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Abstract :

We study non=lingar O-models and Yang-Mills cheory. Yang-Mills cheory omn
the w-dimensional lattice X" can be obtained as an integral of a product over

all wvalues of one coordimate of non=-linear OJ-models on Ei”_l

in random external
gauge flelds. This exhibits two possible mechanisms for confinement of static
quarks one of which is that clustering of certain two-point functions of those
g=-medels implies confinement of static quarks In the corresponding Yang-Mills
theory. Clustering is proven for all one-dimensional o-models, for the U(n) x U(n)
g-models, n=1,2,3,..., in two dimensions, and for the S5U(2) x SU(2) a-models
for a large range of couplings g;}- 0{y) . Arguments pertinent to the construction
of the continuum limit are discussed. A representation of the expectation of

Wilson loops in terms of expectations of random surfaces bounded by the loops i=

derived when the gauge group Is 3U{2) |, Win) or On) , n=1,2,3,..., and

connectlons to the theory of dual strings are aketched.

#1 *
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§ 1. Connections between o-models and Yang-Mills theory : Description of the

basic {deas.

In this paper we propase to study v-dimensional (lattice) Yang-Mills
theory, in terms of (u-l)-dimensional (lattice) o-models In random external
gauge fields. Our main results are the ones described {n the abstract. We also
apply our scheme to the study of Z(2) lattice gauge theories In three and four
dimensions and relate them to a two-dimensional Ising model with random couplings
in one direction. Furthermore, we¢ study a weak coupling limit of Yang-Mills theory
relating this theory to linear o-models in an external gauge field, In one
dimension less. It appears to provide a lower bound on the confining potentlal -
i.e. an upper bound on expectations of Wilson loop observables - with a convergent
continuum limit. This bound (s rigorous In the abelian case. Im the non-abelian
case, it appears to be related to nalve perturbation theory and, therefore, [t
should describe the short distance behaviour of the theory correctly. We show that

confinement of static quarks, always assumed to transform non-trivially under the
center of the gauge group, in v-dimensional Yang-Mills theory is a consequence

of two possible mechanisms ;

(1) Clustering of certain two-point functions of the (v-1)-dimensional r-model i{n
external gauge field (see §§ 2-5). This leads to permanent confinement in all
two-dimensional and in threc-dimensional Uln) Yang-Mills theories and suggests
that, for arbitrary, non-abellan gauge Lie groups, the confining potential in

W = 3 dimensions is always linear, for arbitrary coupling. For the critical tem-
perature of two-dimensional, non-linear, non-abelian g-models {s expected to be

gero, with exponential clustering at positive temperature.

(2} A cancellation between "random phases", depending on the external paupe Tlelds
of the long range order in those two-point Tunctiontof the (y=-1)-dimensional =

models. We have arguments suppesting thot only this sccond mechanism can lead to



confinement in four-dimensional, continuum geuge theories,S5ee §§ 5.2 and 7. We pro-
pose to study aspects of y-dimensional continuum pauge theories by means of the GCaussian
weak coupling limit of the (y-1)'-dimensional 7-models mentioned before. That limic
suggests #.g. the correct kind of normal ordering of the Wilson loop observables
(traces of holonomy operators associated with closed loops) that might enable one

to construct the continuum limit of expectations of products of "normal ordered"

Wilson loops. This is discussed in §7, especially for w = 3 .

Throughout this paper we systematically adopt the Euclidean description of
quantum field theory. Thereby, Yang-Mills theory and non-linear op-models are
converted into classical statistical mechanics systems. The reconstruction of a
quantum field theory from the latter is accomplished by means of a Feynman-Kac
formula, resp. Osterwalder-Schrader reconstruction [1] . (In the case of lattice
theories, Osterwalder-Schrader reconstruction requires the existence of a positive
gemi-definite transfer matrix which follows from reflection positivity. This and
other foundational topics are discussed at length e.g. in L-E,],I‘ﬂ}. In the following,
"dimension" means the dimension of the Euclidean space-time (lattice). We only

consider compact gauge groups, denoted G .

Various analogies and connections bebween non-linear p-models and Yang-
Mills theory, have been emphasized in the literature. Apart from the well-known

ones between two-dimensional o-models, in particular the l:PH']

models of refs.
[5,IE:| , and Yang-Mills theory in four dimensions (e.g. conformal Invariance at

the classical level, field theories with constraints and non-trivial topological
properties, instantons, asymptotic freedom, etc.) we mention a rather deep analogy
that emerges, at the classical level, from formulating these theories Iin terms of
flelds with values in a Grassmannian. The corresponding o-models are the

Eﬂmillwmd«vrla of refs, [?,E]' , the Yang-Mills theories are the pure Uln)-theories.

This analogy is stressed in [?Jﬂ . It 15 inspired by the wvork on self-dual



Yang-Mills fields in [9.10.11] . It is potentially useful for further analysis
of classical Yang-Mills theory, e.g. the construction of comserved currents, but
does not appear to be promising at the quantum lavel [?] + Therefore we do not

use it in this paper.

Relevant for our purposes are the following very simple connections (pet
analogies) between wvw-dimensional Yang-Mills theory and (v-1)-dimensional, non-

linear og-=models :

1.1. Two-dimensional Yang-Mills theory and one-dimensicnal o-models
Two-dimensional, pure Yang-Mills theory with gauge group G 1is equivalent
to a product over all values of one coordinate, e.g. the imaginary time, of
indepandent, one-dimensional, non-linear p-models with fields taking values in G .
(To see this one {s adviged to consider a two-dimensional lattice Yang-Mills theory
and to choose the axial gauge, -l't.| = 0) . These one-dimensional g-models simply
describe Brownlan motlon on the group G . Therefore they can be solved explicitly,
evén in the continuum limit. (Their transfer matrix {s generated by a Casimir
operator). Thus, the calculation of expectations of products of Wilson loop obser-
vables in a two-dimensional, pure Yang-Mills theory is reduced to calculating
correlation functions for Brownian motion om G which, in twurn, can be reduced to

calculating Clebsch-Gordan coefficients. See EE.IIJ‘

In this paper we describe a related, albeit more complex, higher dimensional
generalization of the two-dimensional strategy, relating Yang-Mills theory to a
non=linear og-model. It exhibits a promising line of attack that might enable one
to "solve" the three-and four- dimensional Z{2)-theories and to construct the
continuum limit of the three-dimensional, pure U{n) theories in the n -+ =

limit. See §% 4,6, These theories ought to be the simplest omes.



1.2, Classical Yang-Mills theory and classical g-models

Let U be some irreducible, unitary represeéntation of a compact Lie group
G . Consider a (v-1)-dimensional, non-linear o-model with fields, gi(x) , taking
values in U(G) . The Euclidean action of the model is given by

w=1 2
=B I g)(x)| ") 1.1}
j=1

g A7

s Id""lu er(| g (x) (3

b

a
The action A’u 1

with b,t in U(G) , 1.e. the symmetry group {8 G X G . Coupling the field

is clearly invariant under the transformation gi(x) —bgix)t ,

glx) to an external gauge field means converting the global action of the symmety
group, G X G ; into & local one ; l.e. one must specify a G X G connection,
(A,B) , with .nj E G , Bj €EG,)=1,...,9-1, (§ rche representation U of the
Lie algebra of G , in order to be able to parallel transport gix) .

The coupling of the field gi(x) te the external gauge field (A,B) iz now

accomplished by the standard minimal substitution, i.e. one replaces a] by a
covariant derivative, Dj » defined by
* - -
+ A =B . 2
B D = 8 3 8+E Ag § (1.2)
The action is replaced by
‘.-"1 % a
8 hﬂ_liﬁ.ﬂ =8 T Id\" " tr{lg‘iiﬂnjgﬂilr ) (1.3

i=1
Mext, we want to study a weak coupling (low temperature) limit described by :

g=gle) = £ , B Hﬂ_ =0{e} , > 0. On the classical level, this limit is

1
obtained as follows : One chooses

glx) = &NE (1.4)
vhere X{x) is a EE function on R”™' with values in j . Then, to first order

in & ,
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In order for the action fe * "':4

to be Ol(c)

B, + .:Jajx + [aj,x][ + 'I:I'I:-EE:I

we must require that

ByG0) = A0+ € () + otedy | (1.5)
where J'I-j and 'I:J are I:: functions with values in § . We then have

g* D g =cla X +[a.X] -c| +oteh (1.6)

i ] 1 1 .

so that fe A7 (A,B) = 0(c) .
Hext, choose

Ax) = A x,t) €y (x) = e“ujtgnﬂ - A (x,))

fin,

- Ajig_t}

- a'u .tj{!ft]l + 0{g) , (1.7
vhere t is a parameter in Z_= len : n € Z| , and ILJIIE.:} is a L'."; function
an Ilu with values in § . We also change our notation @ K{x) = ﬂv{ﬁ,t} . Then

#* i _fin. 2
(g [}ngE,t} _!{Ij.ﬂu * 8, A.J * [A.j,.ﬂu]] (x,E) + 0(e™)
" rﬁ“{i.t: v oted) (1.8)

The action is then given by

w=1
Ble) A7 _(A(e),Bit)) = fe T
w=1 1=1

Mext, we assign to the external gauge fleld

equal to the

(Alt)) = of

A AN = fA

=

5
1=l wvw=1

fﬂ“'lr I:r”]"j:“'l'.;,t]izliﬂiez‘} (1.9)

=1

R an action

Ale) = MJ'I.'L'H on

(u=1)-dimensional Yang-Mills action,

Id""'l % LIIIF”IE.L‘”ET ;



The total action for fixed t {is then given by

. a ™ (1.10)
it#tfﬁ't} gle) n“_ltn{t:.umn + Efnu_Lll{tH :
and the total action by
ﬁtu:_{g} = 7 .ﬂ.mt_tg,:l (1.11)

tﬁe

If A‘Htﬁlﬂ and A (x,8£) , J=1,...,vu-1 ., are the restrictions of a {::;

]

connection wan,&uj over R

Lo ﬂ""'_l: EL‘ we have

A a1 A, (&)
Wb g0 4

= tm 5 fsle) A (ACD),ACe4e)) 4 cf A7 (AGeD]  (L.1D)
=0 :EEE

which by (1.9)=(1.11) 1is the standard, y-dimensional Yang-Mills actlon of 1 .

Lee x = l':lti,”,.:lt -

X ),x = ¢ € Z, and let x be the time coordinate.
w=l""y (o4 W

1

Moreover, return to Minkowski space, i.e. a hyperbolic metric. Then the Euler-
Lagrange (field) equations corresponding to the action p'r.nr. (¢) ., e >0, are

a systém of Infinitely many coupled p.d.e.'s, labelled by ¢t € ar . They describe

infinitely many, (y-1)-dimensional non-linear og-models coupled through (u-1)-

dimensional, external Yang-Mills fields.

This observation may be useful to comstruct weak solutions to the Cauchy
problem for y-dimensional, classical Yang-Mills, w = 3,4 , using a compactness

®
argument to construct an g = 0 limit, given the solutions for arbitrary =« > O +}

Quantum méchanically, equations (1.10) and (1.11) appear to tell us that
y-dimensional Yang-Mills theory is, for ¢ > 0 , a product of Infinitely many,
non-linear og-models coupled through external gauge flelds which are distributed

according to (y-1) diménsional Yang-Mills measures. This is substantiated In

L] . - i , I I 3
Y A less speculative application of our seheme says that time=independent instant
s lunl bong of Dowr=dim, Yang=Mills theory ar

Pales (We learnt this Crom M, . J"uti:,r;m}.

i
¢ othree=dim, PFroasad=Somee e P bl mesiiin-
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the remainder of this section ; see 1.3 below. Equation (1.9) suggests that, im
the limit & -+ 0 , the g-models approach linear theories (i.e.

lim e 'B(e) A7 | (A(t),A(t#)) is quadratic In X), corresponding to Gaussian
i:gc:inml integrals. Thls is obviously true classically and is the basie, {mplicit
assumption in the standard, perturbative treatment of the theory. In § 7 we prove

that it is true Guantum sechanically as long as the lattice spacing in the spatial

directions (L t-direction) is positive and independent of ¢ .

In low (v = 3) dimensions and for non-abelian gauge grouwp, G , the
limiting theory, as & = O , {s approached by a family of products of o-models
which are expected to have posicive mass gaps, [13] . This would imply permanent
confinement of static quarks by a linear potential in cthree-dimensional, non-

abelian continuum Yang-Mills theory. See Theorem 1.2, Section 1.3.

Somz aspects of the continuum limit are discussed in § 7 (normal-ordering

of Wilson loops, {mplicit renormalization).

1.3, y-dimensional Yang-Mills theory as a product of (y-1)-dimensional a-models

with random couplings

In this section we develop che theme of sections 1.1 and 1.2 in the context
of lacttice gauge theories and lattice n-models. The gauge group, G , 1s chosen

to be a compact group, not necessarily a Lie group. Let % be some irreducible

character of G , and U - or vt - the corresponding unitary representation of G,

We study models on & simple, cubic lattice . reEsp. Eu'l + In this section,

the lattice spacing is unity, but this is unimportant. The "Euclidean" action of

a pure Yang-Mills theory on Z"° 1s glven by

A = - 7 Re .I‘[H'-"F} ’ (1.13)

W
P

W

where p denotes a plaquette (unit square) of Z°, 3p 1s the loop formed by



the four sides of p , g, = nﬂgt? is the ordered product of elements Exer G,

xy—C
(xy alink in z") along a closed loop C zv |

In order to give (1.13) a rigorous meaning one must restrict the sum,
T , to extend only over those plaquettes that belong to somé bounded, connected
Eubutt A of Eﬂ;, In an unambiguous context, reference to the region A is
suppressed in our notation. The a prieri distribution of the random group elements,

K"!-’ , the gauge fields assigned to the links xy , is the Haar measure, dg“ '

on C . Civen a subset Xc Z', we define g(X) = igxy : xyc X| .

The finite volume (Euclidean vacuum) expectation of the lattice gauge

theosy described here is given by the mtasure

¥H
auga = 21 BN 5y (1.14)

where

Dy gla) = bDgip) = B{g(an)) 1 dg . (1.15)
xy= A ¥

and .Am{hfl is given by (1.13) , with L replaced by § . Moreover,

% P A
B(g(aA)) 4is an arbitrary, bounded function of g{3A) , L.e. of all those gauge
fields s“f with xy — ap . The significance of B 1is to specify boundary con-
ditions. Especially in y = 2 dimensions, the physics of the theory may depend
crucially on the cholce of B ; see e.g. [lﬁ.lﬁ] and § 2. We warn the reader
that, in contrast to what one does In classical statistical mechanics, it is
sometimes necessary to choose boundary conditions, B , which are non-positive ;
[construction of "g-vacua™). Then dun is & "signed” measure. The factor ZA
is so chosen that the integral of &unigfﬂjl is unity. In accordance with the

announced notaction we will write

™
dulg) » 271 BN (1.16)



= 1 -

1f reference to A and B(g(RA) {s superfluous. The limit in which /A tends to &Y,
in {1.14), is the thermodynamic limit. A thermodynamic limit of &JB{EEML (in the
senae of w*unnmr:rganu of subsequences), can always be constructed by a standard

compactness argumeént, at least whem B = O .

We now proceed to a heuristic description of the main {deas of our approach.
1 w=l w v
The coordinates of & lattice site x are denoted (x ,....x ,x') = (i,x7) ,

with &= 10}, ... 2" € %0 | Lee A= AN fx %" =¢] and let ni’ be the

projection of A_ onto fx : x* w0] & 2Vl . ghl’.t} denote the collection

W

of all gaupge fields in /A a&ssigned to links =y in A f.e, x = yv =t

c *
These gauge fields are called horizontal gauge fields localized at =t
v
let g, ® El’nf-'-'-’ " B4, e)(d,e41) * with (i,e)}(1i,e41) = A . The gauge fields g (t) arve

called vertical gauge flields localized {n the slice [l:1 r.+l]. The Yang-Mi1ls action can now be

rewricten as

™ h h Eg

A (N=-% | T Rex(g (r), )+ T , Re x(g (t)g g () e

v tEZ poh, W a0y, h DU, (§.0)(1,8)
(1.17)

The first term on the r.s. of (1.17) can be recognized to be a sum of Yang-Mills
actions, h:?ligh{tﬂ » depending only on horizontal gauge fields in the (u-1)
dimensional hyperplane at x" =t , Mext, we interpret the second term on the
r.s. of (1.17) . We note that the vertical gauge fields in different slices are,
a priori, independent from each other. Therefore, reference to t s superfluous,

and we abreviate giit} by By Moreowver, we set

= - fB -1
€y = Ey 0 = {8y iy e)?
(1.18)
h
h“ = hij{t'.‘n - E{Lt]“.t] .
-1
ty
4 4]

£~ D“‘" By

i hljj Fig. 1
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The second term on the r.s. of (1.17) can now be rewritten as

5 Ag_lfgh{t],ﬂhﬁt+1]] '
474

with

1) -1
Au_lih.tl - - T o Reylg . b

o
£+l

] (1.19)
1]Entnﬂ

2
ij Ej Llj] -

This expression is to be compared with the action of a (vw-1)-dimensional lattice

g-model with filelds taking values in G :

a .. =1
Au-l :; Re ylg, gjl . (1.20)

The global symmetry group of the action J'l.:I_ is the group G x G , acting on

1
the field g as follows :

GxG 3 (b,p): By — bgl il

3
({Clearly 'y;{'l."bgit_l'.' bgjt_l:l = H{B'-Ilﬂjj , by the cyclic invariance of ¥).

