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Abstract : The construction of charged sectors in Quantum Electrodynamics (QED) 

is analyzed within a framework of algebras of local observables. It is argued 

that charged sectors arise by composing a vacuum state with charged * morphisms 

of an algebra of (neutral) quasi-local observables. Charged * morphisms, in turn, 

are obtained as weak limits of charge transfer cocycles. These are non-local 

elements of the algebra of all quasi-local observables obeying "topological" 

commutation relations with the local charge operators. It is shown that in this 

framework, charged sectors are invariant under the time evolution and satisfy 

the relativistic spectrum condition. The total charge operator is well defined 

and time-independent (conserved) on all charged sectors. Under an additional 

hypothesis the spectrum of the total charge operator is shown to be a discrete 

subgroup of the real line. A generalized Haag-Ruelle scattering theory for charged 

infra-particles is suggested, and some comments on non-abelian gauge theories 

are described. 
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This paper is a continuation of the analysis presented in [1] , hereafter 

referred to as I. In that paper we have investigated charged sectors in gauge 

theories with unconfined, abelian chages, in particular QED, from the points of 

view of a local, covariant formulation on an indefinite metric space and of col-

lision theory, using as one basic input Buchholz' results [2]. Moreover, 

the construction of charged states in QED was analyzed heuristically, extrapolating 

procedures applicable in lattice gauge theories to the continuum theory. In this 

paper that analysis is replaced by a mathematically rigorous one, based on a few 

general, physical principles. 

The main results of paper I are as follows : 

- Asymptotic charged fields (if they exist; see Section 7 of this paper) are 

non-local relative to the asymptotic, electromagnetic field and are not covariant 

under Lorentz boosts. 

- A rather complete characterization of "scattering representations" of the alge-

bra generated by bounded functions of the asymptotic, electromagnetic field, in 

particular of its representations on charged sectors, was achieved. 

- Asymptotic, charged one-(infra-) particle states were constructed. 

- Under reasonable hypotheses it was proven that the charged sectors of QED are 

not invariant under Lorentz boosts; (breaking of the boost symmetry on charged 

sectors ). 

For detailed statements of these and other results we refer the reader 

to I. 

This paper represents a preliminary attempt at extending the Doplicher-

Haag-Roberts (DHR) theory [3] of superselection sectors in standard quantum field 

theories to QED - and other gauge theories with an unconfined, abelian charge -

taking into account the conclusions of paper I and trying to substantiate some of 

the hypotheses made there. Our approach is inspired by the general framework of 

Haag and Kastler [4] and DHR [3]. Some of the technical details in this paper are 

taken from [5] (where the main emphasis is placed on super-selection sectors 

labelled by topological charges, i.e. quantum solitons). Some knowledge of 

[3, 5, 6] might be helpful to understand the main concepts of the present paper. 

The main physical hypotheses upon which the following analysis is based 

are : 
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A. Gauss' law. 

V · ï?(x) = p(x) , 

where p is the O-component (charge density) of the local, locally conserved, 

electric current operator, and E(x) = (Ε
1
 ( x), E2

 (X), E
3

(X)) are the components 

of the quantized, electric field. 

B. Covariance. 

Charged sectors are space-time translation invariant, i.e. a selfadjoint energy-

momentum operator exists on charged sectors. 

C. Additivity of the electric charge. 

Charged sectors can be composed, i.e. the electric charge is an additive quantum 

number. 

D. Space-like distant, localized charges are not felt. 

Charges can be localized (in a sense explained in Section 5), and charged states 

arise from neutral states (via taking w* limits) by removing a localized charge 

to space-like infinity. 

Among some of the consequences of these hypotheses are : 

- The physical mass gap of QED is 0 , [7] . 

- Any representation of the algebra of all quasi-local observables determined 

by a charged state is disjoint from the vacuum representation, even when restricted 

to space-like distant regions; a consequence of Gauss' law. Technically, this 

implies that charged states cannot be obtained from the vacuum by strictly local* 

morphisms of the observable algebra. The DHR approach [3] must therefore be modi-

fied for QED and any gauge theory with unconfined charges; (Section 2). 

- Charged fields (or field bundles) are non-local relative to the interpolating, 

electromagnetic field; (Section 2). 

- The space-time translation covariance of charged states implies that "charged 

field bundles" (* morphisms of the observable algebra) uniquely determine unitary 

operators on the vacuum sector, space-time translation cocycles, which describe 
4 

the transfer of a localized charge from, say, the origin to some point a € M4 ; 

(Section 3.1). "Topological" commutation relations between those cocycles and 

the local charge operators are derived; (Sections 5 and 7). 
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- These so-called charge transfer cocycles are non local relative to the interpo-

lating, electromagnetic field (in a very strong sense); (Section 3.2). 

On the basis of these results and assuming PCT-invariance we then propose 

a tentative framework for the description of charged sectors in QED. Our framework 

guarantees that charged states can be constructed as w* limits of neutral states 

(vector states in the vacuum sector) by removing a localized charge to space-like 

infinity; (Sections 4 and 5). 

Moreover, in that framework charged states are space-time translation 

covariant, and the relativistic spectrum condition holds on all sectors. We then 

prove that the total charge operator exists and is conserved on all sectors of 

the theory; (it is zero on the vacuum sector). Under an additional hypothesis 

it is shown that charge transfer cocycles transfer a definite electric charge, 

and charged * morphisms carry a definite charge. Then the spectrum of the charge 

operator on the total Hilbert space is a discrete subgroup of the additive group 

of the real line. See Sections 5 and 6. Our main results are in Sections 3, 5, 6.2 

and 6.3. The main purposes of a general framework for QED are : 

I) To develop specific concepts and explicit procedures for the construction of 

sectors labelled by an abelian, unconfined charge in a gauge theory, in particular 

QED, the vacuum sector of which is supposed to be given, e.g. in the form of a 

sequence of Wightman distributions of gauge-invariant fields satisfying the 

Wightman axioms. This is attempted in Sections 3-6. 

II) To extend Buchholz' collision theory for massless bosons [2], in QED only 

applicable on the vacuum sector, to the electromagnetic field on the charged sec-

tors of QED. 

III) To complement and complete that analysis by constructing a collision theory 

for charged infra-particles. See Section 7. 

Some relevant results can also be found in Sections 3.3 and 3.6 of paper I. 

IV) To derive the principal hypotheses in Sections 3.4, 3.5 (or the weaker ones 

in Section 3.3) of paper I which would determine the structure of charged scattering 

states (generalized coherent states !) quite explicitly, from a few basic, dynamical 

hypotheses which are convenient to check in models. 

A minimal result of this type is to show that charged sectors determine 

representations of the algebra, SIas , generated by bounded functions of the 
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asymptotic, electromagnetic field which are disjoint from the Fock representation; 

(see Section 1 of paper I). A somewhat stronger result containing that one would 

be to prove that the electric charge operator, Q , is affiliated with the von 
as 

Neumann algebra generated by 9J in the physical representation. 

The reader will find out that none of these goals is reached completely 

in this paper. We hope it at least clarifies the conceptual basis and the main 

difficulties met in the construction of charged states and supplies some useful 

first steps towards a more complete, general theory of the charge super-selection 

rule. See also [8,3]. Readers who think that theorems with short proofs are neces-

sarily trivial will find this paper trivial. Some of the experts in the field may 

share this feeling. We hope some of the ideas developped in the following will 

be useful. 

1. Local observables and covariant states. 

Here we recall some basic notions and concepts of the Haag-Kastler frame-

work [4], the basic theorem of Bisognano and Wichmann [9] and a result of [10] 

concerning the existence of local algebras satisfying the Haag-Kastler axioms in 

a Wightman field theory. Let & denote a double cone (the intersection of a for-

ward with a backward light cone) in , and let ~ & denote its causal comple-

ment, (all space-time points which are space-like relative to β ). 

Given a double cone Φ , let SI(&) be a C* - or von Neumann algebra 

containing at least all bounded functions of the interpolating, electromagnetic 

field, F (fµv) , where the fµv are real-valued Schwartz space functions with 
μν 

support in & , and possibly other local observables which are local relative to 

the electromagnetic field; (such observables have of necessity total charge 0 ; 
4 

see [8] and Section 2). Let B be some general, open region in Μ . Let IB 
4 , 

denote the family of all bounded double cones in M .We define SJ(B) to be the 

norm closure of 

(1.1) 

& c B 

in particular, Si = SI (B = M4) is the algebra of all quasi-local observables of 

the theory. 

As usual, locality is expressed by the condition that, for arbitrary 

A ϵ 91(6) and arbitrary B ϵ Si(~ ®) , 
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[Α, Β] = AB - BA = Ο (1.2) 

We also assume that the Poincaré group, p* , is represented on the algebra 9T 

* ↑ 
by a (strongly continuous) * automorphism group, {t : ξ ϵ p↑} , such that 

Τ
ξ
(«(6)) = 5J(Ô(ξ)) , (1.3) 

where β(ξ) is the image of the region © under a Poincaré transformation ξ ; 

see [4]. 

Sufficient conditions - which are quite efficient in models - for the 

existence of a net of local algebras {9l(®))r with all the properties, 
Θ ϵ β 

(1.2)-(1.3), listed above in a Wightman field theory are given in [10]. 

Given a state, p , on 91 , the G.N.S. construction (see e.g. [11]) 

provides one with a Hilbert space, & , a representation, π , of 91 on Jj , 
p p p 

and a cyclic unit vector Q ϵ ft , such that 
p p 

B = [π (A) Q : A ϵ 91} , 
p p p 

p(A) = (Ω , π (A)Ω ) , for A ϵ 91 . 
p P p 

(1.4) 

In an unambiguous context, A will henceforth denote both, the abstract element 

of 9J and the bounded operator Π (A) on Ji in a given representation Π 
p p P 

of 91 on Η . Let G be an arbitrary, topological group represented on 91 by 
p 

a (strongly continuous) group of * automorphisms, {T : g ϵ G} of 91 . 
g 

Definition 1. 

A state, p , on 91 is said to be G-covariant iff there exists a conti-

nuous, unitary representation, U , of G on Ή such that, for all A ϵ 91, g ϵ G , 
p p 

TT (T (A)) = U (g)* π (A) U (g) on ü 
p g p p p p 

(1.5) 

A vacuum state, (l) , is a state on 91 which is Poincaré-invariant (hence p↑ -
+ 

covariant), so that 

U (ξ)Ω = Ω , for all ξ ϵ p , 
w + 

(1.6) 

where Ω ≡ Ω is the physical vacuum, and the spectrum of the generators, (II, P) , 
(l) 
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the energy-momentum operator, of the translation subgroup 

{U (a) : a ϵ M4}, U (a) ≡ U (ξ = (1, a)) , is contained in the forward light cone 
_ W W W 

Henceforth we may always assume that the physical vacuum is non-degenerate, 

i.e. W is a pure state on 91 , without loss of generality. This is because of 

Araki's theorem [12]. Then the von Neumann algebra, Π (2I)" , generated by Π (9») 
W ω 

on the vacuum sector, W , coincides with the algebra of all bounded operators 
W 

on H , B(34 ) . In the following we assume that we are given an arbitrary, but 
W W 

fixed, pure vacuum state ω on 9J . But see [13, 12, 5]. 

For the expert we now recall a basic theorem, due to Bisognano and 

Wichmann [9] which, we believe, is at least implicitly important in the following 

analysis. (The reader can skip this in first reading). This theorem says that, 

under certain technical assumptions (in particular PCT invariance, which are 

guaranteed by the conditions of [10]), one can construct from the net {ΪΚ(O)} ϵ ^ 

another net, f
q
K(5)]^ ^ , of local von Neumann algebras on such that 

9Ï(fc) => V($) and 9I(fc) = π (9ϊ(~ &))' , 
W 

(1.7) 

(the famous duality condition; see e.g. [3]), for all fi ϵ î» . 

