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I. Introduction.

We continue in this paper a program initiated in [1] , henceforth
referred to as paper I. One of the objectives set forth in that paper was a
mathematically complete construction of a super-renormalisable continuum gauge

theory. This paper contains results in this line of work.

The study of gauge theories on a lattice was originally suggested
[2] as a suitable starting point for learning more about gauge theories generally,
because lattice gauge theories provide a setting in which one can utilise methods
of statistical mechanics : - low and high temperature expansions and correlation
inequalities, etc. . In addition these theories posess the two important proper-
ties of Osterwalder-Schrader positivity and gauge invariance. No other method,
yet proposed, of regularizing continuum gauge theories so that they become
mathematically well defined objects posesses all these attractive features.
It is therefore an important problem to verify that these theories converge
in a suitable sense to continuum theories when the lattice spacing is taken to
zero. The limit would then share these properties and in addition one would
hope to verify that it is Euclidean invariant (unlike the lattice theories).
Various consequences of the correlation inequalities which will be of interest

to physicists as well as mathematicians have been outlined in [3] .

Unfortunately, it is unlikely that our method of proving convergence
is optimal. We have adopted a method of embedding lattice gauge theories in
continuum theories which is not natural in the context of geometry. It might
be rewarding to search for methods that treat the geometrical side with less
than the insensitivity that we have been able to muster. In the meantime we
have in this paper a number of functional analytic techniques that will extend
to more singular theories, abelian and non abelian and some of them will very

likely be useful in future improvements.



We are here mostly concerned with two dimensional abelian gauge theories
interacting with Bose matter. An analogous program for fermion matter has been
started in [4] . Some of our results are valid for nonabelian gauge fields also.
The major simplification in the abelian case is that the measure describing a
pure gauge field is Gaussian in the continuum limit. We exploit this by noting
that we may obtain a Gaussian lattice gauge field by conditioning the continuum
measure. Thus given a continuum gauge field one may formally obtain a lattice
gauge field, which is a function from bonds of the lattice to group elements,
by integrating the gauge field along a given bond and applying the exponential
map to the Lie algebra element so obtained to get an element of the group. (If

the group is nonabelian ., one should use an ordered exponential).

One can then couple this lattice field to a matter field on the lattice

and the resulting lattice theory is gauge invariant. The procedurc may be
considered as amounting to a special choice of lattice measure for the gauge
field which differs from Wilson's [2] and others so far proposed, but which is

also gauge invariant and has the correct continuum limit, at least formally.

This procedure is not possible in more than two dimensions because
with probability one the gauge field is a distribution with insufficient regu-
larity to be integrated along a bond. However, as pointed out in paper I, it
is possible to put in an ultraviolet cutoff, i.e. change the Gaussian measure
describing the continuum gauge field to another one whose sample functions are
more regular (almost surely) and still retain a type of gauge invariance.
Furthermore if the ultraviolet cutoff is suitably designed (a cutoff in all but
one direction in :mp) we obtain a lattice theory with Osterwalder—Schrader
positivity in one direction. This is of course not a new observation. Lastly,
as discussed in paper I, we have correlation inequalities even in the presence
of an ultraviolet cutoff. They are in fact valid for any lattice Gaussian

measure for the gauge field.



Even in our case of two dimensions we find it convenient to use an
ultraviolet cutoff on the gauge field. This is in order to separate off the
complexities of renormalisation from proving the convergence of a lattice approxi-
mation. In other words, if we did not impose an ultraviolet cutoff, we would have
to insert counterterms and cancel quantities that diverge as the lattice spacing
is taken to zero. We prefer to put in a cutoff and its subsequent removal
(after the lattice spacing is taken to zero) will be discussed in paper III.
Finally, we also give the gauge field a mass (an infrared cutoff). This does not
affect the Ward identities which express the gauge invariance of the coupling
between matter and gauge fields. Correlation inequalities allow then to take this
mass to zero. Full gauge invariance is impossible in the continuum limit and
gauge fixing is always necessary. We really prove '"gauge covariance'". The zero
mass limit will also be given in paper III,and in fact we first take the infinite
volume limit which is easier whilst the gauge field has an infrared cutoff and

then the zero mass limit.

We now give a rough formulation of our principal results, We will supply
more details and precise definitions later. It applies to a theory in a rect-
angle in jm2 with a continuum gauge field with a mass and an ultraviolet cutoff
interacting with a Bose field on a lattice with spacing € > O . The Bose field

is allowed self interactions.

Theorem A.

Given a sequence of simple cubic lattices whose spacings tend to zero,
the lattice measures which correspond to the theory described above converge

in the sense of characteristic functions.

The main results required for the proof of Theorem A can be found in

sections III and IV. Some of the more significant ones can be summarized as follows.



€

Let Ch (CA) , denote the lattice (continuum) Green's function for the co-
: Sr . . N € € g .
variant finite difference (continuum) Laplacian, ﬁh (ﬁA) , in a lattice

(continuum) gauge field, h (A). The gauge field may be non abelian. We impose

either free or periodic boundary conditions at the boundary of a rectangle A

Theorem B.

Let (h®) be a sequence of lattice gauge fields converging to a locally

bounded measurable gauge field A as € tends to zero Then the kernel of
3 : .
C converges locally in Lp, for all p with <p<w to C

hE A.

Theorem C.

Let (h®) be convergent to a Holder continuous gauge field A , then

. € .
the determinant , =z , defined to be

hE

2 ("fe*“‘z) (-25+n2)"1/2)

h

det((—ﬁe+m2)_l/

with m” > O, converges to its formal continuum limit as ¢ tends to zero.

The limit is finite and strictly positive.

Our methods would also be useful in proving the appropriate analogues

of theorems B, C in three space-time dimensions.

The limiting theory obtained in Theorem A is Euclidean covariant. It
is not invariant because of the boundary and also the cutoff on the gauge field.
In two dimensions it is possible to identify it with a theory constructed directly
in the continuum and then Euclidean covariance is obvious. However it is also
possible to obtain it directly from our theorems because they are valid when
limits are taken through lattices of varying oricentation. We have slightly em—

phasized this point because it may be a superior strategy in more singular



theories. Obviously Euclidean covariance is necessary if the final theory obtained
by taking the infinite volume limit and removing the ultraviolet cutoff is to
be Euclidean invariant. Note that Euclidean invariance and Osterwalder-Schrader

positivity in one direction combine to yield positivity in all directions.

Let us now briefly outline the steps in our proof. We begin in section
II by collecting our notation and conventions and summarizing some useful facts
about trace class ideals (Ip) of operators [5] . In section III we prove
theorem B. One reason why this part of our work is more difficult than the

"

corresponding parts of the lattice convergence proof in [6] for Bose fields

without gauge fields is that we can no longer use the Fourier transform to diago-

nalize all our Euclidean propagators CEE simultaneously. Instead we rely heavily
h
on the theory of trace class ideals and analyticity, We have prefaced section III

by a short verbal description of these methods since these may find other appli-

cations.

In section IV we prove convergence for lattice fields of bosons in an
external Yang Mills field as e N O . The Yang Mills field can be non abelian.
Although we do not prove it in this paper, the limiting partition function is

closely related to that investigated by Schrader [7] . The differences are as

follows : (1) we include the factor z® (A) , (see IV and Theorem C) which
Schrader et. al. [7] refer to as the "renormalized determinant'; (2) our normal

. . : : : : €
ordering of the bose self interaction is with respect to Ci instead of CA .

Both these features are forced on us since we are going to integrate over the

gauge field (in the next section). The renormalized determinant is a considerable

nuisance because it contains contributions which diverge as ¢ N 0O, and one

must use gauge invariance in the form of a Ward identity to prove that the
divergent parts cancel each other up to a remainder which is finite in the limit.
(This type of phenomenon is well known to physicists). The change in normal
ordering (2) is not a simplification either. The point of Theorem 3.5 and its

quite lengthy proof is to control this change of normal ordering as € O .



Our proof of convergence owes much to [ 6] . We also proceed by embedding
all our lattice theories in one continuum theory (white noise instead of the

free Euclidean field used in [6] ). We find that we need to prove that the

€ . . . .
square roots /Ci ) converge in 14 and since we cannot use the Fourier
transform we prove a little lemma that provides a sufficient condition that the

(non linear) map A f(A) be continuous from I . to 1 -

In section V we complete the proof of theorem A,in the form of Corollary

5.2 by showing that the integral over the abelian gauge field, A , of the

lattice external gauge field partition functions of section IV converges as

€ N O . This then is merely a matter of justifying the interchange of the
¢ N O limit with the A integral so that we can apply the results of IV. To

do this we use dominated convergence, appealing to the diamagnetic bound of

paper I, Corollary 2-4 and Theorem 4.1, to show a uniform bound on the external

gauge field partition functions. We also have to show that the class of gauge
fields allowed in sections III, IV are a set of measure one. This is a slightly

fine point since the ultraviolet cutoff on the A field does not regularize the

sample functions much because we wish to have Osterwalder-Schrader positivity

in one direction. We appeal to a beautiful paper [8] by Garsia on the continuity

properties of sample functions of Gaussian measures to settle this point.

We also discuss Osterwalder— Schrader positivity in this section.
(Theorem 5.5). We explain what types of cutoff on the covariance of the (aussian
measure describing the gauge field yield a continuum limit with positivity in

one direction.

In our final section, VI, we provide some technical preparations for
our next paper in which we will remove the ultraviolet cutoff. We discuss coun-
terterms and define renormalized partition functions and measures for abelian
gauge theories. We give the Feynman rules and in Theorem 6.1 prove an identity,

the change of covariance formula, inspired by similar formulas in [9] . This



formula will be used in paper III to generate (by iteration) an expansion of

the Glimm-Jaffe type [10] which will prove that the partition function, when
correctly renormalized, is bounded above and below uniformly in the ultraviolet

cutoff. This is the most difficult step involved in removing the ultraviolet

cutoff. The formula is of the following type
<P>1 - <P> = [ <KP> dt

in which P is a polynomial in the fields, < >1 << > " are unnor-
o

malized (but renormalized!) expectations. The subscripts 1,0 refer to diffe-

rent ultraviolet cutoffs; t parametrises a family of cutoffs that interpolate

between O and 1; K 1is a partial differential operator in §/8¢. The impor-

tant point about K is that it depends only on renormalized quantities and so

does not diverge in the ultraviolet limit. For this reason this formula can be

made the basis of a method of removing the ultraviolet cutoff.

In an appendix we briefly sketch how to extend our results to the

case where Dirichlet boundary conditions are imposed on the Bose field.
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II Preliminaries : Notation, trace idéals

In this section we fix notation, give some definitions and quote some

theorems on trace ideals.

First we present a list of symbols followed by an explanation of their

meaning
A< R , a bounded open set
L< R®, a simple cubic lattice, unit spacing

L@ zenn , L

1]
11

el

B® = {<x,eeu> : x € ﬁh), u = 0,1}

E
B is the set of bonds considered as closed subsets of 1R2;. e > u "= 0,1 are

the unit vectorswhich generate L , i.e.

= + >
L. {noeo n,e, no,nl EZ}

Let B®(A) be the subset of bonds contained in A . We denote by 3¢ the

finite difference gradient

3¥E(x) = ¢ [[f(xtee ) - £(x)]
u H

(€)

|

associated with L% . is defined both on functions on L and on con-

]

tinuum functions. The continuum gradient is denoted by 3 .

We now wish to introduce covariant derivatives. Let G be a compact
Lie group unitarily represented on a finite dimensional Hilbert space V .
Let Au be a gauge field. For p = 0,1 , Au is a map from ]Rz into the Lie
algebra L(G) of G . The covariant derivative is defined on V- valued

functions on IR2 by
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D ¢ =03¢- ieA ¢ , (2.1)
u H

e 1s a constant, the electric charge. The finite difference covariant deriva-

tive is defined only on lattice functions with values in V ,

€
Dh,u¢(x)

[e_lhi(X)¢(X+eeu)-¢(x)] (2.2)

where h® , a lattice gauge field is a map from bonds <x,ee > into G .