1 is flat. A non-

flat parallel transport is obtained by letting the symmetry group G X G act

The parallel transport used in definition (1.20) of ﬁg
locally, i.e. by converting it into a gauge group. Given a curve y(i,j)c Eu_]
of neighboring links joining a site { to a site j , the parallel transport of

£y € G, localized at 1 , to the site § along v(i,§) is defined by

o
By * oty B S,

with (1.21)

= [ 5
bvti.jltty{i.jll l“:hpu jfj huv{tuu}

Thus (1.19) is the action of the non-linear o-model in an external gauge field

obtained from (1.20) by minimal substitution ; (y(1,§) = i} in (1.21)).



o -

The partition function of those q-models is given by

a
zﬂih.t} = ngh,t] ‘-I. E'Eﬁu_l{hpt] Tr

dg .
0.0 g
iEﬂ:ﬂﬂt+1

i
2° = ()= e ¥l 1T dg

l 1€A°n° t

! t ol

Wa set

c%b,t) = (b,e) 427 (1.22)

We recall the following result of [4.lﬁ] .
Theorem 1.1.

For a class of boundary conditions, B , (including periodic and free)

specified in [4]

1) o0 < ¢%b,e) = Fn,n)=1 ;
(diemagnetic inequality)

2) ;u{mt] is gauge-invariant, 1.e.

Fb,e) = F", ™, with

h h b 1 m

hij = b ijhi 3 :ij = -itij-jl , where h and m are functions of

compact Support on 2! with values In G . O

We denote by < - }a Iih,t} the normalized expectation

r a
b, - e BA1(b,E) dg, (1.23)
i

Y™
of the g-model In the external gauge field (b,r) . We let {_:.ru denote
the wy-dimensional, pure Yang-Mills expectation defined by the measure dy
introduced in (1.14)-(1.16) . Furthermore, we let duu_lfgh{tll be given by

YM ™ .0 _ ,TH h
(1.14)=(1.16) , but with '*'-.r replaced by ﬁu_lihtl = Av_lig (e)) . For
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simplicity, we choose a boundary condition, B{g(3A)) , which factorizes into
1] 1]
functions only depending on gh{aﬂ.t} , TESp. g:il:'l v EE a'h'it A J'I.Hl'-l' . £ € X,
It can then be absorbed in the definition of ﬁuu_lfghit}} and of
o

< - lish(t}.gh{tﬂ.'!'! and is suppressed Inm our notation.
\.'_

It now follows from (1.17)-{1.20) chat

YH _ -l _m ik h
SE I [< -3 (g (),g"(e41))

(1.24)
MM e a M)
with [ = ,fn c'j{ghit}.gh{tq-lﬂ dJu_I{gh{:'ﬂ :
t
Under the conditions of Theorem 1.1,1) ,
0< = 1 {1.25)

Equation (1.24) is the basic ldentity exploited in this paper. We apply it to

discuss confinement of static quarks. For this purpose we define the Wilson

loocp observables which we regard as the basic observables of a Yang-Mills theory :

Let UV be an irreducible representation of € , and Hq lts character. Let
C be a clogsed corve of links in ZY . The Wilson loop observable (the trace of

the "holonomy operator" corresponding to C) iz defined by
vy = Mg = el . (1.26)

This defines a random field on the space of closed loops In Z", We now rewrite

it in terms of horizontal and wertlical pauge flelds.
Let WVi{t,C) be all those oriented, vertical links in C chat belong

to the slice [t,e+1] , and let H(t,C) =CN A . Then

q q q
wlc) = E E hm{tjfgfﬂft.ﬂ}}] vm{tj[gi?{t,ciil . (1.27)

et



T

where hitt:[glﬂft,ﬂii1 is a product of matrix elements of uq{E;?J , Xy = H(e,C),

and u:(:][g{?{t.ﬂ}}T is a product of matrix elements of U"(g:y} , xy € Ve, 0 ,

and E 1s that sum over products of matrix elements - {.e. that contraction
m
schemd - that ylelds the trace, tr(U%(g.)) . From (1.24) and (1.27) we derive

n n
q M =1 q
-::;rtlu {E]]}u - T !nijnl 1-...| {”{E{t-t{t.!:jiﬂ
= E].'“Ei'l. [ o L ]

n o
< v latvee, DT> (ME),e" ()

=1 "y

- MM, 8" (en)) & (870 (1.28)

The n = 1 expectation provides information about confinement of static quarks,
the n = 2 expectation about the low-lying excitations of the theory. In a quark
confining phase and for a representation U? that is non-trivial on the center,

z , of the gauge group G one would expect e.g. that

n
l<n wlie > = olexp[-AlC,,...,cOD , (1.29)
=1 i ") 1 fi

wvhere l{Cl.....E“J is the rotal area of the smallest two-dimensional surface
bounded by the loops ﬂl*+-,.ﬂh » We gssert that such an estimate can, In principle,
be obtained from (1.28) and a detailed analysis of the cluster properties of the
k-point functions of the (y-l)-dimensional, non-linear n-model in an arbitrary

external gauge field. For this purpose, we note that
Ind . [ali{e,c. 1] = 1 (1.30)
njft? j .

for all = (t) and all t , since I::IlI (t) is & product of matrix elements of
] €, [+ .+1c |
unitary matrices. Moreover, B extends over d s terms, where
| PR

P | .
[Ef is the nusber of links contained in C |, and dq I the dimension of the

representation vt



L

We now assume that the number of vertical links in C s = a;lﬂji i

for some o >0 and all § = 1,...n. Then, by (1.28),(1.30) and the above
arguments, an estimate 1ike (1.29) will follow from decay estimates for

<n vi h}[g{ﬁt.ﬂt‘lﬂ}u_l (b,t) (1.31}

i=1 L
These are ordinary N(t)-point functions of the (y-1)-dimensional, non-1linear

n

a-model in the external gauge field (b,t) , with N{g) = T cnrﬂ{ﬁ{t,qtll .

j=1 .
Hote that HN(t) is even, and (1.31) is invariant under gj—- Emgj . For jEE"'I 5 5

Inequality (1.29) will now generally follow from
) <t¥(g) > (b,t) = 0
] { .EJ_ H-}u'l pt L ¥
for all §,k,{ and all (b,t) ; and e.g.

b) the expectation < - bﬁ_lih.ti clusters exponentially, uniformly in b,t .

See also §§ - T, [

In order to clarify this discussion we now consider a speclal case :

We choose a single, rectangular loop € with vertices at (0,0)(§,0),(§.T7),(0,T).

Then,
q L
Wic) =T B n uiig,{e))
m,n "0"0 t=n ] "t“t+l
(1.32)
T-1 el
A n Eﬂ ':t}] "
17T =0 0 mn
where
j'l b
B = [n vig )
fi (1,00(4+1,0)
®o'o {mi) ]"'n“n
{1.33)

 REERL N i

e SR

1
h
. ”q'rﬂu .*rm-l,‘n”

& B
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¥ o= yertical
W

(§,00

From our basic {dentity (1.24) and (1.32),(1.33) it follows that

™ - f

q 1 h
l'-:.'iif (cy = ] ldu (g (e))
}.I £ ?ﬁt s | B

e W

C M Meante T (1.34)
"% "W™N

THI -n‘;llq{gﬂ}_l uiig,) > (g, g e,
u=) g ] B Mae] et

We now proceed to estimate the v.s. of (1.34) . As shown above, see (1.30),

In o T % | = 1. (In fact, if the horizontal pieces of C have
Moty nymy

the direction of a coordinate axis and for a suitable choice of boundary conditions,

oné can choose an axial gauge such that B =T = 1] }. Moreover, the number of

lliE'ET-l-l‘.l'

téerms im E 2= -

=, 0

o~

We now imagine taking the thermodynamic limic, At zY . Suppose that,

in that limic, there is a function 'lul"q!_‘;.'! diverging to 4= , a8 [l = wm
such that

| A
[<tg)t uqmjtﬂ‘p’ b.ei] < 4P (1.15)

w=1
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uniformly in (b,t) . Then, by (1.34), Theorem 1.1.1) and the above estimates,
T |
| <> < d:[“‘]. WU (1.36)

The Wilson criterion [167 then says that, in this theory, static quarks are

confined by a potential ?ﬁq{ji bounded below by 1-rqij'?r . Roughly

W,y . -3 q ™ (1.37)
VYD Lin - log <WUCZ> " .

where ET = C is the loop depicted in Fig. 2 . The correct definition of the
potentcial v between {infinitely heavy) static quarks may be found in [lﬁ] :

A slight extension of the above arguments gives

Theorem 1.2. Let 'i"qi'[J'.l be defined as in [14] (equs. (123(12') , or as in

{1.37)) . Assume that {1.35) holds uniformly in (b,t) and choose boundary

conditions for whiech (“(b,t) 2 0, for all (b,t) . Then

v 3y 2 vy . for all § . o

Inequality (1.35) is a cluster property of the “q-twu-puint function in the

{y-1)-dimensional, non-linear og-model in an arbitrary external gauge field.
In particular, if 'I.I'ql.',j}:au“r , as 'jl + = , for some m >0 , then (1.35)
expresses exponential clustering of that two-point function. By Theorem 1.2 this

implies confinement of static quarks by a linearly rising potential.

We have now completed the proof of our contention that pure Yang-Mills
theory in y-dimensions is equivalent to an integral of a product of (y-1)-
dimensional, non-linear g-models in external gauge fields, and we have related

clustering Iin those g-models to confinement in the Yang-Mills theory.

In the remainder of this paper we are primarly concerned with discussing
the cluster properties of (y-1)-dimensional, non-linear g-models in an arbitrary

external gauge field. Another mechanism for confilnement of static quarks (cancellation

of "random phases") Is discussed In & 5.2,
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1.4, Summary of contents of remaining sections

In %2 we discuss general conditions for the clustering of the two-point
function of a non-linear m-model in an external gauge field, i.e. we study the

estimate

a
=q vy
1< (gg) Uq{gtlm}u_l{b,t” s e : (1.38)

see (1.35) . A necessary condition for ﬂq{jl - @ , A8 |j| -+ = ., uniformly in

(b,t) , is
<u¥g,) > . (b)) = 0 (1.39)
8 oy (Dot : 1.39
for all m,n , all external gauge fields (b,t) .
The following result is established in § 2 .

Theorem 1.3. : Suppose that the character y used in the definition (1.19), (1.20)
of the action #3—1 is the character of a faithfu] representation of G .

Then equation (1.3%), for arbitrary (b,t) is equivalent to v being
a representation of G that i{s pon-trivial on the center Z of the group G. O

In Yang-Mi{lls theory, the interpretation of this result is that confining
representations should be non-trivial on Z . This is in accordance with a high
temperature (strong coupling) result of [E] and with general wisdom. We note

that in zero external gauge fleld, {.e. for (b,t) = (1, 0) ,

q il
< U E“ﬂm}u-z (a,n) = o , (1.40)
for every represantation Uq of G not containing the trivial one. (This is
seen by substituting g]gil for Ej , for all § ¥ £ , which leaves dgj s J 5L,

invariant).

For non-trivial (b,t) , (1.40) is in general false. Using (1.39) we

then recall standard implications of a high-temperature expansion for clustering,
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as expressed by (1.38) .

We conclude %2 with some comments on the structure of &-vacua in
general, two-dimensional lattice Higgs theories. We show that the #§-vacua of
these theories are labelled by the elements of the center Z  of the gauge group
G . (In three dimensions, in the Higgs phase, the characters of 7 generally
label topological charge-vortex- super-selection sectors of the theory ; see also

[18,14,19]) .

In §3 we present results specifically concerning the cluster properties
of two-dimensional, non-linear n-models. Our method is based on a slight genera-
lization of the Mc Bryan=Speénceér upper bound [Eﬂ'| {for the two-point function of

the rotator model) and correlation inequalities of the Ginibre type [EI.EE] .

Our conclusion is that three-dimensional Yang-Mills theories with gauge
group given by an arbitrary compact Lie group can be expected to have at least
logarithmic confinement of static quarks. This is proven for G = U{n) ,
n=1,2,3,..., recovering a result of [23] ; see also [19] . 1f G is a non-
abelian Lie group {e.g. G = SU{2)) we expect linear confinement of static quarks,
gince renormalization group arguments sugpeést that the two-point function of the
two-dimensional, non-linear og-model in zero external gauge field clusters expo-

nentially, for arbitrary § <= .

One might expect that turning on an external gauge field generally enhances
clustering of truncated correlations, so that, by (1.39),(1.38) ought to hold
with V() = 0{]§]) . Unfortunately, this is in general false. For this reason
a complete proof of permanent confinement of static quarks by a linear potential
in all three-dimensional, pure Yang-Mills theories with a non-abelian, (simple)
gauge Lie group will be more subtle than anticipated - Lf true at all. We also
glve an argument suggesting that four-dimensions]l lattice Yang-Mills theories -

even non-abelian ones - may generally have a phase transition, as B = 3_2 is
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varied,

In $§4 and 5.2 we derive an expansion of the expectation of a product
of Wilson loops In terms of expectations of two-dimensional random surfaces
bounded by the loops, for vy-dimensional pure Yang-Mills theories with G = Uln)
or O(n) , n=1,2,3,... or G = SU{2) . Our method is based on expanding UT-N-
point functions of (y-1)-dimensional o-models in an external gauge fleld in cerms of
random walks, [Zﬂ]. Our expansion relates confinement of static quarks by a
linear potential to an exponentially small, stactistical weight of random surfaces.
We then briefly comment on relations of Yang-Mills theory to doal strimgs : It can
be shown that Yang-Mills theory "converges" to a dual sctring, as B - 0 . Hence
the low-lying mass spectrum of strongly coupled Yang-Mills theory (B << 1) is
expected to resemble the dual string spectrum ; (approximate Regge trajectories).
We expect that the same is true in the large-n-limit of Ul(n) - or 0O(n) - theories
0

for B = Eu-ﬂn . 'ﬂn] suitably chosen and normalized so that 52 i R 4

arbitrary. (We hope to report more details elsewhere).

The end of §4 concerns an application of the Brascamp-Lieb inequalities

[IT,Jﬂ] to proving lower bounds on & for U(n)-and O(n)-theories.

critical

The result is g {n) 2 B, » for some Be independent of mn (which is

critical
somewhat disappointing).
In § 5.1 we specialize the scheme of §4 (expansion in random surfaces)
to the case of an 5U(2) Yang-Mills theory and use it to prove linear confinement
of static quarks for all B < const./u=2 . In § 5.2 we distill out of the scheme
of § 4 and 5.1 two basic mechanisms that might lead to permanent confinement of
static quarks in Yang-Mills theories ; (cluster properties of assoclated g-models,
resp, cancellation of random phases). The two mechanisms are discussed i{n some
detail, partly rigorously, partly heuristically. In certain respects, § 5.2 may

be the most interesting part of the whole paper. See in particular identity (5.14).
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In § & we propose a method for further analysis of the three - and
four - dimensional Z(2)kgauge theories, relating them to a two-dimensional

Ising model with random couplings in one direction.

In % 7, we consider (y-1)-dimensional, Gaussian (i.e. linear) o-models
in an external gauge field. They are used to describe a hypothetical phase of
y-dimensional Yang-Mills theory which is qualitatively correctly described by
perturbarion theory. Thus, they ought to provide a correct description of the short
distance properties of Yang-Mills theory. The main purposes of that analysis is to
gain somé Insight into how to construct Wilson loop observables in the continuum

limit and how to define a scheme for Implicit renormalization.
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both, him and H. Epstein, for encouragement, We are greatful to C. Mack for very

useful comments and "moral support". B, Durhuus would like to thank the IHES for

the kind hospitality extended to him, while this paper was written.



