions of those connections. The 
present choices for G are such that it equals or contains as a 
subgroup 

SU (3) colour x SU (2) weak x U(1) electromag (1.23) 

Although it is appealing that present day physics of matter 
and its fundamental interactions has become intrinsically geo-
metrical it remains unsatisfactory that two kinds of geometries 
are involved, Riemannian (or affine) geometry in gravity, the 
geometry of fibre bundles in strong and electroweak interactions. 
Moreover, there is no convincing theoretical argument as to what 
the right fibre bundle (the right gauge group G) of elementary 
particle physics is. 

We shall henceforth ignore those problems and proceed to 
sketch some rigorous results concerning quantum field theories that 
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are based on fibre bundle geometry. 

I.2. Some facts about the geometry of fibre bundles 

The intuitive concept of fibre- and principal bundles has been 
developed in Section I.1. What the mathematicians understand by these 
words can be looked up e.g. in [12]. For our purposes the following 
may suffice: 

Let M be the physical space-(imaginary)time manifold. Let V 
be a topological space with a topological group G of homeomorphisms 
of V into itself. Throughout these notes G will be a compact Lie 
group. Points in M are denoted x,y,..., Φ denotes a point in V, 
and h, g, ... elements of G. A fibre bundle over M with fibre V 
and group G consists roughly of a bundle space F with projection Π 
such that, for all pEF, π(p)ΕΜ, and for all xEM Vx:=π-1(x), the 
fibre over x, is homeormorphic to V. 

For each xEM, there is an open neighborhood Ω c M of x and 
a homeomorphism EΩ :Ωxν —> 11- 1 (Ω) such that πζΩ(x,Φ)=x, and 

EO,w (Φ) : =ζΩ (Χ,Φ) is a homeomorphism from V to νx. If ζv , ζy , 
yEΩ, are two homeomorphisms from V to Vy then h(y)=EyEy is 
supposed to be a continuous function of: yEO with values in G. 
The functions h are called gauge transformations. Finally, for 

γ€ΩηΩ'» gΩΩ'(y) : = EΩ,y EΩ',y 

is supposed to be a continuous, G-valued function of y. It is called 
transition function. 

If V happens to be the group G, we speak of a principal bundle 
(with base space Μ). The group G is called gauge group. 

It follows from these definitions that bundles can be charact-
erized by means of their transition functions: 

Let {Ωi}iEI be a cover of M by open neighborhoods with the 
property that for all iEI there exists a homeomorphism 

ξΩ : Ωi xv -> π_1 (Ωi ) 

with all the properties specified in the above definition. For 

ΩiAΩj # Φ,
 let g

ij
: =

 gΩiΩ. 

denote the transition function. Two sets of transition functions 

{gij }, {g'ij } 
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determine equivalent bundles iff 

g' ij = hi gij hi ' (1.24) 

with hj (x) a G-valued function on Ωj . 

This permits to associate with each fibre bundle f = (F, 
V, G, TT) a principal bundle = (P, Μ, V = G, G, TT ) P i s the 

principal bundle with the same transition functions as F. See [ 12] 
for details. 

Examples: (1) Möbius strip (base space S1 = circle, fibre [-1,1], 

group Z2 ) ; (2) F = M
X

V, G ={1} , π({x,Φ}) = X; this is called the 

product bundle; (3) The 3-sphere S3 is a principle bundle with base 

space S2, fibre S1= U(l) and group U (1). Incidentally , this is the 

bundle space of the instanton of the two-dimensionalDΡ1σ-model and 

of the Wu-Yang monopole. 
(4) Interesting examples arise in the theory of functions of complex 
variables. 

Next, we consider fibre bundles with connections, i.e. we re-
consider the notion of parallel transport (or - displacement). 

Let F = (F, Μ, V, G, π) and be as above. 

We suppose G is a (compact) Lie group with Lie algebra g . We assume 

that all transition functions are continuously differentiable on 
their domain of definition. 

A connection, A, on F is a family of 1-forms 

(Λ hei 
with values ing such that A (i) is defined on Ωi,iEΙ, and for 
xΕΩ. AΩ i #0, 

(1.25) 

Moreover, if h is a gauge transformation defined on Ωi,Α(i) 
transforms according to 

A
(i) Ah(i) = h-1 A(i)h h-1dh, (1.26) 

We have started, here, to use the notation 

(1.27) 
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We shall see that a connection is precisely what we need to define 

parallel transport on F. 

Next, let Ω c Ωi, for some iEI, be some open subset of M. 

Restricted to Ω, F is homeomorphic to 

= Ω x V. 

First we define parallel transport on F'Ω. 

