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Abstract : 

In this paper gauge theories are analyzed from the point of view of 

constructive quantum field theory. Diamagnetic inequalities for general lattice 

gauge theories are proven. They say that in a local field theory the ground 

state energy density rises when the fields (scalars, Dirac fields, etc.) are 

minimally coupled to an external gauge field. A mass generation mechanism is 

described. Abelian Higgs models (scalar QED) on the lattice are investigated 

in more detail : Strong diamagnetic inequalities ; infrared bounds; correlation 

inequalities yielding monotonicity in the space-time cutoff, in the mass of the 

photon and in the electric charge; gauge invariance and Osterwalder-Schrader 

positivity, etc. are shown to hold uniformly in the lattice spacing. For the two 

dimensional Higgs model on the lattice the θ-vacua are constructed, a first 

order phase transition at θ = Π and the confinement of fractionally charged 

quarks are described. Details and applications to the two dimensional Higgs model 

in the continuum limit appear in subsequent papers. 



- 2 -

1· Introduction : Summary of Results and Table of Contents 

1.1. The subject of this paper 

This is the first in a series of papers devoted to the construction 

and analysis of quantized gauge fields interacting with scalar and/or Dirac 

fields through minimal coupling. Many of our results concern lattice theories, 

but our main goal is the construction of the continuum Higgs model in two 

space-time dimensions. We propose to show thereby that present techniques of 

constructive quantum field theory combined with some new inequalities appear 

to suffice for the construction of super-renormalizable, abelian gauge theories 

in the continuum limit and to investigate some of their physical properties, 

e.g. the structure of the physical vacuum. 

So far only one very simple continuum gauge theory has been shown to 

exist : QED of massive (or massless) Fermions minimally coupled to massive 

photons in two space-time dimensions [1]. The limit as the mass of the photon 

tends to 0 , yielding the massive Schwinger (-Thirring) model, was analyzed 

in detail in [2], In comparison, the Higgs model poses much more challenging 

problems and has a more interesting structure. 

Apart from preparing the grounds for the construction of the continuum 

Higgs2 model we present a general analysis of lattice gauge theories, including 

non-abelian ones, emphasizing those properties which may be important for taking 

the lattice spacing to 0 and may survive the continuum limit. 

So far the mathematical analysis of gauge theories has proceeded along 

several different lines (with almost empty intersection) : 

(1) Analysis of the classical, pure Yang Mills equations in Minkowski space [3]. 

This is a hyperbolic problem. 
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(2) Analysis of the classical, pure Yang-Mills equations (in particular the 

self-dual equations) at imaginary time [4] , an elliptic problem. It is hoped 

that its solution may be useful for the Euclidean description of quantized 

Yang-Mills fields in terms of functional integrals. 

This line is evolving into a general analysis of the geometry of 

Yang-Mills fields at imaginary time [5]. 

(3) Analysis of quantized scalar and Dirac fields in an external c-number gauge 

field at imaginary time [ 6, 7, 8]. 

(4) Rigorous study of gauge field theories on the lattice [9, 10, 11]. 

Apart from these mathematical approaches towards understanding gauge 

fields direct attacks on the physics of gauge quantum field theories, in parti-

cular QCD models, have been made [12, 13, 14, 15]. 

Our point of view is that detailed knowledge of line (3) can perhaps 

be put together, eventually, with detailed knowledge of quantized, pure Yang-

Mills fields to achieve a clear insight into interesting gauge quantum field 

theories. This may serve as a partial motivation of our study : Our results 

concerning general lattice gauge theories, including non-abelian ones, belong 

to lines (3) and (4). 

We describe these results below, but some of the detailed statements 

and proofs appear in a subsequent article. 

The main issue of the present paper is to prove some results which 

appear to be useful for 

(5) Construction of super-renormalizable, abelian gauge field theories in the 

continuum - and infinite volume limit. 
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In a forthcoming paper this program is carried out for the abelian 

Higgs model in two dimensions. 

1.2 Summary of main results 

In the following we summarize some of our main results in a somewhat 

cavalier formulation. First we consider a general field theory on a simple, 

cubic lattice, describing scalar fields, Dirac fields, etc., but without gauge 

fields. We assume that the couplings (interactions) are such that the theory 

satisfies Osterwalder-Schrader positivity [16, 17] (on the lattice also called 

reflection positivity [18]) . The vacuum energy density of this theory is 

denoted ε(l) ; (the normalization being such that ε = 0 in the case of free 

fields). 

We propose to study the effect of coupling this theory to an arbitrary 

but fixed external lattice gauge field g = {g
b
}
bB

 (where fô are all directed 

nearest neighbor bonds of the lattice). The coupling is assumed to be the stan-

dard, gauge-invariant minimal one, [9, 10, 17]. 

The vacuum energy density of the theory in an external Yang-Mills field 

g is denoted ε(g) (the normalization being kept fixed). Our first main result 

is 

Theorem A (See Section 2) 

ε(g)  ε(1) 

(Universality of "diamagnetism" in local field theory). 
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Remarks : 

(1) This theorem says that coupling a field theory to an external Yang-Mills 

field tends to make it more stable. The result belongs to line (3) in the above 

classification. It extends earlier work of R. Schrader and R. Seiler [19] 

concerning the special case of the free, scalar field in an external Yang-Mills 

field. (An analogous result for spinor QED is due to Schwinger [20]). 

(2) We have proven other general results of the type of Theorem A (see Sections 2 

and 4), in particular chessboard estimates and infrared bounds for gauge fields 

(patterned on [18,21]). They are useful to analyze cluster properties (Theorem C) 

or the decay of the Wilson loop (Theorem E) in lattice gauge theories. 

The following result also represents line (3). 

Theorem B. 

(1) (See Section 3) Consider a free (Gaussian), scalar, multi-component field 

Φα , α = 1, ..., N , on the lattice in an external Yang-Mills field g . Denote 

its Euclidean propagator (two point function) by GEαβ (x, y; g) . Then, for an 

arbitrary sequence {zα }N
α=1
 of complex number 

(2) (Theorem 4.1, Section 4) Suppose the gauge group is U(l) . Let Φ(x) be 

a complex, scalar field with arbitrary, gauge-invariant self-couplings in an 

external electromagnetic field. Then the unnormalized Schwinger functions (in 

finite volume) are bounded above by the ones in zero external field. 
□ 

We remark that G
E
αβ

(x, y; g) is the kernel of (- Δ
g
 + m 2)-1, where Δ

g 

is the covariant, finite difference Laplacian. The inequality of Theorem B, (1) 
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and other inequalities, all concerning the covariant, finite difference Lapla-

cean, can be extended to general lattices. Their proofs are based on lattice 

Feynman-Kac formulas. As earlier shown by Schrader et al. [6] and Simon [7] 

(by arguments very different from ours) such inequalities also hold in the 

continuum limit ("Kato-inequalities"). Our methods are more direct than theirs. 

Theorem B, (2) and other results (e.g. upper bounds on normalized, 

gauge-invariant Schwinger functions in infinite volume, etc.) concerning the 

abelian case are proven in Sections 4-6. They are important for the construction 

of abelian Higgs models in the continuum limit. In particular, Theorems A and B 

are applied in our construction of the two dimensional, abelian continuum Higgs 

model. Previously, Schrader has applied the continuum version of Theorem B, (1) 

to study the models in an external Yang-Mills field [22], 

The following result belongs to line (4), (lattice gauge theories) : 

Consider a general abelian or non-abelian gauge theory on the simple cubic lattice 

describing two scalar fields, Φ and χ , interacting with a gauge field through 

minimal coupling. We assume that Φ and y transform under the same represen-

tation of the gauge group; Φ may have arbitrary, local gauge-invariant self-

interactions, the bare mass of χ is = 0 . We choose the gauge in which the 

"angular components" of Φ are eaten up by the gauge field. 

Theorem C. (See [23] , hereafter referred to as III) 

In dimension ν ≥ 3 , the two point-function of y has exponential 

clustering. 
□ 

This is interpreted as the dynamical generation of a mass for the 

y-field through minimal coupling. (The methods used to prove Theorem C can also 

be applied to estimate the radiative corrections to the physical mass of a 
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Dirac field Ψ (in place of χ ) coupled to the Higgs system, in the large 

bare mass limit). Results related to Theorem C have previously been proven in 

statistical mechanics models [24]. They are based on inequalities such as the 

ones of Theorem B, (1) (resp. the Feynman-Kac formulas of Section 3) and 

chessboard estimates. For a precise statement and proof of Theorem C we refer 

the reader to III. 

Next, we discuss abelian Higgs models on the lattice. Abelian gauge 

theories can be put onto the lattice in a gauge-invariant manner in many diffe-

rent ways. For example, we can always work with a (transverse) Gaussian expecta-

tion for the pure gauge field (free, electromagnetic field on the lattice) 

which is gauge-invariant. Furthermore, if the gauge field only couples to con-

served currents we can change the gauge freely and we can give the gauge field 

a positive bare mass. These observations are important in our construction of 

the continuum Higgs model in two space-time dimensions which is completed in 

[25] (hereafter referred to as II). 

Other lattice approximations for the abelian gauge field are the one 

proposed by Wilson [9] and the one used by Polyakov [9] (which differs 

from Wilson's one as the rotator model differs from its Villain approximation. 

Polyakov's approximation is hence forth called PV-approximation. It was previ-

ously used in [26, 27, 28]. See Section 4 for definitions). Most of the following 

results can be proven in many of these lattice approximations. In two dimensions 

we usually find the Gaussian lattice approximation for the pure gauge field 

and the PV-approximation for the action of the Higgs field in an electromagnetic 

field most attractive, in higher dimensions a class of PV-approximations (with 

different, but discrete frequency spectra). 

One general idea behind our analysis of abelian Higgs models on the 
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lattice is to use Fourier transformation ("duality transformation") in the 

electromagnetic field, see [26, 28, 29] and III. This converts the Higgs models 

into models familiar in classical statistical mechanics. (E.g., the two dimen-

sional abelian Higgs model is, by duality, isomorphic to a classical spin system 

with spins taking values in  and nearest neighbor coupling. This model is 

isomorphic to a Yukawa type lattice gas; see e.g. [28, 29]). The isomorphism 

described here permitsus to apply high - and low temperature expansions similar 

to the ones applied in Ising models which are considerably simpler than the 

ones developped for continuum field theories in [30, 31, 32 ]. 

As a consequence we obtain a domain in the coupling constant space for 

which the Higgs mechanism is known to occur which is much larger than the one 

found for general Higgs models in [17]. Since these expansion methods are 

quite standard we shall not present detailed proofs; but see III. 

Furthermore, for the abelian Higgs models (and their duals) we have 

found various new correlation inequalities of the type of Ginibre's inequalities 

[33] and [34, 35] which can be used to extend some expansion results beyond the 

region of convergence of the expansions. The most important application of 

these inequalities (see Section 6) is the following : They are stable under-

taking the continuum limit, whenever the latter exists. Therefore they permit 

us to construct the infinite volume limit for the continuum Higgs model in two 

dimensions and to prove that, in this limit, the Schwinger functions are 

Euclidean invariant. 

Rather than summarizing these results in the form of theorems we refer 

the reader to Section 6 and to II and III. 

We conclude this introduction with summarizing some results for the 

two dimensional, abelian Higgs model on the lattice which we find amusing. 
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(The reader should think of a mixed Gaussian-PV-lattice approximation but our 

results can also be formulated for other lattice approximations). 

Theorem D. (See III) 

The two dimensional, abelian lattice Higgs model has a family of physi-

cally different "equilibrium (= Euclidean vacuum) expectations", denoted 

< - >θ, which are labelled by an angle θ ϵ [0, 2π . 

Different values of the angle θ correspond to different boundary, 

conditions at ∞ , interpreted as classical charges at spatial ∞ . 

At θ = π, there is a first order phase transition accompanied by 

spontaneous breaking of parity, and there are at least two different pure equi-

librium expectations corresponding to a non-zero, universal electric field 

pointing to spatial + ∞ , resp. - ∞ , provided the self-interaction of the 

Higgs field increases sufficiently rapidly at infinity, and the electric charge 

is large enough. 
□ 

Remarks : This effect can also be seen in the dilute gas approximation [13, 14, 36] 

to the two dimensional, abelian Higgs model; see [28]. θ-vacua in gauge theories 

with instantons were discovered in [37, 38]. In the case of the Schwinger model 

with massive Fermions they were earlier found in [39] and further analyzed, more 

rigorously, in [2]. The situation described in Theorem D is closely related 

to the one met in the massive Schwinger model. 