T

§ 2. Necessary condition for clustering of two-point functions in non-linear

g-mﬂdﬂli : A-yvacua in two-dimensional Yang-Mills theories

2.1. Proof of Theorem 1.3

In this section we argue that confining (or "quark") representations,

pd ; of the gauge group G are those representations for which
{u"cgﬂ ‘_} (b,t) = 0 |, (2.1)

for all &4,m,n and all external gauge fields (b.t) . Representations violating
{2.1) are called particle representations. Theorem 1.} says that, in the strong
coupling regime (8§ << 1) , these notions coincide with the ones in [E] where

a high temperature expansion for the wv-dimensional Yang-Mills theory is used te

distinguish between confining and particle representations ; see also [251 .

Condition (2.1) is necessary for the clustering of the uq-twb-pnint
function of the wy-dimensional, non-linear g-model In an arbitrary external gauge
field which, in twrn, iz a sufficient condition for confinement of static quarks
transforming according to u? s tin the sense of Wilson's criterion [IET or its’

improved version El#]} :

We recall that the action of a (v-1)-dimensional G % G non-linear -

model in an extérnal gauge field is given by

A7 bty = - & Rey(g]'b,, &, t;) . (2.2)
13€A 1474
g
and the equilibrium expectation, < - }u { B{b.t} , by the probability measure
: -gA% (b,t)
a " =1 v=1 2
digy ¢y (8) Z3(b,t) Blg,, jgﬁ dg, (2.3)

where B is & boundary condition only depending on st : JE€anl .

First we give a sufficient condition for (2.1). Let Eh be the minimal
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subgroup # |1} contained in or equal to the center Z of the group & with the

property that

oY Eq does not contain the trivial representation of Iq . (2.4)

We assume that the boundary condition B is invariant undl:r-zq y Loe.

Higan'.'l - B[{g-ﬂah] , (2.5)

where (g - 7) By T for all § , and T 13 some element of Zq .

j -
Theorem 2.1 : 1f one assumes (2.4) Iid (2.5) then

q o .
<vig,) S, g0 = 0,

for arbitrary (b,t) .

Proof : A basic role in the proof is played by the simple identity

ldg Flg) = l dg J dr Flg-1) ., (2.6)
z
q

where F £ Lliﬂ.dg} : (a consequence of the right invarlance of dg and Fubini's

theorem). By (2.3)

J
--.::uq{g*} ~ (b,e) = 23 (b, 07! }dg*' q{g*_ | nodg,
mn” y-1,8 mn | yay

Hﬂaﬂ
« 1 E"" E?’T B(E j
oA

= -1 I Uy .

zgth,ﬂ E dg, | ar Ui(g,-7)__

G 2, 3

. j nmdg, N EEMI':EI h":" ¥ IF]
jut | xy=A
xhldy

-1}

=1
Eﬂeg{g! byBy Tty sl

M e
2l
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a 29 i
3 (b,t)" 'l‘dglb dr U f;" ) [ dgj

jﬂ.

ﬂﬂaﬂ'ﬁlb
.

].r :;r B{ga f .
xyC

where '5:‘ - :El'..‘,:'l'-1 , for x# L, EJ.'. -8y - Here we have used (2.6) and the fact

that T commutes with all bﬁ? and Csp 2 Since "Ex = dg_, for all x , by

right invariance, BI'E'M‘.I' = HE&-‘L} , by the assumed Zq—lmr:rllm:c of B and

I{,-B{.*"Eh“

<vl(g) 37, pib,e) = Zg{b.t}'lldg{ 1|’ dr g, 1) T (g,5b,0) ,
o z"_ mn
L]
with

pRex(E ' F 1)
I{H_Lih,t.'l - I{E{,;b'ﬂ EJE& dIJ m e Bx PxyBy
] xy=h

Mext, u‘*(g{ﬂm - u‘i:&}“ x (1) , by the irreducibilicy of U3 . Thus

. -1
‘:”qtﬂ-tlm}u—i.ﬂw'ﬂ = Zg(b,1) l"ﬂ.z “q"-rﬁe.}.; I(g,ib,t) J’ ar y(r) .

7q
By eondition (2.4), ZI dr y 1) =0 . o
q
We now prove the converse of Theorem 2.1.
Let E"'g - “ﬂ-tjénuh y_l’.gl gy By ¢ E (2.7

Theorem 2.2. : Suppose that the character y wused in the definition of A’

a e
}v-l (b,t} of the expec-

is faithful and that, for some thermodynamic limit, < -

tations given by (2,.3) and arbitrary (b,t) ,

¥
<vlg) > | B,e) = 0, (2.8)
mn
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o
<Ay ke 4o, (2.9)

=1

for arbitrary bounded regions A, < Z . Then U does pot contain the trivial

representation of the center 7 of G . (If U 1s irreducible this is equivalent

o Y1z $ fn).

Remark : We note that (2.9) is trivially sarisfied i{f the boundary condition

E{gah] is non-negative and ¥ 0 , for all Ac E‘.u_l P

Proof : By (2.8)

mn W=

q o L] 1 -
L]; dhw ﬂtw < U {g‘b} - : {bb',tt") Fib,t) o ., (2.10)

for arbitrary, bounded F and arbitrary (b',t'). This equation is basic for
our proof.

We choose some bounded reglon .ﬁuc E""'_]' containing the site £ , and

L E CLI By taking a conditional expectation with respect to the field configu-

ration Inside A, , l.e. by applying the DLR equations [25] , we obtain
iV

5 -1
, BRey(g b g t o)
o 4 Vig) - M e = 'y xy Blg,

| ihltjv
' x€A, ™ xy=hg o

q 9 2
-:::U ta{r:m} =1 (h,t] - F

wvhere ¥ only depends on those bﬁ! and t ey for which xy is outside A, or

on EMD , and Z i a normalization fFactor. Since

o
IEI\U’ < tﬁp[ﬂux[ﬂ]}.ﬁﬂﬂ |rﬁ|il <m |,

(2.8) dimplies

=1 =1
SReylg b e )
S T[ ﬁak uqis.l']m 1 a E'::I: x}'B}‘ Yy M

Blg., ;b,e) =0 (2.11)
x€h, xy=hy 3y

Using the argument leading to (2.10) we see that we may integrate the £4.s. of
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{2.11) over all those gauge fields h!? with the property that x € Bl + ¥ € “1 ;
with M- AD \ Bhn , and obtain

q 5
If-l!-.hl'.l' = JIET;hu dbﬂj n d;l u {aﬁ} m e "ﬂgﬂﬂ;hﬂn

}rE-‘-l

By the lefc and right invariance of dh“ ,

-1 -1
ERex(g b EC) BRey(b_ )
_[dhih‘-!f e 3’! “B:" "y -‘[dhwc *¥ = const. St

-1 -1

BRex(g_'b it
0= I, 4) = -:ihit'.lj Ndg Viig) - 1 e  Pxrfyay’
mn

IEAI xy:ﬂl

i
with [¢(b.t)| = |<G, > . (b,t)| which is strictly positive, by hypothesis (2.9
i

ﬁn
Thus
; SR byt Gy
e, Ab,t) =| 0 odg ulg) - e * Yao, (2.2
IEJ'LI =n nyc.—_ﬂl
for arbitrary (b,t) . The end of the proof is based on
Lemma 2.3. : If Esit,hl;h,t} = 0, for arbitrary (b,t) and some § >0 then

EE1{L,hl;b,E] =0, for all B' 2 0 and arbitrary (b,t) .

Proof of Lemma 2.3, : We claim that, for g > 0 and an arbicrary & > 0 , there

exists a function Fﬁ E Llﬂﬂ,dg] such that

[ "'l
|!|-IEI Rex(g) —Jdb oEReX(gd ) Fﬁ.{bj”l < 5 , (2.13)

for arbitrary B' =2 0 . When E" = 0 this is clear : & = 0 , Fﬁ = const, suffice,
Thus weé may suppose that §° > 0 . We consider the Peter-Weyl expansion

o0 Rex(g) :

e (B') ¥ (g) ; (2.14)
aca ° %
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here A 1is a list of the irreducible representactions of G . We may choose A

to be contained in Z . For arbitrary B' > 0 , the coefficients cu{a'} are
rapldly decreasing in fn] . Moreover, by using the power series expansion of the
exponential, it is easy to see that cu{ﬂ'} z0 forall o and g' 2 O , and

if 8>0 and B' >0 then
:u{s'} > 0 Af and only if ﬂltal =0

Choosing

Fﬁihl = uEh fqu{ﬁ }f:uiﬁli 1u{b? 2
Iulﬂuﬁfh

with :uﬁﬂ‘lftuiﬁ} = 0 in case :u{ﬂ'] = nutﬂl = 0 , wa obtain (2.13), provided

a, 1is sufficlently large. From (2.12) and (2.13) we conclude that

EI E [ '1 ]
E° (4.A, ib,E) 'JE (L A:b(b'Y “,e) T F.(b" ) db' + efll,A :b,t) ,
ﬁl h1 xych, & =y xy 1

where [e{L,A ;b, )| <wB|A | .
Since EEEL.hI:b{h‘J-Ifll =0 ,for all b,b" and t , the lemma follows by letting
5 0. (&)

Since EB.{L,ﬁl:h,t] =0 , for all g' =2 0 ,
-1 = e
: 8'Rey{g_ b £ :
FF (g, py3b,t8) . n dg I e Bx Cayly ‘“') L (4,430, t)m0
xy:nl xy:nl

for arbitrary (b,t) and B' z O (2.15)

We now choose

“1 = l£+nini * u]aj 3 a,1, nJ = 0,...,N , (2.16)

+né, ,

1

vhere e, and lj are two orthogonal unit laccice vectors. We set {;_l {J+¢i

£ = L + ne and choose

n j
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b 4 = 1

Yabns totan ’

b = [ = 1 , C2.17
ln{rn tnL;

b L = h. .,

*ﬁtn+l {nLn+1 2

where hn is an arbitrary element of ©C , n = 0,...,8-1. When g' tends to
4= the measure
=1 ' =1 - -1 -1
B'ReX(gy gy ) N-1 B'[ReX(g] g, )+ReX(gflgy: )+Rex(g) hygy b 1)
tz?ll‘!_l 4 HELH L “D B B|{"H-E*"'E'I. uﬂi{"ﬂ"Fl E‘!’n B.E"I'I'*'.I. n
‘n_-

- T dg, dg,. "
n=0 ""ﬂ !ﬂ'n

¥
vhere Eﬂ is the obvious normalization factor, is a probability measure concentrated

on the reglon I}HC -Gﬂ{ml} specified by

=l sy o -1 - -1 . - -1 -
x(s, 5L¢} “iﬁtaﬁti] “{Eai gtl} D “fﬁﬂﬁ gtﬂﬁ v(my (2.8

=1 -4
‘-"-{. :-t.“hng-!..nﬂhn] =y{n) , for all n=0,...,N, (2.19)

Since %(g) = %(L) implies g = 1 , by hypothesis on ¥y , we conclude that

EL-EL'E'-S{,i-:B‘Li-"'-ELE]-ELH "

and this and (2.19) vield
hnEL = glh“ , for all n=0,...,N . {2,20)

We conclude that, for By to belong to ﬂH ; for arbitrary hﬂ""‘hﬂ and N < =

it 15 necessary that
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hs{ = sLh ; for mll R E G ,
f.e. EL € £, Thus, as B' + += , No = , and for a suitable cholce of hl..n,hH ¥

' . q
P (L, hy3h,8) — Id-r vlen
7

]
with A, and (b,t) as specified im (2.16), (2.17) . Since P f{.ﬁlib.ti =0,

1

for all 8' , Al and (b,t)

q -
J dt Ut} o,
or, equivalently,

v 'l 7 does not contain the trivial representation of 7, O

Theorem 2.2 shows that if UV s trivial on the center Z of G then it is in

general impossible that
<ltgy) WEY > )20, as |zl =,
for arbitrary (b,t), because, for a suitable choice of (b,t)
q q
I<u Ennllj'} (b,e)] |<U (g }> (b,e)] = const. >0,

for all x =% , % large enough.

Thus, because of (1.35) and Theorem 1.2, particles transforming under
a representation of the gauge group that is trivial on the center cannot be
¥}
expected, to ba permanently confined. Motivated by this observation

wié henceéforth constrain our atténtion to the study of cluster propercties of
g vEH > (b, (z.21)
<U(g, gy Y “"}

when |:i <+ = , with " oa representation of the gauge group that does not comtaln

the trivial representation of the center.

) However, the "colowr®of such particles is screened by the"colour" of the gauge
field, See e.g. [257].
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The following result follows by standard high temperature expansions [2.34,15].

Theorem 2.4,

Let % be the character used in the definition of the action Az_lfh.tl ;
geg (2.2) . Assume that

| o EX(m)

1 < g < 1

for some small ¢ > 0 (depending on the Haar messure of the gauge group G and

estimated as in [.2]} . Then the two-point function (2.21) decays exponentially,

as x| » = . &
Bemarks :

1) By Theorems 1.2 and 2.2, Theorem 2.4 establishes linear confinement of static
quarks inm an irreducible representation vY of the gauge group G that is non=

trivial on the center € of G .

2' In § &4 we apply the Brascamp-Lieb method rl?+3U] to prove that for G = Uin)
or 0{n) , % the character of the fundamental representation of G , the two-
point function (2.21) clusters (possibly not exponentially) if g < Bp wvhere
En is a posltive constant independent of n . In comparison, Theorem 2.4
establishes exponential clustering of the two-point function of the Uln) - or

0{n) o-models for B < 0(1/mn) .

The last issve of § 2 i{s a brief discussion of @-vacua Iin two-dimensional
non-abelian Higgs theories with Higgs scalars in a representation that is trivial
on the center 7 of the gauge group. We show that such a theory has In general as
many physically distinet vacua (8-vacua) as there are elements in the center Z
and that quarks are in general only confined in the {:.nd.rd A= 0 wvacuum. This
is in analogy to what was previously found for sbelian theories [14] ; see also
[IE] . The maln purpose of our discussion {s to exhibit the drastic effect boundary

conditions may have. For pedagogical reasons we start with a short discussion of
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the pure Z(n) models. The action of these models is

ACALA)) = - E 3 cnuiﬂapﬂ' ; (2.21)

oA
where qap = a‘tj’+g?l+ E:u+au‘.ﬂ L Bp = {:!I‘-F-EU.UII » and

8 -Ezfr R 2 . (SR, 1 L

for all xy Cf .
The vacuum expectation is given by a (generally complex-valued) measure

dy , defined by

-BAGBIAY) di_ (2.22)

dufalp)) = 271 B(A{an)) e v

A %y

with 48 the normalized counting measure on |0,...,n-1} , (= Haar measure on Zin)).

As boundary condition, B , we choose

B(3(3A)) = B (3(3A)) = T ity (2.23)
xy=ah
k=0,...,0=1.
Since the gauge fleld is abelian,
ik
B (a(aA) = T e %ap (2.24)

pA

(This is the lattice version of Stokes' theorem).
The vacuum expectation defined by the measure (2.22) with B = H-,|lt is denoted
< = > (B,k) . In two dimensions and for B = hh the "plaquette angles” ﬂ&p

j
with distribution (2.22) are independent random variables. Therefore the existence

of the thermodynamic limit

< =->{g8,k} = lim < -> (g, k)
n:i;b A

is trivial and so are the facts that < - > (§,k) is invariant under the symmetries
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of Ez and satisfies reflection positivity, for all k : f.8. < = > (g. k) 1is

indeed a vacuum expectation.

We now show that, for k¢ k' , < - > (B,k) and < - > (g,k') are

physically different. (The standard vacuum corresponds to k = 0) .

Let a-1 L(k-L)3 27 Beos(Z2m)
T e ¢ =
m=0
tk.ﬁiaj n=1 ihE.In H:na{; 1) (2123
E = "
my=h
Let ﬂl,...,GH be closed loops and Al"“"ﬁH the subsets of Ez bounded by
Clpl-l-l..{-:H s
Suppose for simplicity, that
A, N ﬁj = @ , for 143 . {(2.26)
Let
-1q.H -
qu{':ﬂ = e 191%p
xy=C, =
Than
N g N A
<nwle)>6r- 1 (8] (2.27)
=1 J =1 9

This is easily generalized to the case where (2.26) 1is violated.

