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Abstrack.

Let G be an arblitrary compact Lie group with center Z(G) . It is
proven that 1f static quarks transforming under a non-trivial representation
of Z(G) are confined in a pure Z(G) lacttlice gauge theory with gauge coupling
constant g' they are confined in a lattice Higgs - (in particular a pure
Yang-Mills) theory with gauge group G , Higgs scalars in a representation that
is trivial on Z(G) , and coupling constant g = const.g' . Permanent comfine-
ment of “"fractionally charged” quarks in any two dimensional lattice gauge
theory and in three dimensional U(n)-theories are consequences.
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We compare the standard lattice Higgs theories, including the pure
Yang-Mills theories, with compact gauge group G with pure lactice gauge
theories cthe gauge group of which is the center, Z(G) , of G . The main result
is the one described in the abstract, speclal cases of which were first proven

2 3

in two beautiful papers of H'.lr.l:l and Mack and Petkova” and In ref.,”, Our proof,

originally stimulated h:.rj. extends and simplifies the argu=ents “1,2

s but in-
volves closely related ideas., It establishes the general conjecture 3 alj. Since
our proof yields results more general than the ones of < and seems somevhat
moré transparent than the one given there, and since it was developed in part

be fore we learnt of It may be useful to make 1t publie,

The lattiee is chosen e.g. to be z" ( y-dimensional, simple, cubic
lattice). S5ince we do not attempt to be uniform in the lattice spacing we choose
it to be unity. The gauge groups of main Interest are G = 50(n), n = 2.3,...,
{in vhich case Z(G) -E“ , but our arguments cover the general case, in partlcu-
lar G = U{n) ., (This i{s of interest, e.g. because U({n) 18 the gauge group

4,5

of the r.H n{t}i non=1inear m-models of refs. which are generalizatlons of
L]

the "H'l g-models of b They are discussed at the end of this letter),

Wext, we state our main results in more detail. We consider a general
lattice Higgs theory with gauge group some compact Lie group G , Higgs scalars
in a representation of G/Z(G) (e.g. the trivial one, the case of pure Yang-
Hills) and gauge coupling comstant g . Let y be the lrreducible character
of & wused in the definicion of the pure Yang-Mills action, and d the dimen-
slon of the corresponding representation. Moreover, we consideéer a pure, abelian

lattice gauge theory with gauge group Ix = yw(2(G)) and coupling constant

{zdl‘* i

A representation of G (resp., its character) is called “fractlonally
charged"” L{f it determines a non-trivial representaction of Z(G) . (In the case

G = 0({l1) we adopt the definition of 3 A charge is fractional 1ff it 1is a



fraction of the electrle charge of the Higgs scalar).

As conflnepent criterion we may use in this letter both, the one of

Hlliun?, or the more refined one used in 3_

Theorem 1.

If In the pure zx-lattice gauge theory defined above fractionally
charged, statle quarks are confined then so they are in the G-lattice Higgs

theory, a

Application of the {nequallicies of r&f,3 (see Theorem 53] ylelds

Theorem 2,

The w~dimeénsional, pure zxullttlnl gauge theory confineés fractionally
charged, statie quarks 1f the ({(y-1) dimensional, nearest neighbor EI-Ising

(or Potts) model has exponential clustering. O

One consequence of Theorems | and 2 (and of Theorem 6,2) of 3] is

Corollary 1.

Every abelian 3 or nnn-lhtlilnl LW {4pn¢!-t1n¢] dimensional lattice

Higgs cheory permanently confines fractionally charged, static quarks.

As another (more Interesting) consequence we mention

Eurnlllrz 2.

Every Uln) , m=1,2,3,..., three (space-time) dimensional latcice

Yang-Mills theory permanently confines statle quarks., ©O

Further corollaries are mentloned below, We also suggest a connectlon

between the breakdown of confinement and the spontaneous breaking of the inter-

4,5
nal ("flavour") symmetry group in the non-linear g-models of refs, 3



Hext ,we glve an analytical definition of the models considered in
this letter. The actlon of the standard lactice Higgs theory defined over a

bounded ("space-time") region A &Y 1s glven by

o T
A ".FI. i-a.h. vhere (1)

A

™
A" -pgReF (g ), and
A oo O

(2)

Masg u,u*t;l:u}‘

A xyc A

-2
Here g = g and f are positive coupling constants, xy are arbitrary

nearest neighbors (bonds) and p an arbitrary plaquecte, with boundary ap ,

=1
: = €C, for all =y , = q ¥ By, + for any closed loop
By Byx 8¢ ek
C of nearest neighbors in zY, % is an frreducible character of € {(whih

¥

is non-trivial on Z(G)) , U" is some representation of G/Z(G) , and § 1ia

the Higgs scalar. The a priori distributlon of EHF is glven by the Haar measure,

dﬂﬂ, 00 G, the one of ix by a G-invariant probabllity measure dnlﬂh}i
on the representatlion space of U' . He get
dg, = d , dpl,) = :!p{l - 9 (3)
: xy F ) EI - XEA

The "Euclidean vacuum expectation”, < - :hiﬂi ; of this model is

Eiven by the mtasure

- .|'I-
duhH-B} 3 dfi.n dn-[iﬁ (4)

with zh chosen such that ‘(duﬁ -1.

