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Abstract : 

We study non-linear σ-models and Yang-Mills theory. Yang-Mills theory on 

the v-dimensional lattice Zv can be obtained as an integral of a product over 

all values of one coordinate of non-linear σ-models on 1 in random external 

gauge fields. This exhibits two possible mechanisms for confinement of static 

quarks one of which is that clustering of certain two-point functions of those 

σ-models implies confinement of static quarks in the corresponding Yang-Mills 

theory. Clustering is proven for all one-dimensional σ-models, for the U(n) X U(n) 

σ-models, n = 1, 2, 3,..., in two dimensions, and for the SU(2) X SU(2) σ-models 

for a large range of couplings 0(n) . Arguments pertinent to the construction 

of the continuum limit are discussed. A representation of the expectation of 

Wilson loops in terms of expectations of random surfaces bounded by the loops is 

derived when the gauge group is SU(2) , U(n) or 0(n) , n = 1, 2, 3,..., and 

connections to the theory of dual strings are sketched. 

Supported by the University of Copenhagen. 
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§ 1. Connections between σ-models and Yang-Mills theory : Description of the 

basic ideas. 

In this paper we propose to study v-dimensional (lattice) Yang-Mills 

theory, in terms of (n-1)-dimensional (lattice) σ-models in random external 

gauge fields. Our main results are the ones described in the abstract. We also 

apply our scheme to the study of Z(2) lattice gauge theories in three and four 

dimensions and relate them to a two-dimensional Ising model with random couplings 

in one direction. Furthermore, we study a weak coupling limit of Yang-Mills theory 

relating this theory to linear σ-models in an external gauge field, in one 

dimension less . It appears to provide a lower bound on the confining potential -

i.e. an upper bound on expectations of Wilson loop observables - with a convergent 

continuum limit. This bound is rigorous in the abelian case. In the non-abelian 

case, it appears to be related to naive perturbation theory and, therefore, it 

should describe the short distance behaviour of the theory correctly. We show that 

confinement of static quarks, always assumed to transform non-trivially under the 

center of the gauge group, in n-dimensional Yang-Mills theory is a consequence 

of two possible mechanisms : 

(1) Clustering of certain two-point functions of the (n-1)-dimensional σ-model in 

external gauge field (see §§ 2-5). This leads to permanent confinement in all 

two-dimensional and in three-dimensional U(n) Yang-Mills theories and suggests 

that, for arbitrary, non-abelian gauge Lie groups, the confining potential in 

n = 3 dimensions is always linear, for arbitrary coupling. For the critical tem-

perature of two-dimensional, non-linear, non-abelian σ-models is expected to be 

zero, with exponential clustering at positive temperature. 

(2) A cancellation between "random phases", depending on the external gauge fields 

of the long range order in those two-point functions of the (n-l)-dimensional σ-

models. We have arguments suggesting that only this second mechanism can lead to 



- 3 -

confinement in four-dimensional, continuum gauge theories.See §§ 5.2 and 7. We pro-

pose to study aspects of v-dimensional continuum gauge theories by means of the Gaussian 

weak coupling limit of the (n-1)-dimensional σ-models mentioned before. That limit 

suggests e.g. the correct kind of normal ordering of the Wilson loop observables 

(traces of holonomy operators associated with closed loops) that might enable one 

to construct the continuum limit of expectations of products of "normal ordered" 

Wilson loops. This is discussed in §7, especially for n = 3 . 

Throughout this paper we systematically adopt the Euclidean description of 

quantum field theory. Thereby, Yang-Mills theory and non-linear σ-models are 

converted into classical statistical mechanics systems. The reconstruction of a 

quantum field theory from the latter is accomplished by means of a Feynman-Kac 

formula, resp. Osterwalder-Schrader reconstruction [1] . (In the case of lattice 

theories, Osterwalder-Schrader reconstruction requires the existence of a positive 

semi-definite transfer matrix which follows from reflection positivity. This and 

other foundational topics are discussed at length e.g. in [2, 3, 4]). In the following, 

"dimension" means the dimension of the Euclidean space-time (lattice). We only 

consider compact gauge groups, denoted G . 

Various analogies and connections between non-linear σ-models and Yang-

Mills theory, have been emphasized in the literature. Apart from the well-known 

ones between two-dimensional σ-models, in particular the CPN-1 models of refs. 

[5, 6] , and Yang-Mills theory in four dimensions (e.g. conformal invariance at 

the classical level, field theories with constraints and non-trivial topological 

properties, instantons, asymptotic freedom, etc.) we mention a rather deep analogy 

that emerges, at the classical level, from formulating these theories in terms of 

fields with values in a Grassmannian. The corresponding σ-models are the 

GN,n (C)-models of refs. [7,8] , the Yang-Mills theories are the pure U(n)-theories. 

This analogy is stressed in [7,8] . It is inspired by the work on self-dual 
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Yang-Mills fields in [9,10,11] . It is potentially useful for further analysis 

of classical Yang-Mills theory, e.g. the construction of conserved currents, but 

does not appear to be promising at the quantum level [7] . Therefore we do not 

use it in this paper. 

Relevant for our purposes are the following very simple connections (not 

analogies) between n-dimensional Yang-Mills theory and (n-1)-dimensional, non-

linear σ-models : 

1.1. Two-dimensional Yang-Mills theory and one-dimensional σ-models 

Two-dimensional, pure Yang-Mills theory with gauge group G is equivalent 

to a product over all values of one coordinate, e.g. the imaginary time, of 

independent, one-dimensional, non-linear σ-models with fields taking values in G . 

(To see this one is advised to consider a two-dimensional lattice Yang-Mills theory 

and to choose the axial gauge, = 0) . These one-dimensional σ-models simply 

describe Brownian motion on the group G . Therefore they can be solved explicitly, 

even in the continuum limit. (Their transfer matrix is generated by a Casimir 

operator). Thus, the calculation of expectations of products of Wilson loop obser-

vables in a two-dimensional, pure Yang-Mills theory is reduced to calculating 

correlation functions for Brownian motion on G which, in turn, can be reduced to 

calculating Clebsch-Gordan coefficients. See [2, 12]. 

In this paper we describe a related, albeit more complex, higher dimensional 

generalization of the two-dimensional strategy, relating Yang-Mills theory to a 

non-linear σ-model. It exhibits a promising line of attack that might enable one 

to "solve" the three-and four- dimensional Z (2)-theories and to construct the 

continuum limit of the three-dimensional, pure U(n) theories in the n → ∞ 

limit. See §§ 4, 6. These theories ought to be the simplest ones. 
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1.2. Classical Yang-Mills theory and classical σ-models 

Let U be some irreducible, unitary representation of a compact Lie group 

G . Consider a (n-1)-dimensional, non-linear σ-model with fields, g(x) , taking 

values in U(G) . The Euclidean action of the model is given by 

(1.1) 

The action 1 is clearly invariant under the transformation g(x)→bg(x)t , 

with b, t in U(G) , i.e. the symmetry group is G X G . Coupling the field 

g(x) to an external gauge field means converting the global action of the symmety 

group, G x G , into a local one ; i.e. one must specify a G χ G connection, 

(A,B) , with Aj ϵ G , Bj ϵ G , j = 1,..., n-1 , G the representation U of the 

Lie algebra of G , in order to be able to parallel transport g(x) · 

The coupling of the field g(x) to the external gauge field (A,B) is now 

accomplished by the standard minimal substitution, i.e. one replaces by a 

covariant derivative, , defined by 

g* Djg = 8 g + g* Ajg - Bj * (1.2) 

The action is replaced by 

(1.3) 

Next, we want to study a weak coupling (low temperature) limit described by : 

b ≡ β(ε) = fe- 1 , b Aσn-1 = 0(ϵ) , ϵ → 0 . On the classical level, this limit is 

obtained as follows : One chooses 

g(x) = e - (1.4) 

where X(x) is a C∞0 function on Rv-1 with values in G . Then, to first order 

in ϵ , 
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g* Djg = A. - Bj + ϵ{∂jX + [AJ, X]} + 0(e2) 

In order for the action fϵ- 1 Ασ to be 0(ϵ) we must require that 

Bj(x) = Aj(x) + ϵ Cj.(x) + 0(ϵ2) , (1.5) 

where Aj and Cj are C∞0 functions with values in G . We then have 

g*Djg = ϵ{∂jX + [Aj,X] - Cj} + 0(ϵ
2

) , (1.6) 

so that fϵ-1Aσv-1 (Α,Β) = 0(ϵ) . 

Next, choose 

Aj(x) = Aj(x,t) , Cj(x) = ϵ- 1(Aj(x, t+ϵ) - Aj(x,t)) 

^
 a

fin· A.(x.t) 

= ∂ Aj(x,t) + 0(ϵ) , (1.7) 

where t is a parameter in Ζ = {ϵn : n ϵ Z} , and Aj(x,t) is a C∞0 function 

on RV with values in G . We also change our notation : X(x) ≡ A (x,t) . Then 

(g* Djg)(x,t) = ϵ{∂jAv + ∂fin.Aj + [Aj,Av ]}(x,t) + 0(ϵ
2

) 

≡ ϵ Fjvfin(x,t) + 0(ϵ2) (1.8) 

The action is then given by 

(1.9) 

Next, we assign to the external gauge field A(t) = (Aj(t)) on R
V-1
 an action 

equal to the (v-l)-dimensional Yang-Mills action, 
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The total action for fixed t is then given by 

(1.10) 

and the total action by 

(1.11) 

If Av(x,t) and A (x, t) , j = 1,..., v-1 , are the restrictions of a C∞ 

connection G = (A,A ) over to RV-1 χ Z we have 

(1.11) 

which by (1.9)-(1.11) is the standard, v-dimensional Yang-Mills action of A . 

Let x = (x1,..., Xv-1 , X ),X1 = t ϵ Z , and let x be the time coordinate. 

Moreover, return to Minkowski space, i.e. a hyperbolic metric. Then the Euler-

Lagrange (field) equations corresponding to the action A t. (ε) , e > 0 , are 

a system of infinitely many coupled p.d.e. ' s, labelled by t ϵ Z . They describe 

infinitely many, (v-1)-dimensional non-linear σ-models coupled through (v-1)-

dimensional, external Yang-Mills fields. 

This observation may be useful to construct weak solutions to the Cauchy 

problem for v-dimensional, classical Yang-Mills, v = 3,4 , using a compactness 

argument to construct an ϵ = 0 limit, given the solutions for arbitrary ϵ > 0 . 

Quantum mechanically, equations (1.10) and (1.11) appear to tell us that 

n-dimensional Yang-Mills theory is, for ϵ > 0 , a product of infinitely many, 

non-linear σ-models coupled through external gauge fields which are distributed 

according to (v-1) dimensional Yang-Mills measures. This is substantiated in 
) A less speculative application of our scheme says that time-independent instant on 

solutions of four-dim. Yang-Mills theory are three-dim. Prasad-Summer fiel d mono-polos (We learnt this from M.F. Atiyah). 
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the remainder of this section ; see 1.3 below. Equation (1.9) suggests that, in 

the limit ϵ → 0 , the σ-models approach linear theories (i.e. 

lim ϵ- 1 b(ϵ) Ασv-1 (A(t),A(t+ϵ)) is quadratic in X), corresponding to Gaussian 

functional integrals. This is obviously true classically and is the basic, implicit 

assumption in the standard, perturbative treatment of the theory. In § 7 we prove 

that it is true quantum mechanically as long as the lattice spacing in the spatial 

directions (^ t-direction) is positive and independent of ϵ . 

In low (v < 3) dimensions and for non-abelian gauge group, G , the 

limiting theory, as ϵ → 0 , is approached by a family of products of σ-models 

which are expected to have positive mass gaps, [13 ] . This would imply permanent 

confinement of static quarks by a linear potential in three-dimensional, non-

abelian continuum Yang-Mills theory. See Theorem 1.2, Section 1.3. 

Some aspects of the continimm limit are discussed in § 7 (normal-ordering 

of Wilson loops, implicit renormalization). 

1.3. v-dimensional Yang-Mills theory as a product of (v-1)-dimensional σ-models 

with random couplings 

In this section we develop the theme of sections 1.1 and 1.2 in the context 

of lattice gauge theories and lattice σ-models. The gauge group, G , is chosen 

to be a compact group, not necessarily a Lie group. Let χ be some irreducible 

character of G , and U - or - the corresponding unitary representation of G. 

We study models on a simple, cubic lattice Zv , resp. Zv- 1 . In this section, 

the lattice spacing is unity, but this is unimportant. The "Euclidean" action of 

a pure Yang-Mills theory on ZV is given by 

(1.13) 

where p denotes a plaquette (unit square) of ZV , ∂p is the loop formed by 
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the four sides of p , gC = Π gxy is the ordered product of elements g ϵ G, 

(xy a link in ZV) along a closed loop C Ì Zv . 

In order to give (1.13) a rigorous meaning one must restrict the sum, 

å , to extend only over those plaquettes that belong to some bounded, connected 

subset A of Zv . In an unambiguous context, reference to the region A is 

suppressed in our notation. The a priori distribution of the random group elements, 

gxy , the gauge fields assigned to the links xy , is the Haar measure, dgxy , 

on G . Given a subset X Ì Zn , we define g(X) = {gxy : xy Ì x} . 