Let xΕΩ ,Φ(x)Ε V. We want to define the parallel, transport, 

gyyx Φ(x), of Φ(x) from x to yE Ω 

along a curve Yy
x
 c Ω, with gy E G a homeomorphism from V onto V, 

given the connection A = A(i). Suppose y = x+dy is infinitely 
proximate to x. Then 

gyyx Φ (x) = gx+dx,x Φ(X): =(1V+A(x)) Φ(x) (1.28) 

with 

This equation can be integrated along any oriented, continuous, 
piecewise smooth curve yyx c Ω connecting x E Ω with y E Ω. 
To see this we may temporarily assume that Ω is flat, i.e. Ω is a 
subset of RV. 

Let {xki} Nk i=1 cyyx be
 a family of ordered sequences of points 

on Yy
X
 with1the property that 

and 

dist as k -> ∞ , for all i = l,...,Nk -1. 

Then 

(1.29) 

The physicists like the following compact formula 

(1.30) 
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as an abreviation for the r.s. of (I.29); (P:= "path ordering"). 
It follows from (I.26) and (I.29) that, under a gauge transformation 

h, g transforms according to 

(1.31) 

This is the basic property that permits us to define parallel trans-
port on F in terms of g. It is given by a homeomorphisin 

Γyyx : Vx -> Vy , defined by 

[γ f^,y qy Γ"Ω,χ 
(I.32) 

Note that if and ξ'Ω are two homeomorphisms related by a gauge 
transformation, i.e. h(y) = ζΩ,y -1 ξ'Ω,y E G then 

(1.33) 

i.e. Γγy,x is independent of the choice of coordinates (the gauge). 
Equations (I.25) and (I.33) permit us to define Γγyx for curves yyx 
that are not contained in a single coordinate neighborhood Ωi : One 
cuts up γyx into curves 

yxa+1 xa yxa+1 

contained in Ωi (a)' . ' with 

Ωi Ωi(a)A Ωi(a+1) # O and sets 

Γyyx = ΓyxNxN-1 ΓyxN-1xN-2 . . . Γyx2x1 (1.34) 

with xN = y, x1 = x. By (1.25), (I.31) and (I.33) this is a con-
sistent definition. 

One may now ask the question under what conditions does 

Γyyx (resp.gyyx ) 
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depend on the path Yy
X
 only through the endpoints x and y. 

We first discuss this question locally, for γyx in a simply 
connected, open set Ω c Ωi, for some i E I. 
In this case the answer is very simple: If and only if gyyx 
is of the form 

gy = h (y) h (x) (1.35) 

Clearly (I.35) is sufficient. To see that it is necessary one 
chooses a point xo E Ω and sets h (xo) = 1V . One then chooses a 
family, L

XO
 , of piecewise smooth, oriented curves, γ, starting at 

xo with the property that each x E Ω is contained in precisely 

one line γ E L
Xo

. Let yχχo be the portion of γ with endpoints xo 
and x. We set 

h(x) = gy 

Let x and y be arbitrary points in Ω and Yy
X
 a path 

connecting them. Since gy only depends on the endpoints of γ 

gyyxo = gyyx gyxx, i.e. 

gyx = gyyxo gyxxo-1 = h(y) h(x) 

which proves (I.35). 

The curvature, F, of a connection A is defined by 

F = dA + A Λ A, (1.36) 

i.e. Fij = diAj - djAi + [Αi, Αj] ; see also (I.18). 

We now claim that for (I.35) to hold it is necessary and 
sufficient that F vanishes on Ω . 
(In the example of the rolling ball this can only happen in the 
limit p = ρ(x1,x2) -> ∞ , for all (x1,x2) E Ω) . 
A proof of this last assertion can be obtained from the following 
consideration that is of independent interest: Pick a curve γyx C Ω. 
Parametrize γyx by a function 

x (s) = (xl (s) , . . . , xv (s) ) , o < s ' 1 , 
with x(o) = x, x(l) = y. 
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Now consider a function 

x : [-1,1] x [-1,1] -> Ω, (s,t) —-> x (s,t) 

which is smooth in t and such that x (o,t) = x, x (1,t) = y, for all 
t, and x (s,o) = x (s). Let γy

x
 (t) be the curve parametrized by 

x (s,t). (It is a deformation of yy
X
 leaving the endpoints fixed). 

We propose to calculate 

d/dtq (t) . Let γx (s',t)x (s,t) be the portion of γyx (t) starting 

at x (s,t) and ending at x(s',t). Using (I.29) it is easy to see 
that 

(1.37) 

It is a simple exercise in integration by parts to show that 

(1.38) 

for any differentiable function Ψ on Ω . If we set 

in (I.38) and use (I.36) , (I.37) , we find 

(1.39) 

Incidentally, by differentiating both sides of (I.39) with respect 
to t, applying (I.38) with 
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and using the Bianchi identity 

dF + [A,F] = O (1.40) 

one may calculate 

(For a slightly cumbersome way of calculating this see e.g.[l4]. 
The physicists have been interested in equations for 

because they suggest formal connections between Yang-Mills theory 
and dual resonance models [15]. To the author these connections 
appear, however, somewhat superficial). 