We have checked that in a dilute gas approximation to a four dimensio-

nal SU(2) Higgs model (with total "symmetry breakdown" and without quarks), 

a theory which has θ-vacua, a phase transition and parity breaking occur at 

θ = π , too. (This is a problem in the statistical mechanics of classical dipole 
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gases [14] with short range interactions and complex, chemical potential). 

Finally we mention a result concerning the confinement of very heavy, 

fractionally charged quarks coupled to the two (or more) dimensional, abelian 

lattice Higgs model, (resp. the three dimensional U(l) lattice gauge theory 

in the Villain approximation [27, 28]). 

Let ε(θ) denote the vacuum energy density (in some fixed normaliza-

tion) of the two dimensional, abelian lattice Higgs model for a given value, 

θ , of the angle. 

Theorem E. (See III) 

Let q be a fraction of the electric charge of the Higgs scalar in the 

two dimensional lattice Higgs model. Then 

(1) 

where Γ is a closed loop, |Γ| the area enclosed by it, and is the 

abelian gauge field. 

For all q < 1 , ε (2πq)  ϵ (0) , and ϵ (2πq) < ε(0) if e.g. the 

electric charge is large enough. Then the Wilson loop (1) has area decay. 

Remarks : 

(1) The proof of Theorem E is not based on expansion methods. It follows from 

chessboard (see Section 2) and "thermodynamic" estimates, so that (1) is true 

in general. For values of θ different from 0, Wilson's confinement criterion 

does not seem to be applicable, due to the presence of non-zero charges at spa-

tial infinity. 
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Some new results concerning the Villain model and the pure U(l) 

lattice gauge theories in the PV-lattice approximation, similar in spirit to 

the ones reported in Theorem E are given elsewhere. See also [40, 27]. 

(2) The circle of results described here can be regarded as a partial confirma-

tion of Wilson's conjecture [41] : In a theory where the gauge field acquires 

a mass (in the model of Theorem E via a Higgs mechanism), the Fermions ("quarks") 

are confined, unless their charge can be shielded by the Higgs scalar, i.e. 

q = 1 .We are grateful to M. Lüscher for pointing out to us Wilson's conjecture. 

(3) In many circumstances the Wilson loop does not seem to be applicable as a 

criterion for confinement; (e.g. when the mass of the Fermions is small, see 

[42, 43], or for the two dimensional Higgs model with θ ≠ 0. See also III). 

It is therefore of interest to note that confinement of fractionally charged 

Fermions can also be verified in the dilute gas approximation to the two dimen-

sional, abelian Higgs model; see [36] and [28] (where no use of the Wilson 

loop is made). 

For results useful for the construction of the continuum Higgs model 

(e.g. correlation inequalities, etc.) see Sections 4-6. 

Notes : 

1. After completion of the manuscript of this paper we have received a Harvard 

Preprint, by R. Israel and C. Nappi, which contains a proof of Theorem E for the 

special case of a two dimensional Higgs model where the radial degrees of freedom 

of the scalar field are "frozen" ("Stückelberg model"), in some region of coupling 

constants. 

We thank R. Israel and C. Nappi for sending us their paper prior to public-

ation and correspondence. 



- 12 -

2. a) We have recently shown that, in some special cases, diamagnetic inequal-

ities of the type summarized in Theorem A have the following physical consequences : 

- The interactions between gauge field and matter fields tend to increase the 

physical mass of the gauge field. 

- The interactions between gauge field and matter fields produce an attractive, 

effective "gluon-gluon” interaction. 

In view of Wilson's conjecture [41] and recent speculations due to Mack [15] 

these diamagnetic effects appear to be of interest. 

So far, rigorous proofs are limited to abelian lattice gauge theories, but 

similar diamagnetic effects are expected in the non-abelian case, too, among them 

a generalized Meissner effect ! 

2. b) For a class of abelian lattice gauge theories (in particular Higgs models) 

in arbitrary dimension ν, one can show that the potential between two heavy charges of 

opposite sign, defined in terms of the Wilson loop, is never stronger than the 

(ν - 1) dimensional Coulomb potential. In particular, in ν  4 dimensions these 

models do not confine the charge (in the sense of the Wilson loop criterion). 

2. c) The main method developped in Section 4 has been extended to general, non 

abelian Higgs models. 

Detailed statements, proofs and further discussion will be given elsewhere. 

3. After completion of the manuscript of this paper we became aware of some papers 

by B. Simon (besides ref. [7], see also : B. Simon, Math. Z. 131, 361, (1973), 

Phys. Rev. Lett. 36, 1083, (1976), Ind. Univ. Math. J. 26, 1067, (1977)) which 

have played an important role in developping a mathematically rigorous theory of diam-

agnetism and are relevant for the material presented in Section 3. 
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Part 1 

2. Lattice Gauge Theories 

In this section we briefly review the general formalism of lattice 

gauge theories [10, 17] as proposed by Wilson [9], emphasizing some slightly 

novel points of view. We then prove the general diamagnetic inequalities 

(Theorem A), chessboard estimates and infrared bounds. In our presentation 

of the general formalism and some basic results we follow closely [17]. Some 

techniques were inspired by statistical mechanics [18], 

2.1. The general formalism of lattice gauge theories 

For convenience we only study gauge theories on the simple, cubic lattice 

ν
1/2 = 

ν+ (1/2, ..., 1/2).* 

a) First we define a multi-component, scalar field ("Higgs field") on the lattice 

Let VΦ be a finite dimensional, real or complex Hilbert space, and G a com-

pact Lie group, the gauge group. The space VΦ carries a unitary representation 

UΦ of G . (Generally = UΦ = 1  UΦ
C
 where C denotes "colour"). 

A field configuration on a bounded subset Λ of ν1/2 is a map 

Φ : Λ → VΦ (2.1) 

The class of field configurations on Λ can obviously be identified with 

 VΦ

x 
= VΦ

Λ
, 

x ϵ Λ 
(2.2) 

* At a later stage it might be advantageous to consider, instead of 

vertices and edges of more general (e.g. triangular) lattices, as this might do 

more justice to the geometry of gauge fields. Some of our results (see e.g. 

section 4) can be extended to this more general situation. 
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where VΦx is a copy of VΦ, for all x . 

The set of all bounded, continuous complex-valued functions on 

is denoted by UΦ
Λ

 , the "field algebra". Let dp be a regular Borel probability 

measure on VΦ which is invariant under the action UΦ of G on VΦ . For 

arbitrary F ϵ UΦΛ , we define its expectation by 

(2.3) 

where Φ = { Φ(x)}xϵΛ. 

b) Next, we introduce Dirac Fermi fields on the lattice, [17] : With each site 

x ϵ Λ we associate two copies, Vψ1
x
, Vψ2

x
, of a fixed, finite dimensional com-

plex Hilbert space . Furthermore, we are given a unitary representation 

of the gauge group G on Vψ. The action of G on is then given by 

Uψ, and on Vψ1
x
 by Uψ (the representation conjugate to Uψ) . 

The space Vψ is a tensor product 

(2.4) 

with S for "spin", F for "flavor and C for "colour". In the sequel we 

will often suppress flavour, (e.g. replace by ) . 

In accordance with (2.4) we assume to be of the form 

U
ψ
 = l

s  1F  U
ψ

C
· (2.5) 

On we have a representation of the Dirac-Clifford algebra 

Vi Vj + Vj
 Vi = 2δ

ij
, (2.6) 
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by hermitean matrices of determinant 1. (For ν = 4 one may choose e.g. the 

representation 

(2.7) 

where the σ's are the Pauli matrices. This representation has the required 

properties. Note that the v's are the Euclidean Dirac matrices). 

Let 

(2.8) 

and Λ(VψΛ ) the exterior algebra over Vψ
Λ

 . 

A field configuration is a choice of an orthonormal basis {ψk
αa
 (x)}
αa
, 

for each . (Here α labels spin and flavour, and a colour). In Λ(Vψ
Λ
) 

we may consider the polynomials in the basis vectors, i.e. the totally antisym-

metric tensors. We define a "field algebra" 

U
ψ

Λ

 = {all polynomials in the basis vectors} (2.9) 

Note that U
ψ
Λ
 thus consists of the functions from the field configurations 

into Λ(V
ψ

Λ
) , in analogy to our definition of for the Bose field Φ 

Following Berezin [44] we define a (by now well known) expectation 

on Uψ
Λ
 as the unique linear functional < - >ψ

0

 obeying 

(2.10) 

< P >ψ0 = 0 , for all polynomials P (2.11) 

of less than maximal degree. (In our notation the dependence of < - >ψ
0

 on Λ 
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is usually suppressed!). 

We now define the ("Euclidean field") algebra for the matter fields 

Φ and ψk by 

and (2.12) 

(2.13) 

as an expectation on U
ψ

Λ
 ; (M stands for "matter"). In the following U

ψ, e

Λ 

denotes the even subalgebra of Uψ
Λ
 and UM,e

Λ
 = UΦ

Λ
  Uψ,e

Λ
 . (Note that UΦ

Λ 

is normed in the obvious way, and U
ψ

Λ
 can be normed, using the Hilbert space 

structure of Λ(V
ψ
Λ
). So, UM

Λ
 is a normed algebra). 

c) Finally, we introduce gauge fields on the lattice, and here we deviate 

slightly from the standard presentation. Our definitions are somewhat more com-

plicated, but have some advantages which will become clear later. 

Given a site x ϵ Λ , Βx denotes the family of all directed bonds 

joining x to one of its nearest neighbors; (clearly, there are 2v directed 

bonds in B
x
 ). Elements of B

x
 are denoted by b ≡ b(x) ≡ < x, y > , with y 

the nearest neighbor of x joined to x by b. With each pair (x, b) , 

b ϵ Bx , we associate a copy Gx,b, of the gauge group G. Elements of Gx,b , 

are denoted wx,b; UGx,b is the algebra of all complex-valued, continuous 

functions on Gx,b. 

Given a bond < x, y > we define UG
<x,y> to be that subalgebra of 

consisting of all complex-valued, continuous functions on 
UGx, <x,y>  UGy, <y,x> 

G x G which are of the form 

(2.14) 
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We denote w
x, <x, y>

-1 · w
y, <y, x>

 by g
xy
, with the convention 

g
yx

 = g
-1
xy 

(2.15) 

in accordance with (2.14). The group element gxy is the value of the gauge 

field, g , on the bond < x,y > 

Fig 1 

We define 

and (2.16) 

(2.17) 

(These algebras are obviously normed). 

Next, we define an expectation < — >0 on 31 : 

(2.18) 

with 

Here dw , is the normalized Haar measure on G , . Since this 

measure is right and left invariant and of total mass 1, we obtain from (2.18) 

(2.19) 

with g = {g}xy <x, y> C ∆, B є uG and dg the normalized Haar measure 

on G . 
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We also introduce the algebras 

(2.20) 

and the expectation 

(2.21) 

Finally, we define local gauge transformations : These are maps h 

from Z1/2 V to the gauge group G, 
S 

h : x €z1/2 V → h € G , 1/2 x 
(2.22) 

with h
x
 ≠ 1 (the identity) only for finitely many x . Under a local gauge 

transformation the basic fields introduced so far transform as follows : 

ϕ(x) → Ф/h~ (x) = UФ(hx) Ф(x) 

ψ
1

(x) → ψ
1h

(x) = Uψ(h
x

) ψ
1

(x) 

ψ
2

(χ) → ψ
2h

(χ) = Uψ(h
x

) ψ
2

(χ) 

Wx,b → Wh/x,b = Wx,b hx/1 

(2.23) 

From the last equation in (2.23) we get 

(2.24) 

The following lemma is easy, but important. It is therefore stated ex-

plicitly, but the proof is left as an exercise to the reader. 
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Lemma 2.1 : 

(1) The expectations < - >0, < - >0/ψ, < - >G/0, and hence < - >0/M and 

< - >0, are invariant under local gauge transformations. 

(2) The expectation < - >ψ/0 is invariant under arbitrary transformations of 

vψ - see (2.8) - of determinant 1. In particular, it is invariant under the 

1 k 
transformation : ψk(x) → vj (k, x) ψk (x) - see (2.6), (2.7) - for all x in an 

j (κ, x) 

arbitrary subset of A . 

We now consider a subset ᴧ C Z1/v invariant under a reflection r at 
1/2 

some given hyperplane perpendicular to the j-direction, j Є {0,...,v-l} , 

which lies in between two lattice planes containing sites; e.g. r may be 

reflection at {x° = 0} . 

