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Abstract : The construction of charged sectors in Quantum Electrodynamics (QED)
is analyzed within a framework of algebras of local observables, It is argued
that charged sectors arise by composing a vacuum state with charged * morphisms
of an algebra of (neutral) quasi-local observables, Charged * morphisms, in turn,
are obtained as weak limits of charge transfer cocycles. These are non-local
elements of the algebra of all quasi-local observables obeying "topological"
commutation relations with the local charge operators. It is shown that in this
framework, charged sectors are invariant under the time evolution and satisfy
the relativistic spectrum condition., The total charge operator is well defined
and time-independent (conserved) on all charged sectors, Under an additional
hypothesis the spectrum of the total charge operator is shown to be a discrete
subgroup of the real line. A generalized Haag-Ruelle scattering theory for charged
infra-particles is suggested, and some comments on non-abelian gauge theories

are described.

Institut des Hautes Etudes Scientifiques
35, rt., de Chartres
91440 - Bures-sur-Yvette (France)

October 1978
IHES/P/78/243



This paper is a continuation of the analysis presented in [17 , hereafter
referred to as I.In that paper we have investigated charged sectors in gauge
theories with unconfined, abelian chages, in particular QED, from the points of
view of a local, covariant formulation on an indefinite metric space and of col-
lision theory, using as one basic input Buchholz' results (2]. Moreover,
the construction of charged states in QED was analyzed heuristically, extrapolating
procedures applicable in lattice gauge theories to the continuum theory. In this
paper that analysis is replaced by a mathematically rigorous one, based on a few

general, physical principles,

The main results of paper I are as follows :

- Asymptotic charged fields (if they exist; see Section 7 of this paper) are
non-local relative to the asymptotic, electromagnetic field and are not covariant

under Lorentz boosts,

- A rather complete characterization of "scattering representations" of the alge-
bra generated by bounded functions of the asymptotic, electromagnetic field, in

particular of its representations on charged sectors, was achieved.
- Asymptotic, charged one-(infra-) particle states were constructed,

- Under reasonable hypotheses it was proven that the charged sectors of QED are
not invariant under Lorentz boosts; (breaking of the boost symmetry on charged

sectors).

For detailed statements of these and other results we refer the reader

to 1.

This paper represents a preliminary attempt at extending the Doplicher-
Haag-Roberts (DHR) theory [3] of superselection sectors in standard quantum field
theories to QED - and other gauge theories with an unconfined, abelian charge -
taking into account the conclusions of paper I and trying to substantiate some of
the hypotheses made there. Our approach is inspired by the general framework of
Haag and Kastler [47] and DHR [3]. Some of the technical details in this paper are
taken from [5] (where the main emphasis is placed on super-selection sectors
labelled by topological charges, i.e. quantum solitons). Some knowledge of

3,5,6] might be helpful to understand the main concepts of the present paper.

The main physical hypotheses upon which the following analysis is based

are :



A. Gauss' law.

¢ - Bx) = o(x) ,

where p 1is the O-component (charge density) of the local, locally conserved,
electric current operator, and B(x) = (El(x), Ez(x), E3(x)) are the components
of the quantized, electric field,

B. Covariance,

Charged sectors are space-time translation invariant, i.e. a selfadjoint energy-

momentum operator exists on charged sectors,

C. Additivity of the electric charge,.

Charged sectors can be composed, i.e. the electric charge is an additive quantum

number,

D. Space-like distant, localized charges are not felt.

Charges can be localized (in a sense explained in Section 5), and charged states
arise from neutral states (via taking w* limits) by removing a localized charge

to space-like infinity.

Among some of the consequences of these hypotheses are :
- The physical mass gap of QED is O , [71.

- Any representation of the algebra of all quasi-local observables determined

by a charged state is disjoint from the vacuum representation, even when restricted
to space-like distant regions; a consequence of Gauss' law., Technically, this
implies that charged states cannot be obtained from the vacuum by strictly local®
morphisms of the observable algebra. The DHR approach [3] must therefore be modi-
fied for QED and any gauge theory with unconfined charges; (Section 2).

- Charged fields (or field bundles) are non-local relative to the interpolating,
electromagnetic field; (Section 2).

- The space-time translation covariance of charged states implies that '"charged
field bundles" (¥ morphisms of the observable algebra) uniquely determine unitary
operators on the vacuum sector, space-time translation cocycles, which describe
the transfer of a localized charge from, say, the origin to some point a ¢ M4 5
(Section 3.1). "Topological" commutation relations between those cocycles and

the local charge operators are derived; (Sections 5 and 7).



- These so-called charge transfer cocycles are non local relative to the interpo-

lating, electromagnetic field (in a very strong sense); (Section 3.2).

On the basis of these results and assuming PCT-invariance we then propose
a tentative framework for the description of charged sectors in QED. Our framework
guarantees that charged states can be constructed as w¥* 1limits of neutral states
(vector states in the vacuum sector) by removing a localized charge to space-like
infinity; (Sections 4 and 5).

Moreover, in that framework charged states are space-time translation
covariant, and the relativistic spectrum condition holds on all sectors., We then
prove that the total charge operator exists and is conserved on all sectors of
the theory; (it is zero on the vacuum sector). Under an additional hypothesis
it is shown that charge transfer cocycles transfer a definite electric charge,
and charged * morphisms carry a definite charge., Then the spectrum of the charge
operator on the total Hilbert space is a discrete subgroup of the additive group

of the real line. See Sections 5 and 6. Our main results are in Sections 3,5, 6.2
and 6.3. The main purposes of a general framework for QED are :

I) To develop specific concepts and explicit procedures for the construction of
sectors labelled by an abelian, unconfined charge in a gauge theory, in particular
QED, the vacuum sector of which is supposed to be given, e.g., in the form of a
sequence of Wightman distributions of gauge-invariant fields satisfying the
Wightman axioms. This is attempted in Sections 3-6.

I11) To extend Buchholz' collision theory for massless bosons [27], in QED only
applicable on the vacuum sector, to the electromagnetic field on the charged sec-

tors of QED.

II1I) To complement and complete that analysis by constructing a collision theory

for charged infra-particles. See Section 7.

Some relevant results can also be found in Sections 3.3 and 3.6 of paper I.

IV) To derive the principal hypotheses in Sections 3.4, 3.5 (or the weaker ones
in Section 3.3) of paper I which would determine the structure of charged scattering
states (generalized coherent states !) quite explicitly, from a few basic, dynamical

hypotheses which are convenient to check in models.

A minimal result of this type is to show that charged sectors determine

representations of the algebra, ) g , generated by bounded functions of the



asymptotic, electromagnetic field which are disjoint from the Fock representation;
(see Section 1 of paper 1I). A somewhat stronger result containing that one would
be to prove that the electric charge operator, Q , is affiliated with the von

Neumann algebra generated by 97° in the physical representation,.

The reader will find out that none of these goals is reached completely
in this paper. We hope it at least clarifies the conceptual basis and the main
difficulties met in the construction of charged states and supplies some useful
first steps towards a more complete, general theory of the charge super-selection
rule. See also 8,37]. Readers who think that theorems with short proofs are neces-
sarily trivial will find this paper trivial. Some of the experts in the field may
share this feeling. We hope some of the ideas developped in the following will

be useful.

1. Local observables and covariant states.

Here we recall some basic notions and concepts of the Haag-Kastler frame-
work [4], the basic theorem of Bisognano and Wichmann [97] and a result of [107
concerning the existence of local algebras satisfying the Haag-Kastler axioms in
a Wightman field theory. Let © denote a double cone (the intersection of a for-
ward with a backward light cone) in M4 , and let ~ @ denote its causal comple-

ment, (all space-time points which are space-like relative to 6 j 15

Given a double cone 6 , let (6) be a C* - or von Neumann algebra
containing at least all bounded functions of the interpolating, electromagnetic
field, F (£HVY) , where the f¥V  are real-valued Schwartz space functions with
support inv 6 , and possibly other local observables which are local relative to
the electromagnetic field; (such observables have of necessity total charge O ;
see [8] and Section 2). Let B be some general, open region in H4 . Let ®
denote the family of all bounded double cones in u* . We define A(B) to be the

norm closure of

U A (O ; (1.1)
Gewn

6cs

in particular, U =¥ (B = M4) is the algebra of all quasi-local observables of

the theory.

As usual, locality is expressed by thc condition that, for arbitrary
A ¢ A(6) and arbitrary B ¢ W~ 6) ,



[A,B1=AB -BA=0 . (1.2)

We also assume that the Poincaré group, Fi , 1s represented on the algebra W

by a (strongly continuous) ¥* automorphism group, fTE : B € Pl? , such that

Tg(m(Q)) = 9(6(e)) , (1.3)
where O(F) is the image of the region 6 wunder a Poincaré transformation £ ;
see 47 .

Sufficient conditions - which are quite efficient in models - for the
existence of a net of local algebras [m(@)lg c8 with all the properties,
(1.2)-(1.3), listed above in a Wightman field theory are given in [107.

Given a state, p , on 9 , the G.N.S. construction (see e.g. [117)
provides one with a Hilbert space, Hp , a representation, ﬂp , 0of ¥ on Hp :

and a cyclic unit vector Op € Hp , such that

H

A : A e My
A [rrp(mo eu}

(1.4)

o(a) = (0, m(A)n) , for A ¢ 9.

p 0 p
In an unambiguous context, A will henceforth denote both, the abstract element
of 9 and the bounded operator ﬁp(A) on Hp in a given representation “p
of 9 on H . Let G be an arbitrary, topological group represented on 9 by
a (strongly gontinuous) group of ¥ automorphisms, {Tg : 8 €G} of U.

Definition 1,

A state, p , on Y 1is said to be G-covariant iff there exists a conti-

nuous, unitary representation, Up , 0of G on Hp such that, for all A ¢%, g € G,
m(r (&) =v (*m(A) U(g) on ¥ . (1.5)
p 8 p p P o

A vacuum state, @ , is a state on % which is Poincaré-invariant (hence Pl -

covariant), so that

Uw(g)o =0, for all € ¢ e, (1.6)

where 0 =0 is the physical vacuum, and the spectrum of the generators, (H,E) .
w



the energy-momentum operator, of the translation subgroup
[Uw(a) :a¢g H41, Uw(a) = Uw(g = (1,a)) , is contained in the forward light cone

v -
i o

Henceforth we may always assume that the physical vacuum is non-degenerate,
i.e.  1s a pure state on 9 , without loss of generality. This is because of

Araki's theorem [127. Then the von Neumann algebra, nw(ﬂ)" , generated by ﬂw(ﬂ)

on the vacuum sector, %n » coincides with the algebra of all bounded operators
on Hw . B(Hw) . In the following we assume that we are given an arbitrary, but

fixed, pure vacuum state y on 9 . But see [13,12,57.

For the expert we now recall a basic theorem, due to Bisognano and
Wichmann [97 which, we believe, is at least implicitly important in the following
analysis. (The reader can skip this in first reading). This theorem says that,
under certain technical assumptions (in particular PCT invariance, which are
guaranteed by the conditions of [107]), one can construct from the net [ﬂ(&)}a cw
another net, [ﬂ(@)}Q cp’ of 1oca1 von Neumann algebras on qm such that

9M(®) 2 on(e) and U(B) = “w(;'('" ®)', (1.7)

(the famous duality condition; see e.g. r31), for all G e % .

In the following we shall imagine working with the net fﬁ(@)}s cwm
but we write again 9(®) , instead of 9%(®) . We only consider states on 9
whose restriction to 91(6) 1is normal, for all 6 € % .

DHR consider those states, p , on 91 as relevant for particle physics

which have the property that
ICo-w) 7 W~ 6)]| 40, a8 nae , (1.8)

for each sequence [@n} c ® increasing to M4 . Under suitable, technical condi-

tions this property is equivalent to

p=wo, (pA) = wool(A) = w(g(A)), A e ) , (1.9)

¥*

where 5 1is a " morphism of m+ with the property that, for some bounded double

cone @ , called the support of g ,

+ t.e. oAB) = o(A)a(B) , o(A®) = o(A)* , o 1s linesr and |lo(A) || S [A]l ,
for all A,B in ¥,



o(A) = A, for all A € U~ 6) . (1.10)

Such morphisms are called local; see [37.

Lemma 1.
Let g be a local ¥ morphism of U and @ a vacuum state, Then
= A . T o=
Hw(c) fo(A)n : A e W} ¥
Proof :
Let © € B denote the support of g . Then g(A) = A, for A € M~ ©)
Thus

Hw(cr) S>{AQ : A e al~0)]. (1.11)

By the Reeh-Schlieder property [4, 10, 147, the closure of the r.s. of (1.11) is

H when @ 1s a vacuum state,
W

Remark : The Reeh-Schlieder property has been derived from the Reeh-Schlieder
theorem [147, under suitable conditions, in [107. Lemma 1 is significant for the

discussion presented in Section 3,

We now show that when p 1is a charged state on Y and the charge satis-
fies Gauss' law (see condition A. in the introduction) then properties (1.9) - (1.10)
cannot be fulfilled, hence (1.8) must fail, too. This result is widely known, [8,37.