For k=0, | (g)| <1, for all 5§ and all g, = 1,..,n-1 .

‘0,4, 3

Thus, in the standard % = O vacuum, static quarks transforming under a
non-trivial, irreducible representation of Z(n)are permanently confined by a linear
potential, and inequality (1.29) holds. However, when jk-qfﬁ k., Irquiﬂll -1,
Therefore inma k ¥ 0 vacuum quarks of "n-ality"” q , with |k-q|{ k , repell each

other with a linear potential, na=mely equation (2.25) exhibits "anti-confinement"

(liberation} of static quarks of mn-ality g , in the most dramatic sense of these
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words, Put differently, the system in the vacuum state < - > (8,k}) , k¢ 0 , is
unstable against coupling to quarks of n-ality gq , with k-q « k : the state

€ - » (8,k) decays Into « - = (g,k-q) ; the 'tharges" at i{nfinity are screened.

We now argue that a two-dimensional Higgs theory with gauge group

G = S5U(n) , for example, and Higgs scalars in a representation that is trivial on
the center Z(n)of SU(n) also has n= |E‘.{n‘.lf physically different vacuum
expectations, < - > (8,k) , k=0,...,n-1 . These expectations are given by the

thermodynamic limit of the complex measures

-1 M -E-‘IEH{E{M]
dulglp)) = Zﬂ Bh{g{aﬁﬁi Z(glM)) e bgl{A) (2.28)
where
B (g(ap) = T ug_ ) . (2.29)
k xy=A A xy

and uh is a representation of S5U(n) of n-ality k , i.e. *(e!?) o 18
EiE

M
for € Z(n)Here, Z (g(A)) 15 a gauge-invariant (non-negative) functional

arising by integrating out the Higgs scalars with the property
Z(glM)) = Z{{g-T)(A)) (2.30)

for arbitrary 'r_"‘:"r €Z(n} xy = A ; (2.30) expresses the fact that the Higgs

scalars transform trivially under Z(n), [1#.13] -

For k = 0 , this theory permanently confines static quarks by a linear

potential [1?123].

If the a priori distribution of the Higgs scalars has zero weight at zero
field strength the Higgs theory defined in (2.28)-(2.30) converges to the pure
n) lattice gauge theory (2.22),(2.23), as the strength of the coupling of the
Higgs scalars to the gauge field tends to = , for all 8 <= and all A . (The

proof is standard ; convergence {s uniform {n /A when k = 0). In this limit all
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boundary conditions B, , B; + ++- of the same n-ality k are equivalent. That

2
is 1ikely to be true in general, in the thermodynamic limit A = Z , due to screening

Thus if the coupling of the Higgs scalars te the gauge field is sufficlently
strong, the vacuum expectations < - > (f,k) of the two-dimensional SUCn)} Higgs
theory are physically different for different values of k . and we expect the
same phenomena (anti-confinement and instablility of < - > (g,k) under coupling

to quarks of n-ality q with Fh-q[ <k ) as Iin the pure 13“ model .

We do not wish to go into details of these arguments, as they are hardly
very interesting. (For the modified models of [li] and the abelian models [&J&ﬂ
most assertions can be made precise using duality transformations, Hotice that
there {8 no need for integrating out the Higgs scalars which we did only to

gconomise on notations. We also recall cthac, for En%

=, < - (8,k) may be
doubly degenerate, for suitable coupling constants, and charged super selection

secLOrs may appear [3ﬁ1},

It is clear how to extend our analysis to arbltrary gauge groups with
non-trivial center. In general, one will find as many physically distinct vacua

as there are elements in the center, but only the standard vacuum

< = > (8,0 will permanently confine arbitrary, static quarks transforming non-
trivially under the center. The measures with expectation < - > (g,k) , k¥ O ,
are complex-valued, and they differ from the standard k = 0 measure only by a
boundary condition. The explicit, physical {nterpretation of those boundary
conditions in terms of static (colour) charges at spatial T = is as in [36].
[lu three dimensions, the (rreduclble characters of the center of G pgenecally

label vortex sectors, In four dimensions monopole sectors ; see [13.19]. The mass

gaps on these sectors are glven by analogues of surface tensions, as In the case of

the soliton sectors of two-dimensional field theories with degenerate vacua |.
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§ 3. Cluster properties of non-linear g-models

Llet G be a compact Lie group, and let the action of the nonlinear
G x G-g-model in an external G x G-field @& ,t) and enclosed in the region
,ncE“ be given by
Allgib,t) = = T Re }:fgzlh
o )

where 7y is a falthful character on G . The expectation Iin this model at inverse

-1
iy B4tey? o

temperature 5 will be denoted by < - .‘.';' (g,b,e) (= pressing A in the notation)
Gow P

It has been proved in J:HT that {f ':.;q fa a character on G which 1s

non -trivial on the center A(G) , then

q q, -1 L q m Y 1T .
|<u Egﬂlij U8, Yy, g (Bib. 0| 5 <Uhirp) ”H{'i gy 080D, (3.1

where d is the dimension of the irreducible representation U corresponding to
x »and U1 = 0l(n) hi,i for TE Z(G) , and 1 =4{,§x dq. Combining thi=

i
result with (1.24), it follows that if the Z(G) X Z(G)-o-model in wvw-1 dimensions

clusters for some coupling constant § , then the wv-dimensional Yang-Mills theory

with gauge group G and coupling constant A/ d confines static gquarks.

Thus, we recover here a result of Mack's IE?T (o = 2) , and results

tn [23] (Theorems 1 and 2).

It {5 also remarked In [23] that (3.1) implies that the McBrysn-Spencer
bound [ECI] can be applied to Uin) x Uln)-7-models, or to any © ¥ G-p-models In
ao dimensions such that £(G) contains a copy of U{l) ; even Iin an external
G x G-gauge field. For groups whose center does not contain U(1) the situation

is more involwved. Howewer, we can prove the following

Theorem 3.1. : Suppose that G contains a U(1)} subgroup, and that the character

x? s non-trivial on this subgproup. For free or perilodic boundary conditlons, the

Anfinite volume two-point functions of the two-disensional model ,




a Jh =

1 9 .-1 "
<u (89, Ut8, Ye2e,2 0D, (3.2)

cluster for all &8 >0 and all b .

Proof : Let us choose representations Hq {of dimension :Iq.'l and U (of

dimension d) , corresponding teo ':(q

and Y vrespectively, such that they map the
elements of U(1) = G into diagonal matrices ; this can obviously be done, and

weé conclude that there exist integers Iq...”hg and ki"“'kd such that

; ih?ﬂ
i} Ehmnu = -5” e , 1 =1, = dq .
and
ik 8
Uy = By e 1 . EEE§Ed ,

for all 8 € [0,2n] , where h(8) , g€ [0,2n] , labels the elements of U(1) c G.

By using the right-invariance of the Haar seasure on G , Fubini's theorem

and the cyclicity of ¥ , we have that

<vlsp),, u“ta;lﬁj[:a:;w (8,b,1) =

g T RﬂI‘v’.Eilh

Tk
i 10,4 -1 1=
2(8,b,1) Ju 8) ulig, boi®

n dgi

*

1 h,)

5,
g E R#:l'.fhi By 'b“gj i

= 22(,b,1)7" J mdh, | n dg, Vg h) vdnlgly .o 1IEA
W o5 LEN i 1EA i ﬂnn“ x By i

- -1 -1 -1
z(g,b,1) j n nsiuJ m dh, Uq{gﬂ}lijﬂq{g“'ljiuq(hub: }”

, & e 1y 1€A

1 -1
8T IReuthp') ug’'b g)
. 1354 n=1 £t B PRy,

- - a8, 1x3(p -0 )
- Eufﬂ.bf” I'j m dg, liqug} Uq{g::r‘] m HEFl“ ) 0 x
N & 1€ ij 1) gen



A =

d -1k_(8, -8 )

8T % Ree ™ '3 U{giihijgj}
o TR s (3.3)

where ZSEE,I;,L] is & normalisation factor.

At this point we can adopt the method of [23] and apply the correlatlion
inequalities of [22] to conclude that
s
" B L TLcoslhi(p -EJ)]
& d8 no i
-1 =1 i q ij=An=l
| <vltgg),, via, )i e,y (BibD] = Eu“}EJ{EHE'-:M[I: (8,-8 Ne :
0

j o x
(3.4)
since futg}ijr =1 forall 1,j and all g€ C .
Wow since %3 1is non trivial on U{1) , there exists a Jg such that
k}u # 0, and it is clear that the Mc Bryan-Spencer argument can be applied.
It follows that for any £ > O there exists a C{(g) > 0 , such that in
the infinite volume limit
1 o -C{B} _
I-:.',"_l.lisn.'luﬂ Uig, }]ni}lﬁ.l {g,b,1}| = comst.|x| a (3.5)

To conclude the proof we show that (1.5) implies bounds of the same kind
on all the othertwo-point functions;{in fact some of them are zero).

First, in a finite region /A we have

Ue 3 gy > (§,b,1) =
<Vl V7 0

B ¥ Ru':ﬂ'g.i]h”gj?
- zgia.h.l'.l'l .[Uq{gﬂﬂuuqig;l}“t LA ,Eﬁ, d,
[ B T hxtg;‘b”gjr
- 220,007 thgﬁg‘}” g, o 1 |1, %3 (3.6)

d!.
= 5 <vlgy

T LT q -1
U ) (e.b, 1) tNgy ot .
m,n=1 im :E“ “?ﬂ-‘u' g g mj e L‘



- i

as a consequence of the right-invariance of the Haar measure and the cyclicityof
y- Next, using the orthonormalicty of the functions g— l:l% qul'g!_] .
l1€£m] = dq  in inﬂ.ﬂul , we get by Integrating (3.6) with respect to g

that

g 8% _a q
gy g : (g,b,1) =F T <U {g:- ur: ::- (8.0, 1)
< f0lgy T Gy % m=1 Elh (3.8)
&

=1 o
Thus "'-::“q{ ] Uq'[ 1 {(g,b,) {s independent of J . From this it

follows that (3.5) is fullfilled for all j"} s and all i's.

Finally using the left inwvariance of the Haar measure, and performing

the transformation g, — g2, . B~ B for 1 % 0 , we get thac

d
q q; -1 a i q, -1, ~0 =
<v (8), Ve, ) (B0 nEluq{gTIH{Uq{gﬂ}-JH (8,2 (BB.D (3.9

b T - _1 B -
where hij = hij for 140 and §j 40, and bl:lj 8 bnj {or h.'rﬂ bjﬂﬂ'
How since 1.I‘II is irreducible, we can find gl.....gd £ G such that the
d q
q 4 - inde-
vectors (U {gr]il....,ﬂq{gr'hidq.'l €EE", v 1"'”'11 , are linearly e

pendent. Since we know that the lefrhand side of (3.9) fullfills (3.5) when

vw=2 ., for all b , we can conclude that {Uq[gﬂlﬂﬂq[a;l!“}ﬁ (8,b,1) also
G. 2

r

obeys a bound of the form (3.5) for all m,§ and {1 . This together with (3.8)

ends the proof. g

Theorem 3.1 shows that in the G % G-g-model in an extermal gauge
fleld of the form (b,1) , where the group G and character 1t| have the
required properties, there is no long-range order in two dimensions. The same
is wellknown for the N-vector models. In dimensions larger than 2 we have the

following

Theorem 3.2, : In v = 3 dimensions the G x G-o-model with (b,t) = (1,1)

hag always a phase transition with the property that for B large enough
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B T
{ulnﬁlu ”[E"hji}&.vm'hl] z const. > 0

yniformly in =x , where U has chagacter ¥ , the same as used in the defl-

nltion of the action.

Proof : Representing Ulg) as a vector in a dz-dlnnnsiuntl vectorspace
{(aee § &) , the proof is essentially identical to the one given for the N-

vector models in [28] . o

The proof of Theorem 3.1 does not work for peneral external gauge
fields (b,t) 4if G {s non-abelian. One way of surmounting this difficulty

would be to prove that
[<xM(gor, 1>, (80,0 = <xMgge;> (8.0,
ha Gy
for all (b,c). This inequalicty is true If G {s abelian in virtue of the
inequality (3.2).

In § 7 we argue that this is hardly the case for nonabelian G
{e.g. G = 0(3)) , and we show that, in a Gaussian weak coupling limit of the

G ¥ G=g=model, clustering is definitely diminished for certaim cholces of

(b,t) . Thus, we have reasons to believe, that apart from abelian, also certain

non-abelian lattice Yang-Mills theories in four dimensions may have a phase
transition ap some H¢ < m , Whether quarks are still confined for g > B ie
then a matter of whether there are strong cancellations of certain "random

phases” of the long range order In two-point functions of three dimenslional

g-models. See § 5.2,



§ 4. Expansion of the expectation of Wilson loop observables in terms of random

surfaces for G = 0(n) or Uln) .

This section is organized as follows : First we wuse our basic idea, des-
eribed in § 1, to write the expectation of a product of Wilson loop observables
as the integral of a product of 2k-point functions of non-linear g-models. Then
we use an expansion of these 2k-point functions in terms of random horizontal
patha jolning the Zk points palrwise. Such am expansion can be found in [2#1 for
random Gaussian models, and, more generally, for models whose measure s glven by
an integral of exponentials of (not necessarily real) quadratic forms in the flelds,
in [29] . We use this for the Haar measures on O(n) and U(n). HNow it is clear
that when we form the product over all those 2k-point functions, each class of
such paths determines a surface bounded by the loops, since the paths join points
on the vertical sides of the loops pairwise. These surfaces get more complicated
as the number of loops gets larger, and also as the loops become more general than
rectangular ones. But in principle we can write down explicitly the weights of the

surfaces for the two groups O(n) and U(n) (see (&4.10)) .

Our representations resembles the representation of Green's functlons of
the dual string in terms of (expectations over) random surfaces. Indeed, when §H
is very small, the expectations of products of Wilson loops satisfy the Schwinger-
Dyson equations for the free dual string Euclidian Green's functions of the same
loops, up to terms of order B . This suggests that, in the strong coupling
regime (8 << 1), the low lylng mass spectrum of Yang-Mills theory resembles the
mass spectrum (without the tachyon) of a free dual string. (In particular, we
expect that it forms approximate Regge trajectories)., We believe that the same
conclusion ought to hold in the large n limit of Uln) - or O(n) theorles.

({Our ideas are vaguely related to recent proposals of Polvakov [3?11 .
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4.1. The expansion

Let us first consider G = O(n) , We will derive an expansion of the
two-point functions for the nonlinear o-models in an external G x G-gauge field

by the method used in [24] and [29].

We will use the identifications of the vector-space M{n) of n % m-
2

matrices over R with H or R & R given by

n o0
m{ﬂ} 5 E™ {-E‘:ﬁ}u'a-‘r‘_' tﬂlluﬂlzu--,Elnuﬂzl.---.gnly--.gm] E R
and
n
ﬂ‘@ngxaw-nm,xj@w,...*rl—-nt't‘.r € min) .
B a,ge1
It is then seen that for a,b € jin) the linear operator on M(n) given by
g— agh
corresponds to a ® ht on Enﬁ !F.“ , where ht is the transpose of b . In
particular a ﬂ-bt is orthogonal if a and b are.
Since furthermore,
I:r{gr'h'}l = T g b = Lgh™> for g,h € hin)
af ag
.8
.
where < +,- 3 is the natural inner product on R™ , we get for g = {EHIEhW
b= (b, ) g t" {c. .) o a‘.ﬂ an arbitrary bounded subset of
1} 13 LY 14=p
z‘"“i , that
T 'I'.:'f.gtb E tE ) - T <g,,b Er. £, >
&
l_"t_:hu 1 713 ") 1) IjE.I'L” 1" 1) 117}
= (g.Ay [1-:3 + 2y-1{g.8) (4.1)
i
where 4 1s the covarliant Laplacean on [min) defined by
-{.:-.h.tg‘.ii - T b”:mt 1y j} . B (gy = Il'“ gj} (4.2)

j:lj::.ﬁ LER K =)
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t 0
wvhere we have set “1_'I = bi_’t B tij i Ind:‘l BUppoOEE h” - 3 : By [ = R
{ +,+) 1is the inner product on 'IIiﬂ E" . Furthermore we can suppose sultable
LEn

boundary conditions imposed, e.g. periodic or free ; (see the discussion im § 1).

