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Abstract :

We study non-linear O-models and Yang-Mills theory. Yang-Mills theory on
the v-dimensional lattice Z" can be obtained as an integral of a product over
all values of one coordinate of non-linear O-models on Z'Zv_]' in random external
gauge fields. This exhibits two possible mechanisms for confinement of static
quarks one of which is that clustering of certain two-point functions of those
og-models implies confinement of static quarks in the corresponding Yang-Mills
theory. Clustering is proven for all one-dimensional o-models, for the U(n) x U(n)
o-models, n =1,2,3,..., in two dimensions, and for the SU(2) x SU(2) o-models
for a large range of couplings g2> 0(v) . Arguments pertinent to the construction
of the continuum limit are discussed. A representation of the expectation of
Wilson loops in terms of expectations of random surfaces bounded by the loops is
derived when the gauge group is SU(2) , U(n) or O(n) , n=1,2,3,..., and

connections to the theory of dual strings are sketched.
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§ 1. Connections between g-models and Yang-Mills theory : Description of the

basic ideas.

In this paper we propose to study v-dimensional (lattice) Yang-Mills
theory, in terms of (v-1)-dimensional (lattice) o-models in random external
gauge fields. Our main results are the ones described in the abstract. We also
apply our scheme to the study of Z(2) lattice gauge theories in three and four
dimensions and relate them to a two-dimensional Ising model with random couplings
in one direction. Furthermore, we study a weak coupling limit of Yang-Mills theory
relating this theory to linear ¢-models in an external gauge field, in one
dimension less. It appears to provide a lower bound on the confining potential -
i.e. an upper bound on expectations of Wilson loop observables - with a convergent
continuum limit. This bound is rigorous in the abelian case. In the non-abelian
case, it appears to be related to naive perturbation theory and, therefore, it
should describe the short distance behaviour of the theory correctly. We show that

confinement of static quarks, always assumed to transform non-trivially under the

center of the gauge group, in v-dimensional Yang-Mills theory is a consequence

of two possible mechanisms

(1) Clustering of certain two-point functions of the (v-1)-dimensional g-model in
external gauge field (see §§ 2-5). This leads to permanent confinement in all
two-dimensional and in three-dimensional U(n) Yang-Mills theories and suggests
that, for arbitrary, non-abelian gauge Lie groups, the confining potential in

v = 3 dimensions is always linear, for arbitrary coupling. For the critical tem-
perature of two-dimensional, non-linear, non-abelian g-models is expected to be

zero, with exponential clustering at positive temperature.

(2) A cancellation between "random phases", depending on the external gauge fields
of the long range order in those two-point functionsof the (y-1)-dimensional -

models. We have arguments suggesting that only this second mechanism can lead to



confinement in four-dimensional, continuum gauge theories.See §§ 5.2 and 7. We pro-
pose to study aspects of v-dimensional continuum gauge theories by means of the Gaussian
weak coupling limit of the (v-1)-dimensional o-models mentioned before. That limit

suggests e.g. the correct kind of normal ordering of the Wilson loop observables

(traces of holonomy operators associated with closed loops) that might enable one
to construct the continuum limit of expectations of products of "normal ordered"

Wilson loops. This is discussed in §7, especially for v = 3 .

Throughout this paper we systematically adopt the Euclidean description of
quantum field theory. Thereby, Yang-Mills theory and non-linear o¢-models are
converted into classical statistical mechanics systems. The reconstruction of a
quantum field theory from the latter is accomplished by means of a Feynman-Kac
formula, resp. Osterwalder-Schrader reconstruction [1] . (In the case of lattice
theories, Osterwalder-Schrader reconstruction requires the existence of a positive
semi-definite transfer matrix which follows from reflection positivity. This and
other foundational topics are discussed at length e.g. in [2,3,47). In the following,
"dimension" means the dimension of the Euclidean space-time (lattice). We only

consider compact gauge groups, denoted G .

Various analogies and connections between non-linear ¢-models and Yang-
Mills theory, have been emphasized in the literature. Apart from the well-known
ones between two-dimensional ¢g-models, in particular the EPN_I models of refs.
[5,6] , and Yang-Mills theory in four dimensions (e.g. conformal invariance at
the classical level, field theories with constraints and non-trivial topological
properties, instantons, asymptotic freedom, etc.) we mention a rather deep analogy
that emerges, at the classical level, from formulating these theories in terms of
fields with values in a Grassmannian. The corresponding o-models are the
Gle(E)-models of refs. [?,8] , the Yang-Mills theories are the pure U(n)-theories.

3

This analogy is stressed in [7,8] . It is inspired by the work on self-dual
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Yang-Mills fields in [9,10,11] . It is potentially useful for further analysis
of classical Yang-Mills theory, e.g. the construction of conserved currents, but
does not appear to be promising at the quantum level [?] . Therefore we do not

use it in this paper.

Relevant for our purposes are the following very simple connections (not
analogies) between y-dimensional Yang-Mills theory and (v-1)-dimensional, non-

linear o-models

1.1. Two-dimensional Yang-Mills theory and one-dimensional o-models

Two-dimensional, pure Yang-Mills theory with gauge group G 1is equivalent
to a product over all values of one coordinate, e.g. the imaginary time, of
independent, one-dimensional, non-linear g-models with fields taking values in G .
(To see this one is advised to consider a two-dimensional lattice Yang-Mills theory
and to choose the axial gauge, Al = 0) . These one-dimensional ¢-models simply
describe Brownian motion on the group G . Therefore they can be solved explicitly,
even in the continuum limit. (Their transfer matrix is generated by a Casimir
operator). Thus, the calculation of expectations of products of Wilson loop obser-
vables in a two-dimensional, pure Yang-Mills theory is reduced to calculating

correlation functions for Brownian motion on G which, in turn, can be reduced to

calculating Clebsch-Gordan coefficients. See [2,12].

In this paper we describe a related, albeit more complex, higher dimensional
generalization of the two-dimensional strategy, relating Yang-Mills theory to a
non-linear ¢g-model. It exhibits a promising line of attack that might enable one
to "solve" the three-and four- dimensional Z(2)-theories and to construct the
continuum limit of the three-dimensional, pure U(n) theories in the n - «

limit. See §§ 4,6. These theories ought to be the simplest ones.



1.2, Classical Yang-Mills theory and classical o-models

Let U be some irreducible, unitary representation of a compact Lie group
G . Consider a (v-1)-dimensional, non-linear ¢-model with fields, g(x) , taking
values in U(G) . The Euclidean action of the model is given by
v-1

BA’ . =8 T Jdv"lx er(|gX(x) (3

2
g)(_:_t_)' ) 1.1)
v-1 j=1

3

The action Ag is clearly invariant under the transformation g(x)—bg(x)t ,

1
with b,t in U(G) , i.e. the symmetry group is G X G . Coupling the field
g(x) to an external gauge field means converting the global action of the symmety
group, G X G , into a local one ; i.e. one must specify a G X G connection,

(A,B) , with Aj €G, Bj €G,3j=1,...,v-1 , G the representation U of the

Lie algebra of G , in order to be able to parallel transport g(x)

The coupling of the field g(x) to the external gauge field (A,B) is now

accomplished by the standard minimal substitution, i.e. one replaces 3, by a

3
covariant derivative, DJ , defined by
* ¥* *
D 3 +g A,g-B, . (1.2)
g jg g 5 g +8 jg j
The action is replaced by
v-1
= 2
B AS—I(A’B) =8 T ‘f;v L tr(]g*IE)(ng)(g)[ ) (1.3)

j=1
Next, we want to study a weak coupling (low temperature) limit described by :
B=B(e) = fe:-l s B Ag-l =0(e) , €- 0. On the classical level, this limit is

obtained as follows : One chooses

X
g(x) e® (x) , (1.4)
where X(x) 1is a Cg function on R”7' with values in G . Then, to first order

in e ,



»* 2
D,g =A, - B, +¢{3.X+ [A,,X]}] +0(?)

g Dyg = A, - B, +efldX+ [A,X]]

In order for the action fe-l A:-l to be 0(¢) we must require that
2

Bj(g) = Aj(i) + € Cj(z) + 0(e™) , (1.5)
where Aj and Cj are C: functions with values in G . We then have

g¥ D =cla X+ [a,X] -} + oe?) , (1.6)

so that fe-lAg_l(A,B) = 0(e)

Next, choose

-1
A (x) = A, (x,t) , C( = A (x,t+) - A , t
3 (& & 3 x) =e ( 4 (= ) j(f ))
= 3t A (x,0)
v =
=3 A, (x,t) +0() , (1.7)
v ]
where t 1is a parameter in sz [en :n € Z} , and Aj(ﬁ,t) is a C:; function
v . .
on R with values in G . We also change our notation : X(x) = Av(i’t) . Then
* fin. 2
D = A+ A A LA
(g jg)(g,t) elaj L PO, A+ [ 5 v]}(g,t) + 0(e”)
_ fin 2
= ¢ Fjv (x,t) + 0(e™) (1.8)

The action is then given by

v-1
B(e) A (A(t),B(t)) = fe ¥ Idv-lx tr('FFin'(_}E,t)]2)+O(€2) (1.9)
v=1 j=1 jv

v-1

Next, we assign to the external gauge field A(t) = (Aj(t)) on R an action

equal to the (y-1)-dimensional Yang-Mills action,

_ YM v-1 2
A (A(t))=e fA (A(t)) =¢cf ¥ Jd x tr(|F , (x,6)|7) .
v-l A 1=i<j<y-1 1



The total action for fixed t is then given by

= o ™
A oclest) = Ble) A7 (A(1),A(t4e)) + efA  (A(D)) (1.10)

and the total action by

.(e)= T A (g,t) (1.11)

At t tot
o tEZE ot.

(5,t) , j=1,...,v-1 , are the restrictions of a ce

If A (x,t) and A
v = 0

i
v

connection @ = (A,Av) over R” to ]Rvnlx Ze we have

™
A = 1im A (e)
tot.
e-0

=lim 5 {gle) A7 (A(t),A(t+e)) + ef AYMI(A(t))} (1.11)
€50 teZ V- V-

which by (1.9)-(1.11) 1is the standard, y-dimensional Yang-Mills action of @ .

Let x = (x,,...,X .,Xx ),x, =t € Z, and let x be the time coordinate.
1 v-1""v 1 € %

Moreover, return to Minkowski space, i.e. a hyperbolic metric. Then the Euler-

Lagrange (field) equations corresponding to the action Atot (¢) , e >0, are

a system of infinitely many coupled p.d.e.'s, labelled by ¢t € ﬂ% . They describe

infinitely many, (y-1)-dimensional non-linear g-models coupled through (y-1)-

dimensional, external Yang-Mills fields.

This observation may be useful to construct weak solutions to the Cauchy
problem for y-dimensional, classical Yang-Mills, v = 3,4 , using a compactness

*
argument to construct an ¢ = 0 1limit, given the solutions for arbitrary ¢ > O .)

Quantum mechanically, equations (1.10) and (1.11) appear to tell us that
v-dimensional Yang-Mills theory is, for € > O , a product of infinitely many,
non-linear ¢-models coupled through external gauge fields which are distributed

according to (v-1) dimensional Yang-Mills measures. This is substantiated in

*) A less speculative application of our scheme says that time-independent
solutions of four-dim. Yang-Mills theory are three=dim
poles (We learnt this [rom M.IF. Atiyah).

instanton

3 . Y. » “.-
1 rdh.ub-blumucll_llx'ld mono—
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the remainder of this section ; see 1.3 below. Equation (1.9) suggests that, in

the limit € -» O , the o-models approach linear theories (i.e.

lim e-IB(e) Ag—l (A(t),A(t+)) is quadratic in X), corresponding to Gaussian
izgctional integrals. This is obviously true classically and is the basic, implicit
assumption in the standard, perturbative treatment of the theory. In § 7 we prove

that it is true quantum mechanically as long as the lattice spacing in tie spatial

directions (UL t-direction) is positive and independent of €

In low (v < 3) dimensions and for non-abelian gauge group, G , the
limiting theory, as € - 0 , is approached by a family of products of g-models
which are expected to have positive mass gaps, [13] . This would imply permanent
confinement of static quarks by a linear potential in three-dimensional, non-

abelian continuum Yang-Mills theory. See Theorem 1.2, Section 1.3.

Some aspects of the continuum limit are discussed in § 7 (normal-ordering

of Wilson loops, implicit renormalization).

1.3. v-dimensional Yang-Mills theory as a product of (y-1)-dimensional o-models

with random couplings

In this section we develop the theme of sections 1.1 and 1.2 in the context
of lattice gauge theories and lattice n-models. The gauge group, G , is chosen
to be a compact group, not necessarily a Lie group. Let ¥ be some irreducible
character of G, and U - or UX - the corresponding unitary representation of G.
We study models on a simple, cubic lattice zV | resp. Zv_l. In this section,

the lattice spacing is unity, but this is unimportant. The "Euclidean" action of

a pure Yang-Mills theory on z¥ is given by

Av = - E Re x(gap) , (1.13)

where p denotes a plaquette (unit square) of z’ | op 1s the loop formed by



the four sides of p , gc * 11 '3gx is the ordered product of elements gxyéG,

xy—C
(xy alink in 2ZY) along a closed loop CC z"’

In order to give (1.13) a rigorous meaning one must restrict the sum,
¥ , to extend only over those plaquettes that belong to some bounded, connected
P
subset A of z’ . In an unambiguous context, reference to the region A is

suppressed in our notation. The a priori distribution of the random group elements,

gxy , the gauge fields assigned to the links xy , is the Haar measure, dgxy s

on G . Given a subset X c Z’, we define g(X) = {gxy : xyc X} .

The finite volume (Euclidean vacuum) expectation of the lattice gauge

theory ‘described here is given by the measure

M
-1 - N
ZA e B Ay DBg(A) s

I

de(g(A)) (1.14)

where

D, g(pA) = Dg(p) = B(g(®A)) 1T dg 5 (1.15)
B Xy A Xy

and AYM(A) is given by (1.13) , with X replaced by j . Moreover,

v P A
B(g(dA)) 1is an arbitrary, bounded function of g(3A) , i.e. of all those gauge
fields gxy with xy < 3A . The significance of B 1is to specify boundary con-
ditions. Especially in y = 2 dimensions, the physics of the theory may depend
crucially on the choice of B ; see e.g. [14,15] and § 2. We warn the reader

that, in contrast to what one does in classical statistical mechanics, it is

sometimes necessary to choose boundary conditions, B , which are non-positive ;

(construction of "f-vacua"). Then dup 1is a "signed" measure. The factor ZA
is so chosen that the integral of duB(g(A)) is unity. In accordance with the

announced notation we will write

™M
ai(g) =271 BV (1.16)



Hlon=

if reference to A and B(g(aA) is superfluous. The limit in which A tends to ZY,
in (1.14), is the thermodynamic limit. A thermodynamic limit of duB(g(A)), (in the
sense of w*;convergence of subsequences), can always be constructed by a standard

compactness argument, at least whem B 2= O .

We now proceed to a heuristic description of the main ideas of our approach.

The coordinates of a lattice site x are denoted (xl,...,xv-l,xv) = (i,xv) .

with 1= 1(x,...,x"") € 2971 | Let A, = AN {x : x¥ = t] and let AS be the
v ~ V-1 h

projection of A onto fx :x"=0}Fz . Let g (t) denote the collection

of all gauge fields in A assigned to links xy in A_, i.e. x’ = yv =t .

t

These gauge fields are called horizontal gauge fields localized at x’=t.