The boundary conditions at A»pA may be chosen to be periodic, or free,
but many others can be used in the following arguments. All our eatimates will

be uniform fn J , 80 that this subscript s omitted hénce forth,



Lec UH be the représentation of G with character o Since it is

irreducible,

U¥(T) = y(r¥.1m , for all 1 € 2(C) . (5)

The image, 31_ = w{2(G)) , of Z(G) under y 1s a compact, abelian group con-
talned in o torus. Without loss of generality we may assume that the torus 1s
one-dimenaional, L.e. a circle. The elements of 11 can then be labelled by
an angle @ which is distributed according to a probability measure d) on
the circle, the Haar measure of z! + All subsequent arguments hold in general,

but our assumptlion somewhat glmpllifies notatlons,

The sctien of the pure Z -lattice gauge theory is given by
i

o al
A [ g cn:i!apl : (6)

where B': = ¥ a“:r . and E:K . Lts Euclidean vacuum expectation,

. = =8
LS (g*) , iu defined by the probabllity measure
X

=-A

ag'ia =zt e ane) (1

with di(g) = n dile ) .
xy & A *y

Let -:-q be some lrreducible character of 6 , such that, for all
+ € Z(G) ,

iq-@

W g} = w1V =g wl, (8)

for some angle @A (depending on +t ) in the support of d) and some fixed

Integer q . (1f (8) L8 violated, Theorem | is either empty or trivial !).

We now proceed to the proof of Theorem 1 for the models Introduced

above, Flrst, we intégrateé out the Higgs fleld & . We define



M
z'g) = fa"" dold) . (9)

Since Llll is a represencation of c!z[r_:} -

M = Mg e UL T (10)

for some T € 2(G) and all xyc p .

Equation (10) 1is the only property - -

required of 2"(31 , 80 that 7" could come from integrating out more general

matter fields ! Moreover,the reader will notice that, in the proof, it sulfices

M

that Z be invarlant under the minimal subgroup I‘L“ _I:_E.IZE:} for which

ﬁ..-.q{t-im] ¥ 1 , provided I'HL is replaced everywhere by 2 in. Physically, this

in.

means that the colour of the quarks cannot be shielded by the colour of the

Higgs fields. (More refined hypotheses on EH{g} are possible]},

The baslic {denticies (already used in lZl are : If Z° is any sub=

group contained in or equal to Z{G)

Iﬂﬂs Fig) -jﬂds j;n dr Flg-1) (11)

for any bounded function F on G , and dr the normalized Haar measure on i

i
gf{l-fin} - 1{5{.,'1":1 - 'ﬂg.:? v : (12)

iqac

Wlgem) = yUgory) = ¥Ig,) e : (13)
18,

for any loop T} , 'rﬂ qu  for all xy cC , and o L "{Txy} .

Using (10) = €13) we obtaln
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< 'rq[gﬂl :-G'[BJ o 1f~:;ﬂ'l[5n} ZH(:] et dg

™
-z fag IHEaI'_fd‘.i{athaw}lcl e~h T iET)

% iq
- 2 lfds :H{E]"(q'{ﬂl:}jdliﬂ} & Et: (14)
i
8 F Relyl(g, )e BBP}
, e Pch
Clearly
1H&P
{ = -
Re qtgaph ) = Re ﬂ;aphnsiﬂap} Im I{gaphlnl[aapi
(15)
n
E JP cna{ﬂnpl ¥ KFcui{HHp +9 Yica
De fine
iR
Z2' (g} -J-dj,[ﬂhxpru T Relylg ) e )1, (16)
peA %
and let the expectatlion < - ?J K be given by the seasure
1'{3}_1 expl@ pzﬂ JFcnalﬂaF] + Hpcﬂltﬂaﬁ+ g ydatal) . (17}
Then,by (14) - (17) ,
q =1 M ‘4
< {!I:c'-' > (B} = Z ‘fﬂ! ‘&{EE} Z(g) 2'(g) <« w > g (18)
where
M el -1
2™g) 20, 2'(z) 20, and 27" | dg 2e) 2'(a) = 1 . (19)
Hext, we note that the measure dh{aﬁrl is the weak limit of
y cos{mp_ ) _q wucosimg )
{J-: T 2 . ¥ ap
Xy xy
as y=-w, for some m=0,1,2,... determined by :'I . Thus the measure in

(17) 15 the weak limic of the probabllity measures

# This can be replaced by Iillfdg EHEE1 Z'(gh “q{gcﬁf < const.



=3 o
Z  exp[p T me'{ﬂaﬂ: + Hp:ﬂ:iﬂ I-EJ'I

o pe P
(20)
u nnu(mﬂx )
n e da y BB U+
xych e

Therefore CGinibre's inequalities - in the form proven In Proposition 1 of rltt',Ii|

can be applied and give

t < nuu{qﬂc + ) T g . m:[qncl = tg") (21)
£ ¥

(see (6), (7)) , for an arbitrary Iinteger q and real phase g , provided

81| + Ik |18, forall pca. . (22)
For JP and u:p as in (15), (22) i{s valid for g"' z 2dg , (since
IRe wigd| £ 4, |im (g)]| §4d) , s0 that

iq,E-E
| <e nh_ml £2 <coslaf,) » (2d8) . (23)
X

Hut (18), (19) and (23) together with [1‘{gcj| £ 1) yield

| < x(gg) 3, (8] £ 2¢*(1) < conlag) :E“ (2dp) . (24)

From this Theorem 1 follows by the usval arguments 2,37

Remarks.

Related inequalicies (see 2 for examples and interpretation) can be
proven by the same methods, Moreover, they can be used to e.g. prove that the
two point [unetion of the G-non-linear g-model on the lattice ZY 1s dominated
by the one of the s~dimensional Z(G)-g-model. This obviously lmplies that the

Mc Bryan - Spencer upper bound 10 extends to the U{n)-g-models , n = 2,3,... .