Next we note that the Haar measure on O(n) has the representation

n
d(g, )= N s0g%2) -8.) 0 dlg)
i lsgg<n Llas 0B o 1'vs

o-ila) (lgrg,) -8 ) n
| ltzrﬂ Ly 1ag "1™ ag aB 4y ) m o dlg,)
il

I sasgs af y,sml ¥A
__________uin;l.} [ -1 tl{lzgfai*l:] n
= (2m) e n ﬂl'.j,i] m digi‘rﬁ
: 1=a<p<n aB y, 5=l
~nln+l)
= (2m) e mood) nodg),
J 1sa<8<n afl y, 5=l :
-mln+l) ¢ 1
] -iﬁgi.llliglﬂlztrﬂi
= (2m) e d M dg (4.3)

whe e dHi = n d{i_ll la a measure on the set of matrices H[ - 18 X
1=q£8<n 4
- < <
over B with 1y ﬁ"i-l:l.ﬂju.ﬂ-l and lu.EI -'..'ﬂ.u:[ , 1 a8 €£n, and ng is the

2
Lebesgue measure on K" .

Using these remarks and the fact that the last term in (4.1) is a constant

20y-1)n |A°] 1f the g,'s are in 0(n) , we can write

<lgy) (&) > ()=
e Tk Wl
(n+l) 1
- a0 Rl B[Rl -24M]g)+iztr M
- {Zﬂih.tﬂ_l'({gﬂ:::ﬂ {g.ll;l_rﬁ (2n) ‘ e'z{"""“‘“c‘-lz[ o T agam

]I' ] nintl}; 0 1

A ] -1 o = | 38, 2MIn R er

= {f{h.t}}-lﬁz E—z{'ﬂ'-l}ﬂ’l‘l IE'I'I 2 -L Y o ) 2 2 'E i }‘R'.'!
Rﬂﬂ-ﬂﬂ"v’f

CHONRLRI IR

- ﬁ.ﬂlmtﬂ_lﬁrl [ [-% t+2[!-l]"'l (0,x) & dg dM (4.4)

a8, Ys



where we have set dg-'rrdg s M= B M dd = [ dM, and

1EA0 pep0 1 {Ep0 L
nins+l) nf, .0 B
— < |19 L -2iM]g)+1= tr M
Po.t) = 2V 10 2 5 3y %0 1)« |ef %, L

=1

Expanding {—ﬂb et 2iM) in a Beuymann series and using the definition of By ¢

{4.2) (see also [247) we have that

-1 H[u.'l
(-8 o+ 21M) 0 (0D = 7 (2(y-1)420M, =
"ﬂb.t al,yh “ i & I.-1 wti—l.'iuhii.}':z':'“"”ﬂmu.ﬁ!}
'J.ll|l
= (4.5)
where the sum is over all paths  : |1,... Nlw)| — hn for which w{0) = wy = 0

and wiN(g)) Emf =X 3 and w(i) and w(i{+l) are nearest neighbors for all

L=0,...,8w)-1 . Nly) 1s the length of the path @ . Furthermore let U o(-1)(0) =1

for all paths w .

Using now the represantatcion

_ n-1  -t2h-1s21M) | n-1 -y
f L =2 -1 M
:ztu-anmj) -T e Tar mgagy-nf™ | at-h':_—”fe te } (4.6)
0 (4]
we get from (4.5)
£
<3 _ (i) y ) by ST M
(- 21M - 3
By, c*21Myg 5 (0-) zm o :{, = wl'i-l'lw[i.'lI atgo- ‘4 }.l
i-‘} 'Tﬁ
(TP (4.7)

From this we get the desired expansion, namely

; 1 1 (b,
{-{“ﬂaﬂhﬂ \_ﬁ“,‘::: b

B
1

i viayam 0B LA, -2iM]g) = ex M

« 0,007 g7 5 (2010 “1'...: b, n

n
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i
‘Niw) -t, -1—
SN PR r dege te V7 ) ag dM . (4.8)

More generally the 2k-point function Is given by

2k g
mi ) {(b,t)
im] E‘i lﬂfi w=1
k(H{ 141)
=riNilw )+1 1
=1_ =k awl 1 E{g,[ﬂb taEiH.lg'.l'HEtrH
= Z(b,0) g b T (2(v-1)) e -
k-pairings -'.t:l oy ,mk
{mﬂﬁi-xis
et i
3
e ty 5k
nmyn v de; &« ~a YOr TS dg dM (4.9)
I mltl-lh,uau'n 1 8
0 LY b
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where r denotes the sum over all ways of writing the set (1,....2%}
k-pairings
as k unordered pairs (1l.j1],....{ik,jkl and W1r=?hmk for a given palcing
{mﬂjt-uiﬁ
e L

as above is the sum over all sets of paths i”l""'“hf in LD where the uth

path starts at %y ard ends at x4 for all s =1,...,k .
] B

Now we can insert (4.9) into (1.28) and we get

7 tntm:1+11

b ™o
< 1.:"1:-::_,";‘:;-5'r =71 T 7 2w-1) "
J=1 s LR k-pairings w

-1

1 v "
g (g (©).[a -24M(e) ¥ (e 1)
[n {i"t;“t:}.g":tun 1, "tJ.f 2 gM(e),gMee)
+E

C
-ty - wg (1)
@

de e dg¥(e)aMe)
E: ﬂt E &t
[l i!‘Til j!

e n U & "
g=ll i=0 wﬂ[i—l)wnfi}

k |3
1;'-;«:: M t) I:[ Hm;aral I

X h:j{:,[gtnct.=1111 ¢ g"(e),g"(e)) du (a"(e)) (4.10)
where Y denotes the sum over all ways of writing each set ii.-a-iikt|
E-pllrlngn

as kt unordered pairs til’jll*““{iht’jktj . and t - {kt! is the ser of

kt‘u whis T Iht is the number of vertical links of the loops El,,.,,ﬂm in the

slice [t,t+lI + Furthermore for given o L and given k-pairing

{l:.j;]....T{L: ,j: ) the sum } denotés the sum over all sets of paths
E E 1]

-—

w = L Ew:,.+,w;‘} where, “ﬁ , 5 = 1"'kt is a path in ht which starts at the

link i° and ends as the 1ink ]F . Finally nl .Ht and yt i ﬁt indicate
5 5 ! lt Jt j|:
H 3 -] 5
the matrix-elements of the matrices g . and g : which enter in the term

i 1



{?1 u: {t}[ng{t.E 37 in (1.28) for the given cholce of Myaeeeam .

We now assert that (4.10) gives a representation of {JE‘ Hq{ﬂji}w
as a sum over random surfaces bounded in the vertical directions by the verttcll
sides of the loops tl""'ﬂn . To see this let us first simplify to the single
rectangular loop described in the last part of 1.3 or more generally leops C
wvhich have at most two links in cach timeslice [:.:+1? . In this case there is
clearly only one E-pﬂiting and apart from the finlite sum : we get in (4.10) a
sum over sets of paths, one in each ﬂ: between the top .AE the bottom of the
loop, joining the two vertical links of C 1in the corresponding slice. But each
such set of paths can be supposed to determine a surface whose Intersections with

the nt‘n are the respective paths. Of course several procedures to exhibit the

one to one correspondence between sets of paths and surfaces are possible.

As to the case of more general sets of loops C,,....C we just remark
that the random surfaces here become more complicated and may join the vercical

iloks of different loops also.

Clearly, as seen from (4.10), the weight of each random surface looks
complicated in this lattice approximation to Yang-Mills theory. We have not yet
succeaded in obtaining good bounds on the expectation of Wilson loop observables
in the O(n) case by this method, but we can prove area-decay for the SU{2)-case
for a large range of coupling constants by using some special properties of SU(Z)

(aea § 5).

Finally we mention that for G = U{n) an analogous expansion can be
s
obtained by identifying U(n) with a subset of " or "m0 , and using a

representation of the Haar-measure on Uln) analogous to (&.3),

4.2, The Brascamp-Lieb bound

We wisn to add a short remark on the Brascamp-Liebh bound for the ericical

in non=-1inecar o-models.



Recall that im [3D] it is proven that the critical inverse temperature,
H:',“” , of the N-vector models (= O(N) non=-linear p-models on the lattice z ,

v = 3) obeys
B (N} = W/ . (&.11)

Their proof follows from a method due to Brascamp and Lieb [l?}  which boils down
to the following estimates :

H-1 , and define the real function V on F-H by

!‘-'l.'*#}l - 'S s
H-1

Let wE R, S €S

where &7 I8 the normalized, uniform measure on SHLI . Let H“f:,n'! denote the
2
nerm of the matrix with matrix elements 3 ;T—' (¥} . Then, by [1?] .
mi. i
=1
sup Hu'l.'ip} 2 comst, Ecﬂﬂ (4.12)

Q

It is shown in [30] that

o |

sup H,.,wal =
o

from wvhich (4.11) follows:{(the constant in (&.12) {5 also estimated in [l?h.

The Brascamp-Lieéb méthod can also be applied to general G ¥ G-g-models
{in external gauge fields), in particular to the O(n) x O0(n)- or U(n) x U(n)-
models. As the reader may easily check, a sufficient condition for

g < Et.._{EII:n] ¥ 0(n})) is the following :

2
Let ¥V be the function on " (identified with Mmi{n}) defined by

-
E‘Hlﬂ'} v ﬂ'l'r(g o) dx

ol(n)

where dg 15 the normalized Haoar measure on ((n) ;, and let H‘.I'hﬂ be the norm
aty
i

of the |:'|1 W nz—:ul:ri:u with matrix clements v
1

() . Then
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sup M, (@ = const. §_(0(n) x 0(n))™! (4.13)
s ]

i.e. for B < const., (sup H“{ﬁ]}-l', the Of(n) ¥ 0(n)-g-model (in an arbitrary external
@
gauge fileld) has a clustering twopoint function, and hence the corresponding Yang-

Mills theory in one disension more with gauge group O(n) confines static quarks.
Unfortunately, it turns out that the lefthand side of (4.13) does not
increase with n , so weé can only conclude that
ﬂ':{ﬂ{n]l % 0(n)) = const. , for all n,.

A similar argument applies for G = U(n) , Thus the Brascamp-Liab method seems tobe
insufficient to determine the large-n-asymptotics of g (G x G) , for C = O(n)

ar w(ny .



§ 5. The SU(2) theory

5.1 Expanslon in random surfaces

In this section we choose G= 5U{2) and ':qq = y , the character of the

fundamental representation of SU(Z) . Mote that ¥ {ie real.

We will make use of the homeomorphism ¢ : S — SU(2) (8° is the

l-sphere of radius 1) defined by

59187 -5 4is

ots®, 51,828y - . (5.1

8 +18° s9 157

Lo carry out a program analogous to that outlined in § &4 . In this case however

wé have the advantage that u_l carries the Haar measure on SU(2) to the unl

form measure on 53 , which considerably simplifies the calculatioms. This 1p due

to the fact that the vsval five constraints used to spacify a SU(2)-matrix from
mttEF have been replaced by one single conatraint, by a suitable paramecrizaclon
of SU{2) .
We ficst note that
ap -+ =] 3
58, = w@B)D 7 o, , ¥E D e,
Furthermore ':i;'fg;lp,E} is Inwvarlant under the tranaformation h—" |;--.!-r'l
and g, — hgzu‘l , h,k € 5U(2) , so we have
=1 =1 =1 £ 5
@ (hgk ) = O(h,k) @ "(g) . Vg€ su(2) (3.2)

where Ofh,k) 1% an orthogonal & X S-matrix.

Now let J‘Lﬂ be a rectangular reglon in E""'l , and let b -fh[_ y )

| 1]-:.'.[]
-1
] i h b L sSue? -
() pacgp A Byy kg CUBANAY, and ‘%J

fafine the covariant Laplacean e!n.h ¢ on {ﬂﬁllﬂ
L]

TR tli € 5U(2} for 1§ c A°
by

i_-';“:ﬂ = T t!i - O(b ,Lul !j] .3)

£ y:apc® t
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0
for X = (X) € (r%y 0]
LA

0 -
- su(2 4% S = (5 - (]
Then for g Igl}mhﬂ € sU(2) and ( 1]'“5&“ (o {EiniEﬂﬂ
we have by (5.2)

=1 0
T (g, b b s ,0(b, , 5 = -(§, 8 2{w-1 "
R e U ‘.i ij::ﬁu{‘i (byy.t )8, > = -(5,8, 8) + 20s-D)|17]

In thissection we choose perlodic boundary conditions. We note the representation
=+ .2
-1%, (|5 =1)
__I,T, RN
2

u{ﬁjqz—nﬁj &), u'ﬁj

of the uniform measure on 53

We can now proceed in complete analogy to § &, and expand the two-
o
point function ﬂiﬁg Ei:ﬁ,].Ehit] in terms of random paths. By using (4.7)

and defining

e

1
g
(b, t) -Jn:( ‘nn.t I o Hls | -8) dﬁ (5.4
th
and
1 8 $) unj{'-lﬂ-l o
B =11
EU{I:,I:,I:I}.'I-JEI( .t m Im S j{.{|'§j|2-g-|—l_jl nﬁj (5.5)
jene ) 3 (ny (@)-1) v
we get
<3 > o
Ls,p & 2 im-1 AR s
L] -_ - —
= 'Ea{h,t}-lﬂ-l E -[Ei 'ﬂ'b.l: n jdu. [Ej_ quT_ nj 1] & :'l.j IJ E V-1
- jen0) tnjtmr-m 2(v-1)
H!Iid:’
U:J{'!
Hiw)-1 &
’ (allu mhw{a.'lml'.aﬂ.'ltwia‘}wl’.sl-l}ll 45 o) :




_.
where d5 = ] ﬂﬂj s dy= | dy , and r}':w.'l is the number of times that
JEA0 jep0 4

w hits the site 1§ .

Theé matrix element that enters in (5.6) 1s bounded in modulus by 1

so from (5.6) we get the estimate

= na,dly)

4 o J
|< 52 5’ (o =87 g @y I Zden)
b w (b, t)
I.Ili'ﬂ'
W

Let now C be a rectangular loop inside the rectangular region /A — 7"

as described in the last part of § 1.3, and let us use the same notations. By

(5.1) the term U%( ]-1 vi(g ) appearing in (1.34) is just a sum of
mm,,, X aay

four terms of the form 1'5% Sg (0= r,a,8 = 3) . Hence by using (5.7) and

(1.34) , and remembering the remarks following (1.34), we find thar

I-"' Hq'[t'l..:-:”l

=1 T h g, h h
< [ 4\ m (g () (g (e), g (e410))
j E d"Lu—l |:

ol £ Je el T ) g t
m {a' £ (2(v-1)) Jehe Ef.t W8 ﬁun.m 1}
e o g (), g (e+1))
=0
L
.[-
e
T-1
-E I nJ{wt?
- ;'1 ﬁ'E-T i B [l'.ll'.u—'l}]l-u jE'ﬁt
a0 wi-1

T-1 So,..h h E
-Jn du,_y (") (TG0 g eny) n BHalha (e ) }
E

0 F (M), g e )

(5.7)
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T a=T Ej“jmqI
Z 4T p- [tzqu Es
& v

o

-1l
il TGN, g e ) duu_lﬁah{tJIJ]
J I

-7 alw")

T T =|A] [ €]
4 E E EREE i {2{”'—1}}
B B

o

1
=(8 A 5
. z1 ]11 {duu_ltshtt‘nfiz e gh(e), ghes1) e

t
nj{ult‘}-l
u =13 -k u -
. i du _.1f e 3 5(](s) Iz-3+;ii} d(st}J}J : (5.8)
end (n, @®)-1) i '

where Z denotes the partition function im (1.16).

It is now easily checked that the multilinear form

_{5 :--l:l 5 }
{ft 1}—- i 1;2 t Bhlfthshl‘i:ﬂ] t mn ft

= =
((8,.) )d(s.) (e e
le ]E.I"It +1 ty L [ du‘u-l

is reflection positive with respect to reflections in palrs of planes through

(or between) the sites of A= Z", so that we can apply chessboard estimates
(ck. [4].

This combined with a thermodynamic estimate shows that, for § {"'{""—'—3 ,:_1 '

the expectation of the Wilson loop observable has area decay.