2. Consequences of Gauss' law,

We repeat here, in a more formal way, an argument showing why the
DHR theory of super-selection sectors is not applicable to the charged sectors
of QED.

First, we recall the definition of the electric charge operator, Q :
Let og(t) 20 be a test function on R of compact support, with (a(t)dt =1,
Let ¥ be a simply connected, bounded region in :m; with smooth goundary ar .
Let fy(ﬁ) be a test function on EP with the properties

(1) 0 £ £ (x) $1;



(i1) fy(g) =1, for all x with the property that (x,t) is in the causal
shadow of ¥ (i.e. not space-like to 3 ) , for all t € supp a ;

(iii) supp fZ compact,

We then define

o = [px,t) £(x) a(o) Sx at (2.1)

where p(x,t) 1is the charge density operator, Gauss' law is expressed in the form

-+ -+ -5 =
QE =V *E (fE ®a) = E(szg,a) s (2.2)

_’
where E 1is the electric field operator.

We assume that
-+ 2
E(VfE ® a) is affiliated with U(~ 3 N G) , (2.3)

for some sufficiently large © € m , in accordance with the fact that, for a suf-
-+

ficiently large 6 ¢ % , supp(f’fZ ® a) €~ N 6 . Then the operator E(Vfﬂ ® a)

is a densely defined, selfadjoint operator in any locally normal representation

of 9 . (Property (2.3) is true under the conditions of [107) .

If ¥ 1is the ball ({x : |§| £ R} we denote Q_ by QR , and f_ by

P bH
fR .
From locality, (1.2), and (2.3 ) we get

Lemma 2,

n - lim d® R At Q.a, , for all Ae¥U, s €R .

R4 o
We define the electric charge, Q , as the generator of

is Q
w- lim e R , s €R, (2.4)

R4 e

in any representation 1 of 9 for which the limits (2.4) exist and are conti-
nuous in s . Then Q 1is affiliated with (" . This and Lemma 2 show that

the electric charge is a super-selection rule. The analysis of this super-selcction

rule is the main purpose of this paper; see also [87.



It is common to assume that
Q=0,o0on H ; (2.5)
W
but see Lemma 14, (Section 5).

Proposition 3,

Let o be a local * morphism of %Y . Then the sector Hb = thc has
the same electric charge as Hw , L.e, 1if
w - limQ0=0Q1=0 (2.6)
R4 o
then
Qv = 0, for all v € Hm and all V¥ ¢ Hc .
Proof : Let () =0Q . Then, for arbitrary A and B in u w(w(e) ,

A0 ,QB = 1im (AQ , B s
(OUQOU) R"]:(QU Qe QU)

and by (3.8) , o
(an_, QB0 ) = (Aq, E(VfR ® Ba) .

-+ 3
For R sufficiently large, E(V @ a) 1s affiliated with U(~ supp g) , more-
-+
over E(VfR ® a) and B commute, since B¢ U U . Thus, using (1.9), we

conclude that, for sufficiently large R , 6ew
-+ -
(AQ_, E(VEy ® @) BO)
-
= (o(8)0; o(B) o(E(VE, ® 0))0O) (2.7)

-
= (o(B*A)a , B(VE; @ O .
As R o, the r.h.s. of (2,7) tends to

(g(8¥A)0,Q0) = 0 ; see (2.2), (2.6).
Therefore

, QB = 1lim (AQ , BQ) =0 .
(Ano QQU) R_:r( Q Qp 0)
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Thus, in QED charged states do not arise by composing the vacuum state
w with local morphisms. Should we give up the idea that charged states can be
constructed by composing the vacuum state with * morphisms of 9 ? Not only would
such a radical proposal contradict the requirement that charged sectors can be
composed (charged fields can be multiplied) and the electric charge is additive,

but it would also make a general analysis too vague.

3. Translation covariant sectors and ¥ morphisms of U .

We propose to regard those states p on U as relevant for QED which

have the properties

Pl) p 1is space-time translation covariant;

P2) p = woo , where ¢ 1is the vacuum state, and ¢ 1s a pt

morphism of ¥ .
Remark : The results of Sections 3.4 and 3.5 in paper I have cautioned us not to
assume that p 1s Lorentz-covariant in case p 1s a charged state. We may, how-
ever, assume that p 1s also rotation covariant, but this is quite unimportant
in the following. Translation covariance is crucial, because it guarantees the

existence of an energy-momentum operator,

3.1. Transportable and covariant morphisms and cocycles

Definition 2.

Let G be a topological group, and {78 : g8 € G} a representation of
G by a strongly continuous * automorphism group of 9 . Let  be a G-invariant
state on U . A mapping T : g € G —> T(g) , where T(g) 1is a unitary operator
on Hx , is called a G-cocycle on Hm iff T(g) 1is (weakly or strongly) conti-

nuous in g on Hﬂ , and
- *
I‘(gl’ 82) = 1"(81) Uw(gl) T(gz) Uw(gl) . (3.1)
A ¥ morphism ¢ on ¥ is called G-transportable on ﬂm iff
m (1 _jeger (A)) = (¥ 1 (0(A)) T(g) , (3.2)
CI g w

where T(g) 1s a G-cocycle on Hw.
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Remark : If 1 e ¢ 1is an irreducible representation of % then equation (3.12)
alone implies tggt T" is a G cocycle, unique up to a phase. This is not so if
Mo g 1s not irreducible. For simplicity, we require in general that T in
(?.2) be a G-cocycle,

A * morphism 4 on 9 1is called G-covariant iff .y 1s a G-covariant

state, =
We define %ﬂ(c) = {o(A)O: A e} . (3.3)

Clearly Y (o) €M . If ¢ 1is a local ¥ morphism and  the vacuum then by
w w
Lemma 1, uw(o) = ¥ , but this is not so in general.
' o

Lemma 4,

If T™ 1is a G-cocycle on Hm then V (g) = T™(g) U (g) 1is a continuous,
w

unitary representation of G on Hm

Proof : By the definition of G-cocycles, V (g) 1is clearly unitary and continuous
in g on Hw . By (3.1)

v (g,-8,)) = T(g;8,) Um(gl'gz)
= #* .
= I‘(gl) Uw(gl)T‘(gz)Uw(gl) Uw(gl gz)
= T(gl) Uw(gl)T{gz)Uw(gz)

= V(gl) V(gz), for all 8,18, in G .

Theorem 5,

Let | be a G-covariant state on U , and g a G-covariant ¥ morphism

on A .
Then there exists a G-cocycle Tb(g) on Hm with the property that
v (g) =7 (g) U (g) leaves ¥ (g) invariant,and
o] o w w
(gor, (M) =V (&)F (o(a)) v (g) ,
ﬂw’U & Tg o . ﬂw,o a s
where 11 is the representation of o(¥) on ﬁm(g) . Conversely, suppose that
w,a

w 1s G-covariant and O G-transportable on Hw , and assume that Hw(u) is
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invariant under vc(g) = r&(g) Uw(g) , for all g € G . Then g is G-covariant,

Proof :

We define an isometric isomorphism T : Hw(a) -+ uc s by
To(A)Q = AFB , for A ¢, (3.4)

One verifies immediately that T 1is isometric., Moreover, since () 1is cyclic

in %ﬂ(c) for g(¥) , T extends by continuity to all of ﬂ”(o) . By (3.4) and

the cyclicity of Qa for ¥ in ua , the range of T 1is yc . Thus T-1= *

exists and is an isometry from ¥ to ¥ (o) .
a w

If w.oc 1s G-covariant there exists a continuous, unitary representation

U of G on Y such that
T g
- *
"cr('rg(“)) UU(g) rrc(A) Ua(g) . (3.5)

Using (3.4) we conclude

A - n » f 3
Uo(g) no Uo(g)’l‘g(A) € Hc or all g ¢ G

so that
T*U (g)An = T*U (g)Tg(A)n e ¥ (o) ,
o o o w

for all g € G . Since T and T# are isometric isomorphisms, and U 1is a
o

continuous, unitary representation,
v = T*y T
0(8) c(g) (3.6)

can be extended by continuity to all of ﬁ”(c) and is a continuous, unitary
representation of G on Hw(o) . We can extend Vc(g) to all of Hn by setting
e.g.

Vc(g) =1, on Hwe Hw(c) .

We then define

#
T‘c(g) Vc(g) Uw(g). (3.7)

Since V and U are continuous, unitary representations of G on Y ,
w

o} w
Tb(g) is clearly a G-cocycle on Hm (in particular, (3.1) follows directly from

(3.7)).



L

That
m (gor (W) =V (g)*m
W, o g o

3

(o(a)) v (g)
o}

follows easily from
U(g)T=TV (g) , on ¥ (g . (3.8)
o o w

This proves the first part of Theorem 5. To prove the second part, notice that,

given V ,
a

= 3¢
Uo(g) T vc(g) T

defines a unitary group on Hb , since, by hypothesis, VU(g) leaves Hm(o)
invariant, for all g E G . Continuity in g of UU follows from the assumed

continuity of T& . Furthermore, for ¥ = BN and & = COU s
o

(?,-rg(A)a) (U(B)O,U(Tg(A))o(C)Q)

(Vc(g)c(B)Q,c(A) vU(g)c(c)Q)

(Uc(g)BQc, AUc(g)CQG)

3
(\}',UU(g) A Uc(g)ﬁ) ’

This completes the proof of the theorem,

Corollary 6.

(1) Suppose that, for each ¥y ¢ ¥ , the state (¥,0(-)y) on 9 1is G-covariant.
w
Then there exists a G-cocycle T&(g) on Hm such that

HY(U) = {g(A)y : A €9}
is invariant under Vc(g) - rb(g) Uw(g) , for all g ¢ G, for all y , and
. = * 3.9)
n@(g ¢g(A)) Vd(g) nm(g(A)) VG(g) . (

and g 1s G-transportable,
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(2) Suppose that Hﬁ(g) - Hm , L.e. QO 1is cyclic for (%) . Then g is
G-covariant if and only if it is G-transportable,

(3) Suppose  1s a vacuum state and ¢ a local ¥ morphism. Then g 1is G-co-

variant if and only if it is G-transportable,

Proof :

(1) Defining '(A) = (Y,Ay) , ¥ ¢ ¥, one sees that ' and o satisfy the
hypotheses of the first part of Theorem 3.1. Now, we first choose V = (3 . Then
we choose Yy =Y ¢ :ﬂwe Hw(c) , then ¥ =y ¢ HwB Hw(c;)eli,i,l(o") , etc. By itera-
ting this procedure we obtain T&(g) and VU(g) such that = (3.20) is satisfied

on H .

W

(2) since ¥ (g) = H, B (g) 1is automatically invariant under V (g) = T (g)U (g) ,
w w w (a3 g W

for any G-cocycle T . Thus (2) follows from Theorem 5.
g

(3) This follows immediately from Lemma 1 and Corollary 6, (2).

Remark,

1f nwao is irreducible then clearly Hm(c) - ﬁ” .

3.2. Localization properties of translation cocycles,

If G 1is the (space-time) translation subgroup of pl and ¢y 1is a
vacuum state on 9 then Theorem 5 says that if a state p = yog 1s translation

covariant there exists a translation cocycle, T(a) = T&(a), a € MA , such that
oo T, (4) = Uw(a)*T‘(a)*o-(A)T‘(a)Uw(a) , (3.10)

on H (g) .
w

We propose to determine the localization properties of T for the case

when weg 1is a charged state. For this purpose we consider the space-translation

coczcles. Let

B, = fa = (x,0) : |x]| = ¢} .

Let T(a) be an arbitrary translation cocycle on M . Suppose that, for some
w

>0 and all x e¢B , T(x) = 1((x,0)) € 9(®) , for some bounded double cone 6 .
X . X X sl
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Pick an arbitrary y E]R3 with |y| =ye, y =0,1,2,..., and set
-1
n=y y, so that [g[ = ¢ . Then, by iterating the cocycle identity (3.1), we

obtain
y-1
™y) = 0 U (n) ™) U (Gn)* . (3.11)
j=o @ w
Hence
T(y) eu(@l) , (3.12)

where @ 1s the smallest, connected, convex union of double cones containing

both @ Xand 6((y,0)) . Clearly the "transverse width" of @ is bounded uniformly
in y . As noted in [57 (Theorems 2.8 and 2.9) , the cocyclezidentity (3.1) and
some additional, more technical arguments (see also [3, 6]) then imply that there

exists a bounded double cone &r such that

4

™a) ¢ m(&r U Qr(a)) , for all a eM , (3.13)
and (see Theorem 2.9 of [5] and [3,67)
o(A) = lim T(a) Ar(a)* (3.14)

a0

exists, for all A € ¥ , whenever a tends to e 1in a space-like direction, and

the limit is independent of that direction. Moreover ¢ 1is a local® morphism
with support supp o = &r . By Proposition 3 , weg has the same charge as

Thus we have proven

Theorem 7.

