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Contents :
This is a collection of three sets of lecture notes :

(:) "Random Geometry and Yang-Mills theory'", to appear in the proceedings of the

"Colloquium on Random Fields'", Esztergom (Hungary), June 24-30, 1979.

(:) "Some Results and Comments on Quantized Gauge Fields'", to appear in the pro-

ceedings of the Cargése summer school on gauge theory, Cargése (Corsica), August

27- September 7, 1979.

(:) "On the Construction of Quantized Gauge Fields", to appear in the proceedings

of the Kaiserslautern summer school, Kaiserslautern (Germany), August 13-24, 1979.

The purpose of these notes is to give an elementary and leisurely intro-
duction to some mathematical terminology and techniques used in the study of gauge
field quantization, to review some rigorous results on lattice gauge theory - in
particular on the quark confinement problem, phase transitions and connections to
string theories - and to briefly describe some results and methods in the cons-

truction of abelian gauge theories in the continuum limit.

What looks new in these notes is almost exclusively the result of colla-
boration with D. Brydges and E. Seiler (see (:) refs. 10 and 25) and with
B. Durhuus (see (:) ref. 7). Numerous discussions with H. Epstein, E. Seiler and

T. Spencer had a considerable influence.



The construction of the abelian Higgs model in two space-time dimensions,
@ ref. 25, which is briefly sketched in @ , Chap. III, has been described in

two excellent reviews by E. Seiler : see()refs. 8 and 9.

(D is a purely descriptive, introductory pahmphlet. @ and @ contain
some details, but no proofs for which we must refer the reader to the references

quoted in the text.

In (D and (:) the use of random (or stochastic) geometry in the study
of gauge field quantization is advertized and exemplified. It is indicated there
why random geometry is a natural mathematical concept and useful tool in other
branches of theoretical physics, as well, notably statistical mechanics and some
class of dynamical systems. Examples in statistical mechanics were sketched in
various seminars and - with Yang-Mills theory as the main subject matter - in a
lecture at the "28i&me Rencontre entre Physiciens Théoriciens et Mathématiciens"

in Strasbourg, May 17-19, 1979, of which no notes exist.

For uses of stochastic geometrical methods in statistical mechanics,see eg:
- M. Aizenman, "Translation Invariance and Instability of Phase Coexistence
in the Two-Dimensional Ising Systems', to appear in Commun. math. Phys.;Y. Higuchi,
"On the Absence of Non-Translationally Invariant Gibbs States for the Two-Dimen-

sional Ising System', Preprint 1979.

- M. Aizenman, F. Delyon and B. Souillard, '"Lower Bounds on the Cluster

Size Distribution ", Preprint 1979.

‘@; ref. 22; §§ 3 and 6 of @, and other references quoted in the above papers.

We hope to present a more detailed account of the material described
in §§ 3 and 6 of (:) and of some further applications to statistical mechanics

problems elsewhere.

Another idea which is advertized in (:) is the use of renormalization
group (Block spin) transformations with rigorous error estimates in the proof

of stability of quantized Yang-Mills theory in two and three space-time dimensions,



(starting from a theory on a lattice of arbitrarily small mesh). This method
is not elaborated, in these notes, since the author has nothing concrete or
definite to say about it. We wish to recommend, however, that the reader con-

sult refs. 29 and 30 quoted in @

Finally, we wish to draw attention to the possibility of describing
non-linear o-models and Yang-Mills theory in terms of fields with values in a
Grassmannian. This observation has found important applications in the construction
of instanton solutions to the self-dual Yang-Mills equations. See C) ref. 6 and
references given there. We have investigated the use of that formalism for the
quantization of gauge fields in "A New Look at Generalized, Non-Linear o-Models
and Yang-Mills Theory', to appear in the proceedings of the Bielefeld Symposium,
December 1978, (L. Streit, ed.). Our conclusions were mostly negative, and that
approach is not discussed in the present notes. We feel it still deserves to be
kept in mind, however. It may e.g. have further applications on the classical

level.




RANDOM GEOMETRY AND YANG-MILLS THEORY+

Jiirg FROHLICH

Institut des Hautes Etudes Scientifiques

35, route de Chartres

91440 Bures-sur-Yvette, France.

This is a very brief report on a one-hour lecture I presented at the
]
Colloquium on Random Fields of the Janos Bolyai Mathematical Society.

For its larger part my lecture was rather experimental : I stated various
problems and discussed a very few preliminary rigorous results in a branch of

mathematics and mathematical physics which one might call random (or stochastic)

geometry. Further more, I pointed out why random geometry is important in the

quantization of Yang-Mills theory.

The main reason why my lecture was "experimental' is that I do not know
any literature about random geometry, yet.(I recently learnt that I should study [y
This branch of mathematics may already be alive and well, there possibly
exist many interesting results, and most problems which I advertized or proposed
to study may either have been solved before .or may be ill-posed. Finally, the few

rigorous results I sketched may be well-known and/or trivial for the experts.

Outline of lecture given at the "Colloquium on Random Fields'", Esztergom (Hungary),
June 1979.



The absence of possibly important references at the end of this
report must be excused by my ignorance and by the circumstance that I spoke about

recent developments in which I have personally been involved.

I am somewhat more confi&ent that that part of my lecture concerningthe
study of (lattice) gauge theories and the uses of random geometry in the study of
Yang-Mills fields - e.g. expansions in random surfaces, connections to dual strings
(processes whose state space is the space of closed loops in a lattice), etc.- was
reasonably serious scientific talking. At least, I concluded from the reactions of

some partsof the audience that this was the case.

The ideas expressed in my talk have grown out of numerous, recent
discussions and collaboration with E. Seiler, joint work with T. Spencer, €Xperiment-
ing with explaining the main concepts of quantized Yang-Mills theory, provided
there is such a thing, to different audiences and my reading of "Physics Letters"
which, towards the end of 1978 and at the beginning of 1979, published a number
of stimulating papers describing connections between dual strings and Yang-Mills
theory and some vague probabilistic concepts that might be useful in the study of

those theories ; notably, [2,3,4,5] and others.
Topics discussed or mentioned in my lecture included :

1. Introduction to the main mathematical concepts involved in the study of quantized

Yang-Mills fields :

- Random (or stochastic) geometry

- Phase-space localization (or micro-local analysis) in functional integrals. Problems

with the compatibility of phase-space localization and local gauge invariance.

- Renormalization group arguments ; (approximate "block-spin transformations'" with

rigorous error estimates).



The latter two techniques are strongly interrelated. The main emphasis of

the lecture was placed on random geometry.

2. Combinatorial geometry and combinatorial random geometry with sketches of

applications.

3. Probabilistic formulation of Yang-Mills theory in the Euclidean region and

Ostcerwalder-Schrader reconstruction.

4. Connections between v-dimensional Yang-Mills theory and (v-1)-dimensional,

non-linear o-models in an external gauge field.

5. Applications of 4 to the problem of confinement and phase transitions in

Yang—-Mills theory.

6. Lattice Yang-Mills theory and combinatorial random geometry : Expansion in

random surfaces and connections with dual string models.

Short verbal summaries of parts 1-6 and remarks now follow.

Part 1:

Recently, numerous mathematicians (Atiyah,Drinfeld,Hitchin, Manin,
Schwarz,Singer and others) have initiated a serious study of classical,
Euclidean (time purely imaginary) Yang-Mills theory;and they have had
much success:Among other results they have found a linear algebra
construction of all solutions to the self-dual Yang-Mills equations
(a system of first order elliptic equations). Since their work received
much publicity,detailled references are unnecessary.See however [6]
and references given there. In their work the mathematicians have
used and advertized algebraic topology,differential and algebraic
geometry,inverse scattering methods,etc., all very highbrow for

a mathematical physicist.



Much of the motivation behind this work comes from semi-classical quanti-
zation (formal steepest descent in yet more formal functional integrals). This
approach to the problem of quantizing Yang-Mills theory can hardly be considered
very satisfactory, in spite of its great heuristic value and its many partial

successes 3 see e.g. [7] and refs. given there.

It is a rather wide spread opinion that one only understands those quantum
theories which are quantizations of some underlying classical theories. (For
example, many theoreticians have studied the '"quantization of solitary waves" in
two space~time dimensional, non-linear field theories. It is, however, a fact
thot the soliton sectors of the quantized versions of those theories could be
constructed without knowledge of the solitary wave solutions of the classical

field equations. See e.g. [8]).

There are many reasons — and beautiful mathematical theorems - to expect
that a lot of detailed and explicit knowledge of some classical theory is
very useful to quantize the theory and derive properties of the quantized

theory, [9,10].

There are however quantum theories without an underlying classical theory.
A prominent example is the theory of non-relativistic matter at finite density.

In the realm of relativistic quantum field theory Euclidean field theory, as

developped by Schwinger, Symanzik, Nelson and others (see e.g. [11]), is a

direct approach towards constructing relativistic quantum theories.Much of
Euclidean field theory is a branch of probability theory, in particular the theory
of random fields and of fﬁnctional integrals. In quantum field models not involving
nonabelian gauge fields e Euclidean field theory approach makes use of only trivial
information about the solutions to the classical, Euclidean field equations

(=critical points of the Euclidean action). Yet, it serves to prove existence of



relativistic quantum fiélds and supplies a lot of detailed information about

their properties. Th;s it is a natural and useful attempt to try to apply Euclidean
field theory and Osterwalder—Schrader reconstruction also to the problem of
constructing and analyzing abelian and non-abelian Yang-Mills (gauge) theories. A
review of some recent results on the construction of .super-renormalizable, abelian

gauge theories is contained in E. Seiler's contribution to these proceedings.

It is oune of Wilson's achievements to have proposed a direct and

non-perturbative approach to constructing quantized gauge fields : lattice gauge

the whole structure of a relativistic quantum field theory, except Lorentz
invariance ,and of trivializing the problems associated with gauge groups of the
second kind. Morccver they provide an ideal laboratory for testing the properties
of gauge theories at long distances. It is thus natural that they have been

studied intensely over the past five years. Mathematically speaking, the study of
pure (lattice) gauge theories is the study of a particular class of random fields
over a space of closed loops in the Euclidean space-time (lattice), namely traces
of "normal (or Ito) ordered" holonomy operators on a (random) principal bundle
with random connection. (A connection on a fibre bundle 1is what the physicists

call a gauge field). A simple theorem says that a principal bundle over a connected
base space, I' , and a connection on it are uniquely determined (i.e. up to gauge
equivalence) by the traces of all holonomy operators on the group of all closed
loops containing an arbitrary, but fixed point of I' (i.e. by the unitary characters
of the holonomy group at some point of I' ). This is presumably well known. (For a
proof see e.g. [13]) Thus the study of unntized gauge fields at imaginary time is
the study of random fields over a space of geometric objects, the closed loops in

I , more precisely the study of random connectiéns on (random) principal bundles

over I' . (These statements are only accurate when I' is a lattice. When I' is a
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continuum the situation is somewhat more complicated,but the above
remarks remain a first order approximation to the truth).Therefore

quantized gauge fields represent a particular example in the subject

of random geometry.

The study of random fields is the study of functional integrals.

Making sense of formal functional integrals which determine a Euclidean

field theory,ec.g. a Yang-Mills theory,is called non-perturbative

]

renormalization theory. The most impressive contributions to that

theory (in the framework of super-renormalizable quantum field models
not involving gauge fields) are due to Glimm and Jaffe;see e.g. [14,11]

One key to their success was that they used phase-space localization

to construct functional integrals,in the form of localizing random
fields on classical phase Space. They then could estimate partial
functional integrals over components of the random field properly
localized on phase space:This can be viewed és a "renormalization group
transformation”". One of the high lights of their approach was the

non-perturbative renormalization of the A@ quantum field model in

three space-timec dimensions by means of an inductive construction, [14].

An important elaboration of these ideas which makes their intimate

relation to microlocal analysis and the renormalization group much more transparent

is due to Gallavotti et al. [15].

Other forms of phase-space localization in functional integrals consist
of partial Fourier-Laplace transforms of measures on distribution spaces and, not
unrelated to that, introducing random fields canonically conjugate to a given
random field. A recent investigation of these techniques in the framework of
Euclidean field theory is [16]. In the case of lattice theories, Fourier-Laplace
transformation of functional measures (the ‘distributions of lattice random fields)

is called "duality transformation". In this context, phase-space localization is

related to partial duality transformations. They have recently been used in a

rather important way in an analysis of Coulomb lattice systems, [17].(Partial)



duality transformations play a prominent role in the study of lattice gauge fields.
This is one way of using phase-space localization in the study of quantized gauge
fields. Unfortunately, phase-space localization in the sense of localizing (functions
of) a gauge field in classical phase space (the cotangent bundle over Euclidean
space-time I' ) which has proven so powerful a tool is - in its conventional form -
incompatible with gauge invariance. This is one major reason why the construction

of quantized gauge fields in the continuum limit is so difficult. See E. Seiler's

contribution and [18] for further discussion of these matters.

@n passing I should like to emphasize that some sort of phase-
space localization has been the key to numerous,other recent successes
in mathematical physics among which I mention the work of V. Enss on

quantum mechanical scattering theory [19] .

The way renormalization group ideas are used in the work of Glimm and
Jaffe and of Gallavotti and coworkers requires the possibility of localizing the
Euclidean random field on classical phase space. Since this appears impossible
in the case of gauge fields, one must find other ways of applying renormalization
group ideas which do not require more than the possibility of doing partial
duality transformations. Presently there are no convincing proposals to that
effect, except a general feeling that approximate "block-spin transformations’
(see the contributions of Griffiths and Israel to these proceedings) applied
in conjunction with partial duality transformations to lattice gauge theories

on lattices of arbitrarily small mesh ought to be an important element.

These remarks serve to motivate my convictionthat random geometry,

phase~-space localization in functional integrals and a rigorous version of the

renormalization group will play a crucial rGle in the construction and analysis

of quantum theories of Yang-Mills fields.



Part 2 :

Combinatorial geometry is the study of geometric objects (paths and loops,
surfaces, hypersurfaces, clusters) consisting of the sites, links, plaquettes,
elementary hypercubes of some v-dimensional lattice, I , and of their topological
and geometric properties. Moreover, it is the study of fibre - and principal
bundles with base space =T , or = some space Cn(F) of n-dimensional geometric

objects in TI'j;(n £ v = dim(l)).

Combinatorial random (or stochastic) geometry is the study of stochastic

processes whose statc space is a space, Cn(r) , of geometric objects in T, of
random fields over Cn(F) , of probability measures over

Cn(r) (or over @ Cn(F)Xm), e.g. squares of quantum mechanical wave functions
m=0

over Cn(P) ; n=2,3,...,v. Moreover it is the study of random connectiomns (or

holonomy operators) over (random) bundles with base space =T'=(C (T) , or C (I),
0 1

O ... CU(P) , etc... [More ambitiously, one can envisage to convert the lattice

(base space) T and its intrinsic topological and geometric properties into random

variables, too].

I have already explained why and how combinatorial random geometry is
naturally used in the study of lattice gauge fields ; but see [13,20] for an
extensive discussion and applications. Apart from lattice gauge theories, combina-

torial random geometry is used in

-equilibrium statistical mechanics : see the contributions of Aizenmann
and Eberlein to these proceedings, the work of Minlos, Pirogov and Sinai on
phase transitions ; [21] and refs. given there. A further amusing example is the

"balanced model" of Ising spins discussed in [22] , etc...

-(differentiable) dynamical systems [23],



-diffusion of clusters of "A-particles" in a medium of "B-particles" :
Geometrical properties (size, shape, number of edges and vertices,...) of typical

A-clusters ; diffusion of extended defects in crystals, etc.
~quantum mechanics of large, extended molecules (polymers), etc.