In the following we shall imagine working with the net {SJ(<&)} , 
δ ϵ Ϊ 

but we write again 9J($) , instead of 9J(&) . We only consider states on SI 

whose restriction to 9J(&) is normal, for all Φ ϵ © . 

DHR consider those states, p , on ST as relevant for particle physics 

which have the property that 

||( p-w) / 2l(~ &
n

) || → 0 , as n → ∞ , (1.8) 

for each sequence {&
n
} c SB increasing to . Under suitable, technical condi-

tions this property is equivalent to 

p = w° σ , (p(A) = ω°σ(Α) ≡ ω(σ(Α)), A ϵ 91) , (1.9) 

* + 
where σ is a morphism of 9J with the property that, for some bounded double 

cone (!) , called the support of σ , 

+ i.e. σ(ΑΒ) = σ(Α) σ(Β) ,
 σ

(Α*) = σ(Α)* , σ is linear and ||σ(Α)|| < ||A|| , 

for all A, B in 21 . 
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σ(Α) = A , for all A ϵ SI(~ β) (1.10) 

Such morphisms are called local; see [3]. 

Lemma 1. 

Let σ be a local * morphism of SI and W a vacuum state. Then 

It (σ) ≡ {σ(Α)Ω : A ç SI} = H 
W W 

Proof : 

Thus 

Let & ϵ β denote the support of σ . Then σ(Α) = A , for A ϵ SI(~ ®) . 

Μ (σ) 3 {AΩ : A ϵ Sl(~ &)} . (1.11) 

By the Reeh-Schlieder property [4, 10, 14], the closure of the r.s. of (1.11) is 

ft when W is a vacuum state. 
W 

□ 

Remark : The Reeh-Schlieder property has been derived from the Reeh-Schlieder 

theorem [14], under suitable conditions, in [10]. Lemma 1 is significant for the 

discussion presented in Section 3. 

We now show that when p is a charged state on 31 and the charge satis-

fies Gauss' law (see condition A. in the introduction) then properties (1.9) - (1.10) 

cannot be fulfilled, hence (1.8) must fail, too. This result is widely known, [8,3]. 

2. Consequences of Gauss' law. 

We repeat here, in a more formal way, an argument showing why the 

DHR theory of super-selection sectors is not applicable to the charged sectors 

of QED. 

First, we recall the definition of the electric charge operator, Q : 

Let α(t) ≥ 0 be a test function on R of compact support, with ( α(t)dt = 1 . 
3 

Let Σ be a simply connected, bounded region in IR with smooth boundary . 
3 

Let få(x) be a test function on R with the properties 

(i) 0 ≤ f (x) ≤ 1 ; 
/j 
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(ii) f (x) = 1 , for all x with the property that (x, t) is in the causal 

shadow of å (i.e. not space-like to Σ ) , for all t ϵ supp a ; 

(iii) supp f compact. 

We then define 

Qå = ∫ ρ(x,t) få(x) α(t) d x dt , (2.1) 

where ρ(x,t) is the charge density operator. Gauss' law is expressed in the form 

(2.2) 

→ 
where E is the electric field operator. 

We assume that 

is affiliated with 8i(~ å ∩ Ҩ) , (2.3) 

for some sufficiently large Ҩ ϵ B , in accordance with the fact that, for a suf-

ficiently large Ҩ ϵ B , supp(vfå <g> a) Ì ~ Σ ∩ Ҩ . Then the operator E(vfå <8> a) 

is a densely defined, selfadjoint operator in any locally normal representation 

of 91 . (Property (2.3) is true under the conditions of [10]) . 

If Σ is the ball {x : |x| ≤ R} we denote Q by Q
R

 , and få by 

fR * 
From locality, (1.2), and (2.3 ) we get 

Lemma 2. 

, for all A ϵ $1 , s ϵ R . 

We define the electric charge, Q , as the generator of 

(2.4) 

in any representation Π of 91 for which the limits (2.4) exist and are conti-

nuous in s . Then Q is affiliated with Π(9J)" . This and Lemma 2 show that 

the electric charge is a super-selection rule. The analysis of this super-selection 

rule is the main purpose of this paper; see also [8], 
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It is common to assume that 

Q = O , on ; (2.5) 

but see Lemma 14, (Section 5). 

Proposition 3. 

Let σ be a local * morphism of 21 . Then the sector ü ≡ Ü has 
σ ωo σ 

the same electric charge as Ü , i.e. if 
lb 

(2.6) 

then 

Qψ = 0 , for all ψ ϵ It and all ψ € N 
ω σ 

Proof : Let Ω = Ω . Then, for arbitrary A and B in 
σ ω° σ 

and by (3.8) , 

(ΑΩ , Q
R
BΩ ) = (ΑΩ , E(Vf ® a) BΩ ) . 

σ R σ σ R σ 

→ → 
For R sufficiently large, E(Vf <g> a) is affiliated with 2I(~ supp σ) , more-

R 
over E(Vf (g> a) and B commute, since B ϵ U 2I(Ҩ) . Thus, using (1.9), we 

R φ ϵ oa 
conclude that, for sufficiently large R , 

(2.7) 

As R → ∞ , the r.h.s. of (2.7) tends to 

(σ(B*A)Ω,QΩ) = 0 ; see (2.2), (2.6). 

Therefore 
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Thus, in QED charged states do not arise by composing the vacuum state 

ω with local morphisms. Should we give up the idea that charged states can be 

constructed by composing the vacuum state with * morphisms of SI ? Not only would 

such a radical proposal contradict the requirement that charged sectors can be 

composed (charged fields can be multiplied) and the electric charge is additive, 

but it would also make a general analysis too vague. 

3. Translation covariant sectors and * morphisms of SI . 

We propose to regard those states p on SI as relevant for QED which 

have the properties 

P1) p is space-time translation covariant; 

P2) p = ω° σ , where ω is the vacuum state, and σ is a morphism of SI . 

Remark : The results of Sections 3.4 and 3.5 in paper I have cautioned us not to 

assume that p is Lorentz-covariant in case p is a charged state. We may, how-

ever, assume that p is also rotation covariant, but this is quite unimportant 

in the following. Translation covariance is crucial, because it guarantees the 

existence of an energy-momentum operator. 

3.1. Transportable and covariant morphisms and cocycles 

Definition 2. 

Let G be a topological group, and {T : g € G} a representation of 

G by a strongly continuous * automorphism group of SI . Let ω be a G-invariant 

state on 91 . A mapping Γ : g € G → r(g) , where r(g) is a unitary operator 

on U , is called a G-cocycle on ft iff r(g) is (weakly or strongly) conti-
ω ω 

nuous in g on U , and 
ω 

r(g1 . g2) = r(g
1
) Uω (g1) r(g2) Uω (g1)* · 

(3.1) 

A * morphism σ on 91 is called G-transportable on JJ iff 

Π (τ ι°σ°τ (A)) = r(g)* π (σ(Α)) r(g) , 
ω -1 g ω 

(3.2) 

where r(g) is a G-cocycle on Η . 
ω 

(3.2) 
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Remark : If Π ° σ is an irreducible representation of 91 then equation (3.12) 
ω 

alone implies that Γ is a G cocycle, unique up to a phase. This is not so if 

TT o σ is not irreducible. For simplicity, we require in general that Γ in 
CD 
(3.2) be a G-cocycle. 

A * morphism σ on V is called G-covariant iff ω°σ is a G-covariant 

state. 
We define Ü (σ) ≡ {σ(Α)Ω : A ϵ 9} . 

ω 
(3.3) 

Clearly it (σ) Ì & . If σ is a local * morphism and ω the vacuum then by 
CD ω 

Lemma 1, it (σ) = Ü , but this is not so in general. 
ω ω 

□ 

Lemma 4. 

If Γ is a G-cocycle on It then V (g) ≡ r(g) U (g) is a continuous, 
ω CD 

unitary representation of G on H· . 

Proof : By the definition of G-cocycles, V (g) is clearly unitary and continuous 

in g on ït . By (3.1) 
ω 

v (g1 . g2) = r(g1 . g2) U (g1 . g2) 

= r(g
1
) U (g1 )r(g

2
) U (g

1
)* U (g1 . g2) 1 ω 1 2 ω 1 ω 1 2 

= r(g1) U (g1)r(g2) U (g
2
 ) 

ω 1 2 ω 2 

= v(g1) v(g2), for all g1, g2 in G . 

□ 

Theorem 5. 

Let ω be a G-covariant state on St , and σ a G-covariant * morphism 

on St . 

Then there exists a G-cocycle Γ (g) on it with the property that 
σ ω 

V (g) ≡ Γ (g) U (g) leaves Κ (σ) invariant, and 
σ σ ω ω 

π (σ° τ (A)) = v (g)* π (σ(Α)) v (g) , 
ω,σ g σ ω,σ σ 

where π is the representation of σ(SI) on it (σ) . Conversely, suppose that 
ω, σ CD 

ω is G-covariant and σ G-transportable on ϋ , and assume that Hω (σ) is 
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invariant under V (g) ≡ Γ (g) U (g) , for a11 g ϵ G . Then σ is G-covariant. σ σ ω 

Proo f : 

We define an isometric isomorphism T : ft (σ) → ft . by 
ω σ 

Τσ(Α)Ω = AΩ , for A ϵ ήί . 
σ 

(3.4) 

One verifies immediately that T is isometric. Moreover, since Ω is cyclic 

in U (σ) for σ(5Ι) , T extends by continuity to all of it (σ) . By (3.4) and 
ω ω -1 * 

the cyclicity of Ω for SI in , the range of T is ft . Thus T = T 
σ σ σ 

exists and is an isometry from ft to ft (σ) . 
σ ω 

If ωο σ is G-covariant there exists a continuous, unitary representation 

U of G on ft such that 
σ σ 

π (τ (A)) = U (g)* π (A) U (g) . 
σ g σ σ σ 

(3.5) 

Using (3.4) we conclude 

so that 

U (g)AΩ = U (g)Tσ(A)Ω ϵ y , for all g ϵ G , 
σ σ σ σ 

T*U (g)AΩ = T*U (g) Tσ(A)Ω ϵ U (σ) , 
σ σ σ ω 

for all g ϵ G . Since T and T* are isometric isomorphisms, and U is a 
σ 

continuous, unitary representation, 

V (g) = T*U (g)T 
σ σ (3.6) 

can be extended by continuity to all of JJ (σ) and is a continuous, unitary 

representation of G on ft (σ) · We can extend V (g) to all of ft by setting 
ω σ ω 

e.g. 

V (g) = 1 , on ft Θ ft (σ) . 
σ ω ω 

We then define 

Γ (g) = V (g) U (g)*, 
σ σ ω 

(3.7) 

Since V and U are continuous, unitary representations of G on ft , 
σ ω ω 

Γ (g) is clearly a G-cocycle on ft (in particular, (3.1) follows directly from 
σ ω 
(3.7)). 
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That 

Π (σ°τ (A)) = v (g)* Π (σ(Α)) v (g) 
ω, σ g σ tu, σ σ 

follows easily from 

U (g)T = τ v (g) , on u (σ) . 
σ σ ω 

(3.8) 

This proves the first part of Theorem 5. To prove the second part, notice that, 

given V , 
σ 

U (g) = T V (g) T* 
σ σ 

defines a unitary group on ϋ , since, by hypothesis, V (g) leaves U (σ) 
σ σ ID 

invariant, for all g ϵ G . Continuity in g of U follows from the assumed 
σ 

continuity of Γ . Furthermore, for ψ = BΩ and Φ = CΩ , 
σ σ σ 

(ψ,τ (A)Φ) = (σ(Β)Ω,σ(τ (A))σ(c)Ω) 

= (v (g)σ(B)Ω,σ(A) v (g)σ(C)Ω) 
σ σ 

= (U (g)BΩ , AU (g)CΩ ) 
σ σ σ σ 

= (ψ,U (g)* A U (g)Φ) . 
σ σ 

This completes the proof of the theorem. 

