
Confinement in Lattice Gauge Theories Implies 

Confinement in SU(n) Lattice Higgs Theories 

A New Look at Generalized, Non-Linear σ-Models 

and Yang-Mills Theory 

Jurg Fröhlich 

Institut des Hautes Etudes Scientifiques 

F-91440 Bures-sur-Yvette 

Institut des Hautes Etudes Scientifiques 
35, route de Chartres 
91440 Bures-sur-Yvette (France) 

February 1979 

IHES/P/79/2 



Confinement in Lattice Gauge Theories Implies 

Confinement in SU(n) Lattice Higgs Theories 

Jurg FRÖHLICH 

Institut des Hautes Etudes Scientifiques 

F-91440 Bures-sur-Yvette 

Abstract. 

Let G be an arbitrary compact Lie group with center Z(G) . It is 

proven that if static quarks transforming under a non-trivial representation 

of Z(G) are confined in a pure Z(G) lattice gauge theory with gauge coupling 
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Yang-Mills) theory with gauge group G , Higgs scalars in a representation that 

is trivial on Z(G) , and coupling constant g = const.g' . Permanent confine-

ment of "fractionally charged" quarks in any two dimensional lattice gauge 

theory and in three dimensional U(n)-theories are consequences. 
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We compare the standard lattice Higgs theories, including the pure 

Yang-Mills theories, with compact gauge group G with pure lattice gauge 

theories the gauge group of which is the center, Z(G) , of G . The main result 

is the one described in the abstract, special cases of which were first proven 

1 2 3 in two beautiful papers of Mack and Mack and Petkova and in ref. . Our proof, 

3 1,2 
originally stimulated by , extends and simplifies the arguments of , but in-

3 
volves closely related ideas. It establishes the general conjecture 3 of . Since 

2 
our proof yields results more general than the ones of and seems somewhat 

more transparent than the one given there, and since it was developed in part 

1,2 
before we learnt of , it may be useful to make it public. 

The lattice is chosen e.g. to be ZV ( v-dimensional, simple, cubic 

lattice). Since we do not attempt to be uniform in the lattice spacing,we choose 

it to be unity. The gauge groups of main interest are G = SU(n), n = 2,3,..., 

in which case Z(G) = Zn , but our arguments cover the general case, in particu-

lar G = U(n) . (This is of interest, e.g. because U(n) is the gauge group 

of the GN, (C) non-linear σ-models of refs.4,5 which are generalizations of 

the σ-models of They are discussed at the end of this letter). 

Next, we state our main results in more detail. We consider a general 

lattice Higgs theory with gauge group some compact Lie group G , Higgs scalars 

in a representation of G/Z(G) (e.g. the trivial one, the case of pure Yang-

Mills) and gauge coupling constant g . Let χ be the irreducible character 

of G used in the definition of the pure Yang-Mills action, and d the dimen-

sion of the corresponding representation. Moreover, we consider a pure, abelian 

lattice gauge theory with gauge group Z ≡ χ(Z(G)) and coupling constant 
χ 

(2d)-1/2 g . 

A representation of G (resp. its character) is called "fractionally 

charged" if it determines a non-trivial representation of Z(G) . (In the case 

3 
G = U(1) we adopt the definition of : A charge is fractional iff it is a 
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fraction of the electric charge of the Higgs scalar). 

As confinement criterion we may use in this letter both, the one of 

7 3 Wilson , or the more refined one used in 

Theorem 1. 

If in the pure Z -lattice gauge theory defined above fractionally 
χ 

charged, static quarks are confined then so they are in the G-lattice Higgs 

theory. □ 

3 3 Application of the inequalities of ref. (see Theorem 6 ) yields 

Theorem 2. 

The v-dimensional, pure Z -lattice gauge theory confines fractionally 
χ 

charged, static quarks if the (v-l) dimensional, nearest neighbor Z -Ising 
χ 

(or Potts) model has exponential clustering. □ 

3 
One consequence of Theorems 1 and 2 (and of Theorem 6, 2) of ) is 

Corollary 1. 

3 1 Every abelian or non-abelian two (space-time) dimensional lattice 

Higgs theory permanently confines fractionally charged, static quarks. 

As another (more interesting) consequence we mention 

Corollary 2. 

Every U(n) , n = 1, 2, 3,..., three (space-time) dimensional lattice 

Yang-Mills theory permanently confines static quarks. □ 

Further corollaries are mentioned below. We also suggest a connection 

between the breakdown of confinement and the spontaneous breaking of the inter-

4, 5 
nal ("flavour") symmetry group in the non-linear σ-models of refs. 
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Next,we give an analytical definition of the models considered in 

this letter. The action of the standard lattice Higgs theory defined over a 

bounded ("space-time") region Λ Z
v is given by 

where (1) 

and 

(2) 

-2 Here β = g and f are positive coupling constants, xy are arbitrary 

nearest neighbors (bonds) and p an arbitrary plaquette, with boundary ∂p , 

in Zv , g = g- 1  G , for all xy , g = Π g , for any closed loop xy yx C xy 
xy  C y 

C of nearest neighbors in ZV, χ is an irreducible character of G (which 

is non-trivial on Z(G)) , UΦ is some representation of G/Z(G) , and Φ is 

the Higgs scalar. The a priori distribution of g is given by the Haar measure, 

dg , on G , the one of Φ by a G-invariant probability measure dρ(Φ ) xy x x 
Φ 

on the representation space of U . We set 

(3) 