Let ᴧ+ denote the part of A lying "above", resp. "below" the given 

hyperplane. Clearly ᴧ = rᴧ+ . If A is a rectangle with opposite faces 

identified (i.e. A is wrapped on a torus, corresponding to periodic boundary 

conditions) then the reflections r are defined relative to a pair of hyper-

planes decomposing A into two subsets, ᴧ+ and A , of equal size. 

Given a reflection r , we introduce an anti-linear map (anti-morphism 

ft : 21ᴧ, → , defined by 

(a) θ[F(Ф(x))] = F($(rx)) (2.25) 

(with F the complex conjugate of F ) , 

(b) (2.26) 

where z is an arbitrary complex number and j is the direction perpendicular 

to the hyperplane of reflection; [17] . 
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(c) θ [A (W
x, b)] = A(wrx, rb) , (2.27) 

with rb = < rx, ry > , for b = < x, y > , 

Moreover, 

θ[B(gxy)] = B(grx ry
) , 

The map θ can be extended in a unique way to an anti-linear map from U
Λ
 to 

U
Λ
 satisfying 

θ[F . G] = θ[G] θ[F] , (2.28) 

for arbitrary F, G in UΛ. 

For completeness we recall the following result of [17] which plays 

an important role in the sequel. 

Lemma 2.2 : 

For arbitrary F1, ..., Fn in
 U

Λ+
, 

in particular, 

< F θ[F] >0  0 (2.29) 

for F  U
Λ+
. 

Proof : It is shown in Section II. 3 of [17] that 

i. e. 



- 21 -

for all i } (2.30) 

is a multiplicative cone. (This follows from the commutation - , resp. anti -

commutation properties of the F
j
's and equ. (2.28)). Hence we must only prove 

(2.29). It is not hard to see that it suffices to prove (2.29) for F the 

following monomial in ψ1, ψ2 : 

(2.31) 

with f  UΦΛ+  UGΛ+ ). We use (2.25) - (2.28) to compute θ[F]. Then we apply 

Lemma 2.1 , (2) to evaluate < Fθ[F] >
0

 . This gives 

Q.E.D. 

Remark : 

Let F and G be in U
Λ+
. Since < - >0 is linear, < Fθ[G] >0 is 

linear in the first and anti-linear in the second argument. Moreover 

< F θ[F]
0
 >  0, by (2.29). Thus < · θ[ · ] >0 is a positive semi-definite inner 

product on UΛ+ > and we have the Schwarz inequality 

(2.32) 

Since UM

Λ+
 can be identified with the subalgebra 1  UM

Λ+
 of U

Λ +

, inequality 

(2.32) gives 

(2.33) 

for arbitrary F and G in UM
Λ+
. 
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So far this set up us completely analogous to the one developped in 

[18, 21] for classical and quantum lattice systems in statistical mechanics. 

In order to describe interacting lattice gauge theories in a general way we 

could thus follow [18, 21] . A brief outline is given in Subsection 2.2. The mate-

rial given there may eventually be important for the study of the renormalization 

group ("block spin transformation"), applied to lattice gauge theories. The 

reader not interested in "abstract nonsense" should directly proceed to 2.3. 

2.2. Interaction potentials and interacting expectations 

Following [18, 45] we may introduce a "cone of reflection-negative poten-

tials" in one of the standard Banach spaces [46, 47] of potentials used in statis-

tical mechanics. A large space of "actions" for interacting lattice gauge theories 

may be needed for doing renormalization group (block spin) transformations and 

permits us to study long range interactions leading to interesting phenomena 

such as phase transitions, [18, 21]. (We note that, by the general results of 

[47], there do exist lattice gauge theories with first order phase transitions). 

We briefly recall the definition of potentials : A potential U is a map from 
bounded subsets, X, of the lattice ν1/2 to Uν1/2 satisfying 

(1) 
U : X → U

X
 ϵ Ue

X 

(2) U is translation invariant and reflection covariant (i.e. θU
X
 = UrX ) ; 

see [46, 18] . 

(3) Each UX is a polynomial in {ψk (x)}
xϵX
 with coefficients (anti-symmetric 

tensors) in U
G
X  U

Φ
X . A norm ║UX║ can be defined e.g. as the sum of the 

supremum norms of these coefficients. One requires e.g. 
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(4) U is invariant under local gauge transformations. 

(5) U is reflection-negative,see [18]. This condition guarantees that the 

resulting lattice gauge theory satisfies Osterwalder-Schrader (= reflection) 

positivity, or, in other words, has a selfadjoint, generalized transfer matrix. 

(6) U has a formal continuum limit (as the lattice spacing tends to 0 ) 

which is compatible with Euclidean invariance; in particular U is isotropic 

(i.e. satisfies "Nelson's symmetry"). 

Given a potential U satisfying (1) - (6) , an action for a 

lattice gauge theory in the region Λ is introduced by 

AΛ = Σ XΛ UX 

and an interacting expectation < - >AΛ by 

< - >A
Λ = < e-AΛ >-1 < -e-AΛ >0 (2.34) 

(It is shown in Proposition 2.7 below that < e-AΛ >0 > 0) . 

The definition (2.34) of interacting expectations can be generalized 

by introducing (reflection positive [18]) boundary conditions. One can then 

apply Dobrushin-Lanford-Ruelle equations [47] to characterize general interacting 

expectations; see also [47, 18] . 

The resulting lattice gauge theory is invariant under local gauge trans-

formations , satisfies reflection positivity (for reflection symmetric Λ ) , has 

at least one limit as Λ ↑ ν1/2 which is gauge - and translation invariant and 

reflection positive (use a sequence of hypercubes with periodic b.c.) and satis-

fies Nelson's symmetry. 
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All results discussed throughout Section 2 except Proposition 2.7, (2), 

are valid in the general context described here. The reader familiar with [18, 45] 

may verify this as an exercise. Here we do not give further details, but we em-

phasize that the concepts described in this section will appear quite natural in 

the light of Sections 2.3 and 2.4. 

2.3 Matter interacting with an external gauge field 

In this section we prove the diamagnetic inequality : Theorem A of 

Section 1.2. 

Given a bond < x, y > we define a Dirac matrix Yxy by 

Vxy " 

v. if x-y - e. 

-v. if x-y = -e. , 

(2.35) 

where e
j
 is the basis vector of in the positive j-direction, 

j = 0,...,ν-1 . 

We set 

Ψ
1
(x) · U

Ψ

(g
xy

) Y
xy
 Ψ2(y) 

(2.36) 

This combination is clearly gauge invariant, i.e. 

(2.37) 

It can be rewritten more symmetrically as 
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Uψ(w
x, <x, y>

) ψ1(x) · Uψ(w
y, <y, x>

) Yxy ψ2(y) (2.38) 

Remark : There is a wellknown problem with lattice Fermi fields [48, 41] : They 

describe too many degrees of freedom and therefore fail to reproduce the stan-

dard perturbation theory in the continuum limit. There are various ways to 

cure this disease (at the price of giving up chiral invariance even when the 

mass is 0), involving replacing Y
xy

 by some matrix Γxy such that 

(1) Vxy Γ*xy Vxy = Γxy 

(2) [Γ
xy

, U
ψ[G]] = 0 ; 

(1) ensures Osterwalder-Schrader positivity (see [17 ] and Section 2.4) and 

(2) gauge invariance. Γ
xy

 can be a linear combination of 1, Vxy , iV
5
 , 

[17] ; (for a different proposal see [41, 49]) . In the sequel all will remain 

unchanged if is replaced by some Γxy obeying (1) and (2) l 

Furthermore, we define 

Φ(x) ·U
Φ

(g
xy

) Φ(y) ≡ (Φ(x), U
Φ
(g
xy

) Φ(y)) 

= UΦ(Wx, <x, y>) Φ(x) ∙ UΦ(Wy, <y, x>) Φ(y) 

(2.39) 

where (· , ·) is the scalar product on VΦ . Again, this is clearly gauge 

invariant. 

An action is now defined in terms of the building blocks (2.37) - (2.39) 

(2.40) 
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where V is some G-invariant, scalar function of ψ1 (x) , ψ2 (x) and Φ(x) , 

i.e. V ϵ UM, e
{x}

 and 

V ( ψ^~(χ), ψ2~(χ), ÿkx)) = ν(ψΧ(χ), ψ
2
(χ), φ(χ) ) 

(independent of g) . For example, 

V(ψ1(x), ψ2(x), Φ(x)) = Ρ[(φ(χ),φ(χ)) ] 

+ \|/(χ) τψ
2
(χ) * $(χ) + Μψ

Χ
(χ) ψ

2
(χ) , 

(2.41) 

where τ = {τ
j
} are N = dim VΦ matrices of size Μ x Μ , with Μ = dim Vψk, 

satisfying 

(2.42) 

and 

P is a polynomial bounded from below, and M is the bare mass of the Fermions 

(More generally, M can be a mass matrix acting on flavour indices. It may 

also contain terms proportional to i
V5
 [17] without being incompatible with 

conditions (1) - (6) of Section 2.2 !). We define 

We define 

-A**(§,ty;g) M 
Z (g) = < e Λ > (2.43) 

The first main result we propose to prove is Theorem A of Section 1.2. 

Theorem 2.3 : 

Choose a bounded, rectangular region Λ  ν1/2 with opposite faces 

identified (torus) and sides of even length, and impose periodic boundary con-
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ditions on AΛ . Then 

|zΛ(g)|  zΛ(1) 

Remark : If the "vacuum energy density", ϵ
Λ

, is defined by 

the inequality of Theorem 2.3 says 

εΛ(g)  εΛ(1) , (2.44) 

which is Theorem A. 

Proof : We choose a pair of hyperplanes, π , lying in between lattice planes 

and cutting the rectangle Λ into two pieces, Λ+ and Λ- , of equal size. 

(Since the sides of Λ have even length, many such π'S exist. In fact, there 

are |Λ| /
 2
V different choices of π , where |Λ| is the number of sites in Λ). 

We label the sites bordering π by 1, ..., Μ, 1', ..., M' , where |M| = |M'| 

is an even integer, with |M| = # of sites in {1, ..., Μ} ; {1, ..., Μ}  Λ+ 

and {1', ..., M'}  Λ-. 

The basic idea of our proof is to find an upper bound for ZΛ (g) in 

terms of Z
Λ

's in which all the gauge fields, {gℓℓ'}ℓ=1, ...,M, crossing π 

are replaced by 1 (the unit element in G ). 

In accordance with the above decomnosition of Λ we write the action 

A(MG) as a sum of three terms, and . Here 

!±= fgxy]<*,y> c Λ+ 1 £π= Ι,.,.,Μ ; the terms 
are given 

by (2.40), with Λ replaced by Λ± , (and Φ±, ψ± suppressed in our notation). 
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In order to define AMΛ+, Λ- (gπ) we write each gxy as 

wx,<x,y> * Wy,<yjχ> ’ e'g* <£, > gjU' * ,<λ' Λ> = 1 , etc. 

We then set 

(2.45) 

(2.46) 

Recalling now the definition (2.25) - (2.28) of θ, (2.36) and (2.39) 

and regarding the w's as external variables, one verifies that 

(2.47) 

and using, in addition, (2.46) one sees that 

(2.48) 

with F
i

 (wπ
+
) and F. (wπ

r-
) ) in UM

Λ+
, and wπ

r-
 defined in the obvious way. 

Equation (2.48) is the basic ingredient. 

Next, we note that AMΛ+ and AMΛ+, Λ- are in Ue
Λ
 (i.e. even in 

ψ1 , ψ2 ) so that they all commute with each other. Thus 



- 29 -

If we expand the third exponential on the r.s. we see that ZΛ(g) is 

of the form 

for some in 

Now we apply Lemma 2.2, resp. (2.29) and (2.33) to conclude that 

for all α . Applying now the Schwarz inequality with respect to the sum Σ 

and resumming under the square roots we obtain 

(2.49) 
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Next, 

(2.50) 

since, by (2.36) and (2.38), 

etc... 

By the same reasoning, 

(2.51) 

so by (2.49) - (2.51) , 

(2.52) 

Note that on the r.s. of (2.52) all gauge fields on bonds crossing π 

have been replaced by 1 ! This is the basic inequality. We now iterate it : 

In both factors on the r.s. of (2.52) we choose a new pair of hyperplanes 

π' ≠ π and apply (2.52) again. As a result, all gauge fields on bonds crossing 
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π and π' are replaced by 1 . To replace all gauge fields by 1 we make all 

|Λ| /2
V
 possible choices of pairs of hyperplanes (perpendicular to all v di-

rections of the lattice). This yields 

(2.53) 

Q.E.D. 