Let (y be a vacuum state on U of charge O . Let g be a * morphism
on U such that yog 1is a charged, translation covariant state. Let TY(a) = Tb(a)

be the corresponding translation cocycle on ﬁn (constructed in Theorem 5).

Then, for arbitrary e > O , there exists no bounded double cone &

such that T((x,0)) € (@) , for all x with '51 =g .

Remarks :

1. Assume, in addition, that o 1s space-rotation covariant, (an assumption
that is compatible with the conclusions of Sections 3.4 and 3.5 of I). In this

case, one can choose g such that it commutes with the space-rotation automorphisms.
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It follows that, for an arbitrary space rotation R , T{Rx) = U (R)T(x)U (R)¥ .
- w - w
Combining this with Theorem 3.2 we conclude that for arbitrary 0 # x,T(x) ¢ "(6)!

2. Theorem 7 remains true if fa : a = (x,0), |x| = ¢} 1is replaced by

fa:acy, |a| = ¢} , where ¥ 1is an arbitrary space-like hyperplane,

3. It is natural to view the translation cocycles T(a) as the formal continuum
limit of coherent superpositions of (charge transfer) string operators in lattice
gauge theories, Theorem 7 then substantiates the claims made at the end of
Section 3,5 of paper I. The absence of localization properties of T(a) might

make the construction of these cocycles very difficult in models,

4. Assuming that charged, translation covariant states exist, we can refer to a
result of Swieca [77 that says that in such a situation the physical mass gap of
the theory is O ; (see also Section 2 of I). Assuming a sharper version of this
result, namely that F " couples the vacuum () to a O-mass one-particle state,
the photon, one concludes that the positive metric formalism developped here is
incompatible with the existence of a local vector potential whose curl is Fuv
In addition, Proposition 3 and Theorem 7 prove that there are no charged fields

and no charge transfer operators that are local relative to Fuv .

5. We summarize the main conclusions : If Weg 1s a charged, translation-covariant
state on U then o0 1is non-local and there exists a translation cocycle T = T&
on Hw with the property that Tb(a) is non-local in the sense of Theorem 7

and Remarks 1,2.

In this situation

(1) it is not necessarily true that
() =¥ , (3.15)
w w

i.e.  need not be cyclic in %ﬂ for () . Therefore a transportable * mor-

phism ¢, (i.e. one that is G-transportable, with G the translation group)

does not necessarily give rise to a translation covariant state; (see Theorem 5).

(2) 1t is not necessarily true that

g(A) = "lim" T™a)AT(a)* , for A €W , (3.16)
a—te

with a 9+ o 1in a space-like direction, as would be the case if g were a local®
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morphism; see (3.14).

(3) (Composition Property) The composition of translation covariant * morphisms

is not necessarily translation covariant.

However, the results of paper I suggest that (3.15), (3.16) and the Com-
position Property which expresses the additivity of the electric charge are valid
in QED. Therefore we propose to develop a framework for the construction of
charged states in QED with the property that (3,15), (3.16) and the Composition
Property are satisfied. (Condition (3.15) will be seen to be related to some
locality properties of ¢ ; Section 6). The relativistic spectrum condition will

then automatically be satisfied on the charged sectors. On these grounds a tenta-
tive theory of the "asymptotic statistics" of charged sectors will be outlined in
the last section. It permits us to set up a generalized Haag-Ruelle scattering

theory for charged infra-particles,

4. Transportable * morphisms and translation cocycles

In this section we attempt to implement the ideas that charged states
are weak® limits of states in the vacuum sector, as a localized charge is moved
to space-like infinity, and that a charge localized in a space-like distant region
has only a negligible effect on measurements done in a bounded space-time region @ .

In the following, ¢ 1s a fixed, pure vacuum state on ¥ ,

Definition 3.

A representation T of 9 1is called locally normal iff
m(on(e))" = ﬂw(M(G))" , for all © ¢ ® . Let {Aa} be some net of operators in 9 .

In the following '"w-1lim A = A" means that Aa converges weakly to A , as

Q-+
a % » , in every locally normal representation of % . A ¥ morphism g of ¥

is called locally normal 1iff ﬂwoc is locally normal,

In the following, "a » «' means that a tends to e« in some space-

like, asymptotic direction. A translation cocycle T on ¥ 1s called quasi-local

w
iff T(a)AT(a)* e 9, for all a e MA , and for all A e (y %W ,

Sew

(1) 0.(A) = w-1im T(a)AT(a)¥* exists , (4.1)
T a-beo

is independent of the direction in which a * » , and is a locally normal * mor-

phism of 9 ., (Notice that gr is automatically locally normal if the local
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algebras 9M(®) , 6 € M, are of type III and ﬁn o is separable; a theorem of

Takesaki, see [157). r

(2) w-lim 1_ (T(b)r_(A)T(D)*) = A . (4.2)
a-“eo
a+b-e

We also define O, = T_g°0°T, » a € M4 s, Where g 1s an arbitrary g morphism

a
of 9 .
]

Remarks,
1. A translation cocycle T 1is called quasi-local in norm 1iff
™a)Ar(a)* e ¥, for all A€ 9, ac v , and

n-lim 7__(T(b)7_(A)T(D)¥) = A (4.3)

a-eo a

a+b"e

Then G?KA) = n-1im T(a)AT(a)¥ exists, 1s independent of the direction in which
a-o
a + o, and is a transportable ¥ morphism of 9 with the property that

n-1im g (A) = A, for all A€W . (4.4)
a“te I»a
Conversely, suppose that ¢ 1s a transportable * morphism of 9 with the proper-
ties that the corresponding translation cocycle T& obeys Tb(a)ATh(a)* €U,
for all A €U, a € M4 , and that

n-1im o'a(A) = A,
a-bo

Then rb(a) is quasi-local in norm, and ¢ = ¢ I.e. there is a 1-1-correspon-

r o
dence between * morphisms ¢ with the above progerties and translation cocycles
that are quasi-local in norm, The proof of this theorem is given in Appendix 1.

At first sight, it seems to offer an attractive extension of the DHR theory. We
have however good reasons to reject translation cocycles which are quasi-local

in norm (which may be interesting e.,g. for statistical mechanics) as a suitable
framework for the description of charged sectors in QED, rather we base our analy-

sis on the quasi-local cocycles introduced in Definition 3.

2. Clearly, the ¥ morphisms O arising from quasi-local translation cocycles,
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T , are in general not local, so that the states moar

Section 5. (This would even be so for morphisms arising from translation cocycles

may be charged; see

which are quasi-local in norm).

Proposition 8.

Let T be a quasi-local translation cocycle. Then the * morphism o 18
of 9 - see (4.1) - is transportable, with

Uf[‘,a(a) = T(a)* ol_.(A)l“(a) . (4.5)
and
=11 (A) = A . (4.6)
wa"’mm c‘r\’a
Proof :

By the cocycle identity (3,1)
7_ (DB 7_(AT(B)¥*) = T(a)* T(atb)AT(a+b)* Ta) .

Taking b + o on both sides of this equation, applying (4.1), yields (4.5). In

particular, UF is transportable. Moreover,

o

T,a(A) = T_a(W-lim T(b)* Ta(A)T(b))

be

= w-1im 7 a(I‘(b)'r (A)T(b)*)
= a
bbe

which converges weakly to A, as a + o , for all A € U %(®) , by (4.2).

Theorem 9,

Let o1 and 0y be ¥ morphisms of U arising from quasi-local transla-
tion cocycles T, and T, » as in (4.1). Suppose that Té(ﬂ) €%, for all
4
a€eEM

Then 01°0, is a transportable * morphism, and the corresponding trans-
lation cocycle, T , 1s given by
0,°0.
1 -2
r (@) = g (r,(ar(a) , aeMt.
01°09 12 1
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Proof :
Since rh(a) € ¥, for all a ¢ M4 , we have
T—a°”1°°ﬁ°Ta(A) - T-anclnTa(T—a°QE°Ta(A))

= T_aocloTa(Ié(a)* oé(A)ré(a)) , by Proposition 8,

]

Ti(a)* cl(Tb(a)* UZ(A)rb(a))Ti(a) , by Proposition 8

#
(0, (T, (a))T, (@)™ )0, (8) 0, (T, ()T () .
To complete the proof we must show that oi(Th(a))Ti(a) is a cocycle : Continuity
of Ul(Té(a))Ti(a) in a follows from the continuity of Ti(a) and Té(a)
in a and the local normality of o - By the cocycle identity (3.1) applied
to Tb and Ti .

cl(Té(a+b))ri(a+h)

= 0, (T, (a)r__ (1, (1)) (@)r__ (T3 (b))

°1(Tb(a))71(a){ri(a)* o) (r_ (L, (N, (@)} r_ (T, (b))

ol(ré(a))Ti(a)w_a(cl(ré(b))ri(b)) s

since 0, is transportable, Recalling that U (a)¥* implements PRNCLINS S
w = W
we see that this equation is just the cocycle identity (3.1) for T

0'1°02

5. Charged, transportable * morphisms and charge transfer cocycles,

We are interested in those morphisms g which have the property
that, when ( 1s a vacuum state ,0 1s a translation-covariant, charged

state on 9 ; see P1) and P2), Section 3. Such ¥ morphisms are called charged.

Since we require, on physical grounds, that charged morphisms and the
compositions of charged morphisms are transportable, and charged states are
weak ¥ limits of neutral states, as a localized charge is removed to space-like

infinity, the analysis of Section 4 suggests to consider only those charged \
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morphisms, n , which are of the form

0= Op %¢-+0 O » (5.1)
Ii Ih
where Il,...,fh are quasi-local translation cocycles, with Tk(a) €U, for
all a ¢ M4 ,and k=1,,..,n . We must therefore isolate those quasi-local

translation cocycles, T", with the property that Wwe O is a charged state. By
Lemma 2, Section 2, we know that the representations nm and “ﬁba of U are

disjoint. (In the terminology of [57] this means that the cocycle r

T 1is
"non-trivial", in the sense defined in [57 for the case of cocycles generating
the soliton sectors in two dimensional theories, i.e. T(a) 1is not of the form

vu (a)vu (a)¥* , with Vv ¢ B(¥ )).
w w w

Let ¥ be some simply connected, bounded region in EP with piecewise
smooth boundary 3y . Let Q_ be the local-charge operator introduced in Section 2,

with the property that eiSQZ € W) , for some sufficiently large 62 T .

Let PGRS) be some family of bounded subsets of st with piecewise
smooth boundaries, containing a covering of ZRB by simply connected, disjoint

sets and closed under-finite unions.

In order to make our subsequent analysis more elegant, we assume hence
forth that the test functions fZ and ¢ 1in the definition of Q (Section 2)
can be chosen such that for arbitrary, disjoint sets 21 and Zb 1n pGR3

Q = Q. +Q,
nus, BT

(5.2)
with is Q it Q it is Q
Z"1 e Eﬁ = e th e bX

e

for all real s and t .,

Definition 4.

A one-parameter family {YS(S) : 8 €R} of unitary operators contained

in ® is called a local-charge cocycle if VE(S) is strongly continuous in s ,

in every locally normal representation of ¥ , and the cocycle identity

is QF -is QE
v}_,(3+t) = VE(S) e yy‘(t) e (5.3)
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is satisfied, for arbitrary real s and t , (Here ¥ € pCRBJ) .

(m]
Remark.
Let ¢ be some locally normal * morphism of 9 ., Then
is Q -is Q
$(s) = ole Zye 2 (5.4)

is clearly a local-charge cocycle, We define supp 4 to be the smallest region in
?Bq belonging to PGRBJ with the property that, for all ¥ ¢ PGRB) with
¥ C supp OF (the complement of supp @)

yg(s) =1, for all real s ; (5.5)

supp 0 1is called the "support of g ".

Let ' =suyppo U, X € PGR3) s L C supp o . Then,by (5.2) and (5.5)

-1
‘L"(s) = gle 8 QSUPP o UZ) . 2 QSUPP cUZ

-is Q_ ~-is QZ is Q

g qupp c) 0(9 E) : " supp O

ole

is Q -is Q
= g(e Supp gy 33(8) e supp ¢

oD c(s) ; (5.6)

i.e. for X' Dsupp g, &' € P0R3) 5 \420.(8) = yg(s) is independent of X' !