As a simple corollary of equation (I.39) we have: 

gyx depends only on x and y if and only if F = Ο. (I.41) 

Suppose now we are given two connections A,A' on Ω such that 
F = F (A) = F (A' ) = F' . 

Question: Are A and A' gauge-equivalent, in the sense of eqn. (I.26) ? 
Unless G is abelian, the answer is: In general they are not gauge-
equivalent. (The reader can find a simple example of this by study-
ing the rolling-ball example!) This is an aspect of the intrinsic 
non-linearity of non-abelian gauge fields. 

The "globalization" of the above considerations is only straight-
forward if the base space M is simply connected.(Recall the Bohm-
Aharonov effect). 

We now skip some material roughly identical to the one in 
(2.9) through end of § 2. The correspond nce is given by 

(3) (I.42) <—> (2) (2.10) 
(I.43) > (2) (2.11) 
(I.44) <-—> (2) (2.13) 

(3) Theorem (I.45) <—> (2) Theorem 2.1 
(3) Theorem (I.47) <—> (2) Theorem 2.2 
(3) Remarks 1), 2) <- —> (2) Remarks 1,2 . 
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I.3 A tentative general formulation of quantized 

Yang-Mills theory 

Let Μ = Rv be Euclidean space-time. Let G denote the gauge 
group. Every principal bundle with base space M=Rv is equivalent 
to a product bundle, i.e. we may consider MxG to be the bundle 
space. Motivated by Theorem (I.47), Section I.2, we regard the 
functions Y (l)) = χ (g l ), where χ is an arbitrary unitary character 
of G as the basic "fields" of a Euclidean gauge theory on M with 
gauge group G. The purpose of this section is to propose a scheme 
for quantization of such a theory by which the Y(l) ' s are con-
verted into random fields on the space L of all oriented, smooth 
loops on M. 

If one studies the example of free electromagnetism in v=4 
dimensions as a theory of loop observables, the so called Wilson 
loops it becomes clear that one should require all loops in L to 
be at least twice continuously differentiable, oriented closed 
loops which are free of self-intersections, ("selfavoiding loops") . 
From now on L will be understood to be the space of all loops 
which have this property.(Classically, for a space OL I of continu-
ous, irreducible gauge fields on M, the algebra generated by 
{Υ (l) = x(gl):lE L} is still dense in c (O) , if X is faithful). 
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We propose to discuss quantized gauge theories in terms of 
Euclidean Green's - or Schwinger functionals 

SN (Y1 (L1 ), ..., Y (Ln) )) (Yi (Li) = xi (gL )), 

corresponding to "quantized versions" yi (Li ) of the functions 

Yi (Lj ) . 

First, we describe this program heuristically. 

(1.48) 

denote the classical Euclidean Yang-Mills action. (It is assumed 
here that G is a subgroup of some unitary matrix group. Then the r.s. 
of (I.48) is well defined). Let d [A] denote a formal "Lebesgue 
measure" on the orbit space O of (very rough) gauge fields modulo 
gauge transformations. Consider the formal probability measure on 
O given by 

dμ ([A]) = Z_1 e-BU([Al)d[A], 

with Z= fO e-
BU([A]

d[A], 

(1.49) 

which, mathematically, is perfectly meaningless. 

Heuristically, the Schwinger functionals are given by the 
Euclidean Gell'Mann-Low formula 

(1.50) 

In the case of free electromagnetism, (I.49) and (I.50) can be 
given a rigorous, mathematical meaning if one defines N(Y( )) by 

(1.51) 

where 

is a divergent (normal ordering) constant, and|L| is the length of 
L. . (We have chosen Aμ to be real-valued here. (I.50) and (I.51) 
have to be understood as limits of regularized objects. See [5] 
for some general considerations concerning (I.51) ). In this 
example one can see explicitly that Sn (Y1(Lj), ..., Yn(Ln) ) 
diverges when 

lends, to .(), unless v=2. 
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The remainder of this section is contained in (2) , § 4 . The notations 

of (2) are unfortunately somewhat different. Here is a key : 

(3) L 

L 

Ln 

Ln 

© ω 

Ω(1) 

ί^
1)η 

Ω(1)η 

(3) (ΥΜ1) <=> (?) (SI) 

(ΥΜ2) <=> (S4) 

(ΥΜ3) <=> ( S 2 ) 

(ΥΜ3') <=> (S2eXt.) 