The covariant Laplacians are defined by

*

AA = o DA,u DA,u
(2.3)
€ _ _ ¥ €
Ah = Dh,u Dh,u

where we use the Einstein summation convention on p = 0,1

Let

Lo=L (R,L(V))

[e+]

be the space of two component measurable functions with values in linear ope-

rators L(V) on V, given the norm

2 2 1/2
B|| = ess. sup (||B_(x) + |[B, (x) ) (2.4)
where the subscripts refer to the lattice directions and || ”L(V) is the

operator norm on V . We introduce this norm because it appears to be appropriate
for the discussion of convergence of gauge fields in heorem B. The derivatives
in the definition of the covariant Laplacian are applied in the distribution

sense. We take the gauge Field A to be in I

w

We now introduce some notation whosce purpose is to make the lattice
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objects resemble their continuum limits in order to facilitate the discussion

of convergence. Let B = BE be a two-component map from L(E) into [ (V)
Set
D¢ = 3°- je B®
B,u u u
. (2%15)
€ € €
A- = - D
B DB,u B,u
These are operators on V valued functions on L(E) 5
We will be particularly concerned with the following two choices for
B,
€ €
B =A , B = A
H H H
where
€ . 1
A = (dieg) (hE(x)— 1)
u u
(2.6)
iecA® (x) :
e H = hu(x)

€ €
The second equation defines A in terms of h , provided h 1is sufficiently

. . . €
close to the identity that the exponential map may be inverted, A belongs

] ) = )
to L(G) , the Lie algebra. AE does not. Note that if we choose B = A" s

€ o
D = (h D
h,u ( H) A,u
(2.7)
A - A
h

. . 2 .
The Q identification : let f be a function on R . We can obtain

L(E)

. . € . . .
a function on a lattice , Q f, defined by averaging, 1.e.

Q£ (x)

1l
m

Iea f(y)dy
X

where Ax is a unit square centred at the lattice point x . Conversely, given



a function f defined on a lattice, we can obtain a continuum function
£* . . . . .. .
Q f which is the piecewise constant (constant inside each lattice square)

*
function which coincides with f at lattice points. With the aid of Q, Q ,

we can obtain continuum operators from lattice operators, e.g.,

e Ex € QE
D
A Q A
. . i E .
The main reason why we like these operators 1s that 3 and all functions of
€ . E¥ € € .
9 commute with Q Q . (Recall that 3 can be considered to be an operator
on continuum functions). Another way of stating the same thing is that if A

. . € . . . .
is a function of 3 , we can consider it either as a lattice operator or a

continuum operator A , Then if f 1is a continuum function

€

AQ°f = Q A f

Thus Q gives us an embedding of lattice into continuum. We will simplify our

formulas by omitting these Q operators. Therefore if the context requires it
lattice functions and operators are to be identified with their continuum

counterparts derived via Q .

€
Euclidean Propagators, boundary conditions : let Ez (A) = Rz(ﬁ)
(<)

£ .
be the space of square summable V —valued functions on L (A) with norm

(first example of Q 1identification)

2 2. 2
IElT = Sliex |l d°x
L AV
2
where X, is the lattice characteristic function of A and || |% is the
norm on V . ﬂE is an operator on 22(33 ) . By a form method [11] we can

. 2
extend &A to a selfadjoint unbounded operator also denoted &A’ on Lz(im ) .

The inverses
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e _ , 2 ,&-1
. (m“=A,)

_ 2 .=l
z (m ﬁA) T ¢ b

€A

where m2 > 0 are bounded operators; their norm is less than or equal to m

Their kernels, the covariant Green's functions are henceforth called "covari-

ances" in view of their later rdle as covariances of Gaussian measures.

If the gauge field vanishes outside A which by definition means

that it is zero on all bonds not contained in A , in the lattice case, we say

that the covariance has free boundary conditions. We introduce an operator CF ,on

2y(h) by

C =
RN

. . ) I F . . . ..
The covariant Laplacian with free boundary conditions, A, , 1s detined by

2 F F -1
m - Ah = (Ch) (2.9)

A convention for the internal degrees of freedom : in order to clean

up our language we are going to suppress V, L(V) in some of our norms and

spaces, e.g. our use of 22 for V _valued functions is an instance of this.

The interaction : the operator on 22 given by

. * . EX 2 ex ¢
ie AE aE -ie 3 AE—e A A
u oM TR oo

will be referred to as the interaction with the gauge field. In the case where

£

E . .
h® is derived from A~ , (see 2.6), it may be written
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-2 €% € -2 Ex €
W == T (-1 =-¢ (h =1) T
h u u uou
= cieel TE%AE tiee WS T (2.11)
e p Bu TRY g
2

e” e¥ €2 €.2 € 3
FI A @Y7 T + 0Cee)

£ . . . g >
where Tu is the operator of tramnslation by € 1in the y direction. The term

0(583) is of order 593 in operator norm if A ¢ L .
(=]

The kernel of the Fourier transform of this operator is

-igp ieq. -
S !
W (p,q) = -iec (e e AL(p+q)

(2.12)

2 . . A
e -iep, ieq € 2 3
+ 7 (e Hie u)(Au) (p+q) + O(ee )

The Fourier transform is defined by

- 2 ip.x
fp) = 5% Z ) € f(x)e ¥
x€L \E

1]

x2
The variable p = (po,pl) lies in the square [--g ,-g ] , because the dual

space for the lattice is a torus.

Trace Norms DZ]

We will have frequent occasions to use the following spaces of operators.
Let H be a Hilbert space. A compact operator T : H * H belongs to the class

I ,1<p<w, iff

b Zpi%,

1
i

p/z) < @

il = (tr(T*T)
(2.13)

IT|| = operator norm = ||T||
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It can be shown that Ip is complete;and furthermore the Holder inequality

n
R

1=n 1

(2.14)

1
P

".::| =
It B

[T
1 P; i=1 Pi
is valid. In this inequality we can drop the condition that Ti be compact

if pi=m .

Proposition (a) For 1 < p < », finite rank operators are dense in Ip

(b) Ip is closed with respect to taking adjoints.

Theorem (Grumm [13]) . Let An be a sequence of operators in Ip s, 1 <p <o,
If An converges to A strongly and |hn|g converges to 1h”p » then An

converges to A in Ip .

Remark : Simon [14] shows that strong convergence can be replaced by weak

convergence in the hypothesis.
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III. Bounds, Analyticity and Convergence of Covariant Lattice Green's Functions.

In this section we establish some properties of our covariant Green's
functions (covariances) which will be needed for the proof of convergence of

the lattice approximation.

In Definition 3.2 we define a notion of convergence for a sequence of

() ()

gauge fields h " associated to lattices L with arbitrary orientations,
€12€gs e +> being a sequence of lattice spacings tending to zero. Given that

a sequence of lattice gauge fields converges to a continuum gauge field in this
sense, we show in Theorem 3.2 that the associated covariances, considered as
operators on L2 via the Q identification of the last section, converge in

a '"local" Hilbert Schmidt norm. We also show that the functions obtained by
restricting to the diagonal the kernels of the differences between the covariant
covariances and the free covariances converge in L;OC for 1 <p <w . This

is done in Theorem 3.3. Actually all operators we consider are finite matrices
(for e > 0) , or finite rank operators after using the Q identification to

put them on L, , but it is useful to state results and think of them in conti-

2

nuum language since we are taking a continuum limit.

To prove these results we use the diamagnetic bound [15] , stated
here as Theorem 3.1, to obtain uniform bounds. The other main technical device
is to first prove convergence when the gauge field is small and then use ana-
lyticity, as proven in Lemma 3.4, to extend the convergence to arbitrary gauge
fields. We give a proof of Lemma 3.4 for the sake of being self contained, but

the result is a special case of well known general theorems [16] .

The notion of convergence in Definition 3.2 is sufficient for the results
of this section but has to be strengthened to prove convergence of the lattice
partition function in an external gauge field. The reader is referred to the

next section for this.
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We begin by stating the results.
Theorem 3.1 [15] (the diamagnetic bound).
leep® Geomll < e el 0<a<w

(Ci)a(x,y) denotes the kernel of the operator CC raised to the power «

h

in the operator sense.

This is an easy generalisation of the Nelson-Simon inequality [15]
A simple proof has been reproduced in paper I.
Remark : The same inequality is valid for periodic, Dirichlet and Neumann
boundary conditions on both sides.

Before stating the next theorem, which is the main result of this

section, we need

Definition 3.2. A family of lattice gauge fields h®  is convergent to a gauge

field A as e ~ 0 iff A® , defined by
£ g -1 €
Au(x) = (iee) (hu(x) - 1)

converges to A in L_ , i.e., ||AE-A” >0 .

Theorem 3.3 : If a family (hE) of lattice gauge fields converges to A

as ¢ - 0 , then the kernel C;(E)(x,y) of CE(E)

converges in L (A x A ) ,
h P

l<p<e .
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Remark : The limit is CA(x,y) .

The proof of this theorem will use Lemma 3.4 given below.

(e)

Lemma 3.4 : Let B = Bi, E = Ei be bounded L(V) valued functions on L

Then C;+RE(X'Y) is a real analytic £Z(AXA) valued function in A , which

extends to a function analytic in the strip
2 2 _
2 = Im [Ell + G Im D [E|% = € < 1

. i .
The extension CB+AE 1s bounded by

e

=1
CB+AE”£2(AXA) = ”CB+ReAE”£2(nxA)(1'5)

Remarks. (1) C is real analytic but not analytic as defined in (2.5),

€
B+)\E
(2.8) because of the adjoints in (2.5).

(2) The same lemma holds for the continuum covariance.

(3) periodic, Dirichlet, Neumann boundary conditions could be accomo-

dated.

The final result of this section will be used to control Wick ordering
terms. Define the operator

£

§C 1

€ _ E _
. Ch C

The kernel will be denoted SCE(x,y)

Theorem 3.5. Let (hE) be a family of gauge fields converging as ¢ tends

to zero to a continuum gauge field A , then for 1 <p <o
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1
[ |tr §C® (x,x) - tr &C° ,(x,x)|p + 0
A h® h°

g,e' + 0

where the tr denotes a sum (trace) over internal indices.

Remark : The theorem asserts that 6C° is a Cauchy sequence. In fact the limit

is the continuum expression
8C, (x,x) = (C,=C ) (x,%)

It can be shown that 6C has a kernel which is continuous in x and y so

that the restriction to the diagonal is well defined.

Proof of Lemma 3.4.

We will compress the notation by suppressing e,u . Let F,G be

bounded L(V) wvalued function on Lce) . Then

DF+G = DF-1eG
Therefore
_ e o N g S 2T
AF+G = AF ie(G DF DFG) e GG
=8 * Wp g

Let X) be the characteristic function of A . We show that the Neumann series

for the resolvent

cl/2 2y 1/2y.1/2

Xy Ry Txy G B e (O G Xy (3.1)

is convergent in Hilbert=Schmidt norm (= ]_, norm = norm ol kernel consideral asa

function
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in 22(:m2x:m2)) provided |[[6]] is sufficiently small. By Holder's inequality

for Ip spaces

1/2

/2
F X;*.”z

1/2.n

|| 1/2 ) C

(C C

" G F

1/2

1/2 1/2
<lix, e/ A% ley’? wy o ci/2I

F »G F

1/2 | +

1/2
<Ixy cpxjll, (ellcF’ G Dy Cp (3.2)

1/2 _* 1f2 2 1/2 1/2
ellct/? ¥ 6 cl/2|| + 2|l ¢t/ 6% cL/?|y"

e 92 28
< llegl, @ gllell + < P

The last bound is obtained by applying the easy bounds

Ie/2l <

1/2 1/2 1/2 1/2 1/2
llck/? a*p, cL/2|| < |lck 2|l lie* )l 1ck/? ok b ct/?]

1/2 .
<11eX 2 1jel] (3.3)

1/2 1/2 1/2
163/ ct2|l < It/ 3|l lel]

The bound (3.2) shows that (3.1) is convergent if

2
@ Zllefl + len—zllt“allz)E £' <1 (3.4)

By taking norms under the sum in (3.1)

1
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To prove the lemma, take F = B + (ReA)E , G = Im AE . This completes the proof

of Lemma 3.4 .

Remark. In the proof of Theorem 3.5 we will use the fact that the argument

: . s *® .
above 1is trivially adapted to show that XACE 9° 1s 14 real analytic
B+AE

and bounded in a strip.

