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Abstract,

Let G be an arbitrary compact Lie group with center Z(G) . It is
proven that if static quarks transforming under a non-trivial representation
of Z(G) are confined in a pure 2Z(G) lattice gauge theory with gauge coupling
constant g' they are confined in a lattice Higgs - (in particular a pure
Yang-Mills) theory with gauge group G , Higgs scalars in a representation that
is trivial on 2Z(G) , and coupling constant g = const.g' . Permanent confine-
ment of "fractionally charged" quarks in any two dimensional lattice gauge

theory and in three dimensional U(n)-theories are consequences,
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We compare the standard lattice Higgs theories, including the pure
Yang-Mills theories, with compact gauge group G- with pure lattice gauge
theories the gauge group of which 1s the center, Z(G) , of G . The main result
is the one described in the abstract, special cases of which were first proven
in two beautiful papers of Mackl and Mack and Petkovaz and in ref.3. Our proof,
originally stimulated bya, extends and simplifies the arguments ofl’z, but in-
volves closely related ideas. It establishes the general conjecture 3 of3. Since
our proof yields results more general than the ones of : and seems somewhat
more transparent than the one given there, and since it was developed in part

before we learnt of 1’2, it may be useful to make it public.

The lattice 1s chosen e.g. to be zV ( v-dimensional, simple, cubic
lattice). Since we do not attempt to be uniform in the lattice spacing,we choose
it to be unity. The gauge groups of main interest are G = SU(n), n = 2,3,...,
in which case Z(G) =Zn , but our arguments cover the general case, in particu-
lar G = U(n) . (This is of interest, e.g. because U(n) 1s the gauge group

4,5

of the G, (€) non-linear g-models of refs. which are generalizations of

N,n
the ¢PN_1 g-models of 6. They are discussed at the end of this letter),

Next, we state our main results in more detail. We consider a general
lattice Higgs theory with gauge group some compact Lie group G , Higgs scalars
in a representation of G/Z(G) (e.g. the trivial one, the case of pure Yang-
Mills) and gauge coupling constant g . Let v be the irreducible character
of G used in the definition of the pure Yang-Mills action, and d the dimen-
sion of the corresponding representation, Moreover, we consider a pure, abelian
lattice gauge theory with gauge group ZX = y(2(G)) and coupling constant

(2d)-% g .

A representation of G (resp. its character) is called "fractionally
charged" if it determines a non-trivial representation of 2Z(G) . (In the case

G = U(l) we adopt the definition of 3 : A charge is fractional 1iff it is a



fraction of the electric charge of the Higgs scalar).

As confinement criterion we may use in this letter both, the one of

Wilson7, or the more refined one used in 3_

Theorem 1.

If in the pure Zx~lattice gauge theory defined above fractionally
charged, static quarks are confined then so they are in the G-lattice Higgs

theory, B

Application of the inequalities of ref.3 (see Theorem 63) ylelds

Theorem 2.

The y~dimensional, pure zx—lattice gauge theory confines fractionally
charged, static quarks if the (y-1) dimensional, nearest neighbor ZX-Ising

(or Potts) model has exponential clustering. D

One consequence of Theorems 1 and 2 (and of Theorem 6,2) of 3) is

Corollary 1.

Every abelian : or non-abelian1 two (space-time) dimensional lattice

Higgs theory permanently confines fractionally charged, static quarks.

As another (more interesting) consequence we mention

Corollary 2.
Every U(n) , n =1,2,3,..., three (space-time) dimensional lattice

Yang-Mills theory permanently confines static quarks, 0O

Further corollaries are mentioned below, We also suggest a connection

between the breakdown of confinement and the spontaneous breaking of the inter-

nal ("flavour") symmetry group in the non-linear g-models of refs,



Next,we give an analytical definition of the models considered in
this letter. The action of the standard lattice Higgs theory defined over a

bounded ("space-time") region A czZY 1s glven by

YM
AA= A.-'\ +Ai , Where (1)
AKH=-5ReZ -X(g ) , and
pch
(2)
Ai =-f ¥ (@,U§(3 RLR
XyC A
Here g = g_z and f are positive coupling constants, xy are arbitrary

nearest neighbors (bonds) and p an arbitrary plaquette, with boundary 3p ,

in zV - g_l € G, for all «xy , g = il "D g , for any closed loop

Xy yx Xy C C
C of nearest neighbors in z, y 1s an irreducible character of G (which
is non-trivial on 2(G)) , U® is some representation of G/Z(G) , and % 1is
the Higgs scalar. The a priori distribution of gxy is given by the Haar measure,

dgxy , on G, the one of ¢ by a G-invariant probability measure dp(t;x)

on the representation space of U‘§ . We set
dg, = m o dg,.., dp(3,) = 1 dp(g) . (3)
A xyecn ™™ N xen
The "Euclidean vacuum expectation", < - >G(g) , of this model is
given by the measure
u (8,8) = 27 N dg. ap 2 (4)

with ZA chosen such that {dul\ =1

The boundary conditions at 3JA may be chosen to be periodic, or free,
but many others can be used in the following arguments, All our estimates will

be uniform in A , so that this subscript is omitted hence forth.