To prove Theorem 2 we modify the y~disensional zt-lntiu Eauge

theory by adding a non-gauge-invariant term

BA = 2 F cos(@ )

uy 5 l-direction xy
to the actlon, A8 z 4 4+ = ; the corresponding expectatlion converges weakly
to a product of independent, (1) dimensional Exﬁluing {or Potts) models with

expectation, < = > {g') , given by
X

Fl T lcnliﬂx—ﬂyi
E_] . wychix®) -

difs v
M:r:l} ::Eﬁ{:r:l] *

where M:l.'! =ADn{y= ljrl,,,,,:ru] § ]"l - :r.l] , and A/ = @ (e, the unit
z :h‘.'l 1

vector In the l-=direction), for =z ¢ M:l‘.ﬁ . This is shown in 3 . In the thermo-

dynamic limit (§f 129 , these expectations become independent of !I { for

e.g. periodic or free boundary conditions), so that that subscript can be dropped.

let C be e.g, a rectangular loop in the {1,2)-lactice plane with
sldes of length T and L , respectively, parallel cto the 1 - and 2-axis. The
fnequalicies of 4 give monotonicity In z for the expectation of :uu{qﬂc} .

g0 that, as z =+ = ,

iqgt
< e Sy (g') = < coslqg,) > (g')
L4 ¥

=1 <coslqlg-a ) > U‘”T F (25)

where x(L) 1s the site (0,L,0,...) . See inequalicies (18) - (20) of ref,? |
This proves Theorem 2.

3

Corollary 1 follows easily from Theorems 1 and 2 [and Theorem 6 of
by setting v =2 and noting that, for a one-dimensional E.‘r-uing model, the

r.s. of (25) is bounded by exp(-0(L)L-T1, for all g' . (For an alternate

argument see 1 ). We conjecture that inequality (25) i{s also valild for the



= 10 =

original sy~dimensional gauge theory (with gauge group G = 5U(n)) and a two
point function of the (y-1) dimensional G-non-linear g-model on the r.s. of

{25). A related result will be proven elsevhere, for G = SU(2) ,

Corollary 2 follews from Theorems | and 2 by extracting from Uin)
a U(1) subgroup, L.e, choosing Z = U(1l) . To the resulting U(l)-theory one
¥

3 8,9

may then apply Theorem 6,1) of ~ or 11 | We note that, by the Inequalities of

< :n-{qHEJ- > o (p') 5 = cnl{qﬂc] >z (p") , (26)

n-k n

for arbltrary, posicive Integers nm and k , and E-l i) , if k= = ; see
3

also ., We conjecture that (26) remains true 1f E_ is replaced by (S)U(m) ,

on both sides,

As an example of further applications of Theorem 1 and its proof we
mention that they can be used to compare e.g. a lattice Welnberg-Salam theory

with a {1} ({purely electromagnetic) lattice gauge theory.

G4,5,6

Finally, we consider the non-linear g-models of refs. " . A& possible

lattlce action ls
iﬂ' = -8 ¥ l[{g “EEH-,}EY} ¥ {EB}

where, for all xgZ" , P {E::"“'E:l is an N ¥ n matrix of orthonormal
vecEors, Ei.....E: s in I:H . g“ EUin) , and U ie the defining representcation
af Wn) . (See 4 for yet more genéral models and alternate lattlce actions).

The a priori distribution of gx_’ {s Haar measure, daw » the one of gx ia

the uniform measure on orthonormal n-frames in I‘.Ilr . By integrating out the
r-fleld one obtains a Uln)-lattice gauge theory, According to Theorem 1, it

can be dominated by a U(l)- gauge theory, in the sense of Llnequality (24).

Extenslons of Theorem 2 can be uwsed to discuss confinement of quarks for =2 |

The actlon .t.n has a global U(R)-symsetry group. A connéctlion between the



= 11 =

breakdown of confinement of static quarks in these models and cthe spontaneous
breaking of the global ("parton-flavour") U(M)-symmetry, for w2 3 ; 1Is

4
suggested in

1f the normalization conditlon #*g = 1 is replaced by
g'E = c+H3Hﬁ . I:l ; the PF-Fleld 1s theén integrated out, and the limlt N 4 =
is taken, the resulting Uln)-gauge theory is the pure Ul(n)-lattice Yang-Mills

theory, for arbltrary «

Detalls of these results will be discussed elsewherse,
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A Rew Look at Generalized, Mon-linear g-Models

and Ilqﬁ-ﬂ[lll Theory

Jurg Frishlich

Institut des Hautes Etudes Scientlfiques
F-91450 Bures-sur-Yvecote

Abgtract :

First a 1ist of recent papers on (lattice) gauge theories and non-linear
p-models s presented which serves as an introduction to the subject.

Subsequently, a new, quantum mechanical interpretation of the formalism
used by Atiyah et al. and Corrigan et al. for the construction of self-dual
Yang-Mille fields is attempted and criticized, Yang-Mills theory turns out to be
a natural generalization of non-linear g-models which has many conserved (Moether)
currents. Confinement is linked to the presence of an "intrinsic (or parton)
flavour” symsetry, at least in the case of the g-models.

For the Proceedings of the Bilelefeld Symposium, Dec. 1978, to be edited by L. Streir.
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0. A short Guide to the Literature.

Before we come to the maln part of this contribution, describing some
new ideas and results concerning non=linear g-models and Yang-Mills theories,
we present a short list of papera which is & tiny selection out of a huge number
of publications on non-linear g-models and gauge theory. It replaces an intro-
duction to the subject. Our selection does not represent a value judgment. Many
{(in certain respects perhaps most) important papers are missing in our list. The
author has been guided largely by hls lack of comprehension and time, ignorance and taste.