The finite volume (Euclidean vacuum) expectation of the lattice gauge 

theory described here is given by the measure 

(1.14) 

where 

g(˄) ≡ Dg(˄) = B(g(∂˄)) Π dgxy , (1.15) 

and AYM(˄) is given by (1.13) , with Σ replaced by å . Moreover, 

B(g(∂˄)) is an arbitrary, bounded function of g(∂˄) , i.e. of all those gauge 

fields gxy with xy Ì ∂˄ . The significance of B is to specify boundary con-

ditions. Especially in v = 2 dimensions, the physics of the theory may depend 

crucially on the choice of B ; see e.g. [14,15] and § 2. We warn the reader 

that, in contrast to what one does in classical statistical mechanics, it is 

sometimes necessary to choose boundary conditions, B , which are non-positive ; 

(construction of "θ-vacua"). Then dµB is a "signed" measure. The factor 

is so chosen that the integral of dμB(g(Λ)) is unity. In accordance with the 

announced notation we will write 

(1.16) 
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i f reference to A and B(g(∂˄)) is superfluous. The limit in which A tends to 

in (1.14), is the thermodynamic limit. A thermodynamic limit of dµB (g(˄)), (in the 
B 

sense of w*-convergence of subsequences), can always be constructed by a standard 

compactness argument, at least when B > 0 . 

We now proceed to a heuristic description of the main ideas of our approach. 

The coordinates of a lattice site x are denoted (x1,...,xV- 1,xV) = (i,x
V) , 

with i = i(x1,...,x
V
 1) ϵ Zv- 1 . Let ˄

t
 = Λ ∩ {x : x

V
 = t} and let ˄0t be the 

projection of ˄t onto {x : x
V
 = o} = ZV-

 1 . Let gh(t) denote the collection 

of all gauge fields in A assigned to links xy in ˄t , i.e. xV = yV = t . 

These gauge fields are called horizontal gauge fields localized at xV = t. 

Let g
i
 ≡ gvi(t) = g(i,t)(i,t+1) , with (i, t) (i, t+1 ) Ì A . The gauge fields gi

 (t) are 

called vertical gauge fields localized in the slice [t, t+1 ]. The Yang-Mills action can now be 

rewritten as 

AvYM(
˄)
 = ReX<sh(t)a

P

)+

ijc
/

nA
° Re x(8i(t)8u.t+i)(

j>

t

+

i)8

j

(t>'18(

J;t

)(i

;

t) 

(1.17) 

The first term on the r.s. of (1.17) can be recognized to be a sum of Yang-Mills 

actions, ^^/^(t))
 }
 depending only on horizontal gauge fields in the (v-1) 

dimensional hyperplane at xv = t . Next, we interpret the second term on the 

r.s. of (1.17) . We note that the vertical gauge fields in different slices are, 

a priori, independent from each other. Therefore, reference to t is superfluous, 

and we abreviate gi(t) by gi . Moreover, we set 

tij = tij(t) = (s(l,t+l)(j,t+l)) 

bij ≡ bij(t) = S(j,t)(i,t) · 

(1.18) 

Fig. 1 
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The second term on the r.s. of (1.17) can now be rewritten as 

with 

(1.19) 

This expression is to be compared with the action of a (v-1)-dimensional lattice 

σ-model with fields taking values in G : 

(1.20) 

The global symmetry group of the action 1 is the group G X G , acting on 

the field g as follows : 

G X G ϶ (b, t ) : gi → bg
i
 t-

 1
 . 

(Clearly χ((bgi t-1)-1 )
 =

 χ(gi-1 gj) , by the cyclic invariance of y) . 

The parallel transport used in definition (1.20) of Ασv- 1 is flat. A non-

flat parallel transport is obtained by letting the symmetry group G X G act 

locally, i.e. by converting it into a gauge group. Given a curve y(i,j) Ì ZV- 1 

of neighboring links joining a site i to a site j , the parallel transport of 

gi € G , localized at i , to the site j along y(i,j) is defined by 

gi→ by(i,j) gi t-1y(i,j) ’ 

with (1.21) 

γ( ,j) Y(l’j) uvCY(i,j)
 uv uv 

Thus (1.19) is the action of the non-linear σ-model in an external gauge field 

obtained from (1.20) by minimal substitution ; (y(i,j) = ij in (1.21)). 
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The partition function of those σ-models is given by 

We set 

ζσ (b,t) = zσ (b,t) / Zσ . (1.22) 

We recall the following result of [4,14] . 

Theorem 1.1. 

For a class of boundary conditions, B , (including periodic and free) 

specified in [4] 

1) 0 < ζσ (b, t) < ζσ (11,11) = 1; 

(diamagnetic inequality) 

2) ζσ (b,t) is gauge-invariant, i.e. 

ζσ (b,t) = ζσ (bh,tm) , with 

bhij = hi bijh-1j , tmij = mitij m-1j , where h and m are functions of 

compact support on ZV- 1 with values in G . □ 

We denote by < - >σv- 1 (b,t) the normalized expectation 

(1.23) 

of the σ-model in the external gauge field (b,t) . We let < - > denote 

the v-dimensional, pure Yang-Mills expectation defined by the measure dµ 

introduced in (1.14)-(1.16) . Furthermore, we let dµv-1(gh (t)) be given by 

(1.14)-(1.16) , but with replaced by For 
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simplicity, we choose a boundary condition, B(g(∂˄)) , which factorizes into 

functions only depending on gh(∂˄t) ) , resp. gvi(t) , i ϵ ∂(˄0t ∩ ˄0
t+

1) , t ϵ Z . 

It can then be absorbed in the definition of du 1(gh (t)) and of 

< - >σv-1 (gh(t),gh (t+1)) and is suppressed in our notation. 

It now follows from (1.17)-(1.20) that 

• ζσ(gh(t) ,gh(t+l)) dµv-1 (gh( t) )} , 

(1.24) 

with ζ = ∫Π ζσ(g
h

( t), g
h

( t+1) ) dµ
v-1

(g
h
(t)) . 

Under the conditions of Theorem 1.1,1) , 

0 < ζ < 1 . (1.25) 

Equation (1.24) is the basic identity exploited in this paper. We apply it to 

discuss confinement of static quarks. For this purpose we define the Wilson 

loop observables which we regard as the basic observables of a Yang-Mills theory : 

Let Uq be an irreducible representation of G , and χq its character. Let 

C be a closed curve of links in . The Wilson loop observable (the trace of 

the "holonomy operator" corresponding to C) is defined by 

W
q
(C) ≡ χ

q
(gC) = tr(Uq(g

c
)) . (1.26) 

This defines a random field on the space of closed loops in ZV. We now rewrite 

it in terms of horizontal and vertical gauge fields. 

Let V(t,C) be all those oriented, vertical links in C that belong 

to the slice [t, t+1] , and let H (t,C) = C ∩ ˄t · Then 

(1.27) (1.27) 
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where
 t

)[g(H(t, C) )] is a product of matrix elements of U
q
(ghxy) , xy Ì H(t,C), 

and vqm(
t
) [g(V(t, C)) ] is a product of matrix elements of U

q
(gvxy) , xy Ì V(t,C) , 

and å is that sum over products of matrix elements - i.e. that contraction 

schemẽ - that yields the trace, tr(Uq(g
c
)) . From (1.24) and (1.27) we derive 

• CŒ(gh(t) ,gh(t+l)) d^_
1
(gh(t))( (1.28) 

The n = 1 expectation provides information about confinement of static quarks, 

the n = 2 expectation about the low-lying excitations of the theory. In a quark 

confining phase and for a representation Uq that is non-trivial on the center, 

Z , of the gauge group G one would expect e.g. that 

< 0(exp[-A(C1,...,Cn)]) , (1.29) 

where A(C1 , ...,C ) is the total area of the smallest two-dimensional surface 

bounded by the loops ,...,C
n

 . We assert that such an estimate can, in principle, 

be obtained from (1.28) and a detailed analysis of the cluster properties of the 

k-point functions of the (v-1)-dimensional, non-linear σ-model in an arbitrary 

external gauge field. For this purpose, we note that 

|hqmj
 (t)

[g(H(t,Cj))]| < 1 . (1.30) 

for all mj(t) and all t , since hqmj (t) is a product of matrix elements of 
|+..+|c

n
| 

unitary matrices. Moreover, å extends over dq terms, where 
m1, . . , mn 

|c| is the number of links contained in C , and d is the dimension of the 

representation Uq 
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We now assume that the number of vertical links in C is > α|Cj| , 

for some α > 0 and all j = 1,··,n. Then, by (1.28),(1.30) and the above 

arguments, an estimate like (1.29) will follow from decay estimates for 

(1.31) 

These are ordinary N(t)-point functions of the (v-1)-dimensional, non-linear 

σ-model in the external gauge field (b,t) , with N(t) = Σj=1 card(V(t,Cl )) . 

Note that N(t) is even, and (1.31) is invariant under gj→ eiφ gj , for j ϵZv-1 

Inequality (1.29) will now generally follow from 

a) <Uq(gj)kl>σv-1(b,t) = 0 ’ 

for all j,k,l and all (b,t) ; and e.g. 

b) the expectation < (b,t) clusters exponentially, uniformly in b,t . 

See also §§ 2,3,5.1 . 

In order to clarify this discussion we now consider a special case : 

We choose a single, rectangular loop C with vertices at (0,0),(j,0),(j,T),(0,T). 

Then, 

(1.32) 

where 

(1.33) 
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Fig. 2 

From our basic identity (1.24) and (1.32),(1.33) it follows that 

• ζσ(gh(t),gh(t+l))}Bm0n0 T (1.34) 

We now proceed to estimate the r.s. of (1.34) . As shown above, see (1.30), 

|Bm0n0 | < 1 , |TnNmN | < 1 . (In fact, if the horizontal pieces of C have 

the direction of a coordinate axis and for a suitable choice of boundary conditions 

one can choose an axial gauge such that B = T = 11 ). Moreover, the number of 

terms in 

We now imagine taking the thermodynamic limit, Λ ↑ Zv . Suppose that, 

in that limit, there is a function Vq(j) diverging to +∞ , as |j | → ∞, 

such that 

(1.35) 
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uniformly in (b,t) . Then, by (1.34), Theorem 1.1.1) and the above estimates, 

(1.36) 

The Wilson criterion [16] then says that, in this theory, static quarks are 

confined by a potential Vqq(j) bounded below by Vq(j) . Roughly 

(1.37) 

where CT = C is the loop depicted in Fig. 2 . The correct definition of the 

potential Vqq between (infinitely heavy) static quarks may be found in [14] . 

A slight extension of the above arguments gives 

Theorem 1.2. Let Vqq(j) be defined as in [14] (equs. (12), (12') , or as in 

(1.37)) . Assume that (1.35) holds uniformly in (b,t) and choose boundary 

conditions for which ζσ(b,t) > 0 , for all (b,t) . Then 

Vqq(j) > Vq(j) , for all j . □ 

Inequality (1.35) is a cluster property of the Uq-two-point function in the 

(v-1)-dimensional, non-linear σ-model in an arbitrary external gauge field. 

In particular, if Vq(j) ≈ m|j| , as |j| → ∞ , for some m > 0 , then (1.35) 

expresses exponential clustering of that two-point function. By Theorem 1.2 this 

implies confinement of static quarks by a linearly rising potential. 

We have now completed the proof of our contention that pure Yang-Mills 

theory in v-dimensions is equivalent to an integral of a product of (v-1)-

dimensional, non-linear σ-models in external gauge fields, and we have related 

clustering in those σ-models to confinement in the Yang-Mills theory. 

In the remainder of this paper we are primarly concerned with discussing 

the cluster properties of (v-1)-dimensional, non-linear σ-models in an arbitrary 

external gauge field. Another mechanism for confinement of static quarks (cancellation 

of "random phases") is discussed in § 5.2. 
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1.4. Summary of contents of remaining sections 

In §2 we discuss general conditions for the clustering of the two-point 

function of a non-linear σ-model in an external gauge field, i.e. we study the 

estimate 

(1.38) 

see (1.35) . A necessary condition for Vq(j) ∞ , as | j | -> ∞ , uniformly in 

(b,t) , is 

(1.39) 

for all m,n , all external gauge fields (b,t) . 

The following result is established in § 2 . 

Theorem 1.3. : Suppose that the character χ used in the definition (1.19), (1.20) 

of the action ^ is the character of a faithful representation of G . 

Then equation (1.39), for arbitrary (b,t) is equivalent to being 

a representation of G that is non-trivial on the center Z of the group G. □ 

In Yang-Mills theory, the interpretation of this result is that confining 

representations should be non-trivial on Z . This is in accordance with a high 

temperature (strong coupling) result of [2] and with general wisdom. We note 

that in zero external gauge field, i.e. for (b,t) = (11,11) , 

(1.40) 

for every representation of G not containing the trivial one. (This is 

seen by substituting gj g-1l for g. , for all j # l , which leaves dgj , j # l , 

invariant). 

For non-trivial (b,t) , (1.40) is in general false. Using (1.39) we 

then recall standard implications of a high-temperature expansion for clustering, 
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as expressed by (1.38) . 

We conclude §2 with some comments on the structure of Q-vacua in 

general, two-dimensional lattice Higgs theories. We show that the 0-vacua of 

these theories are labelled by the elements of the center Z of the gauge group 

G . (in three dimensions, in the Higgs phase, the characters of Z generally 

label topological charge-vortex- super-selection sectors of the theory ; see also 

[18,14,19]) . 

In §3 we present results specifically concerning the cluster properties 

of two-dimensional, non-linear σ-models. Our method is based on a slight genera-

lization of the Mc Bryan-Spencer upper bound [20] (for the two-point function of 

the rotator model) and correlation inequalities of the Ginibre type [21,22] . 

Our conclusion is that three-dimensional Yang-Mills theories with gauge 

group given by an arbitrary compact Lie group can be expected to have at least 

logarithmic confinement of static quarks. This is proven for G = U(n) , 

n = 1,2,3,..., recovering a result of [23] ; see also [19] .If G is a non-

abelian Lie group (e.g. G = SU(2)) we expect linear confinement of static quarks, 

since renormalization group arguments suggest that the two-point function of the 

two-dimensional, non-linear σ-model in zero external gauge field clusters expo-

nentially, for arbitrary g < ∞ . 