The "Euclidean vacuum expectation", < - > (β) , of this model is 
G 

given by the measure 

(4) 

with Z, chosen such that 
A 

The boundary conditions at ∂Λ may be chosen to be periodic, or free, 

but many others can be used in the following arguments. All our estimates will 

be uniform in Λ , so that this subscript is omitted hence forth. 
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Let be the representation of G with character y . Since it is 

irreducible, 

Uχ(τ) - χ(τ). 11 , for all τ  Z(G) (5) 

The image, Z = χ(Z(G)) , of Z(G) under χ is a compact, abelian group con-
χ 

tained in a torus. Without loss of generality we may assume that the torus is 

one-dimensional, i.e. a circle. The elements of Z can then be labelled by 
χ 

an angle θ which is distributed according to a probability measure dλ on 

the circle, the Haar measure of Z . All subsequent arguments hold in general, 
χ 

but our assumption somewhat simplifies notations. 

The action of the pure Z -lattice gauge theory is given by 
χ 

(6) 

where = ∑ θ , and θ = - θ . Its Euclidean vacuum expectation, 
C xy xy yx 

xy  C 
< - >z (β') , is defined by the probability measure 

χ 

dµ'(θ) = (Ζ')-1 e-A' dλ(θ) , (7) 

with 

Let χq be some irreducible character of G , such that, for all 

τ  Z(G) , 

χq(τ) = χ(τ)q = eiq·θ  1 , (8) 

for some angle θ (depending on τ ) in the support of dλ and some fixed 

integer q . (If (8) is violated, Theorem 1 is either empty or trivial !). 

We now proceed to the proof of Theorem 1 for the models introduced 

above. First, we integrate out the Higgs field Φ . We define 
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(9) 

Since is a representation of G/Z(G) , 

(10) 

for some τ  Z(G) and all xy  A . xy 

Equation (10) is the only property 

Μ M 
required of Z (g) , so that Z could come from integrating out more general 

matter fields ! Moreover,the reader will notice that, in the proof, it suffices 

M 
that Z be invariant under the minimal subgroup Ζmin.  Z(G) for which 

χq(Z
min

 ) # 1 , provided Z is replaced everywhere by Zmin · Physically, this 
χ 

means that the colour of the quarks cannot be shielded by the colour of the 

Higgs fields. (More refined hypotheses on ZM(g) are possible). 

The basic identities (already used in 1) are : If Z° is any sub-

group contained in or equal to Z(G) 

(11) 

for any bounded function F on G , and dr the normalized Haar measure on Z° , 

(12) 

(13) 

for any loop 

Using (10) - (13) we obtain 
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(14) 

Clearly 

(15) 

De fine 

(16) 

and let the expectation < - > be given by the measure 
J , K 

(17) 

Then,by (14) - (17) , 

(18) 

where 

(19) 

Next, we note that the measure dλ(θ ) is the weak limit of 

as µ → ∞ , for some m = 0, 1, 2,... determined by Z . Thus the measure in 
χ 

(17) is the weak limit of the probability measures 

This can be replaced by Z- 1|∫dg Z
M
(g) Z'(g) χq(gc)| ≤ const. 
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(20) 

8 9 Therefore Ginibre's inequalities in the form proven in Proposition 1 of ref. 

can be applied and give 

(21) 

(see (6), (7)) , for an arbitrary integer q and real phase α, , provided 

(22) 

For J and K as in (15), (22) is valid for β' ≥ 2dβ , (since 
P P 

|Re χ(g) | ≤ d , |Im χ(g) | ≤ d) , so that 

(23) 

But (18), (19) and (23) together with |(gc )| ≤ χq(1) yield 

(24) 

2 3 7 From this Theorem 1 follows by the usual arguments ’ 

Remarks. 

2 
Related inequalities (see for examples and interpretation) can be 

proven by the same methods. Moreover, they can be used to e.g. prove that the 

two point function of the G-non-linear σ-model on the lattice ZV is dominated 

by the one of the v-dimensional Z(G)-σ-model. This obviously implies that the 

Mc Bryan - Spencer upper bound 10 extends to the U(n)-σ-models , n = 2, 3,... . 
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To prove Theorem 2 we modify the v-dimensional Z -lattice gauge 
χ 

theory by adding a non-gauge-invariant term 

to the action. As z → + ∞ , the corresponding expectation converges weakly 

to a product of independent, (v-1 dimensional Z -Ising (or Potts) models with 

expectation, < - > (β') , given by 
x 

where Λ(x1) = Λ ∩ {y = (y1,...,y
V

) : y
1
 = x

1
} , and ft = θ (e, the unit 

Z Z+E 1 

1 1 
vector in the 1-direction), for z  Λ(x ) . This is shown in 3 . In the thermo-

dynamic limit (Λ ↑ Zv) , these expectations become independent of x1 (for 

e.g. periodic or free boundary conditions), so that that subscript can be dropped, 

Let C be e.g. a rectangular loop in the (1, 2)-lattice plane with 

sides of length T and L , respectively, parallel to the 1 - and 2-axis. The 

g 
inequalities of give monotonicity in z for the expectation of cos(qθc) , 

so that, as z → ∞ , 

(25) 

3 
where x(L) is the site (0,L,0,...) . See inequalities (18) - (20) of ref. . 

This proves Theorem 2. 

