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1. Introduction.

We continue in this paper a program initiated in [1] , henceforth
referred to as paper I. One of the objectives set forth in that paper was a
mathematically complete construction of a super-renormalisable continuum gauge

theory. This paper contains results in this line of work.

The study of gauge theories on a lattice was originally suggested
[2) as a suitable starting point for learning more about gauge theories generally,
because lattice gauge theories provide a setting in which one can utilise methods
of statistical mechanics : - low and high temperature expansions and correlation
inequalities, ete. . In addition these theories posess the two important proper-
ties of Osterwalder-Schrader positivity and gauge invariance. No other method,
vet proposed, of regularizing continuum gauge theories so that they become
mathematically well defined objects postsscs all these attractive features.
It is therefore an important problem to verify that these theories converge
in a suitable sense to continuum theories when the lattice spacing is taken to
zero. The limit would then share these properties and in addition onme would
hope to verify that it is Euclidean invariant (unlike the lattice theories).
Various consequences of the correlation inegualities which will be of interest

to physicists as well as mathematicians have been outlined in [3] .

Unfortunately, it is unlikely that our method of proving convergence
is optimal. We have adopted a method of embedding lattice gauge theories in
continuum theories which is not natural in the context of geometry. It might
be rewarding to search for methods that treat the geometrical side with less
than the insensitivity that we have been able to muster. In the meantime we
have in this paper a number of functional amalytic techniques that will extend
to more singular theories, abelian and non abelian and some of them will very

likely be useful in future improvements.



We are here mostly concerned with two dimensional abelian gauge theories
interacting with Bose matter. An analogous program for fermion matter has been
started in [4] . Some of our results are valid for nonabelian gauge fields also.
The major simplification in the abelian case is that the measure describing a
pure gauge field is Gaussian in the continuum limit. We exploit this by noting
that we may obtain a Gaussian lattice gauge field by conditiening the continuum
measure. Thus given a continuum gauge field one may formally obtain a lattice
gauge field, which is a function from bonds of the lattice to group elements,
by integrating the gauge field along a given bond and applying the exponential
map to the Lie algebra element so obtained to get an element of the group. (If

the group is nponabeliasn , one should use anm ordered exponential).

One can then couple this lattice field to a matter field on the lattice

and the resulting lattice theory is gauge imvariant. The procedure may be
considered as amounting to a special choice of lattice measure for the gauge
field which differs from Wilson's [2] and others so far proposed, but which is

also gauge invariant and has the correct continuum limit, at least formally.

This procedure 15 not possible in more than two dimensions because
with probability one the gauge field is a distribution with insufficient regu-
larity to be integrated along a bond. However, as pointed out im paper I, it
is possible te put im an ultraviolet cutoff, i.e. change the GCaussian measure
degcribing the continuum gauge field to another one whose sample funcbions arc
more regular (almost surely) and still retain a type of gauge invariance.
Furthermore if the ultraviolet cutoff is suitably designed (a cutoff in all but
oné direction in EF} we obtain a lattice theory with Osterwalder—-Schrader
Esitivity in one direction. This is of course not a new observation. Lastly,
as discussed in paper I, we have correlation imegqualities even in the presence
vl an ultravielet cutoff. They are in fact walid for any lattice Caussian

measure for the gauge field.



Even in our case of two dimensions we find it convenient to use an
ultraviolet cutoff on the gauge field. This is in order to separate off the
complexities of renormalisation from proving the convergence of a lattice approxi-
mation. Im other words, if we did not impose an ultraviolet cutoff, we would have
to insert counterterms and cancel quantities that diverge as the lattice spacing
is taken to zero. We prefer to put im a cutoff and its subsequent removal
{after the lattice spacing is taken to zero) will be discussed in paper II1I.
Finally, ve also give the gauge field a mass (an infrared cutoff). This does not
affect the Ward identities which express the gauge invariance of the coupling
between matter and gauge fields. Correlation imequalities allow then to take this
mass to zero. Full gauge invariance is impossible in the continuum limit and
gauge fixing is always necessary. We really prove "gauge covariance". The zero
mags limit will also be given in paper III,and in fact we first take the infinite
volume limit which is easier whilst the gauge field has an infrared cutoff and

then the zero mass limit.

We now give a rough formulation of our principal resulwm,. We will supply
more details and precise definitions later. It applies to a theory in a rect-
angle in RE with a continuum gauge field with a mass and an ultraviolet cutoff
interacting with a Bose field on a lattice with spacing ¢ > 0 . The Bose field

ig allowed self interactions.

Theorem A.

Given a sequence of simple cubic lattices whose spacings tend to zero,
the lattice measures which correspond to the theory described above converge

in the sense of characteristic functions.

The main results required for the proof of Theorem A can be found in

gections III and IV. Some of the more significant ones can be summarized as follows.



E tﬂa} , denote the lattice (continuum) Green's function for the co=

Ler C
variant finite difference (continuum) Laplaciam, h; {b;} » in a lactice
{continmuum) gauge field, h (A). The gauge field may be non abelian. We impose

either free or periodic boundary conditions at the boundary of a rectangle A .

Theoram B.

Let (h") be a sequence of lattice gauge fields converging to a locally

bounded measurable gauge field A As & tends to zero Then the kernel of

c* converges locally in L _, forall pwith | < p <=, to C, .
hE P - A
Theorem C.
Let (h*) be convergent to a Holder contimuous gauge field A , then
the determinant , :EE y defined to be

h

det{(_#c+m;}-112 (_ﬂ::+m2}{4ﬂc*_2}—lf2

h

)

i i " P
with m > 0, converges to its formal continuum limit as ¢ tends to zero.

The limit is finite and striccly positive.

Our methods would also be useful in proving the appropriate analogucs

of theorems B, C in three space—-time dimensions.

The limiting theory obtained in Theorem A is Euclidean covariant. It
is not invariant because of the boundary and also the cutoff on the gauge field.
In two dimensions it is possible to identify it with a theory constructed directly
i the continuum and then Euelidean covariance is obvious. Howewer it is also
possible fo obtain it dirvecely [rom our Eheerems becasse they are valid when
limits are takem throwgh lattices of varving orientation. We have slightly em

phasized this point because LIt may be a superior strategy in more singular



theories. Obviously Euclidean covariance is necessary if the final theory obtained
by taking the infinite volume limit and removing the ultraviolet cutoff is to
be Euclidean invariant. Note that Euclidean invariance and Osterwalder-Schrader

positivity in one direction combine to yield positivity in all directions.

Let us now briefly outline the steps in our proof. We begin in section
11 by collecting our notation and conventions and summarizing some useful facts
about trace class ideals {IFJ of operators [5] . In section LIL we prove
theorem B. One reason why this part of our work is more difficult than the

corresponding parts of the lattice convergence proof im [6] for Bose fields

without gauge fields is that we can no longer use the Fourier tramform to diago-

nalize all our Euclidean propagators Ett__ simultaneously. Instead we rely heavily
h

on the theory of trace class ideals and analyticity. We have prefaced section III

by a short verbal description of these methods since these may find other appli-

catlons.

In section IV we prove convergence for lattice fields of bosons in an
external Yang Mills field as «¢ ™0 . The Yang Mills field can be non abelian.
Although we do not prove it im this paper, the limiting partition functiom is

closely related to that investigated by Schrader [7] . The differences are as
follows : (1) we include the factor =z* (A) , (see IV and Theorem C) which

Schrader et. al. [7] refer to as the "renormaliz ed determinant™; (2) our normal
ordering of the bose self interaction is with respect to EE instead of E; .

Boch chese features are forced on us since we are going to integrate over the

gauge field (in the next section). The renormalized determinant is a considerable

nuisance because it contains contributions which diverge as ¢ w0, and one

must use gauge invariance in the form of a Ward identity to prove that the
divergent parts cancel each other up to a remainder which is fimite in the limit.
(This type of phenomenon is well known to physicists). The change in normal
ordering (2) is not a simplification either. The point of Theorem 3.5 and its

guite lengthy prool is to control this change of normal ordering as € O .



Our proof of convergence owes much to [ 6] . We also proceed by embedding
all our lattice theories in one continuum theory (white noise instead of the

free Euclidean field used in [6] ). We find that we need to prove that the

square roots fﬂiﬁ CoOnverge im T# and since we cannot use the Fourier
transform we prove a little lemma that provides a sufficient condition that the

(non linear) map A% f(A) be continuous from ] o to l‘i1 .

In section V we complete the proof of theorem A,in the form of Corollary

5.2 by showing that the integral over the abelian gauvge field, A ; of the

lattice external gauge field partition functions of section IV converges as
¢ W0 . This then is merely a matter of justifying the interchange of the
£ W0 limit with the A integral so that we can apply the results of IV. To

do this we use dominated convergence, appealing to the diamagnetic bound of

paper I, Corollary 2-4 and Theorem 4.1, to show a uniform bound on the external

gauge field partition functions. We also have to show that the class of gauge
fields allowed in sections III, IV are a set of meagsure one. This is a slightly

fine point since the ultraviolet cutoff on the A field does not regularize the

sample functions much because we wish to have Osterwalder-Schrader positivity

in one direction. We appeal to a beautiful paper [B] by Garsia on the continuity

properties of sample functions of Caussian measures to settle this point.

We also discuss Osterwalder= Schrader positivity in this section.
{Theorem 5.5). We explain what types of cutoff on the covariance of the Cavssian
measure describing the gauge field yield a continuum limit with positivity in

one direction.

In our final section, VI, we provide some technical preparations for
our next paper in which we will remove the ultraviolet cutoff. We discuss coun—
terterms and define renormalized partition functions and measures for abelian
gauge theories. We give the Feynman rules and in Theorem 6.1 prove an identity,

the change of covariance formula, inspired by similar formulas in [9] . This



formula will be used in paper III to generate (by iteration) an expansion of

the Glime—Jaffe type [10] which will prove that the partition function, when
correctly renormalized, is bounded above and below uniformly in the ultraviolet
cutoff. This is the most difficult step involved im removing the ultraviolet

cutoff. The formula is of the following type

1
P> = <P> = [ <KP> dt
1 o H t

in which P is a polynomial in the fields, < P v E> g <> are unnor=
o t

malized (but remormalized!) expectations. The subscripts 1,0 refer to diffe-

rent ultraviolet cutoffsi t parametrises a family of cutoffs that interpolate

between 0O and 1; K is a partial differential operator in 4/é4. The impor-
tant peint about K is that it depends only on remormalized quantities and so
does not diverge in the ultraviolet limit. For this reason this formula can be

made the basis of a method of removing the ultraviolet cutoff.

In an appendix we briefly sketch how to extend our results to the

case where Dirichlet boundary conditions are imposed on the Bose Field.
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I1 Preliminaries : Notation, trace ideals

In this section we fix motation, give some definitions and quote some

theorems on trace ideals.

First we present a list of symbols followed by an explanation of their
meaning

Ac R , a bounded open set

Le R, a simple cubic lattice, unit spacing

O zeLnn , Lo

el
B-= '["'-':..EEH:" : x € L':ﬂ, po= 0,1}

E
B  is the set of bonds considered as closed subsets of I.E i Eu » u=0,1 are

the unit vectorswhich generate L , i.e.
L= {nﬂe;nltl 2 | €z}

Let B%(A) be the subset of bonds contained in A . We denote by 3  the

finite difference gradient
E =1 -
a £(x) = ¢ "[f(xtce ) £(x)]
u

¥ E
associated with L 5 is5 defined both on functioms on I.: ) and on con=

"

tinuum functions. The continuum gradient is demoted by 3 .

We now wish to introduce covariant derivatives. Let G be a compact
Lie group unitarily represented on a finite dimensional Hilbert space V .
Let a.“ be a gauge field. For y = 0,1 , .l.u is a map from R° into the Lie
algebra L(G) of G . The covariant derivative is defined on V= valued

functions on It'l:l by
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E34- dedd , -3 |
Fﬁ.u+ u* e A (2.1)

@ i a constant, the electric charge. The finite difference covariant deriva-

tive is defined only on lattice functions with values in V ,

of 400 [ TRE CopCeeee )00 (2.2

where h® , a lattice gauge field is a map from bonds <x,ce > inte ¢ .