(YM4) <=> (S3) 

(YM5) <=> (S5) 

Theorem (I.55) <=> Theorem 4.1 

(I.56) <=> (4.4) 

(I.57) <=> (4.5) 
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II. LATTICE GAUGE THEORIES 

One of the main virtues of lattice gauge theories is that they 

represent a gauge-invariant regularization of continuum gauge 
theories for which Schwinger functionals exist satisfying properties 
(YMl), (YM3) , (YM3') , (YM4) , (YM6),see Section I.3,and (YM2l) Invariance 
under all those Euclidean motions which leave a lattice l , 
typically 

ε ZV = {x :ε-1 x e Z
V

} ε > ο , invariant. 

This is still enough for the reconstruction of a quantum 
mechanical system, as described in Theorem (I.55), with the ex-

ception of full Poincaré covariance of the resulting theory. 
As a consequence, only a weak form of locality is verified for 

lattice theories. See [1,21-23] . 

In order to understand the basic structure and intrinsic 
properties of lattice gauge theories one is advised to go back to 

Remark 2), following Theorem (I.47), Section I.2: Let 

ΛΞ Ll= {L1'
 L2

'···} 

be all finite, oriented closed loops composed of links of a lattice 
l,e=g ε ZV. Let 

CLl (O) 

denote the algebra of functions on the orbit space, O, of continu-
ous, classical connections (gauge potentials) on Euclidean space-
time, RV, modulo gauge transformations, generated by 

{Yj (L) = xYj (g L ) : L e Ll) , 

with xy arbitrary irreducible, unitary characters of the gauge 
group G. 

Clearly, CLl(O) is a separable approximation to the space 
C (O) of all "observables" of a classical gauge theory. 

The idea is now to convert the elements of 

CLl (O) 

into random variables distributed according to a probability 
measure dμ (a positive, normalized, continuous linear functional 
on CLl (O) ) with the property that the Schwinger functionals 
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(II.1) 

satisfy properties (YMl), (YM2l ), (YM3)-(YM6), (with the possible 

exception of (YM5) = clustering = uniqueness of the vacuum). 

Thus, we are really trying to construct random fields Yj on 

the loop space Ll of a lattice l having the mathematical structure 

determined by (YM1l)-(ΥΜ6l), (with (YMnl) = (YMn), except for n=2) . 
Given the values of all Yj (L) L E Ll, , a simple variant of Theorem 

(I.45) shows that they determine a "lattice gauge field" 

g = {g
xy

€G : xyEBl} 

which is unique up to gauge transformations. Here Bl is the set of 

all line segments, b (xy),whose endpoints, x and y, are "nearest 

neighbors" in l. The b's are called bonds or links. A variant 

of Theorem (I.47) shows that the closure of 

CLl (O) 
is the space of all gauge-invariant functions of 

g = { gxy : xy Bl } . 

(We know from Section II.2, (I.31), that a gauge transformation 
g -> gh is given by a function, h, on l with values in the gauge 
group G, and 

Let 

denote an ordered product along an oriented loop (or curve) L . 
From the above discussion we infer that 

(II.2) 

and g is the lattice gauge field determined (up to gauge trans-
formations) by the values of the Yj (L)'s, L E Ll . From now on 
the random variables Yj (L) are called Wilson loops. 

Other examples of random fields on a loop-space, Ll, are 
supplied by the lattice approximation to (Euclidean) dual re-
sonance - or string models [26] . Among the main goals in the study 
of lattice gauge theories are 

(A) Let L= LxT be a rectangular loop with sides parallel to two 
axes of l of length L, resp. T. 
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Let 

(II.3) 

see (I.56) . Investigate the properties of Vj (L) , as L -> ∞ , in 
particular for those characters χyj of G which are non-trivia1 
on the center zG °

f G
· 

This is the famous problem of static quark confinement (resp.-
liberation) . See [21,22,23,25,1,27,5,6,7] . 

(B) Investigate the "excitation spectrum" (energy-momentum 
spectrum of low-lying "particles") in 

S1Yj (LXT)) and S2Yj (L), Yj (L')); 

see e.g. [5,24,26], This will supply information on the particle-
and bound state content of lattice Yang-Mills theory. 

(C) Improve the analysis in (A) and (B) in such a way that the 
results are uniform in the lattice spacing ε, (£=ε^v). 

v 
(D) For l =e Zv (and v = 2. ,3,(4?)), exhibit lattice gauge theories 
(other than free electromagnetism) with the property that the limits 
as ε \ o, of the Schwinger functionals S

n
 (Y1 (L1 ),..., Yn (

Ln
) ) , 

n = 1,2,..., exist and satisfy (YMl)-(YM6) if the measures 

{dμ = dμε}ε>o 

are correctly renormalized and the Wilson loops, Yj(L), are 
correctly normal ordered. See [1,3,4 ] and [20] for results or 
progress in this direction. 

Remark concerning matter fields. 