Corollary 6. 

(1) Suppose that, for each ψ ϵ U , the state (ψ,σ( . )ψ) on 9Ϊ is G-covariant. 
ω 

Then there exists a G-cocycle Γ (g) on such that 
σ ω 

Ηψ(σ) ≡
 {σ(Α)ψ : A ϵ ?]}-

is invariant under V (g) = Γ (g) U (g) , for a11 g ϵ G , for a11 ψ , and 
σ σ ω 

Π (σ°τ (A)) = v (g)* π (σ(Α)) v (g) , 
ω g σ ω σ 

(3.9) 

and σ is G-transportable. 
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(2) Suppose that H (σ) = Ή , i.e. Ω is cyclic for σ(9Ι) . Then σ is 
ω ω 

G-covariant if and only if it is G-transportable. 

(3) Suppose ω is a vacuum state and σ a local * morphism. Then σ is G-co-

variant if and only if it is G-transportable. 

Proo f : 

(1) Defining ω' (A) = (ψ,Αψ) , ψ ϵ 94 , one sees that ω' and σ satisfy the 

hypotheses of the first part of Theorem 3.1. Now, we first choose ψ = Ω . Then 

we choose ψ = Ψ
1

 ϵ W θ Μ (σ) , then Ψ = ψ
2

 ϵ Μ ® Ή (σ) θΜ (σ) , etc. By itera-
1 ω ω 2 ω ω 

ting this procedure we obtain Γ (g) and V (g) such that (3.20) is satisfied 
σ σ 

on & . 
ω 

(2) Since U (σ) = K , & (σ) is automatically invariant under V (g) = Γ (g)U (g) , 
ω ω ω σ σ ou 

for any G-cocycle Γ · Thus (2) follows from Theorem 5. 
σ 

(3) This follows immediately from Lemma 1 and Corollary 6, (2). 
□ 

Remark. 

If Π °σ is irreducible then clearly Jt (σ) = 3$ 
ω ω ω 

3.2. Localization properties of translation cocycles. 

If G is the (space-time) translation subgroup of (p
+
 and ω is a 

vacuum state on 9) then Theorem 5 says that if a state p = ω° σ is translation 

covariant there exists a translation cocycle, Γ(a) = Γ (a), a ϵ M4 , such that 
σ 

σ° Τ (A) = U (a)*Γ(a)*σ(A)Γ(a)U (a) , 
a ω ω 

(3.10) 

on U (σ) . 
ω 

We propose to determine the localization properties of Γ for the case 

when ω° σ is a charged state. For this purpose we consider the space-translation 

cocycles. Let 

B = {a = (x,0) : |x| = ϵ} . 
ϵ 

Let Γ(a) be an arbitrary translation cocycle on Ü . Suppose that, for some 
ω 

ϵ > 0 and all x ϵ B , Γ(x) ≡ Γ((x, 0)) ϵ W(Ҩ) , for some bounded double cone Ҩ . 
— ϵ 
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3 
Pick an arbitrary y ϵ R with | = y ϵ , y = 0, 1, 2, ..., and set 

n = y y , so that |n| = ϵ . Then, by iterating the cocycle identity (3.1), we 

obtain 

(3.11) 

Hence 

Γ(y) ϵ we® ) , (3.12) 

where Ҩ is the smallest, connected, convex union of double cones containing 

both Ҩ and Ҩ((y,0)) . Clearly the "transverse width" of Ҩ is bounded uniformly 

in y . As noted in [5] (Theorems 2.8 and 2.9) , the cocycle identity (3.1) and 

some additional, more technical arguments (see also [3, 6]) then imply that there 

exists a bounded double cone Ҩ such that 
Γ 

Γ(a) ϵ ^(ҨΓ U Ҩ
Γ
(a)) , for all a ϵ Μ , (3.13) 

and (see Theorem 2.9 of [5] and [3, 6]) 

(3.14) 

exists, for all A ϵ 9J , whenever a tends to ∞ in a space-like direction, and 

the limit is independent of that direction. Moreover σ is a local* morphism 

with support supp σ = Ҩ
Γ
 . By Proposition 3 , ω° σ has the same charge as ω 

Thus we have proven 

Theorem 7. 

Let ω be a vacuum state on U of charge 0 . Let σ be a * morphism 

on U such that ω° σ is a charged, translation covariant state. Let Γ(a) = Γ (a) 
σ 

be the corresponding translation cocycle on (constructed in Theorem 5). 

Then, for arbitrary ϵ > 0 , there exists no bounded double cone Ҩ 

such that Γ((x,0)) ϵ W(Ҩ) , for all x with |x| = ϵ . 

Remarks : 

1. Assume, in addition, that σ is space-rotation covariant, (an assumption 

that is compatible with the conclusions of Sections 3.4 and 3.5 of I). In this 

case, one can choose σ such that it commutes with the space-rotation automorphisms. 
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It follows that, for an arbitrary space rotation R , Γ(Rx) = U (R)Γ(x)U (R)* . 
ω ω 

Combining this with Theorem 3.2 we conclude that for arbitrary 0 ≠ x, Γ(x) Ï W(Ҩ)! 

2. Theorem 7 remains true if fa : a = (x,0), |x| = ϵ} is replaced by 

fa : a ϵ å, |a| - ϵ} , where Σ is an arbitrary space-like hyperplane. 

3. It is natural to view the translation cocycles Γ(a) as the formal continuum 

limit of coherent superpositions of (charge transfer) string operators in lattice 

gauge theories. Theorem 7 then substantiates the claims made at the end of 

Section 3.5 of paper I. The absence of localization properties of Γ(a) might 

make the construction of these cocycles very difficult in models. 

4. Assuming that charged, translation covariant states exist, we can refer to a 

result of Swieca [7] that says that in such a situation the physical mass gap of 

the theory is 0 ; (see also Section 2 of I). Assuming a sharper version of this 

result, namely that F couples the vacuum Ω to a O-mass one-particle state, μν 
the photon, one concludes that the positive metric formalism developped here is 

incompatible with the existence of a local vector potential whose curl is F 
μν 

In addition, Proposition 3 and Theorem 7 prove that there are no charged fields 

and no charge transfer operators that are local relative to F 
μν 

5. We summarize the main conclusions : If ω° σ is a charged, translation-covariant 

state on 31 then σ is non-local and there exists a translation cocycle Γ = Γ 
σ 

on H with the property that Γ (a) is non-local in the sense of Theorem 7 
ω σ 

and Remarks 1,2. 

In this situation 

(1) it is not necessarily true that 

Jt (σ) = ft , 
ω ω 

(3.15) 

i.e. Ω need not be cyclic in M for σ(3Ϊ) . Therefore a transportable * mor-

phism σ , (i.e. one that is G-transportable, with G the translation group) 

does not necessarily give rise to a translation covariant state; (see Theorem 5). 

(2) It is not necessarily true that 

(3.16) 

with a ∞ in a space-like direction, as would be the case if σ were a local* 
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morphism; see (3.14). 

(3) (Composition Property) The composition of translation covariant * morphisms 

is not necessarily translation covariant. 

However, the results of paper I suggest that (3.15), (3.16) and the Com-

position Property which expresses the additivity of the electric charge are valid 

in QED. Therefore we propose to develop a framework for the construction of 

charged states in QED with the property that (3.15), (3.16) and the Composition 

Property are satisfied. (Condition (3.15) will be seen to be related to some 

locality properties of σ ; Section 6). The relativistic spectrum condition will 

then automatically be satisfied on the charged sectors. On these grounds a tenta-

tive theory of the "asymptotic statistics" of charged sectors will be outlined in 

the last section. It permits us to set up a generalized Haag-Ruelle scattering 

theory for charged infra-particles. 

4. Transportable * morphisms and translation cocycles 

In this section we attempt to implement the ideas that charged states 

are weak* limits of states in the vacuum sector, as a localized charge is moved 

to space-like infinity, and that a charge localized in a space-like distant region 

has only a negligible effect on measurements done in a bounded space-time region Ҩ . 

In the following, ω is a fixed, pure vacuum state on 91 . 

Definition 3. 

A representation Π of 91 is called locally normal iff 

Π(9Τ(Ҩ))" = π (9I(Ҩ))" , for all Ҩ ϵ ® . Let {A } be some net of operators in 9J. . 
ω α 

In the following "w-lim A = A" means that A converges weakly to A , as 
a a 

a → ∞ 
α → ∞ , in every locally normal representation of 91 . A * morphism σ of 9J 

is called locally normal iff Π °σ is locally normal. 
ω 

In the following, "a → ∞" means that a tends to ∞ in some space-

like, asymptotic direction. A translation cocycle Γ on M is called quasi-local 

iff Γ(a)AΓ(a)* ϵ «I , for all a ϵ M4 , and for all A ϵ U 91(Ҩ) , 
Ҩ ϵ 

(1) (4.1) 

is independent of the direction in which a ∞ , and is a locally normal * mor-

phism of 91 . (Notice that σ is automatically locally normal if the local 
Γ 
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algebras 9Ι(φ) , Ҩ ϵ * , are of type III and If is separable; a theorem of 

Takesaki, see [15]). 

(2) (4.2) 

4 * 
We also define σ ≡ τ °σ° t , a ϵ M , where σ is an arbitrary morphism 

a -a a 

of 9jf . 

Remarks. 

□ 

1. A translation cocycle Γ is called quasi-local in norm iff 

Γ(a)AΓ(a)* ϵ « , for all A ϵ » , a ϵ Μ4 , and 

(4.3) 

Then σ
Γ
(Α) ≡ n-lim Γ(a)AΓ(a)* exists, is independent of the direction in which 

a→∞ 
a → ∞ , and is a transportable * morphism of 91 with the property that 

for all A ϵ 91 . (4.4) 

Conversely, suppose that σ is a transportable * morphism of 91 with the proper-

ties that the corresponding translation cocycle Γ obeys Γ (a)AΓ (a)* ϵ 91 , 
4 σ σ σ 

for all A ϵ 91 , a ϵ Μ , and that 

Then Γ (a) is quasi-local in norm, and σ = σ
Γ

 . I.e. there is a 1-1-correspon-
σ Γ σ 

dence between morphisms σ with the above properties and translation cocycles 

that are quasi-local in norm. The proof of this theorem is given in Appendix 1. 

At first sight, it seems to offer an attractive extension of the DHR theory. We 

have however good reasons to reject translation cocycles which are quasi-local 

in norm (which may be interesting e.g. for statistical mechanics) as a suitable 

framework for the description of charged sectors in QED, rather we base our analy-

sis on the quasi-local cocycles introduced in Definition 3. 

2. Clearly, the * morphisms arising from quasi-local translation cocycles, 
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Γ , are in general not local, so that the states ω° σΓ may be charged; see 

Section 5. (This would even be so for morphisms arising from translation cocycles 

which are quasi-local in norm). 

Proposition 8. 

Let Γ be a quasi-local translation cocycle. Then the * morphism σΓ 

of 91 - see (4.1) - is transportable, with 

and 

σΓ (a) = Γ(a)* σΓ(A)Γ(a) , 
Γ , a Γ 

(4.5) 

(4.6) 

Proof : 

By the cocycle identity (3.1) 

T (Γ(b)τ (A)Γ(b)*) = Γ(a)* Γ(a+b)AΓ(a+b)* Γ(a) . 
-a a 

Taking b → ∞ on both sides of this equation, applying (4.1), yields (4.5). In 

particular, σΓ is transportable. Moreover, 

which converges weakly to A , as a → ∞ , for all A ϵ U 8I(Ҩ) , by (4.2). 