Details of these calculations can be found in the appendix to § 5 .
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5.2, Basic mechanlsms for confinement

We end this section by distilling out of the scheme of §%4 and 5.1
the basic mechanisms that might lead to permaneént confinement of static gquarks.
The gauge group G L8 one of the groups SU(2) , UWin), O(n) , n=1,2.3,... ,
Ui1) and 0(1) = Z(2) included. Our discussion is based on equs. (4.8), resp. (5.4)-
(5.6) and (1.34) . For simplicity we choose G=5U(2){or U(1)) and U9 = U to be

the fundamental representatlon of SU(2) . Equs. (4.8), resp. (5.4)-(5.6) then glve

-1 g w1
gy, W) > 0= T vu| F(b,clwlotb, ele)  , (5.9

WY w mn , kd
mi-ﬂ
WE‘I
with
v = 20u-1) , Flb,ely) = Tib.tuw) . (5.10)
¥ ¥ (b, t)
|m’—l
and O(b,tfw) = HED ﬂ{bw[i]w[u+1}'ﬁhf!hﬂfu+ll} '
where
olg,h) = O(m* vt (5.11)

“I{g}[' is left multiplication by I.Tf,g.'l on Uﬁi . l!{h-l:ln is right muleiplicacion
by u{h'l] on ?ﬁi , where ?%EE:-UIG]] is the space of all matrices on the
voCEor Space ?u that carries the representation U of G . Here g and h are
elements in G, and U {is the representation of G with character % (which

for simplicity we have chosen to be the fundamental representation of G and G=35U(2)

or U(1). Our methods vork {n general, but when G=0{n) or U(n), n>2 , the factors F and O
on the r.s. of (5.9) are tensors which must be contracted. See (4.8)).

Clearly, G{h,t|m}l is a U(G) x U(G)-valued random phase.

1f we now insert (5.9) into (1.34) we obtain the following representation

b
of <Wi(C) :}-._.. . (For simplicity we choose C to be a rectangular loop in a
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coordinate plane containing the vertical féu -} axis with sides of length

L= le , reap. T) . Then

{w‘icm)zh - I

m,n
Pt

( z -:EI-TI {v'rgir-l

S:38=C u=0 \ ¥

F(b(u), t(u) [ ) 0(b(u), eCu) [u)

where

+ B T
-u-l-l'“‘ﬂ"uﬂ} "0 "% v

TH

::"' "

5 belongs to the class of all random surfaces bounded by the loop C

("38 = C") formed out of vertical plaquettes, and, given § , mﬁ is the path

of nearest neighbor vertical links obtained by intersecting 5 with the slice

(5.12)

5
fus % = utl] , (in other words, § = fm“ : 0w T-1)) , ﬂi is the trace of

8

We now Iintroduce an a priorl measure, P,

ded by C , by setting

5
-1 -[g’|-1
p (S]C) m T le, ,
W =l W

iyu = 2{w-1}) .

w, in the [x"= ul hyperplane, and Eﬁ the one in the [x” = utl| hyperplane.

, on the set of all random surfaces boun-

(5.13)

Let C“{S] be the horizontal loop in the qurn ul hyperplane obtained

by composing Eﬁ-l with m: a0 as to form a closed loop ; ;fl g CHhH I:“ - o ,

mﬁ mcnx=¥=1 .

following nice identity.

If we now combine (5.10)-(5.13) we readily arrive at the

™
<wlcp = 7 0, (8]0

¥ 5:a8=C =l

-1 _
<{ n ngh{u}.ghfu+11
1]

1, 3 Y™
lw,)x(ee, (s) ’}“‘%Tts:: >

(5.14)

[Hntice that

-1
T n e (uw) ﬂ n
id(wﬂi =4 U(r'y':',gf,l

and use (5.11),(5.12).1

Uth!,y.{u-lhl”:]“ = X(gg_(s))
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Equ . (5.14) is a rather powerful and suggestive identity which we
recomménd to the reader's atténtion.The preéevicus results of this section
(see also the estimates presented in the appendix) show thar in the average

(with respeet to b,t).

0< Flb,t | w) = g{s}'"[ , for Ge=SU(2) or U(1) , (5.15)

so that, by (5.9),

PO (.
J{u"tgﬂ:m U3 (g, ‘}b?u_lfb.tﬂ < Olexp[ |x| Lne(a)T) (5.16)

for some F(g) which is strictly less than 1 , provided pd is a quark repre-

sentation and §# 15 sufficiently small (8 < ﬂ{uhl}] + In this case it s enough

to bound r'ﬂg,ql S}}l by Y(N)= dim UV, for all uw=o0,...,T , because (5.13)-
(5.16) already yleld confinement of static quarks by a linear potential

(z=tn £(B) |x|) . However, we know from Theorem 3.2 that, for b= t= 1l , y 2 &
and § large enough, F(L,1|w) cannot satisfy (5.15) with e(g) <1 , since

(5.16) is false, namely
g
Cee(ulgy) - v N> | (1,0) — const. >0 (5.17)

as lIl <+ = , no matter whether 1 is a quark- or a particle representatiom.
We have reasons to expect that, for a class of external gauge fields (b,tr) of

positive measure,

T ?'r“‘"lr{h.:]m} — M{b,t) > 0 (5.18)
w

W
w, =0
mf*t
as |x| = . (See the discussion in § 7).

If we replace the traces of the random phases by y(Il) we obtain the

upper bound
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T=-1
S HICIS T < @Y cn  MBW, e
%
u = u""ﬂ' v

for T :,.-;_..[:tf_pm 3 Which doés not prove moré than perimeter decay, 1.e. does not
imply confinement. Therefore, for g large and v = & , the only mechanism that
might give rise to permanent conflnement of statlc quarks appears to be a cancella-

tion of the (traces over) random phases when taking thelr expectations.

Such cancellacions of random phases, L.e. sharp upper bounds on thelr
expectation value Iin the Yang-Mills measure, are rather subtle and ly beyond our

present methods.

We emphasize however that we can obtain improved upper bounds on
T

[-t.'_ Hi{C) }mf by taking Into account the facter TI -.,:{g,c {S}j in the expectation

W u=0 u
on the r.s. of the basic identity (5.14) : We first apply a chess board estimate
(in the x“-direction, with reflections in planes between lattice planes) to the
r.s. of (5.14) and then refined "thermodynamic" estimates to bound the expression
resulting from the chessboard estimate. The general L1deas of this method are as in
©%,24,297 ard § 5.1. The results that emerge are substantially better than the ones

of § 5.1.

We now susmarlze those results. Detalled statements and (the somewhat

lengthy) proofs will appear elsevhere.

By (5.14) ,
< WHe)s |
i1
T-1 T
h h =1 5 YM
£ T p(sc)| <« Flg (u),g (u+l) ). (g >". (5.19)
E:aS-E v ! u“-ﬂ E | “'I' I.Iz[ﬂ .“' EI.I{E] L1 I

From the chessboard estimate (in the x"-directlon, with reflections at x’= const.

hyperplanes between lattice planes) and slightly subtle upper bounds on
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2
F(g,{8') | w) , viewed as integral kernel of a quadratic form, it follows that

T-1 T
h h =tiv o Y™
<M Flg (u),g (usl) Yoo vl )=
Pl |5"uu_ﬂ'i o ey, |

T-1 e
N adfw) ;
- s ®, uﬂ.n u{cul:E]] . (5.20)
where
I'IJ{’.l]
alw) = 7 ; [tu-128] . (5.21)
Jezv” l'.njiu.r}ﬂ}'!
and
it ey L2
u(c') = Um [< 0 ylg.,ra ) X(B., ) > ; (5.22)
on 1< T X'Bcr2m)” X'Bco(2mi) u,H]

where C' = C'(0) is a closed loop in the lattice hyperplane at x’ =0 , and

C'(n) 1s the translate of C' 1in the x"-direction to the plane at x” = n :

< = }'!'HH {s the Yang-Mills expectation with periodic boundary conditions at
W
x'=0 , 2M2 ,

In order to get explicit estimates on u{c‘] one can apply the Z(2)
domination inequality of refs. [23.19]. For large B one then applies a duality
(Fourier) transformation to the resulting expectation in the ®Z(2) theory. This
reduces the problem to estimating an expectation in a high temperature Z(2) model
which one achieves by a high temperature expansion ; see [-i-’r] « AS a result

one finds

ue < e XBNCl s (5.23)

(]c'| = length of C') , [irst for lage § < = and consequantly for arbitrary g,
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by the Griffiths inequality.

More detalled results and proofs of (5.19)-(5.23) will be presented

elsewhere. We summarize our estimates in

Theorem 5.1.

<o M < £ psio (5.24)
y S:aS=C
where
T-1 g T
p"(S]|C) =p (S5]C) M alg M uplc (53 (5.25)
v | = I u=0 uhu-ﬂ -

with g and p given by (5.21),(5.22) , resp.
Hemarks :

T
The convergence factor T ul.'g“f.ﬂ]] 1s a manifestation of the mechanism
u=0
of cancellation of random phases.

In the estimates summarized in (5.20)-(5.25) the two mechanisms, the
"clustering mechanism" (5.15),(5.16), resp. the cancellation of random phases

(5.22),(5.23), conspire.

Our estimates are certalnly not optimal, bubt we expect that the way in
T
which the statistical weight of the product of random phases, [ 1igc {E}j ; Ls
u=0 T}

estimated by (5.23) i{s qualitatively correct for large g, not only for G = U(1),

but alss for G = S0(2) .

It 1s of Interest to test the strength of our methods in varlous situations,

assuming further hypothetical estimates Lif necessary. One may e.g. suppose that

M
(1) |< W) = | < + p"(5]C) , with
& S:a8=Cc V
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Z T -K|C (5)
' (S|C) = p'(8]1C) N e 16,01 '
= . u=0
5
_ -1y
where p'(S|C) = p(s|C) T & . with g = 2(g) < VI[,-1T and
v e.g. * u=0

K = E{q) large enough.

(I1) One may study a non-relativistic limit (velocity of 1ight ¢ s> 1) of the
lattice 5U0(2) cheory. For ¢ 331 and B small one finds estimates on "(5|C)

'
which reveal an intimate connection between the SU(2) theory and a non-relativistie

open-string model.

A systematic study of upper bounds on p;{E |C) , itneluding (1) and
(I1}, will be initiated elsevhere. (The relevant teol from probability theory is
the theory of interacting random walks, resp. - in a formal contlnuum 1imit - Inter-

acting Brownlan paths).

We do not want to end this section without pointing out a druﬁ:ha:k of
the methods of this sectlon : The difference bectween the four-dimensional U(1)-
and the four-dimenslonzl 5U(2) 1lattlce gauge theory merely appears as a quantitativ
one ; (e.g. autl}fwlb dsu{zjfwjj . In contrast, the methods outlined in § 7 do

point to a qualitative difference between abellan and non-abellan theories.

Although our present estimates for the four-dimensional 5SU(2) model are
far from optimal, ongé may speculate that, indeed, the "clustering mechanism"
(5.15),(5.16) breaks down, in the sense that (5.18) becomes true, at some finlte
value of By * and that for g »> Bo the expectation of the Wilson loop ceaseés Lo
have area decay, even in the 5U(2) theory. We emphasize that this would not
necessarily Imply the appearence of coloured physical states in a SU{2) gauge
theory with quarks inthe spin 1/2 representation, because the colour of sufficlently

1ight quarks could be screecned completely.
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§ 6. Z(2)-gauge theories in 3 and 4 space-time dimensions

In this section we show how our program lmplies that the estimation of the
expectation of Wilson loop observables for Z(2) -gauge theories in 3 and &
dimensions, can, in principle be reduced to an investigation of certain properties

of two-dimensional Ising models with random couplings.

Let us first regard the case w = 3 , G = Z(2), and let ‘.l'.lil =% = the
non-trivial character on G . Let alse C be the loop pletured in Fig. 2, lving

in the 1-3-plané, the t-direction being identical to the 3I-direction.

Clearly the Z(2) non-linear O-model in an external Z(2)x Z(2) gauge
field can be identified with an Ising model with spins % 1 , and with couplings

Jlj = ¥ 1 between the spins. More specifically the Hamiltonldn is glven by

HJ,o) = - (6.1)

b3 =

ri-?r'] Jijuiqj .

where the -11’5 are the Ising-spins, and equal +1 or -1, and J = [_!u} denotes

the couplings which are determined by the external gauge fleld (b,t) = ((b M)

11°F 14

as

J, = J{b,:]ij (6.2)

ij bogfyy o

where we have used that ﬂ-l =0 for O € Z(2).

Choosing the axial gauge in which the gauge fields on the links in the
l-direction are fixed to be = 1, we get from formula (1.34) and the remark fol-
lowing it that

T-1

1f o
{u:n:}:“ = ¢ n fau Mo (o) e 1 <sge, tghte), 5"
jt

Le+ld)
=l

(6.3)
T-1
n
k=]

I 1
1 {d, ("¢ 2", g es) ) | <o 23y @M es)))
JE
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vhere < - ﬁ}“iJ] denotes the expectation in the Ising model in g dimensions
with couplings J , and Jb.t) dis given by (6.2) . ﬁlﬂ{h.tl is the obvious
normalisation factor (the Iuinqu partition function). Now in the gauge we have
chosen Jigh{t}. h{t+1}3ij =1 4f 4§ 1lies in the 1-direction so the factors

on the right gide of (6.3) have the interpretation of expectations in 2-dimen-
sional Ising models with random couplings in one direction. Furthermore, the
measure ﬂuzfﬁh{t1? is a product of equilibrium measures of one-dimensional

Ising models, which are known explicitly.

Ic is well known that, by correlation Inequalities of the type of Ginibre's
[EIT , the apin-spin two-polnt function of an Ising model with couplings whose
modulus {8 less than 1 are bounded by the one of the isotropic Ising model with
couplinmgs equal to 1 , and thus that the critical & of the first model, and of
?Hj , 18 at least as large as the critical B of the second one. Eq. (6.1) together
vith a closer examination of Iiit'l.g.lILT models with random couplings should give a more
precise determination of the critical B of TH] .
Since YH is the dual ("Fourler-transform) of luiﬂg3 [31] such resukts will

3

also suppiy new Information about 13 I

Turning now to the case vy = 4 we get instead of (6.3), in obvious

notations,
M e 1 T-1 1
<WER, = ¢ ‘jn [y (8™ ()¢ 7 (3e™(0), g e+ 1IN ] 1 <og,> eatgo, ey,
E t=1

(6.56)

where we have chosen the axial gauge in the 1 -direction, the loop being supposed

to lie in the 1-4-plane, and the t-direction again identical to the 4-direction ;
J is still given by (6.2) . The measure 4u3 is that of & YM model in 3
dimensions in an axial gauge, and can be analysed by the previous methods, described
above. Furthermore the J-dimensional Ising model entering in {(6.4) has random

couplings Iin two directions, and couplings = 1 In the third direction. This model
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is related to a ?Hj—nndEl by duallty [31] + The measure of that ?Hj-nndel is
however in general not positive (because of the random couplings in Isingzi. but

is equal to the standard YH,-measure (1.16) multiplied by a function of the
plaguette variables, assuming the values + 1 , and which can be evaluated explicitly
Hence expectations io this model can, in a "siople way", be expressed by expec-

tation values in the standard TH3 mode] ,

The two-point function of the I:ing3 model s related to the expectation
of a fluxtube in the Tﬂa~nﬂdﬂl which can easily be expanded in products of loops.
The ?HE-B!ptctltinnl of those products of Wilson loops can then be reexpressed in
terms of Integrals of products of certain Zn-point functions of a two-dimensional
Ising model with random couplings, as in (6.4) and (1.28), which - we suspect -

can be analysed fairly explicitly.

Clearly, the scheme described here for the pure ?Hj - and TH& - models
with gauge group Z(2) also works when the gauge group is Z(3) or Z(4), [3]}.

In all three cases, ?Hj is the dual of Ia£n33 , whereas YHM

. iz gelf-dual, so

that its critical temperature should, in principle, be explicitly computable [31].

Further instght can be gained by making use of the existence of self-
adjoint transfer matrices in the TH3 4" and [ling3 models and in the two-dimensionas
]

Ising model with random couplings In the Z-directiom and transfer in the 1-direction.

One then must choose a convenient representatien for those tranasfer
matrices, invoelving Pavli-matrices and Fermion operators, as proposed in [32.331+
This reduces the problem to analyzing the behaviour of large products of large

random mactrices.

In conclusion we have achieved a "reduction” of the evaluation of Wilson

loop expectations im ¥YM, and YM, with gauge group Z(2) (or Z(3),Z(&4)) to
the evaluation of products of 2n-point functions of two-dimensional Ising models

with random couplings in the Z-direction, integrated with respect to products of
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equilibrium measures of the one-dimensional Ising model.

