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I. Introduction. 

We continue in this paper a program initiated in [1] , henceforth 

referred to as paper I. One of the objectives set forth in that paper was a 

mathematically complete construction of a super-renormalisable continuum gauge 

theory. This paper contains results in this line of work. 

The study of gauge theories on a lattice was originally suggested 

[2] as a suitable starting point for learning more about gauge theories generally, 

because lattice gauge theories provide a setting in which one can utilise methods 

of statistical mechanics : - low and high temperature expansions and correlation 

inequalities, etc. . In addition these theories posess the two important proper-

ties of Osterwalder-Schrader positivity and gauge invariance. No other method, 

yet proposed, of regularizing continuum gauge theories so that they become 

mathematically well defined objects posesses all these attractive features. 

It is therefore an important problem to verify that these theories converge 

in a suitable sense to continuum theories when the lattice spacing is taken to 

zero. The limit would then share these properties and in addition one would 

hope to verify that it is Euclidean invariant (unlike the lattice theories). 

Various consequences of the correlation inequalities which will be of interest 

to physicists as well as mathematicians have been outlined in [3] . 

Unfortunately, it is unlikely that our method of proving convergence 

is optimal. We have adopted a method of embedding lattice gauge theories in 

continuum theories which is not natural in the context of geometry. It might 

be rewarding to search for methods that treat the geometrical side with less 

than the insensitivity that we have been able to muster. In the meantime we 

have in this paper a number of functional analytic techniques that will extend 

to more singular theories, abelian and non abelian and some of them will very 

likely be useful in future improvements. 



- 3 -

We are here mostly concerned with two dimensional abelian gauge theories 

interacting with Bose matter. An analogous program for fermion matter has been 

started in [4] . Some of our results are valid for nonabelian gauge fields also. 

The major simplification in the abelian case is that the measure describing a 

pure gauge field is Gaussian in the continuum limit. We exploit this by noting 

that we may obtain a Gaussian lattice gauge field by conditioning the continuum 

measure. Thus given a continuum gauge field one may formally obtain a lattice 

gauge field, which is a function from bonds of the lattice to group elements, 

by integrating the gauge field along a given bond and applying the exponential 

map to the Lie algebra element so obtained to get an element of the group. (If 

the group is nonabelian , one should use an ordered exponential). 

One can then couple this lattice field to a matter field on the lattice 

and the resulting lattice theory is gauge invariant. The procedure may be 

considered as amounting to a special choice of lattice measure for the gauge 

field which differs from Wilson's [2] and others so far proposed, but which is 

also gauge invariant and has the correct continuum limit, at least formally. 

This procedure is not possible in more than two dimensions because 

with probability one the gauge field is a distribution with insufficient regu-

larity to be integrated along a bond. However, as pointed out in paper I, it 

is possible to put in an ultraviolet cutoff, i.e. change the Gaussian measure 

describing the continuum gauge field to another one whose sample functions are 

more regular (almost surely) and still retain a type of gauge invariance. 

Furthermore if the ultraviolet cutoff is suitably designed (a cutoff in all but 

one direction in IRn) we obtain a lattice theory with Osterwalder-Schrader 

positivity in one direction. This is of course not a new observation. Lastly, 

as discussed in paper I, we have correlation inequalities even in the presence 

of an ultraviolet cutoff. They are in fact valid for any lattice Gaussian 

measure for the gauge field. 
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Even in our case of two dimensions we find it convenient to use an 

ultraviolet cutoff on the gauge field. This is in order to separate off the 

complexities of renormalisation from proving the convergence of a lattice approxi-

mation. In other words, if we did not impose an ultraviolet cutoff, we would have 

to insert counterterms and cancel quantities that diverge as the lattice spacing 

is taken to zero. We prefer to put in a cutoff and its subsequent removal 

(after the lattice spacing is taken to zero) will be discussed in paper III. 

Finally, we also give the gauge field a mass (an infrared cutoff). This does not 

affect the Ward identities which express the gauge invariance of the coupling 

between matter and gauge fields. Correlation inequalities allow then to take this 

mass to zero. Full gauge invariance is impossible in the continuum limit and 

gauge fixing is always necessary. We really prove "gauge covariance". The zero 

mass limit will also be given in paper III, and in fact we first take the infinite 

volume limit which is easier whilst the gauge field has an infrared cutoff and 

then the zero mass limit. 

We now give a rough formulation of our principal results. We will supply 

more details and precise definitions later. It applies to a theory in a rect-

2 
angle in IR with a continuum gauge field with a mass and an ultraviolet cutoff 

interacting with a Bose field on a lattice with spacing ε > 0 . The Bose field 

is allowed self interactions. 

Theorem A. 

Given a sequence of simple cubic lattices whose spacings tend to zero, 

the lattice measures which correspond to the theory described above converge 

in the sense of characteristic functions. 

The main results required for the proof of Theorem A can be found in 

sections III and IV. Some of the more significant ones can be summarized as follows. 
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ε 
Let C, (C

A

) , denote the lattice (continuum) Green’s function for the co-
h A 

ε ε 
variant finite difference (continuum) Laplacian, (ΔA

ε ) , in a lattice 

(continuum) gauge field, h (A). The gauge field may be non abelian. We impose 

either free or periodic boundary conditions at the boundary of a rectangle Λ 

Theorem B. 

Let (hε) be a sequence of lattice gauge fields converging to a locally 

bounded measurable gauge field A as ε tends to zero Then the kernel of 

C converges locally in Lp , for all p with l < p < ∞, to . 

Theorem C. 

Let (hε) be convergent to a Holder continuous gauge field A , then 

. ε 
the determinant , z , defined to be 

hε 

with m > 0, converges to its formal continuum limit as ε tends to zero. 

The limit is finite and strictly positive. 

Our methods would also be useful in proving the appropriate analogues 

of theorems B, C in three space-time dimensions. 

The limiting theory obtained in Theorem A is Euclidean covariant. It 

is not invariant because of the boundary and also the cutoff on the gauge field. 

In two dimensions it is possible to identify it with a theory constructed directly 

in the continuum and then Euclidean covariance is obvious. However it is also 

possible to obtain it directly from our theorems because they are valid when 

limits are taken through lattices of varying orientation. We have slightly em-

phasized this point because it may be a superior strategy in more singular 
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theories. Obviously Euclidean covariance is necessary if the final theory obtained 

by taking the infinite volume limit and removing the ultraviolet cutoff is to 

be Euclidean invariant. Note that Euclidean invariance and Osterwalder-Schrader 

positivity in one direction combine to yield positivity in all directions. 

Let us now briefly outline the steps in our proof. We begin in section 

II by collecting our notation and conventions and summarizing some useful facts 

about trace class ideals (I ) of operators [5] . In section III we prove 
P 

theorem B. One reason why this part of our work is more difficult than the 

corresponding parts of the lattice convergence proof in [6] for Bose fields 

without gauge fields is that we can no longer use the Fourier transform to diago-

ε 
nalize all our Euclidean propagators Cε simultaneously. Instead we rely heavily 

hε 

on the theory of trace class ideals and analyticity. We have prefaced section III 

by a short verbal description of these methods since these may find other appli-

cations . 

In section IV we prove convergence for lattice fields of bosons in an 

external Yang Mills field as ε  0 . The Yang Mills field can be non abelian. 

Although we do not prove it in this paper, the limiting partition function is 

closely related to that investigated by Schrader [7] . The differences are as 

follows : (1) we include the factor zε (A) , (see IV and Theorem C) which 

Schrader et. al. [7] refer to as the "renormalized determinant"; (2) our normal 

ε . ε 
ordering of the bose self interaction is with respect to C

0
 instead of . 

Both these features are forced on us since we are going to integrate over the 

gauge field (in the next section). The renormalized determinant is a considerable 

nuisance because it contains contributions which diverge as ε  0, and one 

must use gauge invariance in the form of a Ward identity to prove that the 

divergent parts cancel each other up to a remainder which is finite in the limit. 

(This type of phenomenon is well known to physicists). The change in normal 

ordering (2) is not a simplification either. The point of Theorem 3.5 and its 

quite lengthy proof is to control this change of normal ordering as ε  0 . 
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Our proof of convergence owes much to [ 6] . We also proceed by embedding 

all our lattice theories in one continuum theory (white noise instead of the 

free Euclidean field used in [ 6] ). We find that we need to prove that the 
(ε ) 

square roots Am converge in I
4
 and since we cannot use the Fourier 

A. 4 

transform we prove a little lemma that provides a sufficient condition that the 

(non linear) map A f(A) be continuous from I to I 
p q 

In section V we complete the proof of theorem A,in the form of Corollary 

5. 2 by showing that the integral over the abelian gauge field, A , of the 

lattice external gauge field partition functions of section IV converges as 

ε  0 . This then is merely a matter of justifying the interchange of the 

ε  0 limit with the A integral so that we can apply the results of IV. To 

do this we use dominated convergence, appealing to the diamagnetic bound of 

paper I, Corollary 2.4 and Theorem 4.1,to show a uniform bound on the external 

gauge field partition functions. We also have to show that the class of gauge 

fields allowed in sections III, IV are a set of measure one. This is a slightly 

fine point since the ultraviolet cutoff on the A field does not regularize the 

sample functions much because we wish to have Osterwalder-Schrader positivity 

in one direction. We appeal to a beautiful paper [8] by Garsia on the continuity 

properties of sample functions of Gaussian measures to settle this point. 

We also discuss Osterwalder- Schrader positivity in this section. 

(Theorem 5.5). We explain what types of cutoff on the covariance of the Gaussian 

measure describing the gauge field yield a continuum limit with positivity in 

one direction. 

In our final section, VI, we provide some technical preparations for 

our next paper in which we will remove the ultraviolet cutoff. We discuss coun-

terterms and define renormalized partition functions and measures for abelian 

gauge theories. We give the Feynman rules and in Theorem 6.1 prove an identity, 

the change of covariance formula, inspired by similar formulas in [9] . This 
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formula will be used in paper III to generate (by iteration) an expansion of 

the Glimm-Jaffe type [10] which will prove that the partition function, when 

correctly renormalized, is bounded above and below uniformly in the ultraviolet 

cutoff. This is the most difficult step involved in removing the ultraviolet 

cutoff. The formula is of the following type 

in which P is a polynomial in the fields, < > ,< > ,< > are unnor-
1 o t 

malized (but renormalized!) expectations. The subscripts 1,0 refer to diffe-

rent ultraviolet cutoffs; t parametrises a family of cutoffs that interpolate 

between 0 and 1 ; K is a partial differential operator in δ/δφ. The impor-

tant point about K is that it depends only on renormalized quantities and so 

does not diverge in the ultraviolet limit. For this reason this formula can be 

made the basis of a method of removing the ultraviolet cutoff. 