Proof of Theorem 3.3.

We begin by assembling some simple lemmas which will be used in the

proof.

Lemma 3.6. Let An be a sequence of operators in Ip s, 1 < p< e, which
converge in Ip to A . Let Bn be a sequence of operators which are uniformly
* *

bounded in operator norm and Bn + B, Bn + B" as n -+ « in the strong

operator topology. Then Aan + AB in Ip as n >

Remark. A related result was an important ingredient in the lattice convergence

proof of [6]

Proof.

||aB - Aan[[p

| A

I a-a Bl + [1a, -8

| A

1a-a 1L 1Bl + ks8I
e a1 Bl + s iz

The first and final terms tend to zero. Let Cn = Bn-B . We are reduced to

showing ACn tends to zero in Ip . Approximate A by a finite rank operator

i~

A so that
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1] < o

for a given § > O . It is enough to show that KCn tends to zero in I

Equivalently, one can show that C: A* tends to zero, i.e.,

tr(y Cn C: ‘K*)pfz > 0

e

Since this is a finite rank operator, it is sufficient that Cn’ Cn

zero strongly because the uniform operator norm bound then implies

tends to zero strongly.

Lemma 3.7. Let C® = cf" s X,¥ € L&)
€ =L 2, ~(e) ik (x-y)
C™(x,y) = 5= I[1 1]2 d“k ¢/ (k) e
e’ ¢
tq ) = é%—(Ze—Z Z  (l-cos gk ) + mz)-1 e T%
u=0,1 H

Proof. Easy consequence of definitions and Fourier series. See [6]

2
Lemma 3.8. Let U cR™ be bounded and measurable.
< const.

%y € xull L <
P

uniformly in ¢,h". 1

| A
el
| A

g

Proof. Theorem 3.1 reduces these statements to the special case h*

tend to

c cF
n n

=1

for which they are well known. A simple proof can be based on Lemma 3.7 and

the Hausdorff-Yourg inequality.

Lemma 3.9. Let U C]R2 be bounded and mcasurable, then



=Sou=

o )
(1) x5 -+ x.c%in I a > 1/4
U U 4 7

e>+0
) 35cH? 5 act/?

e*0

in strong operator topology
(3) (Ce)llz LN C1/2 a*
e+0

Proof. (1) To begin with it is sufficient to take U to be a rectangle in

TRZ . To see this let DE(K,Y) be the kernel of

a 2

(e - ¢

then

b (€% == [ Py
8] U U

so that the norm is increasing in U . Next, by Grumm's theorem, (section II),

it is enough to prove that
€40 o
@ Iy, > Iyl
(b) (Ce)a > ¢ in strong operator topology.

For (a), by Lemma 3.7

4 2 2 e 2,7~ ~ 2a
Ixg €%, = = fak fa%k' [@°x etk D] “[C ()C (k") |
. . . ™ m 2
where the range of integration is [- E,‘E] for k and k' . The dominated

convergence theorem completes part (a).

Part (b), (2) and (3) are all similar. We discuss (2). An ecasy argument
with Q( shows that it is cnough to show that the Fourier transform

= ivk ~~ 2 v Y —1/72
Ve MDY s L )29
0 T Vv
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in strong operator topology as an operator on Lz(img) . This is easy.
The proof of Theorem 3.3 is a series of reductions.

(1) We claim that it is enough to show convergence in Lz(hXﬂ)

€
h

Holder's inequality and L

We know that C, € Lp(AxA) uniformly in € by Lemma 3.8. Combining this with

, convergence proves Lp convergence by an easy

argument.

(2) It is enough to prove Lz-convergence in the special case that

lall < <1

Proof. If €' 1is sufficiently small, the definition of convergence of h*

implies h® is in a small neighboorhood of 10 , uniformly in the bonds in

B® and ¢ < g¢' . Therefore we may define A® , a Lie algebra valued function

on bonds (with two components) by

hE = eieAE
and then, given )X €R , set
ie A"
e = '€

It is then easy to verify that h® () converges in the sense of definition 3.2

to M . Furthermore, by Lemma 3.1 the covariance is real analytic

£
Ch))

in A . It extends to a function which is analytic in a strip of width indepen-

dent of e< ¢' . Lemma 3.1 combined with Theorem 3.1 shows the extensions
CE(A) are bounded uniformly in € < e' , X €R . Therefore a form of Vitali's

theorem (see the remark below) tells us that convergence for all X 1is guaran-—
teed by convergence for A 1in a neighboorhood of zero. This completes the

proof of part (2) because we may replace A by M with |[A] << 1.
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(3) We will now assume ||A|[, €' are sufficiently small so that the

resolvent expansion

e 1/2,2 ¢ 1/2

e 1/2 WE ' e

L (C c Xy

. . 2 2 . . .
is convergent in LZ(ZR xR") uniformly in € < €' . To see this we refer to

the proof of Lemma 3.4. Recall

€*

2 *
-ie(A*3% - 3% A%) - & A% Af

w(E)

By virtue of the uniformity, we can prove Xy CEEXA is convergent as & tends
h
to zero by proving

n
X\ & 1/2(05)1/2 WE ct 1!2) ta)lfth =0

. : 2 2 :
is convergent in LZ(IR x R7) as € tends to zero. The operator in brackets

raised to the power of n 1is strongly convergent by virtue of lemma 3.5 parts

*
(2) and (3) and the fact that (CE)BE and its adjoint are bounded uniformly

€l/2

in operator norm. The factors C are convergent in I4 by lemma 3.9

XA
part (1). The proof is completed by Lemma 3.8 with p = 4 , together with :

A A ,B =+B in I, = AB - AB in I, , which is a simple consequence of
n n 4 n n 2

Holder's inequality.

A Remark on Vitali's Theorem. Vitali's theorem [17] does not in its usual

formulation hold for operator valued normal families. However if a normal family
F  of operator valued functions, analytic in a region Q , is known to contain
a subsequence convergent in some open set U in § , then that subsequence
converges throughout § . A simple proof may be constructed by exhausting &

by a set of overlapping open discs. The power scries expansions associated with



- 26 -

each disc are convergent uniformly in F , so it is enough to prove termwise
convergence, i.e. convergence of all derivatives at the centre points of the
open discs. This is already given for any disc whose centre is in U . Any

point in § may be reached by passing along a suitable chain of discs.

Remark 3.10. In the proof of Theorem 3.5 we will use the fact that the argu-

E%*

ment given above can easily be adapted to show that xﬁCE 9 is Cauchy in

hE

Proof of Theorem 3.5. We begin by proving a lemma based on Corollary 4.8 of

[14] .
2

Define the following norm on functions on R™ ,

el = 120 ey®|? ax

Lemma 3.11.

For p,8,a satisfying

l<p<2,6>0, a> 1/2+8 , p > SES T

E,0
e el < ¢, p, 0l

uniformly in €,h .

Proof. Define =z € [0,1] by

P = [z+1/2(1"Z)]“1

Define vy,B > 1/2 by

§ = zy , a = Btzy

1

4
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and let Kz be the operator with kernel

B+zy

K, 06y = (€)Y £(y) aayD) 7Y

The lemma is equivalent to proving
Il < g, Il

By interpolation, [18] , it is sufficient to prove this for z =0, z =1

When z =0, p=23;z=1,p=1. By the diamagnetic bound, Theorem 3.1,
2 2, e23
Ik ll; < J €607 €] “(x-y) dxdy
2

We have omitted internal indices which are to be summed over. By the Fourier
transform Lemma 3.7, the right hand side is bounded by a constant times

Hf”g which completes the z = 0 case. For the z =1 case we write
Ky o= a8, |k [l < (lall; i8]l
1 1 Il 12 12

and choose A,B to have kernels

AGGLY) = CEGxy) (1yD) T

B(x,y) (1+:~<2)Y Cz(x,y) f(y)(1+y2)-Y

We have omitted and will omit €'s to simplify the formulas.

The techniques used in the z = 0 case can be applied to show that
lh”l is bounded by a constant depending on Y,B , because (1+y2)-Y belongs
2

to L, . The 12 norm of B 1is equal to
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Ifleeo e Y2 el ey |2 (ey®) Paxay

We show this is less than a constant times ||f”2 by using

+y2) 2 < a3+ Qr@EnH

together with
ICI(X_},)l < Ce"m”x—)’”

Y

which follows from the analyticity of the Fourier transform of Cl

We now return to the proof of Theorem 3.5. We wish to show that

GCEE is Cauchy in Lp when restricted to the diagonal. We first show that

h
§CE (x,x) 1s in LP uniformly in € . Thus
hE

1
(f lergsc® (x,%) Pax)P < sup [ try(£(x)6 ¢ (x,%))dx (3.5)
h £ h

where f 1is a function whose values are scalar multiples of the identity in
L(V) . Internal indices have been omitted, they are summed to form the trace
(trv) on V . The supremum is taken over f such that

!
' o
(IA|trvf|p )P =1, El’-+ %, =1.

The right hand side of the inequality (3.5) can be written as a trace, i.e.

sup tr(GCE £) (3.6)
£

We are omitting e's to simplify the notation. Define h(A) as in the proof

of Theorem 3.3,
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(3.6) can be written

1
d

where ©C'A = (6)(-;{1()\) . Expand using

d
T U L T

. * * 2 %
W= iel[d AA AAB] e"A A,

s = (iee)™ ! (h(M) - 1)

We areasusual suppressing u's . Therefore

d B *,
I tr(éCAf) = je tr(CAS AACAf)

*l

L oec,f) - .= tr(CA(A*A)'qF) (3.8)

- ie tr(CAA

The prime indicates differentiation with respect to X . The integral over A
of this is less than the supremum over X € [0,1] . We now will show how to
bound the first term in (3.8) by a constant times the Lp, norm, 1!fik, , of
f which is one. Similar steps yield the same bound for the second term and
the third term is easier so we will not discuss these further. Thus this bound
will show that the Lp norm of GCSE is bounded uniformly in € . From this

h

point we will drop the try, - A sum over internal indices is to be understood.

We bound the first term in (3.8) using lolder's inequality,

|cr(cs*A'0f)| 5J|c“a*A'c“H2||chcB[E (3.9)
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where o+B = 1 . We are now suppressing A also. The cyclicity of the trace

was used to move a factor CB . The second 12 norm equals

28

U, JE@ |Ch(A)(x,y)|2 £ (y) dxdy) 1/ 2

(3.10)
By Holder's inequality and T heorem 3.1, the diamagnetic bound, this is less
than a constant times

1
Uy Sy letfaam |l 22y NIl (3.11)

The first factor is bounded uniformly in € provided

2p(1-28) < 1 (3.12)

. . . . . 2
because homogeneity considerations applied to the Fourier transform of C B

show that

|*P G| < elxmy|T2E20)

(3.13)
uniformly in € . Our choice of B 1is constrained by (3.12). our proof that
6C is uniformly in Lp will be complete if we can show that o = 1-B  can
be picked consistent with (3.12) so that the first I norm in (3.9) 1is

2

bounded uniformly in € . We have

llc*a*arct|l, < [Ic*a7]] [|a*c®| (3.14)

2

The second norm is bounded uniformly in e if o > 1/2 by an argument like
that used to bound (3.10). One has to use the fact that Ai is bounded in
L~ norm uniformly in A,e . We claim that if o > 1/2 , the first norm is
also bounded uniformly in € . Thus by the triangle inequality and the defini-

tion of Dh(l) .
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*
Iea* | < llckog ,, Il +e a3 (3.15)
The second norm is bounded uniformly in € because llAA” is bounded and
]ka|[ is less than (m2)~a . We bound the first norm by
a=1/2 1/2 a=1/2y ,1/2 * 1/2 1/2
||CA ” ||C;\ h(l) ” (T_n'i') ” C)\ Dh(l)Dh(J\) A ”
< (12)0‘_1/2 (3.16)

as was used in the proof of Lemma 3.4. We have now proved that the Lp norm

of 6C 1is bounded uniformly in € .