Since our results go, so far, hardly bevond this simple observation

(based on m"n.-' —_— q'p,r—.'l reduction technique and duality)}, we omit further
details, but hope that hard and grubby work on the Ising, model with random

couplings will eventually supply non-trivial informatlon on TH] , and hence on

I3 , and on 'ﬂ'lﬁq
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1)

§ 7. Continuous "Time" Formalliss and Gausslan c-models

This section is somewhat expository. No detalled estimates are presented.

A few important technical points are treated in an appendix to § 7 .

Throughout this section, G 15 a compact Lie group, in particular
G = Ull) or S5U(2) . We propose to study the continuous imaginary-time formalism
(x’ € R, continuous) for lattice Yang-Mills fields with gauge group G . In the
limit of & continuous Iimaginary time coordinate, wv-diménsional Yang-Mills theory
turns out to be related to Gaussian o-models with fields taking values Iin the Lie
algebra § of G in an external gauge field (b,e) € Gx G, on a (y-1)-dimensio-
nal lattice. For quantum theory, this is a correct and very useful approach, whereas
the somewhat compléeméntary approach (continuous space, discrete Imaginary time)
outlined in § 1.2 is problematic. (For w = 3 , it appears to impose unsuitable
renormalization conditions, and, moreover, non-perturbative renormalization of
{v-1)-dimensional o-models in the continuum limit has not yet been carried out
for w-1 @ 2 . Notice that the limits, "lattice spacing in time direction" 50 ,
and "lacttice spacing in space direction" 0 , do not appear to commute for v & 3 ;
we prefer to take the first limit firsc).

We start with a latcice £ = ¢ZZ ux ﬁE"'r-l, gl m {u = gn 1A E Ef i

and 52V =[x =8y : y € Z°71] . (We follow the notations of §3 1.2 and 1.3).

The Yang-Mills action is now glven by

e ¢ [g T 6"  Raylg™u) ) +e! I 45.""3'=m1|¢:g;1I:u:n:.1 Eu}sj{ul'lr.”tu!_l}.

uteZ | popmv-l ap =t A i

L

(7.1}

where glf.u,'! - s{[,u”i,u-lf} . hijiu} - E(i,u”j.lﬂ , and l:”l',u} - I:”l',uﬂ,-] -

H{I.u+elﬁj.u+ﬂl . See § 1.3, (1.17). (The spatial cutoff, A , will be suppressed

in our notation). We set

1) Some of the result reported here have been obtained in discussions with E. Seiler
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w=-3 -1 -1
Aﬁ_lib.t! = 1;:&:;“_1 & Re xlgibljgj l:u'.l (7.2)

The Yang-Mills vacuum expectation corresponding to the action (7.1) is given by

™ -1 o
e B | e8)= ¢ uEIEEI{ - }u_lm | e, & ] blu),ccud)

8,8
e e, s | blu),efu)) & ' (blw))| , (7.3)
w=1

where [ 18 the partition function of the wv-dimensional Yang-Mills theory,

C':'{EI | ...} the one of the (y-1)-dimensional o-model in an external gauge field

{b,t} with action ;'lﬁz_l{b.ﬂ , normalized such that ( (... | n,0) =1,
o

ra- l[...'.! the vacuum expectation of that model, and ms_'_i the normalized,
=

{v-1)-dimensional Yang-Mills measure. We propose to study the leading behaviour of
(7.2) and (7.3) for ¢ << & = 1 . For the study of the limit €'%0 we set in (7.2}

eXy
B = ® v X EQG and (7.4)

dg, — dX, : (7.5)

where dgl is the Haar seasure on G , and dli fa the Lebesgue measure on §

for all 1 E ﬁ.E""'I' . (See % 1.2) . Far the action (7.2) we find to first order in ¢

S R &7 Re X(b,, Ly

14 1)

- Re x(t7tb, X))}

- X b
!FI-: x( 13%14%;

}
“ {19 11

w=3
+e E:j 57" |Re x:xlb”:}:”

- 1/2 Re H:tihu ” - 1/2 Re :{tu 1557 it (7.6)
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The first term on the r.s. of (7.6) is independent of X and can be combined with
the (y-1)-dimensional Yang-Mills actions for the horizontal gauge flelds,

3h{u‘.r = blu) , to yield

™ v=3
A - L L & Re X(b{u)_ )
(7.7)
=3 =1
it E".r—l 5 Re xihij{u} l:uiu) f}
{j=RZ

which is the expression for the wy-dimensional Yang-Mills action in the radiation
paAuge Eg“ = 1) . (Thus, the remaining terms in (7.6) could be gauged away when

e*0 ., We do however not choose the radiation gauge).

Next, suppose that {bu{u}]u&ﬂ is the restriction of a smooth gauge
field, hul:uj . on 8ZY1x R to the lattice 52V !y cZ . Then
by () :”:url = by, by (wte) ™ = 14 0e)
and (7.8)
1im e_lfbijiu] t”:url -nf o= By
%0

In finite volume, A , (fixed on an e-independent scale), equ. (7.8) holds in the
sense of stochastic differential equations for the paths Ib”{uli in the support

of the imaginary-time vacuum measure determined by the action AYH od.* 528 (7.7,

in the limit ¢ = 0 (which is the path space measure, du ; of the w-

w,rad.
dimetnsional Yang-Mills theory in the continuous-time Hamiltonian formulaclon, I3ET}.

We define

-1
{nhx]“ - }Li - I:” :I'.J h” {7.9)

Taking into account (7.8), the second term on the r.s. of (7.6) approaches
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-3
L .(b,B) m-E£ 17 g ((p,x) B8 )} , (7.100
: w=1 ] A b ij 1]

L]

and the third term on the r.s. of (7.6)

eA (b)) m-£ ¥ gV
w=l

- Y xtoo] ) . (7.11)

1] i

as %0 , up to D{ez} terms. In (7.10), (7.11) the summation, [ , extends
over all ordered nearest nelghbors.In finite volume, A , the trutm;jt of the

£%0 limit can in principle be made rigorous. This is a somewhat tedious exercise
in manipulacing Trotter product formulae and the heat kernel on G . For G = U{1)

or SU(2) one can follow [39] , where the e“0 limit in the radiation gauge

fa scudied.

After having taken ¢ ™0 , one wants to study the limit &0 . This
problem is at the core of the renormalization theory of Yang-Mills fields. A partial
aspect of this problem is the analysis of the § %\ 0 1limit of the Gaussian g-
models in external gauge field with accion &u_ll’.hi + Lv_lih.B} and a priori
distribution T uﬂ:l'.1 , sea  (7.5) , at "inverse temperature” gh , h >0 ,

(h = hi&,u)) .iIn this step the external gauge field is kept fixed. For © = U(1)
or SU(2) and w-1 = 2 , the &0 limit of these models has been constructed

in [40] , (and the methods of [40] suffice to also analyze the three-dimensional

case, of Iinterest in the construction of four-dimensional Yang-Mills fields).

We now recall the main problems arising in the study of the & %0 limit
and in the analysis of confinement for e = 0 . This requires some more definitionms.
Let “1 be the finite dimensional Hilbert space carrying the representation Ux

of G with character ¥% .

We define £ = US(b) , bEGC. (7.12)
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let M~ 1.’;1 5 U(G) be the space of all matrices on V . Let Y
be an arbitrary I‘X-uulutd function on ﬁE“"'l . We define a (finite diffeéerence)

covariant gradient by

(&) (&) 1 *
v. 1) =& "Y) ==Y -L ¥ :
b Yy e Dyg "% - Sy% Sy - (7.13)

with tij = Hx{bljl . Furthermore, the covariant Laplacean is given by

(8) _ (&) ()

-4

For & = 0, the superscripts are dropped.

For Y,2 Hl—'.rnluud functions on 5ZY") we define
L =1 *
(Y,2) £ 15 trh’1 zli - (7.15)

sz

and similarly for I"I.!-vlluld functions on unordered pairs of nearest neighbors in sz

Let lk = I}IIL'II}TI be the matrices inm H'H wvhich represent the Lie algebra
j of G . Such matrices are henceforth denoted & , ¥ , ... . In our new notations

we get from (7.10), (7.11)

(&) )

1
-P!- 1{{} _— - E‘{'pﬂ: [l

‘HI-
(7.16)

I | (&)
L,yleB) = & Re(v,”" #,B) ,

and the uniform measure on I:H: is denoted d% . The Gaussian vacuum expectation
(&)

of this model, at “inverse temperature"” @h , h >0 , 15 denoted < - > (r B),
Bh

and C{E}{Eh r E,B) is its partition function, normalized such that ((gh i n,0) =1,

When G = SU(2) , % the isospin 1/2 character, we set & = i T ,‘n# Ty » wvhere

a=1
dy » Ty 2 O, Aare the Pauli matrices. The adjoint representation used in the
definition of ?Eﬂ . .ﬂé“ has i{sospin 1 , and we may now set

@) - sl -1 00

e 7y 3%
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1)

where @ =@ |E F.3 and Eu belongs to the isospin 1 representation of

suU(2), i.e.' to S50(3). Moreover df = djqn , the Lebesgue measure on 'B.3 ;

We now propose to study the behaviour of

2 =1
§ O aica® 2 (8

,g. : + in particular of its integral kernel, u.;h'ﬂ 3

%,¥ inm 5EﬂJ;l. for arbitrary 2 0 , mx 0 , and acrbitrary £ ;

2) {{Hfﬂh | £,B) as a function of 620 , £ and B, (with £ , B e.g.

of compact support) ;

M. s o=ib8) s
x ¥ Z
3 e ¥y, (e im}ﬁh (£,B) , xy in & -
as a function of |x-y| , h , & , £ and B. This two-point function is related

™
to the expectation of the Wilson loop , <WWC)> ., of the vy-dimensional

Yang-Mills theory on ﬁﬂu_l x R (in the limit e = 0) by the formula

Y™ -1 (e) (5) (e)
<wi(c - uu[ l- (8) 1 tge | =(1),8'%")
< e\0 ‘e EEE. H,rad. uEi:iEC )

B T
@0 npeT
£d -cd (ﬁl
C n “Je l}} (e . Xy I{;{h] BEE}}
n€eZN[0,T-¢ ] T ute ' u-l-e
(T.17)
vhere duiai d is the y-dimensional Yang-Hills seasure in the radiatlion

ghuge, ;Ebtuiilj - s, ) n{jlui = e Mgy, g e - m), and

x € 52”71 (independent of u) with lx] = L . Formula (7.17) involves the hidden
assumption that, for § > 0 , we can first pass to the Gaussian limit of the g-
models and then take the ¢ %0 limit. (As remarked already above, we are confident

that this can be justified by adapting the techniques of [BEJ . See also [4ﬂ1&]13.

Fortunately, problems 1) and 2) have been solved already in [#n] for

G=S50(2) and w=-1=2 , and the techniques developped there suffice, in principle,
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to solve them for arbitrary compact gauge groups and 2 £ y-1 =13 . From that
reference we infer that

1688 ] < el hmdll o for am s (7.18)
(Landau diamagnetisms {&,ﬁu]} .

&)
and for g, = !::j] Hﬂii , where IJEJ

continuum gauge fleld, R , with values in q&: and of compact support to the

is the restriction of & continuous
lattice ﬁE"' l

f =i

¢!®) e,y — C_ lx,y) . tn PCAx N, (7.19)

-t

for arbltrary bounded, open A E?-l and 1 = p < ply=1) , with p(2) = = |
p(3) =31 . and for a large class of boundary conditions {E.g. free, periodic,

Dirichlet) at ap . See [ﬁﬂ] for detailed statements and proofs of this and

(&)
other results. These results suffice to control the limit of < - .'.'tﬂ 'l'g.ﬁmjl '
ag 50 , for I as in (7.19) and E{“ chosen such that ﬁilém ' gy A

Fw0 , e.g. in the sup norm,

[As an example, we mention that, for § = O ,

ke e w -1 <1 . :
<8 1;'2:-“1:3.5 ) = (gh) “u,u':‘ﬂ”u.,m + (gh) {cu‘ﬂ'ﬁ'ﬂn }Mtxll:t:ujvﬂn }Iml’.yll g

For w -1 = 2 , this {dencity usually has infrared divergences, unless e.g. O-
Dirichlet data at the boundary of some bounded, open reglon are Introduced In .ﬂH

or @ 18 suitably chosen. For vw-1 2 3 there are no infrared divergences. The
two-point functions in 3) and (7.17) have no infrared divergences, even for v - 1=l
but must be ultraviolet-renormalized when £%0 , for w-12 2 ; see below).

{M gt8?

Next we study the partition function I:M}{E'ﬂ | & ), with
l :
? u'} the restriction of a smooth -valued field B on R’ 1
of compact auppﬂ-rt o gVl g a0, GA(RY™) . For v-1=2
(&)

we temporarily introduce O-Dirichlet data in £|. at the boundary of some #&-
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independent, bounded open set A , in order to &liminate infrared divergences.

(Reference to J\ is suppressed im our notation). Let ﬁ{ﬁ] be the uvsual finite

difference Laplacean, and let U; be the (y-1)-dimensional, covariant lattice

dipole potential, defined as follows : Let f be some -yalued functions defined

w-1

on the links (nearest neighbor paira) of §Z° " and h an arbitrary H‘.li_ﬂlu!d

function on Z' of compact support. We define géﬂif by

(5)* (5). ., _ *
@, f.h) = (£,7, 'h) 4 8" ““1:.“‘1 Si5y51y"

Let mow f and g be arbitrary l‘&r'ﬂ'll‘ﬂ!ﬁ functions on the links of GI”'I #

of compact support. Then v: iz defined by

* +
u.v';g} ~ n?“” E,ﬁ:ﬂ:“ 2) (7.20)

By evaluating Gaussian integrals we get

(8 (®) 1/2

(8) S E} -xp[tah!zlta'ln.vf 5'1331 3 (7.21)

¢'"'(gh | €,B) = det(-

sae [ﬁl}-l . (We thank E. Seiler for correcting a mistake in our origimal formulal.
Motice that the r.s. of (7.21) obeys the normalization condition, {tﬁjiﬂh | n,0)=1.

For h=g , B = I{E} with B

-1
igij{u) 513‘“**3 -nf .
the effect of the second factor on the r.s. of (7.21) 15 to modify the couplings

between E{u) and E(u+e) , u € €Z , in the measure th“:} (£} (see (7.17)) .

Wwyrad.,
He Bet
()] - 1.

dp:E}IE} = IUE} qu[EEE!E}(# lll:ﬂ.“:El 's El]]*ﬂ:i:.d_igj ' (7.21}

(e) (e)
vhere Eu is a normalization factor chosen such that dqu (8 =1 ., {In
spite of the second factor on the r.s. of (7.21), the measure dpig} 15 well-
defined, since axp[[ﬂgii}(ﬁ'l (e) ?d £ E{E]T E nxp[{ﬁrfi]{& o {E] -1 IE}]T

5
which is compensated by the factor enp[-{ﬂfei Re(E(u) ,E(u+e))] in d”iernd (£)).
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Hotice that the formal action corresponding to dni“ is "non-polynomial"

if G 18 non-abelian, even in the formal limits € = O , & = O . Thus, our approach
might be cumbersome for the discussion of ultraviolet renormalizations when one
takes the limit & w0 .

Mext, we discuss the first factor on the r.s. of (7.21). Notlce that

(8) (63,112
det(- Co. g‘.i is independent of Bh. From [ 4,40] we recall that

0= dec(=p

(8) (&)
“u,;l £1 {7.23)

(diamagnetic inequality ; see also Theorem 1.1)

18i8) o (8)

For {i_'l -2 ] » j the restriction of a continuum gauge field, B , that
is Holder continuous of order g >0 , w=1 =2 , and O-Dirichlet data on the

boundary of a bounded, open set in ‘ltz =

1/2 1/2
(8) ‘5’1 N ., (7.24)

1im dec(-4 0,r 0.8

Fmi
exists and is strictly positive ; see [40]. (The methods of [40] suffice, in

principle, to also handle the case y-1 =3 , for smooth B ).

Thus, the results of [fdﬂ, in parcicular (7.18)-(7.24), provide complete
control over the 5%0 1limit of the Gaussian g-model in an external gauge field
with action given by (7.16), at arbitrary "inverse temperature" O < gh <= , and

v=-1=2,(3) ., Hext, we study the two-point function

(&)
CCRTIIIE R W G N G I (7.25)
in particular its cluster properties (related to confinement wvia (7.17)) and the
existence of the limit & %0 . For [|G {M[:: y)| to tend te 0, as |x-y| =,

it {8 necessary that

hi, (5)
3&Ephh £,B 0 , (7.26)
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for all € , B and x (large enough).