The covariant Laplacians are defined by

N "
By == Dy D
(2.3)
 TRTRRE - ST -
bh i Dh:" w

where we use the Einstein summation convention on p = 0,1 .

Let

L_=L_ (R ,L(V)

be the space of two componeént measurable functions with values in linear ope-

rators L(V) on V, given the norm

L/z2
Bl = ess. :E"'.ta‘i“ﬂ'r“’i'im* By 0 ) (2.4)

where the subscripts refer to the lattice directions and || ”l{v] is the

operator norm on V . We introduce this norm because it appears to be appropriate
for the discussion of convergence of gauge fields in heoresm B. The derivatives
in the definition of the covariant Laplacian are applied in the distribution

sonsc. We take the poumge Field & o be o 0,

1]

We now introduce some notation whose purpesce 18 to make the lattice
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objects resemble their continuum limits in order to facilitate the discussion

of convergence. Let B = BE be a two-component map from I..""‘:JI inte [ (V) .

Set

D-E
l't'l-l

LL

£ E
3°- ia B
oo

(2.5)
45 = hc* o
B - B,W B,

()

These are operators on V wvalued functioms on L .

We will be particularly concermed with the following two choices for

whaere

-
1]

{ia:}'l{hz(x1~ 1)
(2.6)
N E
ieed (x)
e ¥V = h:{xl
E
The second equation defines A in terms of hE, provided h is sufficiently

close to the identity that the exponential map may be inverted, A® belongs

te L{G) , the Lie algebra. A" does not. Mote that if we choose B = A" ,

€ e.~1 ¢
= (h D
I}h,.m { u} Ayl

(2.7)

The Q identification : let f be a funcrion on ZH; . We can obtain
(e)

a function om a lattice L 5 QFE, defined by averaging, i.e.

2

Q“E() = ¢ [ , fndy

E
X

where A ig a4 unit square centred at the lattice point x . Conversely, given
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a function f defined on a lattice, we can obtain a continuum function
.
QE f which is the piecewise constant {constant inside each lattice square)

&
function which coincides with f at lattice points. With the aid of Q, Q@ ,

we can obtain continuum operators from lattice operators, e.g.,
E E« E E
D D
I Q A Q

The main reason why we like these operators is that at and all functions of

5 coemute with QE.QE « [Recall that .’it can be considered to be an operator
on continuum functions). Another way of stating the same thing is that if A

is a function of 3%, we can consider it either as a lattice operator or a

=

continuum operator A . Then if [ is a continuum function
AgE = Q" A £

Thus  gives us an embedding of lattice into continuum. We will simplify our

formulas by omitting these Q operators. Therefore if the context requires it
lattice functions and operators are to be identified with their continuwum

counterparts derived via 1 .

(c)
Euclidean Propagators, boundary conditions : let L, (A} = lthl

beé the space of squire summable V-wvalued functions on L{rj{hJ with norm

(first example of Q identification)

2 2
mﬁz - Jlex 12 a%

vhere Xy is the lattice characteristic function of A and || |h is the
norm on Y . ﬁ; 18 an operator on sz EF} . By a [orm method [11] we can

d
extend ﬁ* to a selfadjoint unbounded operator also denoted ﬂﬁi omn sz R ) .

The inverses
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Ca
where mz * 0 are bounded operators, their norm is less than or equal to .F2+

Their kernels, the covariant Green's functions are henceforth called "covari-

ances” in view of their later rSle as covariances of Caussian measures.

If the gauge field vanishes outside A which by definition means
that it is zero on all bonds not contained im A , in the lattice case, we say

that the covariance has free boundary conditions. We introduce an operator ff'.ﬂﬂ
]

i;(A) by

F
T

; ; . e PO i
The covariant Laplacian with free boundary conditions, b, + 18 derined by

F =,
ol - {c:} 1 (2.9)

A convention for the internal degrees of freedom : in order to clean
up our language we are going to suppress V, L(V) in some of our norms and

spaces, e.g. our use of 12 for V _valued functions is an instance of this.
The interaction : the operator on L_ given by

2
i o e
s ¢ 2 Ew €

. E® £,
L = A A
ie Au a“ ig 3u Au 1] u u

will be referred to as the interaction with the gauge field. In the case where

WS is derived from A" , (see 2.6), it may be written



- Iﬁ -

E -2
o SRR Lol T | M L M
h [1] 1] 4] 1l

1l E

. =] ERE . T E
—igeE Tu A *lee Ay Tu (2.11%

2
2
P ap™ 4D 1) ¢ otee’)

where TE is the operator of translation by ¢ in the y direction. The term

G{EEE} is of order ;aa in operator norm if A g L .

The kernel of the Fourier transform of this operator is

oy “icp icq -
W (poa) = -iee (e we )aj(pra)

(2.12)
A

2 5 ;
- £ 2 3
+ B t IEP“*:lEqp}{“Hj (p+q) + Ofee )

2

The Fourier transform is defined by

= 2 F
E(p) = E%- Z ( C f{x}elp =
xer. (€]

xd

The variable p = Epn.plj lies in the square [- % + — ] , because the dual

™ |-

space for the lattice is a torus.

Trace Norms Pz]

We will have frequent occasions to use the following spaces of operatora.
Let H be a Hilbert space. A compact operator T : H* H belongs to the class

1 ,1<p<u, iff
pt r=P=""»

I
P
PIE] oL

|F|L = (er(T"T)
(2.13)

IIr|| .= operator norm = || Tj|
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It can be shown that IP is cﬁmple:e;and furthermore the Holder inequality

n n n 1 1
nT, n ; y 0} = g= 2.14
”L-n iy = K I IL‘:'i L 5 % (2.14)

is wvalid. In this inequality we can drop the condition that T; be compact

if p; ==

Proposition (a) For 1 < p < =, finite rank operators are dense in IF .

(b) IF is closed with respect to taking adjoints.

Theorem (Grimm [13]) . Let &n be a sequence of operators in IP s ltpcm,

If A converges to A strongly and [hﬁlg converges to |h|% » then A

converges to A in IF .

Remark : Simon [14] shows that strong convergence can be replaced by weak

convergence in the hypothesis.
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I11. Bounds, Analyticity and Convergence of Covariant Lattice Green's Functions.

In this section we establish some properties of our covariant Green's
functions (ecovariances) which will be needed for the proof of convergence of

the lattice approximation.

Im Definition 3.2 we define a notion of convergence for a sequence of

(e ) (e_)

gauge Eields h % sssociated to lattices L " with arbitrary orientations,
EprEgren being a sequence of latrtice spacings tending to zero. Given that

a sequence of lattice gauge fields converges to a continuum gauge field in this
genge, we show in Theorem 3.2 that the associated covariances, considered as
Operators on LE via the § identification of the last section, converge im

a "local" Hilbert Schmidt nmorm. We also show that the functions obtained by
restricting to the diagonal the kernels of the differences between the covariamt
covariances and the free covariances converge in L;'n¢ for 1 <p<= . This

is done in Theorem 3.3. Actually all operators we consider are finite matrices
{(for € » 0) , or finite rank operators after using the § identification to

put them on L, , but it is useful to state results and think of them in conti-

2

nuum language since we are taking a continuum limit.

To prove these results we use the diamagnetic bound [15] , stated
here as Theorem 3.1, to obtain uniform bounds, The other main technical device
is to first prove convergence when the gauge field is small and then use ana-
lyticity, as proven in Lemma 3.4, to extend the convergence te arbitrary gauge

fields. We give a proof of Lemma 3.4 for the sake of being self contained, but

the result is a special case of well known general theorems [16] .

The notion of convergence in Definition 3.2 is sufficient for the results

of this section but has to be strengthened to prove convergence of the lattice
partition functionm inm an external gauge field. The reader is referred to the

next section for this.
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We begin by stating the results.
Theorem 3.1 [153] (the diamagnetic bound).
lleep)™ e Il < lley™ el 0O2ace

{C;}u{lt,j’} denotes the kernel of the operator C; raised to the power a
in the operator sense.

This is an easy generalisation of the Helson-5imon inequalicy [15] .
A simple proof has been reproduced in paper I.
Remark : The same inequality is valid for periodic, Dirichlet and Neumann
boundary conditions on both sides.

Before stating the next theorem, which is the main result of this

gection, we need

Definition 3.2. A family of lattice gauge fields h" is COnvergent to a gauge

field A as e + 0 iff A° , defined by

A = {iEc}_l{h:{H} - 1)

converges to A in L, P T ||ﬁt-l" + 0 .

Theorem 3.3 ; If a family {hE] of lattice gauge fields converges to A
ag e + 0 ; then the kernel c:{E}{I|j} of E:{c} converges in Lp{h x Ak ),

lipﬂ-



= 1B =

Remark : The limit is Eﬂ{:hﬂ "

The proof of this theorem will use Lemma 3.4 given below.

Lemma 3.4 : Let B = H;. E= E: be bounded L(V) walued functions on I.':"-:'I

Then E;*iﬁfx.y] is a real analytic lzinxﬂ} valued function in A , which

extends to a function analytic in the strip
22 m [Ell+ & ma?[lelf =g <1

The extension EE* is bounded by

AE

g o |
||c5+;3"12{hah] z Ihﬁfﬁniiihithin}fl-El

i
Hemarks. (1) EB+1E

{2.8) because of the adjoints im (2.5).

is real analytic but not analytic as defined in (2.5,

{2} The same lemma holds for the continuum covariance.

{3) periodic, Dirichlet, Neumann boundary conditions could be accomo=

dated.

The final result of this section will be used to control Wick ordering

terms, Define the cperator

o

GG; = E; = El

The kernel will be dencoted ﬁﬂ:{:.rl .

Theorem 3.5. Let {hE} be a family of gauge fields converging as « tends

to zero to & continuum gauge field A , then for 1 <p < =
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[ |tr 5C° (x,x) - tr EEE',{x,x]|P + 0
A h-l: ht

esc" + 0
where the tr denotes a sum (trace) over internal indices.

Remark : The theorem asserts that &C° is a Cauchy sequence. In fact the limit

is the continuum expression
6C, Gxyx) = (C,=C) (x,%)

It can be shown that &C has a kernel which is continuous in x and y 8o

that the restriction to the diagonal is well defined.

Proof of Lemma 3.4.

We will compress the notation by suppressing &©.,u - Let F,C be
(e)

bounded L{V) walued function om L . Then

D?*E = DF'IEG

Therefore

b=
L]

2 # w 2
Feg = O ~ 1e(6°D- DE6) - o°6%

be * Wp g

Let Xp be the characteristic function of A . We show that the Neumann series

for the resolvent

1rr = IIIH 1/2, 112

X Crac 2" %, O “tm (Cp "We glp 1G5 Xy (3.1)
is comverpent in I et =Schmidl norm (= I-. prirm = porm of keroe ] consideral e a

Fume b ian



- 00 =

in LR RY)) provided llg]l is sufficiently small. By Holder's inequality

for 1 EpACES
p P

Il 1/2,.1f2 IIE

1/2
XpCp (Cp " Wp o Cp ) €T )l

F
P i My
<llxy Cexgl, dlet’? ¢®p, cl/? |l + (3.2)

11
Ellﬂlf! E;IEH + EEH c:f! G‘E céfiil}
L] Ez a
< llegly @ gllell + 25 el

The last bound is obtained by applying the easy bounds

1/2 1

/2 l 2 /2 1/2 1r2
licg’® 6*oy cg/21l < llcg 1l el iep'? o8 b, <2/l

< licg 116l (3.3)

llez? o

1/2 172
* cch2) < 1ct e

The bound (3.2) shows that (3.1) is convergent if
[} ez
Sl + S llelhr= €' <1 (3.4)
m

By taking norms under the sum in (3.1)

1
egegll 3 <Ml , =5+
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To prove the lemma, take F = B + (Rel)E , G = Im AE . This completes the proof

of Lemma 3.4 .

Remark. In the proof of Theorem 3.5 we will use the [act that the argument

3= is 1 real analycic

above is trivially adapted to show that 4
AE

E
X, G

A B+
and bounded in a strip.

Proof of Theorem 3.3.

We begin by assembling some simple lemmas which will be used in the

proof.