Let g, = éitt) , with (i,6£)(1,t41) © A . The gauge fields g, (t) are

T B(i,e)(4,t4+)
called vertical gauge fields localized in the slice ft,t-l—l]. The Yang-Mills action can now be

rewritten as

AEM(A) =-3 { T Rex(gh(t) )+ ¥

h -1 h
Re x(g, (t)g g.(t) g ,
t€Z oA, op ijqun 0 1084, e+1) (5, e41) 85 (§,0)(4,t)

M

(1.17)

The first term on the r.s. of (1.17) can be recognized to be a sum of Yang-Mills
actions, A:?l(gh(t)) , depending only on horizontal gauge fields in the (v-1)
dimensional hyperplane at x) =t . Next, we interpret the second term on the
r.s. of (1.17) . We note that the vertical gauge fields in different slices are,

a priori, independent from each other. Therefore, reference to t 1is superfluous,

and we abreviate gi(t) by g; . Moreover, we set

_ R 21
tij = tij(t) = (g(i,t+1)(j,t+1)) :
(1.18)
b.. =b, (t) =g
i - Cij B(3,6)(i,t)
-1
tij
4 t+1

£~ :::) aE

?

i bij j Fig. 1
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The second term on the r.s. of (1.17) can now be rewritten as

3 AS_I(gh(t),gh(tH)) ,
t€EZ

with
S Re (gl b e (1.19)
02,0 X184 '

A% (b,t) = - g .
v-1 13EAPAL 1373 4

This expression is to be compared with the action of a (v-1)-dimensional lattice

o-model with fields taking values in G :

AO'

-1
W Sl % Re x(gi gj) . (1.20)

ij
The global symmetry group of the action AS_1 is the group G X G , acting on

the field g as follows :

Gx G > (b,t) : g, — bgi ¢t B

1

(Clearly X((bgit_l) bgjt-l) = x(gglgj) , by the cyclic invariance of ¥).

The parallel transport used in definition (1.20) of AS-1 is flat. A non-

flat parallel transport is obtained by letting the symmetry group G X G act

locally, i.e. by converting it into a gauge group. Given a curve vy(i,j) C Zv_l
of neighboring links joining a site i to a site j , the parallel transport of

84 € G, localized at i , to the site j along vy(i,j) 1is defined by

-1
8 P (i,5) 81 Y(4,) °
with (1.21)

( ) = n 9b (¢t )

t
v(i,3) avcy (4, 1) uv  uv

®y (1, 1)

Thus (1.19) is the action of the non-linear o-model in an external gauge field

obtained from (1.20) by minimal substitution ; (y(i,j) = ij in (1.21)).
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The partition function of those r-models is given by

g
2%(b,t) = 2%(b,t) =JQE—BAv-1(b,t) i dg

B 0.,0 i .
1€Atﬂnt+1

2’ = 2%u,n) =

I o

E‘BAv-l i‘ dg
0.,0

J

u iEAtﬂAt+1

i

We set

c%mb,t) = 2%®m,t) /1 2° . (1.22)

We recall the following result of [4,14] .
Theorem 1.1.

For a class of boundary conditions, B , (including periodic and free)

specified in [4]
1) 0 < ¢%%@b,t) < Cm,n)=1 ;

(diamagnetic inequality)

2) Cc(b,t) is gauge-invariant, i.e.

Eb,e) = F@N,t™ |, with

h _ -1 m -1
bij = hibijhj i tij mitijnu , where h and m are functions of
compact support on Zv-l with values in G . O

o
We denote by < - >b-1(b’t) the normalized expectation

|
L

[ o
Pm,0)7t |- eBAAGO) g, (1.23)
i 1
M
of the o-model in the external gauge field (b,t) . We let < — >, denote
the y-dimensional, pure Yang-Mills expectation defined by the measure du
introduced in (1.14)-(1.16) . Furthermore, we let duv_l(gh(t)) be given by

YM Yy ,,0, _ ,YM . h
(1.14)-(1.16) , but with A" replaced by Av_l(ﬂt) = Av—l(g (t)) . For
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simplicity, we choose a boundary condition, B(g(3A)) , which factorizes into
functions only depending on gh(aht) , resp. g:(t) , 1€ B(AS N hg+1) , t € Z,
It can then be absorbed in the definition of duv_l(gh(t)) and of

a

< - 1(gh(t},gh(t+1)) and is suppressed in our notation.
V-

It now follows from (1.17)-(1.20) <¢hat

YM -1 g h h
<->"= 1;[ f< - > 18 (0),8 (e4+1))

(1.24)
-, ) a Nt
, -{ o, h h h
with ¢ =) 1 (¢ (g (t),g (t+1)) duv_l(g ()
t
Under the conditions of Theorem 1.1,1) ,
o< ¢ < 1 . (1.25)

Equation (1.24) 1is the basic identity exploited in this paper. We apply it to

discuss confinement of static quarks. For this purpose we define the Wilson

loop observables which we regard as the basic observables of a Yang-Mills theory :

Let U? be an irreducible representation of G , and xq its character. Let

C be a closed curve of links in Z" . The Wilson loop observable (the trace of

the "holonomy operator" corresponding to C) is defined by
wie) = x¥gy = erig)) . (1.26)

This defines a random field on the space of closed loops in Z". We now rewrite

it in terms of horizontal and vertical gauge fields.
Let V(t,C) be all those oriented, vertical links in C that belong

to the slice [t,t+1] , and let H(t,C) =Cn At . Then

q q q
wi(c) = 2 E hm(t)[g(n(t,c))] vm(t)[g(V(t,c))] ’ (127

—~—
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where hi(t)[g(H(t,C))1 is a product of matrix elements of Uq(giy) , Xy < H(t,C),

and vi(t)[g(v(t,C))T is a product of matrix elements of Uq(g:y) , Xy € V(t,C) ,
and 3 1is that sum over products of matrix elements - i.e. that contraction

m
schemé - that yields the trace, tr(Uq(gc)) . From (1.24) and (1.27) we derive

n Y™ -1 n
<n wq(cj)> = > jn{ m hd (t)[g(H(t,C N1
j=1 v m.m e =l M i
Toq d h h
: <z,£[1 vm‘b(t)[g(v(t,c{’))]>v_1 (g (t),g (t+1))
- g, g e Mo (1.28)

The n =1 expectation provides information about confinement of static quarks,
the n = 2 expectation about the low-lying excitations of the theory. In a quark
confining phase and for a representation U? that is non-trivial on the center,

Zz , of the gauge group G one would expect e.g. that

n
YM
|<m wlc,)>"] s olexp[-A(C,,...,c)HD , (1.29)
j=1 77 v 1 n
where A(Cl,...,Cn) is the total area of the smallest two-dimensional surface
bounded by the loops Cl""’cn . We assert that such an estimate can, in principle,

be obtained from (1.28) and a detailed analysis of the cluster properties of the
k-point functions of the (y-1)-dimensional, non-linear o-model in an arbitrary

external gauge field. For this purpose, we note that

q
[by (olete,en]] < 1, (1.30)
h
for all m,(t) and all t , since hd is a product of matrix elements of
b m, (t)
j [clj+..+|cnl
unitary matrices. Moreover, i extends over dq terms, where
m « s M
N]_' ,,\,rl

[CI is the number of links contained in C , and dq is the dimension of the

representation vd .
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We now assume that the number of vertical links in C 1is p-> a[le .
for some q >0 and all j =1,..,n. Then, by (1.28),(1.30) and the above

arguments, an estimate like (1.29) will follow from decay estimates for

B o
q
<:H v (t)[g(v(t,cb))]j>$_1 (b,t) (1.31)
=1 1
These are ordinary N(t)-point functions of the (y-1)-dimensional, non-linear
n
g-model in the external gauge field (b,t) , with N(t) = ¥ card(V(t,C,))

= T4
=1 e

-1
Note that N(t) 1is even, and (1.31) is invariant under 85— e g > for jEZV .

Inequality (1.29) will now generally follow from
a) <:Uq(g ) :;F (b,t) = 0,

It v-1
for all j,k,£ and all (b,t) ; and e.g.

b) the expectation < - >€_1(b,t) clusters exponentially, uniformly in b,t .

See also §§ 2,3,5.1

In order to clarify this discussion we now consider a special case :

We choose a single, rectangular loop C with vertices at (0,0),(j,0),(j,T),(0,T).

Then,
T-1 v
wie) = B T Uq(gj(t))n .
m,n 00 t=0 t t+1
(1.32)
-1 q, v 1
T Ui(g. (£))~ ,
B ) 0 mmoa
where
j-1
q, h
B =[n uig )
M™%  i=0 (1,0)(i+1,0) ]mono
(1.33)
1

h
T =[n vig, . )]
ng.my, i= (1,T)(i-1,T) N,
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¥ = vertical
Vv

From our basic identity (1.24) and (1.32),(1.33) it follows that

M [
<:F (C):>b c % }ﬂ {duv_l(g (t))

m,n’t
. .0, h h _
g (t),g (t+1))lamono T ) (1.34)
T-1 o
o<yt wie) > (W), g u).
u=0 TR 3 noan v-1
u u+l

We now proceed to estimate the r.s. of (1.34) . As shown above, see (1.30),

IB | < 1, |T | = 1. (In fact, if the horizontal pieces of C have
Moo NN

the direction of a coordinate axis and for a suitable choice of boundary conditions,

one can choose an axial gauge such that B = T = 11 ). Moreover, the number of

d2(T+1)

terms in q

m,n

~ oy

We now imagine taking the thermodynamic limit, At z’ . Suppose that,
in that 1imit, there is a function Vq(j) diverging to += , as !jl - @
such that

q, -1 .4q 0 v _
|V gy Ve > B s e : (1.35)

v-1



e

uniformly in (b,t) . Then, by (1.34), Theorem 1.1.1) and the above estimates,

q
l <iwq(c)f>§Ml < qf[T+1] o V1) (1.36)

The Wilson criterion [167 then says that, in this theory, static quarks are
confined by a potential qu(j) bounded below by Vq(j) . Roughly

v49(3) = Lim - T log <:Wq(CT)j>§M , (1.37)
T

where CT = C is the loop depicted in Fig. 2 . The correct definition of the
potential v9? between (infinitely heavy) static quarks may be found in [14] .

A slight extension of the above arguments gives

Theorem 1.2. Let qu(j) be defined as in [14] (equs. (12,(12') , or as in

(1.37)) . Assume that (1.35) holds uniformly in (b,t) and choose boundary

conditions for which (9(b,t) 2 0, for all (b,t) . Then

an(j) 2 Vq(j) , for all j . o

Inequality (1.35) is a cluster property of the Uq—two—point function in the

(v-1)-dimensional, non-linear g-model in an arbitrary external gauge field.
In particular, if Vq(j)ta m|j[ , as [j[ > o , for some m > O , then (1.35)

expresses exponential clustering of that two-point function. By Theorem 1.2 this

implies confinement of static quarks by a linearly rising potential.

We have now completed the proof of our contention that pure Yang-Mills
theory in y-dimensions is equivalent to an integral of a product of (v-1)-
dimensional, non-linear g-models in external gauge fields, and we have related

clustering in those ¢g-models to confinement in the Yang-Mills theory.

In the remainder of this paper we are primarly concerned with discussing
the cluster praperties of (v-1)-dimensional, non-linear g¢g-models in an arbitrary
external gauge field. Another mechanism for confinement of static quarks (cancellation

of "random phases") 1is discussed in § 5.2.
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1.4. Summary of contents of remaining sections

In §2 we discuss general conditions for the clustering of the two-point
function of a non-linear ¢g-model in an external gauge field, i.e. we study the

estimate

1<)  ulg) >0 ®b,0)] s oV (1.38)
gom gi ) T R ’ .

see (1.35) . A necessary condition for Vq(j) - ® , as lj] -» o , uniformly in

(b,t) , is
<vlg) > (b,t) = 0 (1.39)
& mn \)“1 3 ] =
for all m,n , all external gauge fields (b,t)
The following result is established in § 2 .

Theorem 1.3. : Suppose that the character y used in the definition (1.19), (1.20)

is the character of a faithful representation of G .

of the action AU
v-1

Then equation (1.39), for arbitrary (b,t) is equivalent to ut being

a representation of G that is non-trivial on the center Z of the group G. O

In Yang-Mills theory, the interpretation of this result is that confining
representations should be non-trivial on Z . This is in accordance with a high
temperature (strong coupling) result of [2] and with general wisdom. We note

that in zero external gauge field, i.e. for (b,t) = (1,1) ,

<u“(1.~;‘b)ﬂm>3_1 (n,n) = o , (1.40)

for every representation 1Y of G not containing the trivial one. (This is
seen by substituting gjgil for gj , for all j # £ , which leaves dgj , J#4,

invariant).

For non-trivial (b,t) , (1.40) is in general false. Using (1.39) we

then recall standard implications of a high-temperature expansion for clustering,
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as expressed by (1.38)

We conclude §2 with some comments on the structure of @-vacua in
general, two-dimensional lattice Higgs theories. We show that the #-vacua of
these theories are labelled by the elements of the center Z of the gauge group
G . (In three dimensions, in the Higgs phase, the characters of Z generally
label topological charge-vortex- super-selection sectors of the theory ; see also

[18,14,19]) .

In §3 we present results specifically concerning the cluster properties

of two-dimensional, non-linear -models. Our method is based on a slight genera-
lization of the Mc Bryan-Spencer upper bound [20] (for the two-point function of

the rotator model) and correlation inequalities of the Ginibre type [21,22] .

Our conclusion is that three-dimensional Yang-Mills theories with gauge
group given by an arbitrary compact Lie group can be expected to have at least
logarithmic confinement of static quarks. This is proven for G = U(n) ,
n=1,2,3,..., recovering a result of [23] ; see also [19] . If G is a non-
abelian Lie group (e.g. G = SU(2)) we expect linear confinement of static quarks,
since renormalization group arguments suggest that the two-point function of the

two-dimensional, non-linear g-model in zero external gauge field clusters expo-

nentially, for arbitrary g <= .

One might expect that turning on an extermal gauge field generally enhances
clustering of truncated correlations, so that, by (1.39),(1.38) ought to hold
with Vq(j) = 0(,j|) . Unfortunately, this is in general false. For this reason
a complete proof of permanent confinement of static quarks by a linear potential
in all three-dimensional, pure Yang-Mills theories with a non-abelian, (simple)
gauge Lie group will be more subtle than anticipated - if true at all. We also
give an argument suggesting that four-dimensional lattice Yang-Mills theories -

even non-abelian ones - may generally have a phase transition, as B = g_z is
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varied.

In §§4 and 5.2 we derive an expansion of the expectation of a product
of Wilson loops in terms of expectations of two-dimensional random surfaces
bounded by the loops, for vy-dimensional pure Yang-Mills theories with G = U(n)
or 0(n) , n=1,2,3,... or G = SU(2) . Our method is based on expanding vd-N-
point functions of (y-1)-dimensional o-models in an external gauge field in terms of
random walks, [24]. Our expansion relates confinement of static quarks by a
linear potential to an exponentially small, statistical weight of random surfaces.
We then briefly comment on relations of Yang-Mills theory to dual strings : It can
be shown that Yang-Mills theory 'converges" to a dual string, as B - O . Hence
the low-lying mass spectrum of strongly coupled Yang-Mills theory (B << 1) is
expected to resemble the dual string spectrum ; (approximate Regge trajectories).
We expect that the same is true in the large-n-limit of U(n) - or O0(n) - theories
for B = Bo'By [an suitably chosen and normalized so that 82 =1, 0< Bo
arbitrary. (We hope to report more details elsewhere).

The end of 84 concerns an application of the Brascamp-Lieb inequalities

[1?,30] to proving lower bounds on B for U(n)-and O0(n)-theories.

critical

The result is (n) 2 B, » for some B  independent of n (which is

Beritical
somewhat disappointing).
In § 5.1 we specialize the scheme of §4 (expansion in random surfaces)
to the case of an SU(2) Yang-Mills theory and use it to prove linear confinement
of static quarks for all B < const./y-2 . In § 5.2 we distill out of the scheme
of §§ 4 and 5.1 two basic mechanisms that might lead to permanent confinement of
static quarks in Yang-Mills theories ; (cluster properties of associated ¢-models,
resp. cancellation of random phases). The two mechanisms are discussed in some
detail, partly rigorously, partly heuristically. In certain respects, § 5.2 may

be the most interesting part of the whole paper. See in particular identity (5.14).
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In § 6 we propose a method for further analysis of the three - and
four - dimensional Z(2)-gauge theories, relating them to a two-dimensional

Ising model with random couplings in one direction.