3 
Corollary 1 follows easily from Theorems 1 and 2 (and Theorem 6 of ) 

by setting
 v

 = 2 and noting that, for a one-dimensional zχ-Ising model, the 

r.s. of (25) is bounded by exp ┌-0(l)L.┐ , for all g' . (For an alternate 

argument see 1 ). We conjecture that inequality (25) is also valid for the 
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original v-dimensional gauge theory (with gauge group G = SU(n)) and a two 

point function of the (v-1) dimensional G-non-linear σ-model on the r.s. of 

(25). A related result will be proven elsewhere, for G = SU(2> . 

Corollary 2 follows from Theorems 1 and 2 by extracting from U(n) 

a U(1) subgroup, i.e. choosing Z = U(1) . To the resulting U(1)-theory one 
χ 

3 8 9 
may then apply Theorem 6, 1) of or 11 . We note that, by the inequalities of , 

(26) 

for arbitrary, positive integers n and k , and Z = U(1) , if k = ∞ ; see 
∞ 

3 
also . We conjecture that (26) remains true if Z is replaced by (S)U(m) , 

m 

on both sides. 

As an example of further applications of Theorem 1 and its proof we 

mention that they can be used to compare e.g. a lattice Weinberg-Salam theory 

with a U(1) (purely electromagnetic) lattice gauge theory. 

4 5 6 
Finally, we consider the non-linear σ-models of refs. . A possible 

lattice action is 

(28) 

1 n 
where, for all χ  ZV , ξ = (ξ1 ) is an Ν χ n matrix of orthonormal 

x x x 

vectors, ξ1,...,ξnx , in CN , g  U(n) , and U is the defining representation 

of U(n) . (See 4 for yet more general models and alternate lattice actions). 

The a priori distribution of g is Haar measure, dg , the one of ξ is 
xy xy x 

N 
the uniform measure on orthonormal n-frames in CN . By integrating out the 

ξ-field one obtains a U(n)-lattice gauge theory. According to Theorem 1, it 

can be dominated by a U(1)- gauge theory, in the sense of inequality (24). 

Extensions of Theorem 2 can be used to discuss confinement of quarks for v = 2 . 

The action A has a global U(N)-symmetry group. A connection between the 
σ 
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breakdown of confinement of static quarks in these models and the spontaneous 

breaking of the global ("parton-flavour") U(N)-symmetry, for v ≥ 3 , is 

4 
suggested in 

If the normalization condition = I is replaced by 
n 

= c.N3/4 · , the ξ-field is then integrated out, and the limit N → ∞ 

is taken, the resulting U(n)-gauge theory is the pure U(n)-lattice Yang-Mills 

theory, for arbitrary v 

Details of these results will be discussed elsewhere. 
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A New Look at Generalized, Non-linear σ-Models 

and Yang-Mills Theory 

Jurg Fröhlich 

Institut des Hautes Etudes Scientifiques 

F-91440 Bures-sur-Yvette 

Abstract : 

First a list of recent papers on (lattice) gauge theories and non-linear 

σ-models is presented which serves as an introduction to the subject. 

Subsequently, a new, quantum mechanical interpretation of the formalism 

used by Atiyah et al. and Corrigan et al. for the construction of self-dual 

Yang-Mills fields is attempted and criticized. Yang-Mills theory turns out to be 

a natural generalization of non-linear σ-models which has many conserved (Noether) 

currents. Confinement is linked to the presence of an "intrinsic (or parton) 

flavour" symmetry, at least in the case of the σ-models. 

For the Proceedings of the Bielefeld Symposium, Dec. 1978, to be edited by L. Streit. 
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O. A short Guide to the Literature. 

Before we come to the main part of this contribution, describing some 

new ideas and results concerning non-linear σ-models and Yang-Mills theories, 

we present a short list of papers which is a tiny selection out of a huge number 

of publications on non-linear σ-models and gauge theory. It replaces an intro-

duction to the subject. Our selection does not represent a value judgment. Many 

(in certain respects perhaps most) important papers are missing in our list. The 

author has been guided largely by his lack of comprehension and time, ignorance and taste. 

First, we quote some papers on classical, non-linear σ-models : 

- Refs. 9 and 13 of the bibliography. 

- K. Pohlmeyer, Commun. math. Phys. 46, 207, (1976). 

- K. Pohlmeyer, in "New Developments in Quantum Field Theory and Statistical 

Mechanics", M. Lévy an P. Mitter (eds.) , Plenum Press, New York 1977. 

- A. D'Adda, P. Di Vecchia and M. Luscher, in ref. 6 of the bibliography, and 

Preprint, Niels Bohr Institute, 1978. 

- V.L. Golo and A.M. Perelomov, Phys. Lett. 79 B, 112, (1978). 

- E. Brézin, C. Itzykson, J. Zinn -Justin and J.-B. Zuber,"Remarks about the 

Existence of Non-Local Charges in Two-Dimensional Models", to appear in Phys. 

Lett. B, (1979). 

(This paper contains an explicit construction of infinitely many conserved 

currents for all two-dimensional σ-models considered to be interesting). 

Questions of complete integrability of two-dimensional, non-linear σ-models are 

discussed by the Russian Inverse-Scattering school. 

Some important, recent papers on the quantum field theory of two-dimensional, 

non-linear σ-models are : 

- Refs. 4 , 14 , 16 , 17 , 18 of the bibliography. 

- A.M. Polyakov, Preprint ICTP 77/122. 

- E. Witten, Instantons, the Quark Model, and the l/N Expansion, Harvard Preprint 

HUTP-78/A042. 