Lemma 3.0, Let A“ be a sequence of operators in lp s L < p<= , which
converge in IP to A . Let Bn be a sequence of operators which are uniformly
bounded in operator norm and Bu + B, B: + B as n -+ = in the strong

operator topology. Then Anﬂn + AB in IP ag n = = ,

Remark. A related result was an important ingredient in the lattice convergence

proof of [B] .

Froof.

48 - A B L, < | m~an1a|iF * [[nnmnnnlﬂp

| &

lla=a, L 11l +lacs-8) I
o [la-a 1, ClBll + sup 1,1

The firac and final cerms tend to zero. Let Cn = Bn“E . We are reduced to

showing .M.:n tends e zero in IP . Approximate A by a [finite rank operator

B

& #so that
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1IA~'IIlP <4

for a given & > 0 . It is enough to show that 'It:n tends to zero in I

Equivalently, one can show that l.',‘; A" tends to eero, f.e.,
. pl2
er@ c_c T + 0

Since this is a finite rank operator, it is sufficient that

tend

zero strongly because the uniform operator norm bound then implies En c;

tends to zero strongly.

Lemma 3.7. Let C° = * y X, ¥ E L'H::| ~

1

EE{K,?:’ - F J' " .2 IJ._Jk E{E:'{h-.} 2

(k)

Proof. Easy consequence of definitions and Fourier series. See [6] .

Lemma 3.8. Let U :EE be bounded and measurable.

JI Iu {:]i 7-31.[" L'P i Const.

uniformly in e,h®. 1 <p=<= ,

Proof. Theorem 3.1 reduces these statements to the special case

{1=-cos cku] + uE}-

E_11

Lo

for which they are well known. A simple proof can be based on Lemma 3.7 and

the Hausdorff-Yourg inequality.

Lemma 3.9. Let U |:]i‘.I be bounded and measurable, then
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£, 2 a .

(1) 2 fc) =+ 2 C dn I ., ea>1/4 .

u £+0 u 4
() cHY?E . it/

£+
in strong operator topology
(3) EEE}III 3:‘ = EIII a*
e+

Proof. (1) To begin with it is sufficient to take U to be a rectangle in

'ﬂz » To see this let Bcix,yj be the kernel of

{{E{Ejin N Eu}I
then

I (ecH® - ﬂﬂi[li - 0"y 2
U U wu

s0 that the norm is increasing in U . Rext, by Grumn's theorem, (section II),

it is enough to prove that
£, i
(a) ey €|, = b€l
(bl (CE}“ + * in strong operator topology.

For (a), by l.asma 3.7

] o z (i s
I €I = = falke falier [Qxaena]?[C G0 € |

2
where the range of integration is [- Eq EJ for k and k" . The dominated

convergence theorem completes part (a).

Part (bY. (1) and (3) are all similar. We discuss (2). An casy arpgument

with ¢ shows that it is cnough to show that the Fourier transform

L NS V- 2 2.=12
e et ;:uih“ (T 'L
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in strong operator topelogy as an operator on szlz.'l « This is easy.
The proof of Theorem 3.3 is a series of reductions.

(1) We claim that it is enough to show convergence in Lz (A=AY .
We know that E; € Lb{hxﬂl uniformly in ¢ by Lemma 3.8. Combining this with
Holder's inequality and L, convergence proves LP convergence by an easy

argument.

{2) Ir is enough te prove Ll-tun\rurgenca in the special case that

Hall < <1

Proof, If c' is sufficiencly small, the definition of convergence of h*
implies h® is in a small neighboorhood of 1  uniformly im the bonds in
B* and ¢ < g' . Therefore we may define AS , 8 Lie algebra valued funcrion

on bonds (with two components) by

and them, given i ER , set

E
nE () = ol M

It is then easy to verify that h® (1) converges in the sense of definiction 3.2
to AA . Furthermore, by Lemma 3.1 the covariance cﬁ{l} is real analytic

in & . It extends to a function which is analytic in a strip of width indepen-
dent of < g" . Lemma 1.1 combined with Theorem 3.1 shows the extensions

C;ihl are bounded uniformly in e < e' , A ER . Therefore a form of Vitali's
theorem (see the remark below) tells us that convergence for all 1 is guaran-
teed by convergence for A in a neighboorhood of zero. This completes the

proof of part (2) becouse we may replace A by AA with |Jl.| £ <1 .
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(3) We will now assume ||&" y E' are sufficiently small so that the

resolvent expansion

e 1/2 r {ﬂE 1/2 WE ot 1!2}“ E 1/2

£
%,C_x =y, C C X
LR i A

is convergent in LEE'HE HFHE] uniformly in ¢ < €' . To see this we refer to

the proof of Lemma 3.4. Recall

b
WEE] = —je(AE*aC - aE" A%y - E_AE. A

By virtue of the uniformity, we can prove Xy ctzln is convergent a8 ¢ tends
h

to zero by proving

e 1/2

o :]132 Wt et 1!2}“ tt}lfzx

(c Aot B" L+ ) PR

xa

2 u EEI as ¢ tends to zero, The operator in brackets

is convergent in LE{ 14
raised to the power of n is strongly convergent by virtue of lemma 3.5 parts

(2) and (3) and the fact that (c%)3%" and its adjeint are bounded uniformly

in operator norm. The factors Xy GEIJE

are convergent in Iﬁ by lesma 1.9
part {1). The proof is completed by Lemma 3.B with p = &4 |, together with :
An - A, Hh + B inm Ih -'hnnn + AR in IZ  Which is a simple conseguence of

Holder's inequality.

& Remark on Vitali's Theorsm. Vitali's theorem [17)] does mot in its usual

formulation hold for operator valued normal families. However if a normal family
F of operator valued functions, analytic in a region 1 , is known to contain
a subsequence convergent in some open set U in 0 , then that subsequence
converges throughout 8 . A simple proof may be constructed by exhausting #

by a set of overlapping open discs. The power scrics expansions associated with
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each disc are convergent uniformly in F , so it is enough to prove termwise
convergence, i.e. convergence of all derivatives at the centre points of the
open discs. This is already given for any disc whose centre is in U . Any

point in 0 may be reached by passing along a suitable chain of discs.

Remark 3.10. In the proof of Theorem 3.5 we will use the fact that the argu=
et ="

is Cauchy in T, .
hﬂ

ment given above can easily be adapted to show that X 4

Proof of Theorem 3.5. We begin by proving a lemma based on Corollary 4.8 of

[14]
Define the following norm on functions on IHE s
.l
el ¢ = J 18 ae®)®|® ax
Lemma 3.11.

For p,8,a satisfying

2

1<px2,686>0, a>1/2+,p> To33

L. O
12l <€, 0,
uniformly in ¢,h .
Proof. Define =z € [0,1] by

p = [2+1/201-2)1""

Define ¥,8 > 1/2 by

,ﬂ-gl'l.ulﬁ_i:;‘-
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and let H: be the operator with kernel

K (x.9) = (€)%Y £(y) ey Y

The lemma is equivalent to proving

Il <y, el

By interpolation, [18] , it is sufficient to prove this for z =0 , z =1 .

When z =0 , p=2 ; z2=1, p=1 . By the diamagnetic bound, Theorem 3.1,
2 £
el < 1€ 1% €)) P (xy) dxdy
5

We have omitted internal indices which are to be summed over. By the Fourier
transform Lemma 3.7, the right hand side is bounded by a constant times

1E|g which completes the z = 0 case. For the z = 1 case we write
kK, = 4B, 1%l <lall sl
1 2 2
and chooge A,BE to have kernels
AGxy) = G (x,y) (Lay?)

Bxy) = (10T €y £ eyD ™

We have omitted and will omit €'s to simplify the formulas.

The techniques used im the z = 0 case can be applied to show that
|||||.[|I- is bounded by a constant depending on v,8 , because l‘.'l-ITE}-T belongs
2

Eo L2 . The I, normof B is equal to
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ffleco ey ™% [l [? ey axay
We show this is less than a constant times ||f],, by using
{1+¥2}21 < {1+Iz]zr § (IFI“_Y}E}E?

together with

|c'{'{'“__rj| < E-E‘-n":_}'!l
which follows from the analyticity of the fourier transform of EI .

We now return te the proof of Theorem 3.5. We wish to show that

ﬁCE: is Cauchy in |..P when restricted to the diagonal. We first show that
1
5CE (x,x) is in L_ uniformly in ¢ . Thus
h-': P
1
(f, |ee 6C" (x,x) Paxd)P < sup [, er (f(x)s E‘E:.x}}dx {3.5)
AW hE £ AV b

where f 1is a function whose values are scalar multiples of the identity in
L{¥) . Internal indices have been omitted, they are susmed to form the trace

{tr?} on V . The supremum is taken over [ such that

1
' 1
fyleryelP a0 =1, -+

=R

The right hand side of the imequality (3.5) can be written as a trace, i.e.

sup :r{ﬁﬂﬁ £) (3.6)
£

We are omitting c's to simplify the notation. Define h(l) as in the proof

of Theorem 3.3,
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il i
PR | R = icid
{3.6) can be written
Lo g
HUD In di EI tr{ﬁﬂlf] {3+?}

where mﬁ. - Etilu}l » Expand using

d Ry
Pl ¢, Gy We,

W

" -
W= iela "1"‘1“ - e"A A,

A, = (ieg) "t (h{d) - 0

A

We arcas usual suppressing wu's . Therefore

d .y
ar tr{ﬁﬂlf] = i@ tr{ﬂla hLElI]
—o .’ s - .
ie I:rl{EA.P;A Bﬂlf} e tr{{:A{h MI'(‘}H {3.8)

The prime indicates differentiation with respect to A . The integral over A
of this is less than the supremum over A € [0,1] . We now will show how to
bound the first term in (3.8) by a constant times the Lp, norm, Ht‘l[PI ., of
f which i85 one. Similar steps yield the same bound for the second term and
the third term is easier so we will not discuss these further. Thus this bound
will show that the I.;| norm of ﬁﬂct ig bounded uniformly in € . From this

h
peint we will drop the tr, - A gum over internal indices is to be understood.

Woe bowd the [irst teem in (3.8) using Wolder's inequality,

eecea’aten)| < [lc"a"aretll, [IcPec®), (3.9)



where a+f = 1 . We are now suppressing A also. The cyclicity of the trace
wag used to move a factor EH . The second 12 norm equals

/2

Uy [Ee0 lofe, Gan |? £y)axan ! (3.10)

By Holder's inequality and T heorem 3.1, the diamagnetic bound, this is less
than a constant times
L
Uy Sy P Il B el (3.11)

The first factor is bounded uniformly in ¢ provided

2p(1-28) < 1 (3.12)

because homogeneity considerations applied to the pFourier transform of CEB

ghow that

1B x,y) | < efx-y| 201728)

(3.13)
uniformly in e . Our choice of B is constrained by (3.12). Oour proof that
&C is uniformly in LIEI will be complete if we can show that a = = can
be picked consistent with (3.12) so that the first 12 norm in (3.9) is

bounded uniformly inm c© . We have
llca®are®ll, < ic*a"]| flarc®|l, (3.14)

The second norm is bounded uniformly in ¢ if o > 1/2 by an argument like
that used to bound (3.10). One has to use the fact that hi is bounded in
Lw norm uniformly in M, . We claim that 1f o > 1/2 , the first norm is

also bounded uniformly in € . Thus by the triangle inequality and the defini=

tion of D

h(x) *
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L]
Il < lleSop o,y Il #e lIcAS (3.15)

The second norm is bounded uniformly in € because ||ﬂhH is bounded and

Ic®|| is less than (a®) ™ . Ve bound the first norm by

V2| |12 a-1/2y 172 * /2102
L B At WY B il o LY
< (312 (3.16)
m

as was used in the proof of Lemma 3.4. We have now proved that the L norm

of 4C is bounded uniformly in e

We now combine this result with Lemma 3.11 to complete the proef of

Theorem 3.5. By Holder's inequality, it is enough to prove &C is Ll-ﬂnuchy.