In an appendix we briefly sketch how to extend our results to the 

case where Dirichlet boundary conditions are imposed on the Bose field. 
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II Preliminaries : Notation, trace idéals 

In this section we fix notation, give some definitions and quote some 

theorems on trace ideals. 

First we present a list of symbols followed by an explanation of their 

meaning 

2 
A  IR , a bounded open set 

2 .... 
L  IR2 , a simple cubic lattice, unit spacing 

L(ε)(Λ) ≡ εL ∩ Λ L(ε) ≡ εL 

Bε

 2 B is the set of bonds considered as closed subsets of IR2 e , μ = 0,1 are 
μ 

the unit vectors which generate L , i.e. 

Bε ε 
Let B(Λ) be the subset of bonds contained in A We denote by ∂ε the 

finite difference gradient 

(ε) 
associated with Lε ; ∂ε is defined both on functions on L(ε) and on con-

tinuum functions. The continuum gradient is denoted by ∂ . 

We now wish to introduce covariant derivatives. Let G be a compact 

Lie group unitarily represented on a finite dimensional Hilbert space V . 

2 . , . 
Let A be a gauge field. For μ = 0,1 , A is a map from IR into the Lie 

μ μ 

algebra L(G) of G . The covariant derivative is defined on V - valued 

2 
functions on IR2 by 
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(2.1) 

e is a constant, the electric charge. The finite difference covariant deriva-

tive is defined only on lattice functions with values in V , 

(2.2) 

where n , a lattice gauge field is a map from bonds <x, εeµ> into G . 

The covariant Laplacians are defined by 

(2.3) 

where we use the Einstein summation convention on μ = 0,1 . 

Let 

L = L (IR2 ,L(v)) 
∞ ∞ 

be the space of two component measurable functions with values in linear ope-

rators L(V) on V, given the norm 

(2.4) 

where the subscripts refer to the lattice directions and || || is the 

operator norm on V . We introduce this norm because it appears to be appropriate 

for the discussion of convergence of gauge fields in heorem B. The derivatives 

in the definition of the covariant Laplacian are applied in the distribution 

sense. We take the gauge field A to be in I. 

We now introduce some notation whose purpose is to make the lattice 
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objects resemble their continuum limits in order to facilitate the discussion 

ε (ε) 
of convergence. Let Bε = be a two-component map from L(ε) into L (V) . 

Set 

(2.5) 

(ε) 
These are operators on V valued functions on L 

We will be particularly concerned with the following two choices for 

B , 

where 

(2.6) 

ε ε 
The second equation defines A in terms of h , provided h is sufficiently 

ε 
close to the identity that the exponential map may be inverted, A belongs 

ε ε ε 

to L(G) , the Lie algebra. A does not. Note that if we choose B = A , 

(2.7) 

The Q identification : let f be a function on IR2 We can obtain 

(ε) ε 
a function on a lattice L , Qε f , defined by averaging, i.e. 

where Δ
x
 is a unit square centred at the lattice point x . Conversely, given 



- 12 -

a function f defined on a lattice, we can obtain a continuum function 

ε* 
Qε* f which is the piecewise constant (constant inside each lattice square) 

* 
function which coincides with f at lattice points. With the aid of Q, Q , 

we can obtain continuum operators from lattice operators, e.g., 

The main reason why we like these operators is that ∂ and all functions of 

ε ε* ε ε 
∂ε commute with Qε* Qε . (Recall that ∂ε can be considered to be an operator 

on continuum functions). Another way of stating the same thing is that if A 

is a function of ∂ε , we can consider it either as a lattice operator or a 

continuum operator A . Then if f is a continuum function 

Thus Q gives us an embedding of lattice into continuum. We will simplify our 

formulas by omitting these Q operators. Therefore if the context requires it 

lattice functions and operators are to be identified with their continuum 

counterparts derived via Q . 

(ε) 
Euclidean Propagators, boundary conditions : let l2 (Λ) = l2(Λ) 

(ε ) 
be the space of square summable V -valued functions on L(ε) (Λ) with norm 

(first example of Q identification) 

where χ is the lattice characteristic function of A and || || is the 
A ε 2 V 

norm on V . Δε is an operator on l2 ( IR2 ) · By a form method [11] we can 
h 2 

extend ΔA to a selfadjoint unbounded operator also denoted Δ , on L
2

( IR2 ) · 
A , A 2 

The inverses 
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2 . -2 
where m2 > 0 are bounded operators\ their norm is less than or equal to m 

Their kernels, the covariant Green's functions are henceforth called "covari-

ances" in view of their later role as covariances of Gaussian measures. 

If the gauge field vanishes outside A which by definition means 

that it is zero on all bonds not contained in Λ , in the lattice case, we say 

that the covariance has free boundary conditions. We introduce an operator CF ,on 
h 

l2(Λ) by 

F 
The covariant Laplacian with free boundary conditions, , is detined by 

(2.9) 

A convention for the internal degrees of freedom : in order to clean 

up our language we are going to suppress V, L(V) in some of our norms and 

spaces, e.g. our use of for V valued functions is an instance of this. 

The interaction : the operator on l2 given by 

will be referred to as the interaction with the gauge field. In the case where 

ε ε hε is derived from Aε , (see 2.6), it may be written 
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(2.11) 

where Tµ
ε is the operator of translation by ε in the µ direction. The term 

3 3 

0(εe3) ) is of order εe3 in operator norm if A ϵ L 

The kernel of the Fourier transform of this operator is 

(2.12) 

The Fourier transform is defined by 

x2 
The variable p = (ρ^,ρ^) lies in the square [- -^· , -^· ] , because the dual 

space for the lattice is a torus. 

Trace Norms [12] 

We will have frequent occasions to use the following spaces of operators. 

Let H be a Hilbert space. A compact operator T : H → H belongs to the class 

I , 1 < P < ∞ , iff 

||T||p ≡ (tr(T*T)p/2) P < ∞ 

(2.13) 

||T|| ||∞ ≡ operator norm ≡ || T|| 
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It can be shown that I is complete ; and furthermore the Hölder inequality 

(2.14) 

is valid. In this inequality we can drop the condition that be compact 

if p. = ∞ 

Proposition (a) For 1 p < ∞ finite rank operators are dense in I . 

(b) I is closed with respect to taking adjoints. 

Theorem (Grümm [13]) . Let A be a sequence of operators in I , 1 < p < ∞ . 
n p 

If A
n
 converges to A strongly and ||An|| converges to ||A||

p
 , then A 

converges to A in I 
P 

Remark : Simon [14] shows that strong convergence can be replaced by weak 

convergence in the hypothesis. 
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III. Bounds, Analyticity and Convergence of Covariant Lattice Green's Functions. 

In this section we establish some properties of our covariant Green's 

functions (covariances) which will be needed for the proof of convergence of 

the lattice approximation. 

In Definition 3.2 we define a notion of convergence for a sequence of 

(ε
n

) (ε
n

) 
gauge fields h associated to lattices L with arbitrary orientations, 

ε1, ε2,··· being a sequence of lattice spacings tending to zero. Given that 

a sequence of lattice gauge fields converges to a continuum gauge field in this 

sense, we show in Theorem 3.2 that the associated covariances, considered as 

operators on via the Q identification of the last section, converge in 

a "local" Hilbert Schmidt norm. We also show that the functions obtained by 

restricting to the diagonal the kernels of the differences between the covariant 

covariances and the free covariances converge in Lp
loc for 1 p < ∞ . This 

is done in Theorem 3.3. Actually all operators we consider are finite matrices 

(for ε > 0) , or finite rank operators after using the Q identification to 

put them on , but it is useful to state results and think of them in conti-

nuum language since we are taking a continuum limit. 

To prove these results we use the diamagnetic bound [15] , stated 

here as Theorem 3.1, to obtain uniform bounds. The other main technical device 

is to first prove convergence when the gauge field is small and then use ana-

lyticity, as proven in Lemma 3.4, to extend the convergence to arbitrary gauge 

fields. We give a proof of Lemma 3.4 for the sake of being self contained, but 

the result is a special case of well known general theorems [16] . 

The notion of convergence in Definition 3.2 is sufficient for the results 

of this section but has to be strengthened to prove convergence of the lattice 

partition function in an external gauge field. The reader is referred to the 

next section for this. 
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We begin by stating the results. 

Theorem 3.1 [15] (the diamagnetic bound). 

0 < a < ∞ 

ε α ε 
(C
t

) (x,y) denotes the kernel of the operator Cb
ε raised to the power a 

h h 

in the operator sense. 

This is an easy generalisation of the Nelson-Simon inequality [15] . 

A simple proof has been reproduced in paper I. 

Remark : The same inequality is valid for periodic, Dirichlet and Neumann 

boundary conditions on both sides. 

Before stating the next theorem, which is the main result of this 

section, we need 

ε 
Definition 3.2. A family of lattice gauge fields hε is convergent to a gauge 

field A as ε → 0 iff Αε , defined by 

converges to A in L∞ , i.e., || Αε -A || → 0 . ∞ 

ε 
Theorem 3.3 : If a family (h ) of lattice gauge fields converges to A 

ε ε 
as ε → 0 , then the kernel Cε (x,y) of Cε converges in L (Λ x Λ ) , 

h(ε) h
(ε)

 P 
1 < p < ∞ 
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Remark : The limit is C (x,y) . 
A 

The proof of this theorem will use Lemma 3.4 given below. 

Lemma 3.4 : Let B = Βε, E = Eε be bounded L(V) valued functions on L
(ε) 

μ 
ε 

Then Cg
+
^^(x,y) is a real analytic l2(AxA) valued function in λ , which 

extends to a function analytic in the strip 

~ε 
The extension Cε is bounded by 

H
C
B+AE^

2
(AXA) < H

C
B+ReAE^£

2
(AxA) (1- ξ) 

ε 

Remarks. (1) is real analytic but not analytic as defined in (2.5), 

(2.8) because of the adjoints in (2.5). 

(2) The same lemma holds for the continuum covariance. 

(3) periodic, Dirichlet, Neumann boundary conditions could be accomo-

dated. 