We now combine this result with Lemma 3.11 to complete the proof of
Theorem 3.5. By Holder's inequality, it is enough to prove 6C is Ll—Cauchy.
If A(x,y) 1is the kernel of an operator A € Il

Jﬁ]A(x,dex i_s;p tr(fxﬁAxﬁ)
<l xya xﬂllll

where the supremum is over f with |If|L =1 and Xy is the characteristic
function of A ; To make then the left hand side unambiguous one should of
course think of A being factorized into two Hilbert-Schmidt operators. By

this inequality it follows that we may prove our theorem by showing that &C

is convergent in Il.

Since

§C=C,_ W C

Il

. * i A*
ie ChB ACl ie Ch E)C,I:l

2 *
+ e ChA A Cﬂ
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(where subscripts u,e have been suppressed) it is enough to show that
(a) ¢, 8% Cauchy in I
XA “h e/ 4

(b) A Ch Xp Cauchy in 14/3

e.g. the first term in the expansion for XAGC Xp is 1 Cauchy because we

1
may take h =1 in (b) and combine (a) and (b) by Holder's inequality. A similar
argument involving the adjoints of the operators in (a) and (b) (which converge
because taking the adjoint is a continuous map from Ip to I ) suffices

for the second term. The third term is Cauchy in Il because (b) implies

* .
X) ChA and ACl X, are each Cauchy in 12 .

As has already been remarked, the proof of (a) can be accomplished

along the same lines as the proof of Theorem 3.2. To prove (b) observe that

by Lemma 3.11 it follows that CE X is in Ip for 2 >p > 1 uniformly in
€ . By Theorem 3.3 it is convergent in 12 . Holder's inequality implies (b).

The proof of Theorem 3.5 is complete.
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IV. Convergence of the lattice Approximation in an External Yang Mills Field.

In this section we prove that the partition function and its associated
finite volume expectation, for the case in which the Yang Mills field is external,
converge as the lattice spacing tends to zero. We allow the orientation of the
lattice to vary as the limit is taken, in order to be able to conclude Euclidean
covariance of the limit. For simplicity we consider a lattice theory with just

one boson field. Extra boson fields would not be a serious complication.

We begin by some changes in notation and normalisation of the partition
function described in section 2.3 in paper I. These are necessary for a convenient
description of the continuum limit. We factor the partition function into a

. 5 €, € .. . €, €
renormalised determinant zﬁ(h ) and a partition function Zﬁ(h ) of the type
considered by Schrader [7] , but on a lattice; it differs also in that the

. . . : 2 ~1
boson self interaction V:. is normal ordered with respect to (m —aE) . We

A
show convergence for these two factors separately in Theorems 4.2 and 4.1 respec—
tively. The convergence proof for Zi(he) is based in spirit if not in body

on [6] . One difference which appears to help in this case is that we embed our

lattice Gaussian processes in white noise. The diamagnetic bound, Corollary 2.4

of paper I, is an important ingredient.

ErNeEN i

The convergence proof for ZA(h ) involves a study of some divergent

as € ¢ 0) contributions to the vacuum polarisation, n® , which cancel
Hv

up to a finite transverse part by a Ward identity, or gauge invariance. This

work is rather grubby and is postponed to Appendix A .

In paper I we defined partition functions for matter in external Yang
Mills fields. See for example section 2.3 in paper I. We now specialise to
Bose matter in 1R2 with free boundary conditions. We will also be making some
normalisation changes to obtain partition functions which will converge as

e >0 .
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(e)

Let ¢ be a function from L to V represented in components

by (¢ ;) » xE€ (€ , i=1,...,dim V . Define

-]

D = I d Re¢X i d Imd;x i
. ] ]

X,1
Me
-A (d”h)
OISR T
(4.1)

Me _ 2 ¢F €
AA (¢,h) = - 1/2(¢,(m -Ah )¢)A + Vﬁ(¢)

coy <z L. —
Vi(9) =Ze” I Pi(¢x) (! 8;) (x)

X i=1

The tilde on the Z 1is there because we wish to reserve Z for another parti-

. . M "
tion function. Sums and products over X run over L(E)(A) . Aﬂ is the
matter action, hence the M superscript. VA is the Bose self interaction. :Pi:E

is a monomial normal ordered with respect to C 8; € CW(JRZ) . We assume

B m

0

that V  is bounded below as a polynomial in ¢ when the normal ordering is

dropped. At this stage V does not have to be gauge invariant.

. ~E . .
Since ZA(h) diverges as € decreases to zero, we renormalise by

dividing by ci(g) where

- 1/24, (-, ) ¢)

cy(h) = [ Do e (4.2)
Thus let
zi(h) = 23 (h) /25 ()
= Z} (h) g5 (h)
g (h) gy (1) %.3)
€

(f & e VA) € (h)
\-’h Z‘!ﬁl
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where dv§(¢) is the normalised Gaussian measure with mean zero and covariance
CE . (The F on the covariance can be dropped because V depends on fields
supported inside A ). ;i(h) is different from zero by explicit Gaussian inte-

gration.

zi(h) = ci(h)/ci(ﬂ) (4.4)

We can now state our first theorem for this section.

Theorem 4.1.

If (h®) is a family of lattice gauge fields converging in the sense

of pefinition 3.1 to a continuum field A and A r:]R2 is bounded, then

=V
! v e -
HE

is convergent to a non zero limit dependent only on A for all A >0 .

Remark : In particular the limit does not depend on the orientations of the

lattices L(E)
The convergence of zi(h) requires a stronger topology. We will now

define a norm which seems to be as convenient as any. Given a > O , set

(c.£.(2.4)).

- _ * 1/2
[l + ¢ f axay|| (AEZAGD RGIZAGIY 57 @5
AxA |x=y]

Ial,

This norm is chosen so that Hiv , the second order vacuum polarisation graphs,

converges as ¢ tends to zero. See Theorem 4.3 and the appendix.
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Definition 4.2.

A family (he) of lattice gauge fields is convergent to A 1in the

(w,a) sense 1if

€ = r ot O
A(x) = (lee) = (h"(x) - 1)
converges to A]J in the sense ]|AE -A|L g >0 as e~ 0.

For our next theorems we assume A 1is a bounded rectangle. We also

require that our gauge fields h be supported inside A

Theorem 4.3.

If a family (hg) of gauge fields is convergent to a continuum gauge
field A 1in the («,a) sense, then zi(he) is convergent to a non zero
limit.

Define the unnormalised measure

€
VA

dwi - zi(h) du; e (4.6)

In paper I we showed that Zi(h) is non zero. Therefore we can divide through

"

and thus define the corresponding normalised measure dm; .

We now wish to examine the limit as € tends to zero of these measures.
S . . . 2
The limiting continuum measures will be defined on S'(IR") , the Schwartz

distribution space.

Corollary 4.4.

£ . £
Let (h™) be convergent as in theorem 4.2. duw - converges as ¢
' h-
tends to zero to a limit de . The convergence is in the sense of convergence

of characteristic functions. All moments converge also, i.e.,
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T € S
s J10(QTE) | ,fde 10 ()

q
$Q°E)> [ duy T 9(E;)
1 i=1

b
(=W
5
m
N =0

h® i
where f,f. € c(h)
i o

We now begin the proof of Theorem 4.1. We will need the following

lemma.

Lemma 4.5.

+ . . oo .
Let £ : R +1R be a continuous function on the positive real line.
+ « . .
Let Ip denote the cone of positive self adjoint operators in IP . We assume

that £ satisfies
f(A F(|| A VAEI
|| ( )|% ol (” ” q) p

. ey . - + .
where F(t) 1is a positive continuous function on IR  decreasing to zero as

. . +
t NO . Then the map A + £(A) is continuous from Iq to I; .

Proof of Lemma 4.5. We will use the following standard facts : if An is a

sequence of positive compact operators converging in operator norm to an operator
A so that the spectra are discrete and of finite multiplicity, then the eigen-
(n)

values of A  converge, the spectral projections P
n [a,b]

a,b £ o(A) converge in operator norm. See for example [5] , vol. I, Theorem VIII. 23.

»a<b<e=,

From this we conclude that f(PEZ)m)An) converges in Ip for all p

provided a > O is not an eigenvalue of A . Choose a so small that for a

given € > 0 ,

HE@e_, I <rdieg_, g8l < /2 (4.7)
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By the triangle inequality

(n)

-a,al’n

) - £l <Ilfceg Al + e,

(n) _
+|1f(P a,=)8n ) £, A)|%

The third term converges to zero by the remarks above. The second term is less

than €/2 by (4.7). To bound the first term note that

(n)

[ e A in 1

A - P[ a,a] .

because An > A in Iq and the projections converge in operator norm.

Thus
liﬁ+2up||f(PEni af g 2 li$+iup F(lﬁffi,a]AnH »
= F(|E[-a,a] All q) < e/2
Proof of Theorem 4.1 (assuming Theorem 4.3). It suffices to consider ) =

To begin with, we embed all the lattice path spaces in the space for white

noise. Let dw(y) be the white noise measure, i.e. the Caussian process of

mean zero and covariance equal to the identity operator. Define

* 1

ES = (x.Q5%c% Q%x)) /2
A e A
h
6% =ESy
E® is an operator on L2 . Then

€ €,.€

IdUE e V' s Jaw(y) e VI(ETY)
hE
€

Idw e v )

~—
1

1LF
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Therefore as in [6] , (II.24), we can show convergence by

1

€ €
|Idw e-v - fdw e-v |§_Idw|V€ = VE'|-

_oy€ 1/2

'
' - £ -
< ( Idw[Ve—VE |2)”2 {(Jdw e ) + (dw e 2 f/Z ¥

The second inequality is simply Cauchy_Schwarz together with %x+yl§_/x + Vy .

The integrals in curly brackets may be bounded uniformly in e€,e'

by the diamagnetic bound, Theorem 4.1 of paper I,

€ €
-2V _ ., e-1 ¢ e -2V
Idw e = (zh) z, Idvhee

£

| A

el e -2V
(zh) Jdvl e

By Theorem 4.3 the first term converges as € tends to zero to a finite number.

The second factor is bounded uniformly in € by Nelson's boundedness below

proof for P(¢2) ; see [19]
To complete the proof it now remains to show that
faw|v-v®' |2 >0 as e,e' +0 (4.8)
We may without losing any generality assume that for some positive integer N

€ _ EW, .
vV = Jhi¢ )(x).adx

because in general V 1is a sum of such monomials. By virtue of the change of

normal ordering formula [29] , page 11, (internal indices suppressed)
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[n/2] . . N-2j
- - £ d.(éC e(x,x))J ) (x):
¢ j=0 4 n C

where dl,... are universal constants and [N/2] 1is the largest integer less

than or equal to N/2 , we may without loss take

vE = fﬂ(aceecx,x))j:(qf‘)N'Zj(x): . dx

h C e
h

With V° of this form we prove (4.8) by showing that
L}
faw VE (V" -v" ) > 0 e,e' >0

By the standard methods LZOJ for evaluating Gaussian integrals, this is equi-

valent to

§ J 1863 (e (863 (3,30 € ()

] (4.9)
- 8¢ (y,y) (BE") (x,y)) + O

€ . . .
as €,e' > 0 . We have suppressed h ,e , €' 1in favour of primes. EE' 1is the

operator product i.e.,
i

[ E(x,2) E'(z,y)dz

We know by Theorem 3.5 that &C converges in Lp for all 1 < p < = . Theorem

3.3 and Lemma 4.5 (with f£(x) = v¥x) imply that E2 converges in I4 , there-

fore E° E° converges in 12 which is the same as convergence in LZ(AXA)

Recall that CEE is in Lp(ﬂXA) uniformly in € for 1 < p < « by the dia-
h
magnetic inequality, Theorem 3.1. A judicious assortment of triangle inequalities

and Holder inequalities yields (4.9). This proves that
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is a Cauchy sequence.

The proof of Theorem 4.1 is complete once we show the limit is not
zero. Therefore, by Jensen's inequality

_VE

IduE e A iexp(— IdvE Vi)
h® h®
The integral in the exponent is not infinite in the limit ¢ tends to zero.
If one does the integral by explicit Gaussian integration, the result is a
sum of L_ norms of &C which by Theorem 3.5 converge as € tends to zero.