Let UX be the representation of G with character y . Since it is

irreducible,

uX(T) = x()-1 , for all 1 € Z(G) . (5)

The image, ZX = y(z(G6)) , of 2(G) under y 1is a compact, abelian group con-
tained in a torus. Without loss of generality we may assume that the torus is
one-dimensional, 1.e. a circle., The elements of zy can then be labelled by
an angle @ which is distributed according to a probability measure d) on

the circle, the Haar measure of Z . All subsequent arguments hold in general,

but our assumption somewhat simplifies notations.

The action of the pure Z -lattice gauge theory is given by
X

A' = - g cos(@. ) , (6)
B'Z EBP
P
where ¢, 6 = S 0 ,and § = - @ . Its Euclidean vacuum expectation,
Xy yx
Xy c C
<= > (g') , is defined by the probability measure
X
. _ -1 A"
dyu'(e) = (z') e da(e) , (7)
with da(e) = @ da(e )
Xy
Xy < A
Let Xq be some irreducible character of G , such that, for all

yq('r) = y(-r)q = eiq-e - 15 (8)

for some angle A (depending on 1 ) in the support of d) and some fixed

Integer q . (If (8) is violated, Theorem 1 is either empty or trivial !).

We now proceed to the proof of Theorem 1 for the models introduced

above, First, we integrate out the Higgs field & . We define



M
Mg) = fe'*‘ dp(8) . (9)

B

Since U® 1is a representation of q/Z(G) >

ZM(g') = ZM(g) if g' =g , (10)

Xy xy'Txy

for some ey € 2(G) and all xy c A .

Equation (10) is the only property =,

o —

required of ZM(g) , so that ZM could come from integrating out more general

matter fields ! Moreover, the reader will notice that, in the proof, it suffices

that ZM be invariant under the minimal subgroup Zmin c 2(G) for which

Y?(Z - ) # 1 , provided ZX. is replaced everywhere by z. Physically, this

mi in.~

means that the colour of the quarks cannot be shielded by the colour of the

Higgs fields. (More refined hypotheses on ZH(g) are possible).

The basic identities (already used in 1) are : 1f 2° {s any sub-

group contained in or equal to Z(G)

dg F(g) =‘f’dg dr F(g.-7) , (11)
fc G jz"

for any bounded function F on G , and dr the normalized Haar measure on z° ’

19C
X((S'T)C) — X(SC‘TC) = y(gc) e ’ (12)
198
a.. . .9 _q c
v ((g T)C) ¥ (gC-TC) ¥ (gc) e , (13)
o 19}:
for any loop C cp , Ty € z° , for all xycC , and e 7 = X(Txy)

Using (10) - (13) we obtain



™™
< yq(gc) >G(s) = Z_lfxq(gc) ZH(g) . dg

Y™
2! fag o) [ (ol e €V

iq8

_ =1 M q C
ig
B ¥ RE(X(gap) e OP)
e PCh
Clearly
iebp
Re(y(gap)e ) = Re X(SBP)COS(BEP) - Im x(gAp)51n(Bap)
(15)
= Jp COS(eap) + KpCOS(Bap + % I
De fine
i9
z2'(g) =fd}\(e)exp['s Yy Re(y(g_ ) e BP)-] . (16)
pch 3P
and let the expectation <« - >k be given by the measure
Z'(g)_l explg pzn Jpcos(eap) + Kpcos(eap+ % )jdx(a) . (17)

Then,by (14) - (17) ,

i
a6

< xq(gc) > (g) = Z_i/”dg §(gc) Zu(g) 2'(g) <e >y K (18)

where
*) -
M) 20, 2'(g) 20, and z Tjrdg M) z'(g) = 1. (19)
Next, we note that the measure dx(exy) is the weak limit of
p cos(m@_ ) _;  u cos(m@_ )
(J(e *Y 49 ) : e Y a9,
Xy Xy

as y -+ o, for some m=0,1,2,... determined by ZX . Thus the measure in

(17) is the weak limit of the probability measures

- M
* This can be replaced by 2 1LIdg Z(g) 2'(g) xq(gc\l < const.



-1 m
Zz exp[g 5 J cos(B, ) + K cos(8, + 3)]
W pch P 3p P ap 2

(20)
u cos(mg__)
M e x)‘de y 88 | o
Xy
XycA

Therefore Ginibre's inequalities E in the form proven in Proposition 1 of ref.9

can be applied and give

t < cos(qeC + q) e 2 < cos(qac) >, (g") (21)

(see (6), (7)) , for an arbitrary integer q and real phase ¢ , provided
3[]Jp] + IKP|] £pg', for all p cp . 2 (22)

For Jp and Kp as in (15), (22) is valid for g' 2 2dg , (since

|rRe x(g)| Sd, |Im y(g)| £d) , so that

| £2 < cos(q@,) >, (2dg) . (23)
X

But (18), (19) and (23) together with |yl(g.)| & x¥(1) yield

A

| <x3gy) > (@] £ 25%(1) < coslagy) >, (2dp) . (24)

From this Theorem 1 follows by the usual arguments 2,3,7

Remarks,

Related inequalities (see . for examples and interpretation) can be
proven by the same methods, Moreover, they can be used to e.g, prove that the
two point function of the G-non-linear g-model on the lattice zV 1s dominated
by the one of the y~dimensional Z(G)-g-model. This obviously implies that the