First, wé quote some papérs on classical, non=linear J-models

= Refs. 9 and 13 of the bibliography.

- K. Pohlmeyer, Commun., math. Phys. 46, 207, (1976).

- K. Pohlmeyer, in “Rew Developments in Quantum Field Theory and Statiscical
Mechanics", M. Lévy an P. Mitter (eds.) , Plenum Press, New York 1977.

- A, D'Adda, P. i Vecchia and M. Lilscher, in ref. & of the bibliography, and
Preprint, Niels Bohr Institute, 1978.

- V.L. Golo and A .M. Perelomov, Phys. Lett. 79 B, 112, (1978).

- E. Brézin, €, Ttzykson, J. Zinn -Justin and J.-B, Zuber,“Remarks about the
Existence of Non-Local Charges in Two-Dimensional Models? to appear in Phys.
Lere. B, (1979).

{This paper contains an explicit construction of Infinicely many conserved

currents for all two-disensional o-models considered to be interescing).

uestions of complete Integrabilicy of two-dimenaional, non-linear n-models are
discussed by the Russian Inverse-Scattering school.

Some {mportant, recent papers on the quantum field theory of two-dimensional,
non-linear o-models are

Refs. & , 14 , 16 , 17 , 18 of the bibliography.
A.M, Polyakov, Preprint ICTP 77/122.

E, Witten, Tnstantons, the Quark Model, and the 1/N Expansion, Harvard Preprint
HUFEE = T8 AL,

K. Symanzik, Iin ref. & and these proceedings, and refs, plven there,

Further very Interesting, recent papers have beem writtenm by the Leningrad -

4

Berlin - and Sato (Japan) groups.
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Next, we collect some convenient references concerning classical

Yang-Mills theory :

- Refs. 1,2, 3,5 ,6 of the bibliography.

A readable survey of classical Yang-Mills theory, describing the developments
and including all important references prior to fall 1977 is :

- R. Stora, in "Invariant Wave Equations", G. Velo and A.5. Wightman (eds.),
Lecrure Notes in Physics 73 | Springer-Verlag, Berlin-Heidelberg-New York,
1978,

Moreover,

-M.F. Atiyah, in "Mathematical Problems in Theoretical Physics", G.F. Dell’
Antonio,5. Doplicher and G, Jona-Lasinio (eds.), Lecture Motes in Physics BO,
Springer-Verlag, Berlin-Heidelberg-New York, 1978,

More recent reviews, by R. Stora and E. Corrigan, may ba found in ref. 6.

Addivional, recent papers (among numerous others) are :

M.F. Atiyah, N. Hitchin and I.M. Singer, Proc. Mat. Acad. Sei. 74, 2662, (1977),
and Proc. Royal Soc,, to appear.

1.M. Singer, Commun. math. Phys. 60, 7, (1978).

M.F. Atiyah and J.D.5. Jones, Commun. math. Phys. 61, 97, (1978).

An extensive review, "Gauge Theories and Differential Geometry", by T. Eguchi,
P.B, Gilkey and A.J. Hanson {s to appear in Physics Reports (1979).

A list of references to work on lattice gauge theories, with emphasis
on recenc papers, follows : (among) the classic papers are
- Ref. 19, bibliography.
- A.M. Polyakov, Fhys. Letts. 59 B, 79 , 82 , (1975).
- J. Kogut and L. Susskind, Phys. Rev. D11 , 395, (1975).

Reviews are o.g.

= K. Dsterwalder yy in : "Mew Developments In Quantum Field Theory and Statistical
- K. Wilson } Mechanics", loc. cit,

- L. Kadanoff, Rev. Mod. Phys. 49, 267, (1977) , and refs. given there.

- A, Jaffe

= F. Guerra in : "Mathematical Problems in Theoretical Physics", loc.cit.
- E, Beiler
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More recent, useful papers are :

Osterwalder and E, Seiler, Ann. Phys. (N.Y.) 110, &0, (1978).
Seiler, Phys. Rev. D18, 482, (1978).

Luschner, Cosmun. math., Phys. 54, 283, (1977).

Glimm and A. Jaffe, Phys. Letts. 66B, &7 , (1977)

Gawedgki, Cosmun. math., Phys. 63, 31, (1978),

Challifour and E, Weingarten, University of Indiana, Preprint 1978,
G. 't Hooft, Mucl. Phys. B138, 1 , (1978),

I
w ™M L E M om

Vary recent papers are

- D, Brydges, J. Frohlich and E, Seller, "On the Construction of (uantized
Gauge Fields, 1 : General Results", to appear in Ann. Phys. (N.¥Y.) (1979),
and preprint in preparation.

- R. Israel and C, Mappl, "Quark Confinement in the Two-Dimensional Lattice
Higgs-Villain Model"™, te appear i{n Comsun, math. Phys. (1979).

{For earlier, related results see also : J. Frthlich, in "Math. Problema of
Theor. Phys." loc. eit.).

- D, Brydges, J. Frthlich and E, Seiler, "Diamagnetic and Crictical Properties
of Higgs Lattice Gauge Theories", to appear in Nucl., Phys, B , (1979).

- 6. Mack, "Confinement of Static Quarks in Two Dimensional Lattice Gauge
Theories", to appear in Commun. math. Phys. (1979).