The final result of this section will be used to control Wick ordering 

terms. Define the operator 

ε 

The kernel will be denoted 6C. (x,y) . 
h 

ε 

Theorem 3.5. Let (hε ) be a family of gauge fields converging as ε tends 

to zero to a continuum gauge field A , then for 1 <_ p < ∞ , 
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where the tr denotes a sum (trace) over internal indices. 

Remark : The theorem asserts that 6C is a Cauchy sequence. In fact the limit 

is the continuum expression 

It can be shown that 6C has a kernel which is continuous in x and y so 

that the restriction to the diagonal is well defined. 

Proof of Lemma 3.4. 

We will compress the notation by suppressing ε,μ . Let F, G be 

(ε) 
bounded L(V) valued function on L(ε) . Then 

VG = VieG 

Therefore 

Ξ AF + WF,G 

Let χ be the characteristic function of Λ . We show that the Neumann series 
χΛ 

for the resolvent 

(3.1) 

is convergent in Hilbert-Sehmidt norm (= I? norm = norm of kernel consideral as a 
function 
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2 2 2 
in l2 ( IR2 x IR2 ) ) provided ||G|| is sufficiently small. By Hölder's inequality 

for I spaces 
P 

(3.2) 

The last bound is obtained by applying the easy bounds 

(3.3) 

The bound (3.2) shows that (3.1) is convergent if 

(3.4) 

By taking norms under the sum in (3.1) 
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To prove the lemma, take F = B + (Reλ)E , G = Im λΕ . This completes the proof 

of Lemma 3.4 . 

Remark. In the proof of Theorem 3.5 we will use the fact that the argument 

above is trivially adapted to show that χ Cε ∂ε* is I real analytic 

Λ Β+λΕ 4 

and bounded in a strip. 

Proof of Theorem 3.3. 

We begin by assembling some simple lemmas which will be used in the 

proof. 

Lemma 3.6. Let be a sequence of operators in I , 1 < p < ∞ , which 

converge in I to A . Let B
n
 be a sequence of operators which are uniformly 

bounded in operator norm and B → B , B* → B* as n → ∞ in the strong 
n n 

operator topology. Then A B → AB in I as n → ∞ . 
n n p 

Remark. A related result was an important ingredient in the lattice convergence 

proof of [6]. 

Proof. 

||AB -
 A

n
B
JP <

 IKA-A
n

)Bllp+ Ιΐν
Β
Λ?ΙΙΡ 

< ΙΙΑ~Α
η

ΙΙρ ||B|| +IIA(B-B
n
)||

p 

+ !Ι(Α~ν ||p (||B|| + sup ||B
n

|| ) 
p n 

The first and final terms tend to zero. Let C = B -B . We are reduced to 
n n 

showing AC^ tends to zero in I . Approximate A by a finite rank operator 

A so that 
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||A-A|| < δ 

for a given δ > 0 . It is enough to show that AC tends to zero in I 
n p 

Equivalently, one can show that C* A* tends to zero, i.e., 
n 

Since this is a finite rank operator, it is sufficient that Cn , Cn
* tend to 

n n 

zero strongly because the uniform operator norm bound then implies C C* 
n n 

tends to zero strongly. 

ε 

Lemma 3.7. Let Cε 

Proof. Easy consequence of definitions and Fourier series. See [6] 

Lemma 3.8. Let U IR2 be bounded and measurable. 

uniformly in ε, hε . 1 <_ p <_ ∞ 

Proof. Theorem 3.1 reduces these statements to the special case hε = 1I 

for which they are well known. A simple proof can be based on Lemma 3.7 and 

the Hausdorff-Youqg inequality. 

2 
Lemma 3.9. Let U  IR2 be bounded and measurable, then 
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in strong operator topology 

Proof. (1) To begin with it is sufficient to take U to be a rectangle in 

2 
IR2 . To see this let Dε (x,y) be the kernel of 

((C(ε))“ - c“)2 

then 

so that the norm is increasing in U . Next, by Grümm’s theorem, (section II), 

it is enough to prove that 

<
a

> || XD<
ce

)
a

!l4 → HxuC
a|l

4 

εα α 
(b) (Cε )α → Cα in strong operator topology. 

For (a), by Lemma 3.7 

2 
where the range of integration is [- —. —] for k and k’ . The dominated 

ε' ε 

convergence theorem completes part (a). 

Part (b), (2) and (3) are all similar. We discuss (2). An easy argument 

with Qε shows that it is enough to show that the Fourier transform 
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in strong operator topology as an operator on ( IR2 ) . This is easy, 

The proof of Theorem 3.3 is a series of reductions. 

(1) We claim that it is enough to show convergence in L2C(ΛxΛ) . 

ε 
We know that Cb

ε ϵ L (ΛxΛ) uniformly in ε by Lemma 3.8. Combining this with 
h p 

Hölder's inequality and convergence proves convergence by an easy 

argument. 

(2) It is enough to prove L2-convergence in the special case that 

||A|| < < 1 

• · ε 

Proof. If ε' is sufficiently small, the definition of convergence of h 

implies hε is in a small neighboorhood of 1I , uniformly in the bonds in -

Bε and ε <_ ε' . Therefore we may define A , a Lie algebra valued function 

on bonds (with two components) by 

ieAε 
hε = e 

and then, given λ ϵ IR , set 

hε (λ) ≡ e 

It is then easy to verify that hε (λ) converges in the sense of definition 3.2 

to λΑ . Furthermore, by Lemma 3.1 the covariance Cbε is real analytic 
h(λ) 

in λ . It extends to a function which is analytic in a strip of width indepen-

dent of ε < ε' . Lemma 3.1 combined with Theorem 3.1 shows the extensions 

Cb
ε. are bounded uniformly in ε < ε' , λ ϵ IR . Therefore a form of Vitali's 
h ( λ) — 

theorem (see the remark below) tells us that convergence for all λ is guaran-

teed by convergence for λ in a neighboorhood of zero. This completes the 

proof of part (2) because we may replace Λ by λΑ with |λ| < < 1 
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(3) We will now assume | | A|| , ε' are sufficiently small so that the 

resolvent expansion 

2 2 
is convergent in ( IR2 x IR2. ) uniformly in ε < ε’ . To see this we refer to 

the proof of Lemma 3.4. Recall 

By virtue of the uniformity, we can prove Cεh is convergent as ε tends 
hC 

to zero by proving 

2 2 
is convergent in L2( IR2 x R ) as ε tends to zero. The operator in brackets 

raised to the power of n is strongly convergent by virtue of Lemma 3.5 parts 

ε ε* ... 
(2) and (3) and the fact that (Cε ) ∂ε* and its adjoint are bounded uniformly 

ε1/2 
in operator norm. The factors C are convergent in I4 by lemma 3.9 

part (1). The proof is completed by Lemma 3.8 with p = 4 , together with : 

A → A , B → B in I => A B → AB in I
2
 , which is a simple consequence of 

n n 4 n n 2 

Holder’s inequality. 

A Remark on Vitali’s Theorem. Vitali's theorem [17] does not in its usual 

formulation hold for operator valued normal families. However if a normal family 

F of operator valued functions, analytic in a region Ω , is known to contain 

a subsequence convergent in some open set U in Ω , then that subsequence 

converges throughout Ω . A simple proof may be constructed by exhausting Ω 

by a set of overlapping open discs. The power series expansions associated with 
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each disc are convergent uniformly in F , so it is enough to prove termwise 

convergence, i.e. convergence of all derivatives at the centre points of the 

open discs. This is already given for any disc whose centre is in U . Any 

point in Ω may be reached by passing along a suitable chain of discs. 

Remark 3.10. In the proof of Theorem 3.5 we will use the fact that the argu-

ε ε* 
ment given above can easily be adapted to show that x.C 8 is Cauchy in I 

hε 

Proof of Theorem 3.5. We begin by proving a lemma based on Corollary 4.8 of 

[14] . 

2 
Define the following norm on functions on IR2 , 

Lemma 3.11. 

For ρ,δ,α satisfying 

uniformly in ε, h . 

Proof. Define z ϵ [0,1] by 

p = [z+1/2(1-z)]-1 

Define γ, β > 1/2 by 

δ = zγ , α = β + zγ 
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and let be the operator with kernel 

The lemma is equivalent to proving 

By interpolation, [18] , it is sufficient to prove this for z = 0 , z = 1 . 

When z = 0, p = 2 ; z = l, p = l.By the diamagnetic bound, Theorem 3.1, 

We have omitted internal indices which are to be summed over. By the Fourier 

transform Lemma 3.7, the right hand side is bounded by a constant times 

2 
||f which completes the z = 0 case. For the z = 1 case we write 

Κ
χ
 = AB , IIKJIJ < IMIJJIBIIJ 

and choose A,B to have kernels 

We have omitted and will omit e's to simplify the formulas. 

The techniques used in the z = 0 case can be applied to show that 

2 -y 
||A|L is bounded by a constant depending on γ,β , because (1+y ) belongs 

I2 

to . The I norm of B is equal to 
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J/|f(x)(1+x2) Ύ|2 |(x~y)|2 (1+y2)2ydxdy 

We show this is less than a constant times ||f||
2
 by using 

(l+y2)2Y < (1+x
2
)
2γ

 + (l+(x-y)V
Y 

together with 

which follows from the analyticity of the Fourier transform of 

We now return to the proof of Theorem 3.5. We wish to show that 

<$C£ is Cauchy in L when restricted to the diagonal. We first show that 

hε P 

<5Ce (x,x) is in L uniformly in ε . Thus 

hε p 

where f is a function whose values are scalar multiples of the identity in 

L(V) . Internal indices have been omitted, they are summed to form the trace 

(trv ) on V . The supremum is taken over f such that 

The right hand side of the inequality (3.5) can be written as a trace, i.e, 

(3.6) 

We are omitting ε’s to simplify the notation. Define h(λ) as in the proof 

of Theorem 3.3, 
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(3.6) can be written 

(3.7) 

where (6)c^ = Expand using 

W = ie[∂*A -A*∂] - e2A*A. 
λ λ λ λ 

Αλ = (ieε)
 1

 (h(ε) - 11) 

We areas usual suppressing p’s . Therefore 

- ie tr(C^A* ∂Cλf) - e
2
 tr (C^ (A*A) 'C^f) (3.8) 

The prime indicates differentiation with respect to λ . The integral over λ 

of this is less than the supremum over λ ϵ [0,1] . We now will show how to 

bound the first term in (3.8) by a constant times the L
 t
 norm, ||f|| , , of 

f which is one. Similar steps yield the same bound for the second term and 

the third term is easier so we will not discuss these further. Thus this bound 

will show that the L norm of ÔC is bounded uniformly in ε . From this 
P hε 

point we will drop the trv . A sum over internal indices is to be understood. 