If A(x,y) is the kernel of an operator A € Il

Jnl'ﬁ'{’[r““dx 5 ':P tr{ffﬁnﬁ}{h}

2 |l xya “n"ll

where the supremum is over £ with ”E1L_ and  x, is the characteristic

function of A 3 To make then the left hand side unambiguous one should of

course think of A being factorized into two Hilbert-Schmidt operators. By

this inequality it follows that we may prove our theorem by showing that &C

is convergent in 1|+

Since

GC = Eh W

. . . *
= 18 Eha AE] ie chn 35@

I
+ @ Chﬁ A Cqy
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(where subscripts up,c have been suppressed) it is enough to show that
k1 5
(a) Xy €3 Cauchy in I#

(b) AC Xy Cauchy in I.ﬁ”.

h

e.g. the first term in the expansion for y_hﬁﬂ Xp is I. Cauchy because we

1

may take h =1 in (b) and combine (a) and (b) by Holder's inequality. A similar

argument involving the adjoints of the operators in (a) and (b) (which converge

because taking the adjoint is a continuous map from IP to IF ) suffices

for the second term. The third term is Cauchy im 11 because (b) implies

Xp 'Bh.ﬁ' and A.Cl Xy are each Cauchy in IE .
As has already been remarked, the proof of (a) can be accomplished

along the same lines as the proof of Theorem 3.2. Te prove (b) observe that

by Lemma 3.11 it follows that c; X is in Ip for 2>p> 1 uniformly in

€ .+ By Theorem 3.3 it is convergent in 1. . Holder's inequality implies (b).

2
The proof of Theorem 3.5 is complete.



IV. Convergence of the Lattice Approximation in an External Yang Mills Field.

In this section we prove that the partitiom function and its associated
finite volume expectation, for the case in which the Yang Mills field is external,
converge as the lattice spacing tends to zero. We allow the orientation of the
lattice to vary as the limit is taken, in order to be able to conclude Euclidean
covariance of the limit. For simplicity we consider & lattice theory with just

one boson field. Extra boson fields would not be a serious complicationm.

We begin by some changes in notation and normalisation of the partition
function described in section 2.3 in paper I. These are necessary for a convenient
description of the continuum limit. We factor the partition function into a
renormalised determinant :i{hE] and a partition functionm Eithti of the type
considered by Schrader [7] , but on a lattice; it differs alse in that the
boson self interaction ?: is normal ordered with respect te {m;-ﬂtj-j . Wo
show convergence for these two [actors separately in Theorems 4.2 and 4.1 respec—
tively. The convergence proof for E;fh:} ig based in spirit if not in body
on [6] . One difference which appears to help in this case is that we embed our

lattice (aussian processes in vhite noise. The diamagnetic bound, Corollary 2.4

of paper I, is an important iangredient.

The convergence proof for z:{hzl involves a study of some divergent

£

s » wWhich cancel

fas ¢ 4 0) contributions to the vacuum polarisation, 0
up to a finite transverse part by a Ward identity, or gauge invariance. This

work is rather grubby and is postponed to Appendix A .

In paper I we defined partition functions for matter in external Yang
Mills fields. See for example section 2.3 in paper 1. We now specialise to
Hose matter im 'EF with free boundary conditions. We will also be making some
normalisation changes to obtain partition functions which will converge as

[ & I



Let 4 be a function from L{r':' to V represented in components

(e)

by H:,i] y X EL g L= 1,,..,dim ¥V . Define

Dy = N dResp, ; d Imp

x,1
%, 1

He
=& (4,h)
E:Ehl = Dé e !

(6.1)
AN (9,0 = = 17204, (@451 8), + V()

veie) = £ et ; + B.08) ¢ (Q%g,)(x)
e il i

The tilde on the % is there because we wish to reserve Z for another parti-

tion function. Sums and products over X run over L{EJEA] A n: is the
matter action, hence the M superscript. "Fﬂ is the Bose self interaction. :Fi=|:

is a monomial normal ordered with respect to E.; . By € EHKEI:I e

that ¥V  is bounded below as a polynomial in & when the mormal ordering is

dropped. At this stage V does not have to be gauge invariant.

Since Eiih} diverges as ¢ decreases to gero, we renormalise by

L ET £
dividing by JZAI:E} where

- JI
- 1/2(4, (-8, )4)
ci(h) = [ Dy e b (4.2)

Thus lee

zy(h) = TS /Eh (Y

- [ =
Eithl £y (h)

cjy () AL (4.3)
! 4

= (f dyy e Ay 2} (h)
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wvhere du;[ﬂ is the normalised Gaussian measure with mean zero and covariance
C; . (The F on the covariance can be dropped because V  depends on fields
supported inside A ). ci{h} is different from zero by explicit Gaussian inte-

gratiom.
:i (h) = ¢f (W) /ey (M (b, 4)

We can now state our first theorem for this section.

Theotem &.1.

If (h*) is a family of lattice gauge fields converging in the sense
of pefinition 3.1 to a continuum field A and A :Ez is bounded, then

-avs

A
_f:luE ]
E
h

is convergent to a non zero limit dependent only om A for all A >0 .

Remark : In particular the limit does not depend on the orientations of the

lattices l..h:| .
The convergence of a;{h] requires a stronger topology. We will now
define a norm which seems to be as convenient as any. Given a > 0 , set

(c.£.(2.4)).

1/2
g ¢vy?

{4.5)

L
AL, = lall+ ¢ f axal (A()-A()) (AG)-A(y))

This norm is chosen so that “uu s the second order vacuum polarisation graphs,

converges as ¢ tends to gero. See Theorem 4.3 and the appendix.
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Definicion 4.2,

A family {hc} of lattice gauge fields is convergent to A in the

(=,n) sense if

aﬁt:] £ Eilcl_l e x) = I“}

CONVerges Lo .&u in the sense ”AE -ﬁlL-ﬂ +0 as e+0.

For our next theorems we assume A is a bounded rectangle. We also

require that our gauge fields h be supported inside A .

Theorem 4.3,

If a family {hE} of gauge fields is convergent to a continuum gauge
field A in the (=,a) sense, then :;{hE} 18 convergent to 4 non zero
limit.

Define the unnormalised measure

%

IR :
i :h{h} dﬂh e

K (4.6)

In paper I we showed that z:(h} is non zero. Therefore we can divide through

C

and thus define the corresponding normalised measure duh

We now wish to examine the limit as ¢ tends to zero of these measures.
The limiting continuum measures will be defined on S'{ZHE} , the Schwartz

distribution space.

Corollary 4.4,

Let (h°) be convergent as in theorem &.2. du:r CONVErges as «
¥
i
tends to zero to & limie dqh « The convergence is in the sense of convergence

of characteristic fumctions. All moments converge also, i.e.,
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] & ]
Id-l.ﬂ: EI*{Q f:' "‘fd-ll-l Ei"{f]
hE A
[ du® ﬁuq“rli--.l'du; ﬁ #(£,)
h* i=l iml

where f.fi (3 E:{ﬂ} .

We now begin the proof of Theorem 4.1, We will need the following

lecma.

Lesma 4.5.

Let f:R+R be a continuous function on the positive real line.
Let I; denote the cone of positive self adjoint operators in Ip . We assume

that f satisfies
fia F A YAETL

+ .
where F(t) is a positive continuous function on R  decreasing to zero as

L3

t N0 . Then the map A + f(A) is continuous from [; te I" .

Proof of Lemma 4.5. We will use the following standard facts : if A is a

sequence of positive compact operators converging in operator norm to an operator

A 8o that the spectra are discrote and of finite multiplicity, them the eigen—

values of A converge, the spectral projections PE:]Ib] ya<bh <™
L]

a,b £ alA) converge in operator norm. See for example [5) , vol. I, Theorem VIII. 3.
(n)

(a,=)
provided a > 0 is not an eigenvalue of A . Choose a so small that for a

From this we conclude that E(P ﬁn] converges in IP for all p

given ¢ > 0 ,

H“"E-a.nl” "p”'ﬂll'f—a.n]“"q} < cf2 (4.7)



By the triangle inequality

ey = sl <llee® anl +lleep Wl

[-a,a
o i
EII{PI:.-}*H} f{Ptl.ﬂlaklk

The third term converges to zero by the remarks above. The second term is less

than ef2 by (4.7). To bound the first term note that

{n) p
F['ﬂ,a]*n -+ P[-ﬂ,ﬂ]ﬁ in Iq

because A +A in Iq and the projections converge in operator norm.

Thus

) {n) . (n)
ll:+:up||fEPI_ﬂ_ﬂJ&nJH s 11:*:"9 FOlPrZy aptall d

TRy Al < <12

Proof of Theorem 4.1 (assuming Theorem 4.3). 1t suffices to consider A = 1 .

To begin with, we embed all the lattice path spaces in the space for white
noise. Let dw(y) be the vhite noise measure, i.e. the Gaussian process of

mean zero and covariance equal to the identity operator. Define

g® = {xnu“czgq‘xhllfz

EY is an operator on LE . Then
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Therefore as in [8] , (ILI.24), we can show convergence by

o & = faw < Joule® - o
dw e = Jaw e |< fdwlv® = v* | -

)

E

‘{H-v‘+ =4

2yE 1/2

]
ey s (v P2)

L) 9
< ( Jau|vEv® | HY2

The second inequality is simply Cauchy_Schwarz together with pﬁ:‘b:ﬂi Yz + vy .

The integrals in curly brackets may be bounded uniformly im ¢,c'

by the diamagnetic bound, Theorem 4.1 of paper I,

-2v* -2y

=]
Jdw e = {ni} 51 Idu;EE

-1 ay*®

< fzil IdvT e

By Theorem 4.3 the first term converges as € tends to zero to a finite number.
The second factor is bounded wniformly in ¢ by Melson's boundedness below

proof for P{#z} ; see [19] .
To complete the proof it now remains to show that
fau|vev |2+ 0 as e’ + 0 (4.8)
We may without losing any generality assume that for some positive integer N
vE - jﬁ#‘:r“m:Ea:

because in general ¥V is a sum of such monomials. By virtue of the change of

normal ordering formula [29] , page 11, {internal indices suppressed)
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y vzl ; . M-
;= Ed.(8C :f:.x}}] ()
¢ j=0 1 n c

.hl:

where d,,... are universal constants and [N/2] is the largest integer less

than or equal to N/2 , we may without loss take

v = e )45 00 o

E

h

With V° of this form we prove (4.8) by showing that
Jdw VEQV-¥©') + 0 g,c' + 0

By the standard methods [Iﬂj for evaluating Gaussian integrals, this is equi-

valent to

Ihlhﬁcj'::r“} {'H:j {y.¥) cj (x,¥)

_ (4.9)
- &'y, I (BE ) (x,¥)) + O

as c,c' + 0 ., We have suppressaed ht,n y €' in favour of primes. EE" is the

operator product i.e.,
I

J Elx,2) E'(z,y)dz

¥We know by Theorem 3.5 that &C CONVETEEs 1n LF for all 1 < p < = ., Theorem

3.3 and Lemma 4.5 (with £(x) = ¥x) imply that g’ converges in I, there-

L]
fore E° E°  converges in IE which is the same as convergence in inﬁih} .
Recall that c‘: is in L (A<h) uniformly in ¢ for 1<p <= by the dia-
h
magnetic inequality, Theorem 3.1. A judicious assortment of triangle inequalities

and Holder inequalities yields (4.9). This proves that

£
Jduc e .
hE
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is a Cauchy sequence.

The proof of Theorem 4.1 1s complete once we show the limit i% not

zaro. Therefore, by Jensen's imequality

E 'Ui £ ,E
Jav e Tzexp(- [av" V)
£ £ A
h h
The integral im the exponeént is not infinite in the limit ¢ ctends to zero.
If one does the integral by explicit Gaussian integration, the result is a
sum of LP norms of &C which by Theorem 3.5 converge as € tends to zero.

Froof of Corollary 4.4. Since :i and zi converge (we are assuming Theorems

4.1 and 4.3) as ¢ tends to zero, it suffices to prove that

£ £ -ﬂt 'UL E.E
Jdv" F(Q'4) e " = fdwe " F(Q¢)
h

converges. F is a polynomial or exponential. This follows from T.-z COnVergence
of tpv (see the proof of Theorem 4.1) and of F (see (4.8)) . These are

standard arguments; see [6] .