- K. Symanzik, in ref. 6 and these proceedings, and refs. given there. 

Further very interesting, recent papers have been written by the Leningrad - , 

Berlin - and Sato (Japan) groups. 
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Next, we collect some convenient references concerning classical 

Yang-Mills theory : 

- Refs. 1 , 2 , 3 , 5 , 6 of the bibliography. 

A readable survey of classical Yang-Mills theory, describing the developments 

and including all important references prior to fall 1977 is : 

- R. Stora, in "Invariant Wave Equations", G. Velo and A.S. Wightman (eds.), 

Lecture Notes in Physics 73 , Springer-Verlag, Berlin-Heidelberg-New York, 

1978. 

Moreover, 

-M.F. Atiyah, in "Mathematical Problems in Theoretical Physics", G.F. Dell' 

Antonio,S. Doplicher and G. Jona-Lasinio (eds.), Lecture Notes in Physics 80, 

Springer-Verlag, Berlin-Heidelberg-New York, 1978. 

More recent reviews, by R. Stora and E. Corrigan, may be found in ref. 6. 

Additional, recent papers (among numerous others) are : 

M.F. Atiyah, N. Hitchin and I.M. Singer, Proc. Nat. Acad. Sci. 74, 2662, (1977), 

and Proc. Royal Soc., to appear. 

I.M. Singer, Commun. math. Phys. 60, 7, (1978). 

M.F. Atiyah and J.D.S. Jones, Commun. math. Phys. 61, 97, (1978). 

An extensive review, "Gauge Theories and Differential Geometry", by T. Eguchi, 

P.B. Gilkey and A.J. Hanson is to appear in Physics Reports (1979). 

A list of references to work on lattice gauge theories, with emphasis 

on recent papers, follows : (among) the classic papers are 

- Ref. 19, bibliography. 

- A.M. Polyakov, Phys. Letts. 59 B, 79 , 82 , (1975). 

- J. Kogut and L. Susskind, Phys. Rev. Dll , 395, (1975). 

Reviews are e.g. 

- K. Osterwalder 

- K. Wilson 

in : "New Developments in Quantum Field Theory and Statistical 

Mechanics", loc. cit. 

- L. Kadanoff, Rev. Mod. Phys. 49, 267, (1977) , and refs. given there. 

- A. Jaffe 

- F. Guerra 

- E. Seiler 

in : "Mathematical Problems in Theoretical Physics", loc.cit. 
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More recent, useful papers are : 

- K. Osterwalder and E. Seiler, Ann. Phys. (N.Y.) 110, 440, (1978). 

- E. Seiler, Phys. Rev. D18, 482, (1978). 

- M. Luschner, Commun. math. Phys. 54, 283, (1977). 

- J. Glimm and A. Jaffe, Phys. Letts. 66B, 67 , (1977) 

- K. Gawedçki, Commun. math. Phys. 63, 31, (1978). 

- J. Challifour and E. Weingarten, University of Indiana, Preprint 1978. 

- G.Hooft, Nucl. Phys. B138, 1 , (1978). 

Very recent papers are 

- D. Brydges, J. Fröhlich and E. Seiler, "On the Construction of Quantized 

Gauge Fields, I : General Results", to appear in Ann. Phys. (N.Y.) (1979), 

and preprint in preparation. 

- R. Israel and C. Nappi, "Quark Confinement in the Two-Dimensional Lattice 

Higgs-Villain Model", to appear in Commun. math. Phys. (1979). 

(For earlier, related results see also : J. Fröhlich, in "Math. Problems of 

Theor. Phys." loc. cit.). 

- D. Brydges, J. Fröhlich and E. Seiler, "Diamagnetic and Critical Properties 

of Higgs Lattice Gauge Theories", to appear in Nucl. Phys. B , (1979). 

- G. Mack, "Confinement of Static Quarks in Two Dimensional Lattice Gauge 

Theories", to appear in Commun. math. Phys. (1979). 

- T. Yoneya, "Topological Excitations in Yang-Mills Theories : Duality and 

Confinement", Preprint, City College, 1978. 

- J. Glimm and A. Jaffe, "Charges, Vortices and Confinement", Harvard Preprint, 

1978. 

- G. Mack, and V.B. Petkova, "Comparison of Lattice Gauge Theories with Gauge 

Groups and SU(2)", Preprint, Hamburg, Dec. 78. 

- G. Mack and V.B. Petkova, "Sufficient Condition for Confinement of Static 

Quarks by a Vortex Condensation Mechanism", Preprint, Hamburg, Dec. 78. 

- A.M. Polyakov, "String Representation and Hidden Symmetries for the Gauge 

Fields", Preprint 1978. 

(In this paper the existence of infinitely many, non-local conserved charges for 

three dimensional Yang-Mills theory is suggested). 

- J. Fröhlich, "Confinement in Zn-Lattice Gauge Theories Implies Confinement 

in SU(n) Lattice Higgs Theories", Preprint, IHES, Feb. 1979. 
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(Some extensions of this paper, due to B. Durhuus and J. Fröhlich, are in 

preparation). 

For a recent survey of quantized Yang-Mills theory in the continuum 

limit see 

- S. Coleman "The Uses of Instanto s" Erice Lectures 1977 to be published, 

A. Zichichi, (ed.), and refs. to the original papers given there. 

Work by D. Brydges, E. Seiler and the author concerning the quantized Higgs 

theory in two space-time dimensions is in preparation. (In that work, some 

earlier results by R. Schrader and R. Seiler, "A Uniform Lower Bound on the 

Renormalized Functional Determinant", to appear in Commun. math. Phys. (1979), 

and by B. Simon, "Kato's Inequality and the Comparison of Semi Groups, to 

appear in J. Funct. Anal. (1979), and refs. given there, were very useful). 