One might expect that turning on an external gauge field generally enhances 

clustering of truncated correlations, so that, by (1.39),(1.38) ought to hold 

with Vq(j) = 0([jJ) . Unfortunately, this is in general false. For this reason 

a complete proof of permanent confinement of static quarks by a linear potential 

in all three-dimensional, pure Yang-Mills theories with a non-abelian, (simple) 

gauge Lie group will be more subtle than anticipated - if true at all. We also 

give an argument suggesting that four-dimensional lattice Yang-Mills theories -

even non-abelian ones - may generally have a phase transition, as B = g-2 is 
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varied. 

In §§4 and 5.2 we derive an expansion of the expectation of a product 

of Wilson loops in terms of expectations of two-dimensional random surfaces 

bounded by the loops, for v-dimensional pure Yang-Mills theories with G = U(n) 

or 0(n) ,n= 1,2,3,... or G = SU(2) . Our method is based on expanding Uq-N-

point functions of (v-1)-dimensional σ-models in an external gauge field in terms of 

random walks, [24]. Our expansion relates confinement of static quarks by a 

linear potential to an exponentially small, statistical weight of random surfaces. 

We then briefly comment on relations of Yang-Mills theory to dual strings : It can 

be shown that Yang-Mills theory ''converges" to a dual string, as β -> 0 . Hence 

the low-lying mass spectrum of strongly coupled Yang-Mills theory (β << 1) is 

expected to resemble the dual string spectrum ; (approximate Regge trajectories). 

We expect that the same is true in the large-n-limit of U(n) - or 0(n) - theories 

for β = β
0
•β
η

 , { βn} suitably chosen and normalized so that β2 = 1 , 0 < β0 

arbitrary. (We hope to report more details elsewhere). 

The end of §4 concerns an application of the Brascamp-Lieb inequalities 

[l7,30] to proving lower bounds on
 3critical

 for U(n)-and 0(n)-theories. 

The result is βcritical (n) > βC , for some βC independent of n c(which is 

somewhat disappointing). 

In § 5.1 we specialize the scheme of § 4 (expansion in random surfaces) 

to the case of an SU(2) Yang-Mills theory and use it to prove linear confinement 

of static quarks for all β < const./v-2 . In S 5.2 we distill out of the scheme 

of §§ 4 and 5.1 two basic mechanisms that might lead to permanent confinement of 

static quarks in Yang-Mills theories ; (cluster properties of associated σ-models, 

resp. cancellation of random phases). The two mechanisms are discussed in some 

detail, partly rigorously, partly heuristically. In certain respects, § 5.2 may 

be the most interesting part of the whole paper. See in particular identity (5.14). 
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In § 6 we propose a method for further analysis of the three - and 

four - dimensional Z (2)-gauge theories, relating them to a two-dimensional 

Ising model with random couplings in one direction. 

In § 7, we consider (v-1)-dimensional, Gaussian (i.e. linear) σ-models 

in an external gauge field. They are used to describe a hypothetical phase of 

V-dimensional Yang-Mills theory which is qualitatively correctly described by 

perturbation theory. Thus, they ought to provide a correct description of the short 

distance properties of Yang-Mills theory. The main purposes of that analysis is to 

gain some insight into how to construct Wilson loop observables in the continuum 

limit and how to define a scheme for implicit renormalization. 
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useful comments and "moral support". B. Durhuus would like to thank the IHES for 
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§ 2. Necessary condition for clustering of two-point functions in non-linear 

q-models ; 0-vacua in two-dimensional Yang-Mills theories 

2.1. Proof of Theorem 1.3 

In this section we argue that confining (or "quark") representations, 

Uq , of the gauge group G are those representations for which 

(2.1) 

for all l,m,n and all external gauge fields (b,t) . Representations violating 

(2.1) are called particle representations. Theorem 1.3 says that, in the strong 

coupling regime (B << 1) , these notions coincide with the ones in [2] where 

a high temperature expansion for the v-dimensional Yang-Mills theory is used to 

distinguish between confining and particle representations ; see also [25] . 

Condition (2.1) is necessary for the clustering of the Uq-two-point 

function of the v-dimensional, non-linear σ-model in an arbitrary external gauge 

field which, in turn, is a sufficient condition for confinement of static quarks 

transforming according to Uq , (in the sense of Wilson's criterion [16] or its 

improved version [14]) . 

We recall that the action of a (v-1)-dimensional G x G non-linear σ-

model in an external gauge field is given by 

(2.2) 

and the equilibrium expectation, < - > (b,t) , by the probability measure 

(2.3) 

where B is a boundary condition only depending on { gj : j G dΛ} . 

First we give a sufficient condition for (2.1). Let Zq be the minimal 
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subgroup # { 11} contained in or equal to the center Z of the group G with the 

property that 

Uq | Zq does not contain the trivial representation of . (2.4) 

We assume that the boundary condition B is invariant under Zq , i.e. 

B(gdΛ) = B((g · τ)dΛ ) , (2.5) 

where (g · T)J =
 g

j •
 T

 ’
 for

 J
 , and T is some element of Zq . 

Theorem 2.1 : If one assumes (2.4) and (2.5) then 

for arbitrary (b,t) . 

Proof : A basic role in the proof is played by the simple identity 

dg F(g) = fG dg JZq dT F(g•T) (2.6) 

where F e L1(G,dg) ; (a consequence of the right invariance of dg and Fubini's 

theorem). By (2.3) 
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where = gxT-1 , for x # l , gl = gl . Here we have used (2.6) and the fact 

that τ commutes with all bxy and txy . Since dgx = dgx , for all x , by 

right invariance, =B(dA),

 by
 the assumed Zq-invariance of B and 

gli = gl ’ we have 

with 

Next, Uq(gl, T)mn = Uq(gl)mn χq(τ) , by the irreducibility of Uq . Thus 

By condition (2.4), , zf dT χq(τ) = 0 . □ 

We now prove the converse of Theorem 2.1. 

(2.7) 

Theorem 2.2. : Suppose that the character χ used in the definition of ACv-1 

σ 
is faithful and that, for some thermodynamic limit, < - >v- 1 (b,t) of the expec-

tations given by (2.3) and arbitrary (b,t) , 

(2.8) 
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and 

<aA0>V-l(b,t) # 0 ’ (2.9) 

for arbitrary bounded regions A0 C Z
V-

 1 . Then Uq does not contain the trivial 

representation of the center Z of G . (If Uq is irreducible this is equivalent 

to Uq | Z # {ll}). 

Remark : We note that (2.9) is trivially satisfied if the boundary condition 

B(gdA ) is non-negative and # 0 , for all Ac Zv- 1 . 

Proof : By (2.8) 

(2.10) 

for arbitrary, bounded F and arbitrary (b',t'). This equation is basic for 

our proof. 

We choose some bounded region A0 C Zv- 1 containing the site l, , and 

l & & DA0 . By taking a conditional expectation with respect to the field configu-

ration inside A0 , i.e. by applying the DLR equations [26] , we obtain 

where B only depends on those bxy and txy for which xy is outside A0 or 

on dA0 , and ZA0. is a normalization factor. Since 

ΙΖΛ0 I < exq[Βνχ(11)| Λ0|] ||B||1 < ∞ , 

(2.8) implies 

(2.11) 

Using the argument leading to (2.10) we see that we may integrate the l.s. of 
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(2.11) over all those gauge fields bxy with the property that x 6A0 , y £ A1 , 

with A1 = A0 \ dA0 , and obtain 

By the left and right invariance of dbxy , 

Thus 

with |C(b,t)| = |<aA0>v-1 (b,t)| which is strictly positive, by hypothesis (2.9 

Thus 

for arbitrary (b,t) . The end of the proof is based on 

Lemma 2.3. : If ΕB(l,A1;b,t) = 0 , for arbitrary (b,t) and some β > 0 then 

EB' (l,A1;b,t) = 0 , for all B
'
 > 0 and arbitrary (b,t) . 

Proof of Lemma 2.3. : We claim that, for β > 0 and an arbitrary δ > 0 , there 

exists a function Fδ € L1(G,dg) such that 

(2.13) 

for arbitrary β' > 0 . When β' = 0 this is clear : δ = 0, Fδ » const. suffice. 

Thus we may suppose that B' > 0 .We consider the Peter-Weyl expansion 

eB'ReX( g) = ΣaeA ca (β') χa (g) ; (2.14) 
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here A is a list of the irreducible representations of G . We may choose A 

to be contained in Z . For arbitrary β' > 0 , the coefficients ca (β') are 

rapidly decreasing in |α| . Moreover, by using the power series expansion of the 

exponential, it is easy to see that ca (β') > 0 for all a and β' > 0 , and 

if β > 0 and β' > 0 then 

ca (β') > 0 if and only if ca (β) > 0 

Choosing 

with ca (β')/ca (β) =0 in case ca (β') = ca (β) = 0 , we obtain (2.13), provided 

αδ is sufficiently large. From (2.12) and (2.13) we conclude that 

ΕB' (l,Λ1, ;b,t) = fEB (l,A1;b(b')-1,t) Π Fδ (b'xy ) db'xy + e(l,A1 ;b,t) , 

where |e(l,A1;b,t)| < vδ|A1| . 

Since EB(l,A1 ;b(b')- 1,t) = 0 ,for all b,b' and t , the lemma follows by letting 

δ \ 0 . □ 

Since (l,Α1 ;b,t) = 0 , for all β ' > 0 , 

for arbitrary (b,t) and β' > 0 (2.15) 

We now choose 

A1 = {U+n
1
e
1 + nj

e
j : nj = 0,1, nj = 0, ...,N} , (2.16) 

where ej and ej are two orthogonal unit lattice vectors. We set l'n = l+ej+nej, 

ln = l + nej , and choose 
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bl'nl’n+1 = tln'l'n+1 = 11 ’ 

blnl'n = tlnl'n = ll, 

bl ln+1 = tlnln+1 = hn ’ 

(2.17^ 

where is an arbitrary element of G , n = 0,..., N-1. When β' tends to 

+∞ the measure 

(zB'N
 >-1

 e
 ·n=

π
ο

e 

• Π dgl dgl' 

where is the obvious normalization factor, is a probability measure concentrated 

on the region c Gx2(N+1) specified by 

(2.18) 

and 

X

 ( gln-1hngln+1h-1n)
 = X(ll) , for all n = 0,...,N. (2.19) 

Since x(g) = χ(11) implies g = 11 , by hypothesis on χ , we conclude that 

gl= gl' = gl' l' = gl = · · = gl'= gl , 

and this and (2.19) yield 

hn8l=glhn ’ for a11 n=0,···,Ν· (2.20) 

We conclude that, for gl to belong to , for arbitrary h0,...,hN and N < ∞ 

it is necessary that 



- 29 -

hgl = glh , for all h € G , 

i.e. e Z . Thus, as β' -> +∞ , N -> ∞ , and for a suitable choice of h1,..,h
N

 , 

FB' (l , Λ1, ;b, t) —> dT uq(t)mn , 

with and (b,t) as specified in (2.16), (2.17) . Since FB' (l,A1;b,t) = 0, 

for all β' , A1 and (b,t) 

dT Uq(T) = ο , 

or, equivalently, 

Uq | Z does not contain the trivial representation of Z . □ 

Theorem 2.2 shows that if Uq is trivial on the center Z of G then it is in 

general impossible that 

<Uq(g0 ) Uq(g-1x)kl > (b,t) -> 0 , as |x| -> ∞ , 

for arbitrary (b,t), because, for a suitable choice of (b,t) 

|<Uq(g0)ij > (b,t)| | < Uq ( gy )> (b, t) | > const. > 0 , 

for all x = §e , ξ. large enough. 

Thus, because of (1.35) and Theorem 1.2, particles transforming under 

a representation of the gauge group that is trivial on the center cannot be 

expected, to be permanently confined. Motivated by this observation 

we henceforth constrain our attention to the study of cluster properties of 

<Uq(g0)ij Ua(g-1x)kl> (b,t) , 
(2.21) 

when [x | -> ∞ , with Uq a representation of the gauge group that does not contain 

the trivial representation of the center. 

*) However, the "colour of such particles is screened by the "colour" of the gauge 
field. See e.g. [25]. 
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The following result follows by standard high temperature expansions [2,34,35]. 

Theorem 2.4. : 

Let Y be the character used in the definition of the action Ασv-1 (b,t) ; 

see (2.2) . Assume that 

1 - e Bx(ll) < e < 1 

for some small e > 0 (depending on the Haar measure of the gauge group G and 

estimated as in [2]) . Then the two-point function (2.21) decays exponentially, 

as | x | -> ∞ . Q 

Remarks : 

1) By Theorems 1.2 and 2.2, Theorem 2.4 establishes linear confinement of static 

quarks in an irreducible representation Uq of the gauge group G that is non-

trivial on the center Z of G . 

2) In § 4 we apply the Brascamp-Lieb method [17,30] to prove that for G = U(n) 

or 0(n) , x the character of the fundamental representation of G , the two-

point function (2.21) clusters (possibly not exponentially) if B < B0 , where 

B0 is a positive constant independent of n . In comparison, Theorem 2.4 

establishes exponential clustering of the two-point function of the U(n) - or 

0(n) σ-models for β < 0(l/n) . 

The last issue of § 2 is a brief discussion of θ-vacua in two-dimensional 

non-abelian Higgs theories with Higgs scalars in a representation that is trivial 

on the center Z of the gauge group. We show that such a theory has in general as 

many physically distinct vacua (θ-vacua) as there are elements in the center Z , 

and that quarks are in general only confined in the standard θ = 0 vacuum. This 

is in analogy to what was previously found for abelian theories [14] ; see also 

[19] . The main purpose of our discussion is to exhibit the drastic effect boundary 

conditions may have. For pedagogical reasons we start with a short discussion of 
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the pure Z(n) models. The action of these models is 

(2.21) 

where θdp = θxy +θyz +θzu +θux , if dp = (xy,yz,zu,ux| , and 

for all xy CA . 