Proof of Corollary 4.4. Since zi and Zi converge (we are assuming Theorems

4.1 and 4.3) as € tends to zero, it suffices to prove that

Id € [ "VE_ =
v E:F(Q $) e = Idw e
h

E
V' F@Q%%%)

converges. F 1s a polynomial or exponential. This follows from L2 convergence

of e \/ (see the proof of Theorem 4.1) and of F (see (4.8)) . These are

standard arguments; see [6] .

" . € .
Before beginning the proof of Theorem 4.3, we rewrite z, 1in a more

convenient form, namely

zi(he) - det_llz(l-CEWE) (4.10)
where as usual
* * *
WE = - ie A% 3%+ie 3% A€ - e2a€ S (4.11)
h€ hE hE hE

To simplify notation subscripts u have been omitted. We will also suppress €
in the equations below. To obtain (4.10), first explicitly integrate the

Gaussian integrals in z,
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-1/2 2 ,F 1/2, 2_,F

ZA(h) = det ﬁh) det (m™=A")

1/2(1+CF(&E-ﬁF))

= det
This coincides with (4.10) once we argue that the F denoting free boundary
conditions can be dropped. Since CF and C coincide when their kernels are

restricted to A x A we need to show that
F | F
xﬁ(ﬂh A )XA = ﬂh A
This in turn follows from the following facts
(1) 8, -8 = x, (8, =B)x,

This is easily verified using the definitions. Recall that h 1is supported

inside A .

(2) The kernels of AEF and QE coincide when restricted to AxA except
at the lattice points on the boundary. At these points the difference is inde-
pendent of h . This second fact may easily be proved by going through the

proof of Theorem IV.7 in [6] with A replaced by ﬁh

We now introduce the following standard notation [21] . Given K € Il ,

define renormalised determinants, n = 2,3,...

n-1 (_1)j .
detn(1+K) = det(1+K) exp[ I . tr K]
j=1
Then
det M2 (1-cuE)y = detZl/z(l—Cewe)
3 1 1 £ €. ]
. expl ¢ 5 7 (v y31 (4.12)
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Proof of Theorem 4.3 (using Appendix A). We see by (4.12) that it is enough to

show that
(1) det4(1+K€) is convergent as € N O .
(2) tr(KE)3 is convergent as € NO .
3) - %-tr(KE) + %-tr(l(e)2 is convergent as €M O .
(4) |zi(h8)l <1
where
€ €€

K = -CW (4.13)

First note that (4) is the diamagnetic bound of R. Schrader, R. Seiler. A proof

is also given in paper I, section 3.3.

Proof of (1) : We suppress e's . Set

and note that since W 1is finite rank,

det4 (1+K) = deta (1+H)

We now appeal to the well known fact[Rla,e,f] that del:n is Lipschitz continuous
on In . Then (1) follows if we show that H 1is Cauchy in I4 . To prove this,

expand W wusing (4.11) and factor each term in the sum into products of

1/2 1/2

C (4.14)

9 Ah . XAC

and their adjoints. The factor X, can be skipped by using the condition on the
support of h . The first operator converges strongly, the second in operator norm

norm, the third in I4 by Lemmas 3.7, 3.11. Fach term in the sum contains at least
one
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of the third kind, thus using Lemma 3.6 one obtains (1).

Proof of (2). This is essentially the same as (1). Expand K3 . Write each

term as a product of operators as in (4.14) and their adjoints. Each term contains

at least two factors converging in 14 . This is sufficient to prove (2).

The proof of (3) is more subtle and is the only place where we need
the stronger notion of («,a) convergence. The problem is that the individual
traces in (3) diverge as ¢ tends to zero. There is a cancellation between them

due to a Ward identity (gauge invariance). For the proof of (3), see Appendix A.m

Remark : We conclude this section by sketching some constructive, uniform upper
and lower bounds for z°(h) , valid for all A®  with |Im A®| < const.,

uniformly in ¢

Suppose that A% 5 A », as e > 0 , in the (»,a) sense; see (4.5) and

section V. We require that

A = A1+ 1A2

1AL o <=+ Al , <& (4.15)
where A ,A, are real and ¢ will be chosen below. The norm | || . 1

»
defined in (4.5).
Choose a positive integer N so that
N LA L <« (4.16)
1o o

Recall the definition of A given in cquation (2.6). We decompose A into

its real and imaginary parts
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A® = AS 4+ AS (4.17)

For each € we define a sequence of gauge fields by

. m €
¢ 1 ﬁ eEAl
h =e (4.18)

Our bounds are based on the trivial identity

N z(hm) 2 (h)
2 =11 2% ) 2y (4.19)

We have suppressed €'s . The idea is to obtain a uniform (in € , € small)

upper and lower bound on each factor using direct methods, in particular the

loop expansion.

Let Wm be defined by

Am = ﬁm—l + wm (4-20)
where am = Ah . Set h = hN+l and Cm = Ch . Then
m m
z(h ) _
0 e V2 4 /2y /2y
z(h ) m-1 m m1
m—-1
_ -1/2 1/2 1/2
=det, '“(L+cC W CTD g (4.21)

€ only differ

(This defines gm) . Since A® converges to A and A% , A
by terms of order € , it is easy to show that A® converges to A 1in the
(»,a) norm. We in fact show this in the next section. Next, by choosing ¢

small we show that the loop expansion for det4 in (4.21) converges absolutely

and uniformly in m and e , for e < e for some e >0 . This is done
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by using the diamagnetic bound, Theorem 3.1, and 12 estimates of the type
established in the proof of Lemma 3.4, (see (3.1)-(3.4)) and is not difficult.

From this we obtain

-1/

1/2 1/2
4 W C

2
a+ Cm—l m m-1

e < |det ) o< c, (4.22)

for some constants ¢ independent of ¢ and m .

1€

2

The factor g, is the exponential of all terms of order 1,2 and 3 in

1/ 1/2 W 81/2) . These more

2
1+ Curl m m—1

wm arising in the loop expansion of det

singular terms are estimated by expanding Cm_ in a partial Neumann series.

1
The leading terms give the contribution Huv analysed in Appendix A . The

remainders are estimated by methods resembling those in the proof of Theorem

3.5. The details are tedious but straightforward and are omitted.

The conclusion is

c! < |gm| < cé (4.23)

1
1

where ¢ , c} are constants depending only on & and Al o+ We collect
»

(4.19), (4.22) and (4.23) to obtain

+1

(e eD™h < 2f ] < (epept (4.24)

Note that if A 1is real valued along with A® for all € , them 2z 1is real
and positive because by (4.4) it is the ratio of two positive integrals, there-
fore (4.24) is strengthened to

‘!ci)N <z°(h) <1 (4.25)

where the right hand bound is the diamagnetic bound, Theorems 2.3, 4.1 and

scetion 3, paper 1. N is determined b A ~ N¢
> Pl y &
W



V. Convergence of the Partition Function for Yang Mills and Matter Fields

(Yang Mills fields with a cutoff).

5.1) In this section we specialise to abelian Yang-Mills fields. This is implicit
in our use of a Gaussian measure for the pure Yang Mills field, which is incom-

patible with gauge invariance if the gauge group is not abelian.

(e)

Given a real measurable abelian gauge field A and a lattice L :
let Au be the components of A relative to the unit vectors generating L(e)
Given a bond b in the uth direction let

ie ij (x)dx
e H if b €A (5.1)

h® (b)

11
o

if bEA

This defines a lattice gauge field h® on L(E)(A) . Throughout this section,
all lattice gauge fields will be derived from a continuum gauge field in this
way. We will therefore regard the partition function Zi(he) of the last section

as a function Zi(A) of A . The ¢ field is complex.

The full Yang Mills and matter partition function, denoted Zi has

the form

€ €
= D2
z, jduD(A) Z, (A) (5.2)
where duD(A) is a Gaussian measure, mean zero, covariance D = Duv(x’y) .

In this section, we will assume that the covariance D 1is such that
with probability one, the sample functions Au(x) are essentially uniformly
Holder continuous with modulus o < %-, (E.U.H.C) , which means that there

exists a constant Cp oo finite for almost all A , such that
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u=0,1 (5.3)

where EA is a set of Lebesgue measure zero, dependent on A . A sufficient
condition on the covariance D for (5.3) to hold for almost all sample functions
Ap is given in section 5.2). The condition (5.3) excludes the covariances we

are ultimately interested in and this is why we refer to such covariances as
"cutoff". The cutoff has to be removed by taking a limit outside the A integral.

This limit is more difficult because it involves renormalisation. It will be

discussed in paper III.

Theorem 5.1.

(e)

If A 1is a bounded rectangle and L is a family of lattices,

A 3 . - - 5
g >0, then 1lim 2 exists, is non zero and is unique.

e>+0 e
Define
z, = lim zi
e>+0

<F> = 7 ! jduD(A) zi(A)
-
Vﬂ

favE e "E F

A

where F € Lp(dquduA) for 1 <p <=

Corollary 5.2.

3 .
The measures < >h converge as € » 0 1in the sense of convergence of

generating functions. All moments converge.

Prool : Esscentially identical to the proof of Corollary 4.4.
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Define

< >h = 1lim < >i (5.5)
e+0

Proof of Theorem 5.1 : we begin by showing that if Ap satisfies (5.3), then

h® as defined by (5.1) converges as € > 0 1in the («,a') sense for a' < a.

By (5.3) Ai(x) is in L_ . By expanding the exponential in Ai(x) .

€ _ < | . v
||Au AUXAlL— ess. Eug|e Ib Au(x )dxu AU(E)| + 0(e)
where the essential supremum is taken over all & € A within distance €/2
of a given bond b , and then over all bonds b in A . The first term tends

to zero by (5.3). Next define

€

€
Bu(x) = AU(X) - A“(x) xﬂ(x) (5.6)

The proof of (x,a') convergence is complete once we show that the seminorm

IBﬁ(x)_Bi(Y) |2 1/2
|x-y | 24

— E
(f ydx J,dy = {80 > 0 (5.7)

The following easy inequality, valid for 0 <y <1,

B < 211 851 85 a7 (5.8)

2+a' _
i f
2+q'

follows from Holder's inequality. Choose Yy so that -2 = a" < a . Since
we have just shown that []Bi” tends to zero, it is enough to obtain a uniform
bound on llBi“a" . This is easy to obtain by expanding the exponential in

B and applying (5.3). This completes the proof of («,a') convergence.

Now we will establish that the limit, assuming it exists,is not zcro.
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By its definition as the ratio of two positive integrals and the diamagnetic

bound of Schrader and Seiler [7] , also see paper I section 3.3,
0<z (A <1

Furthermore by the convergence of h® just proven and Theorem 4.3 the limit

€ . . . R e
of z (A) exists and is non zero almost surely in A see (4.25). Denote the limit

by z(A). Jensen's inequality implies
€ € € €
Z, > IduD(A) zﬂ(A)[exp f dv, VA]

(>
A

and Theorem 3.5 is convergent as e & 0 . Let P(GCA) denote the limit.

The exponent is a real valued polynomial in 6C, which we know by convergence

of h®

Fatou's lemma implies

—-P(GCA) > 0

ZA > IduD(A) z(A) e
End of prooof that ZA #0 .

By Theorems 4.1 and 4.3 and the (w,a') convergence just established,
we now have obtained convergence of Zi(A) almost surely, as ¢ tends to zcro.
The proof of Theorem 5.1 is completed by combining this with the Lehesgue domi=

nated convergence theorem and the diamagnetic bound, Theorem 4.1, paper I :

zEw| <2500

The right hand side is bounded uniformly in ¢ by Nelson's boundedness below

proof [19]



5.2) Continuity of Gaussian Processes

Theorem 5.3. (A.M. Garsia)

Let ®&(x) be a Gaussian process on a bounded region A . A sufficient

condition for ¢ to satisfy (5.3), (E.U.H.C) with modulus a , is that at u = 0

p(u) = [E(@(x) - o(y))2)11/?

|xoyl<lul 172

(5.9)

be Holder continuous with modulus B > a .

For a proof of this theorem, see the beautiful article by A.M. Garsia
[8] . The condition in Theorem 5.3 follows from the condition in his Theorem 2
by integration by parts. To help the reader we indicate the basic idea in [8]

The assumption (5.9) on p(u) implies that the expectation

E(exp{c( (T) ¢r )) 1)
x-y

is bounded uniformly in x,y € A for a suitable c¢ > O . This implies

[ [ exp{c( @ (x)=0( )) } dx dy < =
A A [x—le

with probability one. This condition is evidently tantamount to some form of
continuity for ¢ . Garsia has proved a very clever real variable lemma, (l.emma

1 of [8] ) , which shows that this condition implies ®(x) is E.U.H.C. with

index o for all o < B .