In § 7, we consider (y-1)-dimensional, Gaussian (i.e. linear) o-models
in an external gauge field. They are used to describe a hypothetical phase of
v-dimensional Yang-Mills theory which is qualitatively correctly described by
perturbation theory. Thus, they ought to provide a correct description of the short
distance properties of Yang-Mills theory. The main purposes of that analysis is to
gain some insight into how to construct Wilson loop observables in the continuum

limit and how to define a scheme for implicit renormalization.
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useful comments and "moral support". B. Durhuus would like to thank the IHES for
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§ 2. Necessary condition for clustering of two-point functions in non-linear

g-models ; H-vacua in two-dimensional Yang-Mills theories

2.1. Proof of Theorem 1.3

In this section we argue that confining (or '"quark") representations,

vl , of the gauge group G are those representations for which
<utlg,) > . (b,t) = 0 , (2.1)
4 mn” V-1

for all 4,m,n and all external gauge fields (b,t) . Representations violating
(2.1) are called particle representations. Theorem 1.3 says that, in the strong
coupling regime (B << 1) , these notions coincide with the ones in [2] where

a high temperature expansion for the v-dimensional Yang-Mills theory is used to

distinguish between confining and particle representations ; see also [25] .

Condition (2.1) is necessary for the clustering of the Uq—two—point
function of the vy-dimensional, non-linear ¢-model in an arbitrary external gauge
field which, in turn, is a sufficient condition for confinement of static quarks
transforming according to ul , (in the sense of Wilson's criterion [16] or its’

improved version [14])

We recall that the action of a (v-1)-dimensional G x G non-linear o-

model in an external gauge field is given by

o -1 -1
A° .(b,t) = - ¢ Rex(g, b, g, t.,) , (2.2)
V-1 15N 1 i) 85 13 |

o

and the equilibrium expectation, < - > 1 B(b,t) , by the probability measure
v-1,
E -A% _(b,t)
4l (g = 22,00 Bg e V7 nodg, (2.3)
(b,t) B dA 1€N 3

where B is a boundary condition only depending on ]gj : JEBJ .

First we give a sufficient condition for (2.1). Let Zﬁ be the minimal
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subgroup # [ﬂ} contained in or equal to the center Z of the group G with the

property that

vd Zq does not contain the trivial representation of ch. (2.4)
We assume that the boundary condition B 1is invariant under Z‘l’ i.e.
B ) = B((g.T) . (2.5)
(gah g an)
where (g - T)j = gj- T, for all j , and T 1is some element of Zq

Theorem 2.1 : If one assumes (2.4) and (2.5) then

q ag
<u (g&)mmjpb_l’B(b,t) = 0 ,

for arbitrary (b,t)

Proof : A basic role in the proof is played by the simple identity

jdg F(g) = i dg j dr F(g-1) , (2.6)

G Z
q

where F € Ll(G,dg) ; (a consequence of the right invariance of dg and Fubini's

theorem). By (2.3)

g - f
<:Uq(gL) > (b,t) = Z%(b,t) b Edg& Uq(gL) I dgj
“mn v-1,B o mn 4

BRex(g_lb g t_l)

X Xy'y Xy
- e B(g.,)
Xy oA

- -1 VU ar 0d
Zg(b,t) E clg‘L \ dr U (gé-T)mn
G Z a1
q t )
H dg m e X Xy'V Xy
j# ] xyCh
x#L#Ey

X gRex(g 'b_ g

BRex(g;lbz
me
zl,

-1
gy'T t ,)
1°L zd B(gah)
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= z‘];(b,t)“1 J\dgé E dr Uq(g¢-T)mn n dg

e 7 L
q
N-']. -1
BRex(g_ "b_ B t )
T e X Xy y Xy B(gaﬁ) .
xycA
where ﬁ; = ng- , for x #4 , E& =8 - Here we have used (2.6) and the fact

that T commutes with all b and t . Since dg = dg_, for all x , by
Xy Xy X X

right invariance, B(gén) - B(gan) , by the assumed Zq-invariance of B and

o~

g{ = Sé

, we have

q Y - 70 ! ( q .
<U (gb)m>v_1’3(b,t) ZB(b,t) Edg{' | dT U (g&-'r) I (g{‘,b,t) 3
G

mn
Zt
with
R, (RS |
BReX(g,  b_ g t_ )
I(g&;b,t) -1(§4;b,t)an dfgj M e X  Xy°y Xy B(Ea!\)
jM xycA

q q q q
N = U .
ext, U (gLT) (gL) x (1) , by the irreducibility of U Thus

<ul(g,) :SU (b,t) = 22(b,e) ! [d tl(g,) 1(g,;b,t) dr y3(n)
8L mn~ v-1,B "’ B’ J ) 1) mn LA j TXRT
G Z
q
By condition (2.4), , z{ dr Xq(T) =0 . 0

q

We now prove the converse of Theorem 2.1.

Let GA = exp{- T Re x(g;lbij gj t;;)l. (2.7
0 13chy
Theorem 2.2, : Suppose that the character y used in the definition of AS—I

o
is faithful and that, for some thermodynamic limit, < - >b—1 (b,t) of the expec-

tations given by (2.3) and arbitrary (b,t) ,

<ul(g,) 2;5 (b,t) = 0 (2.8)
g) >, : :
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and

o)
<G, > b,0) 40 (2.9)
0

for arbitrary bounded regions AOC Zv_l . Then U? does not contain trivi

representation of the center Z of G . (If ud s irreducible this is equivalent

to vtz # {a).

Remark : We note that (2.9) is trivially satisfied if the boundary condition

B(gah) is non-negative and # 0 , for all A\ cC Zv_l i

Proof : By (2.8)

g
db  dt y (bb',tt') F(b,t) = 0 |, (2.10)
LT; xy Yy < 8 )

for arbitrary, bounded F and arbitrary (b',t'). This equation is basic for
our proof.

We choose some bounded region AOC Zv-l containing the site 4 , and

i ¢ aAO . By taking a conditional expectation with respect to the field configu-

ration inside A, , i.e. by applying the DLR equations [26] , we obtain
-1

( BRex (g ' gt
<:Uq(gL ;au L (b,t) = Al L1 oag Ulg) - M e <%y xy B(gaﬂ ;b,t),
0/ x€A, ™ xy=Ag
where B only depends on those bxy and txy for which xy 1is outside AO or
on BAO , and ZA is a normalization factor. Since
0
| s explsvxm)| a0 8], <= ,
0
(2.8) implies
r
BRex(g_'b_ g -
\ 1 dg_ Uq(g{’) M e % VxyBy ey’ Blg,, ;b,t) =0  (2.11)
'JxEAO e xycA, 0

Using the argument leading to (2.10) we see that we may integrate the 4.s. of
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(2.11) over all those gauge fields bxy with the property that x € aAO ,» ¥ € Al .

with A = A, \ ano , and obtain

-1 -1
BRex(g_"b )
I(L,Al) = J n dbxy‘y il dgx Uq(gb) T e X xygy xxﬁ(g e
xEBAO x€N, b xych, 3,
yGﬁl
By the left and right invariance of dbxy .
-1 -1
BReX(g. "b__ g t ) BRey(b_ )
J‘db e A P ¥ = comst. > 1.
Xy Xy
Thus -1 1
. BRex(gx bx 8,t, )
0= I(,A) = Ch,e) | Tdg Uig,) - T e yyxy
XEN mn wwf|
1 1
o
with lC(b,t)l = I<:G.A > (b,t)l which is strictly positive, by hypothesis (2.9
0 v-1
Thus
-1 -1
BRex(g "b_ g
(L, 30, 0) EX N dg, Uig) - T e Y Wao, a2
xEAl mn xy:AI

for arbitrary (b,t) . The end of the proof is based on

Lemma 2.3. : If EB(&,Al;b,t) = 0, for arbitrary (b,t) and some g > O then

1]
P (4,A3b,t) = O, for all B' 2 0 and arbitrary (b,t) .

Proof of Lemma 2.3. : We claim that, for B > O and an arbitrary & > O , there

exists a function F6 € LI(G,dg) such that

. -1
(8 ReX(®) _[db X p gy (2.13)

for arbitrary g' 2 0 . When B' = 0 this is clear : § = 0 , F6 = const. suffice.

Thus we may suppose that g8' > 0 . We consider the Peter-Weyl expansion

B'Rey(g) ' )
e = r c (") (g) ; (2.14)
o Xq



Sy

here A is a list of the irreducible representations of G . We may choose A
to be contained in Z . For arbitrary B' > 0 , the coefficients ca(B') are
rapidly decreasing in |a| . Moreover, by using the power series expansion of the
exponential, it is easy to see that ca(B') 2 0 for all g and B' 2 0, and

if B>0 and B' > 0 then
ca(a') > 0 if and only if ca(B) >0

Choosing

Fé(b) = QEA (ca(B')/ca(B)) Xa(b) ,
[al5a6<m

with ca(B')/ca(B) = 0 1in case ca(B') = ca(B) = 0 , we obtain (2.13), provided

Qg is sufficiently large. From (2.12) and (2.13) we conclude that

B' . = B . -1 ' .
E (L,Al,b,t) ,gE (L,Al,b(b ) ,t)xygA Fé(bxy) db;{y + e(L,Al,b,t) s
1

where le(L,Al;b,t)’ < vﬁlhll .

Since EB(L,Al;b(b')_l,t) = 0 ,for all b,b' and t , the lemma follows by letting

5 VO . o

L)
Since E° (L,A5b,t) =0, for all 8' =20,

-1
B'Rex(g_lb o

' xxgtx) B'.
FPR ({shl;b:t) vy Xy ‘E tL,AI;b,t)ﬂO

[
~~
—
"
A =
-
=
(=W
®
x
=
=
(1]

for arbitrary (b,t) and B' 2 0 (2.15)

We now choose

A, = [£+-niei +ne, :n, =0,1, n, =0,...,N}, (2.16)

1 ii i i

where e, and ej are two orthogonal unit lattice vectors. We set Lé = £-+ei-+ne s

4L =4 + ne, , and choose

n i
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b ! 1 =t L ' = 11 ]
LnLn+1 Lnbn+1
by gr =ty = 1L, (2.17
n’ n nn
b = t = h,,
4nLn+1 4nLn+1
where hn is an arbitrary element of G , n = 0,...,N-1. When Bg' tends to

4o the measure

hoh)

. -1 . ' -1 -1 -1
8 Rex(gLNgLN) N-1 eB {RGX(SLHELA)+RGX(g¢ﬁ546+1)+ReX(gthngLn+1 n

I

B'y-1
(ZN ) € n=0

N

|| dg dgl 3
n=0 Ln &n

'
where Zi is the obvious normalization factor, is a probability measure concentrated

on the region 0 2L ecified by

= -1 -1 -1
X(g{’ g{fo) - X(g{’(l)g‘t’]'_) = X(g{‘i g{’l) s ,,. = ')((g‘t'l;J g{‘N) = ')((11) (2.18)

and

-1 1
X(gtnhng&nﬂhn) =x() , for all n=0,...,N. (2.19)

Since x(g) = x(I) implies g = 1 , by hypothesis on ¥y , we conclude that

8y T Byr T 8Bp1 T B T ... T g1 T8 )
4 40 Ll Ll LN LN

and this and (2.19) yield

hngL = thn , for all n

s DRSS R (2.20)

We conclude that, for g, to belong to (. , for arbitrary h h, and N <o

N 0’ "N

it is necessary that
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hg, = h

heaG
9 =9 , for all € .

ie. g € Z. Thus, as B' » +» , N> o , and for a suitable choice of hl""hN g

P @,A b, — JdT vd(r)
] 1’ 3 m )
Z
1
with Al and (b,t) as specified in (2.16), (2.17) . Since i (L,Al;b,t) =0,

for all g8' , Al and (b,t)

JdT i) = o,
mn
or, equivalently,

41 Z does not contain the trivial representation of Z. ]

Theorem 2.2 shows that if Uq is trivial on the center < of G then it is in

general impossible that
q q,-
<y vEh Sm,e)>0 , as x| >,
go)yy Uiy, x|
for arbitrary (b,t), because, for a suitable choice of (b,t)
I<Uq(g0)ij> (b,0)] |<ul(g)> (b,6)] = const. >0,

for all x = e , & 1large enough.

Thus, because of (1.35) and Theorem 1.2, particles transforming under
a representation of the gauge group that is trivial on the center cannot be
¥)
expected, to be permanently confined. Motivated by this observation

we henceforth constrain our attention to the study of cluster properties of
q q, -
gy  vigh > b0, (2.21)
<U(g, L M)

when le - o , with v a representation of the gauge group that does not contain

the trivial representation of the center.

) However, the "colour"of such particles is screened by the'"colour" of the gauge
field. See e.g. [257.
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The following result follows by standard high temperature expansions [2,34,35].

Theorem 2.4.

Let ¥ be the character used in the definition of the action AS_I(b,t) -
see (2.2) . Assume that

_ e-sx(n)

1 < e <1

for some small e > O (depending on the Haar measure of the gauge group G and

estimated as in [ 2]) . Then the two-point function (2.21) decays exponentially,

as x| e . a
Remarks :

1) By Theorems 1.2 and 2.2, Theorem 2.4 establishes linear confinement of static
quarks in an irreducible representation U9 of the gauge group G that is non-

trivial on the center Z of G .

2) In § 4 we apply the Brascamp-Lieb method [17,30] to prove that for G = U(n)
or 0(n) , X the character of the fundamental representation of G , the two-
point function (2.21) clusters (possibly not exponentially) if B & Bo ° where
Bo is a positive constant independent of n . In comparison, Theorem 2.4
establishes exponential clustering of the two-point function of the U(n) - or

0(n) o-models for B < 0(1/n) .

The last issue of § 2 is a brief discussion of @-vacua in two-dimensional
non-abelian Higgs theories with Higgs scalars in a representation that is trivial
on the center Z of the gauge group. We show that such a theory has in general as
many physically distinct vacua (f-vacua) as there are elements in the center Z ,
and that quarks are in general only confined in the standard 6 = O wvacuum. This
is in analogy to what was previously found for abelian theories [14] ; see also
[19] . The main purpose of our discussion is to exhibit the drastic effect boundary

conditions may have. For pedagogical reasons we start with a short discussion of
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the pure Z(n) models. The action of these models is

A(B(N) = - T

cos(ea ), (2.21)
p(__.ﬁ:-zz P
where eap = exy + eyz + ezu + eux , 1f 9dp = Ixy,yz,zu,ux} , and
£ =E2ﬂ' , m=0, ,n-1
Xy n

for all xy CA .

The vacuum expectation is given by a (generally complex-valued) measure
du , defined by

a(a()) = 27! B(a(an)) e BABIAD)

A mde . (2.22)
xy y
with df the normalized counting measure on {O,...,n-1} , (= Haar measure on Z(n)).
As boundary condition, B , we choose
k8
B(8(3N) = B (83N) = T %y (2.23)
XyC oA
k =0, ,n-1
Since the gauge field is abelian,
ikea
B (p(3M) = 1 e ©°P | (2.24)
pcA

(This is the lattice version of Stokes' theorem).

The vacuum expectation defined by the measure (2.22) with B = Bk is denoted
< - >),‘1 (B,k) . In two dimensions and for B = Bk the "plaquette angles" Hap

with distribution (2.22) are independent random variables. Therefore the existence

of the thermodynamic limit

< ->(B,k) = 1lim < - >, (B,k)
Mz A

is trivial and so are the facts that < - > (B,k) is invariant under the symmetries
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of 222 and satisfies reflection positivity, for all k ; i.e. < = > (B,k) is

indeed a vacuum expectation.