A simple calculation shows that for a = (a,0) , a space translation

g
s B o
Vs: (S) 5= T_a(&(a)(s)) 3

hence supp o = (supp ) (-a) , and
728y = 1 (° (5.7)
y (8)=r_J(y (s)) . 5.7

Lemma 10,

let g be a locally normal, transportable * morphism of ¥ .
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(1) Let ¥ DOsupp o. Let a ¢ M* be such that ¥ C supp a: . Then
is Q -is Q
e ZrT(ae Z=.96)*T (a) (5.8)
o o
(2) 1f 3 c supp Uc » ¥ D supp o, then
is Q -is Q o
e Tr@e ZTor(a)ye). (5.9)

(3) If ¥ o> supp g, & D supp 0, then

is Q -is Q
e Zr(ae Z=9)*T (a1 (y(s)) . (5.10)
o o -a
c (o]
(4) 1If Y csupp 0 , & C supp O,
is Q -is Q
e z I‘U(a) e D I‘U(a) . (5.11)

Proof :

By the definition of transportable ¥ morphisms, we have

g (A) = T (a)¥* o(A)T (a) ,
a fo] c

for A €9 and a ¢ M4 . Thus
is Q -is Q_ 1is Q -is Q
T (a)* g(e E) e Ze z T (a) e z
g g
is Q -is Q
=g (e E)e Z,
a
i.e
is Q -is Q o
vo(s) e z T (a) e 2 = r(a) v () . (5.12)

o
Under the hypothesis of (1), vyf(s) =1, and Yg(s) = yc(s) , whence (5.8),
The proof of (2) is similar. Under the hypotheses of (3) Y;(s) = Y”(s) and
g
Tals) = ya(s) = r_ (y%(s)) , by (5.7).

Thus (5.10) follows. Finally, in the situation of (4) yU(S) = vda(s) =1,
o

Next, we prove a converse to Lemma 10, For this purpose we consider
a quasi-local translation cocycle, I' , with the property that, for a = (a,0) ,
with a E]R3 , and some region pIC P(‘.iRa) 4
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is Q -is Q
e Z T™a) e z. y#(s)* ™a) , (5.13)

for some local-charge cocycle qt(s) - see Definition 4 - with the properties that

v?(s) = y(s) , independent of ¥ ,

(5.14)
if EY‘CE and Z‘T(a) CEc
and VE(S) =
(5.15)
c c
if rczr . ECET(S) .
We call Fr the charge support of T .

Lemma 11,

If T 1is a quasi-local translation cocycle satisfying (5.13) - (5.15)
then O ~ defined in (4.1) - has the properties that

is Q -1is
UT‘(e E“) e Qz= vy(s) , for E:)Z‘T.

d .
an supp ”T‘ c }:r

Proof : By (4.1), (5.13) and (5.14), we have, for 3 oy, and a = (30,0) with

|§o] large enough,

is Q -is Q
Ws)*=e Fra)e T ra)*
is Q -is Q
= w-1im e 2 T(a) e z ™a)¥*
?:gb -is Q
= e ) G‘I"(e 77) .

3
Next, for all ¥y € p(R™) with ¥ c:y and for a = (20,0) with ‘Eol large
enough (so that ¥ c:? (a %)

is Q -is Q
1= z T™ay) e z ™a )¥*
is Q -1s Qo
=w-lime 2 Ta)e 7 ma)*
is Q -is Q
=e OTIe E) . a

Lemma 12

Let +_(s) be a local-charge cocycle with the property that, for some
bounded T € PGRa) » Voo (s) = (s) = y(s) 1is independent of ¥ , for all
= XY . Then v(s) is a unitary one-parameter group in % ., In particular, if
n 1is a locally normal * morphism of 9 of compact support then %(s) € (0 'n 9 .
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Proof :
By the cocycle identity
is Q -is Q
Y(s+t) = y(s) e = y(t) e o
if > 5% . Using Lemma 2, Section 2, and the fact v(t) ¢ ¥4, for all t , we
v
conclude that
is Q -is Q
lim e 2 (t) e 2= (),
TT]Ra
SePm®”)
so that (s+t) = (s) (t) .
By Lemma 2 and the definition of +9(s) ,
-is Q is Q -is Q is Q
V($)a(A)I(-s) = 1im_ e T gle ) glAdgle e =
St R
-is Q is Q -is is Q
= 11m3 e Z ole z Ae Q‘Z:) e z
TR
-is QT is QT
= lim_ e " g(A) e , for A e U WG ,
st R (=)
= g(A) , as g(A) %, for A€W,
Since +%(s) € 9 , this implies that Vg(s) eoW' nYU .
O
Lemma 12 permits us to characterize locally normal * morphisms 5 of
compact support by the unitary group yg(s)
If g isa ® automorphism of % then, clearly,
g@' nw={.1; \ et},
hence vO(s) = oo , for some q €R . (5.17)

is irrveducible, 1.e. 1 oo
w

11 (T

is an irrceducible representation of

9, then
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ﬁw(cr(!l))' =fy1:2et},

eis q

so that n'w(vo(s)) = , for some q €R .

isq

Stnce is faithful, v%s) = e (5.18)

Next suppose that the action of ¢ 1is local in the sense that, given a
double cone © € R , there exists some & € m such that g(9(®)) c ﬁl(g A
Suppose, in addition, that supp g 1s compact Then for some bounded }" c pCl! )

is Q -is Q
V) =gle e z

is Q
By Section 2, e z € ’I(@y) , for some double cone 92' € 8 containing § and
all s €R . Thus ’ '

() eue, U . (5.19)

Suppose now that v7(s) 1is translation invariant, i.e.

1. (7)) = ¥(s) , for all a=(a,0), a €R° . (5.20)

Then Vvo(s) e U® A UB(a)) , & = 6 o U6

Choosing a large enough, we conclude using locality and the fact that ®®) is

i
Vi(s) = e 1

a factor that , for some q €R .

In all three cases, the physical interpretation of q 1is the one of

total charge of the ¥

charged ¥ morphism of charge q .

morphism g , and we then say that g 1s a localized,

The analysis presented above proves that for +7(s) not to be of the

form eisq , 9 €R , it is necessary that 5 be not irreducible and (assuming

the action of ¢ 1is local) +79(s) be not translation invariant.

Next, we merely suppose that yc(s) is translation invariant. Then,

for all a = (2,00 , a €R> ,

u @% ()0 = 7 ()0 = (o,
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i.e. yo(s)o is a translation invariant vector in %n . Since we have assumed

that the vacuum is non-degenerate, we conclude that yc(s)n = ei's 1 .
By Lemma 12,
i
vo(s)o(a)q = aa)y%(s)a = e ° oA,
o} - o184
i.e. Y (3) r Hw(U) e . HIJJ(U) 3 (5.21)

for some q €R .

If Hw(n) = Hm then (5.21) implies that v%(s) = e18 9, and o isa

localized, charged * morphism of charge q . (See also Section 6).

The following result relates the translation covariance properties of

v7(a) to the cocycle Tc .

Lemma 13,

Let g be a transportable, localized * morphism with rh(a) €9, for
all a . Then

G,
T_o(¥7(8)) = v(s) = T (@*%s) T (a) ,

for all a = (a,0) , a .’;:]I{3 "

Proof :

Given a = (a,0) , we choose 3 so large that 3 D supp g and

s:(a) o supp g . Then

is Q is Q
1,76 =r_(ole e B

is Qz(a)) e—is Qg(a)

=g (e (5.22)

a

is independent of § . Hence

is Q

-is Q
Gé(e E(a)) e

o
w(a) _ v 3(s) = T-a(YU(s)) .
But
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is Q -is Q
”a(e g(a)) . 7(a)

-is Q

is Q
=T (@* gle X8y p(ge 2@
o o
=T (a)* I-U(eis Qx(a)) e-is Qﬂ(ﬂ)-| eis Qz(a)
p _
-is Q
X rc(a) e »(a)
-is Q -is Q
= Tb(a)* vo(s) e z(a) Tc(a) e z(a) (5.23)
Since T (a) € ¥,
o
is Q -is Q
n-lim e (a) Th(a) e z(a) _ T&(a) A (5.24)
3
Tt R

by Gauss' law; (see Lemma 2).
Combining (5.22) - (5.24) and letting 3 tim? , we arrive at

r_ () = y72(s) = r(@* T (a) .

Lemmas 10, 12 and 13 yield the following "topological" commutation

relations :

Let ¢ be a transportable, localized » morphism of ¥ of compact
support, supp o , with translation cocycle r&(a) . Then

is Q -is Q?

vo(s) = lim 3 o(e %) e

it R

exists and is a unitary one-parameter group in g(9)' N % (the charge cocycle

associated with ¢g) , and

is Q -is Q
(a) e r(a) e 2= I(s)* T (a)

if supp o &5 C supp Uz - see (5,8) ;
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is Q -is Q
(B) e = rb(a) e Z . vO(s) T&(a)

if supp g, C 5 C supp o° - see (5.9) and Lemma 13 ;

is Q -is Q
(c) e T rb(a) e Z = rb(a) , otherwise - see

(5.10) and Lemma 13,

Lemma 11 is the converse to this.

Next, we attempt to construct a total charge operator, Q , on the

sectors M in the case where ¢ is a localized * morphism, with the help

We T

of the local-charge cocycle vo(s) .

Lemma 14,

(1) Suppose that s-lim QTQ exists and (5.2) is valid, Then

Tt R3
is Q
s-1lim e 2 0=0 .
nt R3

(2) 1f o 1is a localized ¥ morphism and the hypotheses of (1) hold then

is Q

s-1lim e z = eis Q exists on H and is a unitary group in the center of
™t ]R3 We T
m (",

We G

(3) Under the same hypotheses, if 0y and o, are localized, charged * morphisms
of charge 4, 4, resp., with q, # 9, then the representations "@onl and
™ of 9 are disjoint.

o T,
o 9
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Proof :

(1) By Duhamel's formula and (5.2),

is Q is Q_, 's 1t Q. 1(1-t)qQ_,
(e 2 - e >Ha = j e z 2z - de |
0 . e (QE Qﬂ')n
Hence
is Q isQ_,
e T - & Tl £ o] oy agol
which tends to 0, as ¥, r'$im3 .. Thus
is Q
s-lim e z Q =y, exists, for all s €R .
Tt R3
Next is Q
U (a)¥ Y, =U (a)¥* s-1im e Zq
v st R3
is Q
= s-1im U (a)¥ e z Q
z? 1R3 w
is
= g-1im Ta(e QZ)Q
ot R3
is Q. .
ss-lige SV qgoy
Tt R
for all a = (a,0), a e]R3 ; 1.e. ¥ 1is space-translation invariant,.
vacuum (O 1s unique,
ig

y = e 0, @s real,

Clearly

is Q s 1t Q
2 - X
= = dt ,
e 0-0 Jo e Qz 0 dt
i 3
and the g.s. tends to (e s-1)0 , as Yt R . Hence
ig -1% s -it Q
o 1’ (o = 1m ¢ -0 (¢ T qma
5t R3 o '

Next, it Q

|(e pX Q’QE ﬂ)‘ < “QF 0|l < const. ,

Since the

(5.25)
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uniformly in ¥ , since s-li? QZ () exists by hypothesis, Thus, for arbitrary

It R
e >0 and ¥ large enough (depending on ¢ ).

-it Q_ 1%
‘((E F_e -t)QJ QZ O)|<e ’

-it Q ig
by the strong convergence of e 2 0 to e _tn . Therefore

-it Q
lin . (e Zq, Q. O
y:* ]R. £
_j_§ =
e "~ lim 3(Q.Qy 0 .
St R o

By Gauss' law,

-+
(0,Q.0 = (q, ﬁ(sz ® ) .

(5.26)

(5.:27)

Since 0O 1is Poincaré-invariant, the r.s. of (5.27) vanishes. Combining (5.25) -

(5.27), we conclude that

18, -1 s it Qg
|e -11° (q,n) = lim3 (e -1) J (e ‘ Q’QZ nde =0 ,
Tt R o
i3
i.e. e =1 , This completes the proof of (1).

(2) Using the operator T : Hw(o) 4 Hmoo constructed in the proof of Theorem 5,

we have, for arbitrary A €9,

is Q is Q
e 2 AN = e % Tg(A)Q

is
To(e QE) o(A)Q

is Q
= Ty7(s) e X s(A)O ,

if 3 o supp o . Moreover

is Q is Q -is Q_, 1is Q
e Zoao=e Tome Te Zq,
is Q -is Q_
and n-lim e 2 al(A) e > = a(A) , as @a(A) € U,
Tt R
is Q

s-lim e Yo=0 , by (1) .
St R
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Thus is Q is Q

s-lim e 2 AO s-1im T ¢o(e X)U(A)Q
ot R 9 MR

T v7(s) g(A)o .

Notice that, by Lemma 12,

vo(s) o(a)n = o(a)y2(s)n , 1.e.

is Q
s-1im e Tan =e!® U = 1o(0)I(s)0 . (5.28)
Tt ]R3 a (o}
is QT is Q

Since e * 1is a continuous, unitary group, for all bounded ¥} , so is e .

is Q
Moreover, e 2 € 9, for all bounded ¥y and all s ¢R . Hence

el2 Q em (@AD" ., (5.29)
® Mo :

By Lemma 2, eis Q is also in ﬂm U(ll)' , hence it is in the center of "ﬁho(u)"'
This completes the proof of (2).