In the case at hand, we infer from Theorem 5.3 that AU is (E.U.H.C)

for p=0,1 if at u=20

1/2

p (u) - sup (D (x,x) + U““(y.y) = 2Du“(x,y)) (5.10)

o |x—y|x|u|//2 HU
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is B Holder continuous, B > a . If we specialise to the case of Au real

and translation invariant then (5.10) is implied by : for some constant c

]

/2

® 0,00 -0 )72 <clx|®, 8>0. (5.11)
HU HH

We can transform this into a simple condition on the Fourier transform

of Duu(x—y) , denoted ﬁuu(k)) by noting that the supremum norm of
-28
D 0) -D
x| @, © - )

is less than the L1 norm of its Fourier transform. The Fourier transform of

!x|'28 is, for B <1, c8|k|—2+28 by homogeneity, therefore the Ll norm of
the Fourier transform is less than a constant times
1 1 gy
dk.dk _ -—_—
Jdk, dk, | -k, 12728 | |2—2B|Duu(k2)
i 1
which is finite provided B < 1/2 and
fak D () k]| %8 < @ (5.12)

Therefore we have proved

Corollary 5.4.

A Gaussian process Ap(x) with covariance Dpv(x-y) has sample functions

which are (E.U.H.C.) with modulus @ provided condition (5.12) holds

for some B > a

. 3. Osterwalder.Schrader Positivity.

We assume that A is symmetric with respect to reflection about some

hyperplane m .



Let A+,A_ denote the open subsets of A on either side of 7 . We now
define ZE S ZG , which intuitively are the algebras of gauge invariant functions
of fields supported in A+ » A_  respectively. Zf is the algebra of functions

measurable with respect to the o field generated by all functions of the form

B(f)

mn

Icurl A(x) f(x)dx , f € Co(h+)
Fe(0): = [ :ge(0:E(x)ax , £ € C (M)
ol e iy axdy s E co(, x A)

In the last expression A 1is integrated along a contour inside A . I_

is defined by replacing A+ by A_ . Reflection about = induces a map @

in an obvious way. See section 2.1 of paper I.

In this section we wish to show that if theboson self interaction V

1s gauge invariant, l.e.,
V() = V(4]

and the covariance D 1is suitably chosen, then we have Osterwalder Schrader

positivity in one direction, i.e.

<FO(F)>, > 0 (0.5)

for all F 1in Ll n Z+ 5

We choose covariances D of the following type



R 5uv-kuka(k2)
D (k) = g(k,) (5.13)
uv k2+m2 1

2
where k“ =k k , k = (ko,kl) ’

2 c
[F9)| <=
2

and g 1s positive, continuous with
[ et iy |® akp < (5.14)
1 1 1 :

for some B > 0 . Note that Corollary 5.4 implies that the Gaussian process with

covariance D has (E.U.H.C) sample functions.

Theorem 5.5.
The expectation < >ﬁ is Osterwalder Schrader positive for = parallel

to the l-direction if V 1is gauge invariant and D 1is of the form (5.13).

Proof. Approximate F in (0.5) by a polynomial in the gauge invariant fields

ief A
e

B(E), :Fo(£): , [F ¢ g .

By Corollary 4.4 the expectation < >i of such a polynomial converges as € NO .
Therefore it is enough to prove (0.S) for < g\ replaced by < >i . We now

put the A field on a lattice also : consider the lattice Gaussian process

: . e' .
with covariance Duv given by the kernel of the operator

ek

Tk 1
§ -3% 3% F(O

UV MV

%)

2 Tk 0
LI - ~E
m +3 J

£ . Sy S . NG _ ,
where ) 1s the lintte dilterence gradient and 9 d = 3 J

Choose ¢' = ¢/N where N is an integer and arrange the ¢ lattice so that
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it is a "refinement" of the € 1lattice. By diagonalising the covariances D
using the Fourier transform it is easy to show that as ¢' XN 0 the Gaussian

measures converge, i.e.,

du =t + du (5.15)

D D

in the sense of convergence of moments and characteristic functions. We claim

]
,8

that this implies that the expectations < > associated with this double

€
A
€

lattice approximation converge to < >ﬁ as €' N~ 0 in the sense of convergence

- . v, » . € .
of moments . This is so because the partition function ZA(A) for bosons in

an external gauge field can be expanded in a convergent Fourier series in expo-

nentials of the finite number of Gaussian variables
Adx : b€ B
{fy A dx )}

where b 1is a bond in the ¢ lattice and the contour integral along b is
really a "contour sum" on the bonds of the €' lattice. Approximate ZE(A)

by truncating the Fourier series and use (5.15). Thus it suffices to prove (0.5)

€,e’

for < > replaced by < >A’

A This is a lattice theory and we may prove

(0.8) for it in complete analogy with Theorem 5.3 and Corollary 5.4 in paper I.
The presence of two lattices, one for the A field and another for ¢ causes

no additional problems.



VI. Feynman Rules, Counterterms and the Change of A covariance Formula.

VI.1) This section is a technical preparation for the ultraviolet 1limit, i.e.,
the removal of the condition (5.12) on the A covariance. This will be done by
taking a limit outside the integrals over A and ¢ . To control this limit

we will need a formula which we call the change of covariance formula in honour
of [22] . This identity expresses the difference between two partition functions

with different A covariances in a form which is amenable to estimates.

The ultraviolet limit will only exist (conventional wisdom based on
perturbation theory) and be non trivial if one alters the interaction V by
adding in some terms known as counterterms which will be infinite in the limit.
Since one of the most convenient ways of discussing the rather complex formulas
which arise is the Feynman graph notation we will also spend some time explaining

this. We have introduced some graphical notations which are not standard.

In this section we continue to assume that lattice gauge fields are
abelian and derived from continuum gauge fields as in (5.1). We also assume that
the photon propagators are translation invariant and satisfy (5.12). The ¢

field is complex.

We begin with some notation including the Feynman graph formalism, We

present formulas first and explanations afterwards.

F(x) = o [F(p) P ap
(6.1)

1 -ip.X
o IF(x) e dx

F(p)

: 2 > . E
where p,x are in IRR™ . The Fourier transform of 3 1s

. _ (vitpu - 1)
ot (B) = € ! (6.2)
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The lattice photon propagator is defined in terms of the continuum propagator by

€ - E £

Dw(x—y) = [ dup (A) AH(X)AU(Y) (6.3)
where x,y € L(E) and

A% () s% jbu(x) A (x)dx, if x € A, =0 otherwise (6.4)

with bu(x) denoting the bond at x pointing in the direction eu 5

*
The quantities AE are Gaussian random variables, but AE . AE are
not. Formally
€ ot i | . AELD
Au(x) = pX o (1eAu) (6.5)
n=1
Feynman Rules (Momentum Space)
1 1
i~ - A2 ~ 7
(1a) —— 2060 , 28°G) . (b)) —= (k> ®) (V92 (p)

P

s 3 ﬂg b2 g

k Hv
k k
\iu A 2
e U . LA S - -
A ; 77 Xp PPy 7Ky 8
sl 2
T 7 .
2 xﬁ(pl p2+k1 kz) Gp\}
vl
?

o
(P,=P,+k.) (p,. +p, )
b P, l/ZTﬂ)h 1 P27 ‘PP

& e - £ €
+
Xy (P17P, kl)(pluwzu)
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A
(5) —>~—\Z— -%ez((xﬂAu)z) (pl-pz)
Pp Py
1 2 €. E.2."
- E e ((XﬁAu) ) (PI_PZ)
A

:

(6) e(a X)) (p17py) (py *p,)

N =

ENENS € E
e(AuXh) (Pl Pz)(plu+02u)

(1) > £ on £(p)
P

Sl mp X(py7p) » (6mp) X5 (Byopy)
1 2

LA T P P

(9) > = > + N>
N
A

Feynman Rules (Configuration space)

(la) 2C(x-y) , 2C°(x-y) . (1b) <ZC)%}x—y) , (zc€>%}x—y>
(2a) D (xy) , D (xy) . (26) (/D) (x=y) (/D7) (x=y)
) - 1/2 ezAﬁ(x)xA(x) , - 1/2 ez(Aﬁ* A% ()

(6) - 1/2 ie(A X3, *+ 9 x,A) (), - 1/2 ie(AE*(x)BE*— aiA (x))

(7)  1(x)

(8)  smx, ()
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Associated with each graphical symbol is a continuum kernel, written first, and
a lattice kernel written second. By the Fourier transform, the kernels listed
under the heading configuration space are unitarily equivalent (as operators)

to the kernels listed opposite the same numbers under momentum space. The various
factors of X, occur because we are using free boundary conditions. Similar

formulas hold for periodic boundary conditions. Note that a factor

(e)

Xy is in-

cluded in the definition of A associated with (5.1).

Since we are now specialising to the case of ¢ complex

Cp) = ——, ——

(2m)~ p+m
To each graph that can be constructed by joining the vertices (3) -(7)

by lines (1) and (2) is associated a polynomial in ¢ and A obtained by

integrating over all the p's and k's . This is a standard notation in field

theory so we will not explain it in detail but simply give an example which

has been cropping up continuously in this paper. Let ,A = A

Ay L TR

A A = (i) [ dxdy(pA 2 43 A ()

o —
X |y
. C(x_y)(ﬁAuau+auﬂA ) (y) C(y—x) (6.6)
Py
_ 2 5
Aﬁaig) -~ A T e IdpldPZAAu(pl_pZ)(plu+p2u)
2

- C(py) A (pympy) (Py *P ) C(py) -

Both these integrals happen to diverge. If they were interpreted according to
the lattice kernels they would not diverge and they would be equal by the

Plancherel identity.
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VI. 2. Counterterms, Renormalised partition functions, measures.

Let
2= %ﬁﬁ - t 5
oy = p,=0 Py
(6.7)
EDEIim Egzlim(-@—g)(s)
e>0 €0
(= -2 Jdk D (I (K))

where nuv is the limit of the quantity Hﬁv defined in equation (A.1) ,
Appendix A . Gmg is a continuum quantity. We will have occasion to use the
corresponding lattice quantity (Smg)z . The existence of the limit in the

D
(5.12). Both Gmg and E

definition of E_ 1is established in Appendix A. It requires that Duv satisfy

p are infinite if (5.12) does not hold, i.e. these

counterterms are inserted to cancel divergences in the ultraviolet limit.
We now define the counterterms

U =1/2 Gmg [ dx : ¢2(x) : + E (6.8)
A

A,D D

where the normal ordering is with respect to C . Define UiD by substituting

the corresponding lattice definitions.

The renormalised partition functions are, by definition,

-vE-u

o m

Z0(8) = 2°(8) [ dvy
(6.9)

E o £
= [ duy(a) Z5(a)

c.f. (4.3) and (5.2). We are dropping the A subscripts everywhere from this
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section because A will be fixed. Instead we makc D dependences explicit

because the dependence on D will be of interest.

Since for a fixed ultraviolet cutoff on the gauge field the renorma-

2

. . € .
lisation constants (an) » E converge as € tends to zero, our previous

€
D
convergence proof for Theorem 4.1 is easily adapted to prove that the limit

as € tends to zero of Z;(A) exists almost everywhere. We denote the continuum
limits ZD(A) and ZD . We can take the limit past the duD(A) integral

because Lebesgue dominated convergence can still be justified by the diamagnetic

bound, c.f. the proof of Theorem 5.1.

We will use the subscript D to indicate that V is replaced by
V+UD in previous definitions. For example the renormalised Bose matter action
is
AF = - 1/2(s, [n-85"16) + VT

e.f. (5.4). We apologise for the confusing use of A for both the Yang_Mills

field and the action.