Mc Bryan - Spencer upper bound 10 oxtends to the U(n)-g-models , n = 2,3,,



To prove Theorem 2 we modify the ~dimensional 2Z -lattice gauge
X

theory by adding a non-gauge-invariant term

8A = z 5 cos(® )
xy . l-direction Xy
to the action, As 2z 4+ + o , the corresponding expectation converges weakly
to a product of independent, (y-1) dlmensionmlzx-lsing (or Potts) models with

expectation, < - > . (g8') , given by

1
X
P' 53 . cos(ex-e )
2—11 o xycA(x™) ’ no, dxfex’ ,
AxT) xeN(xT)
1, _ .1 Vv 1 1
where Ax ) =AN{y=(,...,y) +y =x1, and 8, = 8, (e1 the unit

1
vector in the l-direction), for z € A(xl) . This is shown in 3 ., In the thermo-

dynamic limit (A + zV) , these expectations become independent of xl (for

e.g. periodic or free boundary conditions), so that that subscript can be dropped.

Let C be e.g. a rectangular loop in the (1,2)-lattice plane with
sides of length T and L , respectively, parallel to the 1 - and 2-axis, The
inequalities of 8 give monotonicity in 2z for the expectation of cos(qqc) s

so that, as z =+ o ,

196,
<e > (g') = < cos(q8,) >, (g")
X X
< 11T
b { < COS(q(BD-Bx(L)) > (B )] » (25)
where x(L) 1is the site (0,L,0,...) . See inequalities (18) - (20) of ref.3 .
This proves Theorem 2.
3

)

Corollary 1 follows easily from Theorems 1 and 2 (and Theorem 6 of
by setting y = 2 and noting that, for a one-dimensional Zy—Ising model, the

r.s. of (25) is bounded by exp[-0(1)L-T1 , for all g' . (For an alternate

argument see 1 ). We conjecture that inequality (25) is also valid for the
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original y~dimensional gauge theory (with gauge group G = SU(n)) and a two
point function of the (y-1) dimensional G-non-linear g-model on the r.s. of

(25). A related result will be proven elsewhere, for G = SU(2) ,

Corollary 2 follows from Theorems 1 and 2 by extracting from U(n)
a U(1) subgroup, i.e. choosing Z = U(l) . To the resulting U(1l)-theory one
X

3 8,9

may then apply Theorem 6,1) of ~ or 1l | We note that, by the inequalities of i

< cos(qec) > (g') § < c08(qﬂc) >z (g") , (26)

Zn-k n

for arbitrary, positive integers n and k , and Z = U(1) , 1f k = o ; see
-}
also °. We conjecture that (26) remains true if z is replaced by (S)U(m) ,

on both sides,

As an example of further applications of Theorem 1 and its proof we
mention that they can be used to compare e.g. a lattice Weinberg-Salam theory

with a U(1) (purely electromagnetic) lattice gauge theory.

4,5,6

Finally, we consider the non-linear g-models of refs. . A possible

lattice action 1s

- *
Ac = gy tr(gx U(gxy)gy) . (28)

where, for all xezz" » B = (E:I(""’E;) is an N x n matrix of orthonormal
vectors, Ei,...,!i , in ¢N s gxy € U(n) , and U 1is the defining representation
of U(n) . (See 4 for yet more general models and alternate lattice actions).

The a priori distribution of gxy is Haar measure, dgxy , the one of gx is

the uniform measure on orthonormal n-frames in GN . By integrating out the
g-field one obtains a U(n)-lattice gauge theory, According to Theorem 1, it

can be dominated by a U(l)- gauge theory, in the sense of inequality (24).

Extensions of Theorem 2 can be used to discuss confinement of quarks for = 2

The action A has a global U(N)-symmetry group. A connection between the
o
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breakdown of confinement of static quarks in these models and the spontaneous

breaking of the global ("parton-flavour") U(N)-symmetry, for y 2 3 , is
suggested in

1f the normalization condition e¥g = ln is replaced by
g*g = c-N3/4 « 1 , the g-field is then integrated out, and the limit N 9 =

n

is taken, the resulting U(n)-gauge theory is the pure U(n)-lattice Yang-Mills

theory, for arbitrary v

Details of these results will be discussed elsewhere.
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A New Look at Generalized, Non-linear g-Models

and Yang-Mills Theory

Jurg Frohlich

Institut des Hautes Etudes Scientifiques
F-91440 Bures-sur-Yvette

Abstract :

First a list of recent papers on (lattice) gauge theories and non-linear

o-models is presented which serves as an introduction to the subject.

Subsequently, a new, quantum mechanical interpretation of the formalism
used by Atiyah et al. and Corrigan et al. for the construction of self-dual
Yang-Mille fields is attempted and criticized. Yang-Mills theory turns out to be
a natural generalization of non-linear g-models which has many conserved (Noether)
currents. Confinement is linked to the presence of an "intrinsic (or parton)

flavour" symmetry, at least in the case of the @g-models.

For the Proceedings of the Bielefeld Symposium, Dec. 1978, to be edited by L. Streit.
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0. A short Guide to the Literature.

Before we come to the main part of this contribution, describing some
new ideas and results concerning non-linear g-models and Yang-Mills theories,
we present a short list of papers which is a tiny selection out of a huge number
of publications on non-linear g-models and gauge theory. It replaces an intro-
duction to the subject. Our selection does not represent a value judgment. Many
(in certain respects perhaps most) important papers are missing in our list. The

author has been guided largely by his lack of comprehension and time, ignorance and taste.