(3) This follows from (2) and a standard theorem, [11,157 .

o
Remark.
is Q
Assuming only that w-lim e ZQ exists, one can prove that
is Q st R3
w-lime 7  existson H , and if w-lim Q_ O exists and +%(s)n is
ot R3 =3 ot R3
differentiable then w-1im Q_0 = 0 and w-lim Q_ AQ_ = Tg(A) 3‘-:- v'(s = 0)0 .
vt R3 x s+ R3 P o}

See also Section 2 of paper I.

Definition 5.

A morphism g of U 1is called a localized, charged * morphism of

charge q 1iff yc(a) = e18 1.4 quasi-local translation cocycle T 1is called

4
a charge-transfer cocycle of charge q 1iff T™a) e , for all a e¢M , and

is
™ satisfies (5.13) - (5.15) , with o= compact and v(8) = e L

n

We summarize a part of our [indlngs (Lemmas L0-14) iIn
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Theorem 15.

(1) If T 1is a charge-transfer cocycle of charge q then UT - defined in
(4.1) - is a localized, charged * morphism of 9 of charge q ; (Lemma 11).

(2) 1f ¢ 1is a transportable, localized ¥ morphism with the property that
Ta(a) €9, for all a ¢ H4 then

1, (y%(s)) = T (a)* YU(‘”}(") ’

(Lemma 13), and if ¢ has charge q then Tb is a charge-transfer cocycle of
charge q , (Lemma 10).

(3) 1f 0p,...,
then 0y°°*°0, is localized, charged # morphism with charge q1+---+qn ; (the

on are localized, charged b morphisms with charges ql,...,qn
proof is a simple exercice).

(4) 1f s-lig Q? 0 exists, (neutrality of the vacuum, Lemma 14) and ¢ has
vt R '
charge q then

Q=gq-1,0n }¥ , and
we g

if o) and T, have charge dys 9y TeSP., with 9 # 4y > then ﬂW°01 and
ﬂw°o are disjoint representations of 9 ; (Lemma 14).
2

6. Space-time translation covariant, charged * morphisms.

In this section we study a class (¢ of quasi-local translation cocycles
with the property that, for TyoeeesTy, in ¢, n=1,2,3,..., the state

WeOp ©°**°0n is space-time translation covariant, (see Definition 1, Section 1),
1 n

and to each T ¢ ¢ there exists a conjugate cocycle ?:F ¢ such that the repre-

sentation 17 of ¥ contains the representation 1  exactly once,
Wwe OR °Op w

This last property can be interpreted as PCT invariance of the theory; see [37.

6.1 Translation covariant ¥ morphisms

Let ~ be an arbitrary, transportable * morphism of % with translation

cocycle T . From Theorem 5 (Section 3) we know that weg is translation
o}
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covariﬂ.nt iff the Subspace

is invariant under the group

_ 4
Vc(a) = I‘U(a) Uw(a) ,a €EM .

There are thus two approaches to proving translation covariance of oo !
(1) Show that ¥ (g) 1is invariant under Vc(a) .

w
(2) Show that H (g) = ¥ .

w w

It appears that approach (1) is the natural one. We try to elucidate
this by the following discussion : Let & be a bounded double cone and T a

positive number. We define

4

faeM :a-= (ao,_a_l_), Ia°| <T, [g_l < T}, and

My

fhT

U ©a)
SGHT
We now assume that the space-time translation automorphisms L of % have
locally correct generators : Given @ € ® and T > O , there exist ®(6,T) ¢ »
with 6(e,T) g>hT and operators T(a) € M(w(6,T)) such that, for all

A c9mB) and a € HT s

Us

* i
u@’T(a) AUG,T(a) = r,(a) . (6.1)
The existence problem of operators U@ T(a) with these properties can be reduced
]
to showing that, for each ® ¢9 and r > 1 , there exists a factor N0 . of
Ny
type I  such that
@
U6) Ny . <M~ o, (6.2)
s T

where ‘@ = fx cl*iz‘t : r_l x € 6} ; [167 .

Property (6.2) has been established for the free, scalar field by
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Buchholz [177, but it is believed to be a general property of the local nets
{ﬂ(@)}eeﬂ of relativistic quantum field theories.

We now assume, in addition, that

:;lim U@,T(a)Q =0, (6.3)

for all a ¢ MT and all T < » .

Next, we study those o morphisms g of 9 which have the property
that
s-lip g(u, . (a)) U,  (a)* (6.4)
or 2t O &T 6,T

exists on Hw , for all T < o . We leave it to the reader to check that the
limit in (6.4) defines a translation cocycle in the sense of Definition 2,

Section 3.

Lemma 16.

Assume (6.1) and (6.3). Let g be a * morphism of 9 with the property
that (6.4) is satisfied. Then ¢ 1is transportable, with

T (a) = s-1im (U, (a)) U_ _(a)¥*, (6.5)
ot M4 6, T 6,T

for all a € MT; Va(a) = I‘U(a) Uw(a) leaves nw(a) invariant, and .o 1is

space-time translation covariant,.

Proof :

let A€ y 9(®) . Then, for a ¢ M, and arbitrary T,
O
— *
-r_aoco'ra(A) = n-1lim U T(a) s

+*
o (a)o(Uﬂ’T(a) AU

’T(a))U

g: T Q e’

since A €U Me) , and (g (A)) € U .
Oew .
The first part of Lemma 16 and (6.5) follow by writing out the r.s. of
this equation and applying (6.4).

Next, we prove invariance of Hw(g) under Vq(a) : For all A€Y, a € HT’



- 36 -

(@)U (a)o(A)o = T _(a)r_ (a(A))0

s-1ip o(u._ (a))u, (a)* ¢+ (5(A))a , by (6.5)
ot HIR @.’T GsT -a

s-1im g(U

. (a))U® T(a)* 'r_a(U(A))U9 T(a)Q , by (6.3)
ot M ’ ’

6,T

s-1im U(U@ T(a)A)Q . (6.6)
6t M4 ’

[}

For all G €%, T <o, cr(U0 T(a)A)Q € %ﬂ(c) . Since Hw(c) is closed, (6.6)
implies that

™ (a)u (a)o(A)n € H (o) .
(#] w w
The space-time translation covariance of yog now follows from Theorem 5,
0

On the basis of Lemma 16 one might conjecture that, in general, ¥ (g)
w

is invariant under Vo(a) , whenever ¢ 1is a transportable ¥ morphism.

We define C& to be the class of all those quasi-local translation

cocycles which have the property that, for

ri,...,rh in C& , = 1,2,3,...,Hm(orio...oorh) is invariant under
VU osse0(y (a)' a EH4 ? where vo- Oesssp (a)
rl Th Ti Th
= orio---oarh-l(Th(a))....orl(ré(a)) T&(a)Uw(a) 5 (6.7)

(see Theorem 9, Section 4), By Lemma 16, it suffices that Op °"**°0p satisfies
(6.4) 1 .

Next, we discuss conditions which guarantee that
(o) =
Hw o ¥,

Let ¢ be a localized * morphism of compact support, i.e.

is QF -is QF

ole ) e -1, (6.8)

for all ¥ < supp gc ; see Section 5.



ST

Physically, equation (6.8) says that the charge carried by ¢ is loca-
lized in the compact region supp ¢ c:IR3 .

From Proposition 3 (Section 2) we know that this does not imply that
o 1s local in the sense of DHR [37 , in the contrary, ¢ 1is not local unless
its charge is 0 .

However, one might expect that g 1is quite close to acting trivially
on 91(®) , provided ® 1is a bounded double cone which is space-like distant
from supp g . (One might expect, moreover, that for such morphisms (6.4) is
true). A possible way of expressing that is as follows : There exists some compact
region 20 CJR3 , with ZU 2 supp 0 , such that for arbitrary 6 € ® with

Gc~zc

o(U(e)) = Ae) . (6.9)

Clearly, (6.9) implies that ﬂw(c) = Hw . (This follows from the Reeh-Schlieder

property, as noted in the proof of Lemma 1, Section 1).

If ¢ 1is transportable and @ c~ (¥ UY ) , for some a EZM“ , then
g o

by (6.9) a

n(6) = o(a(6)) oa(w(@)) = ™a)* g(u(e))T(a)

T(a)* 9(®)T(a) (6.10)

(Note, however, that the condition

(@) = T(a)* Y(e)T(a) ,
for cc~ (M yy (M(a)) , for some compact region F(T) cIR3 only implies

{w-1lim T(a)AT(a)* : A € WO} ¢ UG) ,

d—peo

i.e. it appears difficult to characterize those localized * morphisms op which
satisfy (6.9) entirely in terms of the cocycle T ).

We let C2 be the class of all those quasi-local translation cocycles,

— , which have the property that
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n,r("l(&)) = A(e) , (6.10)
for all 6 € with gc~ ¥ .
on

Let T,...,T, be in C, and let 6 € ®, with ec~(y u---uz:a Y.

then 1 rh

O osss0a. (MB)) = g o **00 ((e))
™ T 5] Th-1

== o (WO = WO . (6.11)
&1

Hence, by the Reeh-Schlieder property,

Geseg = 6.'_
Hw(cl'l..1 G%h) Hm s (6.12)
for arbitrary Tl,...,rh in (a s, so that upgfloc--oorh is space-time transla-

tion covariant,

Next, we Introduce a class C% of quasi-local translation cocycles :

rec, iff T@) € oM, (6.13)

for all a éHl‘ .
We say that a quasi-local translation cocycle T 1s irreducible iff
™a) e ﬂ@(crﬁﬂ))" . (Clearly, if T ¢ C% then T 1is irreducible).

Lemma 17.

Let T be a quasi-local translation cocycle,

(1) 1f T 1is irreducible then o is an irreducible * morphism of %, i.e.

m 1is an irreducible representation of GF(u) .
w

(2) 1f Tl,....Th are in C% then ofio.-.oorh is irreducible,

Remarks. The converse of (1) is of course trivial. By (2) we have

(a_ weeeo ) = for arbitrar PRI AT £ 1] . Hence the state
Hul "T"l UT‘n Hw d y T‘1 n cj
munr u---oor is space-time translation covariant.

1 n
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Proof of Lemma 17 :

(1) Since T 1is irreducible, T(a) € nw(cr(&l))" , for all a . Hence, for all

Ae U us) ,
6en

o.

- - #* "
r,atd) =1_a°0pe T, (8) = T@)" o (ATa) € RGP

By Proposition 8, Section 4,

w-1lim O (A) = A .
T,a
a-peo

Since 1 (g_(M))" 1is weakly closed, A € 1 (o(¥))" . Hence
w T w T

mn (cr("l))" > U %) , and therefore
w (%2

m (g (OM" =m (M",
w T w
i.e. u is an irreducible representation of UT“(.I) .

(2} Lf Tys--.»T, are in c3 then

O e 20 o
a. C‘-’I. U'T.

a) =
1 n-1 n’?

Y *
o (T*n(a) ol_n(A)rn(a))

n-1

(e} o
3}

€ o.l..lo‘“oc.l_ (o) ,

n

for all A€ U 9M®) . As a + o , we obtain, using Proposition 8 and the local

normality of Oen the morphisms o_ ,...,0 s
L} Th-1
n
m (o ovevom. (A)) €m (g ocrog, (M",
w '['1 rn—l w 1-\1 Th
i.e. m (oo 0. (MW" 21 (g o200 () .
w Ti Th w cri rh—l

Proceeding in this manner we conclude, after n steps, that

"rl(o"r\ O 'oo‘r (9’))" 2 “LU(SI) 3

1 n

i.e. = :0p ©° " *o0n is irreducible,



Remarks.

1. Let T be a quasi-local translation cocycle. Then opn is a * automorphism
if and only if

™a) = gr(r'(a)) ’ (6.14)

for some quasi-local translation cocycle T . (The proof is given in Appendix 2).
Clearly a cocycle T satisfying (6.14) is in C

2. The fact that, for r&,...,Th in q3 , the ¥ morphism grlo"'og+h of o
is irreducible will imply that the sectors upgr A i Cé , have necessarily,

ordinary Fermi- or Bose-statistics, 1.e, parastatistics is automatically excluded.

Thus, the hypothesis that the charged sectors of a theory be generated
by all ¥ morphisms {UT: T € C%} might be appropriate in QED, but cannot be
valid in more general gauge theories with an unconfined, abelian charge and para-

statistics.

Section 6.1 can be summarized as follows : Let T seeesTy be quasi-
local translation cocycles in one of the classes C,, Cys Cy s (see (6.7), (6.10),

(6.13), resp.). Then WO ©***°0p is space-time translation covariant,
1

n

Our discussion leaves the problem open to characterize those localized
charged * morphisms which are space-time translation covariant entirely in terms

of quasi-local translation cocycles,

6.2 Existence of conjugate sectors,

In this section we discuss the following problem : Suppose T 1is a

quasi-local translation cocycle. Does there exist a quasi-local translation co-
le T such that
ke Tye o= 01

contains nw precisely once ? In the DHR theory,
the answer to this is yes? T see [3,67.