The vacuum expectation is given by a (generally complex-valued) measure 

du , defined by 

(2.22) 

with dθ the normalized counting measure on {0,...,n-1} , (= Haar measure on Z(n)) 

As boundary condition, B , we choose 

B( θ(dA) ) = Bk (θ(dA) ) = Π elkθxy , 
xyCdA 

(2.23) 

k = 0,...,n-l . 

Since the gauge field is abelian, 

(2.24) 

(This is the lattice version of Stokes' theorem). 

The vacuum expectation defined by the measure (2.22) with B = Bk is denoted 

< - >A (B,k) . In two dimensions and for B = Bk the "plaquette angles" θdp 

with distribution (2.22) are independent random variables. Therefore the existence 

of the thermodynamic limit 

< - > (β,k) = lim2 < - >A (B,k) 

is trivial and so are the facts that < - > (B,k) is invariant under the symmetries 
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of Z2 and satisfies reflection positivity, for all k ; i.e. < - > (B,k) is 

indeed a vacuum expectation. 

We now show that, for k # k' , < - > (B,k) and < - > (B,k1) are 

physically different. (The standard vacuum corresponds to k = 0) . 

Let 

(2.25) 

Let C1,...,CN be closed loops and A ,..., AN the subsets of Z2 bounded by 

Cl’···, CN · 

Suppose for simplicity, that 

Ai Π Αj = 0 , for i # j (2.26) 

Let 

Then 

(2.27) 

This is easily generalized to the case where (2.26) is violated. 

For k = 0 , |0,qj (β)| < 1 , for all B and all qj = l,..,n-l . 

Thus, in the standard k = 0 vacuum, static quarks transforming under a 

non-trivial, irreducible representation of Z(n) are permanently confined by a linear 

potential, and inequality (1.29) holds. However, when |k-q |< k , |rk,q (β)| > 1 . 

Therefore in a k # 0 vacuum quarks of "n-ality" q , with |k-q| < k , repell each 

other with a linear potential, namely equation (2.25) exhibits "anti-confinement" 

(liberation) of static quarks of n-ality q , in the most dramatic sense of these 
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words. Put differently, the system in the vacuum state < - > (B,k) , k # 0 , is 

unstable against coupling to quarks of n-ality q , with k-q < k : the state 

< - > (B,k) decays into < - (B,k-q) ; the "fcharges" at infinity are screened. 

We now argue that a two-dimensional Higgs theory with gauge group 

G = SU(n) , for example, and Higgs scalars in a representation that is trivial on 

the center Z(n) of SU(n) also has n= |z(n)| physically different vacuum 

expectations, < - > (B,k) , k = 0,...,n-l . These expectations are given by the 

thermodynamic limit of the complex measures 

(2.28) 

where 

(2.29) 

and Uk is a representation of SU(n) of n-ality k , i.e. Uk (eiθ ; = eikθ, 

for eiθ e Z(n).Here, ZM (g(A)) is a gauge-invariant (non-negative) functional 

arising by integrating out the Higgs scalars with the property 

Z(g(A)) = Z((g·T)(A)) , (2.30) 

for arbitrary τxy € Z(n), xy C A ; (2.30) expresses the fact that the Higgs 

scalars transform trivially under Z(n ). [14,23] . 

For k = 0 , this theory permanently confines static quarks by a linear 

potential [27,23]. 

If the a priori distribution of the Higgs scalars has zero weight at zero 

field strength the Higgs theory defined in (2.28)-(2.30) converges to the pure 

Z(n) lattice gauge theory (2.22),(2.23), as the strength of the coupling of the 

Higgs scalars to the gauge field tends to ∞ , for all β < ∞ and all A . (The 

proof is standard ; convergence is uniform in A when k = 0). In this limit all 



- 34 -

boundary conditions , . . . of the same n-ality k are equivalent. That 

is likely to be true in general, in the thermodynamic limit A = Z2 , due to screening 

Thus if the coupling of the Higgs scalars to the gauge field is sufficiently 

strong, the vacuum expectations < - > (B,k) of the two-dimensional SU(n) Higgs 

theory are physically different for different values of k , and we expect the 

same phenomena (anti-confinement and instability of < - > (B,k) under coupling 

to quarks of n-ality q with |k-q| < k ) as in the pure model. 

We do not wish to go into details of these arguments, as they are hardly 

very interesting. (For the modified models of [19] and the abelian models [4,14] 

most assertions can be made precise using duality transformations. Notice that 

there is no need for integrating out the Higgs scalars which we did only to 

economise on notations. We also recall that, for 2Πk/n = Π , < - > (B,k) may be 

doubly degenerate, for suitable coupling constants, and charged super selection 

sectors may appear [36]). 

It is clear how to extend our analysis to arbitrary gauge groups with 

non-trivial center. In general, one will find as many physically distinct vacua 

as there are elements in the center, but only the standard vacuum 

< - > (β,0) will permanently confine arbitrary, static quarks transforming non-

trivially under the center. The measures with expectation < - > (B,k) , k # 0 , 

are complex-valued, and they differ from the standard k = 0 measure only by a 

boundary condition. The explicit, physical interpretation of those boundary 

conditions in terms of static (colour) charges at spatial ± ∞ is as in [36]. 

[In three dimensions, the irreducible characters of the center of G generally 

label vortex sectors, in four dimensions monopole sectors ; see [18,19]. The mass 

gaps on these sectors are given by analogues of surface tensions, as in the case of 

the soliton sectors of two-dimensional field theories with degenerate vacua]. 
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§ 3. Cluster properties of non-linear σ-models 

Let G be a compact Lie group, and let the action of the nonlinear 

G x G-σ-model in an external G X G-field (b ,t) and enclosed in the region 

A C Zv be given by 

where χ is a faithful character on G . The expectation in this model at inverse 

temperature B will be denoted by < · >σG,v (B,b,t) (suppressing A in the notation). 

It has been proved in [23] that if Xq is a character on G which is 

non-trivial on the center Z(G) , then 

where d is the dimension of the irreducible representation U corresponding to 

χ , and Uq(t)ij = U
q
(T) δij for τ € Z(G) , and 1 < i,j < dq . Combining this 

result with (1.24), it follows that if the Z(G) X Z(G)-σ-model in v-1 dimensions 

clusters for some coupling constant B , then the v-dimensional Yang-Mills theory 

with gauge group G and coupling constant B / d confines static quarks. 

Thus, we recover here a result of Mack's [27] (v = 2) , and results 

in [23] (Theorems 1 and 2). 

It is also remarked in [23] that (3.1) implies that the McBryan-Spencer 

bound [20] can be applied to U(n) χ U(n)-σ-models, or to any G χ G-σ-models in 

two dimensions such that Z(G) contains a copy of U(l) ; even in an external 

G X G-gauge field. For groups whose center does not contain U(l) the situation 

is more involved. However, we can prove the following 

Theorem 3.1. : Suppose that G contains a U(l) subgroup, and that the character 

Xq is non-trivial on this subgroup. For free or periodic boundary conditions, the 

infinite volume two-point functions of the two-dimensional model, 
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(3.2) 

cluster for all B > 0 and all b . 

Proof : Let us choose representations (of dimension dq) and U (of 

dimension d) , corresponding to χq and χ respectively, such that they map the 

elements of U(l) C G into diagonal matrices ; this can obviously be done, and 

we conclude that there exist integers kq1,...,kqd and k1,...,kd such that 

and 

U(h(θ) )ij. = δij e ikjθ, 1 < i,j < d , 

for all θ € [θ,2Π[ , where h(θ) , θ e [0,2Π[ , labels the elements of U(l) C G. 

By using the right-invariance of the Haar measure on G , Fubini's theorem 

and the cyclicity of X , we have that 
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(3.3) 

where Ζσ(β, b, 1) is a normalisation factor. 
V 

At this point we can adopt the method of [23] and apply the correlation 

inequalities of [22] to conclude that 

(3.4) 

since U(g) | < 1 for all i, j and all g € G . 

Now since χq is non trivial on U(l) , there exists a j
Q
 such that 

kq Φ 0 , and it is clear that the Mc Bryan-Spencer argument can be applied. 
J0 

It follows that for any β > 0 there exists a C(β) > 0 , such that in 

the infinite volume limit 

(3.5) 

To conclude the proof we show that (3.5) implies bounds of the same kind 

on all the othertwo-point functions;(in fact some of them are zero). 

First, in a finite region Λ we have 

(3.6) 
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as a consequence of the right-invariance of the Haar measure and the cyclicity of 
1 
2 q 

. Next, using the orthonormality of the functions g U (g) , 

2 
1 < m, j < d , in L (G, dg) , we get by integrating (3.6) with respect to g 

that 

(3.8) 

-
Thus <Uq(g ) Uq(g-1) (β, b, H.) is independent of j . From this it 

0 ij x G,v 
follows that (3.5) is fullfilled for all s and all i's. 

Finally using the left invariance of the Haar measure, and performing 

the transformation g0 » gg0 , gi. » for i Φ 0 , we get that 

(3.9) 

where b.. = b . for i Φ 0 and j Φ 0 , and b = g 1b (or b = b g). 
ij ij °J jo jo 

Now since Uq is irreducible, we can find g ,...,g Є G such that the 
d 1 q 

vectors (Uq(g ) ,..., Uq(g ) ) £ , γ = l,...,d , are linearly inde-
r il r idq 3 

pendent. Since we know that the lefthand side of (3.9) fullfills (3.5) when 

V = 2 , for all b , we can conclude that <Uq(g ) Uq(g 1) > (β, b, l) also 
mj x ji G, 2 

obeys a bound of the form (3.5) for all m, j and i . This together with (3.8) 

ends the proof. 

Theorem 3.1 shows that in the G χ G-σ-model in an external gauge 

q 
field of the form (b, 1) , where the group G and character χ have the 

required properties, there is no long-range order in two dimensions. The same 

is wellknown for the N-vector models. In dimensions larger than 2 we have the 

following 

Theorem 3.2. : In v ^ 3 dimensions the G χ G-σ-model with (b, t) ■ (1, 1) 

has always a phase transition with the property that for β large enough 
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uniformly in x , where U has character χ , the same as used in the defi-

nition of the action. 

2 
Proof : Representing U(g) as a vector in a d -dimensional vectorspace 

(see § 4) , the proof is essentially identical to the one given for the N-

vector models in [28] . □ 

The proof of Theorem 3.1 does not work for general external gauge 

fields (b, t) if G is non-abelian. One way of surmounting this difficulty 

would be to prove that 

for all (b, t). This inequality is true if G is abelian in virtue of the 

inequality (3.2). 

In § 7 we argue that this is hardly the case for nonabelian G 

(e.g. G = 0(3)) , and we show that, in a Gaussian weak coupling limit of the 

G x G-σ-model, clustering is definitely diminished for certain choices of 

(b, t) . Thus, we have reasons to believe, that apart from abelian, also certain 

non-abelian lattice Yang-Mills theories in four dimensions may have a phase 

transition at some < . Whether quarks are still confined for β > βc is 

then a matter of whether there are strong cancellations of certain "random 

phases" of the long range order in two-point functions of three dimensional 

σ-models. See § 5.2. 
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§ 4. Expansion of the expectation of Wilson loop observables in terms of random 

surfaces for G = 0(n) or U(n) . 

This section is organized as follows : First we use our basic idea, des-

cribed in § 1, to write the expectation of a product of Wilson loop observables 

as the integral of a product of 2k-point functions of non-linear σ-models. Then 

we use an expansion of these 2k-point functions in terms of random horizontal 

paths joining the 2k points pairwise. Such an expansion can be found in [24] for 

random Gaussian models, and, more generally, for models whose measure is given by 

an integral of exponentials of (not necessarily real) quadratic forms in the fields, 

in [29] . We use this for the Haar measures on 0(n) and U(n). Now it is clear 

that when we form the product over all those 2k-point functions, each class of 

such paths determines a surface bounded by the loops, since the paths join points 

on the vertical sides of the loops pairwise. These surfaces get more complicated 

as the number of loops gets larger, and also as the loops become more general than 

rectangular ones. But in principle we can write down explicitly the weights of the 

surfaces for the two groups 0(n) and U(n) (see (4.10)) . 

Our representations resembles the representation of Green's functions of 

the dual string in terms of (expectations over) random surfaces. Indeed, when β 

is very small, the expectations of products of Wilson loops satisfy the Schwinger-

Dyson equations for the free dual string Euclidian Green's functions of the same 

loops, up to terms of order β . This suggests that, in the strong coupling 

regime (β << 1), the low lying mass spectrum of Yang-Mills theory resembles the 

mass spectrum (without the tachyon) of a free dual string. (In particular, we 

expect that it forms approximate Regge trajectories). We believe that the same 

conclusion ought to hold in the large n limit of U(n) - or 0(n) theories. 

(Our ideas are vaguely related to recent proposals of Polyakov [37]) . 
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4.1. The expansion 

Let us first consider G = 0(n) . We will derive an expansion of the 

two-point functions for the nonlinear σ-models in an external G χ G-gauge field 

by the method used in [24] and [29]. 

We will use the identifications of the vector-space m(n) of η X n-
2 

matrices over IR with or IR ® IR given by 

and 

IRn ® n x ® Y = (x,,.,χ ) ® (Y1 ,..,Y )—> (x γ) Є m(n) . 

It is then seen that for a, b Є m(n) the linear operator on m(n) given by 

g > a g b 

corresponds to a bt on IRn IRn , where bt is the transpose of b . In 

particular a ® bt is orthogonal if a and b are. 