- T. Yoneya, "Topological Excitations in Yang-Mills Theories : Duality and
Confinement", Preprint, City College, 1978,

- J. Gliom and A, Jaffe, "Charges, Vortices and Confinement, Harvard Preprint,
1978,

- G. Mack, and V.B. Petkova, "Comparison of Lattice Gauge Theories with Gauge
Groups 22 and SU(2)) Preprint, Hamburg, Dec. 78.

= G. Mack and V.B. Petkova, "Sufficient Condition for Confinement of Static
Quarks by a Vortex Condensation Mechanism", Preprint, Hamburg, Dec. 78.

- A.M. Polyakov, "String Representation and Hidden Symmetries for the Gauge
Fields", Preprint 1978,

{In this paper the existence of infinitely many, non-local conserved charges for

three dimensional Yang-Mills theory is suggested).

- J. Frthlich, "Confinement in En-l.ll:tl-ct Gauge Theories Implies Confinement
in SU(n) Lattice Higgs Theories™, Preprint, IHES, Feb. 1979.
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(Some extensions of this paper, due te B. Durhuus and J. Frihlich, are in

preparation].

For a recent survey of quantized Yang-Mills theory in the continuum

limit see

- 5. Coleman "The Uses of Instanto s Erice Lectures 1977 to be published,
A. Zichichi, (ed.), and refs. to the original papers given there.

Work by D, Brydges, E. Seiler and che author concerning the quantized Higgs
theory in two space-time dimensions is in preparation. (In that work, some
earlier resules by R, Schrader and R, Sefler, "A Uniform Lower Bound on the
Renormalized Functional Determinant", to appear in Commun. math. Phys. (1979),
and by B, Simon, "Kato's Inequality and the Comparison of Semi Groups, to
appear in J. Funct. Anal. (1979), and refs. given there, were very useful).

We omit references to "infinitely many" papers on perturbative renor-
mal {zation of Yang-Mills theory, applications of the renormalization group {e.g.
asymptotic freedom), model building or axiomatic investigations of geuge theories,
although much of the present faith in gauge theories is certainly founded on the
results of those earliear papers, Many of the out-standing references are hy now

g0 well known that we need not give them here agaln.

We now proceed to the main part of this contribution, where we suggest
a somewhat novel way of looking at g-models and Yang-Mills theory. (It is

quite doubtful, though, whether it will provide a useful point of view for the
quantization of Yang-Mills theories).
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. Introductian

Inthe following I propose and discuss a quantum mechanical interpretation
of the construction - due to Atdyah, Drimfeld, Hitchin amnd Manin 1,2 - of all
self-dual, Euclidean Yang-Mills flelds as described and elaborated on by Corrigan
et al. 3, My program received stismulation from the work of D'Adda er n],ﬁ on the
tPHh] nof-1inear g-models ’}. Afcer the maln results described below had been
found a preprint of Dubols-Vislette and Ceorgelin > appeared In which a program
related to mine L8 announced, However, the maln ldeas presented below and the
way the emphasis 1s placed differ much from thelrs, Those ldeas may briefly be

1,2,3

summarized ag follews : It I{s known from that every selfi-dual Uin) Yang-

Milla connectlonm, A , can be written as

.nuh:u = Jx)*(ad/axM)(x) = B(x)* § (x) . (1)
u

where § : s* xm #(x) 1s a mapping from 5% into orthonomal n-frames in &"

) = gy 0 (D), 8 () ee" |
(z]

for some M =n , and t:i[“]' :ﬁ{x]} - hij i
for all 1,7 = 1,...,8 .

It Is natural to try to abstract from self-duality, in such a way that
one views @ , resp. the gauge-invariant, projection-valued field P = $8% of
ref."lII ; a5 the fundamental flelds of the theory, and A = hu () as derived,
via equ, (1), For this purpese, one reexpresses the Yang-Mills action, A i

M
as o functional of P {or §) ,

Ay = ju"x :r[{P[uH-P}Eﬂ}E (x)] . (1)

vhere f (x) = (af/pax"}(x) , for any f ; see 3_ Wicth this action one mow tries
1]
to assoclate a Euclidean field theory 7 for P satisfying a sultable form of

Oscerwa lder-Schrader axloms

®) This program started taking shape after talks of E, Corrigan and M. Luscher

3,4

on refs, , resp., at the Les Houches work shop on gauge theorles, in spring

1978 ©,
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The natural analogue of the Yang-Mills actlon, A in a two dimen-

m L]
slonal space-time i

A -‘szx tef(p (1-B)B )(x)] (4)
a L u

which definea a generalized, non-linear g-model. For n = 1 , It colncides with
the EPH_I—mdul of 9"". This observation suggests that there are close, mathe-
matical connectlions between four dimensional Yang-Millas theorles and two dimensio-
nal, generalized, non-linear p-models. One of the main purposesof this contribution
is to exhibit such connections. The maln results can be found Iin §§ 3 and 5.

Decalls of chese and other results and proofs will be glven elsevhere,

I thank P. Collet, H. Epstein, M. Luscher and K. Deterwalder for valuable
discussions and M. Dubois-Violette and ¥. Georglin for informing wme of thelr
independent results ? prior to publication.

2, Mathematical preliminaries,

Euclidean space-time ls denoted EY , (related to the sphere g¥

by
stereographic projection). Let T be the real (R) , complex (&) or quaternio-
nle (H) numbers, and IJH the linear space of N-tuples of elements In D .

1f A isan 1 xj matrix with entries in D then A" denotes the § x i
matrix defined by U.."}” - E , with 3 the conjugate of a In D ., If B
iz a § xk matrix, AB is the matrix product of A and B which is an

i »k matrix.