We omit references to "infinitely many" papers on perturbative renor-

malization of Yang-Mills theory, applications of the renormalization group (e.g. 

asymptotic freedom), model building or axiomatic investigations of gauge theories, 

although much of the present faith in gauge theories is certainly founded on the 

results of those earliear papers. Many of the out-standing references are by now 

so well known that we need not give them here again. 

We now proceed to the main part of this contribution, where we suggest 

a somewhat novel way of looking at σ-models and Yang-Mills theory. (It is 

quite doubtful, though, whether it will provide a useful point of view for the 

quantization of Yang-Mills theories). 
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1· Introduction 

In the following I propose and discuss a quantum mechanical interpretation 
1, 2 of the construction - due to Atiyah, Drinfeld, Hitchin and Manin - of all 

self-dual, Euclidean Yang-Mills fields as described and elaborated on by Corrigan 
3 4 

et al. . My program received stimulation from the work of D'Adda et al. on the 
N-1 *) 

CP non-linear σ-models . After the main results described below had been 

found a preprint of Dubois-Violette and Georgelin appeared in which a program 

related to mine is announced. However, the main ideas presented below and the 

way the emphasis is placed differ much from theirs. Those ideas may briefly be 
1, 2, 3 summarized as follows : It is known from 1, 2, 3 that every self-dual U(n) Yang-

Mills connection, A , can be written as 

(1) 

where Φ : x → Φ(x) is a mapping from into orthonomal n-frames in , 

Φ(x) = (φ1 (x),..., φ
n

(x) ) , φj(x)  C
N

 , 

for some N > n , and (φi(x), φj(x)) = δi j , 

2) 

for all i, j = 1,..., n . 

It is natural to try to abstract from self-duality, in such a way that 

one views Φ , resp. the gauge-invariant, projection-valued field P = ΦΦ* of 
3 

ref. , as the fundamental fields of the theory, and A = A (.) as derived, 

via equ. (1). For this purpose, one reexpresses the Yang-Mills action, AYM , 

as a functional of P (or Φ) , 

(3) 

where f (x) ≡ (∂f/∂xU)(x) , for any f ; see . With this action one now tries 
µ 7 

to associate a Euclidean field theory for P satisfying a suitable form of 
8 

Osterwalder-Schrader axioms 

*) This program started taking shape after talks of E. Corrigan and M. Lüscher 

on refs. 3, 4 , resp., at the Les Houches work shop on gauge theories, in spring 

1978 6. 
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The natural analogue of the Yang-Mills action, , in a two dimen-
YM 

sional space-time is 

(4) 

which defines a generalized, non-linear σ-model. For n = 1 , it coincides with 
N-1 9 4 the CPN-1 -model of . This observation suggests that there are close, mathe-

matical connections between four dimensional Yang-Mills theories and two dimensio-

nal, generalized, non-linear σ-models. One of the main purposes of this contribution 

is to exhibit such connections. The main results can be found in §§ 3 and 5. 

Details of these and other results and proofs will be given elsewhere. 

I thank P. Collet, H. Epstein, M. Luscher and K. Osterwalder for valuable 

discussions and M. Dubois-Violette and Y. Georglin for informing me of their 

independent results 5 prior to publication. 

2. Mathematical preliminaries. 

Euclidean space-time is denoted , (related to the sphere SV by 

stereographic projection). Let D be the real (R) , complex (C) or quaternio-
N 

nic (H) numbers, and D the linear space of N-tuples of elements in D . 

If A is an i x j matrix with entries in D then A* denotes the j x i 

matrix defined by (A*)ij = Aji , with a the conjugate of a in D . If B 

is a j X k matrix, AB is the matrix product of A and B which is an 

i X k matrix. 

An orthonormal n-frame in D is given by an N X n matrix, 

Φ = (φ1,...,φ
n

) , with φj  DN and 

Φ*Φ = l
n

 , i.e. (φ
1 , φj ) = δi j , for all i, j = 1,..., n . (5) 

The manifold of all n-frames satisfying (5) is denoted
 n

(D) . Clearly 

P ≡ ΦΦ* ΦΦ* (6) 

3 
is the orthogonal projection onto the hyperplane spanned by φ1, ... . , φn . The 

manifold of all such hyperplanes is denoted GN,n D) , the "Grassmannian of 
N, n 

n-planes", and can be written as a coset space . 
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N Let H be the group of all linear transformations, h , of DN with 

h* h = 1N, and GP  G the group of linear transformations, g , of an n-plane, 
N P 

P D into itself, with g*g = 1 ; H is called "intrinsic flavour group", 

G gauge group. 

For D = R : H = O(N) , G = O(n) , 

for D = C : H = U(N) , G = U(n) , 

for D = H : H = Sp(N) , G = Sp(n) 

(7) 

Given Φ , one sets 

h
Φ
g = hΦg , h  H , g  G

p
 . (8) 

Next, consider arbitrary mappings 

Φ : E
V
  x → Φ(x)  SN, n(D) , resp. 