Before beginning the proof of Theorem 4.3, we rewrite :i in a more

convenient form, namely

£ (h) = det M 21155 (4.10)
where as usual
- -
W€ = = fa A% 0% ia 25 A - &°A% A* (4.11)
h* h* h® n®

To simplify notation subscripts u have been omitted. We will also suppress c
in the equations below. To obtain (4.10), first explicitly integrate the

Gaussian integrals in 2, -
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1/2, 2 ¢

'lfztn’-aﬁl det!/? (n?-aFy

:ﬁih] = det

- dn:'lfzfi*crfa:-aF}J

This coincides with (4.10) once we argue that the F denoting free boundary
conditions can be dropped. Since EF and C coincide when their kernels are

restricted to A * A we need te show that
F _E
xhiﬁh A )x, = -4
This in turn follows from the following facts
(1) b8 = x, (8, -8)x,

This is easily verified using the definitions. Recall that h is supported

inside A .

{2) The kernels of hﬁF and b; coincide when restricted to A=A except

at the lattice points on the boundary. At these points the difference is inde-
pendent of h . This second fact may easily be proved by going through the

proof of Theorem IV.7 in [6] with 4 replaced by ﬁh a

We now introduce the following standard nmotatiom [21] . Given K € ll :

define renormalised determinants, n = 2,3,...

a1, .. ;
det (1+4K) = det(14K) expl & 5]11 tr K]
{=1

get M2 (1-c5u) = dec;lfztl-c‘u‘h ;

3 4.3 e £ 4
.expl L 5= = tr(c*W)?] (4.12)
j=1

irall
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Proof of Theorem 4.1 (using Appendix A). We see by (4.12) that it is enough to

ghow that

(1) detﬁ(l+ﬁF} is convergent as € %0 .

(2) l:r[‘l':c}3 is convergent as ¢ WO .
{3 - %—trtkc] +-% tr{t‘}z is convergent as e 0 .

OREUSTIES!

whare
k' = -c®w® (4.13)

First note that (4) is the diamagnetic bound of R. Schrader, R. Seiler. A proof

is also given in paper I, section 3.3.

Proof of (1) : We suppress ¢'s . Set

1/2 1/2

HZ2 =G WC

and note that since W is finmite rank,

da:ﬁ(l+ﬁ} = dil4{1+H] .

We now appeal to the well known fact[Zlage,f]chat dec_ is Lipschitz continuous
on In . Then (1) follows if we show that H is Cauchy in Iﬁ «» To prove this,

expand W using (4.11) and factor each term in the sum into products of

1/2
My & et (4.14)

and their adjoints. The factor X, can be skipped by using the condition on the

support of h . The first operator converges strongly, the second in operator norm

norm, the third in Iﬁ by lemmas 3.7, 3.11. Each term in the sum contains at least
e
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of the third kind, thus using Lesma 3.6 one obtains (1).

Proof of (2). This is essentially the same as (1). Expand Hj . Write each

term as a product of operators as im (4.14) and their adjoints. Each term contains

at least two factors converging in Iﬂ « This is sufficient to prove (2).

The proof of (3) is more subtle and is the only place where we need
the stronger notion of (=,a) convergence. The problem is that the individual
traces in (3) diverge as ¢ tends to zero. There is a cancellation between them

due to a Ward identity (gauge invariance). For the proof of (3), see Appendix A.m

Remark : We conclude this section by sketching some constructive, uniform upper

and lower bounds for =z (h) , valid for all A® with |Im.A£I < comnst.,

uniformly in € .

Suppose that A® + A , as ¢+ 0 , in the (=,0) sense: sce (4.5) and

section V. We require that

A w .ﬁ.li‘ i.Fn.2

AL o <=« Ayl <& (4.15)

where AI.AE are real and £ will be chosen below. The norm | || g is

defined in (4.5).
Choose a positive integer H  so that
=1
NIl < 6 (4.16)

il | el definition of A given in el b (2.6) . We devenpose A inL

ihs twal and imaginary parts i
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C [ E
A = Al + AE {'ﬁ-lT]

For each € we define a sequence of gauge fields by

. M [
- @A
1 ech,

he me M (4.18)

Our bounds are based on the trivial identity

i ;(h ) zi{h

z(h) "{ﬂ l:_'.l-} I“I-H}

(4.19)

We have suppressed c's . The idea is to obtain a uniform (in € , € small)

upper and lower bound on each factor using direct methods, in particular the

loop expansion.

Let 'n" be defined by

4 = A + W (4. 20)

whare ﬁn - ﬁh . Set h = hH+l and Em - Ehm . Then

z(h_) A
R L ['.”i W n”f}
l{hl-l"'
- =1/2 1/2 1!1
_,dtlﬂ (1 Gwrl L url} gu (4.21)

{This defines gn} . Since A" converges to A and A® . A" only differ
by terms of order ¢ , it is easy to show that A" converges to A in the
(=,a) mnorm. We in fact show this in the next section. Next, by choosing E
pmall we show that the loop expansion for da:h in (4.21) converges absolutely

and uniformly in m and ¢ , for ¢ fe, for some e, >0. This is done
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by using the diamagnetic bound, Theorem 3.1, and I2 estimates of the type
established in the proof of Lemma 3.4, (see (3.1)-{3.4)) and is not difficult.

From this we obtain

1!2 1;’2

ey ¥ 1| < (&.22)

1/2
& * IdEtﬁ (L+cC
for some constants €y1€g independent of €& and o .

The factor 5- is the exponential of all terms of order 1,7 and 3 in

..”2“ + E”f = ”f.’! + These more

L arising in the loop expansion of det
gsingular terms are estimated by expanding ':rl in a partial Neumann series.
The leading terms give the contribution nu'u- analysed im Appendix & . The

remainders are estimated by methods resembling those in the proof of Theorem

3.5. The details are tedious but straightforward and are omitted.
The conclusion is

er < g ] = e (4.23)
where ni » €3 are constants depending only on [ and I]ﬂIL‘“ . We collect

(2.19), (4.22) and (4.23) to obtain
(clti}H < j: (hy| < (e e E}H"l (4.24)

Note that if A is real valued along with A"~ for all € , then z° is real
and positive because by (4.4) it is the ratio of two positive integrals, there-

fore (4.24) is strengthened to

(e < 2fm) <1 (4.25)

whore the right hand bound §s Ehe diamipgmetic boond, Theorems 2.3, 4.1 anmd

section 3, paper 1. N is determined by ||A| i NI
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V. Convergence of the Partition Function for Yang Mills and Matter Fields

(Yang Mills fields with a cutoff).

5.1) In this section we specialise to abelian Yang-Mills fields. This is implicit

in our use of a GCaussian measure for the pure Yang Mills field, which is incos—

patible with gauge invariance if the gauge group is not abelian.

Given a real measurable abelian gauge field A and a lactice [.{"'JI 5

let *u be the components of A relative to the unit vectors generating L{Ej F

Given a bond b in the uth direction let

ie Ib&u{x}dn

ho(b) = & if bEA (5.1)

I
=

if bEA

This defines a lattice gauge field h" on LEE]EAJ . Throughout this section,
all lactice gauge fields will be derived from a continuum gauge field in this
way. We will therefore regard the partition function E:{ht] of the last section
as a function E:{ﬁ} of A . The ¢ field is complex.

©

A has

The full Yang Mills and matter partition function, denoted Z

the form

E E
z, = IduD{A.,‘.I Z, (A) (5.2)
where duniﬁ] is a Gaussian measure, mean zero, covariance D = Duu{"'r} :

In this section, we will assume that the covariance D 1is such that
with probability one, the sample functions hu[!l are essentially uniformly
Holder continuous with modulus a < % « (E.U.H.C) , which means that there

Ccxlsts a constant Cp o finite for almost all A , such that



- 8 -

|ﬁ“[x} - &u{y}! j_calx*ylu, x,¥ E ﬂHEl

uoe 0,1 (5.3)

where E, is a set of Lebesgue measure zero, dependent on A . A sufficient
condition on the covariance D for (5.3) to hold for almost all sample functions
hu is given in section 5.2). The condition (5.3) excludes the covariances we
are ultimately interested inm and this is why we refer to such covariances as
"eutoff". The cutoff has to be removed by taking a limit outside the A integral.

This limit is more difficult because it involves renormalisation. It will be

discussed in paper I11.

Theorem 5.1.

If A is a bounded rectangle and L'®) is a family of lattices,
€ >0, then lim Ei exists, is non zero and is unique.
-+
Define
Z. = lim 2%
A e+0 A

<F» = E-I jdpn{ﬂ} zi{ﬂl

. [dut e J'lls F
B

where F € LF{duD:duﬁ} for 1<p <= .

Eﬂm}]ﬂr!' 5.2.

The measures < r; converge as ¢ 0 in the sense of convergence of

generating functions. All moments converge.

I'eool ¢ Hssentially ideatival to the prool of Corellary 4.4,
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Define

<> = lim < >5 (5.5)
=

Proof of Theorem 5.1 : we begin by showing that if hu satisfies (5.3), then

h" as defined by (5.1) converges as ¢ + 0 in the (w,a') sense for a' < a,

By (5.3) hﬁ[:] is in L_ . By expanding the exponential in ﬁE(x} ¥

||ﬁE - ﬁuthL:_nuu. :?E[E-l Jh &H{I']d:; - ﬁuiﬁll + 0(c)

where the essential supremum is taken over all £ € A within distance e/2
of a given bond b , and then over all bonds b im A . The first term tends

to zero by (5.3). Hext define
B (x) = ﬂuftl > ﬂuf!:‘l Xy () (5.8)

The proof of (=,a') convergence is complete once we show that the seminorm

|8 (-85 () |2
(f yax f,dy l“ ii*:' Y2 2 88|, =0 (5.7)
=y

for p=0,1.

The following easy inequality, valid for 0 <y <1 ,

el E =y+1
1850 2l BEIE T IBCH 5y _zlﬂl (5.8)
Y
L]
follows from HOolder's inequality. Choose ¥y so that Eig—--i = g" < a . Since
we have just shown that ||Bt“ tends to zero, it is encugh to obtain a uniform

bound on |[EﬁlL“ . This is easy to obtain by expanding the exponential in

4 and applying (5.3). This completes the proof of (=,a') convergence.

How wir will establish that the limit, assuming il exists, s ol 2ero.
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By its definition as the ratio of two positive integrals and the diamagnetic

bound of Schrader and Seiler [7] , also see paper I section 3.3,
0=z (Ay 21

Furthermore by the convergence of h just proven and Theorem 4.3 the limit

of z (A) exists and is non zero almost surely in A see (&.25). Denote the limit

by z(A). Jensen's inequality implies
£ £ 7 £
zy > fdu (&) zp(A)[exp - [ dv} V)]

The exponent is a real valued polynomial in Gﬂi which we know by convergence

of h* and Theorem 3.5 is convergent as € E 0 . Let Pﬁﬁﬁh] denote the limit.

Fatou's lemma implies
2, > fduy(A) 2(A) e TEG) . o,
End of prooof that Zh A0,

By Theorems 4.1 and 4.3 and the (=,a') convergence just established,
we now have obtained convergence of Ei{&} almost surely, as ¢ tends to zero.
The proof of Theorem 5.1 is completed by combining this with the lohosgue domi-

nated convergence theorem and the diamagnetic bound, Theorem &.1, paper 1 :

lzeml < Z,(0)

The right hand side is bounded uniformly in ¢ by Nelson's boundedness below

proof [19] .
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5.2) Continuity of Gaussian Processes

Theorem 5.3. (A.M. Garsia)

Let #(x) be a GCaussian process on & bounded region A . A sufficient

condition for & to satisfy (5.3), (E.U.H.C) with modulus a , is that at u = 0

a6} = aup ECCo () - oy Dy tl2 (5.9)
|xyl<] ul 12

be Holder continuous with modulus 8 > a .

For a proof of this theorem, see the beautiful article by A.M. Garsia
[B] . The condition im Theorem 5.3 follows from the condition inm his Theorem 2
by integration by parts. To help the reader we indicate the basic idea in [8] .

The assumption (5.9) on p{(u) implies that the expectation

E(expie( HZ20N 2,

x=y

i5 bounded uniformly in x,y € A for a suitable ¢ > 0 . This implies

A A | %=y|

with probability one. This condition is evidently tantamount to some form of

continuity for # . Garsia has proved a very clever real variable lemma, (Lemma
1 of [B] ) , which shows that this condition implies @(x) is E.U.H.C. with

index a for all a < B .