Remarks : The theorem just proven is reminiscent of Theorem 2.3 of [18b]. The 

kind of book-keeping necessary to arrive at (2.53) can be replaced by an inductive 

argument; (see e.g. [18a]) · 

Theorem 2.3 extends to the more general framework considered in Sub-

section 2.2. Also note that we did not make use of gauge invariance in the proof 

so that the inequality can be extended to certain actions with gauge dependent 

terms. 

We believe that Theorem 2.3 is true for a more general class of boundary 

conditions and more general lattices. Indeed, for the abelian Higgs models we 

prove Theorem 2.3 under very general assumptions in Section 4. 

Theorem 2.3 has two noteworthy corollaries. 

Let 

Standard arguments of statistical mechanics show that this limit exists 

and is independent of b.c. Mimicking proofs of related inequalities in continuum 

field theories [50] based on infinitely many applications of the Schwarz inequa-

lities (2.49), (2.52) (and using the DLR equations to show that boundary condi-

tions have a negligible effect, see e.g. [45]) we obtain 
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Corollary 2.4 : 

For arbitrary, bounded regions Λ and "arbitrary" b.c. at ∂Λ 

next, let δA
x
 (ψ

k
(x), Φ(x) be a perturbation of the action A

M

Λ
 localized at 

site x , i.e. depending only on {ψ1(x), ψ2(x), Φ(x)} . Let 

and 

Define 

Z„(g;6A.) = <e Λ
 A ^ > Μ 

Corollary 2.5 : 

Proof : This follows again by applying the Schwarz inequalities (2.49), (2.52), 

corresponding to all possible choices of pairs of hyperplanes, as in Theorem 2.3, 

and keeping track of all terms produced in this way : See the proof of Theorem 2.2 

of [18a] . 
Q. E . D. 

Next, we briefly discuss gauge invariance. 

Definition : 

The subalgebra of UΛ invariant under local gauge transformations is 

denoted Uinv.

Λ

 , i.e. F(Φ, ψ; g) ϵ Uinv.
Λ

 if F ϵ UΛ
 and 

F($~ , ; g~) = F($,t;g) , (2.54) 

for arbitrary, local gauge transformations h ; see (2.22) - 2.24) . 
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For F ϵ U
Λ

 , let 

Z (w ;F(w)) = < F($,ψ;w) 

If F ϵ UΛ we write this as ZΛ(g; F(g)) . 

Theorem 2.6 : (Gauge-invariance) 

For 

for arbitrary local gauge transformations. 

The proof is a direct consequence of Lemma 2.1. 

Remarks : 

Theorem 2.6 is a strong restriction on the possible form of the functional 

ZΛ (g; F(g)) : It depends only on products of gxy ' s along closed loops. Further-

more, this theorem permits us to choose any gauge that is convenient to calculate 

(or estimate) Green's functions of gauge invariant observables. This is very help-

ful in the construction of continuum Higgs2 ; (see also Section 5). By expanding 

both sides of Theorem 2.6 in a parameter (e.g. the loop parameter ħ , or a 

coupling constant) one obtains Ward identities for the lattice theories. 

Finally, we remark that Z
Λ

(g) is real : Let g* = {g*xy }<x, y>  Λ, 

with g*xy = gyx. It is not hard to show, using arguments similar to Lemma 2.1 

(e.g. invariance of < - >ψ
0

 under ψk → ψ
3-k

) that 

(2.55) 
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2.4 Fully interacting lattice gauge theories. 

Following Wilson's proposal [9] one introduces an action for the gauge 

field as follows; see also [10, 17] : Choose a representation UVM of G . Four 

nearest neighbor sites xyzu in a plane, forming a unit square, are called a 

plaquette, abbreviated by P 

Fig. 2 

We define 

(2.56) 

where g
0
 is the bare Yang-Mills coupling constant. (From the point of view of 

general lattice theories one could omit taking the real part, but then a consis-

tent, universal orientation of the plaquettes must be chosen). This action can 

be written as 

(257) 

where C = U (w gw ) , 

and D = U (w
u
,<u,z> ux x,<x,y> ) 

A straighforward computation shows that 

and therefore 

(2.58) 
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Furthermore, if P is strictly above π 

(2.59) 

where rP is the reflection of P (note that the orientation of the plaquettes 

is unimportant when we take real parts, but (2.59) remains true in general). 

We now introduce the action for the gauge (Yang-Mills) field : 

(2.60) 

The total action of a lattice gauge theory in the region Λ is then 

given by 

(2.61) 

The interacting expectation of this theory is defined by 

< - > =<e " > < - e A
 > (2.62) 

For F = F(Φ, ψ; W)  UΛ , this can also be written as 

In order for these definitions to make sense we must check that 

< e-AΛ >
0
 is strictly positive. This is asserted in 

Proposition 2.7 : 

(1) Let Λ be a rectangular region with sides of length 2mj, j = 0, ..., v-l, 

and impose free or periodic boundary conditions. Then 

< e-AΛ >0  1 
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(2) For an arbitrary rectangle A with sides of even length and periodic 

boundary conditions, 

< e-AΛ >0  1. 

Although quite simple to prove, this proposition is a basic result for 

studying lattice gauge theories in the weak coupling region (where high tempera-

ture expansions, see [17] , do not converge). We prove it after the following 

Theorem 2.8. (Osterwalder-Schrader positivity) 

Choose a hyperplane π (resp. a pair of hyperplanes) and a bounded region 

(resp. rectangle) Λ reflection symmetric with respect to π , i.e. Λ = Λ+U Λ
-

with rΛ+ = Λ-. Let θ be given by (2.25) - (2.28) , and let F ϵ UΛ+. Then, 

for free (resp. periodic) boundary conditions, 

< F θ[F] >AΛ  0 . 

Proof : By (2.62) and Proposition 2.7 it suffices to show 

< F θ[F] e-AΛ >
0
  0 (2.63) 

By (2.47) and (2.59) 

θ[e-AΛ+] = e -AΛ-

Set Then (2.58) implies 

with This and (2.48) prove that 
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with G
i
 ϵ U

Λ+
, for all i . 

Morever AΛ+, AΛ- and AΛ+, Λ- all commente with each other, since 

they are even in ψ1, ψ2. Therefore 

(2.64) 

By expanding the exponential we see that the r.s. is of the form 

which is non-negative by Lemma 2.2. (This proof is almost identical to one given 

in Section 2.3 of [17] , except that we do not have to choose a special gauge). 

Q.E.D. 

Proof of Proposition 2.7: 

By (2.64), with F = 1 , 

since the terms for which mi > 0 , for some i , are all non-negative by Lemma 2.2. 

Hence 

<e ^ > . (2.65) 

Now we choose a hyperplane nr bisection A; : A = A U A, with 

rΛ1
+
 = Λ1

-
 , and we apply (2.65) again. This yields 
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etc... 

Since each side of Λ has length 2mj , mj = 1, 2, ..., we arrive after a large 

number, n, of applications of (2.65) at a one-site set Λn
+
. Clearly 

<e Λ+ > = < 1 > =1. 

This completes the proof of (1); (this proof extends to the general situation 

described in Section 2.2). 

Proof of (2) : Let Λ » [-L + § , L,- I] X · · · X [~L^_ j+ I , L^- §] . 

Note that only couples nearest neighbors. This and (2.63) permit 

us to define a positive semi-definite transfer matrix T = TL1, ..., Lν (the square 

of a hermitean matrix) such that 

< e Λ > = Tr(T °) . 

It follows from the definition of the trace and the concavity of xα , 

for 0 < α < 1 , that 

Trmmmmm 

if m0 is so large that 2m0  L0. 

Details of very similar arguments (applied to classical statistical 

mechanics) may be found in Section 4 of [51]. Applying the same inequality in the 

other v-1 directions ("Nelson's symmetry") we find 

where Λ is a rectangle with sides of length 2mj+1  2L
j

, j = 0, ..., v-1. 

Q.E.D. 



- 39 -

The vacuum energy density, ϵ , is defined as 

(2.66) 

Let (m)  ν1/2 denote a cube with sides of length m . 

Corollary 2.9 : 

For rectangular regions and periodic boundary condtions we have 

( 1 ) 

(2) If {Λn} is an arbitrary increasing sequence of rectangles with sides of 

even length then 

ϵ
Λn

 is increasing in Λ
n

 . 

(3) exists. 

Proof : This is Lemma 4.6 and Corollary 4.7 of [51]. 

(The proofs of (1) and (2) follow by refining the arguments used in the proof 

of Proposition 2.7, (2); and (3) follows from (1) and (2)). 

The final results of Section 2 are the chessboard estimate and infrared 

bounds. 

Given two sites, x and y, we define 

σ
j
 = (y

j
- x

j
) mod. 2. 

Let r
j
 denote reflection at the hyperplane {xj = 0} (lying in between two 

lattice planes of v
1/2

) , and let θ
j

 be given by (2.25) - (2.28) , j = 0, ..., v-l 

Let τxy he the translation from to y . 
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Given a function Fx of {Φ(x), ψ(x); wx, b, b ϵ B
x
} , i.e. Fx ϵ U{x}, 

and given a site y we define 

The following portraits this definition for v = 2 : 

Fig. 3 

Theorem 2.10 : (Chessboard estimate) 

Let Λ be a rectangle with sides of even length. Then, for periodic 

boundary conditions, 

Proof : Given Theorem 2.8, this follows directly from Theorem 2.2 of [18a] (as 

explained there in a somewhat different context). The reader can construct a proof 

by using the Schwarz inequality with respect to < ∙ θ[∙] >AΛ many times as in 

the proof of Theorem 2.3 and Corollaries 2.4 and 2.5. 

Q.E.D. 

Remark : Theorem 2.10 is a basic tool for the proof of Theorems C - E of 

Section 1.2; see III. 

We end this section with a brief sketch of infrared bounds for the non-

abelian lattice gauge theories. For this purpose we define a distorted action for 

the Yang-Mills field 
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with P = (x, y, z, u) as in Fig. 1 and (2.56), and hp = (hxy, hyz, hzu, hux) four 

(arbitrary) elements of G . We then set 

Theorem 2.11 : (infrared bounds) 

-A (h) -A 
< e < < g 

Proof : As in (2.57) - (2.58) one shows that, for π a plane bisecting P (see 

after (2.57)), 

with the obvious definition of CPij(h) . With this equation at hand, the proof is 

completed by repeating the arguments used in the proof of Theorem 2.8 and noting 

that 

because UYM(h)* (h)* UYM (h) = 1 . See also proof of Lemma 2.2. Details are very simi-

lar to the ones given in the proof of Theorems 2.3 and 4.7 of ref. [18b]. 

Q.E.D. 

Remarks : (1) "Infrared" upper bounds on certain expectations (two point functions) 

are obtained from Theorem 2.11 by setting where 
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τxy is an element of the Lie algebra of G , expanding the ℓ.s. of Theorem 2.11 

in g, dividing by ε2 and taking the limit ε  0 ; see [21]. In the non-abelian 

case these estimates only take a simple form in the formal continuum limit. This is 

not so in the abelian case for which these estimates are further discussed in Sec-
tion 4. 

(2) Further infrared bounds can be obtained by changing the parametrization of 

the gauge field or inserting h's at other places, e.g. 

AM(Φ, ψ; g) → ΑΜ(Φ, ψ; w-1hw) . 

Theorems 2.10 and 2.11 show that the choice of parametrization of the 

gauge field (here the w-"parameters") can be quite crucial, at least technically. 

We believe that this, in fact, might be one of the key problems to be resolved 

in quantizing Yang-Mills fields in the continuum. 
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3. Estimates on Green's Functions and Diamagnetic Inequality Revisited 

In this section we review, within the context of lattice theories, some 

important inequalities due to Schrader et al. [6 , 19] and [7]. They are impor-

tant in our construction of the continuum abelian Higgs model in two dimensions; 

see II. Therefore, and because our proofs, inspired by [24a], are very short and 

simple, we feel it worth reporting them here. The main results of this section 

are 

- "Kato-inequalities" [6, 7] for the Euclidean propagator of the free, scalar 

lattice field in a fixed,external gauge field, i.e. bounds on the Green's function 

of the covariant finite-difference Laplacean 

- the (Schrader-R. Seiler) special diamagnetic inequality for a free scalar field 

in an external gauge field, with general boundary conditions (and on general lat-

tices) . 