In our case, however, where the basic * morphisms, ¢ , generating the

charged sectors are necessarily non-local, this is not clear, at all,

The first problem one meets is that, given g , the existence ofl a left
inverse to g, & , (i.e. 3(g(A)) = A, for all A € 9) is not automatic. Onc

has only



=41 =

Proposition 18

Let T be a quasi-local translation cocycle with T(a) € ¥ , for all

a eH" . Then, for some sequence {an] )8 +@, a8 Noe,

"’I“'(A) = Illf: w(]_"(an)* A‘r‘(an)) exists,
and mr*(cTﬁA)) = o(A) , for all A €Y. If
w-1im (T(a+b)* AT(a+b) - ™a)¥* Ar(a)) =0 , (6.15)
abe

for all b E:Mz' , then ml"" is a translation covariant state on ¥ .

Remarks,

The existence of W follows from a general compactness argument,
Next,

lim w(r(an)* cr(A)r‘(an) )

N

ml'"( o'_r(A) )

lim w(qr’a (4)) = o(a) ,
N-be n

by Proposition 8, Finally, using the cocycle identity (3.1) and (6.15) one shows

that
(AT, (B)C) = w (Ma)r_ (W)Br_ (OINa)™)
so that the unitary group U (a) ,defined on ¥ by
et “re

v (@i =1 (ANa)*q
s Ut b o

implements r_ . (Details of the proof of Proposition 18 are left to the reader).
In the DHR theory [37

n-lim T(an)* Ar(an) = 3$(A)
N
exists always, for some sequence {a“I , and § 1s a left inverse of g (with

the same support as g ).

Let T be as in Proposition 18. Suppose that W = g , where §
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is a * morphism of U and a left inverse of ¢

N Using (6.15) and the cocycle

identity (3.1) one can show that

T_ao§o¢a(A) = §(T(a)Aam(a)®) = §(r(a))s(a)a(T(a))™)).

#(T(a)*) € (o) . This motivates the
study of the class Cé introduced in Section 6,2, (In the present case,

Thus § 1is transportable, and Tﬁ(a)

op

and @ = . are actually * automorphisms of 9 ; see Appendix 2).

T

Lemma 19.

If § 1s a left inverse of a localized, charged * morphism ¢ then
3 1is localized, with supp & = supp g , and 1f 5 has charge q then § has
charge -q .

Proof :
Let ¥ C supp gc ; l.e, vg(s) =1 . Since § 1s a left inverse of ¢,
we have

is Q -is Q
8(o(e 2)) e z

-
]

is Q

-is Q
8(y3(s) e Z)

e

i

is QF -is Q

8(e ) e Z yg(s) .

Thus, supp & = supp o .

is q

Next, let 3 D supp o = supp $§ , and suppose that yg(s) = e . Then

is Q -is Q
3(ole D) e =

is Q -is Q
@(yg(S) e e 2

[
n

ya(s) et , L.e. y@(s) fe-
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In contrast to the situation met in the DHR framework [37, neither the
existence of left inverses nor the one of conjugate morphisms appear to be auto-
matic, in the present framework. Therefore, in the absence of general results
which guarantee that, given a quasi-local translation cocycle T , there exists a
transportable ¥ morphism 5 such that the representation

™ - of 9 contains T precisely once , (6.16)

Wwe g° CI'I. w
one must attempt to formulate a plausible principle which ensures that (6.16) is

valid, Such a principle is suggested by the "topological" commutation relations
(A) - (C), subsequent to Lemma 13, (Section 5), and the identity

On °0. o. o
vyl 12 (s) = o (y T2 () y1(s) . (6.17)
1
Henceforth we assume that
s-1im Q_ O exists , (6.18)

st R3

so that the total electric charge operator exists on all sectors generated by

localized * morphisms of U ; see Lemma 14,

Conjugation Principle.

(1) Let T be a quasi-local translation cocycle satisfying the "topological"
T

commutation relations (A) - (C) , for some local-charge cocycle + .

Then there exists a quasi-local translation cocycle T satisfying the
commutation relations (A) - (C) , for a local-charge cocycle 4r with the property

that the unitary group
™ N
{U$ (y (s)) vy (s)} has eigenvalue 1 . (6.19)

(2) All super-selection sectors of the theory of total electric charge O are

generated by strictly local, transportable * morphisms of U , in the sense of

DHR, [37 .

Using (6.19) and the fact that
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oy () Y(&) € oo ot

for all s , (see Lemma 12), one verifies easily that the representation

m of U contains a subrepresentation of 9 of total charge 0O ., Part
We O'Ttﬁ 0'1.\

(2) of the Conjugation Principle then says that that subrepresentation is of the

form T , where ¢ is a local * morphism of 9 , in the sense of DHR.
w0y 45c loc
Their results then imply that there exists a * morphism ;10c conjugate to

o such that T _ contains 1  precisely once, Therefore, the mor-
loc o] °Q w

loc “loc
phism conjugate to O is

O = Gpoc ° O% - (6.20)

Since Eloc and O are transportable, so is 'Er ; see Theorem 9. Moreover,

BT is uniquely determined by its translation cocycle T- , given by

Téf(a) - clOC(TYa)) réloc(a) :

as is easy to check; (see (4.1) and [31).

Thus, the Conjugation Principle guarantees (6,16). If the morphisms
Op and O are irreducible then

ad.
v T(s) = e1%9

QP(S)

I
(1]

, and

2

o
J(s) = y T (s) = el®

(6.21)

]
m
-

for some q and q in R ; see Lemma 11 and (5.18). The Conjugation Principle
then implies that

iy .
Y(s) = y(s)¥ =189 | (6.22)
because
oy () Y () =1, or () = oy (&)%) . (6.23)
In this case, the sectors ¥ and N have both total electric
LDOO'T@(T.I.. i!J°U.f.°U¢i><

charge O .
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Naturally, (6.23) suggests a converse problem., Suppose that

J(a) = ok V()% . (6.24)

By Lemma 13,

®a)* YT‘(S) Ma)

RCAOP
= T(a)* oT&yIks)*)?Ka)

- o?(’a(y‘"cs)*) : (6.25)

Proposition 8 gives

™ T
w-lim oxx (v (8)¥) = ' (8)* , on w .
a4 ma w

Thus, w-1lim ¢ (YIIS)) exists . (6.26)
ade 2

Since y 1s a pure vacuum state on U , hence clustering, and yrks) €V,

w-lim ¢ (y/(8)) em (W' . (6.27)
adeo 3 w
But Qr(s)* € 9 . Combining this with (6.25) - (6.27) , we conclude, using the
irreducibility of ﬂw , that

w-1lim -r_a(yf(s)) €un rrw(u)' =fA1l:r€¢},

a-deo

i.e. vis) = e®d a f ()", (6.28)

for some q €R . Therefore

O~ O. Op®
R T i S

iter O © Op and Op ° Opc  carry electric charge O . Part (2) of the Conju-
gation Principle then implies

O © O = Oloc °*
for some local * morphism Oloc of 9 . By 31, there exists a conjugate mor-

hism ¢ such that . contains recisely once, and there-
P m cloc nw°°10c0010c ﬂﬁ P y ’
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fore, with op ® O100° Gf , one has that nﬁoﬁrpcr contains ﬂh precisely once,
i.e. (6.16) holds. :

Thus, we have proven

Lemma 20,

Suppose that the Conjugation Principle and equation (6.24) are true,
Then

for some q €R , and there exists a local, transportable * morphism ‘Eloc such

that ‘U_r = O10c ° o is conjugate to in the sense of (6.16). Moreover

is transportable.

GI-\’
ET

If the vacuum sector, Hn » 1s the only super-selection sector of the

theory of total electric charge O , then

m g g B (6.29)
wﬂar °UF “”0r°ﬁf w
op and O are ¥ automorphisms of 91, and T can be so chosen that
_ -1
O °r
Remarks.,

1. To prove the last part of Lemma 20, we note that (6.29) follows from part (2)
of the Conjugation Principle and the absence of non-inner, local ¥ morphisms
(i.e. Toe = identity), and that, by (6.29), O °Op

automorphisms of U given by unitary operators on Hw .

and nrpo? are both *

2. The situation expected in QED is that all * morphisms or,gF,... are irre-~

ducible, and that the vacuum sector is the only sector of total electric charge O.

In this case, the last part of Lemma 20 says that OT,U?“.... are ¥ automorphisms

of 9, i.e. all sectors of QED are generated by charged * automorphisms of

91 , a rather interesting conclusion !

6.3. Relativistic spectrum condition, charge conservation and additivity of the

electric charge.

We usce the results of Sections 6.1 and 6.2 as motivation for
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Definition 6.

A quasi-local translation cocycle T 1s said to be PCT covariant if
and only 1if

- T(a) €U, for all a €H4;

- T 1is in one of the classed Ch s j =1,2,3, introduced in Section 6.1, (the

same for all T ); and

- there exists a quasi-local translation cocycle T with the same properties
as T such that contains recisely once,.
" Trwo O=° 0 Tfm P y
r-r
o
We remark that, assuming the Conjugation Principle is valid, the analysis
of Section 6.2 shows that the cocycle T 1is the translation cocycle EE of
the morphism ‘EF conjugate to cr which is given by r

r.dr(a) = aloc(F(a)) raloc(a) 3 (6.30)

see Section 6.2. Definition 6 1is a strengthened version of the Conjugation
Principle in so far as it hypothesizes that T = TE is a quasi-local transla-

T

tion cocycle in a class cj , so that 'ar = Op is not only transportable,

but space-time translation covariant,

We have
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Theorem 21

..

(1) 1f Tys.--sT, are PCT covariant translation cocycles then Wo O 2 © °0..

1 n
is space-time translation covariant, and the relativistic spectrum condition is
satisfied on H , 1.e, the spectrum of the generator of

wno-r 0'0400.1-‘
1 n _
fu (a) : a ¢ M4} (see Theorem 5) is contained in V .
wOGT-‘lool-QcT\ +
n

(2) 1f Tys--.sT, are PCT covariant charge transfer cocycles, with charges

SUERERFL S and s-1im Q_ () exists then s-lim eis Q? = eis Q exists on
st R3 St R

W o orvroo. and Q = (q1+---+qn) 1 , in particular, Q 1is conserved.
Ti T
n

(3) If the total, physical Hilbert space is spanned by the spaces ¥ 5 -
we 0% e 0 (Jpm

I 1

where Tl""’Th are PCT covariant charge transfer cocycles, i

n=20,1,2,..., then the total charge operator Q has pure point spectrum which

is a discrete subgroup of the additive group of the real line,

Proof :

(1) Since T ,...,Th are PCT covariant, Tl,...,Th are in a class CG .

for some j = 1,2,3 . The space-time translation covariance of wOGT ot enpn

can thus be inferred from Section 6.1, In particular, if T 1is PCT 1 covarignt

are space-time translation covariant, and

then e and o
w O'.r. 3 UbGT.( w U?‘QUT\

= + (I-)p ,

We GT‘O UI‘
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for some ) € (0,17, and some state p with the property that no is disjoint
from ﬁw . The proof of the spectrum condition is now as in [37.

is q,
(2) By hypothesis, +1.(s) = e ), for some q, €eR, j=1,...,n . If
n c i is Q -is Q J
yC N supp On then o °%*togn (e Z.) e z
j=1 | 1 n
a. is Q -is Q
= G000 - (y Ts)e e %
T'!
1 n-1
is Q -is Q
= g_o---0g. (e &) e z
3} Ta-1
= =1, 1.e
n
Supp on °***e0.. & U supp o .
n
If ¥ o 1) supp O then
j=1 i . .
s Q -1s Q
O © o (e }-') e F
Lk Ta
o. is Q -is Q
=o-.ro--.oc' (Y Tn(s) e 5-:) e E
1 Tha1
is Q -is Q_, 1s q
=0-T9...oc (e F)E Ze B
1 Ta-1
) . is(qp+---+q))
= ... =@ s L.2,
c (= I OU - .
™ Ty . is(q1+ +qn) .
v (s) =e
is Q 1s(q1+-'-+qn)
By Lemma 14, (2), e =e on ¥ . But geg_ °+..0(
wogr o---ao‘r T'l T
is space-time translation covariant. Therefore Q L is ™ conserved.

(3) From (2) it follows that the spectrum of Q 1is a discrete semigroup in R .
However, since the charge of T is opposite to that of T, it is in fact a
discrete subgroup of R .

Remarks .,

let T‘l,...,T‘ be PCT covariant translation cocycles, and assume thal
n

is
s-lim Q_ O exists. Then by Lemma 14, (2), e Q exists on

ntR3
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H and 1s a continuous, unitary group in the center of
wOUT" o...oa‘r
1 n
Moo - (" . By Theorem 20, (1) , the relativistic spectrum condition
wo 0= =0
Ti Th
is fulfilled on ¥ . As a consequence, the center of
uJQU 0-.-00-
Ti Ih

" . (M" 1is space-time translation invariant; a general theorem of
woo‘ (= I )
™ ™
1 n

Borchers 167]. Hence, the charge operator Q 1is conserved,

The charge cocycle of O LERELY, ) is given by

1 Th

O, 2*+-°(. o. 0. g

vl Ta(s) = g owvvoa. (y B(8))--eg (y 12(8)) y [1(s) ,  (6.13)
Ii rh-l 1

as is easy to check.