-dual resonance models (strings),'"bag models", etc.

This is a rather modest selection of fields in theoretical and mathematical
physics to which concepts and techniques of combinatorial random geometry can

probably be applied successfully.

In [24,20 I have tried to initiate a reasonably systematic study of combina-
torial random geometry as it arises naturally in the study of classical lattice
systems, lattice Yang-Mills fields, lattice string - or bag models, etc. So far

the results are rather modest, but I believe that these ideas have a future.

Part 3 :

Quantization of gauge fields (i.e. of connections, resp. holonomy operators
on bundles with base space = physical space-time) which is presumably a physical
necessity is, more mathematically speaking, an attempt at reconciling geometry,
with probability theory and quantum mechanics. "Random continuum geometry" is the
name of a mathematical science that is really needed when one tries to construct
quantized gauge fields (except in the case of gauge fields with an abelian gauge

group which superficially, or in v<4 dimensional space-time,is easier).

Unfortunately, continuum random geometry does — it seems - not exist as
a wvell-defined mathematical science, yet, in contrast to combinatorial random
geometry. One of the reasons why random geometry of geometrical objects in manifolds
must be very difficult is that, in the continuum, the description of geometrical
objects like hypersurfaces (or geodesics, minimal surfaces...) in a manifold

requires the use of parameters and local coordinates. (In contrast, on a lattice
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they are given by countable sets of sites, links, plaquettes, etc., and there

isno necd for parametrization and local coordinates).

In random geometry one may wish, for example, to convert n-dimensional
closed hypersurfaces of a v->n dimensional manifold into parametrization -
independent and coordinate, transformation covariant random currents (or operator-
valued currents). Parametrization independence of physical observables and
states will presumably require detailed knowledge of skew-adjoint representations
of infinitc dimensional Lie algebras and their integrability to unitary representa-
tions of infinite dimensional Lie groups, e.g. the group of gauge transformations
in a gauge theory (bundle automorphisms) or the diffeomorphism group of the
circle in dual! string theory.(The representation theory of (a central extension of)
the Lie algcbra of this group, called Virasoro algebra, was first studied by theo-

retical physicicts, Virasoro and others, interested in quantized fields over a

space of loops in space-time = dual strings).

These algebraic and group theoretical problems are very hard ; see [25].
Moreover, they are just preliminaries for the development of the subject of

random geomctry proper. They are avoided completely when one studies combinatorial

random geometry. This is why lattice gauge theories are such an attractive
starting point for the study of quantized Yang-Mills theories. A reasonable
program for the construction of a quantized gauge theory in the continuum limit,
at purely imaginary time, might therefore consist of first constructing the
expectation values of arbitrary products of traces of arbitrary "normal-ordered"
random holouomy operators (Wilson loops) for a lattice gauge theory and then

try to prove the existence of the limit of those expectation values as the
lattice spacing tends to0 ,(using e.g. phase-space localization and renorma-
lization group transformations). Apart from proving the existence of the limit

one major problem will be to show that the limiting expectations, denoted



.-.-l 1=

Sn(C],...,Cn) , where C ..,Cn ‘are closed, oriented loops in E’ , with

1*°
dist(Ci,Cj) >0 , for i # j , are continuous under small, smooth deformations

of the loops and Euclidean invariant, for all n = 1,2,3,..; (S.:| = 1).

Once this is shown, one can reconstruct from the "n-loop Euclidean

- 0 3 - - .
Green's functions" {Sn(Cl""’cn)} a unique, Poincaré-covariant quantum
n=0

gauge theory. This is. called Osterwalder-Schrader reconstruction [26]. In the
prescnt context, O0-S reconstruction involves proving some results concerning
the analytic continuation of representations of Lie groups, resp. Lie semi-groups.
A uscful tool is a theorem that guarantees the existence of unique selfadjoint
extensions of a large class of unbounded, symmetric one-parameter semi-groups

on scparable Hilbert spaces [27]).[The main open problem concerning the recons-

truction of quantum gauge theories from {Sn(cl""’cn)} * is a sharp
n=0

formulation and proof of locality. All other problems can be solved].

One can argue that S](C) tells one something about "confinement
of static quarks" [12] and Sl(C), SZ(C,C') about the low-lying mass - and
spin spectrum of Yang-Mills theory [20] ,i.e. a certain amount of physical
information can be extracted directly from the Euclidean (imaginary time)

Green's functions. See [12,28,24,20] for more details.

Part 4 :

This partwas a brief report on the recent paper [24}. The main results
are
A) a representation of v-dimensional, pure lattice gauge theories as integrals
of products of (u-l) - dimensional, non-linear o-models in external gauge
fields, with applications ;

B) an expansion of the n-loop Euclidean Green's functions, Sn(C],...,Cn), of
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lattice gauge theories in terms of random surfaces bounded by the loops, when

the gauge group is U(n) or O(n) , n= 1,2,3,..., or SU(2).

When applied to SI(C) this expansion exhibits two complementary mechanisms
for confinement of static quarks and suggest an intimate connection between

Yang-Mills theory and the theory of dual strings, including an educated guess about
the low lying mass - and spin spectrum of Yang-Mills theory : ("approximate Regge

trajectories'"). See also [20].

Part 5 :

This part contained further applications of result A) of part 4. It was a
brief report on some of the results of refs. [29,30,31,24]. In these references

the following lattice models are studied :

(1) Classical, two-component, neutral lattice Coulomb gases and abelian lattice

o-models (Ising-, Potts— and classical rotator models).

(2) Abelian lattice gauge (Higgs) theories, in particular Landau-Ginsburg type

theories.

(3) Non-linear o-models on the lattice (e.g. a classical, ferromagnetic

spin system with 4-component spins of length 1).

(4) Pure, non-abelian lattice gauge theories.

The main findings contained in the above references have the following flavour :

(i) A rigorous connection between (2) in vy dimeﬁsions and (1) in (v-1) dimensions,
and between (4) in vy dimensions and (3) in (v-1) dimensions. (For example, the
one-loop Green's function, sl(C), of a vy-dimensional gauge theory can generally
be bounded above by a product of two-point correlation functions of a g-model

in (v-1) dimensions).



-13-

(ii) As one consequence of (i) one obtains a technique wheréby‘ the construction
of a pure lattice gauge theory with gauge group IZZ on the three - and four -

dimensional lattice is reduced to the one of a two- dimensional Ising model with .

random couplings in one direction, [?h]-

(iii) Rigorous results and conjectures about the phase diagram - phase transitions

and critical properties = of (1) in two dimensions and (3) in three dimensions.

(iv) Conscquences of (i) and (iii) for the theory of quark and monopole confine-
ment, the Higgs mechanism, etc., in (2) and (4). The following theorem 1is a

typical example of results that follow from combining (i) with (iii) : If the
two-dimensional Coulomb gas undergoes a transition from a high temperature phase
with Debye screening [32] to a low temperature, dipolar phase without Debye
screening (for partial results see [17]) then the three dimensional, abelian
lattice Higgs (Landau-Ginsburg) model undergoes a transition from a supercanducting
phase without confinement of fractional charges and heavy vortices, at small

values of the electric charge, to a QED phase in which fractional charges are
confined by a logarithmic potential and the photon is massless, at large electric

charge. This is shown in [30].

(v) A comparison théorem relating a lattice Higgs theory with gauge group G to
a lattice Yang-Mills theory with gauge group = center of G , [29,31]. The theorem
implies that if the latter confines static quarks then so does the former. As one
corollary one concludes permanent confinement of static quarks (qith non-zero
"electric charge'") in all two-dimensional lattice gauge theories and in three-
dimensional theories with gauge group U(n), n=1,2,3,...
Part 6 :

~This part was an elaboration and application of result B) of Part 4, In
particular, expansions of two-point correlation functions of non-linear o-models
in (v-1) dimensions with fields taking values in a group G, G= U(n), O(n),

n=1,2,3,..., SU(2), in terms of random walks were used to generate an expansion
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for the one-loop Greén's function, SltC), of a pure lattice gauge theory in

v dimensions with gauge group G . These expansions are used to prove exponential
clustering of corrclations in those o-models, resp. confinement of static
quarks in Yang-Mills theory. Two basic meéhanisms for confinement emerge from
that cxpansion,and one of them might potentially yieid confinement in continuum
theories. These results can be found in [24]. Some elaborations of them and

‘connections with the theory of dual strings are discussed in [20].

Final remarkes.

This is my first set of nﬁtes to a lecture that does not contain a single
formula or estimate or state (and prove) a theorem. My only purpose is to verbally
discuss, explain and advertize some mathematical, in fact probabilistic concepts
which I believe are going to play a somewhat crucial rdle in various branches
of mathematical physics, in particular in quantized Yang-Mills theory which one
hopes may be the theory of the fundamental interactions (except gravitation) of
particle physics. These concepts may be labelled by the words : Random (stochastic)
geometry, phase-space localization in functional integrals, renormalization

group.

The papers quoted in the bibliography (not these lecture notes) permit
the reader to develop his own ideas about what these concepts mean and why they

might be useful.
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ABSTRACT

A few basic facts concerning the geometry of classical gauge
fields are summarized; in particular, it is asserted that a primci-
pal bundle with connection can be characterized uniquely by its
"Wilson loops'". The quantization of gauge fields is then shown
to consist of converting the Wilson loops into "random fields" on
a manifold of oriented loops, a problem in '"random geometry'. Other
examples in random geometry are briefly sketched. A general theorem
permitting to reconstruct quantized Wilson loops from.a sequence
of Schwinger functionals is stated, the quark-antiquark potential
is. introduced, and "disorder fields'" are discussed in general terms.
The status of the construction of quantized gauge fields in the
continuum limit is indicated, and some random-geometrical arguments
are applied to lattice gauge theories and used to derive estimates
on the expectation of the Wilson loop, resp. the disorder field.

1. Introduction

These lecture notes are organized as follows:

§2. Some elementary facts about the geometry of gauge fields.
§3. Random (or stochastic) geometry.

§4. Schwinger functionals and relativistic quantum fields.
§5. Existence of quantized gauge fields.

§6. Random geometrical methods in lattice gauge theories.

§7. Conclusions and acknowledgments.



The purpose of these notes is to introduce the reader to some
basic, conceptual aspects of the problem of constructing quantized
gauge fields and to summarize some rigorous results concerning
the general (axiomatic) theory of quantized gauge fields, the
existence of models in the continuum limit and some physical prop-
erties of lattice gauge theories, in particular the confinement of
static quarks, the proof of which is based on random geometrical
methods. This is the content of §6 which, due to page limitationms,
has come out to be too short. (That material will probably be
treated in more detail elsewhere. Much of it is contained in the
references quoted in the text). Unfortunately, we were forced to
omit all proofs and to even state some of the main results in a
somewhat cavalier way, but the necessary precision can be achieved
by consulting the references given in the text. Our choice of
references does not represent a value judgment. It reflects the
author's taste and ignorance and a certain emphasis on developments
in which he has been involved.

The main problem of quantizing gauge fields and thereby con-

structing a mathematically consistent and physically realistic model

of the fundamental interactions is among the central problems of
theoretical physics. We are still far from having complete and
satisfactory solutions to that problem, and the technical barrier
separating super-renormalizable from renormalizable theories is
still not overcome, at all, in spite of the advent of asympt@ﬁcally
free theories, the Yang-Mills theories. (Some progress may be in
sight, though). In view of the main problem these notes and many
of the references quoted may seem naive; (they certainly are).
They may however help to see some conceptual and mathematical
problems through a perspective which we hope is not completely
useless.

§2. Some Elementary Facts about the Geometry of Gauge Fields

In this section we briefly review some mathematical building
blocks of the theory of classical matter and gauge fields, empha-
sizing some geometrical aspects. For mathematical details see
e.g. |l| and the notes by Singer and Mitter. In |2] we have at-

me

tempted to give a rather detailed, pedagogical "introduction for
physicists" to this subject which might also be useful.

Let M be a manifold, the space-(imaginary) time manifold.

For particle physics one would choose M = EA, but for well known,

technical reasons one also chooses M = E’ or §° , v=2,3(4).
Let G be some compact Lie group, the gauge group. Let V be

a topological space (typically a vector space carrying a repre-

sentation of G or a homogeneous space) on which G acts as a homeo-



morphism group. Physically, V is the space of internal degrees of
freedom of some matter field.

Let F = (B,M,V,G,n) be a fibre bundle with bundle space B,
base space M, fibre V, group G and projection w. If V = G, the
gauge group itself, we shall denote F by P = (P,M,G,n), and such
a bundle is usually called a principal bundle. For definitions and
results concerning fibre-and principal bundles see e.g. |1| . We
propose to view classical matter fields as sections of a fibre bundle
f and classical gauge fields as connections on a fibre-or principal
bundle.

Let { Qi}ial be a covering of M by open, simply connected coordi-

nate neighborhoods such that the bundle space B restricted to
Qi is homeomorphic to f&xv, for all iel.

Let £, ,E' _: Q.xV + n—l(SI) be two coordinate functions.
Q S& i i
i
Let £ (": =g (V(x,-). By definition of a £ib
Q x° = 5996 y definition of a fibre bundle,
30 G

. ]

EQ 1 gQ =h(x) is an element of the gauge group G, depending con-
ilx i’x

tinuously on xef,, for all ie€I. The G-valued function h thus

determines a change of coordinates and is called in physics a
gauge transformation. Let xEQ{\?i. The gauge transformations

-1
hij(x): = Eﬂi,xgﬂ.,x are called transition functions. They de-

termine the bundle uniquely and also serve to associate to each
fibre bundle a principal bundle: the one with the h, . 's as its
transition functions. ij

A connection, A, on a fibre bundle is a family of 1-forms

{ A(i)}ial with values in the Lie algebra G of G such that A(i)

is defined on S&, ieI, and for xe$§o$5 0

A(i)(x) = h;i(x)A(j)(x)hji(x)—h;i(x)(dhji)(x) (2.1)

Moreover, if h is a gauge transformation defined on Qi’ A(i)
transforms according to

A L ADh =L @)y Lk (2.2)



In physics, A is called gauge field potential. It serves
to define the notion of parallel transport. To explain this we
choose some (= Qi, iel. Let ny(:Q be an oriented curve con-

necting x€§ to some point yel. We propose to construct a

(1)

homeomorphism gY
yX

the parallel transport of some ¢(x)eV from x to y along Y

€EG from V into V in terms of A which describes

If y = x+tdx is infinitely proximate to x we set

(1) - (1) :
gx+dx,x Hx): = (1V+A (x)) ¥(x), (2.3)
with A(i)(x) = E A(%}x)dxj,
j=1
(in local coordinates; v = dim M).

If ny is bounded, oriented, continuous and piecewise smooth,

(2.3) can be integrated along ny, yielding

g(i) = P{exp jT ; )(z)dz 1, (2.4)
ny _ yx
where the r.s. is an infinite product obtained as a limit of finite

products of factors

(1+A§1) () m)éi m)’ with |ﬂ13( m| V0, as m » o, for all j and k.