3.1. The basic method 

In this section the action is given by 

(3.1) 

It is quadratic in Φ . Thus the two point function (Euclidean propagator) 

is given by (3.2) 

where Δg is the finite difference, covariant Laplacean which we now define 

in terms of its "integral" kernel : 



- 44 -

Δ
g
 (x, y) = 

1 (U
Φ
(g

xy
))

C
, if x and y are nearest neighber 

- 2v 1  (1)C, if x = y 

0, otherwise 

(3.3) 

Clearly, the first factors on the r.s. of (3.3) are irrelevant in this 

section, and we ignore them henceforth. Defining A by 

Ag<x, y> = 

if x and y are nearest neighbors 

(3.4) 

0, otherwise 

we have 

(3.5) 

In order to derive estimates on the Green's function (3.2) we expand 

the r.h.s. of (3.5) in a Neumann series, (It is clear from (3.4) that, for 

m
0
 > 0 , this Neumann series converges absolutely, for all V  1 · If m0 = 0 

one gets convergence only in v  3 dimensions, whereas in ν= 1,2 dimensions 

there are the well known infrared divergences). 

Using (3.4) we observe that each term in the Neumann series for 

(1 - Ag)-1
αβ
 (x, y) can be labelled by a path, ω , starting at x and ending at y ; 

see also [24a]. Given a path ω , we introduce a path parameter s ϵ {0, 1, 2, ..., Ν(ω)} 

with ω
i
 ≡ ω(0) = x and ω

f
 ≡ ω(N(ω)) = y . Then 

(3.6) 
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Hence, for z ϵ VΦ, 

(3.7) 

where Δ ≡ Δ1 , for all z ϵ VΦ and all x, y in the lattice. This is Theorem B, 

(1) of the introduction. 

Next, we study the kernel of etΔg. Clearly 

(3.8) 

with Bg ≡ (2v + m20 )Ag (the off diagonal part of Δg ). Clearly the series on 

the r.h.s. of (3.8) converges absolutely, for all t . 

For each n the kernel of Bn
g

 , (Βn
g
)
αβ
 (x, y), can again be written as 

a sum over paths, ω , starting at x and ending at y . (Depending on the 

distance between x and y , the sum is empty for small n, and the corresponding 
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kernel is 0 ). The previous reasoning implies 

(z, (etΔg) (x, y)z)  (z, (et∆)(x, y)z) , (3.9) 

for all z ϵ VΦ and all x, y in the lattice. 

One is often interested in writing etΔg in terms of a Feynman-Kac 

formula and, moreover, exhibiting the dependence on the lattice spacing. 

The lattice spacing is given by an arbitrary, positive number a , and 

the covariant finite difference Laplacean, Δ
a
g
, on a lattice L

a
 (= av

1/2
) with 

lattice spacing a is related to Δag by 

Δag (x, y) = a
-2 Δ

g
(a-1x, a-1y) . 

From this, the definition of Bg , see (3.4) , and (3.8) we obtain 

(3.6') 

This Feynman-Kac formula clearly proves (3.9). It is, however, rather 

inconvenient for taking the limit a → 0 . Therefore we rewrite the r.s. of (3.6') 

in another form : When g = 1 , (3.6') shows that (etΔa )(x, y) is non-negative. 

Hence it is the transition function of a Markov process. Let Ξ = £x+ be 

the space of paths ξ(t) ϵ £a, t  0 , and let Prt
xy
 (dξ) denote the usual, 

Poisson-type path space measure of this process. Then we obtain from the r.s. of 

(3.6') 

(3.10) 
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with the convention that gxy = 1 if x = y . (The limit under the integral on 

the r.s. of (3.10) exists almost every where). 

A standard argument shows that Prt
xy (dξ) can be viewed as a measure 

on Ξ0 = (V)x +, and one can show that 

exists as a weak limit on C(Ξ0) , the space of continuous functions on . 

Thus we obtain from (3.10) the following formal expression for a = 0 : 

(3.10') 

where P indicates "path ordering" -see (3.10) - which can be omitted in the 

abelian case, and A is the vector potential, an element of the Lie algebra 

of UΦ(G). Clearly (3.10') yields a formal proof of (3.9) in the continuum limit 

a = 0 . In the abelian case (3.10') can be given a rigorous meaning, see e.g. 

[52], so that it proves (3.9) for a = 0 . (Alternately one can show that, in 

(3.9), both sides have a limit, as a → 0 , if one sets 

UΦ(gxy ) = e
ia A<x, y> (x+y/2), and Aμ(·) is uniformly bounded and C∞ on V . 

These results are of some importance in the proof of convergence of the lattice 

approximation for the abelian Higgs model in two space-time dimensions. See II). 

If we integrate (etΔg)αβ (x, y) with an arbitrary positive, finite mea-

sure dρ(t) supported on [0, ∞) we obtain further inequalities analogous to 

(3.9) . In particular, for dρ(t) = e-m2t0 dt, t  0 , we recover (3.7) from (3.9) 
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3.2 Some generalizations 

Consider a Euclidean propagator 

(3.11) 

(which comes from some long range action, quadratic in Φ , that still yields 

Osterwalder-Schrader positivity; see [18b]) . As an example we mention 

(3.12) 

with 0 < α  1 . Obviously, (3.11), (3.12) and (3.7) immediately show that 

(3.13) 

and by (3.7) and (3.12) this remains true for α > 1 in (3.12). Furthermore using 

(3.14) 

with A given by (3.4), we see by expanding the exponential in a double power 

series, using (3.14) and (3.8), that 

for all z ϵ VΦ , all x, y in the lattice, 0 < α  1 and m
0
  0 . (This 

inequality may be useful to analyze relativistic, spinless particles in an external 

vector potential; the case where α = 1/2 ) · 

3.3 The diamagnetic inequality of R. Schrader and R. Seiler 

For the action introduced in (3.1), ZΛ(g) (defined in (2.43)) is 

given by 
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(3.16) 

where β denotes a boundary condition at for which inequality (3.7) remains 

true. As an exercise, the reader may check that (3.7) is valid for the classical 

lattice boundary conditions, (Dirichlet,...). Thus 

g 1 > 

by (3.7). Hence 

ZΛ(g)  ZΛ(1), for all b.c. β (3.17) 

for which (3.7) is valid. This is the argument of Schrader-Seiler [19]. Clearly 

det(GE(·, ·; g))1/2  det(GE(·, ·; 1))1/2, (3.18) 

for any propagator GE satisfying (3.13); (same proof). This remark and (3.13) 

permits one to regularize the propagator (- Δg + m2
0
)-1 in such a way that the 

continuum limit of Z
Λ
(g) exists without destroying the diamagnetic inequality! 

In contrast to the proof of Theorem 2.3, the arguments leading to (3.17), (3.18) 

can be applied for a large class of boundary conditions and lattices. 

Note that, for free massive Fermions in an external gauge field with 

periodic b.c., Theorem 2.3 and identities analogous to the ones used here prove 

that the Fermionic Green's functions cannot obey an inequality of the form (3.13) 
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Finally we wish to present an alternate, somewhat more instructive 

proof of (3.17), yielding a stronger result. By (3.16), 

(and we impose e.g. Dirichlet boundary conditions at ∂Λ) . Now, use the loop 

expansion 

(3.19) 

which converges for m20 > 0. Using (3.4) we see that Σ∞ n=0 (1/n)Tr(A
n
g) is a 

sum of characters of products of group elements, gxy , along closed loops, 

with positive coefficients. Thus the maximum is taken when g = 11 which proves 

(3.17). In the abelian case, the above fact implies that the photon-photon 

interaction will be attractive, [35]! 

For abelian Higgs models without Dirac fieldsvery general diamagnetic 

inequalities are proven in Section 4. 

The results of this and the next section will be applied, in an essen-

tial way, in our construction of the continuum abelian Higgs model in two space-

time dimensions which is presented in paper II. 
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Part 2 

4. Abelian Higgs Models : Strong Diamagnetic Inequalities and Infrared Bounds 

In Part 2 we investigate the abelian Higgs models, resp. scalar QED, 

on the lattice emphasizing those results which will survive taking the continuum 

limit (whenever it exists) and, in fact, are important in our construction of 

the continuum Higgs model in two space-time dimensions. For this reason we shall 

display the dependence of all quantities on the lattice spacing explicitly. In 

the abelian case it is convenient to represent elements in the gauge group 

G = U(1) as exponentials of elements in the Lie algebra : 

gxy = eieaAxy, Axy ϵ , (4.1) 

where e is the electric charge and a > 0 is the lattice spacing. Let 

< x, y > be a nearest neighbor bond in the direction μ ϵ {0, 1, ..., v-1} with 

xμ < yμ and xα = yα , for α ≠ μ . We also use the notation 

Aμ(x) ≡ A<x, y> ≡ Axy. (4.2) 

Given a plaquette P = {x, y, z, u} , in the (μ, α) plane, (i.e. < x, y > points 

in the positive μ - and < y, z > in the positive α-dirention), 
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we define 

(4.3) 

A local gauge transformation is stil given by a map h : x → hx ϵ U(1) of 

compact support which we now write as h
x
 = eiχχ, χ

x
 ϵ . Then 

(4.4) 

with < x, y > pointing in the positive μ -direction and 

Thus gauge transformations can be defined within the Lie algebra : 

(4.5) 

Clearly Bp is gauge-invariant. 

In the abelian case the Higgs field is a complex scalar field 

Φ : x → Φ (x) ϵ  . (There are no Dirac fields throughout Part II). 

The usual action for the Higgs field in an electromagnetic field des-

cribed by A : < x, y > → Α
xy

 ϵ  is given by 

(4.6) 
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where is the covariant Laplacean introduced in Section 3 with Dirichlet 

or periodic boundary conditions at ∂Λ , V is some function of |Φ| bounded 

from below. The measure dp introduced in (2.5), Part I, is chosen to be a 

Gaussian measure 

(4.7) 

Some other actions are considered in III. In contradistinction to the non-

abelian case one has many natural, gauge-invariant options for defining the 

action of the gauge field, due to the gauge invariance of Bp . Here some 

prominent ones : 

(4.8) 

this corresponds precisely to definitions (2.56), (2.60). 

This action is periodic in Axy with period 2π/a, i.e. can be 

restricted to The expectation for a pure gauge field is given by 

(4.9) 

where dAxy is the Lebesgue measure on and is the obvious 

normalization factor. This example was proposed by Wilson [9]. It must be 

assumed that the lectric charge, e , is an integer, so that eieaAxy has 

period 2Π/ea , hence 2Π/a 

(4.10) 



- 54 -

Clearly AYM
P, a is periodic in A with period 2π/a. The function Fa is 

the kernel of exp 1/2 Δ with periodic boundary conditions at + ± π/a . (The 

action defined in (4.10) is useful to discuss the relations between the 

"Euclidean" and the Hamiltonian formulation of lattice gauge theories). The 

remaining definitions and constraints are as in (W) . This example was proposed 

by Polyakov [26] and has been used in [27, 28] and III. The relation between 

(W) and (P) is identical to the one between the classical rotator model and 

its Villain approximation, [29] 

(G) Finally one can also choose a quadratic action 

(4.11) 

Of course, the mass term on the r.s. of (4.11) breaks gauge invariance when 

m
A

 > 0 , but this does not cause problems in an abelian model, because A 

couples to a conserved current. In various situations we shall be able to pass 

to the limit mA = 0 , recovering gauge invariance. See papers II and III. In 

particular, Theorems D and E of the introduction are results for the case 

where mA = 0 ! Note that, for mA = 0 , (4.10) and (4.11) become equivalent. 

The measure for the pure gauge field is then defined as the Gaussian 

which is well defined, for mA > 0 . It has a unique limit (in the sense of 

convergence of moments or generating functionals), as Λ ↑ a
v

1/2 . This 

limiting Gaussian measure is denoted dμCmA (A). It has mean 0 and covariance 

C determined by 
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(4.12) 

Example (G) is the lattice approximation to be used to construct the Higgs 

models in the continnum limit; see Sections 5, 6 and paper II. Clearly, any 

value of the electric charge, e , is possible in example (G). 

4.1 Strong Diamagnetic Inequalities. 

In the proofs of the following results it is convenient to choose 

polar coordinates for the Higgs field Φ : 

Then 

(4.13) 

We propose to consider a general, non-translation invariant action 

(4.14) 

where {cxy} are arbitrary non-negative numbers. At each site x ϵ Λ we 

are given a finite measure dρx(rx) on + with the property that 

∫e
ar2

 dρ
x

(r) < ∞, 

for all α  0 and all x ϵ Λ . (This condition is somewhat stronger than 

necessary). 