Since furthermore, 

mfor g,h Є m(n) 

2 
where < ·,· > is the natural inner product on IR , we get for g = (g1)

 0
, 

b = (b ) „ , t = (t..) , A an arbitrary bounded subset of 

Zv_1 , that 

= (g,Ab g) + 2(v-l)(g, g) 
(4.1) 

where Δ, is the covariant Laplacean on m(n) defined by 

(4.2) 
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where we have set U.. = b. . t. , and we suppose bt = b , ij , lj ij IJ ij ji 

( ·,·) is the inner product on Θ IRn . Furthermore we can suppose suitable 
i€A° 

boundary conditions imposed, e.g. periodic or free ; (see the discussion in § 1). 

Next we note that the Haar measure on 0(n) has the representation 

(4.3) 

where dM = Π d(λ ) is a measure on the set of matrices Μ = 1 ® > 
1<a<β<n aβ 

over IR with
 λ

= ai,ab)na,b=1 and λαβ

 =

 λβα ’

 1
 < a, < n , and dgi is the 

2 
Lebesgue measure on IR . 

Using these remarks and the fact that the last term in (4.1) is a constant 

2(v-l)n |A°| if the g's are in °(n) , we can write 

(4.4) 
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where we have set dg = Π dg. , Μ = Μ. , dM - Π dM, and 
1 1 i€A i 

Expanding (-Δb, + 2iM) 1 in a Neumann series and using the definition of Δb, t 

(4.2) (see also [24]) we have that 

(4.5) 

where the sum is over all paths w : { 1, . . . ,N(w) } —> A° for which w(0) = (W. = 0 

and w(N(w)) ) = — X
 s

 and w(i) and w(i+l) are nearest neighbors for all 

i = 0, . . . ,N(w)-1 . N(w) is the length of the path w . Furthermore let U = U 
w(-l)w(0) 

for all paths w . 

Using now the representation 

(4.6) 

we get from (4.5) 

(4.7) 

From this we get the desired expansion, namely 

<(g0) <g ( (b, t) 
αβ

 x γδ v_1 
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(4.8) 

More generally the 2k-point function is given by 

(4.9) 
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where Σ denotes the sum over all ways of writing the set {1,..., 2k} 
k-pairings 

as k unordered pairs (i., j1),...,(i, ,j. ) and Ʃ for a given pairing 
k k wk 

(ws)i=xis 
(w
s
) f=xj 

J s 

as above is the sum over all sets of paths w1, . · · , wk} in AQ where the s 

path starts at x and ends at X for all s = 1,..., k . 
J s 

Now we can insert (4.9) into (1.28) and we get 

[gH(t, cj))] ζ(g
h
(t),

 g
h
(t+1)) du (

g
h
(t)) 

j 1 j 

(4.10) 

where Σ denotes the sum over all ways of writing each set {1,...,2k } 
k-pairings 

as k unordered pairs (i., j1),...,(ikt ,j ) , and k * (k
t

) is the set of 

k 's where 2k,. is the number of vertical links of the loops C1, in the 
t t 1 m 

slice [t,t+1] . Furthermore for given m.,..., m and given k-pairing 

(it, j t),..., (it , j ) the sum Σ denotes the sum over all sets of paths 
11 kt kt w) 

t t 
w = U } w , . . , ωtk } where, ωt , s = l, . , k is a path in A. which starts at the 

t t
 t t t 

link i and ends as the link j . Finally a , β and γ , indicate 
s s t t 

ί i j j 
s s s s 

the matrix-elements of the matrices g and g which enter in the term 
i j s s 
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vq [g(V(t, C, ))] in (1.28) for the given choice of m , . . . ,m 
m.(t) , ~m 

l=1 
m q YM 

We now assert that (4.10) gives a representation of <. TT W (C)> 
j=1 J v 

as a sum over random surfaces bounded in the vertical directions by the vertical 

sides of the loops C1,..., C
n

 . To see this let us first simplify to the single 

rectangular loop described in the last part of 1.3 or more generally loops C 

which have at most two links in each timeslice [t, t+1] . In this case there is 

clearly only one k-pairing and apart from the finite sum Σ we get in (4.10) a 
~ m 

sum over sets of paths, one in each between the top and the bottom of the 

loop, joining the two vertical links of C in the corresponding slice. But each 

such set of paths can be supposed to determine a surface whose intersections with 

the Λ 's are the respective paths. Of course several procedures to exhibit the 

one to one correspondence between sets of paths and surfaces are possible. 

As to the case of more general sets of loops we
 just remark 

that the random surfaces here become more complicated and may join the vertical 

links of different loops also. 

Clearly,as seen from (4.10), the weight of each random surface looks 

complicated in this lattice approximation to Yang-Mills theory. We have not yet 

succeeded in obtaining good bounds on the expectation of Wilson loop observables 

in the 0(n) case by this method, but we can prove area-decay for the SU(2)-case 

for a large range of coupling constants by using some special properties of SU(2) 

(see § 5). 

Finally we mention that for G = U(n) an analogous expansion can be 

n2 
obtained by identifying U(n) with a subset of C or Cn ® Cn , and using a 

representation of the Haar-measure on U(n) analogous to (4.3). 

4.2. The Brascamp-Lieb bound 

We wish to add a short remark on the Brascamp-Lieb bound for the critical β 

in non-linear σ-models. 
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Recall that in [30] it is proven that the critical inverse temperature, 

3 (N) , of the N-vector models (= 0(N) non-linear σ-models on the lattice ZZV , 

V > 3) obeys 

β (N) > N / 2v . c 
(4.11) 

Their proof follows from a method due to Brascamp and Lieb [17] , which boils down 

to the following estimates : 

N N-l N 
Let Q Є IR , S Є S , and define the real function V on IR by 

where dΩ is the normalized, uniform measure on 1 . Let MV(Q) denote the 

norm of the matrix with matrix elements (Q) . Then, by [17] , 

sup MV(Q) £ const. β (N) 1 
Q 

(4.12) 

It is shown in [30] that 

sup MV(Q) = 1/N 
Q 

from which (4.11) follows;(the constant in (4.12) is also estimated in [ 17 ] ) . 

The Brascamp-Lieb method can also be applied to general G X G-a-models 

(in external gauge fields), in particular to the θ(η) χ 0(n)~ or U(n) X U(n)-

models. As the reader may easily check, a sufficient condition for 

β < β (0(n) x 0(n)) is the following : 

n2 
Let V be the function on IR (identified with m(n)) defined by 

. f
 e

Tr(gV
 dg

 _ 

0(n) 

where dg is the normalized Haar measure on o(n) , and let Μ (Q) be the norm 

2 2 
of the n x n -matrix with matrix elements — (Q) . Then 
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sup MV (Q) > const. βc(0(n) χ 0(n)) 

φ 

(4.13) 

i.e. for β < const, (sup MV(Q) ) 1, the 0(n) χ0(n)-σ-model (in an arbitrary external 

gauge field) has a clustering twopoint function, and hence the corresponding Yang-

Mills theory in one dimension more with gauge group 0(n) confines static quarks. 

Unfortunately, it turns out that the lefthand side of (4.13) does not 

increase with η , so we can only conclude that 

β (0(n) χ 0(n)) > const. , for all n . 
c 

A similar argument applies for G = U(n) . Thus the Brascamp-Lieb method seems tobe 

insufficient to determine the large-n-asymptotics of βC(G X G) , for G = 0( n) 

or U( η) . 
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§ 5. The SU(2) theory 

5.1 Expansion in random surfaces 

In this section we choose G = SU(2) and = X , the character of the 

fundamental representation of SU(2) . Note that χ is real. 

3 3 
We will make use of the homeomorphism φ : S SU(2) (S is the 

3-sphere of radius 1) defined by 

(5.1) 

to carry out a program analogous to that outlined in § 4 . In this case however 

we have the advantage that φ- 1 carries the Haar measure on SU(2) to the uni-

3 
form measure on S , which considerably simplifies the calculations. This is due 

to the fact that the usual five constraints used to specify a SU(2)-matrix from 

mc(2) have been replaced by one single constraint, by a suitable parametrization 

of SU(2) . 

We first note that 

s .S
2
 = tr((Q(S1)-1 Q(s

2
)) , VS1, S2 ЄS3 . 

Furthermore X(g1-1 g2) is invariant under the transformation g1 hg k 1 

and hg k 1 , h, k € SU(2) , so we have 

Q_1 (hgk 1) = 0(h, k) Q_1(g) , V g € SU(2) 

where 0(h, k) is an orthogonal 4 X 4-matrix. 

Now let A° be a rectangular region in v- 1 , and let b =(b) 0, 
ijcA 

t = (t) , with b.. = b-1- Є SU(2) and t = t Є SU(2) for ij A0 . 
1J ijcA 4ijA0 ji 

Define the covariant Laplacean Δ on ( IR ) by b , t 

(5.3) 
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for X = (X) Є (IR4) Ao . 
ϊ€Λo 

Λo _ι 
Then for g = (g ) Є SU(2) and S = (S) = (Q (g )) 

ieA0 i€Λ° Λ° 
we have by (5.2) 

In this section we choose periodic boundary conditions. We note the representation 

3 
of the uniform measure on S 

We can now proceed in complete analogy to § 4, and expand the two-

point function (b, t) in terms of random paths. By using (4.7) 

and defining 

(5.4) 

and 

(5.5) 

we get 

(5. 6) 
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where and ni(w) the number of times that 

ou hits the site j . 

The matrix element that enters in (5.6) is bounded in modulus by l 

so from (5.6) we get the estimate 

(5.7) 

Let now C be a rectangular loop inside the rectangular region A ZZ 

as described in the last part of § 1.3, and let us use the same notations. By 

(5.1) the term appearing in (1.34) is just a sum of 

four terms of the form (0 < r, α, β < 3) . Hence by using (5.7) and 

(1.34) , and remembering the remarks following (1.34), we find that 
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(5.8) 

where Z denotes the partition function in (1.16). 

It is now easily checked that the multilinear form 

is reflection positive with respect to reflections in pairs of planes through 

(or between) the sites of A ZZ , so that we can apply chessboard estimates 

(cf. [4]). 

This combined with a thermodynamic estimate shows that, for β < 3(v-1) , 

the expectation of the Wilson loop observable has area decay. 

Details of these calculations can be found in the appendix to § 5 . 
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5.2. Basic mechanisms for confinement 

We end this section by distilling out of the scheme of § § 4 and 5.1 

the basic mechanisms that might lead to permanent confinement of static quarks. 

The gauge group G is one of the groups SU(2) , U(n), 0(n) , η = 1, 2, 3,... , 

U(1) and 0(1) = ZZ(2) included. Our discussion is based on equs. (4.8), resp. (5.4) -

(5.6) and (1.34) . For simplicity we choose G = SU(2) (or U(l)) and Uq = U to be 

the fundamental representation of SU(2) . Equs. (4.8), resp. (5.4) - (5.6) then give 

(5.9) 

with 

(5.10) 

where 

0(g, h) = U(g)L U(h-1)R (5.11) 

U(g)L is left multiplication by U(g) on V®2 , U(h -1)R is right multiplication 

by U(h
_1

) on V2 , where VU2(=> U(G)) is the space of all matrices on the 

vector space that carries the representation U of G . Here g and h are 

elements in G , and U is the representation of G with character χ (which 

for simplicity we have chosen to be the fundamental representation of G and G = SU(2) 

or U(1). Our methods work in general, but when G=0(n) or U(n) , n > 2 , the factors F and 0 

on the r.s. of (5.9) are tensors which must be contracted. See (4.8)). 

Clearly, 0(b, t |w) is a U(G) χ U(G) - valued random phase. 

If we now insert (5.9) into (1.34) we obtain the following representation 
YΜ 

of <Wq (C) > . (For simplicity we choose C to be a rectangular loop in a 
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coordinate plane containing the vertical (xV -) axis with sides of length 

L = |x| , resp. T) . Then 

(5.12) 

where S belongs to the class of all random surfaces bounded by the loop C 

S ("∂S = C") formed out of vertical plaquettes, and, given S , ω is the path 

of nearest neighbor vertical links obtained by intersecting S with the slice 

{ u < xv < u+l} , (in other words, S = {w : 0 < u < T-1}) , w) is the trace of u —u 
S S 

w
u
 in the {x = u} hyperplane, and wu the one in the {xV = u+l} hyperplane. 

We now introduce an a priori measure, , on the set of all random surfaces boun-

ded by C , by setting 

(5.13) 

(γ = 2(v-1) . 
V 

Let C (S) be the horizontal loop in the [xv = u} hyperplane obtained 
S S 

by composing wu-1 1 with so as to form a closed loop ; w- 1 = C  {x
V =

 θ} , 

WT, = C  {x = T} . If we now combine (5.10)-(5.13) we readily arrive at the 

following nice identity. 

(5.14) 

[Notice that 

and use (5.11),(5.12).] 
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Equ . (5.14) is a rather powerful and suggestive identity which we 

recommend to the reader’s attention.The previous results of this section 

(see also the estimates presented in the appendix) show that in the average 

(with respect to b,t). 

0< F(b,t | W) < ξ(β)|x| , for G=SU(2) or U(l) , (5.15) 

so that, by (5.9), 

(5.16) 

for some ξ(β) which is strictly less than 1 , provided is a quark repre-

sentation and β is sufficiently small (β < 0(v- 1)) . In this case it is enough 

to bound |
X
(gCu s)

)
| by χ(11) = dim , for all u=0,...,T, because (5.13)-

(5.16) already yield confinement of static quarks by a linear potential 

(>-lη §(β) | x | ) . However, we know from Theorem 3.2 that, for b = t ≡ 11 , v > 4 

and β large enough, F (11,ll|w) cannot satisfy (5.15) with ξ(β) < 1 , since 

(5.16) is false, namely 

(5.17) 

as |x|→ ∞ , no matter whether is a quark- or a particle representation. 

We have reasons to expect that, for a class of external gauge fields (b,t) of 

positive measure, 

(5.18) 

as | x | → ∞ . (See the discussion in § 7). 