Under gauge transformations, h, g(i) transforms according to
yx

gy o g = g Ph, (2.5)

yx  'yx yx
and if nyc Szin Qj

gt - (y)g(J) ). (2.6)
) | ji
yX

Thanks to equations (2.5) and (2.6) one can now define parallel
transport on the bundle space B of F as follows: If ny &= Qi

parallel transport on B is given by a homeomorphism

FY . Vx -+ Vy’ with Vx = n_l(x) the fibre over x, which is defined
yXx



i -1
by T = &g g( )EQ x (2.7)
Tyx 1,y Yyx "1’

If ny is not contained in a single coordinate neighborhood Qi,

one cuts up Yy into pieces ¥y il with Q na # 9;
yx *m+1%m im’ j'1:1+1 im
and sets
T =T r R 2.8
y y s (2.8)

Y Y
yx N N-1 *N-1¥N-2 o |

with Xy =Y and X, = X. By equations (2.5)-(2.7), 1"Y is
yx
independent of the choice of coordinate neighborhoods and coordinates.
By the parallel displacement of some ¢(x)eVx from x to y along
ny we mean the element

r o(x) 4in V_. (2.9)
Yyx y

Next, we propose to characterize a fibre bundle with parallel
transport in terms of a convenient family of gauge invariant func-
tionals of the connection A. For this purpose we introduce the
notion of holonomy groups.

Let x be some point in M, and let (x) be the manifold of all
bounded, continuous, piecewise smooth, oriented paths, mx, starting

and ending at x, called loops. Given wKEIXx), let w;l denote the
same curve as W but with reversed orientation. 01 Ux) we
define multiplication as the composition of paths, i.e.

(wx,m;) *—mxow;, the composition of w with m;. With the obvious

equivalence relation imposed, w oo L = wloy = 1 , the identity
_ X X X X X
element in Q(x), and Q(x) is seen to be an infinite dimensional

group.

Given a connection A and some loop wer(x) we set

€G, (2.10)

where si is a coordinate neighborhood containing x, and ESZ x are
i’

local coordinates on B. This defines a representation
B wy EQ(x) - 8, eG of Q(x) on V. The image of Q(x),
p 4



HX(A) ={ gmx: w € Ax) 1, (2.11)

is called the holonomy group of A.

For continuous A,HX(A) is a closed subgroupf G. If M is
connected HX(A) is independent of x, up to conjugacy, and if M is
simply connected HX(A) is connected. If HX(A) = G the connection
A is irreducible.

Under a gauge transformation, h, g, transforms according to

X
h

g 8 =h'l(x)g h(x) (2.12)
X Yx We

as follows from (2.10) and (2.5)-(2.7). Thus the elements
g, € HK(A) depend on the choice of local coordinates (the gauge).
X

Let x be a character of G. Then Y, given by

Y(u) = x(g, ) (2.13)
X

is a character of (x).

By (2.12), Y(mx) is gauge-invariant. We define

a(mx), W g Ux), to be the infimum of the areas of all smooth

surfaces bounded by .

Theorem 2.1.

Assume M is simply connected. Let Y be an irreducible charac-
ter of §(x) with the properties:

(1) Y is of positive type on Qx).
(2) Y(lx) = n, for some natural number n < o,

(3) IY(“’X)'“li O(a(wx)), as a(mx)NO.

Then there exist an irreducible, connected subgroup
H ¢ U(n) and a representation h: Wy € Ux) -+ hw e H of Q(x)
X
such that Y(mx) = tr(huj ). The representation h of Q(x) is unique
X



up to unitary equivalence. Moreover, there exists a connection A

with values in the Lie algebra of H such that hm s W e Ax), is
X

the parallel transport around W determined by A. If H=Uu(G)U-1,

where m is an n-dimensional, faithful representation of some compact,
connected Lie group G, and Ue U(n) then hw =Un(gw )U_l, and gw eG is

X K X
unique up to (G-valued) gauge transformations. O

For a proof of Theorem 2.1 see |3|. This result says that a
principal bundle with structure group G and a connection on it are
uniquely determined by the numbers fx(g Jiw_ e Ax) } if x is a faith-
ful, unitary character of G. Yy X

Let P be some principal bundle with structure group G, and AI
the space of all continuous, irreducible connections on P. Let G
be the group of all gauge transformations modulo those which take
values in the center of G. Clearly (G acts as a transformation group
on AI . We define the orbit space ( as AI/G . Given a connection

Ae AI , the corresponding orbit of A under G is denoted by Eﬂ.
Unfortunately ( is generally not a linear space, but an infinite
dimensional manifold with rather complicated geometrical properties,
unless G is abelian. This is an expression of the intrinsic
non-linearity of non-abelian gauge fields. Singer has shown that A
is a principal bundle with base space 0, fibre G and projection m

given by m(a) = [A], |4]|. (If M = s3 or s* Al is not homeomorphic

to0x G , i.e. gauge fixing is impossible; see ]4| If M =EV this
conclusion is however not valid).

Since 0 is a manifold one can define a space €(() of continuous
functions on 0. The elements of C(0) represent the "observables"
of a classical Yang-Mills theory. '"Euclidean quantization' consists,
in a vague sense, in converting the elements of C(?) into random
variables. This procedure requires some more explicit knowledge of
the structure of C(0). We thus describe a convenient dense subspace

of C(0): Let A e AI and let g, (A) denote the parallel transport
X
around W, determined by A. The functions

Y(m 3A): = x(g a)), mxs;ﬂ(x), ¥ a character of G, are
“x
gauge invariant, i.e. depend only on [&] and are continuous in Dﬂ
Therefore they belong to C(0).



Theorem 2.2.

Let M be connected and suppose x is some faithful, unitary
character of G. Then the algebra of functions generated by

W: ={ Y(mx;A): W € U(x) }
is dense in C(0).
Proof. By Theorem 2.1 the functions-[Y(mx;A)} separate points in (.

R — . to
Moreover Y(mx;A) = Y(wxl;A) also belongs, W, and finally

Y(lx;A) = const. > 0. By theStone-Weierstrass theorem the algebra
generated by W is dense in C(0); (0 is supposed to be compact). -

Remarks.
1. Theorems 2.1 and 2.2 serve as one motivation for viewing
the functions Y(mx) = )((glu ) as the basic "observables" of a pure

Yang-Mills theory. x

2. Let Sﬁ be a denumerable set of bounded, closed, piecewise

smooth, oriented loops, e.g. the loops of some lattice on M. Let
?E-be the closure of Sh under inversion of orientation and composi-
tion of loops; (ﬁ& is a groupoid). Let CQ (0) be the algebra

d

generated by { Y(w): we Q, }. If all connections in AI are continu-

d

ous then sz(o) 72C@), (in the supremum topology), as
d

7A 9> a(x), for some xeM, with M connected.

d
Let QL denote all bounded, oriented loops in a lattice L.

Approximating C(0) by CSZ(O) is the starting point of the lattice
/8

approximation to Yang-Mills theory.

It would be interesting to make a systematic study of all
convenient, separable approximations to C((}) that could serve to
construct gauge-invariant regularizations of (quantized)
Yang-Mills theory.

§3. Random (or Stochastic) Geometry

Throughout these notes we follow the Euclidean (time purely
imaginary) approach to quantizing relativistic quantum field
theory. In this approach the problem of field quantization is
converted into one of constructing random fields and functional
integrals, (unless there are Fermi fields in the theory which are



ignored in these notes). In the Euclidean approach to quantized,
pure Yang-Mills theory the basic random fields turn out to be the
variables

Y(w) = xY(MJ.

studied in §2; Xy is a unitary character of the gauge group G, w
is a bounded, oriented loop, and 8, is a '"random holonomy operator"

assigned to w. (If the theory also contains a matter field ¢,
assumed here to be spinless, transforming under a representation

U¢ of G then, in addition to the variables Y(w), one must consider

the variables

IO RN (8, )0,
2

where (*,*) is an inner product on the fibre V of the bundle whose
sections are given by @).

We thus see that in the Euclidean approach to quantized
Yang-Mills theory one wants to construct random fields on spaces of
geometrical objects, the oriented paths and loops in Euclidean
space-time.  According to Theorem 2.1, the random fields Y(w)
are in correspondence with a random connection on a random principal
bundle.

The construction of such random fields can thus be viewed as
a problem in a hypothetical branch of mathematics attempting to
combine geometry and probability theory which one might call random
(or stochastic) geometry.

We now give a short list of some problems in random geometry
and then discuss a few of them in more detail..

1) Convert geometric objects (loops, surfaces, clusters,
holonomy operators, etc.) into random variables, resp. random

currents.

2) Construct stochastic processes whose state space is a space
of geometrical objects.

3) Construct random fields on spaces of geometrical objects.

4) Construct random holonomy operators on a (random) fibre
bundle.

5) Investigate random operators associated with a foliation
|6]; etc.



10.

In many situations random geometry is really measure theory
on infinite dimensional manifolds, or manifolds modulo the action
of some infinite dimensional transformation group, (e.g. a group
of gauge transformations, the diffeomorphism group of the circle
or a sphere, etc.).

Of concern to us are the following specific problems in random
geometry:

(A) Theory of random holonomy operators on random bundles with
fixed base space.

(B) Diffusion processes whose state space is a space of loops
or a manifold of open paths with fixed endpoints, (modulo the action
of the group of reparametrizations).

(C) Theory of random surfaces bounded by some fixed loops.

These problems are relevant for the understanding of quantized
gauge fields, as we hope to explain in the remainder of these notes.
We emphasize that there are numerous other branches in theoretical
physics which pose their own problems in random geometry. In par-
ticular, statistical mechanics is rich in such problems.

Unfortunately, it turns out that random geometry in the con-
tinuum is very difficult and forces one to study very singular
objects. For example, the holonomy operators of a Euclidean quantized
Yang-Mills theory on v-dimensional space-time, with v > 3 cannot be
expected to be random fields in the precise sense of the word. To
see this one may consider the free electromagnetic field:

Let A(:) = (Al(')""’Av(°)) be the R’-valued Gaussian process

with mean 0, i.e. <A(-)> = 0, and covariance

<A (A (x)> = §,,(2m) ~v/2 [e 2V (3.1)

One may attempt to define random holonomy operators (random phase
factors), 8, by

g, = exp i § A.(x)dxj (3.2)

Unfortunately g, does not exist as a random field on the space of
when v 2 3,

loops: 8, = 0, almost suref?IL To gIve meaning to g, it needs to

be '"mormal-ordered':

g, > N(g ) = "exp EﬁVC(O)ltulj g," . (3.3)



Here |w| is the length of the loop w, and V., is the (v-1)-dimensional
Coulomb potential. The r.s. of (3.3) can be defined rigorously as
a limit of regularized objects if w is sufficiently smooth (C2) and
V< 4. Since A is Gaussian, it is easy to calculate

< N(gw)N(gm,) >. One checks that if the relative positions and

orientationsof w and w' are suitably chosen one gets
< N(gw)N(gw.) > ~ exp [ﬁonst. dist. (m,w')—lj,(for v=4).(3.4)

Thus, the objects N(gm) are too singular to be random fields in the
usual sense of the word. For a (heuristic) theory of normal ordering
of holonomy operators in three-dimensional, interacting theories

see |7].

The above discussion suggests that random geometry in the con-
tinuum may be plagued with serious difficulties. One way of regu-
larizing the objects studied in random geometry is to pass to random
combinatorial geometry by replacing continuum geometry by discrete
geometry (combinatorics); see e.g. |8| for some discussion.

We conclude §3 with sketches of three examples of random com-
binatorial geometry.

I. Let P = (P, Ey,G,w) be a principal bundle over E’. As
discussed at the end of §2, we may approximate the space C(0) of
continuous functions over the orbit space 0 (the "observables") by
Cgi(O)’ where QL is the set of all bounded, oriented loops in a

lattice L which we choose to be

€ EZU ={ x: e_lx € Ev}. We assign to each link (nearest neighbor
pair) xy € L an element gxye G. Given w eii, let

B, = T D gy - (3.5)

Xycw

Let Xy be a character of G. We set

Y() = xg(g,) (3.6)

g

to convert the elements of CQ (0) into random variables, it suffices
L

to construct the joint distribution of the '"Wilson loop variables,"

i.e. to construct a measure on { gxy}' The standard proposal |9],

The algebra generated by the Y's is dense in C_ (0). Thus, in order

due to Wilson, is the following: Let x be a unitary character of G,

let p denote a plaquette (2-cell) of L = ¢ Zu, dp its boundary.

11.



Let Aec ZV be a bounded set. Define an action, AYE.?, by

AYT = -1 Re x(g

pch

3p) 3.7)

Let dg denote normalized Haar measure on G,B>0. We define
% e -BAIM T d
A Xy gxy

(e)

with Zh such that Idu A (g) = 1,

& @ -2 e

By a standard compactness argument one can choose a sequence

{A_ )" increasing to € Z' such that
n ‘n=o

du(e)(g) = w*—lim dﬁi)(g) exists. (3.9)

n-—»x

(Conditions for existence and uniqueness of the limit dp are given
e.g. in |9,10[). The measure duy is now interpreted as the joint
distribution of the random variables { Y(w):w Eﬂl}' Of particular

interest in the discussion of the resulting theory are the
Schwinger functionals

Séa)(Yl(Ql)""’Yn(wn)) = Jd“(E)(g)jil ij(gwj) . (3.10)

What we have introduced here is the standard lattice approximation
to quantized, pure Yang-Mills theory |9[.

II. Let I‘L(x,y) be the set of all finite, oriented curves in

L=c¢ z" starting at x and ending at y. This is clearly a countable
set. Let 22 . be the Hilbert space of functions F on FL(x,y) with

L]

the property that

)¥ erleyllF(Y )|2 < o, (3.11)
e el (x,y) 2

for some r > 0. Let p be an oriented plaquette.

12.



1f Bpfwy # @ we define Yyy © op by the following figure:

L SRR i SO

x 1;319

- - ;sz — _ﬁ,_EL,;__-(&)

7., T,y 2P

For Fel define
2,r

>

F(Yxy o Bp)-F(ny) if 3pn‘Yxy # 0

and ny o dp is connected; (3.12)

]

F
(6F) (vyey)
0, otherwise.

One may now define a functional Laplacean,'ﬂl, as the unique
selfadjoint operator determined by the quadratic form

F 8 .1

defined e.g. on £2,r’ r>0; (&, £2,r=0)'

Let Va be the multiplication operator on £2 given, for example, by

VP (v, = aInyIF(ny) A (3.14)
where |Y 1 is the number of links in y_ .
Xy xy

The operator sum D +V,is still selfadjoint, and it follows from a
general theorem in |11| that the kernel (exp[:t(D +V i])(yxy xy)

. _ s i _

is non-negative, for all ny’ny in l"L(x,y). Thus exp t(91+Va)

is the transition function of a stochastic process on I‘L(x,y). This

process describes the diffusion of an oriented string with fixed
endpoints x and y. It has some significance in the analysis of
confinement in lattice gauge theories, ]?[ See also §6. (If the
deformation (ii) in the definition of ny o op is omitted, the

resulting process may be of interest in the study of selfavoiding
random walks).

13.



14.

II'. Let QL be the set of all finite, oriented loops in L;
QL is still countable. Therefore one may define spaces

£2,r = Ez’r(ii) and operators §p, Dl’ Va, etc. in a similar way as

above. There results a model for the diffusion of loops in the
lattice L. For some results concerning a general theory of dif-
fusion of discrete, geometrical objects see e.g.[ll]. (They have
applications in statistical mechanics).

III. Let 9, Dl’

give an example of a random field ¢ on QL. To eachwe QL we assign an

Va,... be as in (II), (II'). we propose to

nxn matrix, ¢(w), with a priori distribution d¢(w) given by the
2

Lebesgue measure on t" . There exists a random field ¢ the dis-

tribution of which corresponds to the formal measure

du(¢) = Z-lexp [ —El tr( ®(w)* [(91+Va)¢ ] (w)) j .

2
o~2tr (2 (w)* &(w)) do(w).
we QL

The measure dpy can be constructed as a limit of cutoff measures.
The field ¢ is conveniently described by its "Schwinger functionals"

5_(9 Jeurby 5 (@) = dn(@) T @

(w J
S o TR M =1 %38

which one may interpret as Schwinger functions of a lattice string
theory [12].