VI. 3. Change of A- covariance formula.

Let DO,D1 be two covariances for the gauge field. The associated

independent Gaussian processes are denoted AO,Al . For t € [0,1] , set
A= f(l-t)Ao + /FAI
(6.11)

b= (1-t)D_ + tD
t O l

Note that At is a Caussian process with covariance Dt . Let P be a polyno-

mial in ¢, ¢ - (a) of the form



) )

= G
P = Idxl...dxq g(xl,...,xq) " (x))... ¢ (xq) (6.12)

where g € C_ . We are interested in studying
Z1 <P>1 - ZO <P>0 (6.13)

The subscripts 1,0 and later t replace the subscripts D ,Dt in order

I’Do

to simplify our formulas.

We study (6.13) by using the fundamental theorem of calculus to write
it as the integral of a t derivative. The t derivative and the du(A)
integrals can be interchanged because the second derivative of the integrand
may be controlled by thé methods we are about to apply to the first derivative.

Thus (6.13) becomes

1
d
J, de Jau (addu; (A 7= (J do (9)P) (6.14)

The measure dmt is given by

-vE-ut
dw, (¢) = lim z5(A) dvt e E
t t A
E\P E
_\Me (6.15)
= lim D¢ e t /;E(l)

e\p
The limit is as usual in the sense of characteristic functions, or convergence

of moments. Existence follows from the results of section IV. We now show that

_AMe —pMe
d t t £
3 Jbee " P=[Dpe © (KP) (6.16)
dt t
where Ki 1s a linear operator defined on the space of polynomials in ¢ . It

will be defined below. By dividing through by (D) and taking the limit
e \ O we will obtain an identity for the t derivative in (6.14). By doing

the t derivative :
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_AME Me

-ad—t [ Do e tp-= ID¢(-AI:_":)'e t P (6.17)

We use primes here and hereafter to denote t derivatives. The factor ¢(x)

in (-A?E)' is integrated by parts. This simply amounts to replacing it in

(6.17) by
2 fdy c*(x-y) (8/8F(y)~ (5/54G) (6.18)

where the integral is really I 92 and
y

Gt = ATE + 1/2(¢,[m2—;‘_\E F]¢) (6.19)
These formulas are easy to derive since we are working on a finite lattice.

The easiest way to manipulate integration by parts is via the graphical repre-

sentation

8 = 8 —— (8/63- :—;) + 6 0

A¢

(6.20)
+5X7¢ +5x—"—-)(— [0}
A A
£t t

The conclusion obtained from integration by parts applied to (6.17)

is of the form (6.16) with Ki equal to

- ' _ 8V ' - SV
1<i = cls;@— (8/6% 55) * o7 (8/83 53
At Jl&t: At

tAt

/ ] .
PO b R 0+ — B
g H] J
A A A A A A “A
t t t E t &

/ 1 o
+ @_-- A ¢+ I':l + {) (6.21)

o P 4
!\[ '\l A A[ J\l L

A
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We now exhibit a cancellation between the third term and the last in

(6.21), by writing

€ .
so that K~ can be put in the form

< ﬁ—@’— (5/6F - 6/85 V) + § —— (8/6F - 2
I 5%
At \At A

t

' / ’
+ : + + .
5—————; [ ¢ $ + ¢ f———?% ¢
A A" A A A A
t t | t t t t

+ % M ¢+ J: AtunAtv.dk (6.22)
ANA A WA

L
The Ei in (6.21) cancelled when the last term in (6.22) was normal ordered.

€

- was defined in (6.7). We define K as in (6.22) but with diagrams interpreted

by continuum Feynman rules and n¢ replaced by I .

The true merits of (6.22) will be more readily appreciated in the
context of the stability expansion in paper III. The main point is that the
diagrams in K remain finite in the ultraviolet limit provided A 1is in a

gauge which is approximately transverse.

Having identified the operator Ki appearing in (6.16) , we divide
both sides by ce(l) and take the limit € goes to zero. The result, after

some work which is discussed below, will be

d —
1 Jdw (0P = [du (¢) K P) (6.23)
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The limit € N O : The main difficulty is to show that the right hand side of

(6.16) converges as € M0 . There is no difficulty in interchanging the limit
and the t derivative because the left hand side can easily be shown to be
bounded uniformly in € by the diamagnetic bound of paper I and the Cauchy
Schwarz inequality. Our previous results, Theorems 4.1, 4.3 imply that the quan-

tity under the t derivative on the left hand side converges as &€ N0 .

We use the notation introduced in the proof of Theorem 4.1. We will
only sketch a proof that the right hand side of (6.16) converges because the
method is similar to techniques we have already explained in proving Theorems
4.1 and 4.3. Recall that we are still working with a cutoff gauge field, A ,

that is (E.U.H.C) with modulus a < 1/2

By an argument as in the proof of Theorem 4.1, it is enough to show
that
€ € e’ €'y 2
faw| (RPY(47) - (k, P) (¢~ )|" » 0 (6.24)

t

pointwise in t as ¢€,e' - 0 . We first show this in the case that Kt , K

1
T which are obtained from ﬁ:, !& by replacing all

are replaced by Kt : 1{
factors XAAt occuring in their definition except those in the last term ina

(6.22) by a ¢ gauge field At compactly supported in A . We then gain the

freedom to move all the derivatives occuring on external lines in

)

A
t

type vertices past the At by Leibniz rule onto the internal lines. It is now
not difficult to prove (6.24) in this case using the methods of the proof of
Theorems 4.3 and 3.3. It is now necessary to show that for any § > 0 we can

approximate xAA by A so that



faw| K°KZHp(6%)|% = fav, |G« )rp|* < 8
t

uniformly in € . This follows easily from the fact that A can be chosen

e 1/2 1/2

so that Ai C and its adjoint approximate A C and its adjoint
u

arbitrarity closely in Iq uniformly in € . This concludes our discussion

of e\ 0.

We now combine (6.23) and (6.14) to obtain

Theorem 6.1.

If P 1is of the form (6.12), D0 and D1 are two covariances for

the gauge field

1
D D D D [ at Id“n () du, (A
o o 1

N
A
av]
A\
I
N
A
ae]
v
]

x

. dwt(¢)(KtP) ,

K was defined below (6.22).
t



APPENDIX A
In this appendix we study the vacuum polarisation
tr S + 1/2 tr(cSW)? (A.1)

which was encountered in the proof of Theorem 4.2 and also in section 6. We
will specialise to the case in which ¢ 1is a complex scalar field and A
is real. The calculations given below are not significantly changed if one

combs them through with A nonabelian.
We begin by rewriting (A.l) in the form
Idzk E%k) Hﬁv(k)ﬁi(k) + O(eBE 10g25)

where by a calculation using (2.12) and Lemma 3.3

16,00 = 5 D falnh T @)

-iep_ 1iep - -iep lep_ -
(e e +)u(ie) LA ), (ie) 1 4%

_1 e, 2 2 2-1_,=-1gp iep 2
7 (2“) J(m™+p") §(e + e )Ad P suv

A subscript p (or v) on a bracket indicates that all p's , p's inside

are p 's, p 's .

H H
o = pE(@) = (i) Hel®P-)
H H H
Subscripts + , - indicate that p 1is to be replaced by P, » P_ in the
appropriate definitions,
1 1
=p+5k , =P -5k
Pen TP 2 N Py w2 o



™=
—

_ . m
p” stands for pppu . All integrals are over [- E—’

By using the Feynman rules in section 6 it may be verified that

£ p+ »L
ne (k) =g { »—Qﬂ + } (A.2)
L " k Q':
P

There are no D propagators on the external lines. This observation will

€ 5 . .
become relevant when we prove that ED converges as promised 1n section 6.

Transversality.

. E . . et
We first show that 1 is transverse, which by definition means

£
ML e () =0 . (A.3)

We set € = 1 and omit € superscripts throughout the proof of
transversality. Transversality can be shown directly by shifting the variable
of integration in the left hand side of (A.3) as is done in Physics text books.
See [23] to get the general idea. However it is really a consequence of gauge

invariance. Let
h = eleA : A= A0+ adh
By gauge invariance, see for example paper 1 Theorem 2.6 . zﬂ(ha) .

defined in section 4, is independent of o . Therefore

2 2 ~ ~
—d—z log z,(h )| =2 %j %k A 1 A
de @ e=0 de L L

is independent of o . Differentiation with respect to « and setting

a =0 yiclds (A.3) . Q.l.D.
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Since I is transverse it must satisfy
m =006 -pp /0] (A.4)
AXT Tuv [THRY) .

because the quantity in brackets is the projection onto the transverse component
of a gauge field as can be checked by verifying that it vanishes on longitudinal

functions DU f(k) . The projection is rank one. (A.4) follows by taking traces.

€
v

The (pointwise) limit as e WO of 1

We will now show that the limit € \(O of qu exists pointwise in k

and give an expression for it. We have

e _ 1 e.2 -2 2, 2,-1, 2 2.-1 -iep_ iep|2,2
i, - 3 b SR 2y
- 2? [fPpH 7 1(e ePueTIEP) (A.5)
227 M
u
Substitute in (A.5) using the identity
| -ip 1ip,2
e -e
2 2.-1 2 2.-1
St = 2([p,*m"] " + [pT+m"]1 ")
22 2002 +
(p,*m”) (p_+m")
—ip i ip ip
+ (Je 1p-elp|2 - 2le -1]7 - 2]e +-1] - 4m2)

@D HT @D

and note that the numerator in the second term may be written in the form :

k

P
- 16 sinA‘E#-+ 8 cos pu(cos ?f--l) - 4m2

All u's are to be summed over. We have set € =1 to simplify the formulas.

The rvesult after shifting integration variables P, > p and p_ > p s
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7 fmleo®) T (2-e PPy aPp 4

[

(f%)zf(m2+pf)-1(m2+pz)-l (—lﬁE_zsiHA(Epu/Z)dzp) (A.6)

M=

ek

e {8 cos ¢ pu. e_z(cos _EE —1)—4m2}d2p

N e RC e

1

As usual all p's are to be summed over. The range of integration is

=L

= EJ for each component of p .

We prove that the limit of the first two integrals exists and evaluate

it by scaling ¢p » p . The result is

1 ,e.2 M 2-1, ip ip, 2 _
5 GD7 [ (7)) T(2meTT-e N)dp
=T
™ P

= iz 4-...-“- 2 = -

16 1/2(2ﬁ) £“(p ) sin’ - dp = Jo (A.7)
(1)

where p =
I“ Du (p)
Since

VAR C R

(m™+p7) “(m +p") (A.8)

2
is bounded both above and below uniformly in p and ¢ for p € [- g-, %]h s
we may take the limit ¢ N O under the integral sign in the final integral
in (A.6) by the dominated convergence theorem. The result is

=l

1 =]
7 Gp° @) g mmh ' (8.9)

LLet us call this integral J(k) , then we have shown that pointwise in k
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€ 2
Huu(k) — J0+J(k))(6uv—kukufk ) (A.10)
e WO
Furthermore we can show that Jo = J(0) by the following argument : Hﬁv(k)

is analytic in k near k = 0 , the transverse projection is not, therefore

€ A . . .
“uv(o) = 0 . Pointwise convergence then implies that Jo = J(0).

Remark. J(0) 1is independent of m by a scaling argument. Thus setting

m=1 gives

e. 2 dzg e2
J(O) = =2 (2_,",) I (1+p2)2 = - ﬁ

Pauli-Villars regularisation of the continuum expressions gives the same result

as (A.10).

By combining the upper and lower bounds on (A.8) with the arguments

given above it is not difficult to prove first that for all o > 0O
It )| < c (1+k%)®

Hv -
and then obtain :
Lemma A.1.

For all o > O
2,-0 _€
(1+k") Huu(k)
. 2

converges in Lm(d k) as ¢ &0 .

Proof of statement (3) in the proof of theorem 4.3).

te . . . .
A“(k) 1s the Fourier transform of a function on a lattice; see below

cquation (2.12). Let



kl k
sin ¢—=— sin e—
2 2
H (k) = i .
1 2
€5 £

. - . 5 £
By an easy computation H A® = A® is the Fourier transform of AU(X)
H H

considered as a piecewlise constant function on IR via the Q 1identification.