If we replace the traces of the random phases by χ(11) we obtain the 

upper bound 
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for T >>|x|→∞ , which does not prove more than perimeter decay, i.e. does not 

imply confinement. Therefore, for β large and v > 4 , the only mechanism that 

might give rise to permanent confinement of static quarks appears to be a cancella-

tion of the (traces over) random phases when taking their expectations. 

Such cancellations of random phases, i.e. sharp upper bounds on their 

expectation value in the Yang-Mills measure, are rather subtle and ly beyond our 

present methods. 

We emphasize however that we can obtain improved upper bounds on 
T 

YM 
|< W(C) > | by taking into account the factor π x(gcu(s) (s))

 the
 expectation 

u 
on the r.s. of the basic identity (5.14) : We first apply a chess board estimate 

(in the xv-direction, with reflections in planes between lattice planes) to the 

r.s. of (5.14) and then refined "thermodynamic” estimates to bound the expression 

resulting from the chessboard estimate. The general ideas of this method are as in 

[4, 24, 29] and § 5.1. The results that emerge are substantially better than the ones 

of § 5.1. 

We now summarize those results. Detailed statements and (the somewhat 

lengthy) proofs will appear elsewhere. 

By (5.14) , 

(5.19) 

From the chessboard estimate (in the xv-direction, with reflections at xV= const, 

hyperplanes between lattice planes) and slightly subtle upper bounds on 
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F(g,(g') | w) , viewed as integral kernel of a quadratic form, it follows that 

(5.20) 

where 

(5.21) 

and 

(5.22) 

where C' = C'(0) is a closed loop in the lattice hyperplane at xv = 0 , and 

C'(n) is the translate of C' in the xV -direction to the plane at xV = n ; 

YM 
< - > „ is the Yang-Mills expectation with periodic boundary conditions at 

xv= 0 , 2N+2 . 

In order to get explicit estimates on μ(c') one can apply the ZZ(2) 

domination inequality of refs. [23, 19]. For large β one then applies a duality 

(Fourier) transformation to the resulting expectation in the ZZ(2) theory. This 

reduces the problem to estimating an expectation in a high temperature ZZ(2) model 

which one achieves by a high temperature expansion ; see [43] . As a result 

one finds 

(5.23) 

( |C ' | = length of C') , first for lage β < ∞ and consequently for arbitrary β, 
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by the Griffiths inequality. 

More detailed results and proofs of (5.19)-(5.23) will be presented 

elsewhere. We summarize our estimates in 

Theorem 5.1. 

(5.24) 

where 

(5.25) 

with α and μ given by (5.21 ), (5.22) , resp. 

Remarks : 

T 
The convergence factor μ(Cu (S)) is a manifestation of the mechanism 

u=0 
of cancellation of random phases. 

In the estimates summarized in (5.20)-(5.25) the two mechanisms, the 

"clustering mechanism" (5.15),(5.16), resp. the cancellation of random phases 

(5.22),(5.23), conspire. 

Our estimates are certainly not optimal, but we expect that the way in 
T 

which the statistical weight of the product of random phases, Π (S)) ,
 is 

u=0 
estimated by (5.23) is qualitatively correct for large β, not only for G = U(1), 

but also for G = SU(2) . 

It is of interest to test the strength of our methods in various situations, 

assuming further hypothetical estimates if necessary. One may e.g. suppose that 

(I) with 
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where with and 

K = Κ(ξ) large enough. 

(II) One may study a non-relativistic limit (velocity of light c >> 1) of the 

lattice SU(2) theory. For c >>1 and g small one finds estimates on p"(S | C) 
v 

which reveal an intimate connection between the SU(2) theory and a non-relativistic 

open-string model. 

A systematic study of upper bounds on p"v(S | C) , including (I) and 

(II), will be initiated elsewhere. (The relevant tool from probability theory is 

the theory of interacting random walks, resp. - in a formal continuum limit - inter-

acting Brownian paths). 

We do not want to end this section without pointing out a drawback of 

the methods of this section : The difference between the four-dimensional U(1)-

and the four-dimensional SU(2) lattice gauge theory merely appears as a quantitative 

one ; (e.g. αU(1) (W)> αSU(2)(W)) · contrast, the methods outlined in § 7 do 

point to a qualitative difference between abelian and non-abelian theories. 

Although our present estimates for the four-dimensional SU(2) model are 

far from optimal, one may speculate that, indeed, the "clustering mechanism" 

(5.15),(5.16) breaks down, in the sense that (5.18) becomes true, at some finite 

value of , and that for β >> βo the expectation of the Wilson loop ceases to 

have area decay, even in the SU(2) theory. We emphasize that this would not 

necessarily imply the appearence of coloured physical states in a SU(2) gauge 

theory with quarks in the spin 1/2 representation, because the colour of sufficiently 

light quarks could be screened completely. 
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§ 6. ZZ(2)-gauge theories in 3 and 4 space-time dimensions 

In this section we show how our program implies that the estimation of the 

expectation of Wilson loop observables for ZZ(2) -gauge theories in 3 and 4 

dimensions, can, in principle be reduced to an investigation of certain properties 

of two-dimensional Ising models with random couplings. 

Let us first regard the case v = 3 , G = ZZ(2) , and let = X = the 

non-trivial character on G . Let also C be the loop pictured in Fig. 2, lying 

in the 1-3-plane, the t-direction being identical to the 3-direction. 

Clearly the ZZ(2) non-linear σ-model in an external ZZ(2)X ZZ(2) gauge 

field can be identified with an Ising model with spins ± 1 , and with couplings 

Jij = ± 1 between the spins. More specifically the Hamiltonian is given by 

(6.1) 

where the σi's are the Ising-spins, and equal +1 or -1, and J = (Jij) denotes 

the couplings which are determined by the external gauge field (b,t) = ((bij, tij )) 

as 

J
ij
 J(b’t)

lj
 bijtij 

(6.2) 

where we have used that σ- 1 = a for σ  ZZ(2) . 

Choosing the axial gauge in which the gauge fields on the links in the 

1-direction are fixed to be = 1, we get from formula (1.34) and the remark fol-

lowing it that 

(6.3) 
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I 
where < · > α(J) denotes the expectation in the Ising model in α dimensions 

Iα 
with couplings J , and J(b, t) is given by (6.2) . ζIα (b,t) is the obvious 

normalisation factor (the Isingα partition function). Now in the gauge we have 

chosen J(gh(t), gh (t),gh (t+1)) =1 if ij lies in the 1-direction so the factors 

on the right side of (6.3) have the interpretation of expectations in 2-dimen-

sional Ising models with random couplings in one direction. Furthermore, the 

measure du2 (gh (t)) is a product of equilibrium measures of one-dimensional 

Ising models, which are known explicitly. 

It is well known that, by correlation inequalities of the type of Ginibre's 

[21] , the spin-spin two-point function of an Ising model with couplings whose 

modulus is less than 1 are bounded by the one of the isotropic Ising model with 

couplings equal to 1 , and thus that the critical β of the first model, and of 

YM3 , is at least as large as the critical β of the second one. Eq. (6.1) together 

with a closer examination of Ising2 models with random couplings should give a more 

precise determination of the critical β of YM3 . 

Since YM3 is the dual ("Fourier-transform) of Ising3 [31] such results will 

also supply new information about ! 

Turning now to the case v = 4 we get instead of (6.3), in obvious 

notations, 

(6.4) 

where we have chosen the axial gauge in the 1 -direction, the loop being supposed 

to lie in the 1-4-plane, and the t-direction again identical to the 4-direction ; 

J is still given by (6.2) . The measure du3 is that of a YM model in 3 

dimensions in an axial gauge, and can be analysed by the previous methods, described 

above. Furthermore the 3-dimensional Ising model entering in (6.4) has random 

couplings in two directions, and couplings ≡ 1 in the third direction. This model 
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is related to a YM3-model by duality [31] . The measure of that YM3-model is 

however in general not positive (because of the random couplings in Ising3), but 

is equal to the standard YM3-measure (1.16) multiplied by a function of the 

plaquette variables, assuming the values ± 1 , and which can be evaluated explicitly 

Hence expectations in this model can, in a "simple way", be expressed by expec-

tation values in the standard YM3 model. 

The two-point function of the Ising3 model is related to the expectation 

of a fluxtube in the YM3-model which can easily be expanded in products of loops. 

The YM3-expectations of those products of Wilson loops can then be reexpressed in 

terms of integrals of products of certain 2n-point functions of a two-dimensional 

Ising model with random couplings, as in (6.4) and (1.28), which - we suspect -

can be analysed fairly explicitly. 

Clearly, the scheme described here for the pure YM3 - and YM4 - models 

with gauge group ZZ(2) also works when the gauge group is ZZ(3) or ZZ(4) , [31]. 

In all three cases, YM3 is the dual of Ising3 , whereas YM4 is self-dual, so 

that its critical temperature should, in principle, be explicitly computable [31], 

Further insight can be gained by making use of the existence of self-

adjoint transfer matrices in the YM3, 4- and Ising3 models and in the two-dimensiona 

Ising model with random couplings in the 2-direction and transfer in the 1-direction. 

One then must choose a convenient representation for those transfer 

matrices, involving Pauli-matrices and Fermion operators, as proposed in [32, 33]. 

This reduces the problem to analyzing the behaviour of large products of large 

random matrices. 

In conclusion we have achieved a "reduction" of the evaluation of Wilson 

loop expectations in YM3 and YM4 with gauge group ZZ(2) (or ZZ(3), ZZ(4)) to 

the evaluation of products of 2n-point functions of two-dimensional Ising models 

with random couplings in the 2-direction, integrated with respect to products of 
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equilibrium measures of the one-dimensional Ising model. 

Since our results go, so far, hardly beyond this simple observation 

(based on YMv → σv-1 reduction technique and duality), we omit further 

details, but hope that hard and grubby work on the Ising2 model with random 

couplings will eventually supply non-trivial information on YM3 , and hence on 

, and on YM4 . 
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§ 7. Continuous "Time" Formalism and Gaussian σ-models 1) 

This section is somewhat expository. No detailed estimates are presented. 

A few important technical points are treated in an appendix to § 7 . 

Throughout this section, G is a compact Lie group, in particular 

G = U(l) or SU(2) . We propose to study the continuous imaginary-time formalism 

(xV  R , continuous) for lattice Yang-Mills fields with gauge group G . In the 

limit of a continuous imaginary time coordinate, v-dimensional Yang-Mills theory 

turns out to be related to Gaussian σ-models with fields taking values in the Lie 

algebra G of G in an external gauge field (b,t)  G x G, on a (v-1)-dimensio-

nal lattice. For quantum theory, this is a correct and very useful approach, whereas 

the somewhat complementary approach (continuous space, discrete imaginary time) 

outlined in § 1.2 is problematic. (For v > 3 , it appears to impose unsuitable 

renormalization conditions, and, moreover, non-perturbative renormalization of 

(v-1)-dimensional σ-models in the continuum limit has not yet been carried out 

for v-1 > 2 . Notice that the limits, "lattice spacing in time direction" ¯0 , 

and "lattice spacing in space direction" ̄  0 , do not appear to commute for v > 3 ; 

we prefer to take the first limit first). 

We start with a lattice L = ZZ xδZZv-1, ZZ= = {u = en : n  ZZ} , 

and = { x = δy : y  ZZv- 1 } . (We follow the notations of §§ 1.2 and 1.3). 

The Yang-Mills action is now given by 

(7.1) 

where gi(u) = g(i, u)(i, u+)
 , bij(u) = g(i, u)(j, u) , and tij (u) = bij (u+) = 

g(i, u+) · See § 1.3, (1.17). (The spatial cutoff, Λ , will be suppressed 

in our notation). We set 

1) Some of the result reported here have been obtained in discussions with E. Seiler 
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(7.2) 

The Yang-Mills vacuum expectation corresponding to the action (7.1) is given by 

(7.3) 

where ζ is the partition function of the v-dimensional Yang-Mills theory, 

ζσ (β | ...) the one of the (v-1)-dimensional σ-model in an external gauge field 

(b,t) with action -1Aσv-1 (b,t) , normalized such that ζσ(... | 11,11) = 1 , 

the vacuum expectation of that model, and d^r’^ t
^
ie normalized, 

(v-1))-dimensional Yang-Mills measure. We propose to study the leading behaviour of 

(7.2) and (7.3) for  << δ < 1 . For the study of the limit ¯O we set in (7.2) 

eXi 

= e . x
i  G , and (7.4) 

dg± > dX£ (7.5) 

where dgi is the Haar measure on G , and dXi is the Lebesgue measure on G , 

for all i  δZZV-1 . (See § 1.2) . For the action (7.2) we find to first order in  

(7.6) 
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The first term on the r.s. of (7.6) is independent of X and can be combined with 

the (v-1)-dimensional Yang-Mills actions for the horizontal gauge fields, 

gh(u) = b(u) , to yield 

(7.7) 

which is the expression for the v-dimensional Yang-Mills action in the radiation 

gauge (gV = 1) . (Thus, the remaining terms in (7.6) could be gauged away when 

¯Ο . We do however not choose the radiation gauge). 

Next, suppose that {bij (u)} is the restriction of a smooth gauge 
uZZ 

field, bij(u) , on δZΖν-1 x R to the lattice δZZv-1 x ZZ . Then 

bbij(u) tij(u)-1 = bij (u)bij (u+) 1 = 11 + O() , 
ij 

and (7.8) 

In finite volume, A , (fixed on an -independent scale), equ. (7.8) holds in the 

sense of stochastic differential equations for the paths {bij(u)} in the support 

YM 
of the imaginary-time vacuum measure determined by the action , see (7.7), 

in the limit  = O (which is the path space measure, du , , of the v-
V,rad. 

dimensional Yang-Mills theory in the continuous-time Hamiltonian formulation, [38]). 