Theorem 9. 

Let and σ2
 be

 * morphisms of 9J arising from quasi-local transla-

tion cocycles and ,
 as

 in (4.1). Suppose that Γ2(a) € 91 , for all 

a ϵ Μ4 . 

Then is
 a transportable * morphism, and the corresponding trans-

lation cocycle, Γ , is given by 
σ1°σ2 

Γ
 o

 (a) = a1(Γ0(a))Γ1(a) , a ϵ M4 . 
σ1° σ2 1 2 1 
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Proof : 

Since r2(a) € SI » for all a € Μ4 , we have 

To complete the proof we must show that (Γ2 (a) )r1(a) is a cocycle : Continuity 

of σ(r2 (a)) r1 (a) in a follows from the continuity of r1 (a) and r2 (a) 

in a and the local normality of . By the cocycle identity (3.1) applied 

to Γ2 and Γ1, 

since σ1 is transportable. Recalling that U (a)* implements τ on HW
 3 

we see that this equation is just the cocycle identity (3.1) for p 
σ1°σ2 

5. Charged, transportable * morphisms and charge transfer cocycles. 

We are interested in those morphisms σ which have the property 

that, when m is a vacuum state w0σ is a translation-covariant, charged 

state on u ; see P1) and P2), Section 3. Such * morphisms are called charged. 

Since we require, on physical grounds, that charged morphisms and the 

compositions of charged morphisms are transportable, and charged states are 

weak * limits of neutral states, as a localized charge is removed to space-like 

infinity, the analysis of Section 4 suggests to consider only those charged 
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morphisms, σ , which are of the form 

(5.1) 

where Γ1,.,.,Γn are quasi-local translation cocycles, with Γk (a) Є 21 , for 

all a , and k = 1,.,.,η . We must therefore isolate those quasi-local 

translation cocycles, Γ , with the property that w°σr is
 a charged state. By 

Lemma 2, Section 2, we know that the representations πw and of 21 are 

disjoint, (in the terminology of [5] this means that the cocycle Γ is 

"non-trivialM, in the sense defined in [5] for the case of cocycles generating 

the soliton sectors in two dimensional theories, i.e. r(a) is not of the form 

VU (a)VU (a)* , with V Є B(H )). 

Let Σ some simply connected, bounded region in ]R3 with piecewise 

smooth boundary ∂Σ. Let QΣ be the local-charge operator introduced in Section 2, 

with the property that eisQΣ Є 21 (o) Σ € 21(&) , for some sufficiently large o Ɔ £ Σ . 

Let P (IR ) be some family of bounded subsets of R3 with piecewise 

smooth boundaries, containing a covering of R3 by simply connected, disjoint 

sets and closed under-finite unions. 

In order to make our subsequent analysis more elegant, we assume hence 

forth that the test functions fΣ and a in the definition of QΣ (Section 2) 

can be chosen such that for arbitrary, disjoint sets and in P (IR3) ) j 

with 
(5.2) 

for all real s and t . 

Definition 4. 

A one-parameter family fvΣ (s) · s € IR] of unitary operators contained 

in M is called a local-charge cocycle if
 V

Σ (s) strongly continuous in s , 

in every locally normal representation of 21 , and the cocycle identity 

(5.3) 
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is satisfied, for arbitrary real s and t , (Here Σ Ɛ P b(IR3) 

Remark. 

Let g be some locally normal * morphism of 21 . Then 

(5.4) 

is clearly a local-charge cocycle. We define supp σ to be the smallest region in 

IR belonging to p (IR3) ) with the property that, for all Σ Ɛ P (IR) Ɛ p(IR3) with 

Σ C supp σc (the complement of supp σ) 

(5.5) 

supp σ is called the "support of σ ". 

Let Σ' = supp σ U Σ , Σ Ɛ P(IR3) ) , Σ c supp σ . Then, by (5.2) and (5.5) 

(5.6) 

i.e. for Y' supp σ, Σ' Є p (IR
3

) , vσΣ' (s) = yj (s) is independent of Σ' ! 

A simple calculation shows that for a = (a, 0) ., a space translation 

hence supp σa = (supp σ)) (-a) , and 

(5.7) 

Lemma 10. 

Let g be a locally normal, transportable * morphism of 21 . 
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(1) Let Σ Ɔ supp σ . Let a ε M4 be such that Σ c supp σaC . Then 

(5.8) 

(2) If Σ c supp σ , Σ Ɔ supp σa then 

(5.9) 

(3) If Σ supp σ , Σ Ɔ supp σa then 

(5.10) 

(4) If Σ C supp σ , Σ C supp σca 

(5.11) 

Proof : 

By the definition of transportable * morphisms, we have 

σa (A) = Γσ (a)* σ(Α)Γ (a) , 

for A Є 21 and a Є Μ4 . Thus 

l. e. 

(5.12) 

Under the hypothesis of (1), vΣσa(s) = 1 , and vΣσ(s) = Vσ(s) , whence (5.8). 

The proof of (2) is similar. Under the hypotheses of (3) vΣσ (s) .= vσ(s) and 

vΣσa (s) = Vσa(s) = T_
a
(yσ(s)) , by (5.7). 

Thus (5.10) follows. Finally, In the situation of (4) Vσ(s) *
 v

σa (s) .= 1 

Next, we prove a converse to Lemma 10. For this purpose we consider 

a quasi-local translation cocycle, Γ , with the property that, for a = (a,0) , 

with a ε IR3 , and some region p (IR3) , 
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(5.13) 

for some local-charge cocycle vΣ (s) - see Definition 4 - with the properties that 

vΣ(s) = v(s) , independent of Σ , 

(5.14) 

if 

and 

(5.15) 

If 

We call Σr the charge support of Γ . 

Lemma 11. 

If r is a quasi-local translation cocycle satisfying (5.13) - (5.15) 

then - defined in (4.1) - has the properties that 

and supp σr Ì Σr. · 

Proof : By (4.1), (5.13) and (5.14), we have, for Σr and a = (a .0) with 

|ao| I large enough, 

Next, for all £ Є p (IR3) with Σ c Σcr and for a = (a ,0) with |a | large 

enough (so that Σ c Σr (aQ) ) 

Lemma 12 

Let be a local-charge cocycle with the property that, for some 

bounded Σy Ɛ p(IR3) , vΣ(s) = vΣ(s) = v(s) is independent of Σ , for all 

Σ Ɔ Σy . Then y(s) is a unitary one-parameter group in 21 . In particular, if 

σ is a locally normal * morphism of 21 of compact support then γσ(β) Є σ(^) II 21 
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Proof : 

By the cocycle identity 

if Σ Ɔ Σ Ɔ Σv . Using Lemma 2, Section 2, and the fact y(t) Є 21 , for all t , we 

conclude that 

SO that y(s+t) = y(s) y( t) . 

By Lemma 2 and the definition of yσ(s) , 

= σ(Α) , as σ(Α) ε 21 , for A ε 21. 

Since vσ(s) ε 21 , this implies that Vσ(21)' II 21. 

Lemma 12 permits us to characterize locally normal * morphisms σ of 

compact support by the unitary group yσ (s) . 

If σ is a * automorphism of 21 then, clearly, 

hence (5.17) 

II σ is irreducible, i.e. π oσ is an irreducible representation of 21, then 



- 26 -

πω (σ(21)' = {λ.1 : λ ε c] , 

so that πω ( yσ(s ) ) = eiS q, for some q , 

Since πω is faithful, yσ(s) = eis q. (5.18) 

Next suppose that the action of σ is local in the sense that, given a 

double cone o ε 21 , there exists some oσ ε 21 such that σ(21(o)) C 21(oσ) 

Suppose, in addition, that supp σ is compact. Then for some bounded Σ ε P(IR3 ) 

By Section 2, e ΣQ ε 21 (oε) , for some double cone OΣ ε 21 containing Σ and 

all s ε IR . Thus 

yσ (s)ε 21(OΣ, σ) . u O Σ). (5.19) 

Suppose now that γσ(8) is translation invariant, i.e. 

T (yσ(s)) = yσ(s) , for all a = (a,0), a ϵ R3 . (5.20) 

Then νσ(s) ϵ S(Ô) Λ U(®(a)) , Ҩ ≡ Ҩå Ҩå . 

Choosing a. large enough, we conclude using locality and the fact that U(Ҩ) is 

a factor that vσ(s) = is q , for some q ϵ R . 

In all three cases, the physical interpretation of q is the one of 

total charge of the * morphism σ J and we then say that σ is a localized, 

charged * morphism of charge q . 

The analysis presented above proves that for yσ(s) not to be of the 
q 

form e is q , q ϵ R , it is necessary that be not irreducible and (assuming 

the action of σ is local) vσ(s) be not translation invariant. 

Next, we merely suppose that yσ(s) is translation invariant. Then, 

for all a = (a,0) , a ϵR , 

U (a)* yσ(s)Ω = τ (yσ(s) )Ω = yσ(s)Ω , 



- 27 -

i.e. yσ(s)Ω is a translation invariant vector in W . Since we have assumed 
ω i 

that the vacuum is non-degenerate, we conclude that γσ(s)Ω = eis q
 Ω . 

By Lemma 12, 

γσ(s)
σ
(Α)Ω = σ(A)Yσ(s)Ω = e

is qσ(Α)Ω , 

i.e. gσ(s) ↑ Hw(σ) =
 eis q

·1 H ( ) , 
ω 

(5.21) 

for some q ϵ R . 

If H (σ) = H then (5.21) implies that γσ(s) = eis q , and σ is a 
ω ω 

localized, charged * morphism of charge q . (See also Section 6). 

The following result relates the translation covariance properties of 

gσ(a) to the cocycle Γ 
σ 

Lemma 13. 

Let σ be a transportable, localized * morphism with Γ (a) ϵ 9Î , for 
σ 

all a . Then 

3 
for all a = (a,0) , a ϵ R 

Proof : 

Given a = (a,0) , we choose å so large that å É supp σ and 

å(a) É supp σ . Then 

(5.22) 

is independent of å . Hence 

But 
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(5.23) 

Since Γ (a) ϵ 9J , 
σ 

(5.24) 

by Gauss' law; (see Lemma 2). 

3 
Combining (5.22) - (5.24) and letting å ↑ R , we arrive at 

t (gσ(s)) = gσa(s) = Γ (a)*
 Yσ(s)Γ (a) . -a σ σ 

Lemmas 10, 12 and 13 yield the following "topological" commutation 

relations : 

Let σ be a transportable, localized * morphism of 9J of compact 

support, supp σ , with translation cocycle Γσ(a) · Then 

exists and is a unitary one-parameter group in σ(9J) ' ∩ 91 (the charge cocycle 

associated with σ) , and 

(A) 
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(B) 

c 
if supp σ Ì å Ì supp σ - see (5.9) and Lemma 13 ; 

a = 

(C) otherwise - see 

(5.10) and Lemma 13. 

Lemma 11 is the converse to this. 

Next, we attempt to construct a total charge operator, Q , on the 

sectors H in the case where σ is a localized * morphism, with the help 
ω°σ 

of the local-charge cocycle γ (s) . 

Lemma 14. 

(1) Suppose that exists and (5.2) is valid. Then 

(2) If σ is a localized * morphism and the hypotheses of (1) hold then 

exists on Ü and is a unitary group in the center of 
ω° σ 

π (U)" . 
ωο σ 

(3) Under the same hypotheses, if and are localized, charged morphisms 

of charge q1, q
2
 resp., with q1 ≠ q

2
 then the representations Π and 

Π of 9Ϊ are disjoint. 
ω° σ2 
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Proof : 

(1) By Duhamel’s formula and (5.2), 

Hence 

3 
which tends to 0 , as å, å' ↑ R . Thus 

Next 

3 
for all a = (a,0), a ϵ R ; i.e. ψ is space-translation invariant. Since the 

vacuum Ω is unique, 

real. 