First, we quote some papers on classical, non-linear g-models

- Refs. 9 and 13 of the bibliography.

- K. Pohlmeyer, Commun, math. Phys. 46, 207, (1976).

- K. Pohlmeyer, in "New Developments in Quantum Field Theory and Statistical
Mechanics", M, Lévy an P, Mitter (eds.) , Plenum Press, New York 1977.

- A, D'Adda, P, Di Vecchia and M., LUscher, in ref, 6 of the bibliography, and
Preprint, Niels Bohr Institute, 1978.

- V.L. Golo and A.,M. Perelomov, Phys. Lett. 79 B, 112, (1978).

- L. Brézin, C. Ttzykson, J. Zinn -Justin and J.-B. Zuber,"Remarks about the
Existence of Non-Local Charges in Two-Dimensional Models' to appear in Phys.
Lett. B, (1979).

(This paper contains an explicit construction of infinitely many conserved

currents for all two-dimensional o-models considered to be interesting).

Questions of complete integrability of two-dimensional, non-linear n-models are

discussed by the Russian Inverse-Scattering school.

Some important, recent papers on the quantum field theory of two-dimensional,

non-linear o-models are

Refs. 4 , 14 , 16 , 17 , 18 of the bibliography.
A.M. Polyakov, Preprint ICTP 77/122.

- E. Witten, Instantons, the Quark Model, and the 1/N Expansion, Harvard Preprint
HUTP-78/A042 .

K. Symanzik, in ref. 6 and these proceedings, and refs. given there.

Further very interesting, recent papers have been written by the Leningrad -

¥

Berlin - and Sato (Japan) groups.
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Next, we collect some convenient references concerning classical

Yang-Mills theory :

- Refs. 1,2, 3,5, 6 of the bibliography.

A readable survey of classical Yang-Mills theory, describing the developments
and including all important references prior to fall 1977 is :

- R. Stora, in "Invariant Wave Equations", G. Velo and A.S., Wightman (eds.),

Lecture Notes in Physics 73 , Springer-Verlag, Berlin-Heidelberg-New York,
1978.

Moreover,

-M.F. Atiyah, in "Mathematical Problems in Theoretical Physics", G.F. Dell'
Antonio,S. Doplicher and G. Jona-Lasinio (eds.), Lecture Notes in Physics 80,
Springer-Verlag, Berlin-Heidelberg-New York, 1978.

More recent reviews, by R. Stora and E, Corrigan, may be found in ref. 6.
Additional, recent papers (among numerous others) are :

M.F. Atiyah, N, Hitchin and I.M. Singer, Proc. Nat. Acad. Sci. 74, 2662, (1977),

and Proc. Royal Soc., to appear.
I.M. Singer, Commun. math. Phys. 60, 7, (1978).
M.F. Atiyah and J.D.S. Jones, Commun. math. Phys. 61, 97, (1978).

An extensive review, "Gauge Theories and Differential Geometry'", by T. Eguchi,

P.B. Gilkey and A.J. Hanson is to appear in Physics Reports (1979).

A list of references to work on lattice gauge theories, with emphasis

on recent papers, follows : (among) the classic papers are
- Ref. 19, bibliography.

- A.M. Polyakov, Phys. Letts. 59 B, 79 , 82 , (1975).

- J. Kogut and L. Susskind, Phys. Rev. D11 , 395, (1975).

Reviews are e.g.

- K. Osterwalder \ in : "New Developments in Quantum Field Theory and Statistical

- K. Wilson } Mechanics", loc. cit.

- L. Kadanoff, Rev. Mod. Phys. 49, 267, (1977) , and refs. given there.

- A, Jaffe

- F. Guerra in : "Mathematical Problems in Theoretical Physics", loc.cit.
E

. Seiler
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More recent, useful papers are :

K. Osterwalder and E, Seiler, Ann. Phys. (N.Y.) 110, 440, (1978).

E. Seiler, Phys. Rev. D18, 482, (1978).

M. Luschner, Commun. math. Phys. 54, 283, (1977).

- J. Glimm and A. Jaffe, Phys. Letts. 66B, 67 , (1977)

K. Gawedgki, Commun. math. Phys. 63, 31, (1978).
J. Challifour and E. Weingarten, University of Indiana, Preprint 1978.
G.'t Hooft, Nucl. Phys. B138, 1 , (1978).

Very recent papers are

- D. Brydges, J. Frthlich and E, Seiler, "On the Construction of Quantized
Gauge Fields, I : General Results", to appear in Ann. Phys. (N.Y.) (1979),
and preprint in preparation,

- R. Israel and C. Nappi, "Quark Confinement in the Two-Dimensional Lattice
Higgs-Villain Model", to appear in Commun. math. Phys. (1979).

(For earlier, related results see also : J. Frvhlich, in "Math. Problems of

Theor. Phys." loc. cit.).

D. Brydges, J. Frthlich and E., Seiler, "Diamagnetic and Critical Properties

of Higgs Lattice Gauge Theories", to appear in Nucl. Phys. B , (1979).

- G. Mack, "Confinement of Static Quarks in Two Dimensional Lattice Gauge
Theories", to appear in Commun. math. Phys. (1979). _

- T. Yoneya, "Topological Excitations in Yang-Mills Theories : Duality and
Confinement", Preprint, City College, 1978.