An orthonormal na-frame in I;:II'I 1z given by an N ¥ n matrix,

g o= '[q:l.....ﬁl:n:l ; with “"j i:II-H and

t"e=1 , Le (2,0) =8

y e for all 1,§=1,...,n . (5)

The manifold of all n-frames sacisfying (5) {s denoted Sy nmj . Clearly
P=gg” (6)

B Rt rl:q.. g . The
manifold of all such hyperplanes is dencted G!-I n{l].'! ; the "Grassmannlan of

iz the osrthogonal projection onte the hyperplane spanned by o

n-planes"”, and can be writteén as a coset space io -
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Let H be the group of all linear transformatlons, h , of flfl-!'|I with
h*h = 1H » and E]’ ¥ ¢ the group of linear transformations, g , of an n-plane,
FI}H into itself, with gw*g = 1“ + H 1is called "intrinsic flavour group",
G gauge group.
For D=K : H= O(R) , G = 0(a) ,
for D= & : H= U(N) , & = ti{n) , (7]

for D=H : H=5p(N) , G= Spin)
Glven § , one sets

h
+“-hu.heu.geer, (a)

Mext, consider arbitrary mapplngs

$:EY 3 xm $lx) € Sy o®) o resp,

(9l
P:EY 3 xm P(x) = p(x) §{x)* ¢ G, 4@ .
and define a fleld A = A (-) by equ. (1). By (1) and (&),
|¥
Alx) = plxd™ ¢ (x) = Bg(x)" § (x) - § GO* 3(x)) , (10)
u ¥ u u

is in G , the Lie algebra of G . Let g(:) be an arbitrary G-valued function

an EY (a gauge transformation), Then
AB0) = DB ® LaBix) = gl)® A (x)glx) + glx)%g (x) . (11)
u L u L

Thus A = A (.} 4s the connectlon form of a principal G-bundle with base space
1]
EY and fiber C .

5 , Dubois-Viclecte and Georgelin quote an

Remark, In an interesting preprint
important theorem (see ref, 2 of 5} saying that for D = ¢ , there exists a
finite Integer, N , depending on « and n ( N ?-"l';—l n }) such that, to ecach
given A , there exiscts a § such chat Au = 3% . ‘u .

Mext, let h(-) be a U(N)-valued function on E” . Then
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by w Nt i Srend caly Lt
i 1] L

™ hh §g=0,1.e. Ph*hPpwo . (12}
u u

An h satisfying (12) Is called an "intrinsic Flavour transformation™. Clearly
a constant h = hng U(N) obeys (12).

The curvature of A Is gilven In terms of § by

= - 4 -
FHU : Mu *v1 = ‘fu ' 'uT ' (33

and the gauge-invarlant form of rH"-' by

|
F *=p (1-P)P _ = B[P , = rp 1 L&

where the parantheses denote anti-symmetrizatlon, and we have used
(1=-p)p = P(l=FP) = 0 , 1. e,

FP=(1l-FIf and PP = P {(1=pP} . (15}
i U u u

With the help af (14) the Yang-Mills equations and the action (see (1)) can be

rewricten In terms of P 3. Let + be a closed curve Ln EY , and
m., -1 m [ = m
l:jlj_ R T R T family of points on + , with s?p|u!+t - x]| -0,

A8 m = = . Lot

m
P (v} = lim [ Pix) (16)
"o mem =1 i

Then W(y) = tr[B_(y)] is the Wilson loop
o

3. Actlons, consérved currénts and Infrared eritical dimenslon,

0¥

Let

o H.I'E.lu - Ai ; where ﬁ:l is left multiplication by
A = 3% . Then
’ ] *U

(o¥ 9)g* = (1-p)P =P P . (17}
i u ¥}

Using (5) and (15) one secs that
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.14t $,,2 = (42 LT IT.
Ay =)t eetinfel’o0n = fa'x explo? 0t P01

(18)
=} jf: l:r[['u'[il'zj .

Thus, the models with actlon A  are natural generallzations of the IE‘H'I
o

9.4 with which they colncide when D =& , n= 1 , The followling further

isomorphisms are noteworthy : The er model Is isomorphic to the EI{HT - or

mode | &

rotator) model, the IPI model to the 52— {classical Helsenberg) model, and

the l-ll|Il (or {:zllﬂl}-} model to the S§9- {5 vector) model. The last two Llsomor-
phisms are obtained by expressing P in terms of Pauli-, resp. s-matrices. The
last one can also be reduced to the simpler {somorphism between the 53- (4 vector)
model and the 5U(2) model with action

(a2 " i3
Aa ,{d x :r[guﬁni gu{xi1 . Blx) € 5U(2) = 87 |

For the lattice g-models defined in (27), §5, the proofs of these isomorphisms

are slmple,

Finally, we note that equations (17) and (18) remaln meaningful for

D =& , the octonlons or Cayley numbers i . with Gy “m} - Gﬂ IEI) . In this
§ ]

case the projections P{x) label the points of the Moufang projective Flanc“'”,

and one obtalns an octonfonic non-linear a-model whose symmetry group {s the

exceptional Lie group Pﬁ , These models and Yang-Mills wversions thereof may be

of interest te strong Interacclon phylluu .

D) - g-models proceeds

M,n B
JIn two dimenslonal, Euclidean space-time che tPH 1 models are

On a classical level, the discussion of the G
as 1nﬁ'13 *)
presumably the most Interesting ones, since, for n = 1 , the GH.“{IJ mode 18
do generally not admit new classes of Iinstanton solutlons with non-trivial homo-

Lopy In, (E.g. the HPI modél does not have such solutions), We conjecture,

4 extend to the quantized version of these models,

however, that the results of
Finally, we note that the Infrared critical diménsion of the o-models is

Voire ™ 2 . This Is related to the fact that the nalive dimension of the conser-
ved currents is unicty; see (25) and §5 .