(a3
Stnce < - > (€,8) {s Gaussian, with covarfance "33!'; , (1.26)
L]

(&) (5) (8) (&)
requires that Cﬂ‘g (x,x) 1is Iinfinite, with Eﬂﬂ‘gix,y] - ﬂﬂlgin.n] - Eﬂ1giy.y]
finite. This is possible for v-1 < 2 , due to an infrared divergence : For
FE=1 , E{ﬁ}[:+31 - Eéﬁ;_i:.y} is the Fourler transform of

w=1 2
3 [v-1) - T contsiITY, (6] £ 574 which is linearly (y-1 = 1),

i=1
resp. logarithmically (w-1 = 2} divergent at k = 0. Moreover,

{5) () 1 1 :
" (x) - CO(D) o 5 108 m , for w=1 =2, Thus, one might expect (7.26) to

be valid and “G{ﬁ]

. g(%¥)|  to behave like

exp[ (h/278) log T;%;T] ' (7.2m)

as [x-y| + = , for arbitrary € , B , when w-1 =2, By (7.17) this would
vield permanent confinement of static quarks in three-dimensional Yang-Mille theory
by a potential = log|x| , as rxr ==, For G= U(1) , (7.26) and (7.27) are

(&) (&) (4) 2 (8)
cﬂ,; and Ggﬁﬁin,rl Gﬂ4ﬂ (x
if the center of G contains U(1l) the same conclusions hold, by the estimates

true, since = ,¥) (independent of £) , and

of § 3. Moreover, when v-1 =1 , ¥ can be gauged away, for arbitrary G , so

that (7.26) holds trivially, and

(&)

1688) x, 30| = 6y, 5 x|  expl-(h/28) | x-y]] .

€8

for arbitrary ¢ and all & = O .

Howaver, for CG = SU(2) |, w-1=2 . (5= 0) , there are cholces of

an external gauge field B such that CB is a bounded operator with

uﬂﬂix,ylﬂ < const., for |x-y| large enough. In this case (7.27) is definitely

violated. This is the result alluded to in § 3 : For certain cholces of B , EEE

clustering of ﬂﬂ E{x.yﬁ is worse than that of ©_ _(x,y) . This is a consequence of

0,0
non-abelian Landau diamagnetism. Some more detalls are glven in the appendix te § 7.
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o8
16,

For v &, (7.26) is always violated, and l':r.,jr]ﬂ - 0, as

Ix-jrf + ®m . g8 we are now going to demonstrate.

By (7.18) ,
legh sl = e @y <
< El'rr]"w_””l'.lfﬂj [tv-1) e cos(a) T &” N
e | = 1=1
= J"'”{u-ﬂ < &  for all x,y . (7.28)

This shows that (7.26) is impossible.

Moreover ||E{M{x,;,r![| < ][E{Mlﬁx—y]” = ﬂH!—er—”} , a8 |x-y| = = . Therefore

gt®)
llog®

(x,y)|| # 0, as |x-y| + = , which proves our contention.

We conclude that presumably Iin the three-dimensional SU(Z) Yang-Mills
theory and certainly in all four-dimensional Yang-Mills theories confinement of
static quarks can only arise as a consequénce of cancellation of the random phase

factors in Em:_{ﬂ,ﬂ when integrating over £ , (with B = gi—% 5'1]]. This is

’

the second mEh.lnlm emphasized in § 5.2 ; see (5.19) - {5.2:1-}&]"".t A careful study
of this mechanism in the 1imit ¢ = 0 , (i.e. for the Gaussian o-models) is
beyond the scope of the present paper, but we recall that {t has been shown In
[H] that in all v 2 4 dimensional non-compact U(1) theories there is no

confinement.

In the present formalism, absence of confinement in the four-dimensional

U(l) theory can be understood as follows : For G = U(1) ,

E:&:{ﬂ.:} = exp[-(80/2)(c;°) (0,004¢08 ) (x, ) - 2¢{%) (0,207 -

0,k 0,¢ 0.5

. ::p[ﬂhfv;“ . céf'; “':'Hm W;“ . -':flf’} 5{‘5)!{:1!1 (7.29)
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Now, since the adjoint representation of U(1) is the trivial ome,

v;'” g8 _ (8

n 5y & (7.30)

are independent of £ (i.e. the sameas for £ = 0 ). In particular, they are

W

independent of the value, w , of % . Furthermore, one can set

(4%

(u) me M . A':“

1y (W € [o,2m) ,

for all 1182 , WeER . Thus

(&) N1
B u) = _Hau _Au 1w (7.31)

If we now imsert (7.30) and (7.31) inte (7.29) and, subsequently, (7.29) into

formula (7,17) for the expectation of the Wilson loop we see that the random phase
u=T

8 (&)
HF[-IE] du [[a“'"-cm % (0,u) - {amrc{“ L}tx.u!_]
u fu
=0
- .zp[—ia[tam-:m.&“}Hﬂ.u} + {B{H-E{Hh{“ﬂx.u}]z} (7.32)

reduces to a product of two random phase factors localized at u = O , resp. u = T,

i.e. to a pure "surface term". Thus, using (7.29),(7.32) and (7.17)

<> = exp[-gric® (o) - P -

& T.. TH
. <expl-18[3° 7"y (0, - ta"”-:“"a“":-{:.um]ﬂi}ﬁ

(Since the second factor i a surface term, it cannot cause area decay, when &%0).

The basic difference betweon abellian and non-abelian theories is that, in

the non-abelian case ?;M and CE'; do depend on £ iIn a non-trivial way, so

that the total random phase facter does not reduce to a pure surface term,
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as can be checked by an explicit calculation. For this reason, four-dimensional

non-abélian theories may still confine static quarks.
Finally we discuss the continuum limit (5%0) of the two-point functions

éa;{ﬂ x) and the related problem of how to "normal-order” the Wilson loops,

Wl(c) , so as to be able to pass to the continuum limit. We concentrate on the

discussion of G = SU(2) , with ]{ = % the isospin 1/2 character ; (G = U(1)

is very easy). For SU(2) i“ = i E w 9, - Let <= - bjﬁ} denote the Caussian
i=1
expectation with mean O and covariance :“ = l'.-.ﬁ.w}-l- ]}_'1 i.8.
a (8) {-53 af
<o, ﬁﬁzbb = (x=y) &
tet ¢®) = ¢!®(0) . Then
Cexp(1y) >0 = exp[-(1/8) V] 5, (7.33)
M (5)
oreover, for £ = F as in (7.24) ,
lim (C{Mﬁ] {MEFBHE x) exists, for w-1=2 ,
£ O,F

(provided O-Dirichlet data are imposed on c{ﬁ}

0.8
open region, in order to eliminate infrared divergences). This is proven in [ 40],

Thus

(5) at the boundary of some bounded,

1gn Lexplttg) o ak? '€ 289y ol nrse) AL

5%0 kel

exists., In general wve define

(6 Ny = (e M), [<G >, ] : (7.34)
Then, for smooth B' = lim & 1{6} )
LA
(s), hi, N8 (e (‘8) (8
1im <N (e ) BT
1 . ..:P

exists, even in the thermodynamic limit ; (there are no infrared divergences).

o)

Another possibility is to choose a "unitary" gauge in which wl = “HE = 0
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This suggests replacing Hqﬂ:! (defined on the links of 55':'"'} by

-1
=& (&) }

(8),.q x
B (WC)) = n g )
L s"-"'-!I" L

m xy=C

-

This prescription ought to be appropriate for taking the limit 5%0 , at least
in w=3 dimensions. It suggests to formulate the renormalization conditions
in a schemeé of {mplicit rencrmalization for three-dimensional Yang-Mills theory in

terms of S-independent uppeér and lower bounds on

™
<N Paden>

for C a square loop with sides of length 1 , for example.
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Appendix to § 5 :

We show, in this appendix, the details of the calculations leading to
the area decay of the expectation of the Wilson loop observable when G = 3U(2) .

These are completely analogous to those performed in [:i!ﬂ z

With notations as in § 5 we get, by setting

50 (5.8, ) o ey u
{(b,t,n) = |e ; M Bu, A—. & jﬁ{f& 1°= & +—L) a2 A (A1)
}Elﬂ 3 (n=1)! J =1 |

and using a chessboard estimate, that

[n 9o, By s b t h
b (g (t),g (e+1)yw™) du (g (t))

1 (A2)
< n []H?’tgh{:}.ahh:i-l]. (w™)) du igh{r.}l TAT
T,k t " v-1 ]
By a second shessboard estimate we have
7 h h
h Z(g'(8),57(t),n) dy_, (5"(6))
n=1 1
u _“t. {5 L
= .[t"jla“tr] nt-l ;e jik{ [% {3 (t})el ¢ ghit] gh(e+1) ©
n eu:i:s}[ a+"—"£:n's'1}]
1€, v-1 t'y
[ w7y e Hs, . )
h h S¢
4 | n du:'j :_1}! e o qb [j {Fuu {E {t]e t" T gh(e), gt le+l)
2 u =B 1
n "'(“5:‘ | -p + —'I-lil as,) }]TIT
{€A i L 1



= TR =

n-l

= u "1' h
E N du, , ?—d}l {1!“‘ 11} n Un [mv_ltg (e))

u _L 1
lig- a¥y(s ,a 5¢) I
' ':2 -1 E Eh{t'l,ih[t'l-l.} L3 ! ﬁ{,l{-&tjllz"li ‘Hﬁt}j}] A

1eA,

1 t, (n-1}

1.!-1

Hext we note that by Jensen's Inequality
1
=f(5, 5)
27 (b,t) = luz ot R rz - 1) d8
B thD i ]

=5 _g.a 8 ag-t)(s,a  8)
_JEEW-‘-L] &lhl BI w-1 b"rt " g.{lf.l -1) ﬂE

JEAD :

Lt a
ETONSE] LETY. - )
z 22 f.h.t}-n:""'” L e

u

B 1

i
where the expectation < ° :.-.nu l{h.t‘} is ac inverse temperature § - ?—‘:1 .

How since

5.0, 9] = o3, @, - oty e, 7)< dtvD) |1y

when ’31’ =1, V€A%, it follows that

Q
(b, t) = 2 {b,t) e"h'l"" I .
g 8 u

=1

1
u
-j Nodu, il o td(etady n[]’nz" {gh{tll.a;hl{t-i-l?.'rduu_l{;h{tﬁ]]‘ﬂ'l
E

(A.3)

(a &)
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Formulas (A.3) and (A.4) imply that

(126" 0.8 0,0 4y, 6"
t L

n=1
Y e dn e mr.,j h h h
s Jitnj du, o Tocidi ° ﬂﬂ;‘f’-}- | I:lf;ig (e),g (e+1))dy , (g7(t))
“'I'I-l '“EB_‘-':'TIF -1} I.ﬁl
= [Jﬂum & - 2
i} ) iAo (A.5)

Alv-1) ~
Formulas (A.2) and (A.5) then give
~nj{m }]

]n (e, g ee) ) %_lfgh{t}‘.l =[ m ‘Hﬁ - 1)
t £,

And finally this combined with (5.8) gives

) ™
I{u“:m‘}“ ;
-Tn w®) -T njimt]
T T £, 1 £, )
< 4 B m‘% ...WE-I{IW-IH {mrll
'E. nj'fm T
T -T i
£ 4" g [ E II.'HU—IHE%J-_-ﬁaﬂ'.! -
H.I'i-ﬂ
e

For ﬂ{ﬁ we have that B_l'ulTli-l =1 , and since Eni{m'.l:e!xI
i

and |i:| = |x]T , we see that there exists e¢>0 , independent of x,T and J ,

such that



-7 n, (w) T
|<whe™ < 4Tt e-ne !
]
wi-ﬂ
ﬂf"ﬂ

- z.T E'Ttt-an+ g}‘liﬂ.:ﬂT ,

where ﬂﬂ is the discrete Laplacean in A E;""'l with periodic boundary

conditions.

Taking the thermodynamic limit and noticing that

E-ﬂ.+£]_1{ﬂ,ﬂ g '-.gl;;| : as 1::} - .,

1
completes the proof of confinement by a linear potential for p < To-17

1
(A more refined estimate extends this result te B < d".r—_'l} .
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Appendix to § 7 :

In this appendix we show that the clustering of certain two-point functions
in a Gausslan SU(2) w SU(2)-no-model 1n two dimensions i{s diminfshed when a sultable

external gauge field is turned on.

As argued in § 7 this indicates that for large g only the mechanism of
strong cancellations of random phase factors can be expected to be responsible for

confinement of static quarks in a SU(2)-gauge theory in 3 dimensions.

We consider a two-dimensional Gaussian o-model, where the field X ctakes
values in su{2) (the Lie-algebra of 5U(2)) , and an external gauge field
ﬁu € su{2) 1is acting. In other words we consider the model whose action G is given
by
1

G = £ i, 0* @ X
u=0 u u

whersa

nﬁux - 23X + {ﬁu,l] i pmangy

and X and Au are sul(2)-valued functions on ]Rz_ The measure of the model is

thus the Gaussian measure with covariance

(-2 \

-1 * %
ad = (Z DD, )

H B

defined on a suitable space of su(2)-valued functions.

To be able to analyze a* we set

3 3

i= 7 “’u"a and A = ¢ a%g '
a=1 H g=1 H @

wvhere the u& & are the Paull matrices, and .ua . AE are realvalued functions



on EI . Then D has the representation

A
g 3 2
A -A
EIl-l 5] L
3 1
-A A B.
i 3 " ' (B.1)
2 1
A -A
\ u %

1

it 3 2
acting on ﬁ s Which 18 an R-valued function om R .

Also we have chat

er (XY = F :,:F‘ 1':"

a

if X= X l;ﬂuﬂ'u and Y = F i':uu .
i | i |

From this we see that, expressed in the fields ;uq , the measure of the

model 1s the Gaussian measure with covariance C, = E-.ﬁ.*}-l , where —ﬂ# is given by
"8, = £ D} D
Le [¥] Li
- A+ u’ﬁtﬂ}z -{?,fj-nzml Ev,nz}-ug-.el .1
. (0,071 -a%a v iealy? _jgal}-aZ.a? ‘
-{7,a%} -7 Al qo,alada?  pealyiead)? )

as a direct calculation shows by using (B.1). Here hi-hj -7 .ﬁ:.ﬁd and
(¥

i i,
= A "
{7,a71 E @, umuau'.l
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.|+
To simplify cthis expression we set Al - AE = 0 and .t3 = A ¢ 0 , Then (B.2)

e come s

l.‘.
-aﬂtz -9 .IE 0
=-# _'2
-, = {v.a] -+ 0
A
0 0 =4

But this operator Is unitary equivalent to the operator

-a+1]9, K} 447 0 0
=5 =
0 A-1]7,4)+42 0 . (B.3)
] i =0

the equivalence being given by

7 r .
™ 72 .
o 0 1

Bext we choose Il‘:ﬂu.ﬂl} =- Bfﬂl,-#ﬂ'.'l . With this choice of A it {s well known
*

(see e.g. [42]) that the operators -p # liﬂ'.-'nF-lJ.z have the same spectrum, and it

iz bounded below by a strictly positive number If B ¢ O (Landau diamagnetism).

Thus E.l: , restricted to the subspace i{qﬂ-l.@z,ﬂﬂ ia a bounded operator.
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From this we conclude that {f < - > denotes the expectation the

model, then

1
{tm (x¥a, E-ﬂn’(x}al} . {euwlm]-w"t:}]uf}

(g 0) 0 (x)),
- {_‘_.

< coslp (0} G + 1 uu-:qz-ltm-m‘hnqu-

<coslp' (0 (x)) > 1

-(8,(0,0) 404 (x,x)-2C4(0,x) )y (B.4)
€ u

does not converge to 0 as !xl -+ 0 as a consequence of the boundedness of Ei .

Finally, we remark that by fixing the gauge Iin the ijattice theory such that
= E#Ul y only two-polnt functions of the form as in (B.4) will enter into the

calculation of the expectation of the Wilson loop observable according te (1.34)

Thus, Landau diamagnetism may destroy clustering of the two-point function
ot the two-dimensional, Gaussian g-model, This conclusfon is not affected by the

introduction of a two-dimensional, spatial laccice.
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