- J. Glimm and A. Jaffe, "Charges, Vortices and Confinement, Harvard Preprint,
1978.

- G. Mack, and V.B. Petkova, "Comparison of Lattice Gauge Theories with Gauge
Groups Z, and SU(2)! Preprint, Hamburg, Dec. 78.

- G. Mack and V.B. Petkova, "Sufficient Condition for Confinement of Static

Quarks by a Vortex Condensation Mechanism", Preprint, Hamburg, Dec. 78.

- A M, Polyakov, "String Representation and Hidden Symmetries for the Gauge
Fields", Preprint 1978.

(In this paper the existence of infinitely many, non-local conserved charges for

three dimensional Yang-Mills theory is suggested).

- J. Frthlich, "Confinement in Zn—Lattice Gauge Theories Implies Confinement
in SU(n) Lattice Higgs Theories", Preprint, IHES, Feb. 1979.
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(Some extensions of this paper, due to B. Durhuus and J. Frthlich, are in

preparation).

For a recent survey of quantized Yang-Mills theory in the continuum

limit see

- 5. Coleman '"The Uses of Instanto s" Erice Lectures 1977 to be published,
A. Zichichi, (ed.), and refs. to the original papers given there.

Work by D. Brydges, E. Seiler and the author concerning the quantized Higgs

theory in two space-time dimensions is in preparation. (In that work, some

earlier results by R, Schrader and R. Seiler, "A Uniform Lower Bound on the

Renormalized Functional Determinant", to appear in Commun. math. Phys. (1979),

and by B. Simon, "Kato's Inequality and the Comparison of Semi Groups, to

appear in J. Funct. Anal. (1979), and refs. given there, were very useful).

We omit references to "infinitely many" papers on perturbative renor-
malization of Yang-Mills theory, applications of the renormalization group (e.g.
asymptotic freedom), model building or axiomatic investigations of gauge theories,
although much of the present faith in gauge theories is certainly founded on the
results of those earliear papers. Many of the out-standing references are by now

so well known that we need not give them here again.

We now proceed to the main part of this contribution, where we suggest
a somewhat novel way of looking at g-models and Yang-Mills theory. (It is
quite doubtful, though, whether it will provide a useful point of view for the

quantization of Yang-Mills theories).
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1. Introduction

In the following I propose and discuss a quantum mechanical interpretation
of the construction - due to Atiyah, Drinfeld, Hitchin and Manin 1,2 - of all
self-dual, Euclidean Yang-Mills fields as described and elaborated on by Corrigan
et al, 3. My program received stimulation from the work of D'Adda et a1.4 on the
QPN-I non-linear @g-models *). After the main results described below had been
found a preprint of Dubois-Violette and Georgelin s appeared in which a program
related to mine is announced. However, the main ideas presented below and the
way the emphasis is placed differ much from theirs, Those ideas may briefly be

1oans

summarized as follows : It is known from that every self-dual U(n) Yang-

Mills connection, A , can be written as

AU(X) = 3(x)*(38/3xM) (x) = s(x)* Qu(x) . (1)

where § : S4 x » 3(x) 1is a mapping from S4 into orthonomal n-frames in GN

800 = (@ (), e (1)), @) € eV
(2)

for some N > n , and (mi(x), Qﬁ(x)) = 6ij .
for all 1i,j=1,...,n .

It 1s natural to try to abstract from self-duality, in such a way that
one views § , resp. the gauge-invariant, projection-valued field P = $3* of
ref.3 , as the fundamental fields of the theory, and A = A (.) as derived,
via equ. (1). For this purpose, one reexpresses the Yang-Mi%ls action, A .

™
as a functional of P (or @) ,

. 4 _ 2
Avy Sd X tr[(P[u(I P)PV.]) x)), (3)

(3f/3x")(x) , for any £ ; see 3. With this action one now tries

where f (x)
W
to associate a Euclidean field theory 7 for P satisfying a suitable form of

Osterwalder-Schrader axioms

#) This program started taking shape after talks of E. Corrigan and M. Luscher

3,4

on refs, , resp,, at the Les Houches work shop on gauge theories, in spring

1978 6.
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The natural analogue of the Yang-Mills action, in a two dimen-

AYM’
sional space-time is

A =Jd2x te[(p (1-P)P )(x)] (4)

which defines a generalized, non-linear @g-model. For n =1 , it coincides with

the €PN l-model of 7*%

. This observation suggests that there are close, mathe-
matical connections between four dimensional Yang-Mills theories and two dimensio-
nal, generalized, non-linear @-models. One of the main purposesof this contribution
is to exhibit such connections. The main results can be found in §§ 3 and 5.

Details of these and other results and proofs will be given elsewhere,

I thank P. Collet, H. Epstein, M. Luscher and K. Osterwalder for valuable
discussions and M. Dubois-Violette and Y. Georglin for informing me of their

independent results 2 prior to publication.

2. Mathematical preliminaries.

Euclidean space-time is denoted E\), (related to the sphere sv by

stereographic projection). Let D be the real (R) , complex (€) or quaternio-
nic (H) numbers, and D" the linear space of N-tuples of elements in D .

If A is an i x j matrix with entries in D then A¥* denotes the j x i
matrix defined by (A'"')ij = K;; , with @ the conjugate of a in D . If B

is a j xk matrix, AB 1s the matrix product of A and B which is an

i x k matrix.