The Yang-Hills action ils obtained from Fuu - [D:. D:] , by secting

.4 2 4 I 2
A = 1d% :r[rw{xl L -.F‘:I * :r{Fw{xl Y (19)
) After complection of thls paper, a preprint by E. Brézim, . [tzyksom, 1. %lon-
Justin and J1.-B. Zuber appeared, where, In addition to owe local and one oon-
local, fufFinitely many other non=local, conserved currents are constructod

vl b ld o+ weme Secfdon i)
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which by (14) colneldes with (3) .

Mext, oneé tries to form higher tensors, T ; such that
Ay -J d”x ec[T i {:‘,II'I can serve as an actlon’ for a conformally
invariant theory im w= 2d dimenslons, LF one inslsts on formal Osterwalder-
Schrader positivicy g and conformal Invariance, T 1s necessarily tocally
antl-symmetric and of rank d . (Unfortunately, the tensors

T it
IJI' | n-ll
ldentically, for d > 2 , because of the identity

{(1-p)p (1-p)...P 18 natural generalization of Firu , vanish

cee (1=P)P (1=P)...= ... P P(l-F)... = 0O ; see (15)) .
”J. 1.|.1

In zeneral, the correct expression for tr["[‘u ;_ﬂz“r can be obtalned

from the following limicting procedure ;: Choose a 1"t hypercube, 5
in the {ul....,ud.'r—hypurpluut with sides of length ¢ , centered at = . Let

H-ﬁc be its boundary, Then

- trfT (x)27 = Uam e Iee[P(34 )] - ¢(a,D)] , (20)
TR Sin "

where F{h.r_'.r] = n  Pix) , see (16}, and cin )} 18 a constant, These expres-
=EAR

slons make sense € and are the desired ones 1 and only 1f d = 1 (~-model)
aor d = 2 (Yang-Mills theory), When d » 2 , Hﬁ;,c]' 1 11] defined bhecause
ol ordering problems, This rules out the existence of admissible actions, A, ,
for d =2 , (1.e. y>4) (If one does not inelst on Osterwalder-Schrader posici-
vity then, of course, there are plenty of actlons for d > Z).

Clearly, the actiona .lu and &FH have a global H-symmetry. In

additlon, Avn has a local sysmetry : By (12) A is invariant under

PCx) w BV(x) w BOx)E(xIH(x)® , with
ph*h P =0 (21)
L

This equation has non-trivial solutions. Associated with these aymmetries are

&

Noether currents, JLI . They are given by

1B = Mt e o, ee), (), (22)
W w 1)

1)

where J 1s the Lagrange density corresponding to A . (In Euclidean fleld
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theory, ¢ 1s replaced by the action density ]5}, Furthermore, & 1s the deri-

vation assoclated with a symmetry transformation, {.e.
AP = [B,P] , with F’BHP =0 , (23

where Bix) € ¥ » the Lle algebra of H , for all x , Apart From

B{x) = B = const, there will be other solutions of (23}, They form a linear space.
By solving (23) in terms of P one gets a linear space of conserved currents,
(After quantization they ought to determine a Lie algebra of conserved charges

properly containing M ).

Heuriscically, quantization consists in assoclating with an action A
the formal measure on the space of GH’nm}—UlIIJIE distributions
=D
e =e® A n g, (24)
xe EY

where §£F Is, heuristically, the uniform measure on GH.nm} ,and g 1is a
coupling constant (dimensionless for = 2 A = *U and y= 4 A= *?H':I .
In the process ol renormalizatlon, I*2 = P will have to be replaced by
F? = [p , [ divergent . v B 1s renormalized, and the conserved currents yield
many Ward Lldentloies “'_ Formally, (1.e. disregarding from the existence problem),
dy satisfles Osterwalder-S5chrader positivity for the Flelds P , when A = hrr .
resp. HW(y) , see (16), when A = ﬁ"ﬂ'[ . This Is shown by approximating A by an
action "'c conscructed fin terms of P{a.g.tl ; osee (20), (16), Mote that the
nalve dimension of P 1s zero. In four dimensions there are no dimensionless
flelds satisfying posicivity. Hence, for A = LYH [v= &) , prelumblr enly loop
observables, W(y) , and functionals thereof, survive the g0 limit. Thus,
whereas for A = HU « v= 2 , spln wave theory about P = Pu = const, makes sense,
providing an expansion in g - at least after adding a term
mij d%x Lr'[Pl{ﬂPu'l to ll:! - this is not clear, at all, for A = Apy - It 1s
further complicated by the symmetries (21), (23), (Moreover, it is doubtful
whether one can add a term mﬁjdﬁﬂ r.r'[["{:-:]:rn'i ta ..l.m , destroying those symme-
tries, to eliminate infrared divergences). A natural question {s whether the symme-
tries of A can be broken spontaneously. The arguments of 13 suggest that the

symmetry assoclated with a current J cannot be broken spontanecusly in
u

dimension

v‘"—"‘uhrtt‘ = [Ju‘] +1 ] {25}

L 3
1f, for A= , w4, P exists as a quantized fleld its ultraviolet dimension must

be 3 1 . (KMllen-lehmann representation. Since Its naive dimension is O, P may. in facc,
nut Aurvive quantization, See also Sectiom 50,
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where [J 7 is the infrared dimension of J . For A = A obtain from

"
]
Verit. > 4 (For A = ""cr

= 2) . In order for these arguments to be convincing

(¥} ¥
(22), by naive dimensional analysis, [J ]33, 1i.e,
one obtalns of course “r,rit.
they should be reformulated In terms of the loop observables, W(y) .