Clearly 

i$s 3 
and the l.s. tends to (e -1)Ω , as å↑ R . Hence 

(5.25) 

Next, 
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uniformly in å , since s-lim Q Ω exists by hypothesis. Thus, for arbitrary 

Et Σ 

ϵ > 0 and å large enough (depending on ϵ ). 

by the strong convergence of . Therefore 

(5.26) 

By Gauss' law, 

(Ω,QåΩ) = (Ω, i(Vf 0 α)Ω) . (5.27) 

Since 0 is Poincaré-invariant, the r.s. of (5.27) vanishes. Combining (5.25) -

(5.27). we conclude that 

This completes the proof of (1). 

(2) Using the operator T : U (σ) -* W constructed in the proof of Theorem 5, 
ω ω°σ 

we have, for arbitrary A ϵ 91 , 

if å É supp σ . Moreover 

and 
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Thus 

= T ν
σ(s) σ(Α)Ω . 

Notice that, by Lemma 12, 

v°(s) σ(Α)Ω = σ(Α)γσ(s)Ω , i.e. 

(5.28) 

Since e å is a continuous, unitary group, for all bounded å , so is e 

Moreover, e å ϵ W , for all bounded £ and all s ϵ R . Hence 

eis Q ϵ Π (SI)" . (5.29) 

By Lemma 2, eis Q is also in Π (W)1 , hence it is in the center of π (W. 

This completes the proof of (2). 

(3) This follows from (2) and a standard theorem, [11,15] . 

D 

Remark. 

Assuming only that exists, one can prove that 

exists on ϋ , and if exists and vσ(s)Ω is 

differentiable then and 

See also Section 2 of paper I. 

Definition 5. 

A * morphism σ
 of 21 is called a localized, charged * morphism of 

charge q iff ya(s) = eis q . A quasi-local translation cocycle f is called 
4 

a charge-transfer cocycle of charge q iff Γ(a) ϵ W , for all a ϵ Μ , and 

Γ satisfies (5.13) - (5.15) , with åΓ compact and
 Y

(s) = ei S q . 

We summarize a part of our findings (Lemmas 10-14) in 
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Theorem 15. 

(1) If Γ is a charge-transfer cocycle of charge q then σ - defined in 

(4.1) - is a localized, charged * morphism of V of charge q ; (Lemma 11). 

(2) If σ is a transportable, localized * morphism with the property that 

Γ (a) Ç If , for all a ϵ M4 then 

T (γσ(s)) = Γ (a)* ya(s)r (a) , 

(Lemma 13), and if σ has charge q then Γ is a charge-transfer cocycle of 

charge q , (Lemma 10). 

(3) If σ
1,...,

σ
η

 are localized, charged * morph isms with charges ··,.., q
n 

then σ1°···°ση is localized, charged * morphism with charge q1+...+qn ; (the 

proof is a simple exercice). 

(4) If exists, (neutrality of the vacuum, Lemma 14) and $ has 

charge q then 

Q = q.1 , on # , and 

if σ1 and have charge q1 , q2, resp., with q1 ≠ q2 , then π and 

π are disjoint representations of 9J ; (Lemma 14). 

6. Space-time translation covariant, charged * morphisms. 

In this section we study a class C° of quasi-local translation cocycles 

with the property that, for Γ1,...,Γ
n in C° » n=1, 2, 3,..., the state 

.
...οΓn is space-time translation covariant, (see Definition 1, Section 1), 

and to each Γ ϵ C° there exists a conjugate cocycle Γ ϵ C such that the repre-

sentation Π of M contains the representation π exactly once. 

This last property can be interpreted as PCT invariance of the theory; see [3]. 

6.1 Translation covariant * morphisms 

Let σ be an arbitrary, transportable * morphism of with translation 

cocycle Γ . From Theorem 5 (Section 3) we know that ω° σ is translation 
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covariant iff the subspace 

!H (σ) = {σ(A)Ω : A ϵ ?I) Ç H 

is invariant under the group 

V (a) = Γ (a) U (a) , a ϵM4 . 

There are thus two approaches to proving translation covariance of ω° σ : 

(1) Show that (σ) is invariant under V (a) . 

(2) Show that $ (σ) = # . 

It appears that approach (1) is the natural one. We try to elucidate 

this by the following discussion : Let © be a bounded double cone and T a 

positive number. We define 

MT ≡ {a ϵ M4 : a = (a°,a), |a° | < T , |a| < T} , and 

We now assume that the space-time translation automorphisms of ?! have 

locally correct generators : Given φ ϵ and T > 0 , there exist φ(β,Τ) ϵ » 

with 0(f9,T) z> and operators
 T

(a) ϵ W(Ҩ((Ҩ,T)) such that, for all 

A ϵ 9T(Ô) and a ϵ MT, , 

VT
U) AVl(a) Ta^ * (6.1) 

The existence problem of operators T(a) with these properties can be reduced 

to showing that, for each & ϵ ^ and r > 1 , there exists a factor N of 

type I such that 

W(G) ÌNҨ,
r
 Ì ?T(~ r <$) , (6.2) 

where rfq = {x ϵ M : r-1 x ϵ Ҩ} ; [16] · 

Property (6.2) has been established for the free, scalar field by 
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Buchholz [17], but is believed to be a general property of the local nets 

f9l(&)1 of relativistic quantum field theories. 

We now assume, in addition, that 

(6.3) 

for all a ϵ MT and all T < ∞ . 

Next, we study those * morphisms σ of SI which have the property 

that 

(6.4) 

exists on it , for all T < ∞ . We leave it to the reader to check that the 
ω 

limit in (6.4) defines a translation cocycle in the sense of Definition 2, 

Section 3. 

Lemma 16. 

Assume (6.1) and (6.3). Let σ be a * morphism of SI with the property 

that (6.4) is satisfied. Then σ is transportable, with 

Γ (a) = s-lim σ(U
 T

(a)) U
 T

(a)* , (6.5) 

for all a ϵ ΜT ; V (a) = Γ (a) U (a) leaves It (σ) invariant, and ω° σ is 

space-time translation covariant. 

Proof : 

Let A ϵ Sî(Ҩ) . Then, for a ϵ MT and arbitrary T , 

since 

The first part of Lemma 16 and (6.5) follow by writing out the r.s. of 

this equation and applying (6.4). 

Next, we prove invariance of it (σ) under V (a) : For all A € SI , a ϵ MT, 
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Γ (a)U (a)σ(A)Ω = Γ (a)t (σ(A))Ω 

(6.6) 

For all β ϵ , T < ∞ , σ(U T(a)A)Ω ϵ K (σ) . Since ü (σ) is closed, (6.6) 

implies that 

Γ (a)U (a)σ(A)Ω ϵ (σ) . 

The space-time translation covariance of ω° σ now follows from Theorem 5. 
I 

On the basis of Lemma 16 one might conjecture that, in general, H (σ) 

is invariant under V (a) , whenever σ is a transportable morphism. 

We define to be the class of all those quasi-local translation 

cocycles which have the property that, for 

Γ1,...,Γn in C°
1
 , η = 1, 2, 3, ..., Hω (σΓ1 °...° σΓn ) is invariant under 

V (a), a ϵ Μ4 , where V (a) 
σΓ1 ° · · · ° σΓn σΓ1 °· · ·°σΓ 

= g_ ° . . . ο σΓn-1 (Γn (a)) .... σΓ1 (Γ2(a)) Γ1(a)U (a) ; (6.7) 

(see Theorem 9, Section 4). By Lemma 16, it suffices that σΓ1 ° ... ° σΓn satisfies 

(6.4). 

Next, we discuss conditions which guarantee that 

H (σ) = H 

Let σ be a localized * morphism of compact support, i.e. 

(6.8) 

for all å Ì supp σ ; see Section 5. 
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Physically, equation (6.8) says that the charge carried by σ is loca-

lized in the compact region supp σ Ì R 

From Proposition 3 (Section 2) we know that this does not imply that 

σ is local in the sense of DHR [3] , in the contrary, σ is not local unless 

its charge is 0 . 

However, one might expect that σ is quite close to acting trivially 

on ?!(&) , provided © is a bounded double cone which is space-like distant 

from supp σ . (One might expect, moreover, that for such morphisms (6.4) is 

true). A possible way of expressing that is as follows : There exists some compact 

region å Ì R3 , with å É supp σ , such that for arbitrary φ ϵ B with 

$ Ì ~ Σσ · 

σ(U(O)) = U(O) . (6.9) 

Clearly, (6.9) implies that H (σ) = H . (This follows from the Reeh-Schlieder 

property, as noted in the proof of Lemma 1, Section 1). 

If σ is transportable and β Ì ~ (Σ U Σ ) , for some a ϵ M4 , then 

by (6.9) 

W(fc) = σ(Sl(&)) = σ (9J(6)) = Γ(a)* σ(M(fc))Γ(a) 

= Γ(a)* 9K*>)Γ(a) (6.10) 

(Note, however, that the condition 

9T(6) = Γ(a)* 3J(&)Γ(a) , 

for CQ Ì ~ (å(Γ) U Σ (Γ)(a)) , for some compact region å(Γ) Ì R3 only implies 

i.e. it appears difficult to characterize those localized * morphisms σΓ which 

satisfy (6.9) entirely in terms of the cocycle Γ ). 

We let he the class of all those quasi-local translation cocycles, 

Γ , which have the property that 
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σΓ («(&)) - «(0) , (6.10) 

for all 6 ϵ ® with 

Let Γ1,..., Γ
η
 be in and let © ϵ M , with 

then 

(6.11) 

Hence, by the Reeh-Schlieder property, 

(6.12) 

for arbitrary Γ1,...,Γη
 in , so that ω°σΓ1

 0
 · · · °σΓn is space-time transla-

tion covariant. 

Next, we introduce a class of quasi-local translation cocycles : 

Γ ϵ C3 iff Γ(a) ϵ σ
Γ
(?0) , (6.13) 

for all a . 

We say that a quasi-local translation cocycle Γ is irreducible iff 

Γ(a) ϵ π (στ.(31))" · (Clearly, if Γ ϵ C3 then Γ is irreducible). 

Lemma 17. 

Let Γ be a quasi-local translation cocycle. 

(1) If Γ is irreducible then is an irreducible * morphism of SI , i.e. 

Π is an irreducible representation of σΓ(SI) . 

(2) If Γ1,...,Γn are in C3 then σΓ1 °...°
σ
Γn is irreducible. 

Remarks. The converse of (1) is of course trivial. By (2) we have 

H (σΓ1°...°σΓn ) = H , for arbitrary Γ1,···,Γn in C3 . Hence the state 

ω° σΓ1 ο · · · ° σΓn is space-time translation covariant. 
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Proof of Lemma 17 : 

(1) Since Γ is irreducible, Γ(a) ϵ TT (σΓ(9Ι))" , for all a . Hence, for all 

σΓ, a (A) =τ-a °σΓ °ta (A) = Γ(a)* σΓ(A)Γ(a) ϵ Πω (σΓ(JM))" . 

By Proposition 8, Section 4, 

Since Π (σΓ(Μ))" is weakly closed, A ϵ π (aΓ(W)" . Hence 

Π (σΓ (*J))" É U SK$) , and therefore 

π (σΓ(jw))" = π (21)", 

i.e. Π is an irreducible representation of σΓ (U) · 

(2) If Γ
1
,..., Γn are in C3 then 

for all A ϵ U W(ô) . As a → ∞ , we obtain, using Proposition 8 and the local 

normality of ^ the morphisms 

Proceeding in this manner we conclude, after n steps, that 

Πω (σΓ o...o σΓn W)" ï? Π (5i) J 

i.e. π °σΓ1 °···° σΓn is irreducible. 
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Remarks. 