An orthonormal n-frame in DN 1s given by an N x n matrix,

" N
3= (wl,...,cpn) , with o €D and

Q*Q = ] 7 b (cpi:CDJ) =3

N , for all 1,5 =1,...,n . (5)

1]
The manifold of all n-frames satisfying (5) is denoted Sy L@ . Clearly
P = §3" (6)

is the orthogonal projection onto the hyperplane spanned by Prseeentg . . The
manifold of all such hyperplanes is denoted G n(D) , the "Grassmannian of
]

n-planes", and can be written as a coset space 10
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Let H be the group of all linear transformations, h , of IJN with
h*h = 1N , and GP ¥ G the group of linear transformations, g , of an n-plane,
PD" into itself, with gi#g = 1 5 H is called "intrinsic flavour group",
G gauge group.

For D=R : H=0(N), G =0(n) ,
for D=¢ : H=UN), G=U(), (7)
for D=H : H = Sp(N) , G = Sp(n)
Given § , one sets
38 -~ hgg , heH, ges, . (8)

P

Next, consider arbitrary mappings

& EY S x §(x) € SN n(l)) , resp.
(9)
P:EY3 xm P(x) = 3(x) $(0)* €6 @ ,
and define a field A = A () by equ. (1). By (1) and (6),
v
A (x) = 3(x)% & (x) = 3(3(x)* § (x) - § (X)* 3(x)) , (10)
U H U v

{s in (¢, the Lie algebra of G . Let g(-) be an arbitrary G-valued function

on EY (a gauge transformation). Then
AB(x) = 1gB0* 1g8(x) = g(0* A (0g(x) + g(x)*g (x) . (11)
M u W u

Thus A = A (.) 1is the connection form of a principal G-bundle with base space
9]
EY and fiber G .

Remark. In an interesting preprint 3 , Dubois-Violette and Georgelin quote an
important theorem (see ref, . of 5) saying that for D = ¢ , there exists a
finite integer, N , depending on y and n ( N 2 !%i n ) such that, to each
given A , there exists a § such that AU = 3% . 3

Next, let h(-) be a U(N)-valued function on EY . Then



=01

h h 1% h 1
= 3 $

A = A 1if and only if

u H u

§*h*hU§ =0, i.e. ph* hp=o0 . (12)

An h satisfying (12) is called an "intrinsic flavour transformation". Clearly
a constant h = hoe U(N) obeys (12).

The curvature of A 1is given in terms of § by

F = &* + %3 e s (13)
w o T T Y Y,
and the gauge-invariant form of Fuv by
F' = 6F #*=P_ (1-P)P . =P[P ,p ]=[P,P 1P , (14)
uv UV (u V1 oV oV

where the parantheses denote anti-symmetrization, and we have used

(1-p)P = P(1-P)

LI}

0, ie.

1}

PP=(l-P)P and PP = P (1-pP) . (15)
M u u 8]

With the help of (14) the Yang-Mills equations and the action (see (3)) can be

rewritten in terms of P 3. Let v be a closed curve in E\’, and
m.m+1 m _ m _ m m
{Xj1j=l s X1 T X x, a family of points on v , with s?p|xj+1 - le -0,
as m -+ o . Let
m m
P. (y) = lim [ P(x,) (16)
x e j
o me  j=1

Then W(y) = tr[P_(y)] is the Wilson 100p3
o

3. Actions, conserved currents and infrared critical dimension.

Let D§ = 3/3xM - AL , where AL 1s left multiplication by
8} M M
A = §%3 . Then
u u

(D@ $»a* = (1-p)P =P P . (17)
9 K v

Using (5) and (15) one sees that
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_ 2 802, v _ (42 & .\ a¥2
A, =) ax ex[In’s12 00 JEs" e[ 1% 98|00

(18)
- 3 fa’ tr[pu(x)z] .

Thus, the models with action A  are natural generalizations of the GPN_l

9,4 g

models with which they coincide when D =& , n =1 . The following further

isomorphisms are noteworthy : The 'mpl model is isomorphic to the SI(KY - or

rotator) model, the GPI model to the 52— (classical Heisenberg) model, and

the 'HPl (or G2’§H)-) model to the S%*- (5 vector) model., The last two lsomor-
phisms are obtained by expressing P in terms of Pauli-, resp. +-matrices. The
last one can also be reduced to the simpler isomorphism between the S3- (4 vector)
model and the SU(2) model with action

Ac =Jd2x tr[Bu(x)* gu(x)'l , g(x) €su(2) = g3 .

For the lattice g-models defined in (27), §5, the proofs of these isomorphisms

are simple.