We bound the first term in (3.8) using Hölder's inequality, 

| tr(C3*A'Cf) ! £||c
a

3*A'C
rt

||
2
 || c^fc

6
||

2 
(3.9) 
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where α+β = 1 . We are now suppressing λ also. The cyclicity of the trace 

was used to move a factor Cβ . The second I
2
 norm equals 

(3.10) 

By Hölder's inequality and Theorem 3.1, the diamagnetic bound, this is less 

than a constant times 

(3.11) 

The first factor is bounded uniformly in ε provided 

2p (l-2β) < 1 (3.12) 

2 β 
because homogeneity considerations applied to the Fourier transform of C 

show that 

r
2$, vi , I

 Γ
2(1-2β) 

C2β (x,y)| < c|x-y| (3.13) 

uniformly in ε . Our choice of β is constrained by (3.12). Our proof that 

δC is uniformly in will be complete if we can show that α = l-β can 

be picked consistent with (3.12) so that the first norm in (3.9) is 

bounded uniformly in ε . We have 

I|CVA'C12 < ||cV|| ||A'c01||
2 (3.14) 

The second norm is bounded uniformly in ε if α > 1/2 by an argument like 

that used to bound (3.10). One has to use the fact that A' is bounded in 
A'λ 

L norm uniformly in λ, ε . We claim that if α > 1/2 , the first norm is 
∞ 

also bounded uniformly in ε . Thus by the triangle inequality and the defini-

tion of D.
 /Λ λ

 , 
h (λ) 
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(3.15) 

The second norm is bounded uniformly in ε because ||A^|| is bounded and 

||ca || is less than (m2) α . We bound the first norm by 

< (3.16) 

as was used in the proof of Lemma 3.4. We have now proved that the norm 

of δC is bounded uniformly in ε . 

We now combine this result with Lemma 3.11 to complete the proof of 

Theorem 3.5. By Hölder's inequality, it is enough to prove δC is L1-Cauchy. 

If A(x,y) is the kernel of an operator A ϵ I 

< || *ΛΑ χ
Λ

ΐΐι
1 

where the supremum is over f with ||f |= 1 and is the characteristic 

function of A ; To make then the left hand side unambiguous one should of 

course think of A being factorized into two Hilbert-Schmidt operators. By 

this inequality it follows that we may prove our theorem by showing that δC 

is convergent in I . 

Since 

δc = Ch Wh C1 
* * 

= ie Ch ∂* AC1 - ie C
h
A ∂C1 

h 1 h 1 

+ e ChA A 
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(where subscripts μ, ε have been suppressed) it is enough to show that 

(a) Ch9 Cauchy in 

(b) A C
h
 χ

Λ
 Cauchy in I

4/3 

e.g. the first term in the expansion for x^6C XΛ is I1 Cauchy because we 

may take h = 1 in (b) and combine (a) and (b) by Holder's inequality. A similar 

argument involving the adjoints of the operators in (a) and (b) (which converge 

because taking the adjoint is a continuous map from I to I ) suffices 

for the second term. The third term is Cauchy in I because (b) implies 

XΛ ChA and AC1 χΛ are each Cauchy in . 

As has already been remarked, the proof of (a) can be accomplished 

along the same lines as the proof of Theorem 3.2. To prove (b) observe that 

by Lemma 3.11 it follows that Ch
ε
 χ

Λ
 is in Ip for 2 >_ p > 1 uniformly in 

ε . By Theorem 3.3 it is convergent in I2 . Holder's inequality implies (b). 

The proof of Theorem 3.5 is complete. 
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IV. Convergence of the Lattice Approximation in an External Yang Mills Field. 

In this section we prove that the partition function and its associated 

finite volume expectation, for the case in which the Yang Mills field is external, 

converge as the lattice spacing tends to zero. We allow the orientation of the 

lattice to vary as the limit is taken, in order to be able to conclude Euclidean 

covariance of the limit. For simplicity we consider a lattice theory with just 

one boson field. Extra boson fields would not be a serious complication. 

We begin by some changes in notation and normalisation of the partition 

function described in section 2.3 in paper I. These are necessary for a convenient 

description of the continuum limit. We factor the partition function into a 

renormalised determinant z
Λ
ε(hε ) and a partition function ZΛ

ε(hε ) of the type 

considered by Schrader [7] , but on a lattice; it differs also in that the 

ε . 2 ε - 1 
boson self interaction is normal ordered with respect to (m2 -Δε ) . We 

show convergence for these two factors separately in Theorems 4.2 and 4.1 respec-

ε ε. 
tively. The convergence proof for ZΛ

ε(hε ) is based in spirit if not in body 

on [6] . One difference which appears to help in this case is that we embed our 

lattice Gaussian processes in white noise. The diamagnetic bound, Corollary 2.4 

of paper I, is an important ingredient. 

ε ε. 
The convergence proof for z

Λ
ε(hε ) involves a study of some divergent 

ε 
(as ε ↓ 0) contributions to the vacuum polarisation, Πε , which cancel 

up to a finite transverse part by a Ward identity, or gauge invariance. This 

work is rather grubby and is postponed to Appendix A . 

In paper I we defined partition functions for matter in external Yang 

Mills fields. See for example section 2.3 in paper I. We now specialise to 

2 ... 
Bose matter in IR2. with free boundary conditions. We will also be making some 

normalisation changes to obtain partition functions which will converge as 

ε → 0 . 



- 34 -

(ε) Let Ø be a function from L(ε) to V represented in components 

by (Ø) ) , x ϵ L (ε) , i = 1,..., dim V . Define 
x « i 

(4.1) 

The tilde on the Z is there because we wish to reserve Z for another parti-

(ε) M 
tion function. Sums and products over x run over L (Λ) A

Λ

M is the 

matter action, hence the M superscript. is the Bose self interaction. :P
i
:ε 

ε 2 
is a monomial normal ordered with respect to ϵ C∞(IR

2 ) . We assume 
-

that V is bounded below as a polynomial in Ø when the normal ordering is 

dropped. At this stage V does not have to be gauge invariant. 

Since Z^(h) diverges as ε decreases to zero, we renormalise by 

ε 
dividing by ζΛ

ε (1) where 

(4.2) 

Thus let 

(4.3) 
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ε 
where (1ν^(φ) is the normalised Gaussian measure with mean zero and covariance 

ε 
. (The F on the covariance can be dropped because V depends on fields 

supported inside A ). ζ^(Ιι) is different from zero by explicit Gaussian inte-

gration. 

We can now state our first theorem for this section. 

(4.4) 

Theorem 4.1. 

ε 
If (hε ) is a family of lattice gauge fields converging in the sense 

... . . 2 
of Definition 3.1 to a continuum field A and Λ  IR2 is bounded, then 

is convergent to a non zero limit dependent only on A for all λ > 0 . 

Remark : In particular the limit does not depend on the orientations of the 

( ε ) 
lattices 

The convergence of z
Λ
ε^(h) requires a stronger topology. We will now 

define a norm which seems to be as convenient as any. Given a > 0 , set 

(c.f.(2.4)). 

(4.5) 

0 
This norm is chosen so that Πε , the second order vacuum polarisation graphs, 

µv 

converges as ε tends to zero. See Theorem 4.3 and the appendix. 
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Definition 4.2. 

A family (hε ) of lattice gauge fields is convergent to A in the 

(∞, α) sense if 

converges to Aµ in the sense ||Α
ε
 -A||∞ α → 0 as ε → 0 . 

For our next theorems we assume Λ is a bounded rectangle. We also 

require that our gauge fields h be supported inside Λ 

Theorem 4.3. 

0 
If a family (hε ) of gauge fields is convergent to a continuum gauge 

field A in the (∞,a) sense, then z^(h ) is convergent to a non zero 

limit. 

Define the unnormalised measure 

(4.6) 

In paper I we showed that ZΛ
ε(h) is non zero. Therefore we can divide through 

ε' 
and thus define the corresponding normalised measure dωh

ε 

We now wish to examine the limit as ε tends to zero of these measures. 

2 
The limiting continuum measures will be defined on S'(IR2 ) , the Schwartz 

distribution space. 

Corollary 4.4. 

Let (hε ) be convergent as in theorem 4.2. dm converges as ε 

tends to zero to a limit dωA . The convergence is in the sense of convergence 

of characteristic functions. All moments converge also, i.e., 
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where f, f. ϵ C0
∞ (Λ) . 

i o 

We now begin the proof of T heorem 4.1. We will need the following 

lemma. 

Lemma 4.5. 

Let f : IR+->- 3R be a continuous function on the positive real line. 

Let I
p
+
 denote the cone of positive self adjoint operators in I

p
 . We assume 

that f satisfies 

||f(A)||
p
 < F(H A||

 q
)
 νΑεΙ

ρ 

where F(t) is a positive continuous function on IR+ decreasing to zero as 

t  0 . Then the map A → f(A) is continuous from I+ to I q p 

Proof of Lemma 4.5. We will use the following standard facts : if A
n
 is a 

sequence of positive compact operators converging in operator norm to an operator 

A so that the spectra are discrete and of finite multiplicity, then the eigen-

values of A
n
 converge, the spectral projections P[a, b]

(n)

 , a < b < ∞ , 

a, b ϵ σ(A) converge in operator norm. See for example [5] , vol. I, Theorem VIII. 23. 

From this we conclude that f(P^n^ A ) converges in I for all p 
(a, ∞) p 

provided a > 0 is not an eigenvalue of A . Choose a so small that for a 

given ε > 0 , 

(4.7) 
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By the triangle inequality 

The third term converges to zero by the remarks above. The second term is less 

than ε/2 by (4.7). To bound the first term note that 

because → A in I and the projections converge in operator norm. 