(9) 

P : EV  x → P(x) = Φ(x) Φ(x)*  G
n,
 N(D), , 

and define a field A = A (·) by equ. (1). By (1) and (6), 

do) 

is in G , the Lie algebra of G . Let g(·) be an arbitrary G-valued function 

on EV (a gauge transformation). Then 

(ID 

Thus A = A (·) is the connection form of a principal G-bundle with base space 
v µ 

EV and fiber G . 

Remark. In an interesting preprint , Dubois-Violette and Georgelin quote an 
2 5 

important theorem (see ref. of ) saying that for D = C , there exists a 

finite integer, N , depending on v and n ( N  v+1 n ) such that, to each 

given A , there exists a Φ such that A = Φ* · Φ 
µ µ 

Next, let h(·) be a U(N)-valued function on Ev . Then 
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h h 1* h 1 
A ≡ Φ Φ = A if and only if 
µ µ µ 

(12) 

An h satisfying (12) is called an "intrinsic flavour transformation". Clearly 

a constant h ≡ h
o
 U(N) obeys (12). 

The curvature of A is given in terms of Φ by 

(13) 

and the gauge-invariant form of F by 
μν 

(14) 

where the parantheses denote anti-symmetrization, and we have used 

(1-P)P = P(1-P) = 0 , i.e. 

and (15) 

With the help of (14) the Yang-Mills equations and the action (see (3)) can be 

rewritten in terms of P . Let γ be a closed curve in EV , and 
m m+l m m m m 

■J j=1 , Xm+1 = x1 = x
o
 a family of points on γ , with sup|xm j+1 - xm j| → 0 , 

as m → ∞ . Let 

(16) 

Then 
3 

is the Wilson loop 

3. Actions, conserved currents and infrared critical dimension. 

Let where AL is left multiplication by 

Then 

(17) 

Using (5) and (15) one sees that 
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(18) 

N-1 Thus, the models with action A are natural generalizations of the CP 
9, 4 σ 

models ,4 with which they coincide when D = C , n = 1 . The following further 

isomorphisms are noteworthy : The RP1 model is isomorphic to the S1(XY - or 

rotator) model, the CP1 model to the S2 - (classical Heisenberg) model, and 

the HP1 (or G2, (H)-) model to the S
4
- (5 vector) model. The last two isomor-

phisms are obtained by expressing P in terms of Pauli-, resp. γ-matrices. The 
3 

last one can also be reduced to the simpler isomorphism between the S3 - (4 vector) 

model and the SU(2) model with action 

For the lattice σ-models defined in (27), §5, the proofs of these isomorphisms 

are simple. 

Finally, we note that equations (17) and (18) remain meaningful for 

D = O , the octonions or Cayley numbers 11 , with GN,n (D) = G3,1 1(O) . In this 
N, n 3, 1 11, 12 

case the projections P(x) label the points of the Moufang projective plane , 

and one obtains an octonionic non-linear σ-model whose symmetry group is the 

exceptional Lie group F4 . These models and Yang-Mills versions thereof may be 
4 12 

of interest to strong interaction physics 

On a classical level, the discussion of the GN,n (D) - σ-models proceeds N n 
4, 13 *) ’ N-1 

as in 4, 13 *) . In two dimensional, Euclidean space-time the CP models are 

presumably the most interesting ones, since, for n > 1 , the GN, (D) models 

do generally not admit new classes of instanton solutions with non-trivial homo-

topy10. (E.g. the HP1 model does not have such solutions). We conjecture, 
14 however, that the results of extend to the quantized version of these models. 

Finally, we note that the infrared critical dimension of the σ-models is 

v = 2 . This is related to the fact that the naive dimension of the conser-
crit. 

ved currents is unity; see (25) and §5 . 

The Yang-Mills action is obtained from by setting 

(19) 

*) After completion of this paper, a preprint by E. Brézin, C. Itzykson, J. Zinn-
Justin and J. -B. Zuber appeared, where, in addition to one local and one non-
local, infinitely many other non-local, conserved currents are constructed 

explicitly see Section O 
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which by (14) coincides with (3) . 

Next, one tries to form higher tensors, T , such that 
(2d 2 µ1.. A, = d2d x tr[T (x)2 ] can serve as an action for a conformally 

d 
invariant theory in v= 2d dimensions. If one insists on formal Osterwalder-

8 
Schrader positivity and conformal invariance, T is necessarily totally 

anti-symmetric and of rank d . (Unfortunately, the tensors 

T = P. (l-P)P (1-P)...P , a natural generalization of FI , vanish 
µ1...µd [μ1 µ2 µd) µv 

identically, for d > 2 , because of the identity 

; see (15)) . 

2 
In general, the correct expression for tr[T (x) can be obtained 

µ1· · · µd 
from the following limiting procedure : Choose a hypercube, D, , 

in the (μ1,..., μd)-hyperplane with sides of length  , centered at x . Let 

be its boundary. Then 

(20) 

where p(∂D ) = Π P(x) , see (16), and c(n,D) is a constant. These expres-

 x∂D 
sions make sense  and are the desired ones if and only if d = 1 (σ-model) 

or d = 2 (Yang-Mills theory). When d > 2 , P(∂D ) is ill defined because 
 

of ordering problems. This rules out the existence of admissible actions, , 

for d > 2 , (i.e. v > 4). (If one does not insist on Osterwalder-Schrader positi-

vity then, of course, there are plenty of actions for d > 2). 