Finally, we note that equations (17) and (18) remain meaningful for

D = 0 , the octonions or Cayley numbers . , with Gy nCD) = G, 1(0) . In this
’ ’
case the projections P(x) label the points of the Moufang projective planell’lz’

and one obtains an octonionic non-linear ¢g-model whose symmetry group is the

exceptional Lie group F These models and Yang-Mills versions thereof may be

4
of interest to strong Iinteraction physic312

On a classical level, the discussion of the G nGD) - g-models proceeds

N,
4,13 *)_In two dimensional, Euclidean space-time the cpN 1 models are

as 1in
presumably the most interesting ones, since, for n > 1 , the GN,n(n) models
do generally not admit new classes of instanton solutions with non-trivial homo-
topy 10. (E.g. the ]HP1 model does not have such solutions). We conjecture,
however, that the results of L extend to the quantized version of these models.
Finally, we note that the infrared critical dimension of the g-models is

Verit = 2 . This 1is related to the fact that the naive dimension of the conser-

ved currents is unity; see (25) and §5

$

The Yang-Mills action is obtained from Fuv = D", D:] , by setting
u

AYH = Sdax tr[Fuv(x)27 = {dax tr[Fiv(x)z] , (19)

#) After completion of this paper, a preprint by E, Brézin, C. Itzykson, J. Zinu-
Justin and J,-B. Zuber appeared, where, in addition to one local and one non-
local, infinitely many other non-local, conserved currents are constructed
ovanlicit v + cea Section O
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which by (14) coincides with (3) .

Next, one tries to form higher tensors, T , such that
_ [ 42d 2 o L
Ay = d“ x tr[Tu (x)°1 can serve as an action for a conformally
invariant theorylin v 2d dimensions. If one insists on formal Osterwalder-

Schrader positivity : and conformal invariance, T 1s necessarily totally

antli-symmetric and of rank d . (Unfortunately, the tensors

T = pP. (1-p)P (1-P)...P , a natural generalization of FI , vanish
Mp-eedg (M ] LV
identically, for d > 2 , because of the identity
(1-p)P (1-P)... = ... P P(1-P)... = 0 ; see (15))
Y3 Yj
In seneral, the correct expression for tr[T“ u (x)21 can be obtained
from the following limiting procedure : Choose a . ) hypercube, &p 5

in the (ul,...,ud)-hyperplane with sides of length ¢ , centered at x . Let
aae be its boundary. Then

- trfT (0?7 = 1m ¢ 4ftr[P(38)7 - ca,D)} , (20)
My Mg €10 €
where P(AA) = T P(x) , see (16), and c(nJD) 1s a constant, These expres-
XCEAA
sions make sense € and are the desired ones 1f and only 1f d = 1 (n-model)

or d =2 (vang-Mills theory). When d > 2 , P(aae) is 111 defined because
of ordering problems. This rules out the existence of admissible actions, Ad 5
for d >2 , (i.e. v > 4). (If one does not insist on Osterwalder-Schrader positi-
vity then, of course, there are plenty of actions for d > 2).

Clearly, the actions Ao and AYM have a global H-symmetry. In
addition, AYH has a local symmetry : By (12) AYM is invariant under

P(x) v PP(x) = h(x)PGx)h(x)* , with
ph*h P =0 (21)
U

This equation has non-trivial solutions. Associated with these symmetries are

Noether currents, J6 . They are given by
u

B0 = ¥ o ey 0 (22)
u 9]

3 3

where § 1is the Lagrange density corresponding to A . (In Euclidean field
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15)'

theory, § 1s replaced by the action density Furthermore, § 1is the deri-

vation associated with a symmetry transformation, i.e,
8P = [B,P1, with PBUP =0, (23)

where B(x) € H , the Lie algebra of H , for all x . Apart from

B(x) = B = const. there will be other solutions of (23). They form a linear space.
By solving (23) in terms of P one gets a linear space of conserved currents,
(After quantization they ought to determine a Lie algebra of conserved charges

properly containing ¥ ).

Heuristically, quantization consists in associating with an action A

the formal measure on the space of Gy nGD)—valued distributions

du® =e® A 1 ), (24)

x€ EY

where QP 1is, heuristically, the uniform measure on GN,nGD) , and g 1s a
coupling constant (dimensionless for =2 , A = AU and y =4, A= AYM)

In the process ol renormalization, P2 = P will have to be replaced by

P2 = fp , f divergent 4 » 8 1s renormalized, and the conserved currents yield
many Ward identities 16. Formally, (i.e. disregarding from the existence problem),
dy satisfies Osterwalder-Schrader positivity for the fields P , when A = An ’
resp. W(y) , see (16), when A = Ayy - This is shown by approximating A by an
action Ae constructed in terms of P(age) ; see (20), (16). Note that the

naive dimension of P 1s zero. In four dimensions there are no dimensionless
fields satisfying positivity. Hence, for A = AYM (v=24), presumablz only loop

observables, W(y) , and functionals thereof, survive the ¢J]0 limit, Thus,

whereas for A=A , v= 2 , spin wave theory about P = P0 const, makes sense,
ag .
providing an expansion in g - at least after adding a term
2 2
m_}ld x tr[P(x)POW to Ac - this is not clear, at all, for A = AYH . It is
further complicated by the symmetries (21), (23). (Moreover, it is doubtful
whether one can add a term méjfdAx tr[P(x)P01 to AYH

tries, to eliminate infrared divergences). A natural question is whether the symme-

, destroying those symme-

tries of A can be broken spontaneously. The arguments of 15 suggest that the

symmetry associated with a current J cannot be broken spontaneously in

V]
dimension
VS Verit, T [Ju] 1, (25)
*)
If, for A= , V=4, P exists as a quantized field its ultraviolet dimension must
be - 1 , (K4llen-l.ehmann representation. Since its naive dimension is 0, P may, in fact,

=
not survive quantization. See also Section 5).
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where [J 71 is the infrared dimension of J . For A = Ay > Ve obtain from
M 8}
! =
(22), by naive dimensional analysis, [Ju] 23, 1e v 4, 24! (For A A

one obtains of course = 2) . In order for these arguments to be convincing

Vv
crit,
they should be reformulated in terms of the loop observables, W(y)

4, Couplings to quark fields.