We now show that, for k # k' , < - > (B,k) and < - > (B,k') are

physically different. (The standard vacuum corresponds to k = 0)

Let n-1 1(k-4)= 21 Bcos(Z2m)
n n
T e e
r, ,(g) = 22 (2.25)
k,4 n-1 ik® 2 Beos(g 2m)
e e
m=0
Let Cl,...,CN be closed loops and Al,...,AN the subsets of 22 bounded by
Cl""’CN .

Suppose for simplicity, that

AyNA, = 0, for 14 . (2.26)

Let
-iq.f -iq40
ij(Cj) = T e 3%y = T e 13%p
xyCCj ﬁ:Aj
Then
N q N A
<nmwler>6o= 11 (] (2.27)
3=1 : =1 9

This is easily generalized to the case where (2.26) is violated.

For k = 0O ()| <1, for all g and all q; = 1,..,n-1

 Iroq,

Thus, in the standard k = O vacuum, static quarks transforming under a
non-trivial, irreducible representation of Z(n) are permanently confined by a linear

potential, and inequality (1.29) holds. However, when ,k—q,< k , ,r q(B)[ >1

k,
Therefore in a k # O vacuum quarks of 'n-ality" q , with !k—q[< k , repell each
other with a linear potential, namely equation (2.25) exhibits "anti-confinement"

(1iberation) of static quarks of n-ality q , in the most dramatic sense of these
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words. Put differently, the system in the vacuum state < - > (B,k) , k # 0, is
unstable against coupling to quarks of n-ality q , with k-q < k : the state:

< - » (B,k) decays into < - » (8,k-q) ; the 'charges" at infinity are screened.

We now argue that a two-dimensional Higgs theory with gauge group

G = SU(n) , for example, and Higgs scalars in a representation that is trivial on
the center Z(n)of SU(n) also has n=|Z(n)| physically different vacuum
expectations, < - > (B,k) , k =0,...,n-1 . These expectations are given by the
thermodynamic limit of the complex measures
4 y -8AY (g(A)
du(g(p) = Z, Bk(g(ah)) Z (g(p) e Dg(N) (2.28)

where

B (gaM) = 1 U%g ) , (2.29)
XyoA y

and Uk is a representation of SU(n) of n-ality k , i.e. Uk(ele) = eike ,

i M
for el? € Z(n).Here, Z (g(A)) 1is a gauge-invariant (non-negative) functional

arising by integrating out the Higgs scalars with the property

z2(g(n)) = z((g-mA) , (2.30)

for arbitrary Txy €Z(n), xy < A ; (2.30) expresses the fact that the Higgs

scalars transform trivially under Z(n),[14,237.

For k = 0 , this theory permanently confines static quarks by a linear

potential [27,237.

If the a priori distribution of the Higgs scalars has zero weight at zero
field strength the Higgs theory defined in (2.28)-(2.30) converges to the pure
Zn) lattice gauge theory (2.22),(2.23), as the strength of the coupling of the
Higgs scalars to the gauge field tends to o , for all B <« and all A . (The

proof is standard ; convergence is uniform in A when k = 0). In this limit all
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boundary conditions Bk . BL , ... of the same n-ality k are equivalent. That

2
is likely to be true in general, in the thermodynamic limit A = Z , due to screening.

Thus if the coupling of the Higgs scalars to the gauge field is sufficiently
strong, the vacuum expectations < - > (B,k) of the two-dimensional SU(n) Higgs
theory are physically different for different values of k , and we expect the
same phenomena (anti-confinement and instability of < - > (B,k) wunder coupling

to quarks of n-ality q with [k-—q| <k ) as in the pure Zn model.

We do not wish to go into details of these arguments, as they are hardly
very interesting. (For the modified models of [19] and the abelian models [4;&]
most assertions can be made precise using duality transformations. Notice that
there is no need for integrating out the Higgs scalars which we did only to
economise on notations. We also recall that, for ZnE =17, <->(B,k) may be
doubly degenerate, for suitable coupling constants, and charged super selection

sectors may appear |36]1).

It is clear how to extend our analysis to arbitrary gauge groups with
non-trivial center. In general, one will find as many physically distinct vacua

as there are elements in the center, but only the standard vacuum

< - > (B,0) will permanently confine arbitrary, static quarks transforming non-
trivially under the center. The measureswith expectation < - > (8,k) , k # 0 ,
are complex-valued, and they differ from the standard k = O measure only by a
boundary condition. The explicit, physical interpretation of those boundary
conditions in terms of static (colour) charges at spatial t» is as in [36],
[In three dimensions, the irreducible characters of the center of G generally

label vortex sectors, in four dimensions monopole sectors ; see [18,19]. The mass

gaps on these sectors are given by analogues of surface tensions, as in the case of

the soliton sectors of two-dimensional field theories with degenerate vacua].
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§ 3. Cluster properties of non-linear g-models

Let G be a compact Lie group, and let the action of the nonlinear
G X G-g-model in an external G x G-field b ,t) and enclosed in the region

AcZY be given by

Ag(g;b,t) = - 7 Re X(gllbij gjt;;) s
ijcA
where Y 1is a faithful character on G . The expectation in this model at inverse

temperature R will be denoted by < - >% v (B,b,t) (suppressing A in the notation).

It has been proved in [23] that if xq is a character on G which is

non-trivial on the center 7(G) , then

<vitey),, B CR N AR CRNSTIE RS CR I T SN CER R INRICRE

where d is the dimension of the irreducible representation U corresponding to
X , and i = vl 6ij for 7€ 2(G) , and 1 <1i,j < dq. Combining this

ij
result with (1.24), it follows that if the Z(G) X Z(G)-o-model in vy-1 dimensions

clusters for some coupling constant B , then the vy-dimensional Yang-Mills theory

with gauge group G and coupling constant B/ d confines static quarks.

Thus, we recover here a result of Mack's [2?1 (v = 2) , and results

in [23] (Theorems 1 and 2).

It is also remarked in [23] that (3.1) implies that the McBryan-Spencer
bound [20] can be applied to U(n) x U(n)-o-models, or to any G X G-g-models in
two dimensions such that Z(G) contains a copy of U(1) ; even in an external
G x G-gauge field. For groups whose center does not contain U(1) the situation

is more involved. However, we can prove the following

Theorem 3.1. : Suppose that G contains a U(1l) subgroup, and that the character
Xq is non-trivial on this subgroup. For free or periodic boundary conditions, the

infinite volume two-point functions of the two-dimensional model,
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q q, -1 o

cluster for all g >0 and all b .

Proof : Let us choose representations U9 (of dimension dq) and U (of
dimension d) , corresponding to xﬂ and ¥ respectively, such that they map the

elements of U(1) = G into diagonal matrices ; this can obviously be done, and

we conclude that there exist integers kg,...,kg and kl,...,kd such that
q q
q 1kj8
U'(h(B)),, =6,, e , 1si,j<d ,
ij ij ] q
and
iij
U(h(e))1j = 6ij e , l=<i,js<d ,

for all 6 € [O,Zw[ , where h(B) , 9 € [0,2n[ , labels the elements of U(1) < G.

By using the right-invariance of the Haar measure on G , Fubini's theorem

and the cyclicity of X , we have that

= g
<vgy Wigh, >, B -

-1
B T Rex(gi b,.8,)
i%3
ijch M dg,

-11.49 q, -1
= 2°(g,b,1) h[U (g ) U(g ™) e
VP 04y x i1 1€A
-1 -1
o B T Rex(hi 8 bijgjhj)

_ 50 -1 q q ijch

ij x °x “ji
u(1) i€A G iep

< 70 -1 q q,-1 q -1
- ZV(B,b,l) J- M dg. [ Mdh, U (go)ijU (gx)jiU (hohx )j

: N j
g G Tuin e
=1 -1
8 % Z ReU(h ) U{g, b,.g.,)
e LicA n=l fﬁ' an 1 1373 nn
217 q
_ _ d6, ik (8.-6_)
= 20(8,b,1) 1J moag, (g uglh) J 7 —Le 4 07x
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d -ik (6,-60)
B 3 Ree a U(gi bijgj)
e 1icA 0=l (3.3)

where ZS(B,b,I) is a normalisation factor.

At this point we can adopt the method of [23] and apply the correlation

inequalities of [22] to conclude that

=m d0 B 5 E(.os(kn(e -8,

q g4 i q ijcAn=1 .
] <u (g,) i (g ji:>b (8,b, | < ZU(l) JigA—F;COS(kj(GO 6, e ,
0

(3.4)

since [U(g)_j' <1 for all 1i,j and all g € G .
1

Now since Xq is non trivial on U(1) , there exists a such that

Jo
k? # 0, and it is clear that the Mc Bryan-Spencer argument can be applied.
0

It follows that for any B > O there exists a C(B) > O , such that in

the infinite volume limit

-c(B)

-l (8,b,1)| < const.|x| . (3.5)

ag
|<uCeg),y VD, >

joi” G,2
To conclude the proof we show that (3.5) implies bounds of the same kind

on all the othertwo-point functions;(in fact some of them are zero).

First, in a finite region A we have

g
<Uq(g0).j Uq(g;])k{’> (,b,1) =
1
o B v Rex(gi ijgj)
2°(g,b,1) "} [Uq(go) vl e M M dg
\Y J ij k{; JEA J

{ B T Rex(gilbijgj)
o -11.49 q, -1 -1 ijch
Zv(s,b,l) v (gog)ij U(g g, )kL e jgh dg; (3.6)

m,n=1 kn

. 'g <Uq(g0 u (g, )} (8,b,1) vy j vig™



S8 =

as a consequence of the right-invariance of the Haar measure and the cyclicity of
1
y- Next, using the orthonormality of the functions g-—— dg Uq(g)mj s

1<mjs dq , in LZ(G,dg) , we get by integrating (3.6) with respect to g

that
d
q q. -1 4 =§j1< 1 q q, -1 g
<u (go)ij Ui(e, )M)G,v (8,b,1) 3, mEI <u (8y), U'(g, he Ze,y (B0 D

(3.8)

o
Thus <:Uq(g0) qu(g;l)jL:> (8,b,) 1is independent of j . From this it
i G,v

follows that (3.5) is fullfilled for all jé s and all i's.

Finally using the left invariance of the Haar measure, and performing

the transformation 8o~ 88y > 8, 8 for 1 # 0, we get that

d
q q, -1 o g q q, -1y O
<u (8p) Ve, )17, B0 = E U <Uigy) Ve, )y

m=1

(8,b,1) (3.9)
v

L]

b = b = -1 _—-
where bij = bij for i #0 and j # O, and bOj g bOj (or 50 bjog).

Now since s irreducible, we can find Bys-+ 8¢ € G such that the

d q
vectors (Uq(gr) ,...,Uq(gr) ) €T . , v = 1,...,dq , are linearly inde-
il

id
q
pendent. Since we know that the lefthand side of (3.9) fullfills (3.5) when
-1
v = 2 , for all b , we can conclude that <:Uq(g ) Uq(g ) :)g (B,b,1) also
0] mj X 3i G,

obeys a bound of the form (3.5) for all m,j and i . This together with (3.8)

ends the proof. o

Theorem 3.1 shows that in the G x G-g-model in an external gauge
field of the form (b,1) , where the group G and character xs have the
required properties, there is no long-range order in two dimensions. The same
is wellknown for the N-vector models. In dimensions larger than 2 we have the

following

Theorem 3.2. : In v =2 3 dimensions the G x G-o-model with (b,t) = (¥,1)

has always a phase transition with the property that for B large enough
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ag
<:U(go)ij U(gx5j1:>a,v(8’1’1) > const. >0

uniformly in x , where U has character % , the same as used in the defi-

nition of the action.

Proof : Representing U(g) as a vector in a dz-dimensional vectorspace
(see § 4) , the proof is essentially identical to the one given for the N-

vector models in [28] . 0

The proof of Theorem 3.1 does not work for general external gauge
fields (b,t) if G 1is non-abelian. One way of surmounting this difficulty

would be to prove that

- o) - a
<X >, (80,0 s <Xq(gogx1)>c (8,1,1)
? \Y

3

for all (b,t). This inequality is true if G 1s abelian in virtue of the

inequality (3.2).

In § 7 we argue that this is hardly the case for nonabelian G
(e.g. G = 0(3)) , and we show that, in a Gaussian weak coupling limit of the
G x G-g-model, clustering is definitely diminished for certain choices of
(b,t) . Thus, we have reasons to believe, that apart from abelian, also certain
non-abelian lattice Yang-Mills theories in four dimensions may have a phase
transition at some Bc < o . Whether quarks are still confined for B > Bc is
then a matter of whether there are strong cancellations of certain "random
phases" of the long range order in two-point functions of three dimensional

g-models. See § 5.2.
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§ 4. Expansion of the expectation of Wilson loop observables in terms of random

surfaces for G = 0(n) or U(n)

This section is organized as follows : First we wuse our basic idea, des-
cribed in § 1, to write the expectation of a product of Wilson loop observables
as the integral of a product of 2k-point functions of non-linear g-models. Then
we use an expansion of these 2k-point functions in terms of random horizontal
paths joining the 2k points pairwise. Such an expansion can be found in [24] for
random Gaussian models, and, more generally, for models whose measure is given by
an integral of exponentials of (not necessarily real) quadratic forms in the fields,
in [29] . We use this for the Haar measures on O(d) and U(n). Now it is clear
that when we form the product over all those 2k-point functions, each class of
such paths determines a surface bounded by the loops, since the paths join points
on the vertical sides of the loops pairwise. These surfaces get more complicated
as the number of loops gets larger, and also as the loops become more general than
rectangular ones. But in principle we can write down explicitly the weights of the

surfaces for the two groups O0(n) and U(n) (see (4.10))

Our representations resembles the representation of Green's functions of
the dual string in terms of (expectations over) random surfaces. Indeed, when 8
is very small, the expectations of products of Wilson loops satisfy the Schwinger-
Dyson equations for the free dual string Euclidian Green's functions of the same
loops, up to terms of order B . This suggests that, in the strong coupling
regime (B << 1), the low lying mass spectrum of Yang-Mills theory resembles the
mass spectrum (without the tachyon) of a free dual string. (In particular, we
expect that it forms approximate Regge trajectories). We believe that the same
conclusion ought to hold in the large n 1limit of U(n) - or O(n) theories.

(Our ideas are vaguely related to recent proposals of Polyakov [3?])
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4.1. The expansion

Let us first consider G = 0(n) . We will derive an expansion of the
two-point functions for the nonlinear g-models in an external G x G-gauge field

by the method used in [24] and [29].

We will use the identifications of the vector-space mM(n) of n X n-

2
matrices over R with K or R'® R" given by

n n2
m(n) 9 g = (gaB)a’B;'i'_) (8119812)"3g1n’821!"'!gnlylo,gnn) E ]R
and
n n
T R'>5X®Y=(X,..,X)® (Y,,..,Y)—> (X Y) € m(n) .

It is then seen that for a,b € m(n) the linear operator on M(n) given by

g— agh

corresponds to a ® b* on R"® R" , where b° is the transposer of b . In

t
particular a ® b~ is orthogonal if a and b are.

Since furthermore,

tr(gth) = ¥ g b = <gh> for g,h € mn)
aB aB
a,B
n2
where < -,- > is the natural inner product on R , we get for g = (gi)ieho,
= (bij)iyzﬁo , t= (tij)ij:AO ; ﬂo an arbitrary bounded subset of
zV"l |, that
¥ tr(gt b,. g tf) = y <g,,b,, ®¢t, g, >
= (g,Ab,tg) + 2(v-1)(g,g) (4.1)
|2
where A is the covariant Laplacean on M(n) defined by
-(p ,8) = y (g,-b Bt .g) = T (g, - U,. g.) (4.2)
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where we have set U,, =b,, ® t , and we
ij ij ij >
( +,+) is the inner product on & R"
i€NO

suppose b: sy e AO

370y

. Furthermore we can suppose suitable

boundary conditions imposed, e.g. periodic or free ; (see the discussion in § 1).