Clearly, the actions Aσ and AYM have a global H-symmetry. In 

addition, AYM has a local symmetry : By (12) AYM is invariant under 

P(x) → Ph(x) ≡ h(x)P(x)h(x)* , with 

(21) 

This equation has non-trivial solutions. Associated with these symmetries are 

Noether currents, J . They are given by 
µ 

(22) 

where l is the Lagrange density corresponding to A . (In Euclidean field 
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theory, l is replaced by the action density
 l5

). Furthermore, δ is the deri-

vation associated with a symmetry transformation, i.e. 

(23) 

where B(x)  H , the Lie algebra of Η , for all x . Apart from 

B(x) = B = const. there will be other solutions of (23). They form a linear space 

By solving (23) in terms of P one gets a linear space of conserved currents. 

(After quantization they ought to determine a Lie algebra of conserved charges 

properly containing H ). 

Heuristically, quantization consists in associating with an action A 

the formal measure on the space of (D)-valued distributions 
N, n 

(24) 

where OP is, heuristically, the uniform measure on GN,n (D) , and g is a 
N,n 

coupling constant (dimensionless for v
 = 2 , A = A and v = 4 , A = AYM). 

2 σ YM 
In the process of renormalization, P = P will have to be replaced by 
2 4 

P = fP , f divergent , g is renormalized, and the conserved currents yield 

many Ward identities 16. Formally, (i.e. disregarding from the existence problem), 

dµ satisfies Osterwalder-Schrader positivity for the fields P , when A = A , 
σ 

resp. W(γ) , see (16), when A = AYM . This is shown by approximating A by an 

action A constructed in terms of P(∂D ) ; see (20), (16). Note that the 
ε ε 

naive dimension of P is zero. In four dimensions there are no dimensionless 

fields satisfying positivity. Hence, for A = AYM (v = 4) , presumably only loop 

observables, W(v) , and functionals thereof, survive the ↓O limit.) Thus, 

whereas for A = A , v = 2 , spin wave theory about P = P = const. makes sense. 
σ O 

providing an expansion in g - at least after adding a term 
2 2 m2 J d x tr[p(x)P

o
] to Aσ - this is not clear, at all, for A = AYM . It is 

further complicated by the symmetries (21), (23). (Moreover, it is doubtful 

whether one can add a term m4∫d4x tr[P(x)P
o
] to AYM , destroying those symme-

tries, to eliminate infrared divergences). A natural question is whether the symme-

tries of A can be broken spontaneously. The arguments of 15 suggest that the 

symmetry associated with a current J cannot be broken spontaneously in 

dimension 

(25) 

*) 
If, for A = A

YM
 , v = 4, P exists as a quantized field its ultraviolet dimension must 

be ≥ 1 , (Källen-Lehmann representation. Since its naive dimension is O, P may, in fact, 
not survive quantization. See also Section 5). 
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where [J ] is the infrared dimension of J . For A = A
 YM

 , we obtain from 
μ μ YM 

(22), by naive dimensional analysis, [J ]  3 , i.e. v  4 ! (For A = A 
μ crit. σ 

one obtains of course vcrit. = 2) . In order for these arguments to be convincing 

they should be reformulated in terms of the loop observables, W(γ) . 

4. Couplings to quark fields. 

Let ψα, , ψα be Dirac spinors transforming under the same representation 
α α 

of G as Φ, Φ* , resp.; (α is the G-(colour) index). In addition ψ and ψ 

may transform under some flavour group, i.e. carry a flavour index j = 1,..., F . 

The components ψαj are the matrix elements of an n X F matrix, denoted ψ , 

and ψ is the corresponding, conjugate F X n matrix. One defines the gauge-

invariant fields ψ = ψ Φ* , ψ = Φψ . When D = H , there are further inva-
2 T 2 T 

riants, ψ = ψ  Φ* and ψ = Φ  ψ , where 

One observes that N and F play symmetric rôles. Thus one may speculate that 

N = F , i.e. "intrinsic flavour" = flavour. The result quoted in 5 then suggests 

that F = N  (v+l)n/2 , i.e. F  9 , for v = 4 , n = 3 . 

The minimal coupling matter actions are 

(26) 

j = 1, 2 . For N = F, there are the following flavour invariants : 

ψj = tr[ψj] , ψjI = tr[ψi ] . One can then form the action Aµj = ∫ dVx ψI(x) (φψjI)(x). 

However, they give rise to trivial interactions, and the Green function for ψ 

and ψ can be calculated in an arbitrary Φ-field. 

5. Lattice models. 

The GN,n (D) non-linear σ-models can be put onto the lattice, , 
N,n 

in two different ways : 
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(27) 

(28) 

where g  G , for all nearest neighbors (n.n,)x, y . The gauge field, 
4 

g = {gxy} } , plays the rôle of a Lagrange multiplier field 

As a priori distributions one chooses the uniform measure on (D) N,n 
for P , resp. the Haar measure on G for g , and for Φ and Φ* the measure 

x xy 

This yields two different lattice models with identical, formal continuum limit, 

(18). The Mermin-Wagner argument 15 excludes spontaneous breaking of the intrinsic 

flavour symmetry group Η , when v = 2 . For the discussion of the breaking of 

H in v  3 dimensions, the methods of 17 can be applied to the model with 

action A' . Good results concerning the symmetric phase are achieved by applying 
σ 18 

the methods of to the model with action A" . Those methods vaguely correspond 
σ 

to partially resummed 1/N expansions and are rigorous. It would be of interest 
N-n 

to develop a double expansion in 1/N and 1/n , or, for A = ΑYM, , one in — 
YM N 

(about pure gauges). The following result may be useful. 