For pedagogical reasons we shall only consider bosonic matter 
in these notes; but see [1,22,18,19] . Given a gauge group G, a 
lattice matter field Φ is a random field on the lattice l with 
values in a Hilbert space V (usually finite dimensional) that 
carries a unitary representation UΦ, of G (as an endomorphism 
group). Thus 

Φ : x E -> Φ (x) C V. 

Gauge transformations of Φ are of course defined by 

Φ -> ΦH, ΦH (X) = UΦ(h(x))* Φ (x ) , (II.4) 

where h takes values in G. The random variables 
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(II.5) 

γxy C Bl a connected, oriented curve starting at y and ending at x, 
are gauge-invariant.(These notions correspond to what is developed 

at the end of Section I.1 and in Section I.2). 

II.1 Some of the basics about lattice gauge theories 

General results may be found in [1,2,21,22,23,25] . The 
general ansatz for the measures dp = dμe is the lattice version 
of the Euclidean Gell'Mann-Low formula (1.49) (including a matter 

field Φ): 

(II.6) 

where 

with and dg Haar measure on G, 

with dpe a G-invariant probability measure on V, and 

(II.7) 

a lattice action. 

Wilson [2l] was the first to propose lattice gauge theories 
and explicit expressions for (II.6) and (II.7). In the introduction 
to Section II we have proposed to view the lattice gauge field 
xyg as arising from a "nice" continuum gauge field (connection) 

(II.8) 

see (I.30), Section I.2. 

This is particularly useful if the continuum gauge field A 
is known to exist as a random field with the desired properties, 
as is the case for free electromagnetism (G = U ( 1 ) ) . In this 
case we may e.g. choose A to be a Gaussian random field with moan 
O, < Ai (x) > t = O, and covariance 

(II.9) 
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where Dtij(x), t > o, is the Fourier transform of 

(II.10) 

Here t > o labels an ultraviolet cutoff, and μ > o is a bare mass 
introducing an infrared cutoff. As long as t > o, gXy given 
by (II.8) is well defined for A as in (II .9) , (II.10), in arbitrary 
dimenion v . For μ >o, the resulting lattice U(l) theory is not 
gauge-invariant, but when μ=o, gauge invariance is restored even 
for t>o; see [1,3] . These observations are useful in the construct-
ion of the two-dimensional abelian Higgs model in the continuum 
limit [1,3,4 ] which we sketch in Section III. For G non-abelian 
and v >2, no such construction of a lattice approximation is known. 
Instead one recurs to (II.6) and (II.7) with 

and UM 

conventionally given by 

(II .1 1) 

where χ is a faithful, unitary character of G, (e.g. the character 
of the fundamental representation if G is a unitary matrix group), 
and p denotes the unit squares (plaquettes, with boundary p = 
four links) in eZv; 

(11.12) 

and 

where denotes a Wick order, and dΦ is the Lebesgue measure 
on V. 

In order to start with a well defined expression, one first 
restricts the summation on the r.s. of (II. 11) to plaquettes p 
contained in some bounded set Ace Zv and the one on the r.s. 
of (II.12) to links xy c A .By (II.6) this yields a cutoff measure 
dμε Λ(Φ,g). If A belongs to a sequence of hypercubes and periodic 
boundary conditions are imposed at dA then a weak limit, 
dμe (Φ,g), (the thermodynamik limit), of the measures dμe. Λ(Φ,g) 
as A|e Zv , can be constructed by a standard compactness 
argument. The lattice Schwinger functions 
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(11.14) 

obey properties (YMl), (YM2l),, (YM3), (YM4) and (YM6) (modified in 
the obvious manner to account for the 

-variables). 

Clustering (YM5) may fail in general, but is known to hold e.g. 
for small β[22] . Thus, lattice gauge fields exist, for arbitrary 
G and arbitrary space-time dimension v. 

Among numerous, very general results we mention the following 
two which turn out to be important. 

(1) Universality of diamagnetism [1,2] : 

Define 

(11.15) 

Let A be a rectangle and impose periodic b.c. at dA. Then 

I Ζε,Λ <g)l S Ζε,Λ(1)' 
(11.16) 

(g = 1 means gxy = identity in G, for all xy). 

Inequality (II.16) holds no matter what gauge group G is 
chosen and even if Fermionic matter (leptons or quarks) is coupled 
to the gauge field. It expresses the fact that matter behaves dia-
magnetically under coupling to gauge fields. Inequality (II.16) 
does generally not survive ultraviolet renormalizations necessary 
for taking ε\ο , unless the vacuum polarization is finite (i.e. 
v < 3). (There are related inequalities for pure Yang-Mills 
theories mentioned in [5] which appear to be renormalization-
independent) . 