1. Let Γ be a quasi-local translation cocycle. Then is a automorphism 

if and only if 

Γ(a) = σΓ(Γ'(a)) , (6.14) 

for some quasi-local translation cocycle Γ' . (The proof is given in Appendix 2). 

Clearly a cocycle Γ satisfying (6.14) is in . 

2. The fact that, for Γ1,..., Γn
 in

 , the * morphism σΓ1 °***°σΓn of V 

is irreducible will imply that the sectors ω° σΓ , Γ ϵ C3 , have necessarily, 

ordinary Fermi- or Bose-statistics, i.e. parastatistics is automatically excluded. 

Thus, the hypothesis that the charged sectors of a theory be generated 

by all * morphisms {σΓ : Γ ϵ C3} might be appropriate in QED, but cannot be 

valid in more general gauge theories with an unconfined, abelian charge and para-

statistics . 

Section 6.1 can be summarized as follows : Let Γ1,..., Γ
n
 be quasi-

local translation cocycles in one of the classes C1, C2, C3 » (see (6.7), (6.10), 

(6.13), resp.). Then ο···ο σΓn is space-time translation covariant. 

Our discussion leaves the problem open to characterize those localized 

charged * morphisms which are space-time translation covariant entirely in terms 

of quasi-local translation cocycles. 

6.2 Existence of conjugate sectors. 

In this section we discuss the following problem : Suppose Γ is a 

quasi-local translation cocycle. Does there exist a quasi-local translation co-

cycle Γ such that π contains Π precisely once ? In the DHR theory, 

the answer to this is yes; see [3, 6]. 

In our case, however, where the basic * morphisms, σ , generating the 

charged sectors are necessarily non-local, this is not clear, at all. 

The first problem one meets is that, given σ , the existence of a left 

inverse to σ , φ , (i.e. φ(
σ
(Α)) = A , for all A € 91) is not automatic. One 

has only 
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Proposition 18 

Let Γ be a quasi-local translation cocycle with Γ(a) ϵ H , for all 

a ϵ M4 . Then, for some sequence {an} , an → ∞ , as n → ∞ , 

and ωΓ*(σΓ(A)) = ω(A) , for all A ϵ $1 . If 

(6.15) 

for all b ϵ M4 , then ωΓ* is a translation covariant state on 51 . 

Remarks. 

The existence of * follows from a general compactness argument. 

Next, 

by Proposition 8. Finally, using the cocycle identity (3.1) and (6.15) one shows 

that 

ωt*.(At
a
(B)C) = uOp

M>
(r(a)T_

a
(A)BT_

a
(C)r(a)*) , 

so that the unitary group U (a) ,defined on U by 

implements . (Details of the proof of Proposition 18 are left to the reader) 

In the DHR theory [3] 

exists always, for some sequence {an} , and $ is a left inverse of σ (with 

the same support as σ )· 

Let Γ be as in Proposition 18. Suppose that ωΓ* = ω° Φ , where Φ 
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is a * morphism of SI and a left inverse of σΓ . Using (6.15) and the cocycle 

identity (3.1) one can show that 

τ °Φ°τ = Φ(Γ(a)AΓ(a)*) = Φ(Γ(a))Φ(A)Φ(Γ(a))*)). 

Thus Φ is transportable, and Γ (a) = Φ(Γ(a)*) ϵ $(SI) . This motivates the 
Φ 

study of the class C3 introduced in Section 6.2. (In the present case, σΓ 

and Φ = σΓ-1are actually * automorphisms of ST ; see Appendix 2). 

Lemma 19. 

If Φ is a left inverse of a localized, charged * morphism σ then 

Φ is localized, with supp Φ = supp σ , and if σ has charge q then Φ has 

charge -q . 

Proo f : 

Let å Ì supp σ ; i.e. vσå(s) = 1 · Since Φ is a left inverse of σ , 

we have 

Thus, supp Φ = supp σ . 

Next, let åÉ supp σ = supp Φ , and suppose that γσ(β) = eis q . Then 
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In contrast to the situation met in the DHR framework [3], neither the 

existence of left inverses nor the one of conjugate morphisms appear to be auto-

matic, in the present framework. Therefore, in the absence of general results 

which guarantee that, given a quasi-local translation cocycle Γ , there exists a 

transportable * morphism σ such that the representation 

of SI contains TT precisely once , (6.16) 

one must attempt to formulate a plausible principle which ensures that (6.16) is 

valid. Such a principle is suggested by the "topological" commutation relations 

(A) - (C), subsequent to Lemma 13, (Section 5), and the identity 

(6.17) 

Henceforth we assume that 

(6.18) 

so that the total electric charge operator exists on all sectors generated by 

localized morphisms of SI ; see Lemma 14. 

Conjugation Principle. 

(1) Let Γ be a quasi-local translation cocycle satisfying the "topological" 

commutation relations (A) - (C) , for some local-charge cocycle γι . 

Then there exists a quasi-local translation cocycle Γ satisfying the 

commutation relations (A) - (C) , for a local-charge cocycle γ with the property 

that the unitary group 

{σ~ (γ (s)) γ (s)} has eigenvalue 1 . (6.19) 

(2) All super-selection sectors of the theory of total electric charge 0 are 
* 

generated by strictly local, transportable morphisms of SI , in the sense of 

DHR, [3] . 

Using (6.19) and the fact that 
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σΓ(γΓ (s)) yΓ (s) ϵ nj n (^ ° a
r
(w)' , 

for all s , (see Lemma 12), one verifies easily that the representation 

TT of SI contains a subrepresentation of 9J of total charge 0 . Part 

(2) of the Conjugation Principle then says that that subrepresentation is of the 

form π , where <j is a local * morphism of 9J , in the sense of DHR. 

Their results then imply that there exists a * morphism σloc conjugate to 

n·, such that H _ contains Πω precisely once. Therefore, the mor-

phism conjugate to g- is 

σΓ = σlοc ° σΓ ‘ 
(6.20) 

Since Tr, and n>~ are transportable, so is n ; see Theorem 9. Moreover, 

Q is uniquely determined by its translation cocycle Γ— , given by 

as is easy to check; (see (4.1) and [3]). 

Thus, the Conjugation Principle guarantees (6.16). If the morphisms 

and are irreducible then 

y(s)=y(s)=e , and 

y(s)=y (s) = e is q , (6.21) 

for some q and q in R ; see Lemma 11 and (5.18). The Conjugation Principle 

then implies that 

Ύ (s) = y (s) = e n , (6.22) 

because 

(s)) y^(s) - 1 , or y^(s) - (s)*) . (6.23) 

In this case, the sectors H and H have both total electric 

charge 0 . 
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Naturally, (6.23) suggests a converse problem. Suppose that 

(6.24) 

By Lemma 13, 

(6.25) 

Proposition 8 gives 

on Ή 

Thus, (6.26) 

Since ω is a pure vacuum state on SI , hence clustering, and γ (s) ϵ SI , 

(6.27) 

But y'(s)* £ ST . Combining this with (6.25) - (6.27) , we conclude, using the 

irreducibility of Πω , that 

i. e. (6.28) 

for some q ϵ R . Therefore 

i.e. a<j* ° CTp and ° carry electric charge 0 . Part (2) of the Conju-

gation Principle then implies 

for some local * morphism CJ of SI . By [3] , there exists a conjugate mor-

phism 7T, such that π — contains Π precisely once, and there-
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fore, with OL, = σ, ° σ« > one has that π _ contains TT precisely once, 

i.e. (6.16) holds. 

Thus, we have proven 

Lemma 20. 

Suppose that the Conjugation Principle and equation (6.24) are true. 

Then 

for some q ϵ R , and there exists a local, transportable morphism σlοc such 

that "5 = σloc ° Œp is conjugate to , in the sense of (6.16). Moreover 

is transportable. 

If the vacuum sector, ft , is the only super-selection sector of the 

theory of total electric charge 0 , then 

(6.29) 

σ and çw are * automorphisms of 9j , and f* can be so chosen that 

Remarks. 

1. To prove the last part of Lemma 20, we note that (6.29) follows from part (2) 

of the Conjugation Principle and the absence of non-inner, local * morphisms 

(i.e. σloc
 = identity), and that, by (6.29), σίρ °Qp and are both * 

automorphisms of SI given by unitary operators on H 

2. The situation expected in QED is that all * morphisms are irre-

ducible, and that the vacuum sector is the only sector of total electric charge 0. 

In this case, the last part of Lemma 20 says that σ
ρ*

σ
|
<

*····
 are

 * automorphisms 

of 91 , i.e. all sectors of QED are generated by charged * automorphisms of 

9.1 , a rather interesting conclusion ! 

6.3. Relativistic spectrum condition, charge conservation and additivity of the 

electric charge. 

We use the results of Sections 6.1 and 6.2 as motivation lor 
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Definition 6. 

A quasi-local translation cocycle Γ is said to be PCT covariant if 

and only if 

- Γ(a) ϵ SI , for all a ϵ M4 ; 

- r is in one of the classed Cj , j = 1, 2, 3, introduced in Section 6.1, (the 

same for all Γ ); and 

there exists a quasi-local translation cocycle Γ with the same properties 

as Γ such that contains Π precisely once. 

We remark that, assuming the Conjugation Principle is valid, the analysis 

of Section 6.2 shows that the cocycle Γ is the translation cocycle Γ of 

the morphism σΓ conjugate to σΓ which is given by 

(6.30) 

see Section 6.2. Definition 6 is a strengthened version of the Conjugation 

Principle in so far as it hypothesizes that Γ = Γ- is a quasi-local transla-

tion cocycle in a class , so that σΓ
 =

 σΓ is not only transportable, 

but space-time translation covariant. 

We have 
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Theorem 21 

(1) If Γ1 .....Γn are PCT covariant translation cocycles then 

is space-time translation covariant, and the relativistic spectrum condition is 

satisfied on , i.e. the spectrum of the generator of 

(a) : a ϵ(see Theorem 5) is contained in V+ . 

(2) If Γ1, ···,Τn
 are PCT covariant charge transfer cocycles, with charges 

ql’ .. ·, qn , and exists then exists on 

and Q = (q1 +. · + qn) 1 , in particular, Q is conserved. 

(3) If the total, physical Hilbert space is spanned by the spaces 

where ,.. . ,Γ are PCT covariant charge transfer cocycles, 

n = 0, 1, 2,..., then the total charge operator Q has pure point spectrum which 

is a discrete subgroup of the additive group of the real line. 

Proof : 

(1) Since Γ1 ,..., Γn are PCT covariant, Γ1 ,..., Γn are in a class Cj , 

for some j = 1, 2, 3 . The space-time translation covariance of ω° σΓ1 °···°σΓn 

can thus be inferred from Section 6.1. In particular, if Γ is PCT covariant 

then ω°σΓ , ω°σΓ and ^οσ-οσ^ are space-time translation covariant, and 

uooCL°a
r
 - λυϋ + , 



- 49 -

for some l ϵ (0,1] , and some state p with the property that Π is disjoint 

from Π · The proof of the spectrum condition is now as in [3]. 

(2) By hypothesis, γσΓj(s) = e j , for some qj ϵ R , j = 1,. .. , n . If 

then 

If then 

By Lemma 

is space-time translation covariant. Therefore Q is conserved. 

(3) From (2) it follows that the spectrum of Q Is a discrete semigroup in R . 

However, since the charge of Γ is opposite to that of Γ , it is in fact a 

discrete subgroup of R . 

Rema rk s . 

bet Γ1i, ..., Γn be PCT covariant translation cocycles, and assume that 

exists. Then by Lemma 14, (2), e exists on 
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and is a continuous, unitary group in the center of 

By Theorem 20, (1) , the relativistic spectrum condition 

is fulfilled on As a consequence, the center of 

is space-time translation invariant; a general theorem of 

Borchers [16]. Hence, the charge operator Q is conserved. 