Next we note that the Haar measure on 0(n) has the representation
. n
d(g,) = n s8((gg,) -6 _) 1m d(g,)
i 1<<8<n i®i aB aB v, 6=1 1°v6
@ -0 ((grg) -6 ) n
= I j (em~te ag 8 @B q(y,) M dlg)
1sqspsn ) aB vy,6=1 Y
_n(?jl) ) tﬂligigi'li) .
= (2m) e n d(ki) n d(g )
1sa<f<n aB y,6=1
-n(n+1)
2 -i<g;, 18\ g, >H tr A, n
= (2m) e nm d@G,) M dlg)ys
J lsasgsn © aB y,5=1
““(‘2‘“) -i<g, ,Migi>+1%tr M,
=& d M, dg (4.3)
where t:ll“li = nn d()"i) is a measure on the set of matrices Mi =1® g
1sqsBsn ag
over R with 3, _0'1:(18)(1 g=1 and RO«B = XB(I , 1<sa,8s<n, and t:lgi is the

2
Lebesgue measure on R",

Using these remarks and the fact that the last term in (4.1) is a constant

2(y-1)n [AOI if the gi's are in 0(n) , we
<(gy (g) > (b,0) =
ag  yd w1
0ju(n+l
] -| 1=
= (Z®,ent (89) g (8,)5 (2
12,
| 1 0
g (Zo(b.t))'lgz -2(v-1)n|A l
= (Ec(b,t))_lﬁ_ ][ By +21M] (0,x) e

ap,Yd

n(n+1)

1
E(g‘[ﬂb,t-

can write

) -2 ibﬂg)ﬂ-—tr M

e-z(v—nnlncleflz(g’[mb t Eap

[1°]
go) B(gx)

D +i8
21MJg) H= tr M

(b (4, c21M]end tr

dg dM (4.4)
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where we have set dg = 1] dgi , M= @& M dM = I dM, and

160 jep0 17 iepo 1
n(n+l) n?, 0 1 B
- wRL >(g,[8, -21M])g)+E erm
Eg(b,t) = (132(v 1)n(ﬁT) i 8 2} 27 (b, t) =.{e2 bat n dg dM

Expanding (-&b t+ ZiM)_l in a Neumann series and using the definition of &b ¢

(4.2) (see also [24]) we have that

-1 N(w) 1
- + 2iM 0,x) = v (2(y- iM )t B -
( B, o+ 21 )as,yé( x , (2(v-1)+2iM ) m Uw(i_l)w(i)(z(v 1)+21Mw(i))
W i=1
wj=0
W =X (4.5)
where the sum is over all paths  : [1,...,Nw)} — AO for which (0) = w; = 0
and w(N(y)) = wf =X , and w(i) and w(i+l) are nearest neighbors for all
i=20,...,N(w)-1 . N(gy) is the length of the path w . Furthermore let qy(-l)w(0)=]1
for all paths y .
Using now the representation
T a-1 -t6-Ds2im) T n-1 ity M
2w-D+2iM )" = Jat =(2¢u-1y" | S LS
i j) o © de=(2¢(v-0)" | a4t DT e © (4.6)
0 0
we get from (4.5)
t -
N(w) i t, -icT M4,
-1 -(N(w)+1 =71 v-l wd
- +2iM = =
(B, (#2035 5 (0) = Z(HoD) ’{150 ”w(1~1)w(i)l dee”
w, =0 ' Bsyb
i
W =% (4.7)
From this we get the desired expansion, namely
<(g) () D (b0
B 4 e )
Oag X v,
B

1
A =g, [a  -2iM]g)+H— tr M
o - - - )) + Ze=rtoh
- Zg(b,t) 1 5 1 5 (2(v-1)) (N(w) +D . o n

w
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t

N(w) s £, -i—=M
T YD) K o fe V10D dg dM . (4.8)
(=0 ¥ A aB,yd

More generally the 2k-point function is given by
2k 5
<N(g, ) > (b,t)
i=1 X1 %4B{ v-1

k
-Z(N(ws)+1) l(g,[&b’t-ZiM]g)+i%trM

- Po,o0l 5 r (2(v-1))%7t j-ez
k-pairings wl,..,wk
(wS)i=xis
(ws)f=xjs
K  Nwy) ¢, —bfif M, -
sﬂl 120 Uws(i-l)ws(i)]; dt, e e VT s L dg dM (4.9)
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where Z denotes the sum over all ways of writing the set {1,...,2k}
k-pairings
as k unorderedpairs (i, ,j.),...,(i,,j,) and T for a given pairing
i | k’-k W s
IERRRL
EUJS ) iixis
Wg ) f‘xj 3
as above is the sum over all sets of paths lwl,...,wk[ in AO where the sth
path starts at X; and ends at xj for all s =1,...,k .
s s

Now we can insert (4.9) into (1.28) and we get

o -5 (N(w)+1)
< owle)> ¢t ow 5 5 2(y-1)50*
j=

Myyeee,m k-pairings w

=33

~ ~ ~

-

1. v v
q - 5(g (£),[a ~21M(t) 18 ()
[TI [’io(gh(t),gh(tﬂ)) 18 ktjez & gh(t),gh(t+1) :
Jt

ti
- M
-ty VE ws(1)
e I nmu e

t ¢ dt.e
s=1\ i=0 ws(i—l)ws(i)

; dg” (t£)am(t)

t .t

i%trM(t) kt{N(w;) lv
t _t
0 ve b
aiSBiS YjS jS

m

m hg (t)[g(H(t,cj))1 Co(gh(t),gh(t+1)) duv_l(gh(t)) (4.10)
=1 7]

where ” denotes the sum over all ways of writing each set il,...,2ktf
k-pairings

as k. unordered pairs (il’jl)""’(ikt’jkt) , and 5 = (k.) is the set of

kt's where Zkt is the number of vertical links of the loops Cl""’cm in the

slice [t,t+1] . Furthermore for given Myseee,mo and given k-pairing

A

(i;,j:),...,(i; ,ji ) the sum } denotes the sum over all sets of paths
t t w

t t ~
w =1 lwl,..,wk } where, w; , § = 1,.,kt is a path in At which starts at the
B - t
E I
link i: and ends as the link j: . Finally aL{,H ¢ and Yt . 6t indicatc

t t
Ly is Is js
the matrix-elements of the matrices g . and g . which enter in the term
i 3
s

8
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m
Lnl V;L(t)[g(vit,c ))] in (1.28) for the given choice of MyseeesM o

" YM
We now assert that (4.10) gives a representation of <:jﬂ1 Wq(Cj):>
N \Y

as a sum over random surfaces bounded in the vertical directions by the vertical

C_ . To see this let us first simplify to the single

sides of the loops Cl,..., 0

rectangular loop described in the last part of 1.3 or more generally loops C
which have at most two links in each timeslice [t,t+1] . In this case there is
clearly only one h—pairing and apart from the finite sum ; we get in (4.10) a
sum over sets of paths, one in each At between the top aﬁz the bottom of the
loop, joining the two vertical links of C in the corresponding slice. But each
such set of paths can be supposed to determine a surface whose intersections with
the At's are the respective paths. Of course several procedures to exhibit the
one to one correspondence between sets of paths and surfaces are possible.

As to the case of more general sets of loops Cl,...,Cm we just remark

that the random surfaces here become more complicated and may join the vertical

links of different loops also.

Clearly, as seen from (4.10), the weight of each random surface looks
complicated in this lattice approximation to Yang-Mills theory. We have not yet
succeeded in obtaining good bounds on the expectation of Wilson loop observables
in the O(n) case by this method, but we can prove area-decay for the SU(2)-case
for a large range of coupling constants by using some special properties of SU(2)

(see § 5).

Finally we mention that for G = U(n) an analogous expansion can be
2
obtained by identifying U(n) with a subset of ™ or C"® M , and using a

representation of the Haar-measure on U(n) analogous to (4.3).

4.2. The Brascamp-Lieb bound

We wish to add a short remark on the Brascamp-Lieb bound for the critical

in non-linear o-models.
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Recall that in [30] it is proven that the critical inverse temperature,
BC(N) , of the N-vector models (= O(N) non-linear g-models on the lattice z” s

v 2 3) obeys
BC(N) 2 N/ 2y . (4.11)

Their proof follows from a method due to Brascamp and Lieb [17] , which boils down
to the following estimates :

Let ¢ € RH, s esht , and define the real function V on R by

ev(¢) = I P8 dn(s)
SN—l

N-
where d) 1is the normalized, uniform measure on S i . Let Mv(@) denote the
2
norm of the matrix with matrix elements —ai-(ﬁo) . Then, by [17] .
api6pi
sup Mv(w) 2 const. BC(N)_1 (4.12)

©

It is shown in [30] that

= |-

sup l‘% (@) =
%)

from which (4.11) follows;(the constant in (4.12) is also estimated in [17]).

The Brascamp-Lieb method can also be applied to general G X G-o-models
(in external gauge fields), in particular to the 0(n) x 0(n)- or U(n) x U(n)-
models., As the reader may easily check, a sufficient condition for

B < BC(O(n) X 0(n)) 1is the following :

2
Let V be the function on R (identified with M(n)) defined by

*
eV(fP) - o Ir(g ) dg

3

o(n)

where dg 1is the normalized Haar measure on 0O(1) , and let M‘}¢ﬂ be the norm

2%

of the n2 X n'z-matrix with matrix elements ———=— (¢) . Then
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sup MV((P) > const. BC(O(n) X O(H))-l (4.13)
%)

i.e. for B < const. (sup MV((p))‘l, the O(n) x0(n)-g-model (in an arbitrary external
gauge field) has a clustering twopoint function, and hence the corresponding Yang-

Mills theory in one dimension more with gauge group O0(n) confines static quarks.
Unfortunately, it turns out that the lefthand side of (4.13) does not
increase with n , so we can only conclude that
Bc(O(n) x 0(n)) = const. , for all n,.

A similar argument applies for G = U(n) . Thus the Brascamp-Lieb method seems tobe
insufficient to determine the large-n-asymptotics of BC(G x G) , for G = 0(n)

or U(n)
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§ 5. The SU(2) theory

5.1 Expansion in random surfaces

In this section we choose G=SU(2) and xq = ¥ , the character of the

fundamental representation of SU(2) . Note that ¥ 1is real.

We will make use of the homeomorphism ¢ : S3———» Su(2) (83 is the

3-sphere of radius 1) defined by

SO+183 -S +iS2

1243 2 , (5.1)

S +1'.S2 80-153

qo(SO,S

to carry out a program analogous to that outlined in § 4 . In this case however
-1 . '
we have the advantage that ¢ carries the Haar measure on SU(2) to the uni-

form measure on 83 , which considerably simplifies the calculations. This 1s due

to the fact that the usual five constraints used to specify a SU(2)-matrix from
mE(Z) have been replaced by one single constraint, by a suitable parametrization
of SU(2)

We first note that

- - - -1 -> — 3
. = )
5, -8, er@(3) 7 o(5,)) , ¥3 .3 es .
Furthermore X(gilgz) is invariant under the transformation g —— hi,k_l
and gy hgzk_1 , h,k € SU(2) , so we have
1, -1 1 .
¢ “(hgk ") = 0(h,k) © "(g) , V g€ su(2) , (5.2)

where O(h,k) 1is an orthogonal 4 X 4-matrix.

0 -
Now let A be a rectangular region in 2Z" . , and let b =(bij'}'} 20’
11CA
£ = (t,.) ,with b., =b-l € SU(2) and t., =t} € su@) for ijc 1O .
ij ijCﬁO ij ji 1% ji
Define the covariant Laplacean &b ¢ on (Eﬁﬁlh ’ by
(Ab’tX) = o, X - O(bij,tij) xj) (5.3)

i g:ijen®
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for x=(xi) o € (:R)IM
ieA
Then for g = () € o™l and s=G) = 0l
L jep0 i"4ep0 177 4en0
we have by (5.2)

-1
X tr(gi ngtiJ

) = = <5.,0(b, ,t )8, > = s) + 2(v-1)]1°] .
ijcnO < ij 15773 By e

13c/0
In this section we choose periodic boundary conditions. We note the representation

- 2 —
5(|si| -1) a8 d). ds
1511 N 9

1 T -ix, (|3, ]%-D)
j,?ﬁ_je AR

of the uniform measure on S

We can now proceed in complete analogy to § 4, and expand the two-
o
point function <:Sg S§:> . (b,t) in terms of random paths. By using (4.7)
v_

and defining

1
, s
2% (b,t) =Je7(s’6b.t ) 5(]5 f -8) d§ (5.4
jEA ]
and
Lis,n, .s) O u
Ec(bﬂgw)=‘Je2 7B, Jdu 4 . uja([? |2-B+—J? s (5.5)
jen0 ) (n, @)-1)! 3T v
we get
<52 s§>3_1 (b,t)
1 n; (w)-1 2 Y3
- =(S,A, .S) w Wt n, (w) -ix,(]s,| -a+———)}
.0y T E{ez bt [du {_J___ AT TP S
" jepo) (n, (@)-1)! v-
Lb‘i"o
W =X
N(w)-1 (5.6)
R O(bw(s)w(s+1)tw(s)w(s+1)))a €8 2N ‘




s

-3

where dS = [ d§8, ,dy= T d
jen0 J JENO

w hits the site j

The matrix element that enters in (5.6) is bounded in modulus by

1
so from (5.6) we get the estimate
- Z n (w
o -1 o ;
|<sngB> )] s = (2(v-1) JEA Zoew) (:
VT W 2%(b,t)
w,=0
UJf"'x
Let now C be a rectangular loop inside the rectangular region /A — zY
as described in the last part of § 1.3, and let us use the same notations. By
(5.1) the term Uq(go);lm Uq(gx)n n appearing in (1.34) is just a sum of
t t+l tt+l
four terms of the form irS% SE (0 < r,a,8 < 3) . Hence by using (5.7) and

(1.34) , and remembering the remarks following (1.34), we find that

|< Wq(c)>3M|

< Q_l QTS b {duv_l(gh(t))go(gh(t),gh(t+1))]
t

- v n, (@Y
TEII{B_I | (2(v-1)) JEA, ] ’iﬂ(gh(t),gh(tﬂ)Jwt)}
£=0 r Phe), g ey S|
wi=0
C
=X
T-1 "
R nj(m )
= C—l 4TB_T s L. 5 [(2(\)—1))t=0 _]EAt
UJQ w -1

T-1 %o, h h t
»Jn fan ") C@"o), g e} 1 et ‘;j*”'*i’-l}
eV t=0  Z(g (t),g (£+1))

lj , and l}(&) is the number of times that

S0



S

Z nj(wt)

T ... [(2(\;-1)) €3
wO uﬁ;'l

T B—T

-|Al
m {8 t 'Zo(gh(t),gh(tﬂ),wt) duv_l(gh(t))lJ
L
' ' -5 n, @5
T -T -|A t,]
48 B NP [(2(\;—1))
£% u)T-l

-1
(S, ,A p S.)
2™t ]H {dﬂv-—l(gh(t))Je2 t77gM(E), gh (e )t
t

\

nj(wt)—l
u - -> u - )
I 5 du _.1T e 8([(s,) ]2-3+v—1i) d(s)) }J , (5.8)
jend (ny @5)-1)! j - ]

where Z denotes the partition function in (1.16).

It is now easily checked that the multilinear form

1
(5 _,A s.) N
2NN noe (B )ad)  au NOREN
: jen, B3T3 i

£,1

(f _)-—»JH {e

is reflection positive with respect to reflections in pairs of planes through
(or between) the sites of Ac 2z’ , so that we can apply chessboard estimates
(cf. [4]).

1

This combined with a thermodynamic estimate shows that, for 8 <'§?J:r$ .

the expectation of the Wilson loop observable has area decay.