Thus 

Proof of Theorem 4.1 (assuming Theorem 4.3). It suffices to consider λ = 1 

To begin with, we embed all the lattice path spaces in the space for white 

noise. Let dw(ψ) be the white noise measure, i.e. the Gaussian process of 

mean zero and covariance equal to the identity operator. Define 

Φε ≡ Εεψ 

ε 
Eε is an operator on · Then 
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Therefore as in [6] , (11.24), we can show convergence by 

The second inequality is simply Cauchy_Schwarz together with νέχ+y) ̂  /x + /y 

The integrals in curly brackets may be bounded uniformly in ε, ε' 

by the diamagnetic bound, Theorem 4.1 of paper I, 

By Theorem 4.3 the first term converges as ε tends to zero to a finite number. 

The second factor is bounded uniformly in ε by Nelson's boundedness below 

proof for Ρ(Ø2) ; see [19] 

To complete the proof it now remains to show that 

Jdw|ve-ve' |2 → 0 as ε, ε' → 0 (4.8) 

We may without losing any generality assume that for some positive integer N 

because in general V is a sum of such monomials. By virtue of the change of 

normal ordering formula [29] , page 11, (internal indices suppressed) 
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where d1,... are universal constants and [N/2] is the largest integer less 

than or equal to N/2 , we may without loss take 

ε 
With Vε of this form we prove (4.8) by showing that 

ʃdw νε(νε-νε') → 0 ε, ε' → 0 

By the standard methods [20] for evaluating Gaussian integrals, this is equi-

valent to 

(4.9) 

as ε, ε' → 0 . We have suppressed hε , ε , ε' in favour of primes. EE' is the 

operator product i.e., 

ʃ E(x,z) E'(z,y)dz 

We know by Theorem 3.5 that δC converges in for all 1 < p < ∞ . Theorem 

2 
3.3 and Lemma 4.5 (with f(x) = /x) imply that E2 converges in I

4
 , there-

ε ε ' 
fore Εε Eε' converges in I

2
 which is the same as convergence in Ι^ίΛχΛ) . 

Recall that Cε is in Lp (ΛxΛ) uniformly in ε for 1 < p < ∞ by the dia-
hε P 

magnetic inequality, Theorem 3.1. A judicious assortment of triangle inequalities 

and Hölder inequalities yields (4.9). This proves that 
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is a Cauchy sequence. 

The proof of Theorem 4.1 is complete once we show the limit is not 

zero. Therefore, by Jensen's inequality 

The integral in the exponent is not infinite in the limit ε tends to zero. 

If one does the integral by explicit Gaussian integration, the result is a 

sum of Lp norms of δC which by Theorem 3.5 converge as ε tends to zero. 

ε ε 
Proof of Corollary 4.4. Since zΛ and converge (we are assuming Theorems 

4.1 and 4.3) as ε tends to zero, it suffices to prove that 

converges. F is a polynomial or exponential. This follows from convergence 

of e-v (see the proof of Theorem 4.1) and of F (see (4.8)) . These are 

standard arguments; see [6] 

ε . 
Before beginning the proof of Theorem 4.3, we rewrite z

Λ
ε in a more 

convenient form, namely 

(4.10) 

where as usual 

(4.11) 

To simplify notation subscripts μ have been omitted. We will also suppress ε 

in the equations below. To obtain (4.10), first explicitly integrate the 

Gaussian integrals in zΛ 
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This coincides with (4.10) once we argue that the F denoting free boundary 

F 
conditions can be dropped. Since CF and C coincide when their kernels are 

restricted to Λ x A we need to show that 

This in turn follows from the following facts 

(1) 

This is easily verified using the definitions. Recall that h is supported 

inside A . 

ε F ε 
(2) The kernels of Δh

εF, and Δh
ε coincide when restricted to ΛxΛ except 

h h 

at the lattice points on the boundary. At these points the difference is inde-

pendent of h . This second fact may easily be proved by going through the 

proof of Theorem IV.7 in [6] with Δ replaced by Δh 

We now introduce the following standard notation [21] . Given K ϵ I1 , 

define renormalised determinants, n = 2, 3,... 

Then 

(4.12) 
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Proof of Theorem 4.3 (using Appendix A). We see by (4.12) that it is enough to 

show that 

ε 
(1) det4(l+K

ε ) is convergent as ε  0 . 

ε 3 
(2) tr(Kε )3 is convergent as ε  0 . 

where 

(4.13) 

First note that (4) is the diamagnetic bound of R. Schrader, R. Seiler. A proof 

is also given in paper I, section 3. 3. 

Proof of (1) : We suppress ε’s . Set 

and note that since W is finite rank, y 

det,(1+K) = det,(1+H) . 
4 4 

We now appeal to the well known fact [21 a,e, f] that det
n is Lipschitz

 continuous 

on I . Then (1) follows if we show that H is Cauchy in I
4

 . To prove this, 
n 4 

expand W using (4.11) and factor each term in the sum into products of 

(4.14) 

and their adjoints. The factor can be skipped by using the condition on the 

support of h . The first operator converges strongly, the second in operator norm 

norm, the third in I. by Lemmas 3.7, 3.11. Each term in the sum contains at least 
one 
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of the third kind, thus using Lemma 3.6 one obtains (1). 

3 Proof of (2). This is essentially the same as (1). Expand K3 . Write each 

term as a product of operators as in (4.14) and their adjoints. Each term contains 

at least two factors converging in . This is sufficient to prove (2). 

The proof of (3) is more subtle and is the only place where we need 

the stronger notion of (∞, α) convergence. The problem is that the individual 

traces in (3) diverge as ε tends to zero. There is a cancellation between them 

due to a Ward identity (gauge invariance). For the proof of (3), see Appendix Α. 

Remark : We conclude this section by sketching some constructive, uniform upper 

and lower bounds for zε (h) , valid for all Αε with |Im Δε| < const., 

uniformly in ε . 

Suppose that Αε → A , as ε → 0 , in the (∞, α) sense; see (4.5) and 

section V. We require that 

A = A1+ iA2 

(4.15) 

where A1 , A2 are real and ξ will be chosen below. The norm || || is 
1 2 ∞, α 

defined in (4.5). 

Choose a positive integer N so that 

(4.16) 

Recall the definition of Aε given in equation (2.6). We decompose Aε into 

its real, and imaginary parts : 
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Aε = (4.17) 

For each ε we define a sequence of gauge fields by 

(4.18) 

Our bounds are based on the trivial identity 

(4.19) 

We have suppressed ε’s . The idea is to obtain a uniform (in ε , ε small) 

upper and lower bound on each factor using direct methods, in particular the 

loop expansion. 

Let W be defined by 
m 

Δ = Δ + Wm (4.20) 
m m-1 m 

where Δ = Δhm . Set h = h
N+1

 and Cm = Chm . Then 
m h N+l m h 

m m 

(4.21) 

ε ε ε 
(This defines g

m
) . Since A converges to A and A , A only differ 

by terms of order ε , it is easy to show that Αε converges to A in the 

(∞, a) norm. We in fact show this in the next section. Next, by choosing ξ 

small we show that the loop expansion for det4 in (4.21) converges absolutely 

and uniformly in m and ε , for ε < for some > 0 . This is done 
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by using the diamagnetic bound, Theorem 3.1, and estimates of the type 

established in the proof of Lemma 3.4, (see (3.1) -(3.4)) and is not difficult. 

From this we obtain 

(4.22) 

for some constants c1, c2 independent of ε and m . 

The factor g is the exponential of all terms of order 1,2 and 3 in 

-1/2 1/2 1/2 
W arising in the loop expansion of det (1 + C1/2 .. W C

 1
 ) . These more m r m-1 m m-1 

singular terms are estimated by expanding in a partial Neumann series. 

The leading terms give the contribution Π analysed in Appendix A . The 

remainders are estimated by methods resembling those in the proof of Theorem 

3. 5. The details are tedious but straightforward and are omitted. 

The conclusion is 

(4.23) 

where c'
1
 , c'

2
 are constants depending only on ξ and ||A||∞. We collect 

(4.19), (4.22) and (4.23) to obtain 

(4.24) 

ε 
Note that if A is real valued along with A for all ε , then zε is real 

and positive because by (4.4) it is the ratio of two positive integrals, there-

fore (4.24) is strengthened to 

(4.25) 

where the right hand bound is the diamagnetic bound, Theorems 2. 3, 4. 1 and 

section 3, paper 1. N is determined by ||Λ|| < Nξ, 
, a 
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V. Convergence of the Partition Function for Yang Mills and Matter Fields 

(Yang Mills fields with a cutoff). 

5.1) In this section we specialise to abelian Yang-Mills fields. This is implicit 

in our use of a Gaussian measure for the pure Yang Mills field, which is incom-

patible with gauge invariance if the gauge group is not abelian. 

• (ε) 
Given a real measurable abelian gauge field A and a lattice L , 

(ε ) let be the components of A relative to the unit vectors generating L 

Given a bond b in the µth direction let 

(5.1) 

≡ 0 if b ϵ Λ 

ε (ε) 
This defines a lattice gauge field h on L(ε) (Λ) . Throughout this section, 

all lattice gauge fields will be derived from a continuum gauge field in this 

way. We will therefore regard the partition function Z^(h ) of the last section 

as a function Z^(A) of A · The Ø field is complex. 

The full Yang Mills and matter partition function, denoted has 

the form 

(5.2) 

where d
µD

(A) is a Gaussian measure, mean zero, covariance D = Dµv(x, y) . 

In this section, we will assume that the covariance D is such that 

with probability one, the sample functions Aµ(x) are essentially uniformly 

Holder continuous with modulus a < y , (E.U.H.C) , which means that there 

exists a constant cΛ , finite for almost all A , such that 
A 
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|A (x) - A (y) | < c
A
|x-y|a, x,y ϵ Λ~Ε

Α 

μ = 0, 1 (5.3) 

where E is a set of Lebesgue measure zero, dependent on A . A sufficient 
A. 

condition on the covariance D for (5.3) to hold for almost all sample functions 

Aµ is given in section 5.2). The condition (5.3) excludes the covariances we 

are ultimately interested in and this is why we refer to such covariances as 

"cutoff". The cutoff has to be removed by taking a limit outside the A integral. 

This limit is more difficult because it involves renormalisation. It will be 

discussed in paper III. 

Theorem 5.1. 

_ ( (ε) 
If Λ is a bounded rectangle and L(ε) is a family of lattices, 

ε > 0 , then lim ZΛε exists, is non zero and is unique. 
ε → 0 

Define 

where F ϵ Lp (dµDxdvA ) for 1 < p <∞ 
p D A p 

Corollary 5.2. 