Furthermore, 1if T 1is irreducible then

On
so that ¢ (s) =e

op is irreducible, Lemma 17),

18g , for some q €R ; see (5.18). If T 1is PCT covariant,

a. a. a.
and Ta(Y r(s)) = Yr(s) then 1-‘(s) = eis q , 4 €R ; see (5,19) - (5.20) .

Finally, Theorem 21 remains valid in theories in which charged sectors
arise by composing the vacuum with charged * morphisms that may not arise from
PCT covariant cocycles, provided covariance and the relativistic spectrum condition

are known, We also recall that Proposition 3 and Theorem 7 say that 1if

o
v r(s) # 1 then o and T are non-local,

In conclusion, we may tentatively view the problem of constructing the
charged sectors in QED as the problem of constructing all possible, PCT covariant

charge transfer cocycles,

The following problems remain to be analyzed :

1) What is the statistics of charged sectors ? Is the spectrum of the total charge

operator related to the statistics of the sectors ?
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2) Do the charged sectors determine well-defined representations of the algebras,
o , generated by bounded function s of the asymptotic, electromagnetic field
(which Buchholz only constructs on the vacuum sector, [27) ? Are the charged re-
presentations of s disjoint from the Fock representation, i.e., are they

"infrared representations" ?
3) 1Is there a generalized Haag-Ruelle theory for charged (infra-)particles ?

Some answers are sketched in the last section,

7. Generalized Haag-Ruelle theory and a remark on non-abelian gauge theories,

In this section we outline a collision theory for the theories described
in Sections 5 and 6, in particular QED. We assume that the photon is a stable,
neutral particle of zero mass, i.e, in the vacuum sector %n there are stable

one-photon states.

Under these hypotheses, Buchholz [2] has constructed, on the vacuum

+
sector Hw , free, asymptotic, electromagnetic fields, F2° = p- , as strong

limits of a family of local observables, as t 4+ 1 o . W

Buchholz' construction only works on the vacuum sector or on sectors
generated by strictly local (hence neutral) ¥ morphisms of o , as is easy to
check. See [27. A priori, it does not apply to the charged sectors of the theory.
However, under various, rather plausible technical conditions of dynamical cha-
racter (e.g. a condition that says that, away from "small frequencies and momenta"
charged representations of U 1look like the vacuum representation) one may hope
to extend Buchholz' collision theory to the charged sectors., Our starting point
is as follows : Let (9 be the class of all PCT covariant cocycles. The analy-
sis presented in Sections 5 and 6 justifies defining the total Hilbert space,
¥ , of the theory as the smallest Hilbert space with the property that all states

Wwed_ ° **0og_. 5 Tyse.nsT. in CON , n =0,1,2,..., are given by unit rays
™ T 1 n
in ¥ .
By Theorem 2 1 , there exists a densely defined, selfadjoint energy-

momentum operator (H,P) on ¥ such that spec(H,P) g:ﬁ; , and on ¥
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o (]
el(a’H-a-P) , -i(a"H-a-P)

Ta(A) = 3 (7.1)

as= (30{3) , for all A ¢ ¥ .
We note that the results of [7] and 2] imply that
spec(H,P) = V_,
as spec(ﬂ,g)/"ﬁw N ?_’_ . (7.2)

We now assume that, on all sectors in }H , one can prove a strong convergence
asymptotic condition for the electromagnetic field, see [27, yielding free,
asymptotic fields F:: » a8 = + or - , with the following properties :

4

(1) por WV eg (R)

real

+ g8 gV
_Fm,(f ) £H + pAf) ,

for some finite constant A(f) only depending on f = [f“v] -

(2) F°° satisfies the standard free-field canonical commutation relations.

v
(In this context, the results of [187 might be important. See also [27 and
paper I).

As remarked in I (Proposition 3.1), the operators

11?:3&”") " "
{e : fFY € greal( R}
then generate Weyl algebras ) , and
iF?® (£WV) iF?% (£HV)
T, (e w ) =e W & (7.3)
where : o
VG = 2m 72 [ a* pelP X (2212 Fv) (7.4)

These results have been established for the boson field in models with infra-
particles [197. The whole circle of problems obviously requires further investi-
gation,
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In Theorem 3.2 of paper I it is shown that the relativistic spectrum
condition for (H,P) and (7.3) - (7.4) permit to decompose (H,P) into an
energy-momentum operator (Hgg . ggg) affiliated with the von Neumann algebra
o*® generated by ”as on Y which describes the dynamics of the asymptotic,
electromagnetic field, (i.e. the free time evolution of asymptotic fields), and
an operator (st ’ g:s) affiliated with EF3' which describes the dynamics
of the asymptotic charge and of fields without electromagnetic interactions.
(There is an explicit expression of (Hgg s 2::) in terms of Fzz ; see 1) .

Moreover
ph phy _ = c C, =
spec(Hi_ . By ) v, o sPec(Hi_ , P_I) sv, . (7.5)

We now specialize to theories, such as QED of electrons and positrons, which

have the property that
vr(s) = a1_“ (,,’"(s)*) (7.6)

and that the only sector of O electric charge is the vacuum sector, In Lemma 20,

Section 6.2, we have shown that, under these hypotheses,
Wis) = e 180 o Tio)* | (7.7

and O is a * automorphism of 9, for all T ¢ C(%) . For a suitable choice

of T,
cr;.l =a_ - (7.8)
r
From Theorems 9 and 5 we then infer that there are isometries TT
which intertwine the representations 11 of ofﬁw) with the repre-
w°cr.|.. °'“°O’T‘
sentations- 11 of o , 1 n for arbitrary T,,...,T
We@Ga ®**-°0~ °C. 1 n
Ti Th T
and T™ in (%) . Since we have specialized to those UT which are ¥ auto-
morphisms of U, TT‘ maps HuPG e to Hw"cr B et and
* N Th Ti Th L
T = TT , by (7.8). Thus
domain(T_) = range(T.) = ¥ . (7.9)
main(T, gelly) = o
We define
i(xoliC -x-P° ) ~1(x"n¢ —x-PF‘)
as — —as a8 — =S

'I‘;‘s(x) = ¢ : TT" ¢ ' (7.10)
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The second basic assumption of this section is that, for T and T' in ¢ ,
as as
[TT (x) , TT'(Y)WG(T.T') o, (7.11)

provided (x-y)z < d(m,T') <0, for some finite d(m,7™') . Here §(T,T") =1 |
and [.,.}+ denotes the commutator, resp., anti-commutator. We note that higher
statistics (see DHR [37) is automatically excluded, in this set up, because we
have specialized to those UT which are ¥ automorphisms of 9 . Moreover, because
of (7.7) and Theorem 21, the spectrum of the total charge operator Q on ¥ is

a discrete subgroup of R . (This is generally true if the statistics is ordinary
Bose~ or Fermi - statistics). The physical interpretation of (7.10) - (7.11) is

that when the asymptotic positions of the charges created by T??(x) " T:f(y) .
resp., are space-like separated by at least a square distance d(T,T') , the
field bundles T;?(x) and T;f(y) commute, resp. anti-commute.

Assumptions (7.10) - (7.11) are in perfect agreement with the results
of I and general wisdom concerning QED. But of course they are quite ad hoc and

require further justification.

We regard (7,10) - (7.11) and the result below as a challenge to develop
a theory of the "asymptotic statistics" of sectors, along the lines of 31, for

general theories such as described in Sections 5 and 6, where higher (para-Bocse
or para-Fermi) statistics is not excluded. (The main difficulties met in such
attempts are that exp i(aoﬂgs—g-gis) does not necessarily implement an automor-
phism group of ¥ and that the charged = morphisms {ar : T ec(m} are not
local).

On the basis of (7.3) - (7.5) and (7.10) -(7.11) one can now construct
a generalized Haag-Ruelle scattering theory for charged infra-particles; (see
also Sections 3.2 and 3.6 of I) :

Suppose that, for some Tl,...,rh in () , the operators T??(x) ,

j=1,...,n , have non-vanishing matrix elements between the vacuum 0 3 and

one-(infra-) particle states, i.e, eigenstates of (st)2 - (223)2 of eigenvalue
m; . (mj ~ 0 1is the mass of the infra-particle; see Proposition 3.4, Section 3.2
ol paper I. Typlcally, T‘l="'=T‘k=T‘,'l"k+1='“=T"n=-1.:‘ , for some T € C(%) , mj= m ,

for j =1,...,n)
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The standard spectral hypothesis is that the mass shells ?ﬁ are isolated

c c j
in the spectrum of (Has’ Eas) .

-itUh?+m§

Let fi(x) = (2")-2’f;4peip-x Ed(p) e , where Td(p) is a test

function the support of which has non-empty intersection with ﬁﬁ but no

c C = j
intersection with Spec(Has,gas) \ Vo -
One then proves as in (14

Theorem 22.

Under the hypotheses stated above

it H_T_ n + j
s-lim e = n T (£)0
t-+F » j=1 j
exists.
Remarks.
General scattering states are obtained by applying operators from W+ 8
resp. 90 , to the limits constructed in Theorem 22 (and taking the closure in ¥ ).

One convinces oneself that the states so obtained can indeed be inter-
preted as the scattering states of the theory; e.g. the obvious intertwining rela-
tions are valid. The theory described here has one unconventional aspect : In

general

+ -
Tr(f)o # TT,(f)O >

i.e. charged one-infra-particle states will in general scatter, due to the emission

and absorbtion of photons.

Remark.

Preliminary results (indicating that the total charge operator, Q , is
in the center of the algebra ;55 ) suggest that, within a slight extension of
the framework developped in this paper, one can prove that representations of
mas of different charge are disjoint, in particular, charged representations of
mas are disjoint from the Fock representation constructed in [2]. This would

represent a stronger version of the result reported in Section 2 of paper I.
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The whole circle of problems touched upon in this section and some
further results, involving deriving and applying the Maxwell equations in the
framework developped in this paper, ought to be studied in a separate article,

We conclude with some comments concerning

Non-abelian Gauge Theories :

Within the framework introduced in Sections 1, 2 and 5 we consider an
idealized, non-abelian gauge theory with gauge group some compact Lie group G .
(For simplicity we assume that G 1is simple, but this is unimportant). The
center of G - which will turn out to play the main r8le - is denoted Z(G) .

The theory is described in terms of an algebra U= {J U(O) of quasi-
local, neutral (i.e. uncoloured) observables with the generalGGB properties
described in Section 1,

As usual, ¢y denotes some pure physical vacuum state on U , and Hw
the vacuum sector, assumed to be given, The object of the study is the question
whether there are * morphisms, o , of ¥ with the property that the state eq

has colour, 1i.e, Hwoc carries a non-trivial representation of G .

We start with some preliminary considerations concerning non-abelian,

local charges.

For this purpose, we assume temporarily that, given any bounded, open
set ¥ C:RB , (e.g. ¥ e( ]RB) , see Section 5) and an arbitrary space-time
translation covariant morphism g of % , there exists a representation [Q;] of
the Lie algebra of G on the sector ¥ in terms of selfadjoint, local charges
Q: satisfying local Gauss laws; here Léjl‘)\g superscript a labels the elements
of a basis in the Lie algebra of G . This assumption may be considered a part
of the conventional lore about non-abelian theories. In a positive metric framework,
it is however not on safe grounds, since the local charges Q; cannot be elements
of the observable algebra U , for all ¥ ¢ p(]ﬁa) and all a , unless they

vanish,

To see this we suppose that, on the sector %noc , the limits

1s Q2 1s Q?
w-lim e Z=e , (7.12)

Tt R
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exist, for all real s and all a .