Let ∂Λ be the set of all sites in with a nearest 

neighbor in Λ , and Λ = Λ U ∂Λ · 
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Given an arbitrary set Λ  a v

1/2 
, we set r~

Λ
 = {r

x : x ϵ Λ} 

and θ~Λ = {θχ : x ϵ Λ} . Also A = {Α
xy

 : < x, y >  a 
v
1/2
 }. 

Given a function G-
Λ
(r-

Λ
, θ-

Λ
, A) we let G-Λ(r-Λ, n-Λ, A) denote the partial 

Fourier transform of G-
Λ
 in the variables ; n-

Λ
 are the variables conj-

agate to θ-
Λ
. Furthermore, G-

Λ
(r-

Λ
, n-

Λ
, a) is the Fourier transforms of G-

Λ 
in θ-Λ and A , with a the variables conjugate to A 

If G-
Λ

 = G
∂Λ

(r
∂Λ
, θ

∂Λ
, A) only depends on r

∂Λ
, θ

∂Λ
 we say that 

G∂
Λ

 is a boundary condition. We define 

(4.15) 

We add some examples for the choice of dρ
x , cxy , G : 

with dr the Lebesque measure on + , h : x → hx a real-valued function 

on Λ, λ > 0 

c
xy = a

v-2 [1+fxy] with f : < x, y > → fxy a non-negative func-

tion on the bonds of Λ. 

where G∂Λ is a function imposing 

lattice Dirichlet - or Neumann - or periodic b.c. at ∂Λ . For these choices, 

Z
Λ
(c, G; A) represents unnormalized Green's functions of a Higgs field in an 

external vector potential (resp., for X = , the generating functional of 

gauge-invariant, unnormalized Green's functions), and the usual partition func-

tion of this theory is obtained by setting h = f = 0 and X =  
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Theorem 4.1 : 

(1) If |G7
 (r-

Λ
, n-

Λ
, A) |  G-

Λ
(r-

Λ

, n-
Λ
, 0) then | ZΛ( c, G; A)  ZΛ(c, G; 0) 

(strong diamagnetic inequality). 

(2) If G
Λ
 is non-negative then Z

Λ
(c, G; A) is of positive type in A ; 

in particular, (1) holds. 

Remark : It is easy to check that, in the above examples, the hypotheses of 

Theorem 4.1, (1) and (2) are satisfied. 

Proof : We apply a "duality transformation" : Let Fxy (rx ry; nxy ) be the 

Fourier transform of exp[c
xy

r
x
r
y
 cos(θ

x
y)] in the variable 0 = 0y-0x. 

By power series expansion of the exponential one verifies the well known fact 

that 

F (rx ry ; nxy ) > 0 (4.16) 

The Fourier transform of exp [c
xy

 r
x
 r
y cos (θxy+ eaAxy)] in θxy = θy - θx 

clearly given by 

Fxy (rx ry ; nxy ) e ieaA xy nxy (4.17) 

If <x,y> points in the positive μ-direction we write nu(x) for 

ηxy. Let eu be the unit vector in the positive u-direction. Then 

n(x) = Σ nu(x)e defines a vector field on the lattice. We define 

(4.18) 

Given a site x, the 2v + 1 functions exp [cxy rx ry cos(θy + eaAxy - θx), 

with y a nearest neighbor of x , and G-A(rA, θ
A
, A) depend on θx 

Representing them by their Fourier series we obtain a factor 

exp [ - iθx{div n) (x) - mx}] and we can do the θx -integral explicitly: 
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This shows that 

(4.19) 

Therefore, using (4.16) and the hypothesis of Theorem 4.1, (1) we find 

which completes the proof of (1). 

iean A 
To prove (2) we note that, by (4.16), Fxy (rx ry ; nxy )e iean

xy
 A

xy 

is of positive type in A
xy

 . Since, by hypothesis of (2), G
A
(r
A

, m
A

, a) is 

non-negative, C
A
(r

A

, m
A

, A) is of positive type in A , for all rA,mA 

Since a product of functions of positive type is again of positive type, (4.19) 

shows that ZA(c, G ; A) is of positive type in A . Finally, each function 

f(A) of positive type in A satisfies |f(A)| < f(0) , so that (2) implies (1) 

Q.E.D. 
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Remarks : 

(1) In the proof we have only used that exp(c
xy

 r
x
 r
y cos(θxy)) is a function 

of positive type in θ
xy

 . Therefore Theorem 4.1 remains true if we modify the 

M 
action AM/A(C ; Φ, A) in any way that satisfies this constraint. In particular, we 

may replace each factor exp(c
xy

 r
x
 r

y
 cos (θ

y
+eaA

xy
-0
x
)) in eAM/A by 

(4.20) 

thus obtaining Theorem 4.1 for the Higgs models in the Polyakov - Villain 

approximation which is considered in III. 

(2) Theorem 4.1 and its proof can obviously be extended to a large class 

of lattices. 

(3) We feel that the method of proof of Theorem 4.1 can be extended to 

non-abelian Higgs models without fermions, but this is not investigated here. 

Let duc(A) be a normalized Gaussian measure for the vector potential 

A with mean 0 and covariance C . We say that a sequence of co-

variances is increasing iff 0 < Cn < Cn+1 the sense of quadratic forms, 

for all n = 1,2,3,... . 

Corollary 4.2 : 

Under the hypotheses of Theorem 4.1, (2) 

I(e,C) ≡ ∫Z
A

(C ; G ; A) d
UC

(A) 

where e is the electric charge, is monotone decreasing in C . In particular 

I (e, C) is monotone decreasing in |e| , and for C = CmA+ gauge terms, with 

CmA given by (4.12) and a gauge-invariant GA , I (e,CmA) is monotone in-

creasing in the mass mA of the vector potential. 
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Remark : This result also holds in Wilson's and Polyakov's lattice theories ; 

i.e. if AYM/Aa is the action for the abelian gauge field introduced in 

(W), resp. (P) and e = 1 in AM/A. then 

is monotone decreasing in |g
0

| . This is an example of a general class of 

monotonicity results which follow from Theorem 4.1 , (2) and correlation in-

equalities of [35,53] 

Proof : 

Since Z(c,G;A) is of positive type in A (Theorem 4.1, (2)) it has 

the representation 

(4.21) 

where m is real-valued, and dα
A
 is a positive measure. But 

is monotone decreasing in C . This proves the first part of Corollary 4.2 . 

To prove the second part we set A' = eA which makes AM/A(c;Φ;A') independent 

of e, (provided normal ordering is independent of e, which is only pos-

sible if a > 0 !) See (4.14). 

2 
We note that A' has mean 0 and covariance e2/C . Hence 

I(e,C) = I(1,e2C) (4.22) 

2 
Clearly e2/C is monotone increasing in |e|. 
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Finally, we know from Theorem 2.6 (see also Scetion 5.1) that, for 

gauge-invariant, Z
A
(C,G ; A) is gauge-invariant. Therefore gauge terms in 

the covariance C can be chosen at convenience, i.e. I(e,C) is independent 

of gauge terms. To prove the last part we may therefore choose 

so that CmA is decreasing in m
A 

Q.E.D. 

Next, we recall a few well known properties of functions of positive 

type : Let F(x) , W(x) and H(x) be functions of positive type on RN. 

Then W(x) H(x) is of positive type, too, and 

|∫dN/x F(x+a) W(x) H(x)| 

= |∫dN/p e
ipa

 F(p)(W * H)(p)| 

<∫dN/p F(p) (W * H)(p) 

= ∫ dN/x F(x) W(x) H(x) . (4.23) 

Let 

where 

A U Λ , A = {Axy }<x, y> C A 

and is a positive semi-definite quadratic form. 

Let 

W(A) - exp[- 1/2 (A, Q A)] 

where Q is a positive semi-definite quadratic form ; W is a Gaussian which 

fixes a gauge. The "unitary gauge" for a massive vector field corresponds to 
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Another example is the "Feynman gauge" : 

Clearly F and W are of positive type in A , a well known property of 

Gaussians with mean 0, and 

H(A) = ZA(c,G;A) 

is of positive type, by Theorem 4.1, (2), for G
A
 > 0 . So we may apply in-

equality (4.23). 

Given a bond <x,y>, there are 2(v-1) plaquettes, 

P
1

, P'1,..., Pv-1, Ρ'v-1 with <x,y> as a common bond and such that P
i
 and 

P'
i
 are in the same plane, i = 1,..., v-l . For a function h : P → hp Є R 

on plaquettes in Λ, we define 

(δh)
 xy

= hp1-hp'1+...+hpv-1-hp'v-1. (4.24) 

Applying (4.23) we obtain 

|∫F(A+ δh) W(A) H(A) Π
<x,y>C A

 dA
xy
| 

<∫F(A) W(A) H(A) Π<x,y>CAdAxy (4.25) 

But 

(4.26) 
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Since B is gauge-invariant, (4.25) and (4.26) provide an a priori upper 

bound on the interacting expectation of exp + B(h) which is independent of 

the gauge chosen, i.e. holds in any gauge, and of the coupling constants of the 

theory ; (see also Section 5). 

The same method supplies an upper bound on the interacting expectation 

of 

(which of course does depend on the gauge chosen) : 

(4.27) 

Upon normalization the bound obtained from (4.27) is still independent of the 

coupling constants. We will not use it. 

Suppose now that Q is translation-invariant (up to a boundary con-

dition) and strictly positive. Then, for a suitable choice of C and of
 ZA ’ 

exists, 

(in the sense that the characteristic functionals and moments converge). We now 

get from (4.25) and (4.26). 

Theorem 4.3 : 
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Remarks : 

(1) Let with g a real-valued function on A· 

In the definition (4.14) of A we set cxy = a
v-2, and we choose the dis-

tribution 

(with dp independent of x ). Furthermore G
A
=G
∂A

 is a boundary condition 

with G∂A>0. Finally, < — >AA denotes the normalized , interacting 

expectation determined by du
C
(A) and the above choices for AM/A(c ; Φ ; A) and 

dp
x
 = dp,(g = 0) . Then Theorem 4.3 contains as a special case 

(4.28) 

In Section 6 we shall show that, for g > 0, 

<er2(g)>A
A
<<er2(g)>A

A
(e=0) 

(4.29) 

i.e. the expectation of exp r2(g) is bounded above by the one for 0 electric 

charge, provided Wick ordering can be chosen to be independent of e , 

(i.e. a > 0 ). 

(2) Clearly, Theorem 4.3 and (4.28) - (4.29) represent a stronger version 

of Theorem 2.11, restricted to the abelian case. (Of course, the proof of the 

latter applies to the present case -see Section 5 - but yields weaker bounds). 

(3) Obviously the methods used to prove Theorem 4.3 can be applied to the 

abelian gauge theories obtained from the actions (W) and (P), since those are 

also of the form - ℓog F(A), with F(A) of positive type. This observation 

yields a priori upper bounds for the expectations of a class of functions of 

B . Since we shall not use them, we leave it to the reader to write them 

down explicitly. 
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5. Gauge invariance, Osterwalder-Schrader positivity and gauge-variant Green's 

functions 

The set up in this section is the same as in Section 4 : We restrict our dis-

cussion to abelian models, although some of the general statements in 5.1 and 

5.3 extend to non-abelian models. The action AM/λ(c;Φ;A) is defined as in (4.14), 

and the gauge field action is one of the actions introduced in (4.8)-(4.11). 

5.1. Gauge-invariance 

Gauge transformations are defined by (4.4), (4.5), i.e. 

(5.1) 

Let {hu} be a family of bounded, strongly decreasing functions on the lattice 

with the property that 

h
Ϟ
 → δ0, as Ϟ → ∞ (5.2) 

For purposes that will become clear in II (convergence of the lattice approximation 

as a→O) we define a gauge field A with ultraviolet cutoff Ϟ by 
~ μ, Ϟ 

Au,Ϟ (x) = (hϞ * Au)(x) (5.3) 

with the aim of showing that gauge-invariance and Osterwalder-Schrader positivity 

can be discussed in the presence of certain ultraviolet cutoffs ; (see also Section 

6) . Furthermore we emphasize that all results of Section 4 are still valid when 

A is replaced by Au1 (The verification is trivial). 