(mj) (3.15)

If the constraints

™ §(¢* (wow' ) (w)d (w')- 1) (3.16)
w,w

are inserted into du and the couplings are suitably rescaled, the
above theory becomes a lattice gauge theory with G = U(n); see
|11|. This example is admittedly somewhat naive. It may serve
as a challenge for a serious study of more interesting random
geometrical models. The most important problem is to find inter-
esting models of this sort for which the continuum limit (e 0)
exists. This is the subject of the renormalization group ("block
spin transformations') and non-perturbative renormalization.




§4. Schwinger Functionals and Relativistic Quantum Fields

In this paragraph we briefly discuss the question whether
Schwinger functionals of the sort defined in (3.10) and (3.15)
determine a relativistic quantum field theory. The answer to this
question is, for conventional, local field theories, the Osterwalder-
Schrader reconstruction theorem |13,14|. We quote here a generali-
zation of that result which accounts for theories of fields defined
on spaces of geometrical objects such as the '"Wilson loops'" of pure
Yang-Mills theory. The theorem is first stated for a class of
continuum theories and represents a special case of more general
results of this type |15|.

The Euclidean space-time manifold is fEU,v=2,3,4. Let Q(d)
be the family of all oriented C* d-dimensional surfaces in E
without self-intersections, (i.e., topologically, d-dimensional

(d)

spheres), with d <v-2. For w,w' in Q% 7, set

d(w,w') = dist (w,0') = min |x-y]|.
XEw
yew'
Let Séd)n ={w w_ in Sfd)'d(m w,) > 0, for i#j} (4.1)
# l""’n . 1!3 » J » -
(dn _ (d)n, B e -
s {(wl,...,mn)e Q 4 ¢ mja{ x=(x,t):t > 0},j=1,...,n}

(4.2)

We now assume that we are given a sequence of Schwinger func-
tionals { Sn(Yl(ml),...,Y (m ))]m -0 with the following properties:

(s1) Sy=1; S_(¥;(w)),...,Y (w0 )) is well-defined on n(d;“_

n 11
and continuous under small C deformations of Wysee s in Q(din.
Moreover, the growth of |S (Yl(wl),...,Y (w )) | as

dn Z min d(w ,m )\ 0, is bounded by O(exp[const. d a ]), for some
i#]
a > 0 and constants that depend on n in a suitable way; see |13,15].

(S2) (Osterwalder-Schrader positivity)
Let r be reflection at { t=0} and let Y - Yr be some reflection map
(in the case of Yang-Mills theory Yr =Y, the complex conjugation
of Y). The N x N matrix C with matrix elements Cij given by
i

i i j j



i,j=1,...,N, is positive semi-definite, provided

k (d)n(k)
>

(wt,...,wn(k)) € Q , for all k=1,...,N; N=1,2,3... .

(S3) (Symmetry)
Sn(Yl(ml),...,Yn(wn)) is symmetric under arbitrary permutations of

its arguments, for all n.

(S4) (Invariance)
Let B be a proper Euclidean motion. Then
Sn(Yl(wl),...,Yn(wn)) = Sn(Yl(wl’B);...,Yn(mn,B)), for all n.

(Here w, is the image of w under B).

B

If we consider a lattice theory we replace (S4) by (S4'): Invar-
iance under the symmetries of the lattice.

[(SS) (Clustering; see |13|i]
Heuristically, the Schwinger functionals of a Yang-Mills theory

satisfy additional properties, in particular an extended version of
(S2) (Osterwalder-Schrader positivity) to which we refer as

(s2°%t*); see |10,15].

The main theorem about sequences of Schwinger functionals
satisfying (S1)-(S4) is

Theorem 4.1.

If{S_(¥;(w)),...,Y ()T _, satisfies (S1), (52) and (S4)

then one can reconstruct from those Schwinger functionals a separable
physical Hilbert space H , a vacuum vector QeH, with <Q,Q> =1,
and a unitary representation U of the proper Poincaré group

PI on H with U(a,A)Q= & (4.3)

for all (a,h) e PI. The spectrum of the generators (F,H) of the

space-time translations is contained in the forward light cone V+.
If, in addition, (S3) holds there exist '"local fields"
(d)

) > v
v(w;Y), we @7, wc{x=(x,t)e M : t = const. },

with [}(m:Y),y(m';Y'il = 0 if w and w' are space-like separated.
Llf (51),(52),(S4) and (S5) hold then the vacuum ¢ is the only
vector satistying (4.3), i.e. the vacuum is unique].

16.



A more precise formulation and a proof of this basic theorem
will be given elsewhere, [15].

Some of the main tools in the proof of Theorem 4.1 not already
used in |13,14| are: A result concerning the selfadjoint extensions
of symmetric semigroups [16| that serves to construct the represen-
tation of the Poincaré group, and the observation that the Schwinger
functionals determine a state < §, - > which satisfies the KMS
condition with respect to the Lorentz boosts, |17|. A somewhat
novel approach to the results of jl?] and to proving locality are
consequences of that observation. See |15].

Next we discuss a few physical properties coded directly into
the Schwinger functionals. The first is a consequence of extended
Osterwalder-Schrader positivity [10l| in Yang-Mills theory. In that
theory d = 1, and Q(dg is the space of loops in E’ diffeomorphic
to circles. Let w be a (smoothed version of a) rectangular

LxT
loop with sides of length L and T. Assume that (SZEXt'), |101,15|,

holds. Then Sl(Y(mLxT)) is log convex. Therefore

Vy(L): = lim - - log §; (Y(wy ) (4.4)
T+ o
exists, and moreover one concludes
Proposition 4.2
VY(IJ < const. L, as L + =, (4.5)

For lattice theories this inequality has been established in |18].
Physically, it says that the potential between a static (infinitely

heavy) quark and a static anti-quark cannot rise faster than linearly.

It was suggested in I?,llf that Sl(Y(m)) contains information

about the boundstate spectrum of very heavy quarks, and
Sz(Y(m),Y(w')) about the low-lying mass spectrum of pure Yang-Mills

theory.

Next, we sketch the notion of "disorder fields" |19-22|. We
assume that, in addition to the''random fields" Y(w),w ¢ 2d), there

(v=2-d)  (0)

are '"'fields" B(y), ve imv), with joint Schwinger

functions

() p(¥y ()5 ss¥ (@) BG) e, BO)) | (4.6)

,m=0

17.
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These Schwinger functions are supposed to have properties
analogous to (S1)-(S4), but in addition they are required to have
certain specific discontinuities (which cannot arise in standard
field theories of the Wightman type):

Choose w,ye { (;,t): t = const. } and let v(w,y) be the linking
number of w,y. Let ma be the translation of w in the t-direction.

Then lim S, ,(...,Y¥(w ),B(Y),...)
eNO’ €
viw

“Z%y.B

) Lim s, (ela Y ),BM) ) (4.7)
Yo

In two-dimensional scalar field theories with soliton behavior
and three-or four dimensional Yang-Mills theory one can prove that

IZY,BI =1, |19—21|. In fact,in Yang-Mills theory, ZYB is an
element of the center of the gauge group G which depends on Y and
B, |20,22I. An extension of the reconstruction theorem, Theorem

4.1, pgovides us with fields y(w;Y) and b(y,B), which for
w,yc{(x,t): t = 0} satisfy the following formal time O commutation
relations

v(wsy)

YB
(The field b is said to be "dual" to y).

y(w;Y)b(y;B) = z b(y;B)y(w;Y) (4.8)

For v=2,d=0, v=3,d=1, and v= 4, d = 2, (i.e. v=-2-d=0)

such commutation relations have been discussed in [19| and repre-
sentations with d = 0 have been constructed for two-dimensional
scalar field theories with soliton behavior, (the sine-Gordon and

the 2¢% models). For v=3,d =1, and v = 4, d = 1 they have been
proposed and interpreted in |20|; see also 't Hooft's contribution to
these proceedings. For v = 2,3,4, d = 0, certain "quasi-free" repre-
sentations have been constructed in a series of remarkable papers

by Jimbo, Miwa and Sato [21|. Their work shows how powerful rela-
tions like (4.7) may be and has resulted in the calculation of the
correlation functions of the two-dimensional Ising model. For

lattice theories representations of (4.8) have been constructed for

v = 2,3,4, with d = 0,1,1, respectively, |22].

In |19| properties of the representations of (4.8) when
v=2,d=0o0orv=23,d=1 (or v = 4, d = 2) have been related
to the structure of super-selection sectors of the corresponding
quantum field theories: If const.my(w;Y) converges on H to a

non-zero element of the center of the observable algebra, as
|w[+ =, and Zyp # 1,then b(x;B) intertwines disjoint super-

selection sectors of that algebra. (The two-dimensional case
has been studied from first principles, whereas in higher dimensions



one needs suitable technical assumptions). In [20| 't Hooft

has suggested connections between properties of the representations
of (4.8) in a gauge theory and quark-resp. monopole confinement.

He argues that (4.8) rules out the possiblity that quarks and
monopoles are both confined. This has been elaborated and tested
in models in |22,23,1021. See the contributions of 't Hooft and
Mack to these proceedings.

§5. Existence of Quantized Gauge Fields

In this paragraph we quote some results concerning the existence
of models satisfying the axiomatic scheme of §4. At present, the
only models that fit into that scheme are models of quantized inter-
acting gauge fields-and matter fields-on a lattice of arbitrary di-
mension (see end of §2 and Example (I), §3) and in a continuum space-
time ( EY) of dimension y = 2, and presumably v = 3. Of course,
the free electromagnetic field in two, three or four dimensions
satisfies (S1)-(S5). In the continuum only abelian gauge fields
have been constructed so far. If the gauge group is abelian there
are, in addition, lattice theories describing abelian gauge fields
which are connections on bundles whose base space is e.g. the space
of oriented loops in the lattice: To each plaquette p one assigns

a
an element e °PeG,G °=8' U(L), Z , with a priori distribution the

Haar measure on G. The action is given by A= -I cos (r a,)).

cch pEdc
These theories have Schwinger functionals of random "holonomy
operators' associated with closed lattice surfaces satisfying
(S1)-(83), (S4'), (in the limit A = ZV). The models of the type
described in Example (III), §3, (without the constraint (3.16)) are
not known to fit into the scheme of §4. (This may be related to
the difficulties which are met in string theories |24|). For

detailed studies of lattice theories see e.g. |9,10].

ap

Let du(e)(g) denote a limit of the measures du(i)(g), (Example
(1), §3, (3.7)-(3.9)), as At Z7.

For small B, the limit is unique and the Schwinger functionals
have exponential cluster properties; detailed properties such as
confinement can be investigated by means of high temperature expan-
sions, [9l Uniqueness of the A}Zv limit can also be proven in
a class of abelian models, for all B. A few physical properties
of lattice gauge theories are sketched in the next paragraph.

The list of models of quantized, interacting gauge fields in the
continuum satisfying (S1)-(S4) is still short:

1) The abelian Higgs model (scalar QED) in two space-time
dimensions, |25].

195
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2) Spinor QED in two space-time dimensions with massless or
massive fermions and massless or massive photons, |26[. (For a
different approach see |[27]).

|3) For spinor QED in three dimensions, a proof of stability
of the theory is announced |28].

4) TFor some super-renormalizable gauge theories (including
non-abelian ones), T. Balaban has announced a proof of stability
|29| based on a rigorous form of renormalization group - 'block
spin" - transformations for lattice theories, extending previous
work due to Gallavotti, et al.|30| for the A¢* theory in three
dimensions |31] |.

§6. Random Geometrical Methods in Lattice Gauge Theories.

In this paragraph we briefly discuss four examples in lattice
gauge theory  the analysis of which is based on estimating the joint
distribution of random variables labelled by geometrical objects
such as closed flux tubes or (interacting) oriented random paths
with fixed endpoints. We sketch some typical steps in that analysis
thereby providing examples for the uses of random-geometrical argu-
ments in the study of lattice gauge theories.

Example 1.

We discuss the behavior of the expectation of the Wilson loop
in a three-dimensional 22 lattice theory, (i.e. G = &2 is the

gauge group). This model can be thought of as a Kindergarden
theory of vortices in a type II superconductor. The Wilson loop -
dual to the '"vortex field" - is the non-integrable phase factor of
the superconducting medium. The action of the model is

A=-3$0_,0 = 1 o _,0 =+41. (6.1)
p ap ap Xy c3p Xy Xy
The infinite volume expectation in that model at inverse coupling

B - see Example (I), §3, (3.8), (3.9) - is denoted < — >B. (It

can be constructed by means of correlation inequalities, for all

B |32]).

Let ¢ be an arbitrary 3-cell (unit cube) in 23. Then
m O = 1, since © 2 =1, for all xy. We now introduce the
pcac oR xy

random phase factors O as a priori independent variables, inserting

ap
the constraint m § , with O = 7 o (6.2)
a
ch3 ac’l g pcac 28



21.

0 if 0o = 1
We set ¢ap= 1if o p= 1.

Let w be é rectangle with sides of length L and T parallel to
two coordinate axes. Let @ be the planar surface bounded by w,
i.e. 3w = w . Since nyz =1, for all xy,
o = ™ O__ = W O

Xycw L2 4 pcw

. (6.4)

This is the "non-integrable phase factor" (Wilson loop) observable
of the medium.

Theorem 6.1.

For sufficiently small B

<0 > < e-0(|mf), |5| = area of o .

For sufficiently large B,

o s 0o

w B A ]m| = perimeter of w.

The result for small B follows from a standard high temperature

expansion |9|. The large B result has first been proven in [33|;
see also |34].

We outline a simple proof.

Let Cl/O(Uap) be the characteristic function of
a = g = - :
{ 3p 13 /1{ 3p 1}. Then

<o > =73 (-1)|¢| < m e, >, (6.5)
© By pca ¥p P
with ¢ =1lor 0, ¢, Zc, (0,), and |¢]| = L_¢_. The con-
P ¢p ¢p ap sel

straint (6.2) implies flux conservation, i.e. the total flux
(= # of p's with ¢p = 1) through each closed surface is 0, mod. 2.

Thus all flux tubes, T, are closed.

A0
See Fig. 1: /_‘*g_ﬂ ‘ﬁ




Given w, each flux tube 1 (closed loop in the dual lattice) can be
assigned a linking number, v (w,t), (with w), defined mod. 2. Let

0< Prw(n) = prob. ({3n flux tubes, Tt s Tos with

1’
U(msTi) . l, Vi }) .

By (6.5) < ¢ = Prm(0)-Prm(1)+Prw(2)-Prm(3)+... (6.6)

w >B
Now to each configuration ¢ ={ ¢p}

contributing to Prw(2n+1) there is aone contributing to Prw(Zn)

with one flux tube 1, v(w,7) = 1, less,(i.e. ¢p= l+¢p={),VpaT).

The statistical weight of one flux tube, T, is

ﬂie-BlTl,where |T| = i p'set (with ¢p=l). (6.7)
Thus Pr (2n)-Pr (2ntl) > a Pr (2n), with a>l-e SO"8t-Bo.  (6.8)
This yields with (6.6)

<Shap g2 aPrw(O).
Let Pr; = cond. prob. ({ Jt: p ET,¢p=l, viw,t) = 1}),
given ¢p" for some p' # p. A simple argument shows that

. "
Pr (0) 2 w_ (1-Pr)), (6.9)

pPEW

and by (6.7) and standard arguments for counting closed flux tubes
through p of a given length one finds

o-const. B dist. (p,w) (6.10)

Pra<]

p =
iE_B is large enough. From (6.6)-(6.10) we obtain by a simple
calculation

. L]
< 0, >g 2 const. e const. le, (6.11)

for large £ which proves our contention.
o

Thus if flux tubes have a very small statistical weight,

o eho(hﬂl)

the non-integrable phase factor ¢ is , in the average.
w

22



This situation is analogous to one met in the Ising model: If
contours have a very small statistical weight then 0, 9,% const.,

uniformly in x, in the average. Theorem 6.1 has been extended to
the four dimensional U(1l) model in |35|, (the proof being very dif-
ferent).