Details of these calculations can be found in the appendix to § 5 .
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5.2. Basic mechanisms for confinement

We end this section by distilling out of the scheme of §§4 and 5.1
the basic mechanisms that might lead to permanent confinement of static quarks.
The gauge group G 1is one of the groups SU(2) , U(n), O(n) , n=1,2,3,... ,
U(1) and 0(1) = Z(2) included. Our discussion is based on equs. (4.8), resp. (5.4)-
(5.6) and (1.34) . For simplicity we choose G=5U(2)(or U(1)) and UY = U to be

the fundamental representation of SU(2) . Equs. (4.8), resp. (5.4)-(5.6) then give

q q, -1 g -|w] -1
<U%gy)  UNg ) > (b,t)= £y F(b,t|wo(b,t|lw) , (5.9
0" mn X k-l w v mn , k4
w;=0
(.Uf=x
with
y = 2(y-1) , F(b,tly) = (b, t,0) , (5.10)
¢ L (b,t)
lw] -1
and 0(b,t|w) = S Oy erutern) wleu(s))
where
o(g,h) = U(g)L uh HR (5.11)
L . 22 -1,R
U(g)~ is left multiplication by U(g) on V.~ , U(h ) 1is right multiplication

U
by U™l on ﬁﬁz , where ﬂﬁz(z U(G)) 1is the space of all matrices on the

vector space VU that carries the representation U of G . Here g and h are
elements in G, and U is the representation of G with character % (which
for simplicity we have chosen to be the fundamental representation of G and G=SU(2)

or U(1). Our methods work in general, but when G=0(n) or U(n), n>2, the factors F and O

on the r.s. of (5.9) are tensors which must be contracted. See (4.8)).

Clearly, O(b,t|w) 1is a U(G) x U(G)-valued random phase.

If we now insert (5.9) into (1.34) we obtain the following representation

YM
of <I~'q(C) >\) . (For simplicity we choose C to be a rectangular loop in a



= R3

Y,
coordinate plane containing the vertical (x -) axis with sides of length

L= lxl , resp. T) . Then
5

| —[@U
= <<H {;v

-1
m,n(S:aS=C u=0

<qu(c):>:M =

>M) . a

. F(b(u),t(u)|g§) o(b(u),t(u)lgi)m @ - on 1}. B, o Th iy
u utl’u ut oo T v

where S belongs to the class of all random surfaces bounded by the loop C
("3S = C") formed out of vertical plaquettes, and, given S , wﬁ is the path

of nearest neighbor vertical links obtained by intersecting S with the slice

fus x’ < u+l} , (in other words, S > {wi

wi in the {xv= u} hyperplane, and Eﬁ the one in the {xv = u+1] hyperplane.

: 0<sus<T-1}) , ws is the trace of
=u

We now introduce an a priori measure, P, » oM the set of all random surfaces boun-
ded by C , by setting
T-1 —lw
S = T .
p, (8]0 Y, : (5.13)

u=0
(y, = 2(v-1))

Let Cu(S) be the horizontal loop in the [xm’a u} hyperplane obtained

by composing mﬁ—l with gi so as to form a closed loop ; 5?1 =Cn [xv = 0} ,
Q; =CcnNn {xv = T} . If we now combine (5.10)-(5.13) we readily arrive at the

following nice identity.

™ -1 . . s N
<wlex> = 5 o (slod T FGEMNwW,g ) T ety x( ?}x( S s
vV s:3s=C | <{u¢o 2,7 "X 8¢ (s) 3cT(S)>V

[Notice that

ulb., ,(u+1)))
x'y

= y( ),
X &, (s)
+1

-1
)X T u(t. (u) 9 n
Lileyms 1J(x'y'<:ggi 3i

and use (5.11),(5.12).]
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Equ . (5.14) is a rather powerful and suggestive identity which we
recommend to the reader's attention.The previous results of this section
(see also the estimates presented in the appendix) show that in the average

(with respect to b,t).

0 < F(b,t | w) < g(s)lx' , for G=SU(2) or U(1) , (5.15)

so that, by (5.9),

- q vl -1 o
|<u (go)trln (g, )k?v_l(b,t)l < o(exp[ |x| 2nE(R)]) (5.16)

for some €£(B) which is strictly less than 1 , provided 1! is a quark repre-

sentation and B is sufficiently small (B < 0(\)-1)) . In this case it is enough

to bound Ix(gcu S))! by x(11) = dim Uq, for all u = 0,...,T , because (5.13)-
(5.16) already yield confinement of static quarks by a linear potential

(2=4n E(B) |x]) . However, we know from Theorem 3.2 that, for b=t=1 , v 24
and B large enough, F(11,1|w) cannot satisfy (5.15) with g(B) <1, since

(5.16) is false, namely
_ o
<tr(Uq(g0) . Uq(gxl))>‘u-1 (n,n) — const. >0 , (5.17)

as [xl - o , no matter whether 19 is a quark- or a particle representation.
We have reasons to expect that, for a class of external gauge fields (b,t) of
positive measure,
-lw[-1
Z oy, F(b,t|w) — M(b,t) > 0 , (5.18)
w
‘”1:2
We
as 'x] > o , (See the discussion in § 7).

If we replace the traces of the random phases by y(1l) we obtain the

upper bound
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T-1
1< WO <« @M o Mk, e
' v ~ u=0 \Y

for T >>'X,aaa , which does not prove more than perimeter decay, i.e. does not
imply confinement. Therefore, for g 1large and y 2 4 , the only mechanism that
might give rise to permanent confinement of static quarks appears to be a cancella-

tion of the (traces over) random phases when taking their expectations.

Such cancellations of random phases, i.e. sharp upper bounds on their
expectation value in the Yang-Mills measure, are rather subtle and ly beyond our

present methods.

We emphasize however that we can obtain improved upper bounds on
T

|< W) >§M[ by taking into account the factor 26 X(gcu(s)) in the expectation
on the r.s. of the basic identity (5.14) : We fi:st apply a chess board estimate
(in the xY-direction, with reflections in planes between lattice planes) to the
r.s. of (5.14) and then refined "thermodynamic'" estimates to bound the expression
resulting from the chessboard estimate. The general ideas of this method are as in

'4,24,29] ard § 5.1. The results that emerge are substantially better than the ones

of § 5.1.

We now summarize those results. Detailed statements and (the somewhat

lengthy) proofs will appear elsewhere,.

By (5.14) ,
|< wq(c)>YH|
AV
T-1 T
h h -1, S ™M
< T p.(SC) | <q F(g (u,g (utl) ) T (g >, (5.19)
S:3s8=C v | u=0 | u=0 X Cu(s) v '

From the chessboard estimate (in the xv—direction, with reflections at x’= const.

hyperplanes between lattice planes) and slightly subtle upper bounds on
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-1
F(g,(g") ] w) , viewed as integral kernel of a quadratic form, it follows that

T-1 T
h h - S
|< T F(g (w),g (u+l) . ] mu) i X(gc (S))>YM|
u=0 u=0 u V
T-1 T
T ay) m ulc (s)) (5.20)
< .
u=0 -mu u=0 W u ’
where
nj(w)
ofw) = g [w-1)8] , (5.21)
jezV (nj(w)+1)!
and
N gy 1/20w1)
Ny =
u(c") = 1im [< P X(8c 1 (2m)’ XBcr(omiy’) > ] : (5.22)
Noow m=0 W N
where C' = C'(0) 1is a closed loop in the lattice hyperplane at x’ =0 , and
C'(n) 1is the translate of C' 1in the xY-direction to the plane at x” = n 3
< - >¥MN is the Yang-Mills expectation with periodic boundary conditions at
AVE]
xV=0 , 2M+2 .

In order to get explicit estimates on M(C') one can apply the Z(2)
domination inequality of refs. [23,19]. For large B one then applies a duality
(Fourier) transformation to the resulting expectation in the Z(2) theory. This
reduces the problem to estimating an expectation in a high temperature Z(2) model
which one achieves by a high temperature expansion ; see [43] . As a result

one finds

-k()|c'|

uc') < e K(B) >0 , (5.23)

(|c'| = 1ength of C') , first for lage B < = and consequently for arbitrary g,



Y e

by the Griffiths inequality.

More detailed results and proofs of (5.19)-(5.23) will be presented

elsewhere. We summarize our estimates in

Theorem 5.1.
<uwli) s™M < 3 oo (5.24)
S:38=C Vv ’
where
T-1 g T
pl(s]C) = pv(SlC) T aly) T p(C(5)) (5.25)
u=0 u=0

with o and u given by (5.21),(5.22) , resp.
Remarks :

i

The convergence factor | H(Cu(s)) is a manifestation of the mechanism
u=

of cancellation of random phases.

In the estimates summarized in (5.20)-(5.25) the two mechanisms, the
"clustering mechanism" (5.15),(5.16), resp. the cancellation of random phases

(5.22),(5.23), conspire.

Our estimates are certainly not optimal, but we expect that the way in

T

which the statistical weight of the product of random phases, | X(gc (S)) .
u=0 u

estimated by (5.23) is qualitatively correct for large g, not only for G = U(1),

is

but also for G = SU(2) .

It is of interest to test the strength of our methods in various situations,

assuming further hypothetical estimates if necessary. One may e.g. suppose that

YM
(1) < W) > | < © o"(s|C) , with
' v S:38=Cc V
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"es 1o T -K|Cu(S)]
< I
MCH < pl(8]cC) oo ,
S
, -1 |w,]
where p'(S ,C) < p(s|c) nm ¢ , with g = () <\2(y-1) and
v e.g. ¥V u=0

K = K(g) 1large enough.

(II) One may study a non-relativistic limit (velocity of light ¢ >> 1) of the
lattice SU(2) theory. For c¢ >>1 and B small one finds estimates on "(S|C)
Y]

which reveal an intimate connection between the SU(2) theory and a non-relativistic

open-string model.

A systematic study of upper bounds on p"(S|C) , including (I) and
v H
(I1), will be initiated elsewhere. (The relevant tool from probability theory is
the theory of interacting random walks, resp. - in a formal continuum limit - inter-

acting Brownian paths).

We do not want to end this section without pointing out a draw:back of
the methods of this section : The difference between the four-dimensional U(1)-
and the four-dimensional SU(2) 1lattice gauge theory merely appears as a quantitativ
one ; (e.g. aU(l)(w)> aﬁU(Z)(w)) . In contrast, the methods outlined in § 7 do

point to a qualitative difference between abelian and non-abelian theories.

Although our present estimates for the four-dimensional SU(2) model are
far from optimal, one may speculate that, indeed, the "clustering mechanism"
(5.15),(5.16) breaks down, in the sense that (5.18) becomes true, at some finite
value of BO , and that for B >> BO the expectation of the Wilson loop ceases to
have area decay, even in the SU(2) theory. We emphasize that this would not
necessarily imply the appearence of coloured physical states in a SU(2) gauge
theory with quarks inthe spin 1/2 representation, because the colour of sufficiently

light quarks could be screened completely.
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§ 6. Z(2)-gauge theories in 3 and 4 space-time dimensions

In this section we show how our program implies that the. estimation of the
expectation of Wilson loop observables for Z(2) -gauge theories in 3 and 4
dimensions, can, in principle be reduced to an investigation of certain properties

of two-dimensional Ising models with random couplings.

Let us first regard the case v =3 , G = Z(2), and let ‘xq

= % = the
non-trivial character on G . Let also C be the loop pictured in Fig. 2, lying

in the 1-3-plane, the t-direction being identical to the 3-direction.

Clearly the Z(2) non-linear O-model in an external Z(2)x Z(2) gauge

field can be identified with an Ising model with spins * 1 , and with couplings

Jij = T 1 between the spins. More specifically the Hamiltonian is given by
H(J,0) = -3 3 140404 , (6.1)
[1-3]=1
where the qi's are the Ising-spins, and equal +1 or -1, and J = (Jij) denotes
the couplings which are determined by the external gauge field (b,t) = ((bij’tij))
as
(6.2)

J,. = Jb,t) =
ij

ij Pisfiy

where we have used that G-]' =0 for O € Z(2).

Choosing the axial gauge in which the gauge fields on the links in the
l-direction are fixed to be = 1, we get from formula (1.34) and the remark fol-
lowing it that

= T-1 o
<wEe> = ¢ lJn fau,(s™ () ("0, " e} T <gge> (&0, g"(e41))
s t t=1 2

(6.3)

I T-1
g'IJn fau, (" ()¢ 2" (), g+ 1
t t=1

I
<o FGEN ), g (er))
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I
where < - > %(J) denotes the expectation in the Ising model in ¢ dimensions

with couplings J , and Jb,t) is given by (6.2) . gIa(b,t) is the obvious
normalisation factor (the Isingq partition function). Now in the gauge we have
chosen J(gh(t),gh(tﬂ))ij =1 if ij 1lies in the 1-direction so the factors

on the right side of (6.3) have the interpretation of expectations in 2-dimen-
sional Ising models with random couplings in one direction. Furthermore, the

h
measure duz(g (t)) 1is a product of equilibrium measures of one-dimensional

Ising models, which are known explicitly.

It is well known that, by correlation inequalities of the type of Ginibre's
[21] , the spin-spintwo-point function of an Ising model with couplings whose
modulus is less than 1 are bounded by the one of the isotropic Ising model with
couplings equal to 1 , and thus that the critical B of the first model, and of
YM3 , is at least as large as the critical B of the second one. Eq. (6.1) together

with a closer examination of Ising2 models with random couplings should give a more

precise determination of the critical B of YM3 2
Since YM, is the dual ("Fourier-transform) of Ising, [31] such results will

also supply new information about 13 !

Turning now to the case \y = 4 we get instead of (6.3), in obvious

notations,

YM B g I T—].
<w(en> = ¢ 1 jn fau, (g"(£)¢ "0, eDNE T <oy
t

I
S 33" (), g e+))),
t=1 3

(6.2)

where we have chosen the axial gauge in the 1 -direction, the loop being supposed

to lie in the 1-4-plane, and the t-direction again identical to the 4-direction ;
J is still given by (6.2) . The measure du3 is that of a YM model in 3
dimensions in an axial gauge, and can be analysed by the previous methods, described
above. Furthermore the 3-dimensional Ising model entering in (6.4) has random

couplings in two directions, and couplings = 1 in the third direction. This model
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is related to a YM3-model by duality [31] . The measure of that YM3-mode1 is
however in general not positive (because of the random couplings in Ising3), but

is equal to the standard YM3—measure (1.16) multiplied by a function of the
plaquette variables, assuming the values + 1 , and which can be evaluated explicitly.
Hence expectations im this model can, in a "simple way'", be expressed by expec-

tation values in the standard YM3 model.

The two-point function of the Ising3 model is related to the expectation
of a fluxtube in the YM3-mode1 which can easily be expanded in products of loops.
The YMB—expectations of those products of Wilson loops can then be reexpressed in
terms of integrals of products of certain 2n-point functions of a two-dimensional
Ising model with random couplings, as in (6.4) and (1.28), which - we suspect -

can be analysed fairly explicitly.

Clearly, the scheme described here for the pure YM3 - and YM4 - models
with gauge group Z(2) also works when the gauge group is Z(3) or Z(4), [31].

In all three cases, YM, 1is the dual of Ising3 , whereas YM, 1is self-dual, so

3 4

that its critical temperature should, in principle, be explicitly computable [31].
Further insight can be gained by making use of the existence of self-
adjoint transfer matrices in the YM3 4" and Ising3 models and in the two-dimensiona:

Ising model with random couplings in the 2-direction and transfer in the 1-direction.

One then must choose a convenient representation for those transfer
matrices, involving Pauli-matrices and Fermion operators, as proposed in [32,33].
This reduces the problem to analyzing the behaviour of large products of large

random matrices.

In conclusion we have achieved a "reduction" of the evaluation of Wilson
loop expectations in YM; and YM, with gauge group Z(2) (or Z(3),Z(4)) to

the evaluation of products of 2n-point functions of two-dimensional Ising models

with random couplings in the 2-direction, integrated with respect to products of



L

equilibrium measures of the one-dimensional Ising model.