Theorem : If one replaces dλ by 

and defines 

* (n) W 
then W -lim dµ (g) ≡ dµ (g) exists and is the measure of Wilson's pure Yang-

N→∞ 19 
Mills lattice theory with group G 

Analogous limit theorems hold for Gaussian dλ
(N)

 and |Φ| |4-type dλ
(N). 

4 
In the last case, one obtains a formal |Φ|4 -theory which is conformal invariant, 

for v = 4 , and whose N → ∞ limit is pure Yang-Mills. One may speculate that 

that theory is asymptotically free. 
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On the lattice one can try to mimick A by the action 

where p is the plaquette . We note that tr[P P P P ] is a lattice 
x y z u 

approximation to W(∂p) ; see (16), (20). In spite of this formal 

relationship with , the naive continuum limit of A
S
 is not AYM . (The 

model with action A is related to an Ising type model of Slawny 20 ). A better 
S 

approximation to
 AYM is 

(29) 

where D is an arbitrary lattice square parallel to two axes of ZV each side of 

which contains three sites. Both actions, AS and A' , admit a transfer matrix 
S YM 17 

formal ism with selfadjoint, generalized transfer matrix . This guarantees 
19 Osterwalder-Schrader positivity. Wilson's lattice gauge theory is recovered by 

choosing A = - Σ W(∂p) , where W(∂p) is given by (16), and as a priori distri-
W P 

bution " Π OP(x)" the product of the Haar measures for G on the sides of ∂p 
x∂p 

If one discusses confinement for the models with actions A' , or A ' 
σ YM 

in terms of a lattice version of the Wilson loop, W(γ) , one arrives at the 

heuristic picture that confinement breaks down if the intrinsic flavour symmetry, 

Η , is spontaneously broken. Such breaking is expected for v > vcrit. (i.e. 

V  5 for A'YM) and small g . 

One can show that if one couples quark fields to P with a large number, 
1/2 

F , of flavours and a mass α F , F >> 1 , by means of a lattice version 
M 

of AMj , this enhances the spontaneous breaking of H which appears to become 

possible in v  3 dimensions. 

Rigorous proofs are so far restricted to the σ-models, because neither 
17 18 

the techniques of nor the ones of , in their present form, apply to Yang-

Mills. 



- 28 -

References : 

1. M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Phys. Lett. 
65 A, 185, (1978). 

2. V.G. Drinfeld and Yu. I. Manin, Commun. math. Phys. 63 , 177, (1978). 

3. E.F. Corrigan, D.B. Fairlie, S. Templeton and P. Goddard, Nucl. Phys. 
B 140, 31, (1978). 

4. A. D'Adda, P. Di Vecchia and M. Luscher, Preprint, Niels Bohr Institute, 
1978; and in ref.6. 

5. M. Dubois-Violette, and Y. Georgelin, Preprint, Orsay 1978. 

6. E. Brézin and J. -L. Gervais (eds.), Physics Reports, to appear. 

7. "Constructive Quantum Field Theory", G. Velo and A.S. Wightman (eds.) 
Lecture Notes in Physics 25, Springer-Verlag, Berlin-Heidelberg-New York, 1973. 

8. K. Osterwalder and R. Schrader, Commun. math. Phys, 42, 281, (1975). 

9. H. Eichenherr, Ph. D. thesis, Heidelberg, 1978. 

10. N. Steenrod, "The Topology of Fibre Bundles", Princeton University Press, 
Princeton, 1951. 

11. N. Jacobson, "Lie Algebras", Wiley, New York-London, 1962. 

12. M. Günaydin, C. Piron and H. Ruegg, Commun. math. Phys. 61, 69, (1978); and 
refs. given there. 

13. M. Lüscher and K. Pohlmeyer, Nucl. Phys. B 137, 46, (1978). 

14. M. Lüscher, Nucl. Phys. B 135, 1, (1978); see also A.B. Zamolodchikov and 
A.B. Zamolodchikov, Nucl. Phys. B 133, 525, (1978). 

15. Predictions that v ≥ 4 , for Yang-Mills, were previously made by A. Migdal 
crit. 

and G. Parisi. Our argument extends that in : K. Symanzik, Commun. math. Phys. 
6, 288, (1967). also J. Fröhlich and T. Spencer, in "New Developments in QFT 
and Stat. Mech.", M. Lévy and P. Mitter (eds.) Plenum, New York, 1977. 

16. E. Brézin, J. Zinn-Justin and J.C. Le Guillou, Phys. Rev. D 14, 2615, (1976). 

17. J. Fröhlich, B. Simon and T. Spencer, Commun. math. Phys. 50, 79, (1976); 
J. Fröhlich, R. Israel, E. Lieb and B. Simon, Commun. math. Phys. 62, 1, (1978). 

18. K. Symanzik, in "Local Quantum Theory", R. Jost (ed.), Academic Press, New York, 

1969; D. Brydges and P. Federbush, Commun. math. Phys. 62, 79, (1978); J. Fröhlich 

and T. Spencer, unpublished. 

19. K. Wilson, Phys. Rev. D 10, 2445, (1974); R. Balian, J.M. Drouffe and C. Itzykson, 

Phys. Rev. D 10, 3376, ( 1974), D 11, 2098, 2104, (1975). 

20. J. Slawny, Commun. math. Phys. 46, 75, (1976). 