More realistic models of superconductors in three (and four)
dimensions are discussed e. g. in |102|,and refs..

Example 2.

We consider pure Yang-Mills lattice theories with gauge group
G =U(m) or SU(n), n = 2,3,.... See Example (I), §3, (3.5)-(3.9),
and we set e=1 and choose in (3.7) x to be the character of the
fundamental representation. Moreover,

Y(w) = x(g ). (6.12)

We study the behavior of Sl(Y(m)) =< Y(w) >_ in B.

B

Let w = be a rectangle in the (1,v) plane with sides of length

w
LxT

L and T, and let VY(L) be the function (qq potential) defined in
(4.4). It is easy to show that, for v=2, V&(L):; const. L, for

all B; (i.e. permanent confinement by a linear potential).
For v=3, G=U(n), n=1,2,3,...,

VY(L) > const. log (L+l); see [36].

There are arguments in support of

VY(L) > const. L, for G = U(n), SU(n),

n=2,3..., v=3. An interesting case is G=SU(2), v=3 or 4. In |7|
the following somewhat remarkable identity has been proven: Let
L be a family of oriented paths,

{ Yi t1g ug T]}Starting at the site (0,...,0,u), ending at

(L,0,...,0,u) and lying in the plane m= {x:x¥ =ul. Let (Yzil
u

be the path obtained by reversing the orientation of YE . Then

Sl(Y(uD) =< Y(Ww) >B

z
@y helte T
L:9I=w u=1l

Fg"@-1),8" @) [vD).
(6.13)

T
T x(gYE ;1) >

u=0 NICD) B

23,



where YE is the bottom face and YTil the top face of

W, g (u) ={g y' Xyem, }, and F(g (u-1),g (u)|y ) is a gauge

invariant function of the "horizontal" gauge fields gh(u 1),g (u)
depending on Yy The r.s. of (6.13) can be viewed as a sum over

joint correlations of interacting random paths (forming a "random
surface" I). In mean

F(eh -1, 8w vy - e MMl (6.14)

with a > -In [(2v-3) (v-1) (4v-4) "1g].
Thus if B < %—(v=3), resp. B < g-(v=4) (6.15)

-0(|w])

< Y(w);, m) >, L e

LXT (area decay), (6.16)

B
by (6.13) and (6.14). Condition (6.15) is not nearly necessary for
area decay, because (6.14) is only a rough estimate and because the

factor ﬂ x(g E -1) on the r.s. of (6.13) provides for strong

u=0 o(y Z)
additional damping of < Y(mLXT)>B’

z

a1 (6.17)

T )
= 1 exp -0 (|'yu Ay
u=0

We expect that an improvement of the estimates in |7,37| taking into
account that factor ought to permit to show that

< Y(w ) >B < e—0(|w[)’ for all B when v=3. (The situation for

LxT
v=4 is technically less well understood).

Next, recall Example (II), §3, (3.13), (3.14). Choose x=0,
y=(L,0,...,0), t< T and approximate exp E—t(Dl+Va)] by

{ exp [ - t/T Dl] exp [- t/T VC;] i (6.18)

If we write out (6.18) as a sum over products of matrix elements
labelled by paths ny EFL(x,y) and compare with (6.13), (6.14) and

(6.17) we see that for suitably small B and a proper choice of t
and a

< Y(mLXT) >g S exp [t(D +V )] (YT,Y ).

Connections between lattice gauge theories and the diffusion of
strings or loops of this sort might have interesting consequences

24,



for the heuristic understanding of the string dynamics in Yang-Mills
theory.

Example 3.

We consider the behavior of the disorder parameter in a
three-(or four) dimensional SU(2) lattice gauge theory with dis-
tribution dfi(g) as proposed by Mack and Petkova |22|: di(g)
is given by

an(g) = lim 5 270 10 (1 x(8,))due), (6.19)
M Z cech apecc
vith du(g) = duP (g) as in (3.8), (3.9).
The expectation in dii is denoted < — >é. One is interested

in the behavior of the expectation of the disorder parameter,

< B(Tox) >B, with Tox 38 depicted in Fig. 2:

0 “(o0,1) x= (0,0,/x])

Let ¢p = L(1+sgn ¥ (gap)). The constraint w © ( = x(g8 )) enforces
c dpcc

that £ ¢_ =0, mod. 2. Thus ¢p may be interpreted as a 122 flux
apec

through p, and only closed flux tubes are compatible with the con-
straint; as in Example 1. The statistical weight of a closed flux

the, 1, is bounded by e XBMT| with k(8)p = as Aw, as follows

from a chéssboard estimate {38|. Expanding < —->é in flux tube

configurations it is a fairly simple matter of counting flux tubes

of given lengths passing through Tox to prove that when e"k(e)is

sufficiently small (i.e. B large)

< B(TOX) }‘B' ; e-o(lxl), (6.20)
see [22,23|. (In outline we have followed here [23|). One can
show, by comparison with the 22 model,

e-o(|a|),

< M g >
Pcw

< where o = sgn .
< p = sen x (8y)

B

for B small enough, see |22[, and by arguments very similar to those

25.
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used in Example 1,
E-O(lml)

T o > dw = W,
pPcw p B

=
for large B.

Example 4.

1
Let G=U(N) N= 1,2,3,.... Let YN(w) = N xN(gw) with Xy the

character of the fundamental representation of U(N).

One is interested in an expansion of
n . 1
Sn(YN(wl),...,YN(mn)) = < j:l YN(wj) >B in powers of N

. n
To leading order in < jgl YN(wj) >8 factorizes, i.e.

1
N!
correlations are suppressed in the N = « 1limit. The problem is to

identify and compute the N = = limit of < YN(w) >B and to then

determine systematic corrections to Sn, in particular to

< YN(m) >B, in the form of power series in %-. A somewhat heuristic
calculation |39| yields
< YN(N) >B = z W(BQst)s (6.21)

L:dI=w

where { I: 3L = w} are all surfaces built of oriented plaquettes

(2-cells in Zy) bounded by the loop w, and w(B,N,Z) are the weights
of these surfaces. One can argue |39,40] that, to leading order in

%, only simply connected, normal surfaces, I, with 3L = w contribute

to the r.s. of (6.21). The weights of these surfaces are
= exp [jds ]El‘], with |Z| the total area of L. Moreover surfaces of

higher genus (with handles) are suppressed by powers of l/ :
N2
|39,40].
In spite of these preliminary findings a systematic expansion
in % is missing. To do that one must first find geometrical char-
acterizations of all surfaces contributing to a given order in IIN’

determine their weights and sum up their contributions. This
appears to raise very subtle problems in the combinatorial geometry
of lattice surfaces and combinatorics. (An alternate approach based
on the techniques sketched in Example 2 has been sugpested in |?l).



For a more detailed analysis and refs. see E. Witten's contribu-
tion, and for results concerning the %—expansion Parisi's contribu-
tion to these proceedings.

Related problems arise in the statistical mechanics of discrete
polymers, of crystal growth, etc. A great deal of knowledge in com-
binatorial geometry required for the solution of such problems seems
to be missing, at least among physicists.

§7. Conclusions and Acknowledgments.

Here are some important open problems which are presumably
central to the further development of quantized Yang-Mills theory.

(1) Proof of ultraviolet stability of quantized, non-abelian
Yang-Mills theories and connections to renormalization group argu-
ments. Use of "block spin'" transformations. (Important progress
in this direction in the super-renormalizable case has been announced
by Bakaban |29]). See also |25|-|27|, |30], |31

-

(2) Construction of algorithms permitting rigorous error esti-
mates for the calculation of large scale (low energy) phenomena such
as quark confinement, absence of coloured physical states (colour
screening), Regge behavior of resonance spectrum, quark bound states,
in QCD. (Along these lines one would like e.g. to test the validity
of "instanton physics,'" set up calculable 1/y- and t-expansions and

prove their asymptotic nature, extend the methods sketched in §6,
Example 2, to the continuum limit, find rigorous connections to dual
resonance models|see the contribution by J.-L. Gervais and A. Neveu|,
etc.).

(3) Investigation of conservation laws and complete integrabil-
ity (at the classical and quantum mechanical level) of pure, non-
abelian Yang-Mills theory. (Existence of Bdcklund transformations,
conserved currents?)

(4) Application and extension to theories with non-trivial
S-matrix of the methods of Jimbo, Miwa and Sato to Yang-Mills theory.
(Their methods are based on using Schwinger-Dyson equations for the
Schwinger functionals discussed in §4 and the discontinuity proper-
ties (4.7), in conjunction with expressing the fields y in terms of
the disorder fields b; see |21]).

In conclusion I wish to thank my collaborators, D. Brydges,
B. Durhuus, E. Seiler and T. Spencer for all they have taught me and
the joy of collaboration. They should have written these notes.
Special thanks are due to H. Epstein, G. Mack and E. Seiler for
numerous, very valuable discussions and encouragement. I also thank
the organizers of the Cargese School for inviting me to participate
and lecture and for financial support.
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ON THE CONSTRUCTION OF QUANTIZED GAUGE FIELDS

Jirg Frohlich

Institut des Hautes Etudes Scientifiques

91 440 Bures-sur-Yvette / France

ABSTRACT

We give a very elementary introduction to the geometry of
classical gauge fields. The "observables" ol classical gauge theory
are isolated, and discrete approximations are discussed. We then
present a general formulation of quantized Yang-Mills theory and
state a reconstruction theorem. Subsequently we exemplify the ge-
neral scheme in terms of lattice theories. Some basic properties -
- confinement, phase transitions, etc. - of lattice theories
are discussed, and connections to dual resonance models are
sketched. We finally outline the main steps in the construction of
the two-dimensional, abelian Higgs model in the continuum - and
thermodynamic limit.

These lecture notes summarize a small portion of some recent

work on the description and construction of quantized gauge fields

[1t - 7] . For its major part that work has been done in colla-
boration with D. Brydges and E. Seiler. There are two excellent
reviews [8,9] by E. Seiler which the reader who does not want to
read the original publications is advized to consult. Some concept-
ual and foundational aspects of quantized Yang-Mills theory are
discussed in [10,11].
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CONTENTS :
Introduction
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Yang-Mills theory

Lattice gauge theories

II.1. Some of the basics about lattice gauge theories
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II.3. Connections to dual resonance models
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two space-time dimensions

III.1. External (c-number) Yang-Mills fields
II1.2. Integration over the gauge field (abelian case) and re-
moval of cutoffs

A look into the future of the subject

Sections I.1. and I.2. have an elementary, introductory
character. (The advanced reader should skip them). They are,
however, quite useful as a piece of motivation of the basic
concepts discussed in Sections I.3. and II.1. The remaining
sections are sketchy, and the reader should consult [1-9] .

1. INTRODUCTION

In this section we try to introduce the main mathematical

and physical notions concerning gauge fields.



I.1. Classical gauge fields

Classical abelian and non-abelian gauge fields have been used
implicitly in physics for a long time, namely in the classical
mechanics of rigid bodies; ("3 index symbols"). I illustrate this
point by means of an example which I learnt from E. Seiler and
which serves to explain the concept of a principal bundle.

Consider a spherical ball of radius p rolling on a two
dimensional Riemannian surface, M, which we may choose for simplic-
ity to be the Euclidean plane. ("Rolling" means that the point of
contact with the plane on the ball is at rest at ecach instant).

The orientation of the ball is described by a three-frame attached
toithg ball, the position of its center of mass by two coordinates
(x",x<}.

We propose to describe the motion of that thrce-frame as the
ball is rolling along an arbitrary curve Y c M.

1" tix', x9)

Fig. 1

The components of the vectors 1',2' and 3' in the basis 1,2,3
are given by the column vectors of an orthogonal matrix, B(x,y).
At the point p = (x!,%x2) € M the ball is rolling in the direction
t (x!,x2) tangential to the curve Y. It thus rotates around the
axis H‘(xl,x ), the unit vector orthogonal to é? {xl,xz). If the
totalldisplacement of the center of mass is d% the rotation angle
is p~1 ar,



Fig. 2

Let L = (ILj,Ly,Ly) be the usual gencrators of rotations around
the 1- , 2-4 resp. 3- axis. 'Then the infinitesimal rotation ot the
ball is given by

1 1 2 2 1 2 2
B(x 4+dx ,x +dx ) = (l+dar(x ,x") ) B(xl,x Yos (I.1)
where
1 1 -1 2 2 2 1 2
dx =+t (x ,x )dfL , dx =t (x ,x )dg,
and
2 - - -
1+ dR(xl,x ) = 4 + n(xl,xz) * L p 1dQ
1R 10 2 -
=41+ (£t (x ,x )L2 ~ tz(xl,xz)Ll} p ldn
2 1e 25" 9
=4+ = A (x ,x )dxj. 5]
j=1 3
Thus
1 2 -1 2
A x,x) =p ' Re L, j=1,2. (1.9)
J 1=q 3+ 2

The 1-form A=(Ay,A,) with values in so(3), the Lie algebra of
S50(3), given in (I.3), is called a connection (on a "principal
SO(3) bundle with base space M").

The components aOt =(a? ,a; ) defined by
1 1 =i
a1=0r-'=12:0.e
a’ =0 (1.4)
il 2
af ==-p , a2 = o,

are called vector potential,



Next, imagine the ball is rolling around a small rectangle with
sides parallel to the 1- and the 2- axis of length ¢, § , respective-
ly.

ax'ndx?

J

Y fLl

Y A O

oY

Fig. 3

We propose to determine the total rotation, AR, of the ball aflter
one round trip along the curve vy depicted in Fig. 3 to sccond or-
der in € and § . A simple calculation gives

= = A A ',‘LS
AR = 1 - [ . 2] €
=2
= rL o
1L+ » [L2 1] €
=1 - p_z L3 e+ 8
2 . & =
= q- % £ F ., ax A ax?, (1.5)
i,j=1 =
i.e. F..=[A,A.] =p L
ij b | 3

. 2 . 1 2
If the radius, p, of the ball depended on (g JX ), l.e.p = p(x ,x )%
# const., we would find '

an 3A
1 ; 2 i 2
F .(x ,x) = “*i-(xl,x )y = “*%'(xl,x )
1) ox UxJ
1 2
+ [a,a.] (x,x7), (1.6)
i)
1 2-12
with A.(xl,xz) = p(x ,xz} L €5, Li (I.7)
j i=1 1

o
The 2- form F is called curvature,its components F_. in the basis
(Ll,L2,L3) of so(3) are called fieid strength.

Suppose now that, at each poiut p =(x1,x2) of the plane M, wec
introduce a new coordinate system 1"p,2“p,3"p related to the system



1,2,3 by an orthogonal transformation O =0(xl,x2). The orientation
of the frame 1',2',3' relative to 1" , V2" ,3" 1is thus given by
an orthogonal matrix p P p

0o 1 2 s N | 1 )
B (x ,x) =0(x ,x) B X, XN
By (I.1), (I.2) we have
2 S0 N I o 1 2
BO(xl+dx1,x +dx2) = (1 4dR (x ,x )) B (x ,x ), (1.8)
where

1 2 2. - 2
1l + dRO{xl,xz) O{x1+dx X 4+dx ) 1(1 +dR(x1,x )}O(xl,xz},

2 o 2. 4 {L:9)
=1+ L A, (xl,x )dxj.
j=1
Hence
1 2 —1 2
A? (x ,x) = O(xl,x2) Aj(xl,x2) O(xl,x )
1... 2
2 -
Ol ) (1.10)
'JxJ

[ 12
The mapping O:M —> SO(3),(x ,x ) *+ O(x ,x ) is called a gaugce
transformation.