Since our results go, so far, hardly beyond this simple observation

(based on YMv Sy Uv-l reduction technique and duality), we omit further

details, but hope that hard and grubby work on the Ising2 model with random
couplings will eventually supply non-trivial information on YM, , and hence on

13 , and on YM& .
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1)

§ 7. Continuous "Time'" Formalism and Gaussian ¢g-models

This section is somewhat expository. No detailed estimates are presented.

A few important technical points are treated in an appendix to § 7

Throughout this section, G 1is a compact Lie group, in particular
G = U(1) or SU(2) . We propose to study the continuous imaginary-time formalism
(xV € R, continuous) for lattice Yang-Mills fields with gauge group G . In the
limit of a continuous imaginary time coordinate, v-dimensional Yang-Mills theory
turns out to be related to Gaussian ¢-models with fields taking values in the Lie
algebra ¢ of G in an external gauge field (b,t) € G x G, on a (y-1)-dimensio-

nal lattice. For quantum theory, this is a correct and very useful approach, whereas

the somewhat complementary approach (continuous space, discrete imaginary time)
outlined in § 1.2 is problematic. (For v 2 3 , it appears to impose unsuitable
renormalization conditions, and, moreover, non-perturbative renormalization of
(v-1)-dimensional o-models in the continuum limit has not yet been carried out

for v-1 2 2 . Notice that the limits, "lattice spacing in time direction" O ,

and "lattice spacing in space direction" O , do not appear to commute for v 2 3 ;

we prefer to take the first limit first).

We start with a lattice £ = e¢Z x 52""1 , eZ={u=¢n :n€ 2z} ,

and 6Zv_1= {x =6y : y € Zv"l} . (We follow the notations of §§ 1.2 and 1.3).

The Yang-Mills action is now given by

(u)gj(u)_ltij(u)-l},

M v-5 h -1 V-3
=_- Y 3
AV {% T 5" "Rex(g (u) ) +e 16 ReX(gi(u)bij

u€eZ \ poszV-1 op 1jcsZV”

(7.1)

where gi(u) = g(i,u)(i,u+€) , bij(u) = g(i,u)(j,u) , and tij(u) = bij(u+€) =

.S .3, (1.17). toff, A ,
g(i,uﬁ)(j,uﬂ) ee § 1 (1 17) (The Spﬂtial cuto A will be SUPPIESSed

in our notation). We set

1) Some of the result reported here have been obtained in discussions with E. Seiler
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-1 —1

v=3
1(bt3= - X 4] Rex(gi ijj _']

1 ) (7.2)
iycezV~

A-
The Yang-Mills vacuum expectation corresponding to the action (7.1) is given by

Y™
<-> B 1¢€,8
Vv

-1
¢ ueq;zzk - >z_1(5 | e, 6 [ bw,e(w):

.

@B e, s | b, duB’a(b(u))f , (7.3)
v-1

where ( 1is the partition function of the v-dimensional Yang-Mills theory,

CU(B | ...) the one of the (y-1)-dimensional o-model in an external gauge field

(b,t) with action e_lAg_l(b,t) , normalized such that g“(... ] n,n) =1,

< - 3;_1(...) the vacuum expectation of that model, and ngii the normalized,

(v-1)-dimensional Yang-Mills measure. We propose to study the leading behaviour of

(7.2) and (7.3) for € << § <1 . For the study of the limit e¢\O we set in (7.2)
gi = e H xi € Q 3 and (7.4)
i i ’ (7.5)

where dgi is the Haar measure on G , and dXi is the Lebesgue measure on G ,

v-1

for all i € 8Z . (See § 1.2) . For the action (7.2) we find to first order in ¢
-1 _ -1 v-3 -1
v 1(b t) = -¢ f: o} Re X(bij ij)
]
- 123 3 (Re X(X;b, | ij - Re x(tij y j)}
v-3
+e L 8 "[Re x(xibijxjt1j
ij
- 1/2 Re X(X bty - 1/2 Re X(t71b, X%)} . (7.6)

1°15 %13 15°13 j
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The first term on the r.s. of (7.6) is independent of X and can be combined with
the (y-1)-dimensional Yang-Mills actions for the horizontal gauge fields,
gh(u) = b(u) , to yield
YM =
A, rad. = Z {e £ 5V Re X(b(uw)_ )
ra¢ neez \ poszv-l op

(7.7

-3 -1

1z \¢

. . & Re X(bij(u) tij(u) )}
1§52

which is the expression for the vy-dimensional Yang-Mills action in the radiation
gauge (g’ = 1) . (Thus, the remaining terms in (7.6) could be gauged away when

€0 . We do however not choose the radiation gauge).

Next, suppose that [bij(u)' is the restriction of a smooth gauge
uceZz

field, bij (u) , on 62\)-1 X R to the lattice 52“4 X €¢Z . Then

b, () ¢, (! =b, b, (we)t = 1+ 0e)

ij ij ij ij ’

and (7.8)

lim e-lfbij(u) tij(u)-l -n} = B, (u)

eN0 ]

In finite volume, /A , (fixed on an e-independent scale), equ. (7.8) holds in the
sense of stochastic differential equations for the paths fbij(u)] in the support

of the imaginary-time vacuum measure determined by the action A:M see (7.7),

,rad.’
in the limit e = O (which is the path space measure, duv rad.’ of the v-
dimensional Yang-Mills theory in the continuous-time Hamiltonian formulation, [38]).

We define

(Dbx)ij = xi = bij xj bij . (7.9)

Taking into account (7.8), the second term on the r.s. of (7.6) approaches
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L b8 =-53 7 yox B, (7.10)
Vo ij ij 1ij
and the third term on the r.s. of (7.6)
- £ v-3 2
as eNXO0, up to 0(82) terms. In (7.10), (7.11) the summation, Y , extends

ij

over all ordered nearest neighbors.In finite volume, A , the treatment of the

€NO 1limit can in principle be made rigorous. This is a somewhat tedious exercise
in manipulating Trotter product formulae and the heat kernel on G . For G = U(1)
or SU(2) one can follow [39] , where the e€NO 1limit in the radiation gauge

is studied.

After having taken € NO , one wants to study the limit &0 . This
problem is at the core of the renormalization theory of Yang-Mills fields. A partial
aspect of this problem is the analysis of the § \ O 1limit of the Gaussian o-
models in external gauge field with action Av—l(b) + Lv-l(b’B) and a priori
distribution T] dXi , see (7.5) , at "inverse temperature" gh , h >0 ,

(h = h(5,v)) .iIn this step the external gauge field is kept fixed. For G = U(1)
or SU(2) and v-1 =2 , the §WO0 1limit of these models has been constructed

in [40] , (and the methods of [40] suffice to also analyze the three-dimensional

case, of interest in the construction of four-dimensional Yang-Mills fields).

We now recall the main problems arising in the study of the & NO 1limit
and in the analysis of confinement for € = O . This requires some more definitionms.
Let VX be the finite dimensional Hilbert space carrying the representation UX

of G with character ¥ .

We define € = UX(b) , b €G. (7.12)
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Let MX = 622 D U(G) be the space of all matrices on VX . Let Y

be an arbitrary Mx—valued function on BZV-I. We define a (finite difference)

covariant gradient by

(8)y (8)y 1
= (Vv = - Y .
A )ij ( ¢ )1j 5y ginj g j) ; (7.13)

with gij = Ux(bij) . Furthermore, the covariant Laplacean is given by

*
A SRR AL (7.14)
3 g g

For § = 0 , the superscripts are dropped.

v-1

For Y,Z2 Mx-valued functions on 6Z" , we define
v,2) = =& elzy (7.15)
1eszV! :

and similarly for Mk—valued functions on unordered pairs of nearest neighbors in 52

Let Qx U (Q) be the matrices in MX which represent the Lie algebra
G of G . Such matrices are henceforth denoted & , ¥ , ... . In our new notations

we get from (7.10), (7.11)

(8)

. &)

- -1
A 18 = -5
(7.16)

(8) 4 3y

3

Lv_l(g B) = § Re(v

and the uniform measure on QX is denoted d%® . The Gaussian vacuum expectation
€))

of this model, at "inverse temperature" pgh , h > 0 , is denoted < - > (7,B),
Bh

and C(é)(Bh | €,B) is its partition function, normalized such that ((gh | m,0)=1.

When G = SU(2) , X the isospin 1/2 character, we set & =i ¥ ¢F Oy where

a=1
gy » 0y 5 05 are the Pauli matrices. The adjoint representation used in the
definition of Vé6) i &éé) has isospin 1 , and we may now set

(8)y sl .
@D = 8T g e
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1

Su(2), i.e.' t S0(3). Moreover

dé = d o,

We now propose to study the behaviour of

-1
;62 (- ﬂéé) m) , in particular of its integral kernel, C

X,y 1in 62\)_1 , for arbitrary § 2 0, m 2 O , and arbitrary £ ;

1)

2) g(é)(ﬁh , €,B) as a function of § 20, § and B, (with € , B

of compact support) ;

$
3) <Ikh %)

as a function of

(%)

-hé
(e y) (E )B) ’

h 3 6 3 E

Xy in 62\)-1

3
|x-y|
to the expectation of the Wilson loop ,

<wi(c)y> |,
v

Yang-Mills theory on 62\)‘1 X R (in the limit

\
where )E ]R and gij belongs to the isospin 1 representation of
o

the Lebesgue measure on R

(?;(x

g = 0) by the formula

3

,Y)

e.g.

and B. This two-point function is related

of the vy-dimensional

(LT}

YM
<l = um{g I (“(ezad ® 1 ¢®@e | gw),3
v e\0 em,g. e uteZZ
T .
myny npmp
ed -cd (6)
m Qe 9 e 5 > (e, B(e)}
n€eZN[0,T-¢ ] My Mute Pufyte ge
where d‘u\iez'ad (b) is the v-dimensional Yang-Mills measure in the radiation
gauge, §(b(w);, = b, ) , ‘;2 )= e Mgy g o™ S ), and
x € ézv_l (independent of u) with [x| = L . Formula (7.17) involves the hidden

assumption that, for

models and then take the e NO 1limit.

that this can be justified by adapting the techniques of

[39] .

Fortunately, problems 1) and 2) have been solved already in

G =SU(2) and yv-1 =2, and the techniques developped there suffice

See also

5 >0 , we can first pass to the Gaussian limit of the o-

(As remarked already above, we are confident

[40,417).

[40] for

, 1n principle,
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to solve them for arbitrary compact gauge groups and 2 S y-1 < 3 . From that

reference we infer that
(8 (8)
”Cm’;(x,y)” < ”Cm?nﬁx,y)” , for all § |, (7.18)

(Landau diamagnetism [4,&0]) .

(®)
and for ¢ 5(6) iaﬁij , where ﬁ(a) is the restriction of a continuous
ij ij ij
continuum gauge field, ® , with values in qx and of compact support to the
lattice 62\)_1 3
(5) &5 N0
g(x,y) — C_ ﬁ(x,y) , in LP(AXx N , (7.19)

for arbitrary bounded, open A C R’ and 1s p < plv-1) , with p(2) = = ,
p(3) =3, and for a large class of boundary conditions (e.g. free, periodic,
Dirichlet) at JA . See [40] for detailed statements and proofs of this and

(8)
other results. These results suffice to control the limit of <« - >B (g, B(S) R

as &6 NO , for & as in (7.19) and B(a) chosen such that § 1&5)

— B' , as
N0 , e.g. in the sup norm.

[As an example, we mention that, for § = 0 ,

) 'y = (el -1 : ,
<&, {>;'I>Bh(ﬂ,l3 ) = (BT G gy + (BRI, (B GI(C, B (y)

For v -1 =2, this identity usually has infrared divergences, unless e.g. O-
Dirichlet data at the boundary of some bounded, open region are introduced in ﬂﬁ

or B 1is suitably chosen. For v -1 2 3 there are no infrared divergences. The
two-point functioms in 3) and (7.17) have no infrared divergences, even for v -1=2,

but must be ultraviolet-renormalized when §NO , for y-1 2 2 ; see below].

Next we study the partition function Q(G)(Bh | g (6) with
) -
g(é) = eiaﬁij . Big) the restriction of a smooth -valued field B on R” L
- B 8\ =
of compact support to /A . , and § lB(é) Q g , in Ccz)(ltv 1) . For v-1=2
(8)

we temporarily introduce O-Dirichlet data in A at the boundary of some ©6-

g
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independent, bounded open set A , in order to eliminate infrared divergences.

(Reference to )\ 1is suppressed in our notation). Let 5(6) be the usual finite
d
difference Laplacean, and let V§= be the (y-1)-dimensional, covariant lattice

dipole potential, defined as follows : Let f be some MX-valued functions defined
v-1

on the links (nearest neighbor pairs) of §Z and h an arbitrary Mx—valued
function on Z’ of compact support. We define ’Uéﬁ)*f by
Cvéé)*%,h) = (f;véa)h) - sias tr(f?}(hi—gijhjgij)
Let now f and g be arbitrary Mx—valued functions on the links of 62\’_1 s
of compact support. Then Vg is defined by
d (8)%; ((6) S(&)*
(f,Vgg) = (V 0 EUE g) (7.20)
By evaluating Gaussian integrals we get
(8) (6) c(8) L -1, d -1
¢°’(gh | §,B) = det(-p 'Cg e exp[ (Bh/2) (5 B,V, 6 B)] ; (7.21)

see [40] . (We thank E. Seiler for correcting a mistake in our original formula).
Notice that the r.s. of (7.21) obeys the normalization condition, g(é)(sh | n,0)=1.

(e) (e)( y =

For h=¢ , B =38 with B {gij(u) gyy(ute) - nf ,
the effect of the second factor on the r.s. of (7.21) is to modify the couplings
between E(u) and E(u+e) , u € €Z , 1in the measure duieiad (&) (see (7.17))
We set

COPR O ~15(e) (do-1.(e)yq, ()

dp " (€) = 2 exp[ (Be/2) (8~ , Eﬁ B -7)]d “rad. (e) , (7.21)

(e) (e) _
where Z is a normalization factor chosen such that dp,) (8) =1 . (In
spite of the second factor on the r.s. of (7.21), the measure dp( £2 is well-
defined, since exp[(Be/2)(8" IB(e) § b (e)} < exp[(Be/2) (5" 1B(€) 13(6))7 .

(e)

which is compensated by the factor exp[-(8/e) Re(§(u),&(u+e))] in du (5)).
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Notice that the formal action corresponding to dpie)

is "non-polynomial"
if G 1is non-abelian, even in the formal limits € = 0 , § = O . Thus, our approach
might be cumbersome for the discussion of ultraviolet renormalizations when one

takes the limit § ™0 .

Next, we discuss the first factor on the r.s. of (7.21). Notice that

det(—a( Cééé v is independent of Bh. From [ 4,40] we recall that

0 < det(-A o2 56;) s1 (7.23)
(diamagnetic inequality ; see also Theorem 1.1)
For §13 = eiéﬂgg) s (i) the restriction of a continuum gauge field, B , that

is HYlder continuous of order o >0, v-1 =2 , and O-Dirichlet data on the

boundary of a bounded, open set in 112 5
1/2 1/2
1im det(-a0¢l8)y " 2 dee- ac, ) (7.24)
5%0 0 ,E 0,8

exists and is strictly positive ; see [40]. (The methods of [40] suffice, in

principle, to also handle the case y-1 =3, for smooth 8 ).

Thus, the results of [407], in particular (7.18)-(7.24), provide complete
control over the §NO 1limit of the Gaussian o-model in an external gauge field

with action given by (7.16), at arbitrary "inverse temperature" O < gh < ® , and

v-1=2, (3) . Next, we study the two-point function
(%)
(6) h@x
; B(x,y)h,”mn < (e ) Y) ;>éh (g,B) , (7.25)

in particular its cluster properties (related to confinement via (7.17)) and the
existence of the limit § \O . For |G (6)(x y)|| to tend to 0, as |x -y| » =,

it is necessary that

(8)
kE>Bh E,B) = 0 S (7.26)
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for all § , B and x (large enough).