In the case at hand, we infer from Theorem 5.3 that h“ is (E.U.H.C)

for w=0,1 1if at u=0

: = 1/2 .
Phtu} ]:l_::]h]u]‘rﬂibwlx.x} lell{:m'] Elllmiﬂ‘r}} (5. 10)



- 3.

is B Holder continuous, B > a . If we specialise to the case of hu real

and translation invariant then (5.10) is implied by : for some constant ¢

B 1/2 B
(0 (0,0) =D (0,x))"" < e|lx|" , 8>o0. (5.11)

We can transform this into a simple condition on the Fourier transform

of Duutufy} » denoted Euu{h}, by noting that the supremum norm of

-28
| =] (o, @ Duuixll

is less than the L1 notm of its Fourier transform. The Fourier transform of

| -28 =2+28

| = is, for B <1, :Eikl by homogeneity, therefore the L, norm of

the Fourier transform is less than a constant times

| 1 -
Jdiedk, | 2-28 22810y, (k)
178 i |

which is finite provided B < 1/2 and
Jak b (k) k| <= (5.12)
uu
Therefore we have proved

Corollary 5.4.

A Gaussian process Arixj with covariance Dpuizuyj has sample functions

which are (E.U.H.C.) with modulus & provided condition (5.12) holds

for some B > a

b tsterwalder Schrader FMositivity.

We assume that A Qs symmetric with respect e fellevtion about  some

hyperplane = .
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Let A_,A_ denote the open subsets of A on either side of 7 . We now

G

define Ef » £ , which intuitively are the algebras of gauge invariant functions

of fields supported in A* » A respactively. EE is the algebra of functions

measurable with respect to the o field generated by all functions of the form
B(E) = feurl A(x) f(x)dx , f € E:{ﬂ+}

tFe(E): = [ :gp(x):E(x)dx , £ € r::{hJ

iefA

[e(x) w #(y) s(x,yldxdy, g € C (A = A)

In the last expression A is integrated along a contour inside A . L_

is defined by replacing A, by A_. Reflection about w induces a map O
a : E+ + L
in an obvious way. See section 2.1 of paper I.

In this section we wish to show that if the bogon self interaction W

is gauge invarianc, i.e.,
vig) = V(|s|)

and the covariance D Is suitably chesen, then we have Osterwalder Schrader

positivity in one direction, i.e.

<Fa(F)>, > O (05)

for all F inm |..1 n E+ ;

We choose covariances D of the following type



D, () = S —— k) (5.13)

and g 1s positive, continuous with
| latk )| lkI|E dk, < = (5.14)

for some B > 0 . Note that Corollary 5.4 implies that the Cavssian process with

covariance D has (E.U.H.C) sample functions.

Theorem 5.5.

The expectation < o is Osterwalder Schrader positive for = parallel

to the l-direction if V is gauge invariant and D is of the form (5.13).

Proof. Approximate F in (0.5) by a polynomial in the gauge invariant fields

i A
[

BOE), :Fe(D): , J§ K -

By Corollary &.& the expectatiom < ?i of such a polynomial converges as ¢ w0 .

E

Therefore it is enough to prove (0.5) for = = replaced by < >y We now

A

put the A field on a lattice also : consider the lattice Gaussian process

i
with covariance D:u given by the kernel of the operator

L []
I e

o
Sy A, 20

4 L™ ]
mo#a ;'|"
where 20 is the Cinite diflereace gradicot amd 30 3 = 3 B

Choose ¢ = /N where N id an integer and arvange the ' Jattice so that
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.:1‘
it is a "refinement" of the e lattice. By diagonalising the covariances D
using the Fourier transform it is easy to show that as ' % 0 the GCaussian
meASUTes CONVErge, L.e.,

du e duu (5.15)
D

in the sense of convergence of moments and characteristic functions. We claim

that this implies that the expectations < :-:'E aggociated with this double
lattice approximation converge to < }; ag £'"% 0 in the sense of convergence

of moments . This is so because the partition function zicn} for bosons in
an external gauge field can be expanded in a convergent Fourier series in expo-

nentials of the finite number of Gaussian variables
d H Ec
t, Ade :b €B (N}

where b is a bond in the ¢ lattice and the contour integral along b is

really a "contour sum" on the bonds of the €' lattice. Approximate zi{n}

by truncating the Fourier series and use (5.15). Thus it suffices to prove (L5}
for =« e replaced by < ri'zl . This is a lattice theory and we may prove
{(0.5) for it in complete analogy with Theorem 5.3 and Corellary 5.4 in paper I.
The presence of two lattices, one for the A field and another for & causes

no additional problems.
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VI. Feynman Rules, Counterterms and the Change of A covariance Formula.

VI.1) This section is a technical preparation for the ultraviolet limit, i.e.,
the removal of the condition (5.12) on the A covariance. This will be done by
taking & limit outside the integrals over A and ¢ . To control this limit

we will need a formula which we call the change of covariance forsula in honour
of [22] . This identity expresses the difference between two partition functions

with different A covariances in a form which is amenable to estimates.

The ultraviolet limit will only exist (conventional wisdom based on
perturbation theory) and be non trivial if one alters the interaction V by
adding in some terms known as counterterms which will be infinite in the limit.
Since one of the most convenient ways of discussing the rather complex formulas
which arise is the Feynman graph notation we will also spend some time explaining

this. We have introduced some graphical notations which are not standard.

In this section we continue to assume that lattice gauge fields are
abelian and derived from continuum gauge fields as in (5.1). We also assume that

the photon propagators are translation invariant and satisfy (5.12). The ¢4

field is complex.

We begin with some notation including the Feynman graph formalism. We

present formulas first and explanations afterwards.

P(x) = 2—" JE(p) % gp

(6.1)
Efpj = % JI"I{::'_I e PE gy
where p,x  are in IH.'! . The Fourier transform of 2° is
1 (oM = 1)
o, (p) = € (6.2}
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The lattice photon propagator is defined in terms of the continuum propagator by

£ = £ €
D, (xy) = I duy, (4) Au{:}A"{y} (6.3)

(e}

where x,¥ E L and

AE{:'}I E%r _l &"{ﬂd:u if xE A, = 0 otherwise (h.4)

hﬂ(:}

with hpix] denoting the bond at x pointing in the direction e, -

i £ . 5 £ c®
The quantities A" are Gaussian random variables, but A , A are
b U b

not. Formally

{6.5)

Feynman Rules (Momentum Space)
1 1

(la) —— 26() , 28°(p) .  (1B) —-b2E2(p) ,(y9CE2(p)
p

(22) ~==— DR L DR LD () . @)~ (D) (), (DD ()

k Py
k k
Ghom 8 g
(1) ==l . e - =
o % i3 Xy (PPyvk,=k,) 6
i 2
N . I _
a X P TPYE TR 6
el
'r -

(R el 8 (p,=p.+k, )} (p, +p. )

I
['-'2'} Ih {Pl Pz"'k-l} tplﬁ"" ﬂzﬁj
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A
(5) -Ai— u%uzuxhﬁuiz}l {pl-pz}l

Pp P
= % EIE{:::&:}E]-{PI‘PII
A
(&) £S48 % e{ﬁuxﬁ}-tpl-pzl-tplu'fpzul
P

E E.” C C

B =

(7} + f HE;1}{p}
P

(8) ——pt—i— lu; Tpl-pz} .|'h;':|z;tﬁtprpzl

P P P Py Pr P

& 5 S

Feynman Rules (Configuration space)

1 1
(la) 2C(x=y) , 2c5(x-y) . ab) 20 xmy) . (265 (x=y)
(2a) D (ey) , DL (x-y) . (2b) (/D) Cxmy) L (VD) (ey)
(5) - 1/2 e2AZ(x)x, (x) - 172 e2(A%* A%) ()
T A ¥ u T
. C® E‘_ E
(6) = 1/2 de(A x,3 + 2 x,A)(x) o = 1/2 ie(Al (03] = 3A (X))

(7} Li{x)

(8)  smy, (x)
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Associated with each graphical symbol is a continuum kernel, written first, and

a lattice kernel written second. By the Fourier transform, the kernels listed
under the heading configuration space are unitarily equivalent (as operators)

to the kernels listed opposite the same numbers under momentum space. The various

factors of occur because we are using free boundary conditions. Similar

N
formulas hold for periodic boundary conditions. Note that a factor Xy is in=-

cluded in the definition of A{tj associated with (5.1).

Since we are now speclalising to the case of & complex

s 1 1
clp) =
[E:}z piim?

To each graph that can be constructed by joining the vertices (3) =(7)
by lines (1) and (2) is associated a polynomial in ¢ and A obtained by
integrating over all the p's and k's . This is a standard notation in fiecld
theory so we will not explain it in detail but simply give an example which

has been cropping up continuously in this paper. Let ﬂnu = xﬂﬁu i
B .
A-ﬁﬂ{::}‘ﬁ.n = (ie)” [ dxdy(ya 8 43 44 ) (x) .
n ot = 'ﬁ
Cix ’}{ﬁ*uau+aun* 1(y) Cly-x) (h.h)
P
ﬁ“\f}" A
2

- Clpy) A (pympy) (py *py ) Clpy) -

UL

: ,
e” [dpydpy,A (py=Py) (By *0, )

Both these integrals happen to diverge. If they were interpreted according to
the lattice kernels they would not diverge and they would be equal by the

Flancherel identicy.



Vi. 2. Counterterms, Renormalised partition functions, measures.

J-l»*g:a%

Let

l1l

(6.7)
E[} E lim 11: (= @ 8 (e}
)
(= =2 [dk D ()T (k)
whera "uu is the limit of the quantity ﬂ:u defined in equation (A.1) ,
Appendix A . Gmﬁ is & continuum quantity. We will have occasion to use the

corresponding lattice quantity [ﬁm;}z . The existence of the limit in the
definition of ED is established in Appendix A. It requires that D““ satisfy
(5.12). Both d’-ng and E, are infinite if (5.12) does not hold, i.e. these

counterterms are inserted to cancel divergences im the ultraviolet limit.

We now define the counterterms
U, =1 ages ] @i et vk (6.8)
oD m - : $ : .

where the normal ordering is with respect to € . Define I.I:D by substituting

the corresponding lattice definitions.

The renormalised partition functions are, by definition,

e e
2o(a) = 2°(a) [ dvy e vE-uy

(6.9)

28 = [ dug(A) zﬂ(ﬁ}

c.f. (4.3) and (5.2). We are dropping the A subscripts everywhere from this
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section because A will be fixed. Instead we make D dependences explicit

because the dependence on D will be of interest.

Since for a fixed ultraviolet cutoff on the gauge field the renorma-
lisation constants 'Lﬁl;}z . I:'.:::r converge as € tends to zero, our previous
convergence proof for Theorem 4.1 is easily adapted to prove that the limit
as € tends to zero of I;{ﬁi exists almoat everywhere. We denote the continuum
limits 3n{n] and En + We can take the limit past the dun(ﬂ} integral
bucause Lebesgue dominated convergence can still be justified by the diamagnetic

bound, c.f. the proof of Theorem 5.1.

We will use the subscript D to indicate that V is replaced by
VU, in previous definitions. For example the renormalised Bogse matter action
is
A = - 17200, (87-25718) & VEeU]
e.f. (5.4). We apologise for the confusing use of A for both the Yang.Mills

field and the action.

VI. 3. Change of A- covariance formula.

Lec DI:I"DI be two covariances for the gauge field. The associated

independent Gaussian processes are denoted ﬁn,hl . For t € [0,1] , s=et

A= .-"h'—‘ﬂau + .-":_AI
{6.11)

I I=-tin
¢ £ :ll“ * :DI

Hote that .'n: i o banssian provess with covarianee ul « et 1P be a polyno-

mial in ¢, ¢ {;} ol the form



P = _[dxl...d:q g{xl....,:q] [I'.' E:ll...{?}' l:ltq] (6.12)
where g € C, - We are interested in studying

El :P:l - zu <Frn (6.13)

The subscripts 1,0 and later t replace the subscripts Dl'Du'Dt in order

to simplify our formulas.

We study (6.13) by using the fundamental theorem of calculus to write
it as the integral of a ¢t derivative. The ¢t derivative and the dulA)
integrals can be interchanged because the second derivative of the integrand
may be controlled by th; methods we are about to apply to the first derivative.