It follows casily from the definition of curvature that

- 2 2
(xl,x2)=0(xl,x2} 1 Fij(xl,x )O(xl,x ) (I.11)

P
1]
From the example discussed here the reader can, in principle, ab-
stract most basic notions concerning principal bundles. But see
[12].
-3 2

Next we single out a vector k €S" (the unit sphere) attached
to the ball, i.e. over cach point pEM we have a two-sphere of possib-
le positions of K . The motion of the vector ¥ as the ball is
rolled from (x!,x2) to (x1+dx1,x2+dx2) is clearly described by

1 1 2 2 1 2 i 1 2
K(x +dx ,x +dx") = (1A, (7 x yax )k (x,x%) (I.12)
(We have started here to apply the summation convention).

Thus tluricn\nlu\ctj=>t1 A detormines what one calls paval el
transport ol k. '

S e S : N
Under gauge transtormations,o, kK  obviously translorms
according to the equation



e R T P R PG (1.13)

O
This transformation law leaves (I.12) form-invariant if A+ A
is given by (1.10).

This example can be generalized as follows: Suppose the mass
density of the ball is not rotation invariant. Then the ball will
have a moment of inertia, © , which is a symmetric tensor of rank 2
not proportional to a multiple of the identity. With respect to
rotations of the ball, © transforms according to a direct sum of
the trivial (tr ©) and a spin 2 (0-—3-1T 0 -1) representation.

More generally, the ball may have some intrinsic properties described
by a quantity ¢ that transforms according to some representation

U of SO(3) when the ball is rotated. It will be no surprise to

learn that the parallel transport of 't from (x1,x? ) to
(x14+ax!,x2+dx2) is given by

N

tb{x1+dx1,x2+dx2} = (ﬂ+U(Aj(x1,x2)}de]4%x1.xz), (1.14)

and the gauge transformations by
o] 2 -
P (xl.x ) = U(O(x},xz} H@(xl,xz}. (1.15)

What we have discussed here can be extended to the case where M is
a general two-dimensional manifold (surface). In this way one can
picture many basic notions concerning fibre- and principal bundles
with connection.

We end this section by briefly describing how Lhe notions
developed in the context of the rolling-ball example apply to
classical field theory.

Let M be some manifold, physically the spacc- (imaginary) time
manifold. We consider a classical, physical system described by
some field ¢ on M. The field ¢ is supposcd to have some internal
"degrees of freedom" described as follows: For each point x(|i,
¢(x) is an element of some topological space Vy, homeomorphic
to some fixed space V. Typically, V is a _vector - or a homoqenvuud
space. We also suppose that we are given a tOpologlcal group G
of homeomorphisms of V, physically speaking a group of internal
symmetrles. We are describing here what the mathematicians call
a fibre bundle (with base space M, fibre V and group G), and ! is
called a cross-section of this bundle. For the moment (and in all
examples discussed in subsequent sections) we may imagine that
Vx=V, for all xtM, and that the bundle is homeomorphic to MxV.
(This is however not so e.g. in the theory of the Wu-Yang magnebic

monopole or the Yang-Mills instant:ns on the four sphere).



If one tries to make a dynamical theory of the field ¢ one must
be able to couple ¢ (x) to ¢ (y), for x%y, in other words, one must
be able to compare ¢(x) and ¥y), for x+y. However, a priori, the
points in fibres over distinct points of the base space M cannot be
compared, unless there is a notion of parallel-transporting ¥ (x)
from x to y along a curve Yyy joining x to y. (In the example of
the ball, parallel-transporting consisted of rolling). If M is
a manifold, i.e. continuous, parallel transport can only be
defined if G is a Lie group. In that case, suppose we are given
a 1-form A on M with values in the Lie algebra % of G.

Given ¢ (x), let ¢ (y,x) denote the parallel transport (or -
displacement) of ¥(x) ¥rom x to y along vy.

If x and y = x+dx are infinitely proximate the parallel dis-
placement, ¢ (x+dx,x), of ¢(x) from x to x+dx is defined by the form-
ula

¢ (xt+dx,x) = (ﬂv + Aj(x)dxj) P(x), j=1,..., V. (1.16)

The 1-form A is the connection or gauge field. (In the example of
the ball "parallel displacement" is the same as rolling).

Equation (I.16) permits to calculate ¢ _(y,x), without y being in-
finitely proximate to x, see Section II.2, and to define the co-
variant gradient: Let t be some vector in the tangent space at x.
We set

-1
lim h ~ (P(x+ht,x)- ¢(x) ).
h-ro

t. (VA+}(X}
(1.17)

(V) (x) + A(x) ¢(x).

(If M is not flat the expression in the middle requires some obvious
changes) .

3 ,
It is easy to see that, (with aiE /axt),

- = 3.A.-3.A +[a, g
F [VA, VA]. Fij iP5 Bj i+[ . Aj] (1.18)

corresponds to what was called curvature in the rolling-ball

example. It is called curvature (2-form) or field strength.

Gauge_transformations are homeomorphisms

hix) : V. -— VvV ;
X X

T oand A transtorm according to



hix) "L e(x),

1l

o(x)  —> oM (x)
3 . (1.19)
h(x) A (x)h (%) =h (x) " (Vh) (x)

A (h) et Ah(x)

The dynamics of ¢ can be specified with the help of a field cquation,
e.qg.

2
VA(V 4)(x) =m ¢ g T.20
aVa ) (%) (%) ( )
(the covariant Klein-Gordon ecquation).
One may wish to introduce dynamics for the connection A, itself.

A prominent example of field equations for A is the Yang-Mills
equations_

vV «F = O. (1.21)

(If F = [VA, VA] the equations

VA° (xF) = 0O (I.22)

are automatic. They are called Bianchi _identities).

For discussions of classical field equations, see e.qg. [13]
and refs. given there. They will not be studied in the present
notes.

The basic ansatz of present day elementary particle physics
(without gravitational interactions) is to describe matter in
terms of quantized versions of fields that are cross-scctions
of fibre bundles with connection and the fundamental interactions
of matter in terms of quantized versions of those conncctions. The

present choices for G are such that it equals or containg as a
subgroup
S0 (3) x SU(2) x U(1) s (I.23)
colour weak electromag.

Although it is appealing that present day physics of matter
and its fundamental interactions has become intrinsically geo-
metrical it remains unsatisfactory that two kinds of geometries
are involved, Riemannian (or affine) geometry in gravity, the
geometry of fibre bundles in strong and electroweak interactions.
Moreover, there is no convincing theoretical argument as to what
the right fibre bundle (the right yauge group G) of elementary
particle physics is.

We shall henceforth ignore th.se problems and proceed to
sketch some rigorous results concerning quantum field theories that



- 10-

are based on fibre bundle geometry.

T2 Some facts about the gecometry of fibre bundles

The intuitive concept of [ibre- and principal bundles has been
developed in Section I.1. What the mathematicians understand by theso
words can be lcoked up e.g. in [12]. For our purposes the [ollowing
may suffice:

Let M be the physical space-(imaginary)time manifold. et V
be a topological space with a topological group G of homeomorphisms
of V into itself. Throughout these notes G will be a compact Lie
group. Points in M are denoted x,Y,..., ¢ denotes a point in V,
and h, g, ... elements of G. A fibre bundle F over M with fibre V
and group G consists roughly of a bundle space F with projection n
such that, for all pGF, n(p)&EM, and for all xtEM Vx:=n_1(x), the
fibre over x, is homeormorphic to V.

For each xtEM, there is_an open neighborhood @ ¢ M of x and

a homeomorphism 59 $0xV —r () such that mEq{x,¥)=x, and
£q x{¢) :=£w (x,P) is a homeomorphism from V to Vx. TE B C§ ’
y€L2, are two homeomorphisms from V to V,, then h(y]=£“1ﬁ' is

supposed to be a continuous function of yC& with values in G.
The functions h are called gauge transformations. Finally, f[or

bog

YEQnQ k] g{"JQ'(y):= EQJ‘Y -Q';y

is supposed to be a continuous, G-valued function of y. It is called
transition function.

I1f V happens to be the group G, we speak of a principal bundle
(with base space M). The group G is called gauge group.

It follows from these definitions that bundles can be charact-
erized by means of their transition functions:

Let {Q']'GI be a cover of M by open neighborhoods with the
property tha% tor all iCI there exists a homecomorphism

£

N =19
H \"
gi “i XV — 1 {Hi)

with all the properties specified in the above definition. lor

Q.0N2, #, let : =g,
i J+ ' gij o.q.
Lo
denote the transition function. '"wo sets of transition functions

{gi_.1 } e {qij }
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determine equivalent bundles iff

'oo=1 h ., 1.24)
955 "M 955 My ‘
with hj{x) a G-valued function on Qj.

This permits to associate with each fibre bundlc'?': (', M,
vV, G, m) a principal bundle(f" = (P, M, V=G, G, n): (:,r-’js the
principal bundle with the same transition functions as§. Sce [12]
for details.

1
Examples: (1) Mébius strip (base space S = circle, fibre[-1,1],

groupZs); (2) F =MxV, G ={4d} , n({x,4}) = x; this is called the
product bundle; (3) The 3-sphere s3 is a principle bundle with base
space 82, fibre s!% U(1) and group U(1).Incidentally, this is the

bundle space of the instanton of the two-dimensional € Plo-model and
of the Wu-Yang mocnopole.

(4) Interesting examples arise in the theory of functions of complex
variables.

Next, we consider fibre bundles with connections, i.e. we re-
consider the notion of parallel transport (or - displacement).

Let §T= (F, M, Vv, G, m) and {Q.} be as above.

i71€1

We suppose G is a (compact) Lie group with Lie a]_gebrag, We assume
that all transition functions are continuously differentiable on
their domain of definition.

A connection, A, on(;.is a family of 1-forms
oo (1)
L

with values ini} such that A
xGQjHQJ+¢,

(1)

is defined on Q4,iCI, and for

g b il =31
A( ](x) = qi.{x}A{J)(x]gi,(x}-gi,(x)(dgi, ) (x)
J J J J (I.25)
=1 (3) =1
=4qg,, A - =g
954 (x) (x)gjl(x) gjl(X) (dgji) (x)
Moreover, if h is a gauge transformation defined on ﬂ.,ﬂ(l)
transforms according to I
. h (i 1 (i _
R S P S (1.26)
We have started, here, to use thc¢ notation
V .
A=12 A dx I (1.27)

j=1 3
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We shall see that a connection is precisely what we nced to define
parallel transport on I,

Next, let @ c Qi,for some i€I, be some open subset of M.
Restricted to @, F is homeomorphic to

' = - -
FQ Q x v

First we define parallel transport on F&.
Let x€Q ,P(x)E V. We want to define the parallel transport,

g $(x), of ¢#(x) from x to YE Q
yX
along a curve Yyx © Q, with g € G a homeomorphism from V onto V,
., YX
given the connection A = A(l}. Suppose y = x+dy is infinitely
proximate to x. Then

g b(x) = g

Yox d(x) : =(1V+A(X)) ?(x), (1.28)

x+dx, x

with

J

v
A(x) =L Aj(x) dx

This equation can be integrated along any oriented, continuous,
piecewise smooth curve yyy ¢ @ connecting x € Q@ with y € Q.

To see this we may temporarily assume that  is flat, i.e. 9 is a
subset of IRV.

N
k
Let {xi}._l CYyx be a family of ordered sequences of points
on Yyx with tﬁe property that
k k
xl=x, XN =y, for all k =1,2,3,..., and
k
dist (xk k )i k —> = £ 11 i=1 1
i i’xi+1 o, as , for a = ,...,Nk .
Then
. 1 K kK k. j
gY = lim | t){lv+A,{x.}(x.+l—x.)]} (1.29)
yx k- » k=N g * %
k
The physicists like the following compact formula
g {exp J A, (x)dz?) (I.30)
yx 3

Y
YX
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as an abreviation for the r.s. of (I.29); (P:= "path ordering").
It follows from (I.26) and (I.29) that, under a gauge Lransformation
h, g transforms according to '

h -1
g — g =h (y¥) g h(x). (I.31)
ny ny ny

This is the basic property that permits us to define parallel trans-
port on I' in terms of g. It is given by a homeomorphism

I : V. -— VvV , defined by
X y

IT = &Q’Y gT E”'x (T332

Note that if £_. and E'! are two homeomorphisms related by a gauge
transformation, i.e. h?y] = EQ -1 gé y € G then
r

Y
= g s nlgg h(x) £
Q : ,x Q. Q,x
Yy’ Y ", ' Y 'E“x '
(1.33)
h
pos L] (]
&a,y Iy &ax
X

i.e. PY % is independent of the choice of coordinates (the gauge).
Equations (I.25) and (I.33) permit us to define Ty i for curves Yyx
that are not contained in a single coordinate neighborhood §ij: Onc
cuts up yyx into curves

-
xa+1 xa

contained in Ri , with

()

11

1(&)“ Qi(a+1) + @ and sets

r =T r 500 r (1.34)
ny Ty x Tx X Yx. x
N N-1 N-1 N-2 21

with x_ =y, x, = Xx. By (I.25), (1.31) and (I.33) this is a con-
sistent defini{ion '

One may now ask the question under what conditions does

r (resp.
Y P gY )
YX yx



Y-

depend on the path yyy only through the endpoints x and y.
We first discuss this question locally, for Yyx in a simply
connected, open set Q € Q;, for some i€ I.

In this case the answer is very simple: If and only if g

is of the form yX

g = h(y) hx) L (1.35)
L

Clearly (I.35) is sufficient. To see that it is necessary one
chooses a point x5 € @ and sets h(xg) = ig. One then chooses a
family, Ly, +Of piecewise smooth, oriented curves, Yy, starting at
Xo With the propert¥ that each x € Q@ is antained in precisely
one line y € on. Let Yxxo be the portion of y with endpoints x4
and x. We set

h(x) = g~
gY
XXO

Let x and y be arbitrary points in @ and Yyx & path
connecting them. Since gy only depends on the endpoints of 7y

- = - i.e.
GY g qY '

-1 -1
~ =Sh h
qY (y) hi(x)

which proves (I.35).
The curvature, F, of a connection A is defined by

F=dA + A A A, (I.36)

i.e. F,, = 0,A, - 3,A, +[A ,A.] ; see also (I.18).
1] 1] ] 1 1]
We now claim that for (I.35) to hold it is necessary and
sufficient that F vanishes on Q2
(In the example of the rolling ball this can only happen in the
limit p = p(x1,x2) — « , for all (xl,x2) € Q).
A proof of this last assertion can be obtained from the following

consideration that is of independcont interest: Pick a curve y xt:u.
Parametrize y by a function Y
VX
1 \ -
N(s8) = (R (8) 00, (), ORs o1,

with x(0) = x, x(1) = y.
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Now consider a function
X : [“’1f1} X [_111] _"Qs (Srt) ‘_"’x(sft)

which is smooth in t and such that x(o,t) = x,x(1,t) = vy, for all
t, and x(s,0) = x(s). Let Yy, (t) be the curve parametrized by
x(s,t). (It is a deformation of Yyx leaving the endpoints fixed).
We propose to calculate

Let ¥ be the portion of ny{t) starting

g .
dt ny(t)
at x(s,t) and ending at x(s',t). Using (I.29) it is easy to see

that

x(s',t)x (s,t)

1 A, i 3
a J - 3% (s,t)  9x7 (s, t)
=— g =|dasg || —(x(s,t)) ==
dt ny(t) ) ny(s,t) % 9s ot
g .
Y (s, t)x (1.37)

It is a simple exercise in integration by parts to show that

1
a lP -
st I, {5 x(s,0)- [v,Aa] (x(s,60))

o yx(s,t) 9x

x Dxl(s,t)

= (1.38)
as ©

Yx(s,t)x

for any differentiable function Y on © . If we set

¥(x(s,6)) = Ay (x(s,t)) 2 (5.8)
J ot

in (I.38) and use (I1.36),(I.37), we find

1 i 3
d _ 0x (s,t)  9x" (s,t)
at Iy~ {ds Iy [Fji(’”s't” e T
yx o yx(s,t)
X g (I.39)
Yx(s,t]x

Incidentally, by differentiating both sides of (I.39) with respect
to t, applying (1.38) with
s, 0) | ax(s,t)

it ot

¥ (x(s,t)) = F, (x(s,t))
ik
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and using the Bianchi identity
ar + [a,F] =0 (I.40)

one may calculate

(For a slightly cumbersome way of calculating this see e.qg.[14].
The physicists have been interested in equations for
2
J

g '

L =
g Aty ny(ti""'tk"")

because they suggest formal connections between Yang-Mills theory
and dual resonance models [15]. To the author these connections
appear, however, somewhat superficial).