The charge cocycle of σΓ1 °...° σΓn is given by 

as is easy to check. 

Furthermore, if Γ is irreducible then σΓ is irreducible, Lemma 17), 

so that Y (s) = e is q , for some q ϵ R ; see (5.18). If Γ is PCT covariant, 

and τ (γ (s)) = y (s) then yi(s) = e is q , q ϵ R ; see (5.19) - (5.20) . 
cl 

Finally, Theorem 21 remains valid in theories in which charged sectors 

arise by composing the vacuum with charged * morphisms that may not arise from 

PCT covariant cocycles, provided covariance and the relativistic spectrum condition 

are known. We also recall that Proposition 3 and Theorem 7 say that if 

yσΓ (s) ≠ 1 then σΓ and Γ are non-local. 

In conclusion, we may tentatively view the problem of constructing the 

charged sectors in QED as the problem of constructing all possible, PCT covariant 

charge transfer cocycles. 

The following problems remain to be analyzed : 

1) What is the statistics of charged sectors ? Is the spectrum of the total charge 

operator related to the statistics of the sectors ? 
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2) Do the charged sectors determine well-defined representations of the algebras, 
a s 9T , generated by bounded function s of the asymptotic, electromagnetic field 

(which Buchholz only constructs on the vacuum sector, [2]) ? Are the charged re-

presentations of ?T disjoint from the Fock representation, i.e. are they 

"infrared representations" ? 

3) Is there a generalized Haag-Ruelle theory for charged (infra-)particles ? 

Some answers are sketched in the last section. 

7. Generalized Haag-Ruelle theory and a remark on non-abelian gauge theories. 

In this section we outline a collision theory for the theories described 

in Sections 5 and 6, in particular QED. We assume that the photon is a stable, 

neutral particle of zero mass, i.e. in the vacuum sector It there are stable 

one-photon states. 

Under these hypotheses, Buchholz [2] has constructed, on the vacuum 

sector M , free, asymptotic, electromagnetic fields, Fas = F± , as strong 

limits of a family of local observables, as t → ± ∞ . 

Buchholz' construction only works on the vacuum sector or on sectors 

generated by strictly local (hence neutral) * morphisms of SI , as is easy to 

check. See [2]. A priori, it does not apply to the charged sectors of the theory. 

However, under various, rather plausible technical conditions of dynamical cha-

racter (e.g. a condition that says that, away from "small frequencies and momenta" 

charged representations of SI look like the vacuum representation) one may hope 

to extend Buchholz' collision theory to the charged sectors. Our starting point 

is as follows : Let C(Sl) be the class of all PCT covariant cocycles. The analy-

sis presented in Sections 5 and 6 justifies defining the total Hilbert space, 

Jt , of the theory as the smallest Hilbert space with the property that all states 

0)o<j °···°σ_ , Γ1,..., Γn in C(sr) , η = 0, 1, 2, ..., are given by unit rays 

in U . 

By Theorem 2 1 , there exists a densely defined, selfadjoint energy-

momentum operator (H, P) on It such that spec (H, P) c V+ , and on & 
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τa(Α) = ei(aoH-a.P) A , (7.1) 

a = (a°,a) , for all A ϵ 91 . 

We note that the results of [7] and [2] imply that 

spec (H, P) = V+ , 

as spec (H, P)l· Ή = V+ . (7.2) 

We now assume that, on all sectors in H , one can prove a strong convergence 

asymptotic condition for the electromagnetic field, see [2], yielding free, 

asymptotic fields , as = + or - , with the following properties : 

(1) For fµv
 € g

real
 (
 R4

) 

for some finite constant D(f) only depending on f = {fµv} ; 

(2) F satisfies the standard free-field canonical commutation relations, 

(In this context, the results of [18] might be important. See also [2] and 

paper I). 

As remarked in I (Proposition 3.1), the operators 

then generate Weyl algebras SIas , and 

(7.3) 

where 

(7.4) 

These results have been established for the boson field in models with infra-

particles [19]. The whole circle of problems obviously requires further investi-

gation. 
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In Theorem 3.2 of paper I it is shown that the relativistic spectrum 

condition for (H,P) and (7.3) - (7.4) permit to decompose (H,P) into an 

energy-momentum operator (Hph , Pph) affiliated with the von Neumann algebra 

9Γ generated by îlas on 34 which describes the dynamics of the asymptotic, 

electromagnetic field, (i.e. the free time evolution of asymptotic fields), and 

an operator (Ηc , P ) affiliated with 9jn which describes the dynamics 

of the asymptotic charge and of fields without electromagnetic interactions. 

(There is an explicit expression of (Ηph , Pph) in terms of Fas ; see I) . 

Moreover 

(7.5) 

We now specialize to theories, such as QED of electrons and positrons, which 

have the property that 

(7.6) 

and that the only sector of 0 electric charge is the vacuum sector. In Lemma 20, 

Section 6.2, we have shown that, under these hypotheses, 

(7.7) 

and σΓ is a * automorphism of 91 , for all Γ ϵ C(9l) . For a suitable choice 

of Γ , 

(7.8) 

From Theorems 9 and 5 we then infer that there are isometries TΓ 

which intertwine the representations π of o_ (9J) with the repre-

sentations π of 91 , 1 J n for arbitrary Γ,...,Γ 

and Γ in C(S0 . Since we have specialized to those σΓ which are * auto-

morphisms of 9J , T maps Ü to H , and 

τΖ = T_ , by (7.8). Thus 

domain(T ) = range(T ) = ii . (7.9) 

We define 

(7.10) 
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The second basic assumption of this section is that, for Γ and Γ' in C(Sî) , 

(7.11) 

provided (x-y)2 < d(Γ,Γ' ) <0 > for some finite d(Γ,Γ') . Here δ(Γ,Γ' ) = ± , 
and [.,.

 ]+
 denotes the commutator, resp. anti-commutator. We note that higher 

statistics (see DHR [3]) is automatically excluded, in this set up, because we 

have specialized to those σΓ which are * automorphisms of 91 . Moreover, because 

of (7.7) and Theorem 21, the spectrum of the total charge operator Q on U is 

a discrete subgroup of R . (This is generally true if the statistics is ordinary 

Bose- or Fermi - statistics). The physical interpretation of (7.10) - (7.11) is 

that when the asymptotic positions of the charges created by TΓas (x) , TΓ'as(y) , 

resp., are space-like separated by at least a square distance d(Γ,Γ') , the 

field bundles TΓas (x) and TΓ'as, (y) commute, resp. anti-commute. 

Assumptions (7.10) - (7.11) are in perfect agreement with the results 

of I and general wisdom concerning QED. But of course they are quite ad hoc and 

require further justification. 

We regard (7.10) - (7.11) and the result below as a challenge to develop 

a theory of the "asymptotic statistics” of sectors, along the lines of [3], for 

general theories such as described in Sections 5 and 6, where higher (para-Bose 

or para-Fermi) statistics is not excluded. (The main difficulties met in such 

attempts are that exp i(ao Hc -a.pc ) does not necessarily implement an automor-

phism group of 91 and that the charged morphisms {σΓ : Γ ϵ C(9J)} are not 

local). 

On the basis of (7.3) - (7.5) and (7.10) -(7.11) one can now construct 

a generalized Haag-Ruelle scattering theory for charged infra-particles; (see 

also Sections 3.2 and 3.6 of I) : 

Suppose that, for some Γ1,···,Γn in C(tD , the operators TΓjas (x) , 

j = l,...,n , have non-vanishing matrix elements between the vacuum Ω and 

one-(infra-) particle states, i.e. eigenstates of (Ηcas )2 - (Pcas )2 of eigenvalue 

m2j , (mj > 0 is the mass of the infra-particle; see Proposition 3.4, Section 3.2 

of paper I. Typically, Γ1=.. *=rk=r,rk+1
=* · ·=Γ

η
=Γ , for some p ϵ C(91) , mj = m , 

for j = 1,...,n) . 

ni 
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The standard spectral hypothesis is that the mass shells V are isolated 

in the spectrum of (Ηcas , Pcas ) . 

Let , where fj (p) is a test 

function the support of which has non-empty intersection with but no 

intersection with spec(HC ,Pcas ) \ Vmj. 

One then proves as in [14] 

Theorem 22. 

Under the hypotheses stated above 

exists. 

Remarks. 

General scattering states are obtained by applying operators from , 

resp. 51 , to the limits constructed in Theorem 22 (and taking the closure in H ). 

One convinces oneself that the states so obtained can indeed be inter-

preted as the scattering states of the theory; e.g. the obvious intertwining rela-

tions are valid. The theory described here has one unconventional aspect : In 

general 

i.e. charged one-infra-particle states will in general scatter, due to the emission 

and absorbtion of photons. 

Remark. 

Preliminary results (indicating that the total charge operator, Q , is 

in the center of the algebra Uas ) suggest that, within a slight extension of 

the framework developped in this paper, one can prove that representations of 

5JaS of different charge are disjoint, in particular, charged representations of 

9jaS are disjoint from the Fock representation constructed in [2]. This would 

represent a stronger version of the result reported in Section 2 of paper I. 
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The whole circle of problems touched upon in this section and some 

further results, involving deriving and applying the Maxwell equations in the 

framework developped in this paper, ought to be studied in a separate article. 

We conclude with some comments concerning 

Non-abelian Gauge Theories : 

Within the framework introduced in Sections 1, 2 and 5 we consider an 

idealized, non-abelian gauge theory with gauge group some compact Lie group G . 

(For simplicity we assume that G is simple, but this is unimportant). The 

center of G - which will turn out to play the main rôle - is denoted Z(G) . 

The theory is described in terms of an algebra SI = U 5I(&) of quasi-

local, neutral (i.e. uncoloured) observables with the general properties 

described in Section 1. 

As usual, ω denotes some pure physical vacuum state on SI , and Hω 

the vacuum sector, assumed to be given. The object of the study is the question 

whether there are * morphisms, σ , of SI with the property that the state 

has colour, i.e. Hω°σ carries a non-trivial representation of G . 

We start with some preliminary considerations concerning non-abelian, 

local charges. 

For this purpose, we assume temporarily that, given any bounded, open 

set å Ì R3 , (e.g. å ϵ P( R3 ) , see Section 5) and an arbitrary space-time 

translation covariant morphism σ of 51 , there exists a representation {Qaå } of 

the Lie algebra of G on the sector ft in terms of selfadjoint, local charges 
a 

satisfying local Gauss laws; here the superscript a labels the elements 

of a basis in the Lie algebra of G . This assumption may be considered a part 

of the conventional lore about non-abelian theories. In a positive metric framework, 

it is however not on safe grounds, since the local charges Qaå cannot be elements 

of the observable algebra SI , for all å ϵ ρ( R3 ) and all a , unless they 

vanish. 

To see this we suppose that, on the sector ft , the limits 

(7.12) 
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exist, for all real s and all a . 

By Gauss' law, 

, for all a . (7.13) 

In the abelian case, we have shown in Section 5 that e is Q is in the center of 

TT (9I)M . In the non-abelian case this is only possible if the representation 

of G determined by {e is Qa } on Hω°σ is the trivial representation (i.e. 

Πω°σ has no "colour"), because the center of a von Neumann algebra is abelian, 

whereas the operators {e is Qa } generate a non-abelian algebra whenever the 

representation of G they determine is non-trivial. 

We say that π is a coloured representation of 91 iff (7.12) holds 

and the representation of G on H determined by {e is Qa } is not trivial. 

In this case it then follows that e is Qaå cannot be in 91 , for all 

å ϵ p( R3 ) , all s and all a . This proves our contention. By (7.13), 

Πω°σ (91)' contains a non-abelian algebra, whenever πω°σ is coloured, i.e. 

coloured representations of 91 are necessarily reducible. Moreover, only the 

Casimir operators of G may be in 91 , but not the colour charges. 