Therefore, omitting ¢'s

- trK+1/2 tr K = J dk (A.12)

H 1is bounded both above and below on the range of integration. As ¢ \UO it

converges uniformly on compact subsets of m? . Hence by Lemma A.1l

(]+k2)_u 1 no2
pv

converges in ImﬂRz,dzk) as € y 0 for all o > 0 . Therefore it is sufficient

to show that the LZGRz,dzk) norm
K25 12 = 1 A0 & () A dPxd?y (A.13)

converges as g \10 . The right hand side of this equality comes from the

Plancherel identity. k = kf+kl

5

]

Lemma A.2.

Let f be in Schwartz space. The Fourier transform of kaf(k) is a

constant, Ca , times
2 -2-
[dy(E@-£() |x-y| 757

For a detailed proof see [?4] . It is not difficult and proceeds by exploiting

the homogeneity of Kk . An casy argument shows that we can also use this lorm



...?3_
if f is A . Thus the right hand side of (A.13) may be written as

c - —
7? ﬂA(x)—A(y)l2 |-y | 27 g2y dzy (A.14)

Since A vanishes outside A , a bounded rectangle, (w,a) convergence of

Aﬁ implies convergence of (A.14). This in turn is implied by («,a) convergence

of AS
v

by expanding the exponent and making some simple estimates relying on
. . € .
the fact that Aﬁ and Ai are piecewise constant. Au is (w,a) convergent

by hypothesis. Q.E.D.

Proof of convergence of counterterms (VI.2)

The propagator defined in (6.3), Div(x) is a function on the lattice
A

and

D€ (k) = £ e D° (x) e KX |
v x uv

As above D = DH 1is the Fourier transform of D considered as a piecewise

. 2 . . - . .
constant function on IR~ wvia the Q identification. Since

n/e .
=2 L %k
—mfe MVOWY

€
ED

we may argue as above that convergence of EE is implied by convergence of
~E 2 3 € -2=-0 ,2
k* = -
I D- dk s I(Duv(x) Duv(O)) |x| d ™ x

uv

=00

for some o > 0 . The right hand side is derived by noting that the integral

on the left is equal to the Fourier transform of the integrand evaluated at

zero and using Lemma A.2. Div(x) is now to be understood as a piecewise constant
function on 'R? . Convergence of the right hand side may be easily shown using

the Holder continuity (5.11) of Duv and arguments analogous to those in the
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proof of Theorem 5.1. This concludes the proof of convergence of E; .

A very similar argument which we omit proves the convergence of
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APPENDIX B

Convergence of the Lattice Approximation for Periodic and (Half-) Dirichlet

Boundary Conditions.

We want to sketch how the proofs for convergence of the lattice approxi-
mation given in this paper can be adapted to periodic, P and Dirichlet, D (or
Half-Dirichlet, HD) boundary conditions, for a rectangle A . In the case of
D or HD boundary conditions, the orientation of A with respect to the
lattice may be arbitrary. This will be needed in paper III for proving Euclidean
invariance. Half-Dirichlet means here that we use Wick ordering with respect to
the free covariance in the selfinteraction of the matter field; we use Dirichlet
boundary conditions for the covariance of the matter field and free boundary

conditions for the gauge field.

In the main body of this paper we reduced existence of the continuum

limit for X boundary conditions to the following three convergence statements

» E g

(a) xACx"'xACx in Ia , for a>1.

(B) 86(02)1/2 - 3c§/2 , in the strong operator topology, and likewise [or Lhe
adjoints.

©) (Ai,Hﬁ;XAS) > (Au,HﬁuAv) , whenever AE converges to AU in the

(»,a) sense.

Although we only considered free boundary conditions, X = F , our
arguments show that (A) - (C) suffice for more general boundary conditions,
in particular X = P,D .

If A= {(x,y) EfR2||x' < i%l , Iy[ < l%l} with a,b multiples

of ¢ , the periodic covariance is
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oo

(x,y) = I
n,m=-o

C(s)

ng) (x+ma,y+nb) (B.1)

This representation shows that statements (A), (B), (C) remain true if

(o2 , C are replaced by CE,

C
P P

tely and uniformly, because of the exponential decay of ct o

, since the series in (B.l) converges absolu-

So we only have to prove (A), (B), (C) for Dirichlet boundary condi-

tions, X =D . We will make use of the work of Guerra, Rosen and Simon [6 ].

Let P be the projection, orthogonal with respect to the scalar

(€

product (. , c® .) , onto functions on supported in L(E)(Nﬁ) :

similarly p , for the continuum. Define

P = (CE)IIZ . (CE)—l/Z

(B.2)
€ €

1/2 . C-1/2

P =¢ (B.3)

*
Using the imbedding Q° : EZ(L(E))+ Lz(‘R?) (see section II), we obtain

the orthogonal projections in LZ(ZRZ)

P =qQ°PQ (B.4)

The crucial fact is

Lemma B.1 : s = lim 3; =P
e>0

Remark : This is very similar to Lemma (VIII.9) in [26] and Lemma IV. 11 in
[6] . It is not identical, however, because these references use a different
. ; 2, (c), - 2,2 . . o e .
imbedding of &°{L""") into L"(R") . This necessitates some modification

in the proof.



Proof : (I) We claim that for

g € Ran P N Ran 01/2

I?.e-gll > 0

Proof : By Bessel's inequality we have inf”‘PEh-g“=!“¥:g—g||- Thus

h
~ ~ e¥ e.1/2 €.-1/2
1% e-ell < 1T, & M2 o 2gg|
~ * =
PEQE (05)1/2 QEC 1/2g o
* 1/2 -1/2
= @ €% ) (@M -
e*¥ e.1/2 e -1/2
= (eHY2 f Vs g
. e,.~1/2 .
by statement (A) , for X = F (free) ; we used the fact that QC g 1is
supported outside A .
, ~ 1/2
(11) If g € Ran P we still have ||P€g—g||+ 0 because Ran P N Ran C
is dense in Ran P (i.e. A 1is "regular" in the terminology of [6]).
(I11) Let g € LZ(IRZ) , f a weak limit point of the bounded set
{?Eg| 0<e<1l} . We claim :
f = Pg. (B-S)
a) Let c?ne co(n) :
o~ e, 1/2 1/2 e-1/2
0% ). = (€% Hn, p_c5 %) (B.6)
€ L2 € L2

(the second term is zero because of support properties). (B.6) converges to

0 because of statement (1), which shows that f € Ran P .



b) Let h€ L*(R%) : (h,£) = (Ph,) = lin(®h,F_ g)

fogad n
= lim (_ Ph,g) = (Ph,g)
o n
by part (II) of the proof; this establishes (B.5) .
(1V) (B.5) shows that 'feg converges weakly to Pg ; because PE are

projections this implies strong convergence.(End of proof of Lemma B.1).

As discussed in [ 6], we can define the Dirichlet covariances by

¢ = c"(1-p) = M 2a-e ) cH? (B.7)
Cy = C(1-p) = C1/2(1-P)C1/2 (B.8)

Statements (A) and (B) with CE, C replaced by CD 5 CD are now obvious

consequences of (B.7) and (B.8), using Lemmas 3.6, 4.5 and B.1
Statement (C) is a little more subtle.
Obviously it suffices to consider the difference

€ €,D € € 2 1 N e S :
A @7 = M DA) =e’(ar, {6~ ) (Cp=COHGE =35)(CHc T £ )
+ e I(A: )(1 (x) (C;-CE) (x,x) dx (1.9)

A

(We assume A to be transverse ; non-transverse components drop owl).

Because of the Holder continuity of Au we can bound |AE-AE| uniformly in
A , and using the Q-imbedding also |AE—AH| 3 therefore we only have to

1 # #
show L -convergence of (au(CS—CE))(av(C;+CE)) » and convergence of the

second term in (B.9).

¥, . u . . .
Here ab is either Bu or Bu . What we need is contained in



Lemma B.2 :
¥

(1) 2 (c-CE) _e0, a’;(c-cn) in L2 x A)

(2) (E(CE=cE)) (05C5) 2% (i (c=c.))(e) im LA x M)
B D N " D v in

(3) (C=Cp) (x,%) Z2+(C=C) (x,%) in LP(1), 1<p<a.

Proof : The proof proceeds by the dominated convergence theorem. For the

uniform upper bound we need

Proposition B.3 : For x,y € A

(1) |c®(x=y)| < const| log %%i%%) |
E € 1
(2) Iau,xC (x-y)| < conmst Tay[

_ dist(x,dA)+dist(y,3A)
(3) | (€"-C) (x,y) | < const| log (xicaib) =

€ € const.
) 13, &I < Froraranraist ;M

Proof : (1) follows from (2) by integration.

(2) follows by some work with the explicit Fourier representation of ct :

-1, iek ikx
(e H=1)e d2k

BECE(X) = S

elk[kﬂ 2€-2(2~cos ek —cosek2)+m2

1
elkzlfy

We cut the integration into a part where |k| < A and a rest. The "inner"

part is I
ik . -
I e-l(e p_l)elkxs dzk
2 2

|k|§pe 2(2—cosk1—cosk2)+E m
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which is bounded by

|sin k|
j - dzk < const.

Ipli Ae 2=cos kl_ cos k2

The outer part is bounded by sonet

by parts with respect to the variable |x]|

(3) can bhe seen as follows :

(=0%+m") (°=Cp) (x,5) = o5 (1)

are endpoints of a lattice bond that intersects dA

It is not hard to see that

€
o (x) >0
y( ) >

L efoS(x) <1
L5y

or are in

A

as can be seen by doing an integration

(B.10)

(e)
€ : . " .
where Uy(x) has support on 9A® which is the set of points in L

which

themselves.

(B.11)

(B.12)

(B.11) follows from the fact that Cg > 0 and C; =0 if one of its argu-

ments is outside A ; (B.12) follows by Gauss's theorem

2 € 2 2
0 = Le (AXCD)(x,y) = -1+ m Ze Ce(x,y) + ESZUE (x)
D y
X X X

From (B.10) it can be seen that

E L€ o 2 € S :
(c -CD)(X,Y) = i' e C (x-x )Uy(x )

Using (2) and (B.11), (B.12), it follows that

lac X(CC_C;) (x’y)l i__c,g_r_‘f_tl:__
o dist(x,3A)

for the lattice :

(B.13)



S

Since the left side of this equation is symmetric in x and y, (4) follows.

(3) is similar =
Returning to the proof of Lemma B.2 we notice that

1/2 1/2

€ oE_nE € € €
Bu(C -CD) - BU(C ) PE(C )

L2 convergence of this then follows from statement (B),Lemma 3.6 and

12 convergence of PE(CE)U2 which we now prove. By the Grumm—Simon
theorem (see section II), we only need to show convergence of the 12 norms
e 1/2 .
of Pe (c™) , which means we have to show that
e @)Y b (cHY? = 5 e2(cF-c®) (x,x) (B.14)
€ <€A D

converges. Since Proposition B.3, (3) gives an LP upper bound, we are reduced

to showing pointwise convergence of (CE—CE)(x,x) to establish Lemma B.2, (1).

From Proposition B.3 we also get the following bound on the expression

appearing in Lemma B.2, (2) :

|2 (c®-c£)a°C®| < const x E 1 (B.15)
u D" v T —

dist(x,dMN)+dist(y,dA) |x-y|

This bound is in Ll(ﬁ x A) as can be seen by cutting up the region of inte-

gration into a suitable sequence of bonds parallel to the boundary.

So all that remains to be shown to complete the proof of Lemma B.2 is

Proposition B.4 : (CE—C;)(x,y) and BE(CE—C;)(X.Y) converge pointwise in

A x A,



Proof : Since CE—CS converges in L2 3

F _(x,y) = SLue | X (x=x")x (y-y')(Ce-CE)(x',y')dx'dy' converges pointwise
£,6 “254 8 § D

as € -+ 0 , where Xs is the characteristic function of a ball of radius §

On the other hand we can for each (x,y) € A x A choose ¢ so small that

|FE 6(x,y) - (CE—CE)(x,y)| < n (uniformly in €) because we have a uniform

bound on the "derivatives'" of CE—CE . By a 2n argument pointwise convergence

of CE-CE follows.

. . " 2
For 3i(CE-C;) we use the same trick : We just established L™ -conver-
gence; a uniform (in € ) bound on the second "derivatives" in a neighborhood of
any point in the interior of A can easily be obtained from (B.13) and we just

have to repeat the argument given before.

This completes the proof of Lemma B.2 and this appendix.
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