ε · 
The measures < > converge as ε → 0 in the sense of convergence of 

generating functions. All moments converge. 

Proof : Essentially identical to the proof of Corollary 4.4. 
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Define 

<>Αξ1™<>1 (5

·
5) 

ε-Κ) 

Proof of Theorem 5.1 : we begin by showing that if satisfies (5.3), then 

hε as defined by (5.1) converges as ε → 0 in the (∞, α') sense for α' < a. 

0 ε 
By (5.3) A^(x) is in . By expanding the exponential in A^(x) , 

where the essential supremum is taken over all ξ ϵ A within distance ε/2 

of a given bond b , and then over all bonds b in A . The first term tends 

to zero by (5.3). Next define 

(5.6) 

The proof of (∞, a') convergence is complete once we show that the seminorm 

(5.7) 

for μ = 0,1 . 

The following easy inequality, valid for 0 < γ < 1 , 

(5.8) 

follows from Hölder’s inequality. Choose γ so that -2 = a" < a . Since 

we have just shown that ||B^|| tends to zero, it is enough to obtain a uniform 

bound on ||Β^||^„ · This is easy to obtain by expanding the exponential in 

Bε and applying (5.3). This completes the proof of (∞, α') convergence. 

Now we will establish that the limit, assuming it exists,is not zero. 



- 50 -

By its definition as the ratio of two positive integrals and the diamagnetic 

bound of Schrader and Seiler [7] , also see paper I section 3.3, 

0 < z (A) < 1 

Furthermore by the convergence of hε just proven and Theorem 4.3 the limit 

of zε (A) exists and is non zero almost surely in A see (4.25). Denote the limit 

by z(A). Jensen's inequality implies 

ε 
The exponent is a real valued polynomial in δC^ which we know by convergence 

of hε and Theorem 3.5 is convergent as ε  0 . Let P(δCA) denote the limit. 

Fatou's lemma implies 

End of prooof that ¹ 0 . 

By Theorems 4.1 and 4.3 and the convergence just established, 

we now have obtained convergence of Z^(A) almost surely, as ε tends to zero. 

The proof of Theorem 5.1 is completed by combining this with the Lebesgue domi-

nated convergence theorem and the diamagnetic bound, Theorem 4.1, paper I : 

The right hand side is bounded uniformly in ε
 by Nelson’s boundedness below 

proof [19]. 
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5.2) Continuity of Gaussian Processes 

Theorem 5.3. (A.M. Garsia) 

Let Φ(x) be a Gaussian process on a bounded region Λ . A sufficient 

condition for Φ to satisfy (5.3), (E.U.H.C) with modulus a , is that at u = 0 

(5.9) 

be Holder continuous with modulus β > a 

For α proof of this theorem, see the beautiful article by A.M. Garsia 

[8] . The condition in Theorem 5.3 follows from the condition in his Theorem 2 

by integration by parts. To help the reader we indicate the basic idea in [8] . 

The assumption (5.9) on p(u) implies that the expectation 

is bounded uniformly in x,y ϵ Λ for a suitable c > 0 . This implies 

with probability one. This condition is evidently tantamount to some form of 

continuity for Φ . Garsia has proved a very clever real variable lemma, (Lemma 

1 of [8] ) , which shows that this condition implies Φ(x) is E.U.H.C. with 

index a for all a < β · 

In the case at hand, we infer from Theorem 5.3 that A is (E.U.H.C) 
µ 

for μ = 0,1 if at u = 0 

(5.10) 
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is 3 Hölder continuous, β > α . If we specialise to the case of A real 
μ 

and translation invariant then (5.10) is implied by : for some constant c , 

(5.11) 

We can transform this into a simple condition on the Fourier transform 

of Dµµ (x-y) , denoted Dµµ (k), by noting that the supremum norm of 

is less than the norm of its Fourier transform. The Fourier transform of 

-2β -2+2$ 
|x|-2β is, for β < 1 , c_|kI by homogeneity, therefore the norm of 

1 

the Fourier transform is less than a constant times 

which is finite provided β < 1/2 and 

ʃdk D (k) |k|2β < 
μμ |k| 

(5.12) 

Therefore we have proved 

Corollary 5.4. 

A Gaussian process Aµ (x) with covariance D (x-y) has sample functions 

which are (E.U.H.C.) with modulus α provided condition (5.12) holds 

for some β > a 

5.3 Osterwalder...Schrader Positivity. 

We assume that Λ is symmetric with respect to reflection about some 

hyperplane Π . 
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Let Λ
+

, Λ_ denote the open subsets of A on either side of π .We now 

G G 
define Σ

+
 , Σ , which intuitively are the algebras of gauge invariant functions 

G 
of fields supported in Λ

+
 , Λ_ respectively. Σ

+
 is the algebra of functions 

measurable with respect to the σ field generated by all functions of the form 

In the last expression A is integrated along a contour inside Λ . Σ_ 

is defined by replacing Λ
+
 by Λ_ . Reflection about Π induces a map Θ 

Θ : Σ
+
 → Σ 

in an obvious way. See section 2.1 of paper I. 

In this section we wish to show that if the boson self interaction V 

is gauge invariant, i.e., 

ν(Ø) = v(|Ø|) 

and the covariance D is suitably chosen, then we have Osterwalder Schrader 

positivity in one direction, i.e. 

<F9(F)>
A
 > 0 (O.S ) 

for all F in ∩ Σ
+

 . 

We choose covariances D of the following type 
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(5.13) 

2 
where k = k k , k = (k ,k..) , 

µ µ ο* 1 

and g is positive, continuous with 

ʃ |g(k1) | | k1 | β dk
1
 < ∞ (5.14) 

for some β > 0 . Note that Corollary 5.4 implies that the Gaussian process with 

covariance D has (E.U.H.C) sample functions. 

Theorem 5.5. 

The expectation < > is Osterwalder Schrader positive for Π parallel 

to the 1-direction if V is gauge invariant and D is of the form (5.13). 

Proof. Approximate F in (O.S) by a polynomial in the gauge invariant fields 

B (f), :ØØ (f): , J<j>e*'^ Φ g · 

ε By Corollary 4.4 the expectation < > of such a polynomial converges as ε  0 . 

Therefore it is enough to prove (O.S) for < > replaced by < > . We now 

put the A field on a lattice also : consider the lattice Gaussian process 

with covariance Dε given by the kernel of the operator 

ε'* ε ’ '* 
where ∂ is the limite difference gradient and ∂ ∂ = ∂ ∂ 

μ μ 

Choose ε ’ = ε/N where N is an integer and arrange the ε' lattice so that 
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ε 
it is a "refinement" of the ε lattice. By diagonalising the covariances D 

using the Fourier transform it is easy to show that as ε'  0 the Gaussian 

measures converge, i.e., 

(5.15) 

in the sense of convergence of moments and characteristic functions. We claim 

ε ε’ 
that this implies that the expectations < >^’ associated with this double 

lattice approximation converge to < >ε as ε’ 0 in the sense of convergence 

of moments . This is so because the partition function Z^(A) for bosons in 

an external gauge field can be expanded in a convergent Fourier series in expo-

nentials of the finite number of Gaussian variables 

{/, A dx : b ϵ βε (Λ)} 
b μ μ 

where b is a bond in the ε lattice and the contour integral along b is 

ε 
really a "contour sum" on the bonds of the ε' lattice. Approximate Z^(A) 

by truncating the Fourier series and use (5.15). Thus it suffices to prove (O. S ) 

ε ε' for < > replaced by < >^ . This is a lattice theory and we may prove 

(O.S) for it in complete analogy with Theorem 5.3 and Corollary 5.4 in paper I. 

The presence of two lattices, one for the A field and another for ϕ causes 

no additional problems. 
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VI. Feynman Rules, Counterterms and the Change of A covariance Formula. 

VI.1) This section is a technical preparation for the ultraviolet limit, i.e., 

the removal of the condition (5.12) on the A covariance. This will be done by 

taking a limit outside the integrals over A and ϕ . To control this limit 

we will need a formula which we call the change of covariance formula in honour 

of [22] . This identity expresses the difference between two partition functions 

with different A covariances in a form which is amenable to estimates. 

The ultraviolet limit will only exist (conventional wisdom based on 

perturbation theory) and be non trivial if one alters the interaction V by 

adding in some terms known as counterterms which will be infinite in the limit. 

Since one of the most convenient ways of discussing the rather complex formulas 

which arise is the Feynman graph notation we will also spend some time explaining 

this. We have introduced some graphical notations which are not standard. 

In this section we continue to assume that lattice gauge fields are 

abelian and derived from continuum gauge fields as in (5.1). We also assume that 

the photon propagators are translation invariant and satisfy (5.12). The ϕ 

field is complex. 

We begin with some notation including the Feynman graph formalism. We 

present formulas first and explanations afterwards. 

(6.1) 

∂ε 

where p, x are in IR2 . The Fourier transform of ∂ε is 

(6.2) 
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The lattice photon propagator is defined in terms of the continuum propagator by 

(6.3) 

( ε ) 
where x, y ϵ L(ε) and 

x ϵ Λ, = 0 otherwise (6.4) 

with b (x) denoting the bond at x pointing in the direction e 
μ 

A
µ

ε * 
The quantities A are Gaussian random variables, but A , A are 

µ μ μ 

not. Formally 

(6.5) 

Feynman Rules (Momentum Space) 
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Feynman Rules (Configuration space) 

(7) f(x) 

(8) 6^X
A
(x) · 
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Associated with each graphical symbol is a continuum kernel, written first, and 

a lattice kernel written second. By the Fourier transform, the kernels listed 

under the heading configuration space are unitarily equivalent (as operators) 

to the kernels listed opposite the same numbers under momentum space. The various 

factors of occur because we are using free boundary conditions. Similar 

formulas hold for periodic boundary conditions. Note that a factor is in-

(ε ) 
cluded in the definition of A(ε) associated with (5.1). 

Since we are now specialising to the case of ϕ complex 

To each graph that can be constructed by joining the vertices (3) - (7) 

by lines (1) and (2) is associated a polynomial in ϕ and A obtained by 

integrating over all the p’s and k’s . This is a standard notation in field 

theory so we will not explain it in detail but simply give an example which 

has been cropping up continuously in this paper. Let ΛAµ = χΛΑµ , 

(6.6) 

Both these integrals happen to diverge. If they were interpreted according to 

the lattice kernels they would not diverge and they would be equal by the 

Plancherel identity. 
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VI. 2. Counterterms, Renormalised partition functions, measures. 