Definitions (5.1) and (5.3) give 

(5.4) 
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By Lemma 2.1 and Theorem 2.6 we have 

(5.5) 

(gauge invariance) 

when is gauge-invariant. More generally, 

(5.6) 

with GX· the gauge-transformed of G 

We note that if G
A
 = G∂A is strictly localized near ∂A, for all Λ, 

and x is a local gauge transformation then Gx = G, as A↑aZv1/2.sJ*
/2
. As a 

result one shows that, unless gauge fixing terms are added to the action, the 

expectation of a lattice gauge theory is automatically gauge-invariant in the 

thermodynamic limit. See also Guerra et al. [11] and Section 2.2. Next, we discuss 

the consequences of (5.5) - (5.6) for fully interacting abelian lattice gauge 

theories in case (G) : see (4.11). Let ch (A) be a Gaussian measure with mean 

0 and covariance C and let dν(χ) be an arbitrary probability measure for a 

random field χ
x , x Є aZ

v
1/2 , with values in R. We define 

and (5.7) 

dμ(A) = duC(A)dv(x) 

Let B be the cur ℓ of A , defined in (4.3) which is gauge-invariant, i.e. 

B = B . Then we obtain from (5.4) and (5.5) 
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(5.8) 

These identities extend to the expectations determined by the actions (W) and 

(P) and (mutatis mutandis, Ϟ = ∞ ) to the non-abelian case. The Gaussian ex-

pectations for A are the ones of primary importance for II. See [17] for a 

discussion of the Faddeev-Popov procedure in non-abelian lattice theories. 

We now consider the case when dv is a Gaussian measure, dvF, of mean 

0 and covariance F > 0. Then dμ(Α) = dμ
C
(Α) , with 

C = C+∂F ∂*, (5.9) 

and 

(5.10) 

For g = δh , see (4.24) , A(δh) = B(h) = B(h) , and (g, δFδ*g) = 0 

Let Cu be the “unitary” covariance given by 

(5.11) 

see (G) . Let F be some quadratic form on ℓ2 (aZv
1/2

 ) such that 

CF ≡ Cu+∂F∂* is non-negative . (5.12) 
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By writing F as F1 - F2 , with F1>0 and F
2
>0, and applying 

(5.10) twice, for F1 in one and for F2 in the other direction - with suitable 

choices for C and C - we find 

Theorem 5.1 : If GA is gauge-invariant 

(5.13) 

in particular 

(5.14) 

Remarks : 

(1) (5.13) shows that, in a gauge which deviates from the “unitary” gauge by a 

change in the covariance of A , the “ghost degrees of freedom” of A have 

Gaussian distribution and decouple. 

(2) From (5.14) we find, using an interpolating covariance, Cs =sCu+(l-s)CF, 

for which (5.14) remains clearly true, by differentiation in s 

This follows also from the infinitesimal form of equation (5.5) : 

(5.15) 

This identity is a summed up version of the Ward identities. (It is not hard to 

see that the usual Ward identities, in the form valid on the lattice, can be recov-

ered from (5.15) to all orders in e2 ) 
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(3) Identity (5.8) and Theorem 5.1 permit us to choose a gauge for A adapted to 

the problem under consideration. In the construction of the limit a↓O , in two 

dimensions, and the existence proof of the continuum Higgs model in two space-time 

dimensions, see II, we choose the gauge with covariance C given, in momentum space, 

by 

(5.16) 

The Green's functions of all gauge-invariant fields computed in the gauge 

given by (5.16) are identical to the ones in the “unitary” gauge. This, of course, is 

shown by proving the convergence of the lattice approximation in the gauge determined 

by (5.16) (corresponding to a particular choice of F in (5.12)) and applying 

Theorem 5.1. The covariance (5.16) has good power counting properties and is there-

fore convenient to prove that the limit Ϟ → ∞ (removal of ultraviolet cutoff) 

exists in the continuum limit. It also permits us to discuss the limit m
A
↓o 

(using Corollary 4.2, for a > 0) which is painful when using the "unitary" covar-
iance . 

5.2 Osterwalder-Schrader positivity 

In accordance with our parametrization of the general gauge field g by an 

auxiliary field w in Section 2 of Part 1 we introduce a field a : 

(see Section 2, c) , 

(2.14)-(2.15)). This is a real-valued random field in terms of which the gauge Α
χy 

is given by 

(5.17) 

The gauge covariance properties of α are given by 
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(5.18) 

Note that (5.17)-(5.18) are consistent with (4.4)-(4.5). Let Π be a hyperplane 

(or a pair, in case of periodic boundary conditions) lying in between lattice planes 

E.g. Π = {x : x° = 0]. Let r denote reflection at Π , and 

θ*αx,<x,y>=arx,<rx,ry> 

θ[F(a)] = F(θ *α) 
(5.19) 

Lemma 5.2 : 

Let F(Axy) be a function of positive type in A . Then 

(1) θ[F(Axy)| = F(Arxry) = F(-Arxry), and 

(2) for y = rx, 

for some non-negative measure dφ(p) 

Proof : Since F is of positive type, it is of the form 

F(x) = ∫dφ(p)e
ipx , (5.20) 

for some measure dφ > 0. Hence 
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(2) follows from (5.19) and (5.20) 

Q.E.D. 

Let A be a bounded subset of aZ
v
1/2 symmetric with respect to Π, 

i.e. Λ = A+UΛ = A+UrA+· Let G
A(+)
 be the algebra of all bounded, cont-

inuous functions of Φ
(+)

 = {Φ(x)}
x
 Є A

(+)

 and α
(+)

 = {α
χ
, b}

χ
 Є A

(+)
, b Є B

x
. 

Let be the lattice vector perpendicular to π . Let the ultraviolet cutoff 

functions hϞ be of the form 

hϞ(x-x.e0)δ0,x,e) for all Ϟ, (5.21) 

i.e. there is no cutoff in the direction perpendicular to Π . Suppose the a 

priori measure dp
x
(r) , r

χ
= |Φ(x)|, is independent of x and assume that the 

boundary condition is reflection positive [18b, 45] in the sense that 

< Fθ[F]G
∂A

>
0
>0 0, for all F Є G

A+ 
(5.22) 

where < - >0 is the uncorrelated expectation defined as in (2.21). Set 

with AYM/Aa. defined as in (W) or (P) (see (4.8), (4.10), resp.) and AA. as in 

(4.14) with 

c = [cxy] = av-2 x constant 

Let 

(5.23) 

for arbitrary F Ç G
A
. 
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In case (G) (see (4.11)) we define 

(5.24) 

From Lemma 2.2 and Lemma 5.2 we now obtain, by the arguments already used in the 

proof of Theorem 2.8 , 

Theorem 5.3 : (Osterwalder-Schrader positivity). 

In all cases, (W), (P) and (G), and under the hypotheses stated above, 

< F θ[F] > AϞΛ, G∂Λ > 0 , for all F Є GΛ+. 

Remark : We emphasize that property (5.21) of the ultraviolet cutoffs hϞ is 

essential. (If it were violated Lemma 5.2 would not be applicable, and Theorem 5.3 

would be false !). 

Let GΛ/inv.(+) be the gauge-invariant subalgebra of GΛ(+) . Combining Theorem 

5.3 with (5.8), resp. Theorem 5.1 we obtain 

Corollary 5.4 : 

Under the same hypotheses as in Theorem 5.3, the inequality 

<F Θ[F]>AϞ Λ, G∂Λ>0 , for all F Є GAinv.+ 

holds in every gauge, for all Ϟ < ∞, for all a >0 
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Remarks : 

(1) If there are no Fermi fields in a theory and the action has only nearest 

neighbor couplings (of the general form studied in [18a]), in particular for the 

models studied here, Theorem 5.3 and Corollary 5.4 are also true for the case 

where π is a lattice plane. (A proof can be found in [18a], in a different context). 

In this case one can define time O-fields and a "Schrödinger representation". 

(Moreover, the lattice theory has the "Markov property", even in the thermodynamic 

limit). 

(2) The standard boundary conditions (periodic, half-Dirichlet,...) correspond 

to a G
∂Λ

 which is RP, in the sense of inequality (5.22). 

(3) Corollary 5.4 is a basic tool for proving Osterwalder-Schrader positivity 

of the gauge-invariant Euclidean Green's functions of the continuum Higgs model 

in two space-time dimensions (in the limits Ϟ → ∞, AR2). See II. 

5.3 Gauge-dependent Green's functions 

There seems to be some amount of confusion about gauge-variant Green's 

functions in lattice gauge theories and about the rôle of the "global symmetry 

group" associated with a gauge group of the second kind which might justify the 

following comments. 

Three facts, not too surprising in the light of the previous sections, 

are noteworth y ; (we do not claim to be original here) : 

(1) A gauge group of the second kind is not (or only accidentally) associated with 

a physical, global symmetry group : If one adopts the point of view that all the 

physics of a gauge theory can be extracted, in principle, from its gauge-invariant 
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Green’s functions, this fact is obvious. More significantly, in a gauge theory 

with matter fields (e.g. a Georgi-Glashow model) particles do, in general, not 

form G -multiplets (G is the gauge group). This remains true in theories with 

instantons : Such theories have in general particle multiplets which are not 

classified by the representations of G , (the instanton corrections to the mass 

spectrum in a model like the Georgi-Glashow model are small), and the instantons 

’’restore the symmetry " only in the sense that an unphysical (gauge-dependent) 

order parameter vanishes which was formerly believed to be non-zero. 

These statements can be tested rigorously, in principle , 

for lattice gauge theories. We shall further discuss them in III, at least in the 

abelian case. 

(2) If, in a lattice gauge theory, no gauge is fixed (or, equivalently, one inte-

grates over the group of all local gauge transformations) then, of course, the 

expectation of a gauge-dependent observable (in the thermodynamic limit, and for 

arbitrary b.c.) is equal to its average over the group of all local gauge trans-

formations, in particular the usual gauge-variant Green's functions vanish ; see 

also Guerra et aℓ. [11]. 

On the other hand we know from Section 5.1 (this remain true in the non-

abelian theories, [17]) that one can fix many different gauges, by adding terms 

to the action of the gauge field (recall the measure dv(x)). Once a gauge is 

fixed and the integration over the group of local gauge transformations has 

thereby been reduced, gauge-variant Green's functions do in general not vanish, 

at all! 

For example, let the action of the gauge field be defined as in (W) or 

(P) and choose a suitable gauge-fixing measure dv(x) - see Section 5.1 . Let 

< - >u, v, G
∂Λ
 denote the corresponding interacting expectation with boundary 
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condition G
∂Λ

 . Then, for suitable subsets X, Y of Λ with |x| = |y| , 

This is quite easy to check e.g. in the axial gauge obtained by the following 

gauge transformation, x : 

Xy-Xx
=eA
xy
’ with y=x+e

0 

Then one can use a cluster expansion to show that gauge -variant Green's functions 

of the type defined above are non-vanishing, for suitable coupling constants. 

It is of interest to consider non gauge-invariant boundary conditions 

G∂Λ. For example, G∂Λ may specify the field configuration Φ on ∂Λ as 

follows : 

Φ(χ) = Φ
0
, X Є ∂Λ, (5.25) 

where Φ0 is a positive number, 

After a gauge has been fixed it is a meaningful problem to analyse the unphysical(obviously 

gauge-dependent) order parameter < Φ(ο) >u, v, G
∂Λ
. In fact, it is most inter-

esting to analyze whether ℓim/Λ↑aZ1/2 < Φ(o) >u,v,G∂Λ, with G∂Λ as in (5.25), 

vanishes or not, (depending on the gauge chosen by v). 

Suppose, the a priori distribution dp(r) for the Higgs field is strongly 

peaked at r = Φ
0
>0, the boundary condition is as in (5.25) and the gauge 

field is abelian. In dimension v = 2 

(5.26) 

in any gauge [53], but, for three or more dimensions, we conjecture that 
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(5.27) 

for a suitable gauge v, (with indefinite metric). This conjecture is related to 

the fact that the three or more dimensional continuum abelian Higgs models have no 

instantons, whereas the two dimensional model has ; (the Nielsen-Olesen vortices). 

Using a cluster expansion (see [17], III) one can prove, on the other hand, 

that when dp is strongly peaked at r = 0 

(5.28) 

for "all" b.c. G∂Λ and in an arbitrary gauge. Hence, a proof of (5.27) might be 

suggestive of the existence of a Higgs → scalar Q.E.D. phase transition (at least 

in dimension 4 or more). 

(3) It should be pointed out that there is no contradiction between (5.26) and 

the fact that, in dimension 2 or more, the photon is massive and there is a standard 

Higgs mechanism in some region of the coupling constant space, [17|. Moreover, the 

fact that fractionally charged quarks are confined (see Theorem E, Section 1.2) 

does not at all imply that the photon is massless or that the usual Higgs mechanism 

breaks down! See also III and [28] 
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6. Some new correlation inequalities for abelian Higgs models. 