4. Couplings to quark flelds,

Let ;u' #u be Dirac spinors transforming under the same rtprilenuliﬂﬂ
of G as §, & , resp.; (g is the G-(colour) index). In addition & and ¢
may transform under some flavour group, 1.e., carry a flavour Index j = 1,

The components "_1 are the matrix elements of an n x F matrix, denoted § ,
and § 1a the corresponding, mnju":u F xn matrix. One deflnes Lhe gauge-

invarlant flelds 3 ;I m ﬁl 8"

riants, 12 = .Tg &* and ;1 L ;T , where

) " ﬂ1i ) a 1 i
L (n En! i EJ (_1 nJ y llr"l“

One observes that N and F play sysmetric roles, Thus one may speculate that

HN=F , Le "Intrinsie {lavour" = flavour, The result quoted In > then suggesats

' l = §% . When D =H , there are further inva-

that F=H3{(win/2 ,le, P39, for yv=4 ,na=3,
The minimal coupling matter actlons are

n§*= J a¥x [P @i, (26)

j=1,2 . For H = F, there are the following flavour Invarlants
fi = l:r['lj'! , 'i - r.r[*j? One can then form the action ,Iu." Jlrd x *I[x] {1#][3].
However, they glve rise to trivial interactions, and the i::run function for
and § can be calculated in an arbitrary §-fleld,

5. Lattlee models,

The EH n{l]} non-linear p-models can be put onto the lattice, ZY
¥

In two different ways :
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Itl:l‘ = “.?“1 Lrf PKPFIJ . (27)
LU L 3

vhere E:rt}l' € G , for all nearest neighbors (n.n, )x,y , The gauge fleld,
g = g,,1, plays the rdle of a Lagrange sultiplier field 4

As a priorl distributlons one chooses the uniform measure on G “EI}J
¥

for Px  resp, the Haar measure on G for B:q.r , and for & and &* the measure

da(e) = N s([#%) -8 )1 d§ _ dp
as® @ o gy 19 o
This ylelds two differeént lattice models with ldentlical, formal continuum 1imic,

(18}, The Mermin-Wagner argument 13
flavour symmeétry group H , when = 2 | For the discussion of the breaking of

excludes spontaneous breaking of the intrinslc

H in y » 3 dimensions, the methods of L can be applied to the model with
actlon .h;l . Good results concerning the symmetric phase are achleved by applylng
the methods of H to the model with action A; ., Those meéthods vaguely correspond
to partially resummed 1/N expansions and are rigorous, It would be of interest
N-n
to develop o double expansion In 1/N and 1/n , or, for A “?H » one ln -

{about pure gouges). The following result may be useful.

Theorem : 1f one replaces d) by

(N} ” . L
da T (§) n s([#*e a =¥

ass

and defines

=] Pt 1,1
o™ n g =2 f- 8* 0 1 '™
n.n, F xE X
i W
then w¥-1im du n}{!} = dy (g) exists and 1 [ re ilson's pure Yang-
Bt 19
Mills lactice theory with group G
Analogous limit theorems hold for Gaussian MIIHI- and ||-'|"-Lypt d:.w}.

In the last case, one obtains a formal Ijlh-thﬁury which ls conformal {invariant,
for = & , and whose N =+ » limit is pure Yang-HMills, Oue may speculate that

that theory is asymptotically free,
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On the lattice one can try to mimick *TH by the actlon

'h's - . E {trTP“PFPlPu-J # “[PxPuFIP:.I'}I #

u &
where p 1s the plaquette ' . We note that te[P. PP P ] 1s & lattice
F“# XYy Eu

approximacion o W{ap) ; see (16), (20). In splte of this formal

relacionship with ﬁ?H 7 the naive continuum limit of ﬁs {5 not . [The

model with action *5 is related to an lsing type model of Slawny ). A better

approximation Lo ’Sﬂ'l ls

b= -pleefn P14+ T DRV, (29)
Mo . x€ap " e, "

where § 1Is an arbltrary lattice square parallel to two axes of z" each side of
which contains three sites. Both actions, A.s and ﬁ‘h‘ ;?ll:hnl.t a transfer matrix
formalism with selfadjoint, generalized transfer matrix . This guarantees

Osterwalder-5chrader positivity, Wilson's lattlice gauge theory 19 is recovered by

choosing .h“ = - 7 Wiap) , where W(ap) 1is given by (16}, and as a priori distri-

P
butfon " 11 AP(x)" the product of the Haar measures for G on the sides of ap .
XEAP

If one discusses confinement for the models with actlons n& , ar AQH

in terms of a lattice version of the Wilson loop, W(y) , one arrives at the
heuristie pleture that confinement breaks down 1f the Intrinale f{lavour symmetry,

H , ls spontaneously broken. Such breaking ia expected for + > Ve (1.e,

ric.
vz35 for A‘}H] and small g .

One can show that 1f one couples quark flelds to P with a large number,
1/2

F, of flavours and a mass =< F s F =1, by means of a lattice version
of ﬁ? s this enhances the spontanecus breaking of H wvhich appears to become

possible In o 5 3 dimenslons,

Blgorous proofs are so far restricted to the g-models, because neither
7 |
the techniques of nor the ones of g » in their present form, apply to Yang-
Mills,
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