Let 

(6.7) 

where Πµν is the limit of the quantity Πεµν defined in equation (A, l), 

Appendix A . δm2D is a continuum quantity. We will have occasion to use the 

corresponding lattice quantity (δm2D)2. The existence of the limit in the 

definition of ED is established in Appendix A. It requires that Dµν satisfy 

(5.12). Both δm2D and EDare infinite if (5.12) does not hold, i.e. these 

counterterms are inserted to cancel divergences in the ultraviolet limit. 

We now define the counterterms 

(6.8) 

where the normal ordering is with respect to C . Define UεΛD by substituting 

the corresponding lattice definitions. 

The renormalised partition functions are, by definition, 

(6.9) 

c.f. (4.3) and (5.2). We are dropping the Λ subscripts everywhere from this 
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section because Λ will be fixed. Instead we make D dependences explicit 

because the dependence on D will be of interest. 

Since for a fixed ultraviolet cutoff on the gauge field the renorma-

lisation constants
 K)

2
 ’
 E

D
 converge as ε tends to zero, our previous 

convergence proof for Theorem 4.1 is easily adapted to prove that the limit 

as ε tends to zero of Z^(A) exists almost everywhere. We denote the continuum 

limits ZD(A) and ZD . We can take the limit past the dµD(A) integral 

because Lebesgue dominated convergence can still be justified by the diamagnetic 

bound, c.f. the proof of Theorem 5.1. 

We will use the subscript D to indicate that V is replaced by 

V+UD in previous definitions. For example the renormalised Bose matter action 

is 

e.f. (5.4). We apologise for the confusing use of A for both the Yang-Mills 

field and the action. 

VI. 3. Change of A- covariance formula. 

Let D0, D1 be two covariances for the gauge field. The associated 

independent Gaussian processes are denoted Α0, Α1 . For t ϵ [0,1] , set 

A ≡ /(l-t)A + Æ A1 
ο 1 

(6.11) 

D (l-t)D + tD. 
t ο 1 

Note that A is a Gaussian process with covariance Dt . Let P be a polyno-

mial in ϕ, ϕ ≡ (ϕ) of the form 
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P ≡ ʃdx1 ...dx
q
 g(x1 ,...,xq : ) ^(x )...V(x : ) (6.12) 

■*" H H **■ q 

where g ϵ . We are interested in studying 

Z1 <P>1 - Z <P>0 (6.13) 
1 1 ο o 

The subscripts 1,0 and later t replace the subscripts D1, D
o

, Dt in order 

to simplify our formulas. 

We study (6.13) by using the fundamental theorem of calculus to write 

it as the integral of a t derivative. The t derivative and the dµ(A) 

integrals can be interchanged because the second derivative of the integrand 

may be controlled by the methods we are about to apply to the first derivative. 

Thus (6.13) becomes 

(6.14) 

The measure dω is given by 

(6.15) 

The limit is as usual in the sense of characteristic functions, or convergence 

of moments. Existence follows from the results of section IV. We now show that 

(6.16) 

where is a linear operator defined on the space of polynomials in ϕ .It 

will he defined below. By dividing through by r,1 (Π) and taking the limit 

ε  0 we will obtain an identity for the t derivative in (6.14). By doing 

the t derivative : 
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(6.17) 

We use primes here and hereafter to denote t derivatives. The factor ϕ(x) 

Με 
in (-A+ )' is integrated by parts. This simply amounts to replacing it in 

(6.17) by 

2 ʃdy Cε(x-y) (δ/δ$(Υ)- (δ/δφΰ)) (6.18) 

where the integral is really Σ ε and 

y 

(6.19) 

These formulas are easy to derive since we are working on a finite lattice. 

The easiest way to manipulate integration by parts is via the graphical repre-

sentation 

(6.20) 

The conclusion obtained from integration by parts applied to (6.17) 

is of the form (6.16) with Kt
ε equal to 

(6.21) 
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We now exhibit a cancellation between the third term and the last in 

(6.21), by writing 

ε 
so that Kε can be put in the form 

(6.22) 

The in (6.21) cancelled when the last term in (6.22) was normal ordered. 

Πε was defined in (6.7). We define K as in (6.22) but with diagrams interpreted 

ε 
by continuum Feynman rules and Πε replaced by Π . 

The true merits of (6.22) will be more readily appreciated in the 

context of the stability expansion in paper III. The main point is that the 

diagrams in K remain finite in the ultraviolet limit provided A is in a 

gauge which is approximately transverse. 

Having identified the operator appearing in (6.16) , we divide 

both sides by ζε(1) and take the limit ε goes to zero. The result, after 

some work which is discussed below, will be 

(6.23) 
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The limit ε  0 : The main difficulty is to show that the right hand side of 

(6.16) converges as ε O . There is no difficulty in interchanging the limit 

and the t derivative because the left hand side can easily be shown to be 

bounded uniformly in ε by the diamagnetic bound of paper I and the Cauchy 

Schwarz inequality. Our previous results, Theorems 4.1, 4.3 imply that the quan-

tity under the t derivative on the left hand side converges as ε O . 

We use the notation introduced in the proof of Theorem 4.1. We will 

only sketch a proof that the right hand side of (6.16) converges because the 

method is similar to techniques we have already explained in proving Theorems 

4.1 and 4.3. Recall that we are still working with a cutoff gauge field, A , 

that is (E.U.H.C) with modulus a < 1/2 . 

By an argument as in the proof of Theorem 4.1, it is enough to show 

that 

(6.24) 

I 

pointwise in t as ε,ε’ → 0 . We first show this in the case that K+ , K 
t t 

•
 ' 

are replaced by Kt , KT which are obtained from K
t

 , K
t

 by replacing all 

factors χΛΑt occuring in their definition except those in the last term in 

∞ 
(6.22) by a C∞ gauge field A

t

 compactly supported in Λ . We then gain the 

freedom to move all the derivatives occuring on external lines in 

type vertices past the At by Leibniz rule onto the internal lines. It is now 

not difficult to prove (6.24) in this case using the methods of the proof of 

Theorems 4.3 and 3.3. It is now necessary to show that for any δ > 0 we can 

approximate χ A by A so that 
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uniformly in ε . This follows easily from the fact that can be chosen 

so that A C and its adjoint approximate A C and its adjoint 

arbitrarity closely in I uniformly in ε . This concludes our discussion 

of ε O . 

We now combine (6.23) and (6.14) to obtain 

Theorem 6.1. 

If P is of the form (6.12), D
o
 and are two covariances for 

the gauge field 

K was defined below (6.22). 
t 
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APPENDIX A 

In this appendix we study the vacuum polarisation 

tr Cε Wε + 1/2 tr(CεWε) (A. 1) 

which was encountered in the proof of Theorem 4.2 and also in section 6. We 

will specialise to the case in which φ is a complex scalar field and A 

is real. The calculations given below are not significantly changed if one 

combs them through with A nonabelian. 

We begin by rewriting (A. l) in the form 

where by a calculation using (2.12) and Lemma 3.3 

A subscript μ (or ν) on a bracket indicates that all ρ's , ρ's inside 

are p's, ρ's. 

Subscripts + , - indicate that ρ is to be replaced by ρ
+

 , p_ in the 

appropriate definitions, 
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p stands for p p . All integrals are over 

By using the Feynman rules in section 6 it may be verified that 

(A.2) 

There are no D propagators on the external lines. This observation will 

become relevant when we prove that converges as promised m section 6. 

Transversality. 

We first show that Π is transverse, which by definition means 

(A.3) 

We set ε = 1 and omit ε superscripts throughout the proof of 

transversality. Transversality can be shown directly by shifting the variable 

of integration in the left hand side of (A.3) as is done in physics text books. 

See [23] to get the general idea. However it is really a consequence of gauge 

invariance. Let 

h = eieA ; A = A + αәh 

By gauge invariance, see for example paper I Theorem 2.6 , z.(h ) , 

defined in section 4, is independent of a . Therefore 

is independent of α . Differentiation with respect to α and setting 

α = O yields (A. 3) . Q. E. D. 
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Since Π is transverse it must satisfy 

(A. 4) 

because the quantity in brackets is the projection onto the transverse component 

of a gauge field as can be checked by verifying that it vanishes on longitudinal 

functions f(k) . The projection is rank one. (A.4) follows by taking traces. 

The (pointwise) limit as ε ↓O of Π 

. . ... 
We will now show that the limit ε O of Π exists pointwise in k 

and give an expression for it. We have 

(A.5) 

Substitute in (A.5) using the identity 

and note that the numerator in the second term may be written in the form 

All μ’s are to be summed over. We have set ε = 1 to simplify the formulas. 

The result : after shifting integration variables p → p and p→ → p is 
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As usual all u’s are to be summed over. The range of integration is 

[— for each component of p . 

We prove that the limit of the first two integrals exists and evaluate 

it by scaling ερ → p · The result is 

where 

Since 

(m + ρ ) (m + ρ ) (A.8) 

is bounded both above and below uniformly in p and ε for p  [- 2 

we may take the limit ε O under the integral sign in the final, integral 

in (A.6) by the dominated convergence theorem. The result is 

(A. 9) 

Let us call this integral J (k) , then we have shown that pointwise in k 
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(A. 10) 

ε 
Furthermore we can show that = J(O) by the following argument : Π (k) 

is analytic in k near k = O , the transverse projection is not, therefore 

ε 
Π (O) = 0 . Pointwise convergence then implies that J

O
 = J(O). 

Remark. J(O) is independent of m by a scaling argument. Thus setting 

m = 1 gives 

Pauli_Villars régularisation of the continuum expressions gives the same result 

as (A.10). 

By combining the upper and lower bounds on (A. 8) with the arguments 

given above it is not difficult to prove first that for all a > O 

and then obtain : 

Lemma A. 1. 

For all a > O 

converges in L
∞
(d k) as ε O 

Proof of statement (3) in the proof of theorem 4.3). 

A ε 
A (k) is the Fourier transform of a function on a lattice; see below 

equation (2.12). Let 
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By an easy computation Hε Αε Ξ Aε is the Fourier transform of A (x) 

.... 
considered as a piecewise constant function on IR2 via the Q identification. 