One expects, formally, that for a suitable choice of {Qaå } and some 

al*’’*,am * t*ie operators {exp 2TTiQ^}
j =

 i generate a unitary representation of 

Z(G) , for arbitrary å ϵ p( R3) . Since these operators then commute with 
is Qaå' 3 e , for all a , s ϵ R and å'ϵ p( R3 ) , they are "colourless", i.e. 

neutral. For this reason it is safe to assume that 

Without loss of generality we now specialize to the case where Z(G) is generated 

by a single element, i.e. m = 1 ; (e.g. G = SU(n) , Z(G) = Zn) . We abstract 

the discussion presented above, by simply assuming that, for each bounded region 

Σ ϵ p( R3 ) , there exists an operator Zå ϵ 9J with the following properties : 

1) generates a unitary representation of Z(G) . 

2) There exists a bounded double cone Çy, z> 7! such that 

Z C V Π ^v.) , (Gauss' law) . (7.14) 
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3) If and are disjoint subsets of p( 3 ) 

(7.15) 

Let Z(G) = {e,g,g
2
,...,g

n-1
, g

n
 = e} . 

In analogy to the abelian case (see Section 5) we may now introduce 

cocycles {v
Σ

(g
m
) ) : Σ € P( (R

3
)) with the following properties : For all ∑  P(3) ) 

a) Y∑, (g
m

)  U, , for all m = 1,2,... ,n . 

b) (7.16) 

for all k = l, 2,...,m-l , and 

c) γ
∑
 (gm) ) is independent of y » for all Σ = Σ , where y is some bounded 

set in p (3) ) , and all m = l,2,...,n . 

One then shows as in Section 5 that 

exists, and 

γ(gm ) = Y(g) = γ , 

for all m = l,2,...,n , i.e. γ generates a unitary representation of Z(G) . 

See Lemma 12. 

Let b be a path in M parametrized by a real variable s  [0, 1] » 

with end points b (0), b(l) . Given x  M4
 , let ∑

x
 be the intersection of 

the light cone with vertex at x with the hyperplane {x = (x°, x) : x° = 0} . 

Let ∑
λ

x
 = {λ x

 :
 x  , for some λ > 1 . We define 

(7.17) 
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We now suppose that there are operators 

Γ : b → Γ (b) , 

with Γ(b)  91 , for arbitrary smooth, bounded paths b , which satisfy the fol 

lowing "topological11 commutation relations : 

4 
For some finite λ > 1 and arbitrary smooth, bounded paths b Ì M4 , 

(7.18) 

The operators Γ p(b) are the correct generalizations of the charge transfer co-

cycles {Γ(a) : a  M4}studied in Sections 5 and 6 to non-abelian theories. 

The problem of proving confinement of "colour" (in particular quark confinement) 

can now be formulated as follows : 

Show that the topological commutation relations (7.18) do not admit any 

solution Γ such that p is a translation cocycle, i.e. Γ(b) = Γ(b(l), b(0)) 

only depends on the end points b(0) and b(l) of b . 

One possible way of proving this would be to show that any solution Γ 

of (7.18) also solves '1 Hooft's "topological" commutation relations [20] (expres-

sing "electric-magnetic duality"), so that, for closed paths b , Γ(b) # 1 if 

b is not a point, so that Γ cannot be a translation cocycle. 

Assuming, however, that (7.18) does have a solution Γ which is a 

(quasi-local) translation cocycle then all results of the present paper can be 
4 extended to this theory, in particular Γ(a) is non-local, for all a  M4 , 

etc... Assuming, in addition, that (7.12) and (7.13) hold one concludes that the 

morphisms σΓ obtained from cocycles p obeying (7.18) are necessarily reducible. 

Hence Γ  π (σΓ(U))" , (see Lemma 17) ; in particular, Γ cannot be of class C
3

, 

(see Section 6.1). Applying moreover the results of Section 6.2 we arrive at the 

following 

Alternative : 

Either the composition of σΓ with Its conjugate morphism σΓ is not 

neutral (in particular not Irreducible), (i.e. γ' ≠ σΓ (γΓ ); see (6.24)), 

or there must exist non-trivial, neutral (colourless) super-selection sectors 
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disjoint from the vacuum sector, with higher (i.e. para) statistics. It is tempting 

to interpret these sectors as the baryons. 

Hence, even if colour were not confined, the resulting super-selection 

structure would presumably have rather unconventional features. 

Compared to Wilson's confinement criterion [21], our confinement crite-

rion, as formulated above, has the advantage of being mathematically precise 

and stating a necessary and sufficient condition for confinement, but the consi-

derable disadvantage of not being very constructive. Our criterion strongly sug-

gests that a proof or disproof of colour confinement is a dynamical, rather than 

a kinematical problem. 
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Appendix 1 

At the beginning of Section 4 we have introduced translation cocycles 

which are quasi-local in norm and stated their main properties. Here those pro-

perties are proven. 

We recall that a translation cocycle, Γ , is said to be quasi-local in 

norm iff Γ(a)AΓ(a)*  U , for all A  U and a  M4, and 

A * morphism, σ , of U is called quasi-local in norm iff σ is transportable, 

Γ has the property that Γ (a)AΓ (a)*  U , for all A  U and a  M4, and 

We propose to prove 

Theorem Al. 

If Γ is quasi-local in norm then 

for all A  U , and defines a transportable * morphism of U which is quasi-

local in norm, and ΓσΓ=Γ = Γ . Conversely, if σ is quasi-local in norm then 

Γ
σ
 is quasi-local in norm, and σ

Γσ
 = σ . 

For the proof of this theorem we require 

Lemma A2. 

Let Γ be a translation cocycle. 

Then the following are equivalent 

(1) 

(2) 



- 62 -

(3) n-lim Γ(a) AΓ(a)* exists and is independent of the space-like, asymptotic 
a→∞ 

direction in which a → ∞ . 

Proof : 

Since r(a) is unitary, we have, using the cocycle identity (3.1), 

||Γ(a+b) AΓ(a+b)* - Γ(a)AΓ(a)*|| 

= ||Γ(a)[τ_a (Γb)τ
a
 (A)Γ(b)*) - Al Γ(a)*|| 

= ||τ
-a

(Γ(b)
a
(A)τ(b)*) - A|| , 

from which the equivalence of (1) and (2) follows. Next, we note that (3) 

clearly implies (2). Now we show the converse : If a = λe , b = μe , where e 

is some fixed, space-like vector and λ and μ are e. g. positive integers then 

(2) implies that, for arbitrary A  U , {Γ(λ
e
)AΓ(λ

e
)*}λ= 1, 2, 3, is a Cauchy 

sequence in the operator norm. Thus 

λ = 1,2,3,... . Applying (2) once more, we now see that the limit is independent 

of the space-like asymptotic direction in which a → ∞ . 

Proof of Theorem Al : 

If Γ is quasi-local in norm then 

4 

see Lemma A2, (1)  (3) . Since for all a  M4 and arbitrary A  U , 

Γ(a) AΓ(a)*  U , 

Next (Γ(a) AΓ(a)*)* = Γ(a)A*Γ(a)* , so that σΓ(Α)* = σ
Γ
(Α*) . Moreover, 

(Γ(a)AΓ(a)*)(Γ(a)BΓ(a)*) = Γ(a)ABΓ(a)* . 
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By taking norm limits on both sides of this equation we obtain 

σΓ(Α)σΓ(Β) = σΓ(Α·Β) . 

Finally, σ
Γ
 is obviously linear, and || σΓ(Α) || || = ||A|| . Thus σΓ

 is a * morphism 

of U . 

Next 

σ
Γ

, a = τ-a ° σ°τa 

by the cocycle identity (3.1) , 

(A. 1 ) 

Finally, if a → ∞ in some space-like, asymptotic direction e , let 

b = λe . Then 

by the definition of cocycles which are quasi-local in norms. Now we prove the 

second part of Theorem Al : We assume that σ is transportable and 

n-lim σ (A) = A , for all A  U . Using the unitary of Γ (a) , for all a  M4 , 

we get 

Hr (a)AΓ (a)*- σ(Α)|| 

= ||Γ
σ
(a) [A-T_

a
°aσT

a
(A) Γ Γ

σ
(a)*)|| 

= ||A-T_
a
°a°T

a
(A)|| = ||A-σ

a
(A)|| . 

Thus (A.2) 

and is independent of the space-like, asymptotic direction in which a → ∞ . 
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Applying Lemma A2, (3)  (1) we conclude that p is quasi-local in norm, and 

this and (A.2) show σ = · 

Remark. 

Let p be quasi-local in norm, and Γ(a)  σ
Γ
(U) , for all a  M4 

Then is a * automorphism. 

Proof : 

By (A. l) and the hypothesis, 

σ
Γ

 (A) = Γ(a)* σ
Γ
(Α)Γ(a)  σ

Γ
 (U) · 

By Theorem Al, is quasi-local in norm. Hence 

Since σ
Γ
(U) is closed in norm, we conclude that σ

Γ
(U) Ê U · Thus is a 

automorphism, which concludes the proof. 

This remark is relevant for the understanding of the class C
3
 of 

cocycles introduced in Section 6. 
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Appendix 2. 

We propose to prove 

Theorem A3 

Let Γ be a quasi-local translation cocycle, such that 

Γ(a) = α(Γ' (a)*) , for some quasi-local translation cocycle Γ' with Γ* (a)  U , 

for all a  M4 . Then is a * automorphism of U , and σ
Γ
 = , . 

Proof : 

Since σΓ
 is locally normal (see Definition 3, Section 4), we have in 

each locally normal representation of U 

σΓ°σΓ'
a
(A) =σΓ(Γ'(a)* σΓ(A)Γ'(a)) 

since α(Γ' (a)*) = r(a) , 

= Γ(a)AΓ(a)* , by Proposition 8, Section 4. 

In particular, σρ°σΓ', = identity, since Γ(0) = 1 . Thus σΓ(σΓ'(a))) = Γ(a) , 

so that using Γ(a)* = σΓ(Γ' (a)*)*)* (a)*)* = σΓ (Γ' (a)) we conclude that 

σΓ(σΓ,(Γ(a))Γ'(a)) = r(a)Γ(a)* = 1 . 

Multiplying both sides of this equation from the left by Γ(b)* and from the 

right by r(b) we obtain 

σΓ, b (σ(Γ(a))r'(a)) = r(b)*r(b) = 1 , 

and by taking the limit b → ∞ (see Proposition 8) 

σΓ'(Γ(a))Γ'(a) = 1 
(A. 3) 

i.e. Γ'(a) = σΓ'(Γ(a)*) . 
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The first part of the proof thus implies that also 

σ
Γ

,° σΓ = identity , 

hence g = g , , so that is a automorphism of U and, by (A.3) , 

Γ'(a) = σ-1
Γ
 (Γ(a)*) . 

Finally we wish to show that a cocycle Γ(a) of class , i.e. 

Γ(a)  σ Γ (U) , for all a , has the form 

Γ(a) = Γ (r'(a)
#
) , 

for some cocycle r'(a) £ SI , for all a . 

Proof : 

Since, for each a , Γ(a) ϵ OΓ(U) , there exist operators B*a € SI , 

for all a , such that 

By Proposition 8, 

Next 

= Γ(b)* Γ(a)t (Γ(c))Γ(b) , by the cocycle identity 

= [Γ(b)* Γ(a)Γ(b)] [Γ(b)* t (Γ(c)) Γ(b)] 
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Thus, by taking the limit b → ∞ , we obtain 

i.e. Γ' (a) ≡ B satisfies the cocycle identity. 

□ 

Remark. It is unknown whether Γ' is a quasi-local translation cocycle. 
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