Let EG, wa be Dirac spinors transforming under the same reprisentation
of G as §, &* , resp.; (q 1s the G-(colour) index). In addition { and
may transform under some flavour group, i.e, carry a flavour index j =1,...,F .
The cgﬁponents waj are the matrix elements of an n x F matrix, denoted y ,
and § 1s the corresponding, conjugate F x n matrix. One defines the gauge-
invariant filelds . El = ﬁ Q* . wl = &) . When D =H , there are further inva-
riants, ¢2 = ¢T€ 3% and Ez =3 e ET , where

1 0 \ 0 1
€ =( = sy €. % ( ) TR R SRR [
0 gn/ J -1 o

One observes that N and F play symmetric r8les. Thus one may speculate that
N=F, i.e. "intrinsic flavour" = flavour. The result quoted in 2 then suggests

that F =N (yl)n/2 , 1.e. F39, for y=4 , n =3
The minimal coupling matter actions are

A? = J dVx trfﬁj(x)(iwj)(x)1 , (26)

j=1,2 , For N

i = tr[ij . E% trfﬁj1 . One can then form the action A? " jd\% E%(x) (§¢%)(x).

However, they give rise to trivial interactions, and the Green function for

F, there are the following flavour invariants :

L}

and | can be calculated in an arbitrary §-fleld.

5. Lattice models,

The GN n(]:)) non-linear @-models can be put onto the lattice, zV
3

in two different ways
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A' = t P ’
. n?g. T y) @
"n = o

AO nF;. tr[Qngy§y] ’ (28)

where gxy € G , for all nearest neighbors (n.n,)x,y . The gauge field,
g = {gxy} , plays the r8le of a Lagrange multiplier field & .

As a priori distributions one chooses the uniform measure on G

N,nGD)

for Px , resp. the Haar measure on G for gxy , and for & and ¢* the measure

)M dé _ dé

dr(g) = 11 &([8*3]
ia ia ia

-8
a<B aB aB

This ylelds two different lattice models with identical, formal continuum limit,
(18). The Mermin-Wagner argument 15 excludes spontaneous breaking of the intrinsic
flavour symmetry group H , when y = 2 . For the discussion of the breaking of

H in y >3 dimensions, the methods of = can be applied to the model with

action Aé 5 Gogg results concerning the symmetric phase are achieved by applying
the methods of to the model with action A; . Those methods vaguely correspond
to partially resummed 1/N expansions and are rigorous, It would be of interest

N-
to develop a double expansion in 1/N and 1/n , or, for A = AYM , one in Nn

(about pure gauges). The following result may be useful.

Theorem : If one replaces d) by

(N) 3/4 —
d = #37  - N d d

A (8) ags S5([§*d - baB) gc @i Qia -

and defines
1 L A"
0 -2
a1 s = 2V fe g 0 1 aa™ e
n.n, xezV

(n) W
then w*-1im dy (g) =du (g) exists and is the measure of Wilson's pure Yang-
N4 19
Mills lattice theory with group G

(N)

Analogous limit theorems hold for Gaussian d) and l@]a-type d}(N),

In the last case, one obtains a formal |§l4—theory which is conformal invariant,
for vy =4 , and whose N 4 o limit is pure Yang-Mills. One may speculate that

that theory 1is asymptotically free,.
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On the lattice one can try to mimick AYH by the action

Ag = - E (tr[PxPszPu] + tr[PxPuPzPy]) .
u z

where p 1is the plaquette I::]T . We note that tr[PxPszPu] is a lattice
approximation to W(3p) ; * Y see (16), (20). In spite of this formal
relationship with AYM , the naive continuum limit of AS is not . (The
model with action AS 1s related to an Ising type model of Slawny . ). A better
approximation to AYH 1is

Ay = -z ler[m AR 1+ er[ T ) P, (29)

A XEND XEXA

where A 1s an arbitrary lattice square parallel to two axes of z" each side of

which contains three sites, Both actions, AS and AéH , admit a transfer matrix
formalism with selfadjoint, generalized transfer matrix 17 . This guarantees
Osterwalder-Schrader positivity. Wilson's lattice gauge theory = is recovered by

choosing AN = - 5 W(3p) , where W(dp) 1is given by (16), and as a priori distri-

P

bution " 11  QP(x)" the product of the Haar measures for G on the sides of 3ap .
X€Ap

If one discusses confinement for the models with actions Aé , or A

Y™
in terms of a lattice version of the Wilson loop, W(y) , one arrives at the

heuristic picture that confinement breaks down if the intrinsic flavour symmetry,

H , 1is spontaneously broken, Such breaking is expected for y >y (i.e,

crit.
v2>5 for AéH) and small g .

One can show that if one couples quark fields to P with a large number,

F , of flavours and a mass <€ Fl"(2

of A? , this enhances the spontaneous breaking of H which appears to become

» F > 1, by means of a lattice version
possible in > 3 dimensions,
Rigorous proofs are so far restricted to the @g-models, because neither

17 18
the techniques of nor the ones of , In thelir present form, apply to Yang-

Mills,
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