Next, suppose that G is abelian. Without loss of generality 
we may assume that G = Zn , n=2,3,4..., or G = U(l). Then we may 
introduce polar coordinates 

gxy = eiaxy , a E R 

Φ(x) = rx ei0x, o< 0x < 2TT. 
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Let 

with da the Lebesgue measure on or let 

dm e(a) = dme,t,μ (a) be the restriction of the 

Gaussian measure introduced in (II.9), (II.10) 

to the variables 

(11.17) 

(2) Correlation Inequalities [1,2,27,6] : 

Let G = Zn or U(l), dm
e
 as in (II.17), and < - > 

the expectation given by the probability measure 

with A c e Zv . Let F and G be in the multiplicative cone generated 
by r (f ) , f (x) > o, cos (a (g) + 0(h) ) . 

Then 

< F G > - <F> <G> > o (11.19) 

For applications, see e.g. [2,4] . 

Next, we consider a general lattice theory described by 
a measure as in (II.6) with action as in (II.7), (II.11) and 
(II.12). Suppose that the representation UΦ of G on V is trivial 
on the center

 zG
 of the gauge group. Let < - >G denote the 

expectation determined by the measure given in (II.6) . 
Let < - >

zG

 denote the expectation in the pure
 zG

 lattice gauge 
theory with measure 

(11.20) 

where τxy E z
 G

 , for all xy, and dt is Haar measure on z G. 
Then 

< II Yj (Lj) >G ) < Il Yj (Lj) >zG• (II.21) 
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Proof and applications are given in [6]. A special case of (II.21) 
was first proven in [27] . 

The arguments used in the proofs of such inequalities are 
patterned on Ginibre's methods [28] . 

II. 2 On the phase diagram of some lattice gauge theories 

Rigorous results on "high temperature" expansions (β small) 
in lattice gauge theories are established in [22]. It is proven 
there that if b is small enough and Xyj is non-trivial on the 
center of the gauge group G the "quark-antiquark potential" Vj 
defined in (II.3) satisfies 

Vj (L)  const. L (11.22) 

Moreover, the Higgs mechanism is for lattice theories analyzed in 
that reference, too. In [5,23] there are general arguments sug-
gesting that Vj ( L ) s' const., uniformly in L if Yj is trivial 
on the center, A. Guth has announced that the four-dimensional 
pure U(1) lattice theory (in the so called Villain form) has 
a phase transition as β is varied: For β small (II.22) is valid, 
for β large Vj(L)  const.. The proof is based on a combination 
of correlation inequalities (of the type proven in [1,2] ) and 
a high temperature expansion. Similar results were previously 
proven for the

 n
 theories in three and four dimensions and are 

discussed in Guerra's contribution where the reader can also find 
references to the original articles of Guerra et al. 

In [6] the author has applied inequality (II.21) to prove that 
in all two-dimensional Yang-Mills theories Vj (L) const. L for 
all characters Yj which are non-trivial on the kernel of the re-
presentation UΦ used in the matter action (II.12). 

This extends results of [2,30] . It is also shown in [6 ] 
that for three-dimensional U(n) theories,with UΦ trivial on U(1) 
cz U(n), 

Vj (L) > const log ( L + 1), (11.23) 

if Xyj is non-trivial on U(1). 

In [2,5] connections between lattice gauge theories on 
and non-linear σ-models on ϵ Zv-1 have been found. The following 
models are investigated there: 

(i) Classical, two-component , neutral Coulomb gases and 
abelian o-models (Ising Zn- and classical XY models). 
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(ii) Abelian lattice Higgs theories, in particular Landau-
Ginzburg type theories. 

(iii) Non-linear lattice-σ-models (e.g. the classical 0(4) 
lattice model). 

(iv) Pure, non-abelian lattice gauge theories. 

The results are of the following kind: 

(a) Rigorous connections between (ii) in v dimensions and 
(i) in v-1 dimensions, and between (iv) in v dimensions and (iii) 

in v-1 dimensions. E.g., S1(Yj( )) of a v-dimensional gauge theory 
can generally be bounded above by (an integral of) a product 
of two-point functions of a (v-1)-dimensional σ-model. As examples 
we mention: 

If the two-dimensional Coulomb gas has a transition from a 
high temperature plasma phase with Debye screening [31] to a low 
temperature, dipolar phase with power low decay, as expected, then 
the three-dimensional Landau-Ginzburg (abelian Higgs) lattice 
theory has a transition from a superconducting phase without 
confinement of fractional charges, massive photons and vortices, 

at small electric charge, to a QED phase with massless photons and 
confined fractional charges, at large electric charge. This is 
shown in [2]. It is also shown there that Guth's result for U(1) 
implies the existence of a superconductor → QED transition in a 
four-dimensional Landau-Ginzburg lattice theory, with liberated 
magnetic monopoles in the QED phase. 

For further results on phase transitions in lattice gauge 
theories see [5,27,32] and Guerra's contribution to these pro-
ceedings. Some other, general consequences of correlation inequalit-
ies in lattice gauge theories (confinement, Higgs mechanism,...) 
are given in [2,4]. 