In this section we prove new correlation inequalities of the Ginibre 

type [33] which we apply to prove bounds, monotonicity properties and the 

existence of the thermodynamic limit for gauge-variant and - invariant Green's 

functions. With a view on our applications to the continuum Higgs model in 

two space-time dimensions presented in paper II we consider the action (G) for 

the vector potential and, as in Section 5, we impose an arbitrary ultraviolet 

cutoff on the gauge field in the matter action, defined in (4.6), (4.14). 

Our inequalities are a synthesis of the ones of Ginibre [33] and their 

extensions proven in [34, 35]. 

For the action (W) Guerra et al. [11] have pointed out that the Ginibre 

inequalities apply and yield the existence of the thermodynamic limit. For the 

action (P) correlation inequalities and applications to e.g. proving a conf-

inement bound for the U(l) theory are due to [53], based on [35]. 

In this paper we explain the basic method and prove the most important 

inequalities. Extensions and applications appear in papers II and III. 

6.1 Definitions and the main inequality 

We consider an arbitrary finite lattice A , e.g. a bounded subset 

of aZv1/2· We use polar coordinates for the Higgs field Φ : 

Φ(χ) = r
χ
e iθχ, θ

χ
 Є [-2Π,2Π), r

χ
 Є R+, 

for all x Є Λ· Note that the angles θχ vary over twice the circle with 

distribution given by the Lebesgue measure on [-2Π, 2Π) ; the distribution of 

rx is given by a finite measure dpx (rx), as in Section 4.1. We set 

r = {rx}x Є Λ, θ = {θx}x Є Λ 
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The matter action is still defined as in (4.14), i.e. 

(6.2) 

where <x,y> is an arbitrary pair of neighboring sites in A , 

cxy >0, Axy = ea Axy,
 Ϟ
 with Ϟ an arbitrary ultraviolet cutoff ; see 

Section 5, (5.3). 

Furthermore, dμC(Α) is an arbitrary Gaussian measure with mean 0 

and covariance C > 0 

The total expectation is given by 

<F>≡<F>AMΛ/G∂Λ 

(6.3) 

where is defined in (5.24). 

For convenience we choose 

G∂Λ = 1 (6.4) 

i.e. we impose Dirichlet boundary conditions on , but more general b.c. 

can be accomodated in Theorem 6.1, below ; e.g. periodic b.c. when A is 

a rectangular region in aZv1/2 

Let x be a collection of real variables. We define Cx to be the 

multiplicative, positive cone of all polynomials in x with positive coeffi-

cients. Let n = {nx}x

 Є Λ, m,... be functions on A with values in the in-

tegers, and f = {fxy}<x,y>C Λ, g,... real-valued functions on pairs of 

neighboring sites in A.We define 
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For F and G in G
Λ
 we set 

<F;G> = <FG>-<F><G> 

Our main inequality is 

Theorem 6.1 : 

For all P and Q in Cr and n, m, f and g as above, 

< P(r) cos (n.θ + f .Â) ; Q(r) cos (m.θ + g. A) > > 0 

Remark 

The trigonometric identity 

(6.5) 

with ej = + 1 , j = l, 2,..., k , yields obvious generalizations of the inequality 

in Theorem 6.1. 

6.2 Proof of Theorem 6.1 

Following [33] we introduce identically distributed duplicate variables 

Α, Α', r, r', Θ and θ' with expectations < — > and < — >' = < — >. The 

product expectation <—> Ø <—>' is henceforth also denoted <—> . We then 

define new random variables α,β,ο,λ,ε and δ as follows : 

Axy = αxy-βxy, (Axy = αxy - β
x y

) 

A'xy = αxy + βxy, (Â
xy

 = αxy + βxy) 

(6.6) 

and the linear maps α → α, β → β are identical to the one taking A 

to A and A' to A'. The transformations (6.6) are the composition of an 
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orthogonal transformation and a dilation by a factor 1/√2, so that 

duC(A)
 du

C

(A') = du
(1/2)C

(α) du
(1/2)C
(β) (6.7) 

Furthermore 

rx = px + λx , r'
x
 = px - λx, (6.8) 

so that 

px = 1/2(rx + r'x) > 0 (6.9) 

Finally 

θ
x
 = Єx - δx, θ'

x
 = Єx+ δx. (6.10) 

All functions (’’observables") in GΛ , G'
Λ
 are periodic in θx , resp. θ'x 

with period 2ττ . Therefore 

½χ [-2π, 2π)(θχ)χ [-2ττ, 2π)(θ'χ)dθχdθ'χ 

x[-π, π) (ε
x
)x[-ττ, ττ) (δ

x
)dЄ

x
dδ

x 

(6.11) 

as conditional expectations on G
Λ
 Φ G

Λ
 [33] (i.e. when restricted to functions 

of θχ,θ'χ with period 2π ). 

Fig. 4 
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We also set 

Xxy = Єx + axy + Єy, Ψxy = -δx + βxy + δy 

Next, we summarize some basic identities. 

rx ry = axy + bxy, where 

axy = px py + λx λy, bxy = px λy + py λx, (6.12) 

and 

r'x
 r'

y
 = axy - bxy (6.13) 

Using (6.12), (6.13), (6.8), (6.10) and the identity 

cos(α + β) = cos α cos β + sin α sin β 

we find 

rx ry cos(-θx+Âxy+θ
y) + r'x

r'
y cos(-θ'x+Â'xy+θ'y) 

= 2axy cos xxy cos ψ
xy

+2bxy sin xxy sin ψxy. 6.14) 

Hence 

(6.15) 

For later use we note 

rx ry cos(-θx+Âxy+0y) - r'x
r'

y cos(-θ'x+Â'xy+θ'
y) 

= 2bxy cos YXY cos ψxy + 2axy sin XXY sin ψxy (6.16) 
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Finally we have the general identities 

P(r) cos (n.θ+f.À) 

= P(p, λ)[cos(n. Є+ f.α) cos(n. δ+f.β) 

+ sin(n.Є+f.α) sin(n.δ+f.|3)], 

(6.17) 

with P Є C λ, and 
ρ, λ 

P(r) cos(n.θ + f.Â) - P(r') cos(n.θ' + f.Â') 

- Po(p,λ) cos(n. Є+f.α) cos(n.δ+f.β) 

+ pe(p, λ) sin(n.Є+f.α) sin(n.δ+f.β), 

(6.18) 

where Po Є Cp,λ is odd in λ , and Pe Є Cp, λ
 is even in λ ; (6.16) 

is an explicit special case of (6.18). Hence, using (6.7), (6.11) and (6.15) 

to rewrite <— > Φ <— >' and then applying (6.17), (6.18) and identity 

(6.5) we obtain 

< P(r) cos(n.θ+f.Â) ; Q(r) cos(n.θ+g.Â) > 

= < P(r) cos(n.θ+f.Â)[Q(r) cos(m.θ+g.Â) 

- Q(r') cos(m.A' - g. Â')] > 

6.19) 
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where we have written sin α as cos(α - Π /2), Z > 0 is the partition func-

tion, Pn', f',σ' € Cp,λ for all n',f',σ' (here we use that Cp,λ is mul-

tiplicative), and σ'j Є {0,1}, for all j 

Now we expand the exponentials. If we apply identity (6.5) to each 

term in this expansion and recall that cxy>0, for all <x,y>, we see, 

using the multiplicativity of Cp, λ again, that there results a sum of terms 

of the form 

(6.20) 

with P
n'', f'', σ'' Є C

p,λ
, for all n", f" and σ'' . Next we integrate (6.20) 

over a, Є and B,δ with the measure written out in (6.19). Clearly, this 

integration yields 

P = K
n'', f'', σ'' P

n'', f'', σ'' 

with Kn'', f'', σ'' >0, i.e. 

p Є C
p, λ 

(6.21) 

In order to determine the sign of the integral 

we note that the measure du
x
(px,λx) ≡ dpx (rx) dpx (r'x

) is invariant under the 

substitution 

rx → r'x, r'x → rx, i.e. 

px → px, λ
x

 →-λx, (see (6.8)), 
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for all x Є A . Therefore 

(6.22) 

where Pe is the part of P that is even in λx , for all x Є Λ . 

Clearly Pe Є Cp, λ. Hence 
e 

P
e
(p,λ) >0 (6.23) 

since ρ
χ
 > 0 , for all x Є Λ, (see (6.9)) 

But (6.19)-(6.23) complete the proof of Theorem 6.1 . 
Q.E.D. 

6.3 Further inequalities 

The method presented in the last section and variations can clearly 

be used to prove many more correlation inequalities ; see also [33, 54]. Here 

we report some important ones (without attempting an exhaustive list). Let 

Theorem 6.2 : 

For g >0, f real and h an arbitrary complex-valued function, 

(1) <e
r2

(g)eiA(f);|A(h)|
2 ><0 

(2) < er2(g)
e

iA(f);r
x

r
y
 cos(-θ+ Â

xy +θy)>>0 

(3) <e
-r2 (g)eA(f);|A(h)|2 > > 0 

(4) <e -r2(g)eA(f);r
x
 r
y
 cos(-Ax +Âxy

+θy)><0 
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Proof : Inequalities (1) and (2) are immediate consequences of Theorem 6.1 : 

r2(g) 
First, er2(g) is a limit of polynomials in Cr . Second, one can replace 

eiA(f) by cos(A(f)), since the expectation < — >, |A(h)|2 and 

rx ry cos(-Ax+Âxy+θ
y

) are invariant under the substitution 

A→-A, θ →-θ. Finally, for real h , 

A(h)2 = ℓim/ЄO Є1/2 (1-cos Є A(h)), (6.24) 

and for h = h1+ih2, 

|A(h)|
2
= A(h

1
)
2
+A(h

2
)
2
. <6.25) 

We also recall identity (6.16) which one applies in the proof of (2). 

The proofs of (3) and (4) are constructed by repeating the arguments 

given in the proof of Theorem 6.1, but exchanging the roles of r and r' 

(rx = px -λx,r'x = px+λx), θ and θ' , Â and Â’ and noticing, further-

more, that 

(a) e-r2(g)= e-p2 eV(g)
 e

(p.λ)(g) ,
 where

 e(p.λ) is a limit 

of polynomials in Cp,λ , 

and 

(b) the measure dux/g, defined by 

is invariant under px → px, λx → -λx. 

Q.E.D. 

Let < — >Λ=< — >≡<—>AM/Λ, G∂Λ when the boundary condition 

is given by (6.4), (i.e. Dirichlet b.c. for Φ, and A is a bounded 

subset of aZv
1/2

) . 
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The following corollary is an easy consequence of (6.2)-(6.4) and 

Theorem 6.2 ; see [55, 35] and II. 

Corollary 6.3 : 

(1) < er2(g)e iA(f)> is decreasing in the covariance C of A, 

<e-r2(g)eA(f)> is increasing in C 

(2) < er2(g) e iA(f)>Λ is increasing in Λ, <e -r2(g) e A(f)>Λ is 

decreasing in Λ 

Remarks : 

(1) follows from Theorem 6.2, (1) resp. (3), as explained in [35] (Proof of 

Corollary 3.2) ; (2) follows from Theorem 6.2, (2) resp. (4) ; see [35] 

(Section 4). 

As special cases of Corollary 6.3, (1) we have 

<er2(g)> (e)<< er2 (g)> (e = 0) 

< e-r2(g)> (e)><e-r2(g)>(e=0) 

(6.26) 

where e is the electric charge, g > 0 . The proof is obtained from 

Corollary 6.3 by the substitution of Section 4.1, (4.21)-(4.22). 

Among our applications of Corollary 6.3 in papers II and III are : 

(1) Construction of the thermodynamic limit, including the construction of 

Euclidean invariant, gauge-invariant Green's functions satisfying Osterwalder-

Schrader positivity for the continuum Higgs model in two space-time dimensions 

in the thermodynamic limit. (This is derived from Corollary 6.3 by the method 

of generating functionals. The inequalities of Corollary 6.3 are not affected 
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when r2 = |Φ|2 is Wick ordered)! 

(2) Construction of the limit mA↓ο, including a derivation of the correct 

O-mass (continuum limit) Feynman rules (possibly of interest in non-abelian 

two dimensional Yang-Mills theories, too). 

(3) Inequalities between correlations in the θ -vacua (see Theorem D, Section 

1.2), 0<θ< 2π, and correlations in the standard θ=0 vacuum. 

The material of Sections 3-6 plays a rather basic role in our further 

analyses of the abelian Higgs models, in particular in our construction of 

the continuum Higgs model in two space-time dimensions. 
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