Thus (65.13) becomes
! d
In. di Iduﬂ{.ﬁa}dull’.ﬁr} E.E ”r dutfﬁ-}P} {E-.”I}

The seasure dut is given by

_"E_uE
du, (4) = Lim 25(A) ﬂv: e e
ﬂq@ L
e (6.15)
=limDpg e °© /(D)
5y

The limit is as usual in the sense of characteristic functions, or convergence
of moments. Existence follows from the results of sectionm IV. We now show that

-AHE -A.H:

£ fosge “E=fope ©(xP) (6.16)
whie ro Hi is a linear operator defined on the space of polynomials in ¢ . It
will be defined belw. By dividing through by ' (1) and taking the Limit

£ %0 we will obtain an identity for the t derivative in (6.14). By doing

the t derivative @



L

_&HE _AHE
L fose "= op-ate Fp (6.17)

We use primes here and hereafter to demote ¢ derivatives., The factor #&(x)

in E-ﬁ:lz'.l‘ is integrated by parts. This simply amounts to replacing it in

(6.17) by
2 fay " (xy) (8/65(y)~ 6/6§6)) (6.18)
where the integral is really I EI and
¥
G, = AfE v 1208, [n=a% F1g) (6.19)

These formulas are easy to derive since we are working on a finite lattice.
The easiest way to manipulate integration by parts is via the graphical repre-

gentation

&V

#(x) = & —— (8/5§- ﬁ} + 4, "
l""I:
{6.20)
ol R el
JII|: 4"'l:

The conclusion obtained from integration by parts applied to (6.17)

ig of the form (6.16) with l{ equal to

" : &V ’ . _ &Y
K= i;?-— (8163 = 33) + ¢ 77— (8/8% = 33
I|:"'l: *t

) ] .
* ;E 1 L ;"sﬂar—- i ¢+ 3§ *r———j@%j L]
[ lI*'I'_ ht hl: AI’. ,‘I: ,‘I: ,‘I.'

¥ i

p -
+ 3} ﬂﬁp_"_" SR H: * L j (h.21)
& hﬁﬁ:ﬁ “;;Hht

i L L 1



We now exhibit a cancellation between the third term and the last in

(6.21), by writing

::I—{:dI' =i£—1¢= +At~(}‘—at

1

g0 that KE can be put in the form

KE = § D (8/8F - 6/6F V) + § — (816§ - oy
}@ E E
l= hl ﬁt

i ! #
+ 1 ____r i o+ ?? : + & r__}Q. #
' f A i f& A ' A A A
4 £ [ E £ Lt

I H 222
+3 _ﬁ_ﬁ_ g+ | A T Ay, (6.22)
CoA KA

i
The Ei in (6.21) cancelled when the last term in (6.22) was normal ordered.
1* was defined in (6.7). We define K as inm (6.22) but with diagrams interpreted

by continuum Feynman rules and n® replaced by 0 .

The true merits of (6.22) will be more readily appreciated in the
context of the stability expansion in paper III. The main point is that the
diagrams in K remain finite in the ultraviolet limit provided A is im a

gauge which is approximately transverse.

Having identified the operator “E appearing in (6.16) , we divide
both sides by ;c{i} and take the limit ¢ goes to zero. The result, after

some work which is discussed below, will be

d
Ty Idut{¢}? - IduL{+}{HtPI (6.23)
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The limit € N0 : The main difficulty is to show that the right hand side of

(6.16) converges as € W0 . There is no difficulty in interchanging the limit
and the &t derivative because the left hand side can easily be shown to be
bounded uniformly in & by the diamagnetic bound of paper I and the Cauchy
Schwarz inequality. Our previous results, Theorems 4.1, 4.3 imply that the guan=

tity under the £ derivative on the left hand side converges as & =0 .

We use the notation imtroduced inm the proof of Theorem 4.1. We will
only sketch a proof that the right hand side of (6.16) converges because the
method is similar to techniques we have already explained in proving Theorems
4.1 and 4.3. Recall that we are still working with a cutoff pauge ficld, A .,

that is (E.U.H.C) with modulus a < 172 .

By an argument as in the proof of Theorem 4.1, it is enough to show

that
faw] 52 (6%) - & PP w0 (6.24)

L
- - 1
arc replaced by Ht . K’I which are obtained from lft N rt by replacing all

pointwise in t as g,e" + 0 . We first show this in the case that Ke s K

factors XA, occuring in their definition except those in the last term ia
(6.22) by a C gauge field it compactly supported in A . We then gain the

frecdom to move all the derivatives occuring on external lines in
-
A

type vertices past the it by Leibniz rule onto the internal lines. Lt is now
not difficulet to prove (6.24) in this case using the methods of the proof of
Theorems % 3 and 3.3. It is now necessary to show that for any & > 0 we can

approximite y A by A 8o that



_hﬁn

- § & ]
Jaw| R°Kyp(s™) |2 = fav, |G"x")p|? < 6
=

uniformly in € . This follows easily from the fact that iu can be chosen
1/2 § i 2
so0 that Ai o ! and its adjoint approximate ﬁh CIJ: and its adjoint

arbitrarity closely in In uniformly in ¢ . This concludes our discussion

of e 0.

We now combine (6.23) and (6.14) to obtain

Theorem 6G.1.

If P is of the form (6.12), Dn and Dl are two covariances for

the gauge field

1
Z. <P>_ =2  <P> = [ dt [du_ (A )du_ (A.) .
Dl ﬂl nh Dﬁ i ﬂn o ﬂ] 1

S de (DR P,

¥ was defined below (6.22).
£
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APPENDIX A
In this appendix we study the vacuum polarisation

er €W + 1/2 ex(c®WF)° (A.1)

which was encountered in the proof of Theorem 4.2 and also in section 6. We
will specialise to the case in which ¢ is a complex scalar field and A
is real. The calculations given below are not significantly changed if one

combs them through with A nonabelian.
We begin by rewriting (A.1) in the form
fak At uﬁu{k}iﬁit} + 0(edc 1oge)

where by a calculation using (2.12) and Lemma 3.3

E I - 2 2.~-1 2 2.-1
iS00 =3 G @D @ .
-igp_ icp _ -iep iep_ ¥
e -e ) (e Livg T='a ), (ie) o

_L €2, 2 2-1_ =dep, _iep, .2
3 G [ e e dp 6,

A subscript u (or w) on a bracket indicates that all p's , p's inside

§
are pu 5. opy's .
= E = 1 Tl I"'F-
p, = 0, (P) = (ic) "(e7"-1)
Subscripts + , - indicate that p is to be replaced by P, s P_ in the
appropriate definitions,
1



. L

" stands for p#ﬁp + All integrals are over [-— 1

T
£

By using the Feynman rules im sectionm & it may be wverified that

= F+ P
My, (k) = v ( »——Q-_; () (A.2)
k k S"‘t
P

There are no D propagators on the external lines. This observation will

£ - s :
become relevant when we prove that ED converges as promised in section b,

Transversalitcy.

- S 1 e g o
We first show that [ 1is transverse, which by definition means

E
nuu{hj l.'-lu.“l:} = 0 . {-‘n]-:

We set £ = 1 and omit € superscripts throughout the proof of
transversality. Transversality can be gshown directly by shifting the variable
of integracion in the lefr hand side of (A.3) as is done in physics text books.
See [23] ro get the general idea. However it is really a consequence of pauge

invariance. Let

h, = sieh i A=A+ adh

By gauge invariance, see for example paper 1 Theorem 2.6 . :hthn] N

defined in section 4, is independent of a . Therefore

2 2 - oy
d d 2
—=logz,(h )| =2—[d"kx A 0N A
ﬂEZ A e o=y d:z e

is independent of o . Differentiation with respect toe o and setting

i = 0 vields (A.T) . [
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Since [ is Eransverse 1t must satisfy

2
nw - IJ“[GW - ”u"u“ ] {A.5)

because the quantity in brackets is the projection onto the rransverse component
of a gauge field as can be checked by verifying that it wvanishes on longitudinal

functions e, (k) . The projection is rank one. (A.4) follows by taking traces.

The (pointwige) limit as e W0 of rl:u :

We will now show that the limit € \,O of “:IJ exists pointwise in k

and give an expression for it. We have

e _ 1,e,2-2 2 2,-1.2 2.-1 -iep_ iepi2,2
L= 7 G T Jwteel) Tateel) ::Ilu e | d%p

_1l . e,2

Je? frateeh ™ ::emﬂ'miu (A.5)

Substituwe in (A.5) using the identity

|E-ip'“ip : 2, 2.-1 2, 2.-1
5 5 z - 2([o,*="] + [pZ+m"])
(o *@ ) {p_+m

i

| P ip
(o~ P-a P} = 2e -1|ﬁ ~2ls '

+

-1|i - 4a’)

Zz

T 7 o Ml e N

and note that the numerator in the second term may be writtem in the form :

. 4P " 2
= 1b sin _EE + 8 cos pu{:ns _EE =1} = 4m

All u's are to be summed over. We have set ¢ = 1 to simplify the formulas.

The vesult after shifting integralion variables Pt P ad  p_ o p s
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1 Z 2 do=1 i -1 2
{zi,l J(m“+p") " (2-e"P-e l"’}pd P+

+'% i EI{- *P+ I{lz*nf}-l {'lﬁt-zninﬁ{:pnfz}dzp} (A.€)
ek
ﬁ”"i J{ +p+ lfnz+pf}-l [B cos & Pp' E-EIEQE _EE -lj-ﬁmzldzp

As usual all u's are to be summed over. The range of integration is

[% ' T:-] for each component of p .

We prove that the limit of the first two integrals exists and evaluate

it by scaling ep =+ p . The result is

“ -
{giiz I Ipzi l{E—EiP~EiF1dzp -
-1

Pug | s

T .= . aPy .9
- 16 124" [ (7)Y sin Fdpa-J (A.7)
-u
B - k1)
wher Py |:|1l ip) -
Since
O T W T (A.B)

is bounded both above and below uniformly im p ond ¢ for p € [- % ; ?]‘ ;
we may take the limit ¢ %0 under the integral sign in the final integral
in (A.8) by the dominated convergence theorem. The resulr is

1

c z i -1 .% . 2.2
5 j {u +p+ { k" dm )d"p (A.9)

Let us call this integral J{k} , then we have shown that pointwise in kK
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£ 2
nuu{h} — {"Ju*Jik}}iﬁnu"kaufk 3 (A.10)
£ il
Furthermore we can show that .l‘:|I = J{0) by the following argument : ﬂﬁu{h}
is analytic in k near k = 0 , the transverse projection is not, therefore

n;u{ni = 0 . Pointwise convergence then implies that o J(0}).

Eemark. J(0) is independent of m by a scaling argument. Thus setting

m= 1 gives

2 2
& .2 d ]
J(0) = =2 fi;ﬁ I ;I:;%;} -

Pauli=Villars regularisation of the continuum expressions gives the same result

as (A.10).

By combining the upper and lower bounds on (A.B) with the arguments

given above it is mot difficult to prove first that for all a =0
£ 2.0
|nwm| < €, (14k°)

and then obtain :

Lemma A.l.

For all a = 0
)™ 1€ (o
pw
converges im L_{dzk} as e glﬂ :

Proof of statement (3) in the proof of theorem 4.3).

A:{k} i the Fourier transform of a function om a lattice; see bolow

ciuation (2.12). Let



L
2
By an easy computation H° AE = Iﬁ is the Fourier transform of A; (=)
"
considered as a piecewise constant function on RE via the @ identification.

Therefore, omitting ¢'s

wfe b
—erksifzeekt=f A g wtA gk (A.12)

H is bounded both above and below onm the range of integration. As ¢ \u'u it

converges uniformly on compact subsets of I-I:z « Hence by Lemmay ALl

ek g w2
(BRY)

COnVerges in l_ﬂtz,dzk} as © Y0 for all a >0 ., Therefore it is sufficicnt

to show that the Lzmz.dzk} norm

[Pakry 15 = J AG) () (xmy) Ay)dxa’y (A.13)

CONVerges as ¢ 15‘0 « The right hand gide of this equality comes [{rom Che

Plancherel identity. k = L.‘; ﬂ;:‘! .