We define 

(7.9) 

Taking into account (7.8), the second term on the r.s. of (7.6) approaches 
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(7.10) 

and the third term on the r.s. of (7.6) 

(7.11) 

O(2) 
as ̄0 , up to 0(2) terms. In (7.10), (7.11) the summation, Σij , extends 

over all ordered nearest neighbors .In finite volume, A , the treatment of the 

¯O limit can in principle be made rigorous. This is a somewhat tedious exercise 

in manipulating Trotter product formulae and the heat kernel on G . For G = U(l) 

or SU(2) one can follow [39] , where the  ¯ limit in the radiation gauge 

is studied. 

After having taken ̄0 , one wants to study the limit δ ¯0 . This 

problem is at the core of the renormalization theory of Yang-Mills fields. A partial 

aspect of this problem is the analysis of the δ ̄  0 limit of the Gaussian σ-

models in external gauge field with action A Av-1 (b) +Lv-1 (b, B) and a priori 

distribution Πi dXi , see (7.5) , at "inverse temperature" βh , h > 0 , 

(h = h(δ,v)) . In this step the external gauge field is kept fixed. For G = U(1) 

or SU(2) and V-l = 2 , the δ¯Ο limit of these models has been constructed 

in [40] , (and the methods of [40] suffice to also analyze the three-dimensional 

case, of interest in the construction of four-dimensional Yang-Mills fields). 

We now recall the main problems arising in the study of the δ ̄ 0 limit 

and in the analysis of confinement for  = 0 . This requires some more definitions. 

Let V be the finite dimensional Hilbert space carrying the representation UX 

of G with character χ . 

We define ξ = UX(b) , b  G . (7.12) 
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Let ΜX Ɔ U(G) be the space of all matrices on VX . Let Y 

be an arbitrary MX -valued function on δΖZv-1 . We define a (finite difference) 

covariant gradient by 

(7.13) 

with ξij=Ux(bij) = UX(bij) . Furthermore, the covariant Laplacean is given by 

(7.14) 

For δ = 0 , the superscripts are dropped. 

For Y,Z MX-valued functions on δZZv-1, we define 

(7.15) 

and similarly for MX-valued functions on unordered pairs of nearest neighbors in δΖZv 

Let GX = UX (G) be the matrices in MX which represent the Lie algebra 

G of G . Such matrices are henceforth denoted φ , ψ , ... . In our new notations 

we get from (7.10), (7.11) 

Vi(?) = ■ !($·Δξδ) -

L
v-1

(
ξ
 B) = δ-1 Re(vç6) $’B) , 

(7.16) 

and the uniform measure on GX is denoted dφ . The Gaussian vacuum expectation 

of this model, at "inverse temperature" βh , h > 0 , is denoted < - > (ξ,Β), 

ξ(δ)(βh/ξ, B) and ζ (βh | ξ,Β) is its partition function, normalized such that ξ(βh | 11,0) =1. 
3 

When G = SU(2) , χ the isospin 1/2 character, we set φ = i Σ φα σα , where 

σ2, σ32 are the Pauli matrices. The adjoint representation used in the 

δ ) 
definition of , has isospin 1 , and we may now set 

w?6)V ■ 
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(φ1φ2φ3) R3 
where ]R and ξij.. belongs to the isospin 1 representation of 

SU(2), i.e. to S0(3). Moreover dφ = d3φ , the Lebesgue measure on IR3 . 

We now propose to study the behaviour of 

1) C _ = (- Δ + m ) , in particular of its integral kernel, C '(x,y) , 
m,s. ξ m,i* 

x,y in 1 , for arbitrary δ >0 , m> 0 , and arbitrary ξ ; 

f s \ 
2) ζ '(βΐι | §,B) as a function of δ > O , ξ and B , (with ξ , B e.g. 

of compact support) ; 

ehφ -hφ ( δ ) 
3) x)(e y) (ξ,Β) , xy in δΖΖν-1 , 

kl mn 

as a function of |x—y , h , δ , ξ and B. This two-point function is related 

to the expectation of the Wilson loop , <Wq (C), of the v-dimensional 
V 

Yang-Mills theory on δΖΖν-1 x IR (in the limit  = 0) by the formula 

(7.17) 

( ) 
where du , (b) is the v-dimensional Yang-Mills measure in the radiation 

duv,rad. 

gauge, §(b(u))
i
j = uX(b(u)ij) , B^u)

 =

 e^fç^Cu) Ç^tu-te)"
1
 - 11} , and 

x E δZΖν-1 1 (independent of u) with |x| = L . Formula (7.17) involves the hidden 

assumption that, for δ > 0 , we can first pass to the Gaussian limit of the σ-

models and then take the ̄ 0 \0 limit. (As remarked already above, we are confident 

that this can be justified by adapting the techniques of [39] . See also [40, 41]). 

Fortunately, problems 1) and 2) have been solved already in [40] for 

G = SU(2) and v - 1 = 2 , and the techniques developped there suffice, in principle, 
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to solve them for arbitrary compact gauge groups and 2 < v - 1 < 3 . From that 

reference we infer that 

(7.18) 

(Landau diamagnetism [4, 40]) , 

and for ξij. = = =
 e

iδBij(δ)
 , where is the restriction of a continuous 

ξij(δ) 

continuum gauge field, β , with values in GX and of compact support to the 

lattice δZΖν-1 , 

(7.19) 

for arbitrary bounded, open Λ  IRV- 1 and 1 < p < p(v-l) , with p(2) = ∞ , 

p(3) = 3 , and for a large class of boundary conditions (e.g. free, periodic, 

Dirichlet) at ∂Λ . See [40] for detailed statements and proofs of this and 

(δ) (δ) 
other results. These results suffice to control the limit of < - > βh (ξ,B ) , 

as δ ̄ 0 , for ζ as in (7.19) and B(δ) chosen such that δ B ’ → B' , as 

δ¯0 , e.g. in the sup norm. 

[As an example, we mention that, for δ = 0 , 

For v - 1 = 2 , this identity usually has infrared divergences, unless e.g. 0-

Dirichlet data at the boundary of some bounded, open region are introduced in Δβ 

or β is suitably chosen. For v-1 > 3 there are no infrared divergences. The 

two-point functions in 3) and (7.17) have no infrared divergences, even for v - 1=2 

but must be ultraviolet-renormalized when δ¯Ο , for v-1 > 2 ; see below]. 

Next we study the partition function ξ(δ)(βh | ξ(δ),Β(δ) , with 

the restriction of a smooth GX -valued field β on IRV-1 

of compact support to δzΖν-1 , and in . For v - 1 = 2 

(δ ) 
we temporarily introduce O-Dirichlet data in Δ(δ)ξ at the boundary of some δ-
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independent, bounded open set A , in order to eliminate infrared divergences. 

(Reference to A is suppressed in our notation). Let Δ(δ) be the usual finite 

difference Laplacean, and let be the (v-1)-dimensional, covariant lattice 
ξ 

dipole potential, defined as follows : Let f be some MX -valued functions defined 

on the links (nearest neighbor pairs) of δZZV-1 1 and h an arbitrary MX -valued 
X 

function on ZZ^ of compact support. We define V *f by 

Let now f and g be arbitrary MX -valued functions on the links of δZZν-1 , 

of compact support. Then is defined by 

(7.20) 

By evaluating Gaussian integrals we get 

(7.21) 

see [40] . (We thank E. Seiler for correcting a mistake in our original formula). 

Notice that the r.s. of (7.21) obeys the normalization condition, ζ(δ) (βh | 11,0) =1. 

For h =  , B = B() with
 = 

-1{ξij (u)ξij ξij(
U+

) - 11} , 

the effect of the second factor on the r.s. of (7.21) is to modify the couplings 

() 
between ξ(u) and ξ(u+) , u  ZZ , in the measure duv,rad. () (ξ) (see (7.17)) . 

We set 

(7.21) 

Zv() ) 
where Z is a normalization factor chosen such that do dpv()(ξ)=1. = 1 . (In 

() 
spite of the second factor on the r.s. of (7.21), the measure dpc() is well-

defined, since εxρ[(βε/2)(δ-1B(),Vdδ-1B()] βχρ[(βε/2)(δ ^Β^
ε
\δ ^B^^)] , 

which is compensated by the factor exp[-(β/) Re(§ (u) ,ξ (u+))] J in
 d

M-^
e
^
a(

j (ξ))· 



- 71 -

() 
Notice that the formal action corresponding to dpv() is "non-polynomial" 

if G is non-abelian, even in the formal limits  = 0 , δ = 0 . Thus, our approach 

might be cumbersome for the discussion of ultraviolet renormalizations when one 

takes the limit δ¯0 . 

Next, we discuss the first factor on the r.s. of (7.21). Notice that 

(δ) (δ) 1 /22 
det(-Δ(δ) CO, ξ(δ) ) is independent of βh. From [ 4,40] we recall that 

(7.23) 

(diamagnetic inequality ; see also Theorem 1.1) 

ίδβij(δ) (δ) 
For = e 1

δβij , βij(δ) the restriction of a continuum gauge field, β , that 

is Holder continuous of order α>0,v-l = 2, and O-Dirichlet data on the 

R2 
boundary of a bounded, open set in R2 , 

(7.24) 

exists and is strictly positive ; see [40]. (The methods of [ 40] suffice, in 

principle, to also handle the case v - 1 = 3 , for smooth β ). 

Thus, the results of [40], in particular (7.18)-(7.24), provide complete 

control over the δ ̄ 0 limit of the Gaussian σ-model in an external gauge field 

with action given by (7.16), at arbitrary "inverse temperature" 0 < βh < ∞ , and 

V - 1 = 2 , (3) . Next, we study the two-point function 

(7.25) 

in particular its cluster properties (related to confinement via (7.17)) and the 

( δ ) 
existence of the limit δ ̄ 0 . For ||(G (x,y)|| to tend to O , as |x - y| → ∞ , 

ξ , B 

it is necessary that 

hφx (6) 

<(e w <?’B) = 0 , (7.26) 
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for all ξ , B and x (large enough). 

(δ) . 
Since <-> (ξ,B) is Gaussian, with covariance C _ , (7.26) 

(3 h 

requires that (x,x) is infinite, with 2CO, ξ(δ)(x,y) - CO(δ)ξ(x,x) -CO(δ)ξ (y,y) 

finite. This is possible for v - 1 < 2 , due to an infrared divergence : For 

ξ ≡ 11 , C(δ) (x,y) = CO, 11(δ) (x,y) is the Fourier transform of 
V-l O,11 

(δ2/2)[(ν-1) - Σ cos(δkj)]- 1 , (|kj| < δ- 1π) which is linearly (v-l = 1), 
j=l 

resp. logarithmically (v-l = 2) divergent at k = 0. Moreover, 

C(δ)(x) - C(δ) (o)  -^log -J—J , for v-l = 2 . Thus, one might expect (7.26) to 

( δ) 
be valid and ||Gξ(δ)B (x,y)|| to behave like 

exp[(h/2πβ) log , (7.27) 

as |x-y|→∞, for arbitrary ξ , B , when v -1 = 2 . By (7.17) this would 

yield permanent confinement of static quarks in three-dimensional Yang-Mills theory 

by a potential > log|x| , as |x| → ∞ . For G = U(1) , (7.26) and (7.27) are 

true, since and G^^(x,y) = (x,y) (independent of ξ) , and 
0 , ζ ξ ,B & il

5
 Ü 

if the center of G contains U(l) the same conclusions hold, by the estimates 

of § 3. Moreover, when v-l = 1 , ξ can be gauged away, for arbitrary G , so 

that (7.26) holds trivially, and 

for arbitrary G and all δ > 0 . 

However, for G = SU(2) , v-l = 2 , (δ = 0) , there are choices of 

an external gauge field β such that is a bounded operator with 

||Cβ (x,y)|| < const., for |x-y| large enough. In this case (7.27) is definitely 

violated. This is the result alluded to in § 3 : For certain choices of β , the 

clustering of Gβ, B (x,y) is worse than that of GO, O (x,y) . This is a consequence of 

non-abelian Landau diamagnetism. Some more details are given in the appendix to § 7. 
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For v > 4 , (7.26) is always violated, and , as 

|x-y| → », as we are now going to demonstrate. 

By (7.18) , 

≡ J^(v-l) <
 00

 , for all x,y . (7.28) 

This shows that (7.26) is impossible. 

Moreover < ||C^\x-y)j[ = 0(|x-y| (v- 3)
)
 , as |x-y| →

 ∞

 . Therefore 

, as |x-y| → ∞ , which proves our contention. 

We conclude that presumably in the three-dimensional SU(2) Yang-Mills 

theory and certainly in all four-dimensional Yang-Mills theories confinement of 

static quarks can only arise as a consequence of cancellation of the random phase 

(δ ) 
factors in G (0,x) when integrating over ξ , (with This is 

the second mechanism emphasized in § 5.2 ; see (5.19) - (5.23) . A careful study 

of this mechanism in the limit e = 0 , (i.e. for the Gaussian σ-models) is 

beyond the scope of the present paper, but we recall that it has been shown in 

[l4] that in all V > 4 dimensional non-compact U(l) theories there is no 

confinement. 

In the present formalism, absence of confinement in the four-dimensional 

U(l) theory can be understood as follows : For G = U(l) , 

(7.29) 



- 74 -

Now, since the adjoint representation of U (l) is the trivial one, 

(7.30) 

are independent of ξ (i.e. the same as for ξ ≡ 11 ). In particular, they are 

independent of the value, u , of xV . Furthermore, one can set 

for all ij C & ZZv- 1 , u € IR . Thus 

(7.31) 

If we now insert (7.30) and (7.31) into (7.29) and, subsequently, (7.29) into 

formula (7.17) for the expectation of the Wilson loop we see that the random phase 

(7.32) 

reduces to a product of two random phase factors localized at u = 0 , resp. u = T, 

i.e. to a pure "surface term". Thus, using (7.29),(7. 32) and (7.17) 

(Since the second factor is a surface term, it cannot cause area decay, when δ \|0). 