II.3 Connections to dual resonance models 

Recently many connections between (lattice) Yang-Mills 
theories and string (dual resonance) models have been proposed 
[33,14,15,26,34] . It has been suggested that lattice Yang-Mills 
theory is a theory of random surfaces [33,5,15,34] related to 
the lattice theory of dual strings (e.g. [11,34] ). Such a 
connection would be useful as a starting point for an investigation 
of the particle spectrum of pure Yang-Mills theory. 

In [5] an expansion of the n-loop Schwinger functionals 

sn (e) (Y1 (L1), ..., Yn (Ln)) of pure lattice Yang-Mills theories 
in terms of random surfaces bounded by the loops L1,...,L n has been 
derived when the gauge group G is U(n) or 0(n), n = 1, 2,3,...,or 
SU(2). 
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For G = SU(2) this has provided rather powerful lower bounds on the 
potential Vj (L)(Xyj = spin 1/2 character) and has revealed an 
interesting connection with the theory of interacting random paths 
and non-relativistic strings. A method for obtaining upper-bounds 
on Vj(L) has also been suggested there. 

III. REMARKS ON THE CONTINUUM LIMIT OF THE ABELIAN 
HIGGS MODEL IN TWO SPACE-TIME DIMENSIONS 

The only continuum gauge theories satisfying properties 
(YM1) - (YM6) (except possibly (YM5) ) of Section I.3 are 

free electromagnetism in arbitrary dimension 

- massive spinor QED [18,19] in two space-

the abelian Higgs model [1,3,4] time dimensions. 

The situation concerning two- and three-dimensional, super-
renormalizable (abelian and non-abelian) gauge theories looks 
fairly promising; see the contributions of Balaban and Magnen-
Sénéor to [20] . 

This situation is thus not overly encouraging. We present 
a few remarks on Higgs models. For some general information about 
constructive quantum field theory see [CQFT]. 

III.1 External (c-number) Yang-Mills fields 

In [3] weak convergence of the measures 

(11.24) 

has been shown for v = 2 and 

with A(z) Hölder continuous in z, and 

G = U(1), SU (2), etc. 

The proof of convergence (for various boundary conditions) is 
rather complicated. In principle, it can be extended to v =3, 
but this has only been done if the self-interaction of Φ vanishes, 
i.e.l = o in (II.13). 

( The following elements are crucial in the proof: Let D 
be the finite difference covarian t Laplacean on l2 (Λ)  V 
with periodic or O-Dirichlet boundary conditions at ∂Λ. 
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(a) ||(-Δ + m ) (x,y)|| ^ (-Λ + m ) (x-y), 

where Δ is the usual finite difference Laplacean on l2 (˄) with 
the same b.c.. A proof of this "diamagnetic inequality" can be 
found in [1] and refs. given there. 

(b) Convergence of 

in various trace ideals, and Lp convergence of 

The proof involves showing real analyticity in A and using a 
Neumann series expansion in A for "small" A; see [3] . 

(c) 
det ( (-Δ A(ϵ) + m

2)-1 (Δ(ϵ)+ m
2

) )  1; 

this is a special case of the diamagnetic inequality (II.16) due 
originally to R. Schrader and R. Seiler. 

(d) 

det ( (-ΔA + m2 )-1 (Δ+ m2 ) ) 

exists for Hölder-continuous A, v=2; see [3]. 

These elements somewhat cleverly combined with the diamagnetic 
inequality (II.16), the original Nelson-Glimm method (proving 
stability of Ρ(Φ)2 theories, see [CQFT] and refs.given there) 
and numerous,lengthy estimates yield a proof of (II.24). 
For 

v = 2, G = U ( 1), dmϵ(A) = d mϵ,t,µ (A) 

the Gaussian measure defined in (II.9),(II.10),one derives from 
(II.24) that the weak limit of the measures 

exists, as ϵ 0, for t > ο, μ  0. This follows from the diamagnetic 
inequality (II.16) and (II.24) by Lebesgue dominated convergence. 



III.2 Removal of cutoffs 

In order to show that the weak limit of the measures 

exists one must do an ultraviolet expansion [4], involving a 
truncated (high-momentum) perturbation expansion which exhibits 
cancellations of divergent Feynman diagrams with counterterms. 

The ultraviolet expansion is applied to unnormalized expect-
ations 

Z˄,t,µ< F > ˄,t,µ ' 

where < — > /\,t,µ is
 the expectation obtained from 

and Z˄,t,µ is the natural continuum partition function. 

In the following A and μ are suppressed temporarily. The 
initial form of the expansion is roughly 

(11.25) 

with t > 0 some suitable constant. 
0 

The differences, 

< F >tn - Ztn-1 <F>tn-1 

are then interpolated in a somewhat sophisticated way that depends 
on n and involves "changes of A-covariance" and "integrations by 
part on function space" with subsequent cancellations of divergent 
diagrams; see [3,4] . 