2
Lemma A.2.

Let £ be in Schwanz space, The Fourier transform of kuf{k'.l is a

constant, {:u » Eimes

[a () =1(x) |x=y|F°

For a detailed proof see [24] . It is not difficult and proceeds by exploiting

Pl wmogencity of & . An casy argument slows that we can also use this Torm
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if [ is [y . Thue the right hand side of (A.13) may be writtem as

E -—
-{E flAe)-AG 2 |x-y| T 2e% dly (A.14)

Since A wanishes outside A , a bounded rectangle, (=,a) convergence of

A.: implies convergence of (A.14). This in turn is implied by (=,a) convergence
of *: by expanding the exponent and making some simple estimates relying on
the fact that AE and Aﬁ are piecewise constant. nE iz (=,a) convergent

by hypothesis. Q.E.D.

Proof of convergence of counterterms (V1.2)

The propagator defined im (6.3), DEUE:] is a function on the lattice

(el

L and

z ikx

e E -
D"“{k} = L g uuu{x} i *

4
As above T = Eﬂi is the Fourier transform of D considered as a piecewise
constant function on I|.2 via the 0§ identification. Since

EE=2] it bt a%k
-.'III':

wie may argue as above that convergence of EX  is implied by convergence of

L]

" a 2 E £ =d=q 2
JORT dk = e JOL (-0 (0)) [x] 7T

—im

for some a > 0 . The right hand side is derived by noting that the integral

on the left is equal to the Fourier transform of the integrand evaluated at

gero and using lemma A.2. nzv{x} is now to be understood as a plecewise constant
function on IE'.I . Convergence of the right hand side may be easily shown using

thi 1 Ider continuity (5.11) of D“u and arguments analogous to those in the
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proof of Theorem 5.1. This concludes the proof of convergence of EE ‘

A very similar argument which we omit proves the convergence of

¢m;2.
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APPENDIX B

Convergence of the Lattice Approximation for Periodic and (Half-) Dirichlet

Boundary Conditions.

We want to sketch how the proofes for convergence of the lattice approxi-
mation given in this paper can be adapted to periodic P and Dirichlet, 1 {(or
Half=Dirichlet, HD} boundary conditions, for a rectangle A . In the case of
D or HD boundary conditions, the oriemtation of A with respect to the
lattice may be arbitrary. This will be needed in paper 1I1 for proving Euclidean
invariance. Half-Dirichlet means here that we use Wick ordering with respect to
the free covariance in the selfinteraction of the matter field; we use Dirichlet
boundary conditions for the covariance of the matter field and free boundary

conditions for the gauge field.

In the main body of this paper we reduced existence of the continuum

limit for X boundary conditions to the following three convergence statements :

E =
(a) xﬁcx'*xﬂcx in Iu s for m>1.,

(B) E:IC;}III * EC;IE ¢ in the strong operator topology, and likewise [or Lhe
adjoincs.
: S 1 ] X [
(C) {Au.nuu ﬁu} {&H.nuuav} » whenever n" CONVerges Lo *u in the

[=,a) sense.

Although we only considered free boundary conditiomns, X = F , our
arguments show that (A) - (C) suffice for more genmeral boundary conditions,

in particular X = P,D .

IE A 5 {(x,¥) E'Hzllxl < l%l = Iyl < lgi} with a,b multiples

of ¢ 4 the periodic covariance is
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iy = & ' (xrma, yrb) (B.1)
P M ; —i

This representation shows that statements (A), (B), (C) remain true if

C

& 4+ € are replaced by E;, Cb + 8ince the series in (B.l) converges absolu-

tely and uniformly, because of the exponential decay of oF i B s

50 we only have to prove (A), (B}, (€) for Dirichlet boundary condi-

tions, X = D . We will make use of the work of Guerra, Rosem and Simon [ ).

Let P be the projection, orthogonal with respect to the scalar

I':l-'-'1t|,;.|:||:|-m'::le-.vl:I in L{j'}{-"-ﬂ'l'] -

product {. , EE .} , onto functions on L

similarly p , for the continuum. Define

b
el

s {GEJIII FE{EtI-III (B.7)

p oz cl/? p¢7l2 (B.3)

-
Using the imbedding E]-r' & I.I{L{”]-n- L.I{ EI} (see pection I1), we obtain

the orthogonal projections in L;{ E;J

¥, qF'p:q‘ (B.4)

The crucial fact is

Lemma B.l : & = limF = P
L e —— E
o)

Remark : This is very similar to Lemma (VIIL.9) in [®%) and Lemma IV. 11 in
[#] . It is not identical, however, because these references use a different

imbedding of tE{L{EIJ into LETZEE} . This necessitates some modification

in the proof.



1

Proof : (I) We claim that for

E,EFtu.'lzl.I"I'III:El.n‘.':l'Ir:'il

I e-&ll+ o

Proof : By Bessel's inequalicy we have i:fH P.h-g|l=[[?_z-gll . Thus

1/2

E.T — . -
I sl < IF, 0" 2 ™M 2 5

1/2 l:c-lfis

s _g®
FQ" D" q

1/2 2

- @ €)@ -

1/2 e ~1/2

-
= g° (c) Qc gE* R

by statement (A) , for X = F (free) ; we used the fact that Q'-'I::_”Es is

supported outside A .

(11) If g € Ran P we still have |[3'Eg-gf|+ 0 because Ran P N Ran ct/2

is dense in Ran P (i.e. A is "regular" in the terminology of [6]).

{II1) Let g € Lz{ IE;E} s [ a weak limit point of the bounded set

{?{g[ﬂ'ﬂcill . We claim :

£ = Pg- (B.5)
) Let checim:
F ), = (€Y%, p, V%), (5. 6)
% 2

(the second term is zero because of support properties). (B.6) converges to

0 because of scatement (1), which shows that f € Ran F .
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b) Let h€ L°(R%) : (h,£) = (Ph,f) = lim(®h,F_g)

e n
= lim (P Ph,g) = (Ph,g)
I+ n
by part (I} of the proof; this establishes (B.3) .
(1V) {(B.5) showe that '?Eg converges weakly to Pg i because ?; are

projections this implies strong convergence.(End of proof of Lemma B.1).

As discussed in [ 6], we can define the Dirichlet covariances by

¢ = Faamp) = (€9 2a-p ) e (8.7)

ci1-p) = cM2q1-pycl’? (B.8)

[

Statements (A) and (B) with EE. L replaced by CD . Eu are now obvious

consequences of (B.7) and (B.8), using Lemmas 3.6, 4.5 and B.1 .
Statement (C) is a little more subtle.

Obviously it suffices to conmsider the difference

!..

(s L P ]
L Hepec 3] ,-:1F )

Ihu

£,0 E 4,E 7 I o
» 1} ' = I 'y - c ';_ i [ L .
( U u'u:' 1.1:' e “"":[flﬂh BHHLD-E .:I:H{i[.I i

)

o {{ﬁL J 0 (w) [E;~EE] (®,%) Jdx {15.9)

va dggume A& Lo he transverse ; non~Lransverse components drop oul).

Because of the Holder continuity of ﬁﬁ we can bound |A;-A;| uniformly in
4+ and using the Q-imbedding alse |A:-Ah| : therefore we only have to

1 # ¥
show L -convergence of fa“{c;-c‘}}ta“fc;+c‘}1 » and convergence of the
gecond term in (B.9).

L. . - . . .
Here ﬂn 18 @tther Bu or Bh . What we need is containmed in



- 79 -

Lemma B.2 @

e £ _E. E+D , 3 z

(1) Eu (C -I.':D]I ——r au (c{ﬂ] in L{A = A)

(2) {aEEEE E:r:aEEE: £0, (o FrecEe) in LA x N
M “cn W M D W

(%) (C7=Cp) (xyx) Z=w(C=Cp) (%) in LP(M), 1 gpem.

Proof ¢ The proof proceeds by the dominated conwvergence theorem. For the

uniform upper bound we need

Proposition B.3 : For x,¥ € A

(1) |C{'{:¢-}'}l < const| log -l:—:%} |

£ 1
(2) |ap,1ﬂ (x-¥)| = comst T =T

an
(1) ](Gc-ﬂglfx-ﬂl b const| log e “ﬁ?i";:h:
' E const.
) 13, (- N < FrmTnsaiec 7,90

Proof : (1) follows from (2} by integration.

(2) follows by some work with the explicit Fourier representation of € :

-1

. {ELEk

u=1)a 1kx dzk
2

—COBE .'n'.z J+m

EnE
AaC (x) = [} -
L [ik]i‘i‘l’ 2e Ii,"i-—t:unctl

Elkzli'l'

We cut the integration into a part where |k| < & and a rest. The "inner"

part is ) -1
-liﬂ'lh“"leikI: 2

I C

| k| <ae 2{2-n¢|h1-=ﬂ1h2]+:2m2




which is bounded by

|sin kul

z
dk £ const.

[FIE e 2=cos kl" o8 kE

The cuter part is bounded by E?E%L as can be seen by doing an integration

by parts with respect to the variable |[x]| .

({3} can he seen as follows :
(-a+") (€5-C5) (x,y) = % (x) (8.10)

(e)
wvhere u;(x} has support on 3A® which is the set of points in L which
are endpoints of a lattice bond that intersects 3A or are im 3A themselves.

It is not hard to see that

u;{x] > 0 (B.11)
 c2ot(x) < 1 (B.12)
% L 4 2

t-
D

ments is outside A ; (B.12) follows by Gauss's theorem for the lattice :

(B.11) follows from the fact that E; *0 and C 0 if one of its argu=

2 [ -
0 = Ec {E“ED}{K.}'} = =] :I'I12 Ie ﬂ;[!.}'] & Eszu’; {x} .
X X ®

From (B.10)} it can be seen that

tc“-c;}{x,y} = £ t:EE{:-:'}uF{x'I (B.13)
:f

Using (2) and (B.11), (B.12), it follows that

CONSC.

|a® _(c"=cE) (x,¥)| =
A dist(x,ah)
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Since the left side of this equation is symmetric in % and ¥, (4) follows.

(3) is similar =

Returning to the proof of Lemma B.2 we notice that
€ o - A 1/2 1/2
ac (cF-cp) = 2% (c%) '€ B _(cF)

I.-2 convergence of this then follows from statement (B), Lemma 3.6 and
IZ convergence of i"‘{llijlfz which we now prove. By the GrummSimon

theorem {see section II), we only need to show convergence of the [_, norms

2
1/2
of Ez{g*}

s which means we have to show that

1/2 /2 _

Te(c®) el (e5-C5) (x, %) (B.14)

P (c%)
. REN

P

converges. Since Proposition B.3, (3) gives an L upper bound, we are reduced

to showing pointwise convergence of {cE-CE}{:.H] to establish Lemma B.2, (1).

From Proposition B.3 we also get the following bound on the expression

appearing in Lemma B.2, (2) :

1 1
dist(x,dn)+dise(y,an) |x-vy|

IaE (c"-cp) aE{:E| < const x (B.15)

This bound is in [.!'{.I‘l. ® A) as can be seen by cutting up the region of ince-

gration into a suitable sequence of bonds parallel to the boundary.

S0 all that remains to be shown to complete the proof of Lemma B.2 is

Proposition B.4 3 {ﬂE-E;]{x.yl and HE[GE-E;}(x,y} converge pointwise im

A A



FL,E{!'rJ E :%;E | 15[;—:'];£{y—y'1{E:—ﬂ;J{x',y'}dx'dy* CONVerges pointwise

Proof : Since C =C COnverges in I.2 .

as ¢ + 0 , vhere Xg is the characteristic function of a ball of radius & .
On the other hand we can for each (x,¥) E A * A choose & 8o small that
|F£1if1.3] - ECE—ﬂglix.ril < n f(uniformly in ¢) becauge we have a uniform
bound on the “derivatives" of Cg-ﬂz . By a In argument pointwise convergence

of ct-c; follows.

Far aifﬂg-E;} we use the same trick : We just established Lz—cunuer“
gence; a unifors (in ¢ ) bound on the second "derivatives" in a neighborhood of
any point in the interior of A can easily be obtained from (B.13) and we just

have to repeat the argument given before.

This completes the proof of Lemma B.2? and this appendix.
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