As a simple corollary of equation (I.39) we have:
gY depends only on x and y if and only if F = 0. (I.41)
yX

Suppose now we are given two connections A,A' on @ such that
F = F(A) = F(A') = F'.

Question: Are A and A' gauge-equivalent, in the sensec of eqn.(I.26)7?
Unless G is abelian, the answer is: In general they are not gauge-
equivalent. (The reader can find a simple example of this by study-
ing the rolling-ball example!) This is an aspect of the intrinsic
non-linearity of non-abelian gauge fields.

The "globalization" of the above considerations is only straight-
forward if the base space M is simply connected. (Recall the Bohm-
Aharonov effect).

We now skip some material roughly identical to the one in @ S
(2.9) through end of § 2. The correspond nce is given by

(1.42) -2 (2.10)

(I.43) <> (2.11)

(1.44) - (2.13)
Theorem (I.45) <—> Theorem 2.1
Theorem (I1.47) <—> g Theorem 2.2

Remarks 1), 2) <> Remarks 1,2 .
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I.3 A tentative general formulation of quantized

Yang-Mills theory

Let M =‘Bv be Euclidean space-time. Let G denote the gauge
group. Every principal bundle with base space MRV 1is equivalent
to a product bundle, i.e. we may consider M xG to be the bundle
space. Motivated by Theorem (I.47), Section I.2, we regard the
functions Y®) = x(gw ), where ¥ is an arbitrary unitary character
of G as the basic "fields" of a Euclidean gauge theory on M with
gauge group G. The purpose of this section is to propose a scheme
for quantization of such a theory by which the Y(¥)'s are con-
verted into random fields on the space L of all oriented, smooth
loops on M.

If one studies the example of free electromagnetism in v=4
dimensions as a theory of loop observables, the so called Wilson
loops it becomes clear that one should require all loops in L to
be at least twice continuously differentiable, oriented closed
loops which are free of self-intersections, ("selfavoiding loops").
From now on L will be understocd to bhe the space of all loops
which have this property. (Classically, for a space AT of continu-
ous, irreducible gauge fields on M, the algebra generated by
{(y¥) = X(gp) : € L} is still dense in c(?),if x is faithful).



e

We propose to discuss quantized gauge theories in terms of
Euclidean Green's - or Schwinger functionals

snwluel), Yn(fn)) {Yj(rj) = xj(g,ej)).

corresponding to "quantized versions" y. (¥ .) of the functions
Yj(fj). 33

First, we describe this program heuristically.

Y %) ) | (I.48)

Let U = Jdv x tr (F (x) F
HV

denote the classical Euclidean Yang-Mills action. (It is assumed

here that G is a subgroup of some unitary matrix group. Then the r.s.

of (I.48) is well defined). Let d [A] denote a formal "Lebesgue

measure" on the orbit space () of (very rough) gauge fields modulo

gauge transformations. Consider the formal probability measure on

) given by

1 e—BU([A]}

du ([aD) =2 dalal, (1.49)

- A
with 2 = J e Bu(l ])d[A]:
which, mathematically, is perfectly meaningless.

Heuristically, the Schwinger functionals are given by the
Euclidean Gell'Mann-Low formula

n
Sn(Yl(!el);. .-{Ynflfn)) =J du ([A];H1 N(thifj)} . (1.50)
o
In the case of free electromagnetism, (I.49) and (I.50) can be
given a rigorous, mathematical meaning if one defines N(Y( )) by

U]eK |£l

N(Y(2)) = exp {ié'mp(x) ax (I.51)

where K = 8~1" 1qm Yym | x|
[x]+ o

is a divergent (normal ordering) constant, andl)e[ is the length of
¥ . (We have chosen Ay to be real-valued here. (I.50) and (I.51)
have to be understood as limits of regularized objects. See [ 5]

for some general considerations concerning (I.51) ). In this
example one can see explicitly that S (Yq (%), ..., Yo(¥ ) )
diverges when
d(f,,x ) min |x-—y] tends to .0, unless v=2,
i j }
x €X;

y CB5
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The remainder of this section 1s contained in @ , § 4 . The notations

of @ are unfortunately somewhat different. Here is a key :

@i \ (®“’

L Q(1)
n \ { (Dn
L# .4 gg#
n (1)
L] y \ N

® o) o ® oy

(YM2) i - (s4)

(YM3) & (82)

(YM3") o (s2%**)

(YM4) “ (83)

(YM5) = (85)
Theorem (I.55) @ Theorem 4.1

(I1.56) @ (4.4)

(1.57) 3 (4.5)
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ITI. LATTICE GAUGE THEORIES

One of the main virtues of lattice gauge theories is that they
represent a gauge-invariant regularization of continuum gauge
theories for which Schwinger functionals exist satisfying properties
(YM1), (YM3) , (YM3'), (YM4), (YM6) ,see Section I.3,and (YM2y) Invariance
under all those Euclidean motions which leave a lattice £ ,
typically

v -1 v .
eZ = {x :¢ x€ 2 }' € > 0o , invariant.

This is still enough for the reconstruction of a quantum
mechanical system, as described in Theorem (I.55), with the ex-
ception of full Poincaré covariance of the resulting theory.

As a consequence, only a weak form of locality is verified for
lattice theories. See [1,21-23] .

In order to understand the basic structure and intrinsic
properties of lattice gauge theories one is advised to go back to
Remark 2), following Theorem (I.47), Section I.2: Let

Az L= {161,22,....}

be all finite, oriented closed loops composed of links of a lattice
e.g v
2, = e &’ . Let

c. O
L
L
denote the algebra of functions on the orbit space,@?, of continu-
ous, classical connections (gauge potentials) on Euclidean space-

time, RV, modulo gauge transformations, generated by

(v () =xy (Gp) :XELY)
J
with xy arbitrary irreducible, unitary characters of the gauge
group G.

Clearly, Cp, (@) is a separable approximation to the space
C((® of all "observables" of a classical gauge theory.

The idea is now to convert the elements of

c. ©
L
L
into random variables distributed according to a probability
measure dp (a positive, normalizod, continuous linecar functional
on C (@ ) with the property thac the Schwinger functionals
L
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n
5 Fooan 24 = LY, . 1 B |
s (Y (8)) P Y (2)) Jdu 51 _j‘f-ﬁ (11.1)
satisfy properties (YM1), (YMZQ},(YM3)—(YM6}, (with the possible
exception of (YM5) = clustering = uniqueness of the vacuum).

Thus, we are really trying to construct random fields Y5 on
the loop space Ly of a lattice 2 having the mathematical structure
determined by (YM1g)-(YM6y), (with (YMng)=(YMn), except for n=2).
Given the values of all Y. (¥), ¥E Lg, a simple variant of Theorem
(I.45) shows that they determine a "lattice gauge field"

€EG : XYyE€B
= {g, - y€B,)
which is unique up to gauge transformations. Here By is the set of

all line segments, b(xy),whose endpoints, x and y, are "necarest
neighbors" in 2. The b's are called bonds or links. A variant
of Theorem (I.47) shows that the closure of

C, (O
L
2
is the space of all gauge-invariant functions of

g = {gxy : Xy € BR}°
(We know from Section II.2, (I.31), that a gauge transformation
g —* gh is given by a function, h, on £ with values in the gauge
group G, and

& = ny g hx ).

yx yx

Let

no

xyc ¥

denote an ordered product along an oriented loop (or (:urvc,-))f .
From the above discussion we infer that

Y. (¥) = ( ), where = 1 ;) IT.2

: b 4 Xy () Iy - ( )
3 xyc¥

and g 1is the lattice gauge field determined (up to gauge trans-

formations) by the values of the Yj(&Q) 's, ¥ € Lg. From now on

the random variables Yj(ZE) are called Wilson loops.

Other examples of random fields on a loop-space, Ly, arc
supplied by the lattice approximation to (Euclidean) dual re-
sonance - or string models [26]. Among the main goals in the study
of lattice gauge theories are

(A) Let¥= LxT be a rectangular loop with sides parallel to two
axes of & of length I.,, resp. T.
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Let
V.(L)= lim - l-log S, (Y. (LxT)); (IT1.3)
3 T 13
T >
see (I.56). Investigate the properties of Vj(L}, as L -« , in

particular for those characters Xy of G which are non-trivial
on the center 3G of G. J

This is the famous problem of static quark confinement (resp.-
liberation). See [21,22,23,25,1,27,5,6,7] .

(B) Investigate the "excitation spectrum" (energy-momentum
spectrum of low-lying "particles") in

Sl(Yj(LXT)) and sztyj(zE), Yj(zf}):

see e.g. [5,24,26]. This will supply information on the particle-
and bound state content of lattice Yang-Mills theory.

(C) Improve the analysis in (A) and (B) in such a way that the
results are uniform in the lattice spacing g,(f=¢ Z\’) .

(D) For £=E.Zf) (and v =2 ,3,(4?)), exhibit lattice gauge theories
(other than free electromagnetism) with the property that the limits

as € Yy o, of the Schwinger functionals Sn(Yl (X¥q).. ..,Yn(zn)].
n=1,2,..., exist and satisfy (¥YM1)-(YM6) if the measures
{dy = due}e>0

are correctly renormalized and the Wilson loops, Y-{XE], are
correctly normal ordered. See [1,3,4] and [20] for results or
progress in this direction.

Remark concerning matter fields.

For pedagogical reasons we shall only consider bosonic matter
in these notes; but see [1,22,18,19] . Given a gauge group G, a
lattice matter field ¢ is a random field on the lattice £ with
values in a Hilbert space V (usually finite dimensional) that
carries a unitary representation u®, of G (as an endomorphism
group) . Thus

® : XEL b—= d(x) € V.
Gauge transformations of ¢ are of course defined by
h h 0] * '
$ —> ¢, ¢ (x) = U (h(x)) d(x), (1I1.4)

where h takes values in G. The random variables



= Je08=

® " ® ; -
Y (ny} = (o(x),U (ny) ¢(y), with g =1 :) Iuv!

(IL.5)

) o BR a connected, oriented curve starting at y and ending at x,
are gauge-invariant. (These notions correspond to what is developed
at the end of Section I.1 and in Section I.2).

II.1 Some of the hasics about lattice gauge theories

General results may be found in [1,2,21,22,23,25] . The
general ansatz for the measures du = dug 1is the lattice version
of the Euclidean Gell'Mann-Low formula (I.49) (including a matter
field o) :

"le" BUs{q);g)

du8 (¢,g) = Z€ Dg D¢E, (TI1.6)
where

7 = EFBUE (Q‘:Q}Dg Dd , Dg = m dg ,

€ € = Xy
xy€B

with BE - BE ZV and dg Haar measure on G,

pe_ = n d o€(¢x),

x€e ZV
with dpE a G-invariant probability measure on V, and
YM M S
u, (¢,9) = U e (g) + U, (¢,g) (I1.7)

a lattice action.

Wilson [21] was the first to propose lattice gauge theories
and explicit expressions for (II.6) and (II.7). 1In the introduction
to Section II we have proposed to view the lattice gauge field
Ixy s arising from a "nice" continuum gauge field (connection)

A, via gx

- L
= P [exp J Aj(z}dz T (11.8)

b(x,y)

y :gb[x,y)
see (I.30), Section I.2.

This is particularly useful if the continuum gauge field A
is known to exist as a random field with the desired properties,
as is the case for free electromagnetism (G = U(1) ). In this
case we may e.q. choose A to be a Gaussian random field wilth mecan
O,~ Aj (x)> ¢ = 0O, and covariancc

t
< Ai(x) Aj(y) >t = Dij (x-vy), (1I1.9)
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where Dij{x), t 20, is the Fourier transsggm of
P.P. . 2
5. = "p2 4 ) Pad el P, (I1.10)
ij Jj=1

Here t zo labels an ultraviolet cutoff, and p =0 is a bare mass

introducing an infrared cutoff. As long as t > o, Ixy given

by (II.8) is well defined for A as in (II1.9),(II.10), in arbitrary

dimenion v . For p >o, the resulting lattice U(l) theory is not

gauge-invariant, but when p=o, gauge invariance is restored even

for t>o0; see [1,3] . These observations are useful in the construct-

ion of the two-dimensional abelian Higgs model in the continuum

limit [1,3,4 ] which we sketch in Section III. For G non-abelian

and v >2, no such construction of a lattice approximation is known.

Instead one recurs to (II.6) and (II.7) with

YM M
U and U
€ €
conventionally given by

YM V-4
u =_Z (s ' :F 1]:.11
. . X (9501 9, J g ( )

where x is a_faithful, unitary character of G, (e.g. the character
of the fundamental representation if G is a unitary matrix group),
and p denotes the unit squares (plaquettes, with boundary p =

four links) in e ZY;

2
M V-2
u = (1/28) L € |‘ ¢ (x) - Uql (g__ ) ¢ (y) |l 5 (IT.12)
€ Xy |
y:-:EBE
and
e v me 2 o

do_ (9) 29" exp |-€"(( ) lell” -] e :E)J as, (II.13)
where g 1S denotes a Wick order, and d¢ is the Lebesgue measure
on V.

In order to start with a well defined expression, one first
restricts the summation on the r.s. of (II.11) to plaquettes p
contained in some bounded set AceZV and the one on the r.s.
of (II.12) to links xy ¢ A . By (II.6) this yields a cutoff measure
dug A(®,g9). If A belongs to a sequence of hypercubes and periodic
boufdary conditions are imposed at JA then a weak limit,

Ay (P,q), (the thermodynamik limit), of the mcasurcs dpe fdrq)
as A t ¢ ZV , can be constructed by a standard compactnes
argument. The lattice Schwinger functions
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(g) $ 1
Saom (Yi(xell, e X))
) et |
n R
= | du_ , (0,9 T yithe,) oYy, ) (IT.14)
. 3=1 I k=1 Kk k

obey properties (YM1), (¥YM2,), (YM3), (YM4) and (YM6) (modified in
the obvious manner to account for the

Y¢ (Yz )-variables) .

k'Y

Clustering (YM5) may fail in general, but is known to hold e.g.
for small B[22] . Thus, lattice gauge fields exist, for arbitrary
G and arbitrary space-time dimension v.

Among numerous, very general results we mention the following
two which turn out to be important.