The basic difference between abelian and non-abelian theories is that, in 

( δ ) ( δ ) the non-abelian case and do depend on ξ in a non-trivial way, so 

that the total random phase factor does not reduce to a pure surface term, 
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as can be checked by an explicit calculation. For this reason, four-dimensional 

non-abelian theories may still confine static quarks. 

Finally we discuss the continuum limit (δ\0) of the two-point functions 

G ^(0,x) and the related problem of how to "normal-order" the Wilson loops, 

Wq (C) , so as to be able to pass to the continuum limit. We concentrate on the 

discussion of G = SU(2) , with = X the isospin 1/2 character ; (G = U(l) 
3
 ( δ ) is very easy). For SU(2) $ = i Σ φ σ . Let < - >'' denote the Gaussian 

x 1ss1
 x a o j i
 (δ) (δ) l 

expectation with mean 0 and covariance = (-Δ(δ ) + 1)-1 , i.e. 

Let = c
1
 (δ)

 (0) . Then 

(7.33) 

(δ) 

Moreover, for ξ = ξ as in (7.24) , 

exists, for v-1 = 2 , 

( δ ) (provided O-Dirichlet data are imposed on C , » at the boundary of some bounded, 

open region, in order to eliminate infrared divergences). This is proven in [40]. 

Thus 

exists. In general we define 

(7.34) 

Then, for smooth 

exists, even in the thermodynamic limit ; (there are no infrared divergences). 

*) 12 Another possibility is to choose a "unitary" gauge in which φ = φ = 0 * 
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This suggests replacing Wq(C) (defined on the links of δ ΖΖv ) by 

This prescription ought to be appropriate for taking the limit δ\θ , at least 

in v = 3 dimensions. It suggests to formulate the renormalization conditions 

in a scheme of implicit renormalization for three-dimensional Yang-Mills theory in 

terms of δ-independent upper and lower bounds on 

(δ) YM 
<N(δ)(Wq(C))>

v 

for C a square loop with sides of length 1 , for example. 



- 77 -

Appendix to § 5 : 

We show, in this appendix, the details of the calculations leading to 

the area decay of the expectation of the Wilson loop observable when G = SU (2) . 

These are completely analogous to those performed in [29] . 

With notations as in § 5 we get, by setting 

(Al) 

and using a chessboard estimate, that 

(A2) 

By a second shessboard estimate we have 
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(A.3) 

Next we note that by Jensen's inequality 

O u 
where the expectation < · >v- (b,t) is at inverse temperature β - . 

Now since 

when |S | = 1 , Vj E 0 , it follows that 

(A 4) 
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Formulas (A.3) and (A.4) imply that 

(A.5) 

Formulas (A.2) and (A.5) then give 

And finally this combined with (5.8) gives 

For we have that , and since 

and |C| = |x|T , we see that there exists e > 0 , independent of x, T and Λ , 

such that 
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where is the discrete Laplacean in A C ZZv- 1
 with periodic boundary 

conditions. 

Taking the thermodynamic limit and noticing that 

(-Δ+e)
 1(0,x) ~ e ԑ|x| , as |x| → ∞ , 

completes the proof of confinement by a linear potential for 

(A more refined estimate extends this result to 
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Appendix to § 7 : 

In this appendix we show that the clustering of certain two-point functions 

in a Gaussian SU(2) x SU (2)-σ-model in two dimensions is diminished when a suitable 

external gauge field is turned on. 

As argued in § 7 this indicates that for large β only the mechanism of 

strong cancellations of random phase factors can be expected to be responsible for 

confinement of static quarks in a SU (2)-gauge theory in 3 dimensions. 

We consider a two-dimensional Gaussian σ-model, where the field X takes 

values in su (2) (the Lie-algebra of SU (2)) , and an external gauge field 

A E su(2) is acting. In other words we consider the model whose action a is given 
u 

by 

where 

DA
x= ax + [Α

u
,Χ] , μ = 0,1 , 

μ 

2 
and X and A are su(2)-valued functions op IR2 . The measure of the model is 

μ 

thus the Gaussian measure with covariance 

(-Δ
Α
)-1 = ( Σ D* D

A

 -1 

μ μ μ 

defined on a suitable space of su (2)-valued functions. 

To be able to analyze we set 

and 

where the σ' s are the Pauli matrices, and φa , Aa are realvalued functions 
α , μ 
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2 
on IR . Then has the representation 

μ 
3 2 

d k -AZ 
μ μ μ 

-A
3 a A

1 

μ μ μ 

A
2
 -A

1
 a 

μ μ μ 

(B. 1 ) 

acting on φ2 , which is an IR -valued function on IR2 . 
\φ*Ι 

Also we have that 

tr(X*Y) = ∑ φ
α 

a 

if and 

From this we see that, expressed in the fields φa , the measure of the 

model is the Gaussian measure with covariance CA = (-Δ.) ^ , where -Δ
A

 is given by 
A A A 

- Δ
Α
 = ∑ D

A
 D

A μ μ μ 

/ - Δ + (A3)2+(A2)2 -{V,A3} -A2 A1 {V, A2} -A3 · A1 

{V, A
3
)-A

2
-A

1
 -Δ+(Α

3
)
2
+(Α

1
)
2
 -{V,A

1
|-A

2
-A

3
 , 

-{V,A
2
|-A

3
-A

1
 —{V , A

1
}-A

3
·Α

2
 -

Δ+

(Α
1
)
2
+(Α

2
)
2
 j 

as a direct calculation shows by using (B.l). Here Αi·Αj = ∑ AiAj and 
μ μ 

{V.Ai} = Σ <νί
+Α

>μ
)

 · 
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12 3 
To simplify this expression we set A = A = 0 and A = A ≠ 0 . Then (B.2) 

becomes 

-Δ -* 
A 

"*2 < ) -Δ+Α2 -{V,A} 0 

2 
{V, A} -Δ+Α

2
 0 

0 0 -Δ 

But this operator is unitary equivalent to the operator 

> (B. 3 ) 

the equivalence being given by 

Next we choose ^(
X

Q
,X

]^
 =

 this choice of it is well known 

(see e.g. [42]) that the operators -Δ ± i {v,A}+A2 have the same spectrum, and it 

is bounded below by a strictly positive number if B ≠ 0 (Landau diamagnetism). 

1 2 
Thus C→ , restricted to the subspace {(φ , φ ,0)} is a bounded operator. 

A 
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From this we conclude that if < - > denotes the expectation the 

model, then 

^i(p
1
(x)a

1 β
-ΐφ

1
(χ)σ

1
^

 = <^ei((p
1

(0)V(x))ai> 

i(<p^ (0) -φ~ (x) )σ, 

= <e 1> 

= <^cos((p
1
(0)-^51(x))ll + i sin(<p

1

(0)-<p
1

(x))a^
> 

= <cos (Q1 (0) -φ1 (x) > 11 

-(G^(0,0)+C^(X,X)-2C^(0,X))
1]L
 (B. 4) 

does not converge to 0 as |x| → 0 as a consequence of the boundedness of C→
A
 . 

Finally, we remark that by fixing the gauge in the lattice theory such that 

X = φ
J
’σ1 , only two-point functions of the form as in (B.4) will enter into the 

calculation of the expectation of the Wilson loop observable according to (1.34) 

Thus, Landau diamagnetism may destroy clustering of the two-point function 

of the two-dimensional, Gaussian σ-model. This conclusion is not affected by the 

introduction of a two-dimensional, spatial lattice. 



- 85 -

REFERENCES 

[1] Os terwalder, K., and Schrader, R., Commun. Math. Phys. 42
,

 281 , (1975). 

[2] Osterwalder, K., and Seiler, E., Ann. Phys. 110, 440»(1978). 

[3] Lüscher, M. , Commun. Math. Phys. 54, 283, (1977). 

[4] Brydges, D.C., Fröhlich, J. , Seiler, Ε., Οη the Construction of Quantized 

Gauge Fields I, to appear in Ann. Phys.(1979). 

(See also Fröhlich, J., Israel, R. , Lieb, E.H., Simon, B., Commun. Math. 

Phys. 62, 1 , (1978)). 

[5] Eichenherr,H., Heidelberg thesis 1977. See also Faddeev, L., Lett. Math Phys. l 289, (19 7 

[6] D'Adda, A., Di Vecchia, P., Lüscher, M., Nucl. Phys. B 146, 63, (1978). 

[7] FrUhlich, J., Proceedings of the Bielefeld Symposium, Dec. 1978, to be 

edited by L. Streit. 

[8] Dubois-Violette, M., Georgelin, Y., Phys. Lett. 82 B, 251, (1979). 

[9] Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Yu. I. Phys. Lett. 65 A, 

185, (1978). 

[10] Corrigan, E., Fairlie, D.B., Templeton, S., Goddard, P., Nucl. Phys. B 140, 

31, (1978). 

[11] Drinfeld, V.G., Manin, Yu. I., Commun. Math. Phys. 63, 177, (1978). 

[12] Dosch, H.G., Müller, V.F., Lattice Gauge Theory in two Space-time Dimensions, 

Karlsruhe Preprint, (1978). 

[13] Migdal , Α.Α. , J.E.T.P. 69, 810, 1457, (1975) , 

Polyakov, A.M. , Phys. Lett. 59B, 79, (1975). 

[14] Brydges, D.C., Fröhlich, J., Seiler, E., Nucl. Phys. B152, 521, (1979). 

Witten, E., Nucl. Phys. B149, 285, (1978). 

[15] Callan, C., Dashen, R., Gross, D., Phys. Lett. 63B, 334, (1976) 

Jackiw, R
f

, Rebbi, C., Phys. Rev. Lett. 37, 172 (1976) 

Lüscher, Μ., Phys. Lett. 78B, 465, (1978) . 

[16] Wilson, K. , Phys. Rev. D10, 2445, (1974). 



- 86 -

[17] Brascamp, H.J., Lieb, E.H., J. Funct. Anal. 22, 366, (1976). 

[18] Hooft, G., Nucl. Phys. B138, 1, (1978). 

[19] Mack, G., Petkova, V.B., DESY preprint 1979. 

[20] Mc Bryan, 0., Spencer, T., Commun. Math. Phys. 53, 299, (1977). 

[21] Ginibre, J., Commun. Math. Phys. 16, 310, (1970). 

[22] Messager, A., Miracle-Solé, S., Pfister, C., Commun. Math. Phys. 58, 19, 

(1978). 

[23] Fröhlich, J., Phys. Lett. 83B, 195, (1979). 

[24] K. Symmanzik,"Euclidean Quantum Field Theory,in Local Quantum Theory"., R. 

Jost (ed.), Academie Press, New York-London,1969, Brydges, D.C., Federbush,P., 

Commun. Math. Phys. 62, 79, (1978). 

[25] Glimm, J., Jaffe, A., Charges, Vortices and Confinement, Nucl. Phys. B 149, 

49, (1979). 

[26] See e.g. R. Israel, Convexity in the Theory of Lattice Gases, Princeton 

University Press, 1979. 

[27] Mack, G. , Commun. Math. Phys. 65, 91, (1979). 

[28] Fröhlich, J., Simon, B., Spencer, T., Commun. Math. Phys. 50, 79, (1976). 

[29] A. Kupiainen, Princeton Thesis 1979. See also Fröhlich, J., Spencer, T., 

unpublished. 

[30] Dyson, F., Lieb, E.H., Simon, B., J. Stat. Phys. 18, 335, (1978). 

[31] Wegner, F.J., J. Math. Phys. 12, 2259, (1971), 

Korthals-Altes, C. P., Nucl. Phys. B142, 315, (1978). 

[32] Schultz, T. D., Maths, D. C. and Lieb, E. H., Rev. Mod. Phys. 36 , 856, (1964). 

[33] Yonega, T., City College Preprint, 1978. 

[34] Ruelle, D., Statistical mechanics, Math. Phys. Monograph. Ser., Benjamin, 

London and Amsterdam 1969. 

[35] Glimm, J., Jaffe, A., Spencer, T., The particle Structure of the Weakly 

coupled Model..., in "Constructive Quantum Field Theory", G. Velo 

and A.S. Wightman (eds.), Springer Lecture Notes in Physics _25, Springer-

Verlag, Berlin-Heidelberg-New-York, 1973. 

[36] Coleman, S., Jackiw, R., Susskind, L., Ann. Phys. 93, 267, (1975). 

Fröhlich, J., Seiler, E., Helv. Phys. Acta 49, 889, (1976). See [4,14] for the 

case of lattice theories. 



- 87 -

[37] Polyakov, A.M., Phys. Lett. 82B, 247, (1979) 

[38] Kogut, J and Susskind, L., Phys. Rev. Dll, 395, (1975). 

[39] Lüscher, Μ., University of Hamburg Preprint, 1976. 

[40] Brydges, D.C., Fröhlich, J., Seiler, E., On the Construction of Quantized 

Gauge Fields II, IHES Preprint, 1979. 

[41] Guerra, F., Rosen, L., Simon, B., Ann. Math. 101, 111-259, (1975). 

[42] Kittel, C., An Introduction to Solid State Physics, J. Wiley & sons, 

New York. 

[43] Gallavotti, G., Guerra, F. and Miracle-Solé, S., in "Mathematical Problems 

in Theoretical Physics", G. Dell'Antonio, S. Doplicher and G. Jona-Lasinio 

(eds.), Lecture Notes in Physics, Vol. 80, Springer-Verlag, Berlin-Heidelberg-

New York 1978. Marra, R. and Miracle-Solé, S., Salerno Preprint 1978. 