One obtains an upper bound on 

|<F>tn - Ztn-1 <F>tn-1| 

of the form: 

e.g. 
This proves convergence of (II.25), for tn α exp(-ny ),0<γ<1. 
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A technically subtle part in the proof of the upper bounds is the 
estimation of large Feynman diagrams. (There one makes use, among 
many other things, of (a) ). Convergence of the ultraviolet ex-
pansion suffices to show that 

exists, for Λ bounded and µ2 > 0. 

Subsequently one uses fairly standard methods to establish 
upper bounds on 

that are uniform in A and µ . Thanks to the correlation inequalities 
(I.19) one has monotonicity in Λ and µ , for a total set of random 
variables, F. Thus, the limits Λ ↑ R2 and µ ¯ 0 exist. The 
existence of the O-bare-mass limit, µ ¯ 0, is yet another manifestat-
ion of the well established experience that constructive field 
theory methods never create artificial infrared problems (which 
might be regarded as one of its modest triumphs). 

To date it is only known that the Schwinger functionals 

of the limiting expectation < — > satisfy properties (YMl) - (YM4), 
(YM6) (without normal ordering of Y j ' s,Y Φ's) so that they deter-
mine a relativistic quantum field theory (Theorem(I.55), Section 
I.3), but detailed , physical information is lacking, (e.g. 
Higgs mechanism ?). 

IV. A LOOK INTO THE FUTURE OF THE SUBJECT 

In the Euclidean approach to quantized Yang-Mills theory one 
proposes to convert (the traces of) holonomy operators on a prin-
cipal bundle into random fields on a loop space over physical 
space-time. Thus, one attempts, in fact, to construct stochastic 
processes and random fields on spaces of geometrical objects, the 
closed loops in physical space-time. This is an instance of 
combining geometry and probability theory, i.e. a problem in 
random geometry. Random geometry still appears to be an under-
developed branch of mathematics.(For other examples in random 
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geometry see e.g. [10,11] and refs. given there). 

A number of conceptual problems arises: E.g. is there a reason-
able notion of "distribution-valued connections", or, in other 
words, is there a geometric interpretation of "normal-ordered" 
holonomy operators, (see Section I.3), etc.. 

Gauge fields (i.e. the gauge orbits, [A ] , of connections, 
A, or the traces of holonomy operators) are intrinsically non-
linear fields (at least in the non-abelian case). Constructive 
quantum field theory methods have so far not had much success 
as a means of studying non-linear fields. One of the main reasons 
might be that non-linear fields cannot be localized on classical 
phase space, a technical device that has so far appeared to be 
crucial for non-perturbative renormalization, [35] . In the 
analysis of [1,3,4] outlined in Section III and in [8,9] the non-
linearily of gauge fields has been circumvented in a somewhat 
unnatural way. Presumably, this is only possible if the gauge 
group is abelian, and the gauge field couples to a conserved current. 
Even then the price to be paid is a fairly clumsy and tedious analy-
sis . 

We have tried to explain the underlying geometric reasons 
why the lattice approximation is a natural gauge-invariant re-
gularization of continuum Yang-Mills theory (End of Section I.2, 
introduction to Section II). What remains to be seen is how one 
can do hard analysis (non-perturbative renormalization) starting 
from lattice theories. The popular magic word is: Renormalization 
group ("block spin") transformations. This has first been ad-
vertized by Kadanoff and Wilson. A rigorous program of this sort 
has been described by Balaban in [20]. The program can only be 
regarded as really successful if one eventually achieves a non-
perturbation renormalization of a four-dimensional, non-super-
renormalizable, asymptotically free gauge theory. 

Another approach, due to Jimbo, Miwa and Sato [17] is based 
on analyzing the monodromy structure of the Schwinger functionals 
of the loop variables, Yj (L) , and the dual ("disorder") variables. 
The general monodromy properties of the Schwinger functionals 
follow from "topological commutation relations". One then studies 
monodromy preserving deformations and uses the Schwinger-Dyson 
equations for the Schwinger functionals. 

In some examples (e.g. the two-dim. Ising model), with Tree 
Schwinger-Dyson equations, Jimbo, Miwa and Sato have carried out 
their program, with impressive .success. One might hope thal there 
exist "non-local" conserved curients in Yang-Mills theory yielding 
relations between Schwinger func tionals which reinforce the 
J-M-S program in a suitable way. 
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But this is mere speculation. 

In conclusion, the author wishes to thank D. Brydges and E. 
Seiler for the joy of collaboration and H. Epstein and E. Seiler 
for many most valuable discussions. He thanks the organizers 
of the Kaiserslautern school for inviting him to give lectures. 
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