Therefore, omitting ε’s 

(A.12) 

µH is bounded both above and below on the range of integration. As
 ε o 

2 
converges uniformly on compact subsets of I2 . Hence by Lemma A.1 

converges in I∞ (2 , d2 k) as ε \ O for all a > O . Therefore it is sufficient 

to show that the L2 (
2 , d k) norm 

||k
α/2

A ||
2

2
 = ʃ A(x) (k

α) (x-y) A(y)d2xd2y (A.13) 

converges as ε O . The right hand side of this equality comes from the 

Plancherel identity, k + k
 2

 · 

Lemma A.2. 

Let f be in Schwartz space. The Fourier transform of kα f(k) is a 

constant, C , times α 

ʃ d2y(f(y)-f(x)) |x-y| 2 α 

For a detailed proof see [24] . It is not difficult and proceeds by exploiting 

the homogeneity of k . An easy argument shows that we can also use this form 
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if f is A . Thus the right hand side of (A.13) may be written as 

(A.14) 

Since A vanishes outside A , a bounded rectangle, (∞, α) convergence of 

Αε implies convergence of (A.14). This in turn is implied by (∞, a) convergence 

of Αε by expanding the exponent and making some simple estimates relying on 

the fact that Αε and Αε are piecewise constant. Αε is (∞, α) convergent 

by hypothesis. Q. E. D. 

Proof of convergence of counterterms (VI.2) 

The propagator defined in (6.3), Dε (x) is a function on the lattice 

and 

As above D = DH is the F ourier transform of D considered as a piecewise 

constant function on 2 via the Q identification. Since 

we may argue as above that convergence of ΕԑD is implied by convergence of 

for some a > O . The right hand side is derived by noting that the integral 

on the left is equal to the Fourier transform of the integrand evaluated at 

zero and using Lemma A.2. Dԑ (x) is now to be understood as a piecewise constant 

2 .... 
function on 2 . Convergence of the right hand side may be easily shown using 

the Holder continuity (5.11) of D and arguments analogous to those in the 
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proof of Theorem 5.1. This concludes the proof of convergence of ΕƐD . 

A very similar argument which we omit proves the convergence of 
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APPENDIX B 

Convergence of the Lattice Approximation for Periodic and (Half-) Dirichlet 

Boundary Conditions. 

We want to sketch how the proofs for convergence of the lattice approxi-

mation given in this paper can be adapted to periodic, P and Dirichlet, D (or 

Half-Dirichlet, HD) boundary conditions, for a rectangle Λ . In the case of 

D or HD boundary conditions, the orientation of Λ with respect to the 

lattice may be arbitrary. This will be needed in paper III for proving Euclidean 

invariance. Half-Dirichlet means here that we use Wick ordering with respect to 

the free covariance in the selfinteraction of the matter field; we use Dirichlet 

boundary conditions for the covariance of the matter field and free boundary 

conditions for the gauge field. 

In the main body of this paper we reduced existence of the continuum 

limit for X boundary conditions to the following three convergence statements 

for α > 1 . 

(B) әε (Cεx ) → әC½x , in the strong operator topology, and likewise for the 

adjoints. 

(C) (Αε,Πε,ΧΑε) → (A , ΠΧ A ) , whenever Αε converges to A in the 

(∞, α) sense. 

Although we only considered free boundary conditions, X = F , our 

arguments show that (A) - (C) suffice for more general boundary conditions, 

in particular X = P, D . 

with a, b multiples 

of ε , the periodic covariance is 
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(B. 1) 

This representation shows that statements (A), (B), (C ) remain true if 

C , C are replaced by C
ε
p
, C

p
 , since the series in (B. l) converges absolu-

tely and uniformly, because of the exponential decay of Cε , C . 

So we only have to prove (A), (B), (C ) for Dirichlet boundary condi-

tions, X = D . We will make use of the work of Guerra, Rosen and Simon [6 ]. 

Let p
ε
 be the projection, orthogonal with respect to the scalar 

product (. , Cε .) , onto functions on supported in L(ε)(~A) ; 

similarly p , for the continuum. Define 

P = (CƐ)1/2 pε (Cε) 1/2 (B.2) 

P Ξ C1/2 p C
 1/2 

(B.3) 

Using the imbedding QƐ : l2 (L ) -* L ( ]R ) (see section II), we obtain 

the orthogonal projections in L ( ]R ) 

P Ξ Qε* P QƐ 

The crucial fact is 

(B.4) 

Lemma B. l : 

Remark : This is very similar to Lemma (VIII .9) in [26] and Lemma IV. 11 in 

[6] . It is not identical, however, because these references use a different 

imbedding of 2 (L(Ɛ)) ) into L2 ( 2 ) . This necessitates some modification 

in the proof. 
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Proof : (I) We claim that for 

1/2 
g € Ran P ∩ Ran C½ 

||p
e
g-g|| → O 

Proof : By Bessel’s inequality we have inf || P
ε
h - g || = || P

ε
g g-g || . Thus 

||P
e

g-g|| ≤ || Pε QƐ* (C
Ɛ)1/2 QƐc-1/2g-g|| ; 

P
e
Q
e*
 (C

e
)
1/2

 Q
Ɛ

C-
l/2

g = 

= (Q
Ɛ* (CƐ)1/2p

Ɛ
) (QƐc-1/2g) = 

= Qe*(Ce)1/2 Qe c_1/2g*g 

ε -1/2 
by statement (A) , for X = F (free) ; we used the fact that Q εC g is 

supported outside A . 

(II) If g  Ran P we still have ||P
ε
g-g|| → O because Ran P  Ran C 

is dense in Ran P (i.e. A is "regular" in the terminology of [ 6 ] ). 

(III) Let g  L2 (2), f a weak limit point of the bounded set 

{P g| O < ε < 1 } We claim : 
ε 

f = Pg . (B. 5) 

a) Let C172 h  C∞0 (Λ) : 

(B. 6) 

(the second term is zero because of support properties). (B. 6) converges to 

O because of statement (1), which shows that f  Ran P . 
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by part (II) of the proof; this establishes (B. 5) . 

(IV) (B. 5) shows that P
ε
g converges weakly to Pg ; because P

ε
 are 

projections this implies strong convergence. (End of proof of Lemma B. l). 

As discussed in [6], we can define the Dirichlet covariances by 

C
ε
 = C

ε
(l-p

ε
) = (C

ε
)
1/2

(l-P
ε
)(C

ε
)
1/2 (B.7) 

C Ξ C(l-p) = C1/,2(1-P) C1/2 (B.8) 

Statements (A) and (B) with Cε, C replaced by C
D

 , C
D
 are now obvious 

consequences of (B. 7) and (B. 8), using Lemmas 3. 6, 4. 5 and B. l . 

Statement (c) is a little more subtle. 

Obviously it suffices to consider the difference 

( We assume A to be transverse ; non-transverse components drop out). 

Because of the Hölder continuity of A we can bound |Αε—Αε| uniformly in 

Λ , and using the Q-imbedding also |Αε—A | ; therefore we only have to 

show L -convergence of (ә
≠

µ 
(C
ε

D
-C
ε

)) (ә
≠

µ 
(C

ε

D
+C

ε

)) (C
ε
D-C

ε
)) (C

ε
D
+C

ε
)) , and convergence of the 

second term in (B. 9). 

Here ә is either ә or ә . What we need is contained in 
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Lemma B.2 : 

(1) 

(2) 

(3) 

Proof : The proof proceeds by the dominated convergence theorem. For the 

uniform upper bound we need 

Proposition B.3 : For x,y  A 

(1) 

(2) 

(3) 

(4) 

Proof : (1) follows from (2) by integration. 

. ε 
(2) follows by some work with the explicit Fourier representation of Cε : 

We cut the integration into a part where |k| ≤ Δ and a rest. The "inner" 

part is 
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which is bounded by 

The outer part is bounded by —— as can be seen by doing an integration 

by parts with respect to the variable | x | . 

(3) can be seen as follows : 

(B.10) 

where σƐ
y
 (x) has support on әA

ε
 which is the set of points in L which 

are endpoints of a lattice bond that intersects әΛ or are in әA themselves, 

It is not hard to see that 

(B.11) 

(B.12) 

(B. ll) follows from the fact that ≥ O and = O if one of its argu-

ments is outside A ; (B. 12) follows by Gauss's theorem for the lattice : 

From (B. 10) it can be seen that 

(B.13) 

Using (2) and (B. ll), (B. 12), it follows that 
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Since the left side of this equation is symmetric in x and y, (4) follows. 

(3) is similar 

Returning to the proof of Lemma B. 2 we notice that 

L convergence of this then follows from statement (B), Lemma 3.6 and 

ε 1/2 
I2 convergence of P(Cε ) which we now prove. By the Grumm-Simon 

theorem (see section II), we only need to show convergence of the norms 

ε 1/2 
of Pε (C

ε ) , which means we have to show that 

(B. 14) 

converges. Since Proposition B. 3, (3) gives an Lp upper bound, we are reduced 

to showing pointwise convergence of (Cε -Cεd) (x, x) to establish Lemma B. 2, (1). 

From Proposition B. 3 we also get the following bound on the expression 

appearing in Lemma B. 2, (2) : 

(B.15) 

This bound is in L1 (A x Λ) as can be seen by cutting up the region of inte-

gration into a suitable sequence of bonds parallel to the boundary. 

So all that remains to be shown to complete the proof of *Lemma B. 2 is 

Proposition B. 4 : (Cε - Cε
D
) (x,y) and әε

µ
(Cε-Cε

D
) (x, y -Cε

D
) (x,y) converge pointwise in 
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Proof : Since Cε - CεD converges in L , 

F
ε, δ

 (x, y) = ʃ χ
δ
 (x-x ' ) χ

δ
 (y-y ' ) (Cε-Cε

D

) (x ', y ' ) dx ' dy ' converges pointwise 

as ε → O , where χ
δ is the characteristic function of a ball of radius δ 

On the other hand we can for each (x, y)  A x A choose δ so small that 

δ (x,y) - (Cε -CεD) (x,y)| < n (uniformly in ε) because we have a uniform 

bound on the "derivatives" of Cε - C
ε
D . By a 2η argument pointwise convergence 

of C
ε
-C

ε
D
 follows. 

For (Cε-CεD) - C
ε
D

) we use the same trick : We just established L2 -conver-

gence ; a uniform (in ε ) bound on the second "derivatives" in a neighborhood of 

any point in the interior of A can easily be obtained from (B. 13) and we just 

have to repeat the argument given before. 

This completes the proof of Lemma B. 2 and this appendix. 
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