(1) Universality of diamagnetism [1,2] :
Define
-pu M(e,q)
Z = ; ! I1.15
e, (9) e €, D¢E ( )

Let A be a rectangle and impose periodic b.c. at 9A. Then

| z @] sz ,m), (1I.16)

e, N\
(g = 1 means gxy = identity in G, for all xy).

Inequality (II.16) holds no matter what gauge group G is
chosen and even if Fermionic matter (leptons or quarks) is coupled
to the gauge field. It expresses the fact that matter behaves dia-
magnetically under coupling to gauge fields. Inequality (II.16)
does generally not survive ultraviolet renormalizations necessary
for taking € '%wo , unless the vacuum polarization is finite (i.e.

v £ 3). (There are related inequalities for pure Yang-Mills
theories mentioned in [5] which appear to be renormalization-
independent) .

Next, suppose that G is abelian. Without loss of generality
we may assume that G =Z ,n=2,3,4..., or G = U(1). Then we may
introduce polar coordinates

ia
= X
gxy e ) axy € F?

i0
d(x) = r e x 05 6, < 2m.
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) 3
I da__,
Xy

Let BL cos(éL a
adm (a) = lim Z 1 e pcA XYCBP Xy

ATEZP e,

with da the Lebesgue measure on [0'2%{' or let

dm 8(a) = dme,t,u(a) be the restriction of the

I
Gaussian measure introduced in (II.9), (II.10) (II.17)

to the variables a = J A, (z) dzj.
Xy 3]

b(x,y)

(2) Correlation Inequalities [1,2,27,6]

Let G = Zn or U(1), dmg as in (II.17), and < - >
the expectation given by the probability measure

M
1 -BUE;h{¢'a)

: =(2' : ) IT1.18
du F-_"‘r.."(dl,,al} ( e,f\) e drne (a) Dde S )
with Ac EZU. Let F and G be in the multiplicative cone generated
by r(f), f(x) = o, cos (a(g) + 0O(h)).

Then

<FG> =-<F><XG> 2 o (IT.19)
For applications, see e.g. [2,4] .

Next, we consider a general lattice theory described by
a measure as in (II.6) with action as in (I1.7), (II.11) and
(IT.12). Suppose that the representation U% of G on V is trivial
on the center Fg of the gauge group. Let < - >gdenote the
expectation determined by the measure dug given in (II.6).
Let < —>%G denote the expectation in the pure}G lattice gauge
theory with measure
BEE T oita
=1 p p
due (1) = 1lim (20 ) e DT, (I1.20)

MeZ’ €54

w:ere Txy € 3(; , for all xy, and drt is Haar measure onj G-
Then

< MEY (020 > TITT R | (8" L) : 1,21
J >£)J) G I(rj) }(; ( )
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Proof and applications are given in [6]. A special case of (1T1.21)
was first proven in [27] .

The arguments used in the proofs of such inequalities are
patterned on Ginibre's methods [28] .

II.2 On the phase diagram of some lattice gauge theories

Rigorous results on "high temperature"expansions (f small)
in lattice gauge theories are established in [22]. It is proven
there that if B is small enough and Xy. is non-trivial on the
center 3C of the gauge group G the "quark-antiquark potential" V.,
defined in (II.3) satisfies )

Vj (L) = const., L (11.22)
Moreover, the Higgs mechanism is for lattice theories analyzed in
that reference, too. In [5,23] there are general arguments sug-
gesting that V,(L) £ const,, uniformly in L if Yj is trivial
on the center.JA. Guth has announced that the four-dimensional
pure U(1) lattice theory (in the so called Villain form) has
a phase transition as [ 1is varied: For § small (IT.22) is valid,
for B large Vj(L) £ vconst.. The proof is based on a combination
of correlation inequalities (of the type proven in [1,2] ) and
a high temperature expansion. Similar results were previously
proven for the Z, thcories in threeand four dimensions and are
discussed in Guerra's contribution where the reader can also Find
references to the original articles of Guerra et al.

In [6] the author has applied inequality (II.21) to prove that
in all two-dimensional Yang-Mills theories Vj (L) : const. I, fur
all characters Yj which are non-trivial on the kernecl of the re-
presentation u? Used in the matter action (II.12).

This extends results of [2,30] . It is also shown in [6]
that for three-dimensiocnal U(n) theori.us’wj.th u?trivial on u(l1)

Vj(L) > const log (L + 1), (11.23)

if Xy is non-trivial on U(1),.
3
In [2,5] connections between lattice gauge theories on cZZV
and non-linear g-models on ¢ZV~! have been found. The following

models are investigated there:

(i) Classical, two-component, neutral Coulomb gases and
abelian o-models (1sinag ,Z - and classical XY mochee 1),
n
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(ii) Abelian lattice Higgs theories, in particular Landau-
Ginzburg type theories.

(iii) Non-linear lattice-o-models (e.g. the classical 0(4)
lattice model).

(iv) Pure, non-abelian lattice gauge theories.
The results are of the following kind:

(a) Rigorous connections between (ii) in v dimensions and
(1) in v-1 dimensions, and between (iv) in v dimensions and (iii)
in v-1 dimensions. E.qg., S1(Yj( )) of a v-dimensional gaugc theory
can generally be bounded above by (an integral of) a product
of two-point functions of a (v-1)-dimensional o-model. As cxamples
we mention:

If the two-dimensional Coulomb gas has a transition from a
high temperature plasma phase with Debye screening [31] to a low
temperature, dipolar phase with power low decay, as expected, then
the three-dimensional Landau-Ginzburg (abelian Higgs) lattice
theory has a transition frpm a superconducting phase without
confinement of fractional charges, massive photons and vortices,
at small electric charge, to a QED phase with massless photons and
confined fractional charges, at large electric charge. This is
shown in [2]. It is also shown there that Guth's result for U(1)
implies the existence of a superconductor — QED transition in a
four-dimensional Landau-Ginzburg lattice theory, with liberated
magnetic monopoles in the QED phase.

For further results on phase transitions in lattice gauge
theories see [5,27,32] and Guerra's contribution to these pro-
ceedings. Some other, general consequences of correlation inequalit-
ies in lattice gauge theories (confinement, Higgs mechanism,...)
are given in [2,4].

II.3 Connections to dual resonance models

Recently many connections between (lattice) Yang-Mills
theories and string (dual resonance) models have been proposed
[33,14,15,26,34] . It has been suggested that lattice Yang-Mills
theory is a theory of random surfaces [33,5,15,34] related to
the lattice theory of dual strings (e.g. [11,34] ). Such a
connection would be useful as a starting point for an investigation
of the particle spectrum of pure Yang-Mills theory.

In [5] an expansion of the n-loop Schwinger functionals

€
Sn( ) (Y (1) ). ¥y (¥n) ) of pure lattice Yang-Mills theories
in terms of random surfaces boundcd by the 1oops§f1,...,25n has been
derived when the gauge group G i< U(n) or O(n), n = 1,2,3,...,0r

su(2).
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For G = SU(2) this has provided rather powerful lower bounds on the
potential Vj{L)(Xy. = spin 1/2 character) and has revealed an
interesting conneclion with the theory of interacting random paths
and non-relativistic strings. A method for obtaining upper-bounds
on Vj(L} has also been suggested there.

ITI. REMARKS ON THE CONTINUUM LIMIT OF THE ABELIAN
HIGGS MODEL IN 'TWO SPACE-TIME DIMENSIONS

The only continuum gauge theories satisfying properties
(YM1) - (YM6) (except possibly (YM5) ) of Section I.3 are

- free electromagnetism in arbitrary dimension
- massive spinor QED [18,19] in two space-

- the abelian Higgs model [1,3,4]J time dimensions.

The situation concerning two- and three-dimensional, super-
renormalizable (abelian and non-abelian) gauge theories looks
fairly promising; see the contributions of Balaban and Magnen-
Sénéor to [20] .

This situation is thus not overly encouraging. We prescent
a few remarks on Higgs models. For some general information about
constructive quantum field theory see [CQFT].

III.1 External (c-number) Yang-Mills fields
In [3] weak convergence of the measures

M
=1 -BU ﬂ(¢:g)
(2, p(@) e Db, , as €No, (I1.24)

has been shown forv = 2 and
f .
gxY = P {exp J A (z) az? }.,
b(x,y)

with A(z) HOlder continuous in z, and

G = U(1), SU(2), etc.

The proof of convergence (for various boundary conditions) is
rather complicated. In principle, it can be extended to v =3,

but this has only been done if the self-interaction of ¢ vanishes,
i.e. ) =0 in (II.13).

(€)

The following elements are crucial in the proof: Leti\A

be the finite difference covaria:t Laplaccan on £, (A) @v
with periodic or O-Dirichlet bour.lary conditions at 9A.



(e) (e)

A

2,-1 2 -1
(a) ||(-a o) ey ||, & AT et (xy)
where ﬁ{ajis the usual finite difference Laplacean on R_(A) with
the same b.c.. A proof of this "diamagnetic inequality" can be

found in [1]and refs. given there.

(b) Convergence of

(- e w7

in various trace ideals, and Lp convergence of

(E"}+ mz)_l(x,y) for p<

i A v=2

The proof involves showing real analyticity in A and using a
Neumann series expansion in A for "small" A; see [ 3] .
(c) =1

get ( (-8 e )7l a® n?y ) 5 g

A

this is a special case of the diamagnetic inequality (II.16) due
originally to R. Schrader and R. Seiler.

(d)
det ( (-, * m2) ! a+ w?) )

3 - £
= lim det ( (~A( )+ m2) 1(A( )+ mz) )

eNoO e

exists for H6lder-continuous A, V=2; see [3].

These elements somewhat cleverly combined with the diamagnetic
inequality (II.16), the original Nelson-Glimm method (proving
stability of P(¢}2 theories, sce [CQFTI and refs.given therc)
and numerous,lengthy estimates yield a proof of (1I.24).

For )

v 2, G=1U(), dm_(A) =dm (n)

€,t,H

the Gaussian measure defined in (II.9), (II.10),one derives from
(I1.24) that the weak limit of the measures

]
d HS;J"'-;t:u L

exists, as € V0, for t> o, Z20. This follows from the diamagnetic
inequality (II.16) and (II.24) by Lebesgue dominated convergence.
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III.2 Removal of cutoffs

In order to show that the weak limit of the measures

, as t Yo,

=W - 1lim d
pe,ﬁ,t;u

€ YO
exists one must do an ultraviolet expansion [4], involving a

truncated (high-momentum) perturbation expansion which exhibits
cancellations of divergent Feynman diagrams with counterterms.

d
uhrtr H

The ultraviolet expansion is applied to unnormalized expect-
ations

Z <F >
At p ﬂ:tau '

where < -— >Nty is the expectation obtained from duh't'“'
and Zh,t,u is the natural continuum partition function.

In the following Aand y are suppressed temporarily. The
initial form of the expansion is roughly

N
z, <F» = L (z <F> -2 <F2 ), (II1.25)

t
N N n=1 n tn tn—l n-1

with tO > o some suitable constant.
The differences,

Z <F > - 7 < F >
t t t ER
n n n-1 n-1

are then interpolated in a somewhat sophisticated way that depends
on n and involves "changes of A-covariance" and "integrations by
part on function space" with subsequent cancellations of divergent
diagrams; see [3,4] .

One obtains an upper bound on

Z <F~> - 2
¢ N Zt <F >
n n n-1 n-1

of the form:

n § c(log t )2
n £ n
c nm t, e (n!) (log tn)

e.qg.
This proves convergence of (II.z.), for tn = exp(—nY),0<Y<1.
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A technically subtle part in the proof of the upper bounds is the
estimation of large Feynman diagrams. (There one makes use, among

many other things, of (a) ). Convergence of the ultraviolet ex-
pansion suffices to show that

< F > = lim <F >
t Yo

exists, for A bounded and u2> o.

A t,u

Subsequently one uses fairly standard methods to establish
upper bounds on

<F >Aru

that are uniform in A and p . Thanks to the correlation inequalities
(I.19) one has monotonicity in Aand u , for a total set of random
variables, F. Thus, the limits A +E12 and 4 ¥+ o exist. The
existence of the O-bare-mass limit, u Yo, is yet another manifestat-
ion of the well established experience that constructive field
theory methods never create artificial infrared problems (which
might be regarded as one of its modest triumphs).

To date it is only known that the Schwinger functionals

¢ 1

smm ”1“’31)' saam ¥ (Yxlyl),...)

of the limiting expectation < —— > satisfy properties (YM1) - (YM4),
(¥M6) (without normal ordering of Y.'s,Y ¢15) so that they deter-
mine a relativistic quantum field tﬁeory (Theorem(I.55), Section
I.3), but detailed , physical information is lacking, (e.q.

Higgs mechanism ?).

IV. A LOOK INTO THE FUTURE OF THE SUBJECT

In the Euclidean approach to quantized Yang-Mills theory one
proposes to convert (the traces of) holonomy operators on a prin-
cipal bundle into random fields on a loop space over physical
space-time. Thus, one attempts, in fact, to construct stochastic
processes and random fields on spaces of geometrical objects, the
closed loops in physical space-time. This is an instance of
combining geometry and probability theory, i.e. a problem in
random geometry. Random geometry still appears to be an under-
developed branch of mathematics. (For other examples in random
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geometry see e.g. [10,11] and refs. given there).

A number of conceptual problems arises:E.g. is there a reason-
able notion of "distribution-valued connections", or, in other
words, is there a geometric interpretation of "normal-ordered"
holonomy operators, (see Section I.3), etc..

Gauge fields (i.e. the gauge orbits, [A] , of connections,
A, or the traces of holonomy operators) are intrinsically non-
linear fields (at least in the non-abelian case). Constructive
quantum field theory methods have so far not had much success
as a means of studying non-linear fields. One of the main reasons
might be that non-linear fields cannot be localized on classical
phase space, a technical device that has so far appeared to bhe
crucial for non-perturbative renormalization, [35] . In the
analysis of [1,3,4] outlined in Section III and in [8,9] the non-
linearily of gauge fields has been circumvented in a somewhat
unnatural way. Presumably, this is only possible if the gauge
group is abelian, and the gauge field couples to a conserved current.
Even then the price to be paid is a fairly clumsy and tedious analy-
sis.

We have tried to explain the underlying geometric reasons
why the lattice approximation is a natural gauge-invariant re-
gularization of continuum Yang-Mills theory (End of Section 1.2,
introduction to Section II). What remains to be seen is how one
can do hard analysis (non-perturbative renormalization) starting
from lattice theories. The popular magic word is: Renormalization
group ("block spin") transformations. This has first been ad-
vertized by Kadanoff and Wilson. A rigorous program of this sort
has been described by Balaban in [20]. The program can only be
regarded as really successful if one eventually achieves a non-
perturbation renormalization of a four-dimensional, non-super-
renormalizable, asymptotically free gauge theory.

Another approach, due to Jimbo, Miwa and Sato [17] is based
on analyzing the monodromy structure of the Schwinger functionals
of the loop variables, Y.(}S), and the dual ("disorder") variables.
The general monodromy properties of the Schwinger functionals
follow from "topological commutation relations". One then studies
monodromy preserving deformations and uses the Schwinger-Dyson
equations for the Schwinger functionals.

In some examples (e.g. the two-dim. Ising model), with lree

Schwinger-Dyson equations, Jimbo, Miwa and Sato have carrioed oul
their program, with impressive svccess. One might hope that thoere
exist "non-local" conscrved curienls in Yang-Mills theory viclding
relations between Schwinger fun-lionals which reinforce the

J-M-S program in a suitable way.
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But this is mere speculation.

In conclusion, the author wishes to thank D. Brydges and E.
Seiler for the joy of collaboration and H. Epstein and E. Seiler
for many most valuable discussions. He thanks the organizers
of the Kaiserslautern school for inviting him to give lectures.
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