(8)
Since < - > h (E,B) 1is Gaussian, with covariance Cééz , (7.26)
(8) (8) (8) (%)

requires that C0,§ (x,x) 1is infinite, with 2CO,§(x,y) - Co’g(x,x) - Co,g(y,y)

finite. This is possible for v-1 < 2 , due to an infrared divergence : For

g=1 , C(a)(x,y) - Céﬁé_(X,y) is the Fourier transform of
v-1 ?

(62/2)[(v—1) - 2 cos(ékj)]_l . ([kjl < 6-1ﬂ) which is linearly (v-1 = 1),
a1

resp. logarithmically (v-1 = 2) divergent at k = 0. Moreover,

(8) (8) 1 1 _
CV(x) - CT(0) 21_l.log T;T , for v-1 =2 . Thus, one might expect (7.26) to

be valid and ”Géag(x,y)” to behave like
1
h/2mg) 1 T (7.27
exp[ (h/2m8) log = 1 )

as |x-y| » » , for arbitrary € , B, when v-1=2 . By (7.17) this would
yield permanent confinement of static quarks in three-dimensional Yang-Mills theory

by a potential =2 log[xl , as [x[~a @ . For G = U(1)

) _ o(® (6

0.8 = c and Gg’%(x,y) = G;E; (x,y) (independent of €) , and

, (7.26) and (7.27) are
true, since
if the center of G contains U(l) the same conclusions hold, by the estimates
of § 3. Moreover, when vy-1 =1 , £ can be gauged away, for arbitrary G , so

that (7.26) holds trivially, and

(5)
£,B

(s)

”G ,B

(x,y)| = |6 (x,y)]| = exp[ -(h/28) | x-y|] ,

for arbitrary G and all § > O .

However, for G = SU(2) , y-1=2, (8§ = 0) , there are choices of
an external gauge field B such that Cﬁ is a bounded operator with
”Cﬁ(x,y)” < const., for ’x—y] large enough. In this case (7.27) is definitely

violated. This is the result alluded to in § 3 : For certain choices of R , the

clustering of Gﬂ B(x,y) is worse than that of GO O(X,y) . This is a consequence of

non-abelian Landau diamagnetism. Some more details are given in the appendix to § 7.
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For v 2 4, (7.26) is always violated, and || éag(x,y)” 4 0, as
]x-y, > ® , as we are now goilng to demonstrate.
By (7.18) ,
legrll = @y <
v-1 N Rk
s (m VD2 J. [(v-1) - £ cos(si]) T @ Lk
g =1

3(6)(v-1) < o , for all x,y . (7.28)

This shows that (7.26) is impossible.

Moreover ”Cé?;(x,y)” < ”c(é)(x-y)” = 0([x-y|~ , as |x-y| » « . Therefore

Il éﬁg(“'y)” 40, as |x-y| » = , which proves our contention.

We conclude that presumably in the three-dimensional SU(2) Yang-Mills
theory and certainly in all four-dimensional Yang-Mills theories confinement of
static quarks can only arise as a consequence of cancellation of the random phase
(6)(0 x) when integrating over € , (with B = g(—g— g'l)). This is

g,B "’ 3x”
the second mechanism emphasized in § 5.2 ; see (5.19) - (5.23) . A careful study

factors in G

of this mechanism in the limit e = 0 , (i.e. for the Gaussian ¢-models) is
beyond the scope of the present paper, but we recall that it has been shown in
[14] that in all v 2 4 dimensional non-compact U(l) theories there is no

confinement.

In the present formalism, absence of confinement in the four-dimensional

U(1) theory can be understood as follows : For G = U(1) ,

(5) } (8) (6) 2c(8)
Gg,B(O,x) exp[-(Bh/Z)(CO g (0,004C0 ¢ (x,%) - 2" (0,x x)] -
: exp[gh[v(“ (8) 5y 0y - ¢ . c(® 5y (xy17 (7.29)

0:5 g 0,8
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Now, since the adjoint representation of U(l) is the trivial one,

(6) (8) _ (&) (8) (8)
v =V]1 =3 and CO e = C (7.30)

33

are independent of g (i.e. the same as for £ = 11 ). In particular, they are
\Y

independent of the value, u , of x . Furthermore, one can set
(8)
iA; " (u)
B ij (6)

v-1
for all 1ij c 8Z , u€ R , Thus

(%) o L)

B" " (u) —i(au 11 ) (w) (7.31)

I1f we now insert (7.30) and (7.31) into (7.29) and, subsequently, (7.29) into

formula (7.17) for the expectation of the Wilson loop we see that the random phase
u=T

(8) (8)
. j du[]a(é) (8 aA )(O ) (a(a) (5) aA )(x “ﬂ
u=0
= exp{-iB[(a(é)-C(a)A(é))(O,u) - (B(G)-C(G)A(G))(x,u)]g} (7.32)

reduces to a product of two random phase factors localized at u =0 , resp. u =T,

i.e. to a pure "surface term". Thus, using (7.29),(7.32) and (7.17)

<_Wq(C)>ZM = exP[—ﬁT(C(é)(O) N Ca(x))T .

T YM
expl 18[00 .2 (0,0) - @ -cOu)m >,

(Since the second factor is a surface term, it cannot cause area decay, when §6N\0).

The basic difference between abelian and non-abelian theories is that, in

the non-abelian case Véﬁ) and C(()(S;

that the total random phase factor does not reduce to a pure surface term,

do depend on & 1in a non-trivial way, so
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as can be checked by an explicit calculation. For this reason, four-dimensional

non-abelian theories may still confine static quarks.

Finally we discuss the continuum limit (§%O0) of the two-point functions
26;(0 x) and the related problem of how to "normal-order'" the Wilson loops,
wl(C) , so as to be able to pass to the continuum limit. We concentrate on the

discussion of G = SU(2) , with xq = Y% the isospin 1/2 character ; (G = U(1)

3

is very easy). For SU(2) § =1 z ¢ﬁ'0a . Let < - >é§) denote the Gaussian
i=1

expectation with mean O and covariance Cia) = (-ﬂ(6)+ 1)-1, i.e.

a (8) (s)
< f> = 0 ey 8%
Let c(a) = ciﬁ)(o) . Then
3 (5 _ (%)
-<:exp(ﬂpx03)k£>b exp[-(1/8) ¢ °’] 81t (7.33)
M (6)
oreover, for § =€ as in (7.24) ,

1im (C (8)a8 (6)6a8)(x x)

exists, for v-1=2
50 O, g(6) ’

(8)

(provided O-Dirichlet data are imposed on C (5) at the boundary of some bounded,

0,¢g

open region, in order to eliminate infrared divergences). This is proven in [40].
Thus

lim <i9xp(ihp3 03) 9 )( (6) ) exp[ (h/88) 0(6)] 6

8N0 = k2>éh = ke
exists. In general we define

(6), héx hdy (6);7 ¥

N (e )kL = (e )kb B{& )kL:> ] . (7.34)

Then, for smooth B' = lim 6_13(6) ,
8NO
Lim <N(5)( By N Py, )(g(a) 3(8),
5NO ki 8h

exists, even in the thermodynamic limit ; (there are no infrared divergences).

) Another possibility is to choose a "unitary" gauge in which ¢} =¢ =0 -
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This suggests replacing wl(C) (defined on the links of 6Z") by

\/g@x) >(5) J-l

(8) .9 _ X [
N'TWIC)) = T UM (g ) (e
Xy mxmy <i‘ mxmy 0

This prescription ought to be appropriate for taking the limit §NO , at least

in v =3 dimensions. It suggests to formulate the renormalization conditions

in a scheme of implicit renormalization for three-dimensional Yang-Mills theory in
terms of §-independent upper and lower bounds on

YM
<N(5)<wq(c>)>\) ,

for C a square loop with sides of length 1 , for example.
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Appendix to § 5 :

We show, in this appendix, the details of the calculations leading to
the area decay of the expectation of the Wilson loop observable when G = SU(2) .

These are completely analogous to those performed in [29] 5

With notations as in § 5 we get, by setting

%(S’&b tS) un—1 -u 3 5 .
Z (b,t,n) = je ’ M du TJ_T)' e j6('5 |“- 8 +—L) 48 , (A1)
jEA J (a-1)! j v-1 h|

and using a chessboard estimate, that

[ E Zc(gh(t),gh(tﬂ) ") du\)-l(gh(t))

1 (A2)
< m [ gT]EU(gh(t),gh(t+1),nk(wr)) du l(gh(t))jTIT
r,k Jt Ve
By a second shessboard -estimate we have
o, h h h
J-E 29 (g (t),g (t),n) d“v-l(g ()
n-1 1
u -u =(S,,A s.)
= t,] t,] h 227’ 5h h t
J[tnjfd“t,j (-D)1 © fk‘ {d“v-l(g L S
mos(|3) |’ 2ty 43y |
iéh, ACTR B 2 v d(st)i}J
( d “::11 e, 3 U I (oD %(St’ﬂgh(t) gh(c+1)st)
S| M du - e I {% g (t)e :
]t’j t,j (n-1)! ail R M1
2 u !
I os{fs) | -8 + -—‘hli) d(s)) }]m
i€n ti V= i

t
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n-1

- Yt e h
Stnj du, s 72ty e (ﬁ) m “Ll{duv_l(g (£)

1, ‘q,2 .
=(g- )(s, ,0 S¢)
o2 v-1"""t’"gh(e) gh(e41) t m 5(|(§t)1|2-1) d(gt)i}]77fr

1€At

1

u
=J 1 du, ] (_r—LELl—l)' e U, j(B-f—‘-i) 1 [[ (gh(t)_,gh(t+1))du _l(gh(t))]m
t, ] y ' q,2 B—-E*ﬁ b

v-1 (A.3)

Next we note that by Jensen's inequality

1
=B (S, S)
Zo(b,t) =je2 &b’t

-> 2 -
[ -
8 mo8(| Jl 1) dS

JENO ]

m 5(|s | -1) ds

_ }e © 1)(8 ab S) 2(5 )(s ab S)
JENO ]

(S Ap S)
> zo- (b,t) 2(\)-1) t ;

B-57

v-1

o
where the expectation < * > 1(b,t) is at inverse temperature - ;-9-1- A
V- =

Now since

-> = 2
(s,a, . 8)| = T (8§ -0, ,t I5)% < 4(v-1)|A]
| Ab,t ! 1_‘](:[\0 i ij? 713773 AO
when 'gj' =1, Vj € Ao , it follows that

0
Zg(b,t) 2 27 (b,0) o201\ ) (A 4)
g-——
v-1
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Formulas (A.3) and (A.4) imply that

[n 2 (¢"(e), g™ (e41),m) du ("))

t
“2—1 Ueia ey 2t g, h h h
< J{tnj du Ty e Sla-Bbe B [Ezstg (©),g"(e+))dn | (2"(0))

(n-1)

-1 (=—= 1) ||A
< [Jduun e'.1 ( -1) JJ,

1

6 1)-nlA’ .z (A.5)

(

Formulas (A.2) and (A.5) then give

-n, (W)
m 20,6 (e41),0%) du_ (g (£) s (CA—mni )
. " j s(v-1)
And finally this combined with (5.8) gives
) ™
|<;wq(c)j>b |
- v n, @5 -3 nj(w)
T -T ) t,] ST
< 4" B w% ...w¥_1(2(v 1)) (B(v—l) 1)
- nj(w Nt
p T T 5 -t - 1)) 3
- " s( -1)
.wizo
LDf"x

1 (
B8(v-1) -1 >1 , and since % nixw) 2 Ix[
and |C| = |x|T , we see that there exists ¢>O0 , independent of x,T and A ,

1
For B < No-1) “¢ have that

such that
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=" ni(w) T
|<wleM s 4Tz e
w
wi=0
UJf=x

o B'T((-ah+ &) Lo, xnT

where AA is the discrete Laplacean in A C z V1

conditions.

with periodic boundary
Taking the thermodynamic limit and noticing that
-1 -€
(-p+e) "(0,x) ~ e ‘xl s as |x| > o,

completes the proof of confinement by a linear potential for g < ET&TIT

1
(A more refined estimate extends this result to g < ;—-)
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Appendix to § 7 :

In this appendix we show that the clustering of certain two-point functions
in a Gaussian SU(2) x SU(2)-og-model in two dimensions is diminished when a suitable

external gauge field is turned on.

As argued in § 7 this indicates that for large B only the mechanism of
strong cancellations of random phase factors can be expected to be responsible for

confinement of static quarks in a SU(2)-gauge theory in 3 dimensions.

We consider a two-dimensional Gaussian o-model, where the field X takes
values in su(2) (the Lie-algebra of SU(2)) , and an external gauge field

A.Ll € su(2) is acting. In other words we consider the model whose action (G 1is given

by
1 *
G = yx tr((D, X)" (D, X))
A A
u=0 V] M
where
D, X= 33X + [A,X - = 0,1 ,
Au s [ H ] M

and X and Au are su(2)-valued functions on :m? . The measure of the model is

thus the Gaussian measure with covariance

* =1
= (X D, D, )
M MM

(-a,)
defined on a suitable space of su(2)-valued functions.

To be able to analyze AA we set

X= 5 ¢ o0 and A = 5 A%y |
B oy M

where the 0& s are the Pauli matrices, and ¢F’, Aﬁ are realvalued functions
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on Bg. Then DA has the representation
M
3 A
M M
o al , (B.1)
L M M
a2l 3
\ M M M
1
wz 3 2
acting on | ¢ |, which is an R'-valued function on R" .

Also we have that

X)) = g &

From this we see that, expressed in the fields ¢F , the measure of the

model is the Gaussian measure with covariance C, = (-ﬂA)-l, where -A, is given by

-4, = £ D, D,
T VRV
o+ aHZaH® (wa® aZal g,a2)-a3.al
= IV,A3 E-Az Al —£.+(A3)2+(A1)2 -{v,al}-a2 A3 y
-{v,a%}-a%al -{7,a}-a%. 4% s+l ra?y?

as a direct calculation shows by using (B.1). Here Ai-Aj =3 AﬁAﬂ and
(v,al} = £ 3 Aty ) .
’ T
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i d
To simplify this expression we set Al = A2 = 0 and A3 = A # 0 . Then (B.2)

becomes

_)
e -{v,A]} 0
= >
-ﬂﬂ = IV :A] _&"'Az 0
A
0 0 -A

But this operator is unitary equivalent to the operator

-.’
-ﬂ+if7,:‘&)}+A2 0 0
> 3
0 -A-1{V,A}+A 0 ) (B.3)
0 0 -4

the equivalence being given by

1 i

L Vz 0

1 i

g3 i 0 .
0 0 1

Next we choose IK(KO,XI) = B(x ) . With this choice of A it is well known

2 J
1’ 0
>, 32
(see e.g. [42]) that the operators -A * i{V,A}4+A° have the same spectrum, and it
is bounded below by a strictly positive number if B # O (Landau diamagnetism).

Thus CK , restricted to the subspace [(@1,¢F,O)l is a bounded operator.
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From this we conclude that if < - > denotes the expectation the

model, then
10" ()0,  -iol(x)o; 1@ (0) =0 (x))o
< : S G e

(0" (0) 4" (x))a,
= <e

<COS((p1(0)-(p1(X))l + i sin(sol(O)—gol(x))a?

<leos(pr (00 (x)) > 1

-(C,(0,0)+Cp(x,x)-2C5(0,x)) (B.4)

does not converge to O as !x] > 0 as a consequence of the boundedness of CK .

Finally, we remark that by fixing the gauge in the i1attice theory such that
X = ¢Lg1 , only two-point functions of the form as in (B.4) will enter into the

calculation of the expectation of the Wilson loop observable according to (1.34)

Thus, Landau diamagnetism may destroy clustering of the two-point function
ot the two-dimensional, Gaussian g-model. This conclusion is not affected by the

introduction of a two-dimensional, spatial lattice.
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