By Gauss' law,

a
e oS € ﬂh°c(ﬁ). , for all a . (7.13)

sQ

In the abelian case, we have shown in Section 5 that ei is in the center of
Mo (ﬂ)" . In the non-abelian case this is only possible if the representation
of G determined by {eis Q® } on ¥ is the trivial representation (i.e.
ﬂhhc has no "colour"), bicauge the ceng;r of a von Neumann algebra is abelian,
whereas the operators f{e 5 Q } generate a non-abelian algebra whenever the

representation of G they determine is non-trivial,

We say that 11 - is a coloured representation of 9 iff (7.12) holds
we

a
and the representation of G on HuPU determined by [eis Q 1 1is not trivial.
is Q2
In this case it then follows that e Z  cannot be in o , for all

7. € P(ZB?) , all s and all a . This proves our contention, By (7.13),

m (A)' contains a non-abelian algebra, whenever 1 - is coloured, 1i.e.
wea we

coloured representations of 9 are necessarily reducible, Moreover, only the

Casimir operators of G may be in 9 , but not the colour charges,

One expects, formally, that for a suitable choice of [QE} and some
P ERREEL S the operators [exp ZniQ 1j -1 B8enerate a unitary representation of

7(G) , for arbitrary ¥ € P(ZB.) Since these operators then commute with
is Q2,
e -, for all a, s €R and '€ f( ]RB) , they are "colourless", i.e.

neutral, For this reason it is safe to assume that

{exp 2mi QE Y , for all ¥ ¢ p( 113) .

j= =1
Without loss of generality we now specialize to the case where Z(G) 1is generated
by a single element, i.e. m=1; (e.g. G =5U(n) , Z(G) =% ) . We abstract

the discussion presented above, by simply assuming that, for each bounded region

T € P(ZB;) , there exists an operator ZE € 9 with the following properties :

1) ZT generates a unitary representation of Z(G)

2) There exists a bounded double cone @7:3 5 such that

? c M~ 5N &() , (Gauss' law) . (7.14)
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3) 1t », and L, are disjoint subsets of p( R3)

-2, -2, . .1
zzluxz z}:1 %, (7.15)

2 -
Let Z(G) = fE:S.S s---:gn 1’ gn = e} .

In analogy to the abelian case (see Section 5) we may now introduce

cocycles [\t(gm) : ¥ e 113)} with the following properties : For all ¥ ¢ P(IRB)
a) yz(gm) €y, for all m=1,2,...,n .

-k

by (e = thg“) z; yz(gm-k) 2

s (7.16)
for all k =1,2,...,m-1 , and

c) Yz(g ) 1is independent of 3 , for all y 2 E , where ZY is some bounded
set 1in p(Rs) , and all m = 1,2, .

One then shows as in Section 5 that

v(g™) = n-lim yz(g )
It R

exists, and
vig™ = v(&)" = ",
for all m=1,2,...,n , i.e. y generates a unitary representation of Z(G) .

See Lemma 12,

Let b be a path in }{4 parametrized by a real variable s € [0,17,
with end points b(0), b(1l) . Given x e}ll" , let 2 be the intersection of
the light cone with vertex at x with the hyperplane {x = (xo,g) s %0 = 0} .
Let zi={1§:56):‘x},forsome A >1 . We define

h) A
- A A
cl(b,z) = (-1 if Tb(o) Z * Tp(1) ¢y (7.17)

0 , otherwise
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We now suppose that there are operators

T:b—= 1T(b) ,

with T(b) € 91 , for arbitrary smooth, bounded paths b , which satisfy the fol-

lowing "topological" commutation relations :

For some finite ) > 1 and arbitrary smooth, bounded paths b Cld4

]

* el(bs)-')
Zs, T™(b) Zs =y ™) . (7.18)

The operators TYb) are the correct generalizations of the charge transfer co-
cycles {m(a) : a 61{4] studied in Sections 5 and 6 to non-abelian theories,

The problem of proving confinement of "colour" (in particular quark confinement)

can now be formulated as follows :

Show that the topological commutation relations (7.18) do not admit any
solution T such that T 1is a translation cocycle, i.e. T(b) = T(b(1l), b(0))
only depends on the end points b(0) and b(l) of b .

One possible way of proving this would be to show that any solution T
of (7.18) also solves 't Hooft's "topological" commutation relations [207 (expres-
sing "electric-magnetic duality"), so that, for closed paths b , T(b) # 1 1if

b is not a point, so that T cannot be a translation cocycle.

Assuming, however, that (7.18) does have a solution T which is a

(quasi-local) translation cocycle then all results of the present paper can be
4

extended to this theory, in particular T(a) 1is non-local, for all a €M

]

etc... Assuming, in addition, that (7.12) and (7.13) hold one concludes that the

morphisms or obtained from cocycles T obeying (7.18) are necessarily reducible,

Hence T ¢ 11 (UT(U))" , (see Lemma 17); in particular, T cannot be of class C3,
W
(see Section 6.1). Applying moreover the results of Section 6.2 we arrive at the

following

Alternative :

Either the composition of o with its conjugate mgrphlsm ;; Is nol

»
neutral (In pavticular not irvreducible), (i.c. 'Y“ + O (YP ) see (6.24)),

or there must exist non-trivial, neutral (colourless) super-selection scctors




disjoint from the vacuum sector, with higher (i.e. para) statistics. It is tempting
to interpret these sectors as the baryons.
Hence, even if colour were not confined, the resulting super-selection

structure would presumably have rather unconventional features.

Compared to Wilson's confinement criterion r21], our confinement crite-
rion, as formulated above, has the advantage of being mathematically precise
and stating a necessary and sufficient condition for confinement, but the consi-
derable disadvantage of not being very constructive. Qur criterion strongly sug-
gests that a proof or disproof of colour confinement is a dynamical, rather than

a kinematical problem.
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Appendix 1

At the beginning of Section 4 we have introduced translation cocycles
which are quasi-local in norm and stated their main properties. Here those pro-
perties are proven.

We recall that a translation cocycle, T, is said to be quasi-local in
norm iff T(a)AT(a)* € 9, for all A€ 9% and a en“ , and

n-1lim T_a(r(b) 7a(A)T(b)*) = A
a-e
a+b-e

A * morphism, g , of ¥ 1is called quasi-local in norm iff ¢ is transportable,
]"o has the property that T‘O(a)AT‘o(a)* €%, for all A ¢9% and a €H4 , and

n-lim 4 (A) = A
ate o

We propose to prove

Theorem Al.
If T 1s quasi-local in norm then
GTSA) = n-1im T™(a)Ar(a)* exists ,
a3

for all A ¢ ¥, and defines a transportable # morphism of ¥ which is quasi-

local in norm, and Tb = T . Conversely, if g 18 quasi-local in norm then
T\
T° 1is quasi-local in norm, and Op =0g.
o .
(o

For the proof of this theorem we require

Lemma A2.

Let T be a translation cocycle.

Then the following are equivalent

(1) n-lim 1_ (N(b)7_(A)T(B)*) = A
a-ew
a+b-deo

(2) n-lim(T(a+b)Am(a+b)® - T(a)aT(a)¥* = 0
a4
a+b-e
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(3) n-1im T(a) AT(a)¥* exists and is independent of the space-like, asymptotic
a-o
direction in which a 4 o .

Proof :

Since T(a) 1is unitary, we have, using the cocycle identity (3.1),

|Ir(a+b)AT(a+b)* - T(a)AT(a)¥||

[rCa)[r_, (M(b) 7 (AIT(B)*) - A7 T(a)¥||

lIr_p (T(B) 7 (AIT(BI*) - All ,

from which the equivalence of (1) and (2) follows. Next, we note that (3)
clearly implies (2). Now we show the converse : If a =) , b = e , where e
is some fixed, space-like vector and ) and |3 are e.g. positive integers then
(2) implies that, for arbitrary A ¢ %, fT{XE)AT{lﬂ)*}1=1’2’3’... is a Cauchy

sequence in the operator norm, Thus
n-1im ™(a) AT(a)* exists for a = )e ,
a-beo

= 1,2,3,... . Applying (2) once more, we now see that the limit is independent

of the space-like asymptotic direction in which a 4 o .
]

Proof of Theorem Al :

If T 1is quasi-local in norm then
n-1lim T(a) AT(a)¥* exists ,
a-beo

see Lemma A2, (1) = (3) . Since for all a EH4 and arbitrary A € ¥,
r(a) A™(a)* e u ,

n-1im T(a) AT(a)¥* = cTﬁA) cu.
a-+bo

Next  (T(a) AT(a)#®)* = Ta)A¥r(a)¥* |, so that nr(A)* = gr(A*) . Moreover,

(~(a)AT(a)*) (T(a)BT(a)*) = T(a)ABT(a)* .
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By taking norm limits on both sides of this equation we obtain
A B) = A-B) .
UT( )OTI ) UT( )

Finally, o is obviously linear, and HGT(A)” = lhﬂ . Thus g_ is a * morphism
of U . '

Next

= T-ao e ‘ra(A)

n-1im ¢_8(I(b)7a(A)T(b)*)
b

n-lim T(a)* T(a+b)AT(a+b)*r(a) ,
bae
by the cocycle identity (3.1) ,

[}

T(a)*cTLA)T(a) ,1.e,. T =T1. (A.1)
°F

Finally, if a - o 1in some space-like, asymptotic direction e , let

b = je . Then

n-lim Ur,a(A) = n-1lim n-1im w_a(T(b)Ta(A)T(b)*)
a-be0 a-eo A
= n-lim T_a(rfb)Ta(A)T(b)*) = A,
a“e
a+be

by the definition of cocycles which are quasi-local in norms. Now we prove the

second part of Theorem Al : We assume that g 1s transportable and

n-lim ga(A) = A, for all A ¢ ¥ . Using the unitary of rc(a) , for all a eul* s

d-beo

we get
I (a)Ar (a)*- o(a) ]|
o o
= I‘TU(E)[A—T_aOGaTa(A)-I 'l"c(a)*n
= uA-T_aoceTa(A)H - HA“CA(A)" :
Thus n-lim r&(a)Arb(a)* = g(A) exists (A.2)

a-beo

and is independent of the space-like, asymptotic direction in which a 4 o .
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Applying Lemma A2, (3) » (1) we conclude that rb is quasi-local in norm, and

this and (A.2) show g = o5
o 0

Remark.
Let T be quasi-local in norm, and T¥a) ¢ cr(ﬂ) , for all a El‘la .

#*

Then op 1s a ™ automorphism,

Proof :

By (A.1) and the hypothesis,

o.

r,a(A) = r(a)¥ cr(A)P(a) € UI‘(u) .

By Theorem Al, Ops is quasi-local in norm. Hence

n-lim g_ (A) = A, for all A ¢ 9.
a-e T»a

Since OTﬁﬂ) is closed in norm, we conclude that orﬁﬂ) 2 ¥ . Thus is a

o
r
# automorphism, which concludes the proof.

This remark is relevant for the understanding of the class Cb of

cocycles introduced in Section 6.
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Appendix 2.

We propose to prove

Theorem A3

Let T be a quasi-local translation cocycle, such that
™a) = qr('["(a)*) , for some quasi-local translation cocycle T' with T'(a) € 9,
for all a 61(4 . Then GT is a * automorphism of % , and q;l = Opt -

Proof :

Since LN is locally normal (see Definition 3, Section 4), we have in

each locally normal representation of 9

= = ' #* 1
Op r",a(A) O‘]..(]" (a) or,(A)l" (a))

w-1im U],(I"(a)* T'(b)AT' (b)* 1'(a))
b

w-1im T(a)T(b)* ar(A)T‘(b)I"(a)* ’
b-o

since g(T'(a)* = 1(a) .

w-1lim ™a)g (A)T(a)*
boseo Tsb

T(a)AT(a)¥* , by Proposition 8, Section 4.

In particular, Ope Ot = identity, since T(0) = 1 . Thus o]_,(or.(l"(a))) = ™a) ,

so that using TY(a)* = UI_(I"'(a)*)* = UT,(T"(a)) we conclude that
ar(c J(r2@))r'(a)) = (a)r(a)® =1

Multiplying both sides of this equation from the left by Tb)¥* and from the
right by T(b) we obtain

op p o (M@ (@) = w* ) =1,

and by taking the limit b + «» (see Proposition 8)

01.|(T‘(8))T‘ (a) =1 (A.3)

£les r'(a) = gni(r(a)® .



- 66 -

The first part of the proof thus implies that also

o}

r° On = identity ,

hence so that O is a ¥ automorphism of 9 and, by (A.3) ,

-1 _
0'1-. O'-I-.l )
r(a) = n;}(r(a)*) .

Finally we wish to show that a cocycle TY{a) of class cj , 1.e.
m™a) € c,{_\(ﬂ) , for all a €H4 , has the form

T(a) = or(r'(a)*) ,
for some cocycle T'(a) ¢ ¥, for all a .

Proof :

Since, for each a , T(a) € G'I‘(m , there exist operators B: €9,
for all a , such that

*) .

T(a) = UT‘(Ba

By Proposition 8,

¥ = o *y o oo * #*
BY =w lim Ur,b(Ba) w-1im T(b) UT(Ba) ™b) .

b b
Next
o b (Baye) = T(O)* (ate) T(b)

T I‘(a)'r_a(T‘(c))T(b) , by the cocycle identity

[}

[D(6)* Ta)T(b) ] [T(B)* 1__(I(e)) T(b) 7

o p (B T(B)* 1 (o (B9)) T(b)

O p(By) T(B)¥ Ta)* or(T_a(B‘j’)) r(a)T(b)

#* * #*
o‘T,b(B:) T(b) UT(Ba T_o(B) BT(b)

a.

#*
r,b( -r_a(B::) Ba) .
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Thus, by taking the limit b 4 = , we obtain

L %y p#
Ba+c T—a(Bc) Ba ?

i.e. T(a) = B, satisfies the cocycle identity.

Remark, It is unknown whether T' 1is a quasi-local translation cocycle,
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