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Abatract :

In this paper gauge theories are analyzed from the point of view of
conatructive guantum fleld theory, Diamagnetic Iinequalicies For general lactice
gauge theories are proven, They say that in a local field theory the ground
state energy density rises when the fields (scalars, Dirac flelds, etc.) are
minimally coupled to an external gauge field, A mass generation mechanism is
described, Abelian Higgs models (scalar QED) on the lattice are investigated
in more detall : Strong dliamagnetic inequalities; infrared bounds; correlation
inequalities ylelding monotonlelty in the space-time nutnff’[n the mass of the
photon and in the electriec charge; gauge Iovarlance and Osterwalder-Schrader
positiviey, etc, are shown to hold uniformsly In the lattice spacing. For the two
dimeénsional Higgs model on the lattice the @A-vacua are conatructed, a firasc
order phase transition at @ = 7w and the confinement of fracctlonally charged
quarks are described, Details and applicactions to the two dimeénsional Higgs model

in the continuum limit appear in subsequent papers.



1. Introduction : Summary of Results and Table of Contents

1.1, The subject of this paper

This 1s the flrst in a serles of papers devoted te the construction
and analysls of quantized gauge flelds interacting with scalar andf/or Dirac
fields through minimal coupling. Many of our results concern lattice theories,
but our main goal is the construction of the continuum Higgs model 1n two
space-timé dimenslons. We propose to show thereby that present techniques of
constructive quantum fleld theory comblined with some new inequalities appear
to suffice for the construction of super-renormalizable, abelian gauge theories
in the continuum limit and to investigate some of their physical properties,

e.g. the structure of the physical vacuum.

50 far only one very simple continuum gauge theory has been shown to
exist : QED of massive (or massless) Fermions minimally coupled to massive
photons in two space-time dimensions [1]. The limit as the mass of the photon
tends to 0 , ylelding the massive Schwinger (-Thirring) model, was analyzed
in detail in [2]. In comparison, the Higgs model poses much more challenging

problems and has a more interesting structure.

Apart from preparing the grounds for the construction of the continuum
Eiggaz model we present a general analysis of lattice gauge theorles, Llacluding
non-abelian oneés, emphasizing those properties which may be Important for taking

the lattice spacing to O and may survive the continuum 1imiE,

S0 far the mathematical analysis of gauge theories has proceeded along

several different lines (with almost empty LIntersection) :

{1) Analysis of the classical, pure Yang HMills equations in Minkowskl space [3].

This {8 a hyperbolic problem,



(2) Analysis of the classical, pure Yang-Mills equations (in particular the
self-dual equations) at Iimaginary time [4] , an elliptic problem. It is hoped
that its solution may be useful for the Euclidean description of quantized

Yang-Mills fields in terms of functional Integrals.

This line {8 evolving into a general analyais of the geometry of

Yang-Mills fields at imaginary time [5].

(3) Analysis of quantized scalar and Dirac flelds in an external c-number gauge

fleld at imaginary time [ &, 7, 8].

(4) Rigorous study of gauge field theories on the lactice [9,10,11].

Apart from these mathematical approaches towards understanding gauge

filelds direct attacks on the Eh::itn of gauge quantum fleld theories, in parti-

cular QCD models, have been made [12,13,14,157.

Our point of view is that detailed knowledge of line (3) can perhaps
be put together, eventually, with detailed knowledge of quantized, pure Yang-
Mills flelds to achieve a clear insight into interesting gauge quantum field
theories, This may serve as a partial motivation of our study : Our results
concerning general lattice gauge theories, includinmg non-abellan omes, belong

toe lines (3) and (4).

We describe these results below, but some of the detalled statements

and proofs appear in a subsequent article,

The maln issue of the present paper 1s to prove some results which

appear to be useful for

{5) Construction of super-renormalizable, abelian gauge field theories in the

continuum - and infinite volume 1imitc.



In a forthcoming paper this program is carried out for the abelian

Higgs model in twe dimensions,

1.2 Summary of main results

In the following we susmarize some of our mailn results in a somewhat
cavalier formulation. First we consider a general fleld theory on a simple,
cublec lattice, describing scalar fields, Dirac Ffields, etc., but without gauge
fields, We assume that the couplings (interactions) are such that the theory
satisfies Osterwalder-Schrader positcivicy [1ﬁ.rr] (on the lattice also called
reflection positivity [18]) . The vacuum energy density of this theory is
denoted ;{l} : (the normalization being such that ¢ =0 in the case of free

flelds).

We propose to study the effect of coupling this theory to an arbitrary
but fixed external lattice gauge fleld g = [Eh]bEﬂ. (where B are all directed
nearest neighbor bonds of the lattice). The coupling 1s assumed to be the stan-

dard, gauge-invariant minimal one, [9,10,177.

The vacuum energy denslity of the theory in an external Yang-Mills field
g 1is denoted £(g)} (the normalization being kept fixed). Our first main result

is
Theorem A (See Section 2)
elg) - ell)

(Universality of "diamagnetism" in local field theory),



Remarks ;

(1) This theorem says that coupling a fleld theory to an external Yang-Mills
fleld tends to make It more stable, The result belongs to line (3) in the above
classiflication, It extends earlier work of R. Schrader and R. Seller [19]
concerning the speclal caseé of the free, scalar fleld in an external Yang-Mills

field, (An analogous result for spinor QED is due to Schwinger [207).

(2) We have proven other general results of the type of Theorem A (see Sections 2
and &), in particular chessboard estimates and infrared bounds for gauge flelds
(patterned on [182[)). They are useful to analyze cluster properties (Theorem C)

or the decay of the Wilson loop (Theorem E) in lattice gauge theories,

The following result also represents line (3).

Theorem B.

(1) (See Section 3) Consider a free (Gaussian), scalar, multl-component field
‘l:l. sa=1,...;8 ; on the lattice in an external Yang-Mills field g . Denote

its Euclidean propagator (two point function) by Giﬁi:.y:g} . Then ,for an

arbltrary sequence I‘q_]:.-l of complex number

- E
| % Tz 0. txyig)| 5 £ 2 26 (x,yi1)
a8 B 'l:l-ﬂ ;8 e pap -
{2) (Theorem 4.1, Section 4) Suppose the gauge group is U({l) . Let g(x) be
a complex, scalar field with arbitrary, gauge-invariant self-couplings in an
external electromagnetic field, Then the unnormalized Schwinger functions (inm
finlte volume) are bounded above by the ones in zero external Field,
o
We remark that GE h:,:.r g]l is the kernel of (- ﬁg + m ]| , where ,53

i1 the covariant, finite differemce Laplacian. The inequality of Theorem B, l'.l‘.l



and other inequalities, all concerning the covariant, finlte difference Lapla-
cean, can be extended to general lattices. Thelr proofs are based on lattice
Feynman-Kac formulas, As earlier shown by Schrader et al. [6 ] and Simon [ 7 ]
{by arguments very different from ours) such Inequalities also hold in the

continuum limit ("Kato-inequalities"),. Our methods are more direct than theirs.

Theorem B, (2) and other results (e.g. upper bounds on normalized,

gauge-invariant Schwinger functions in infinite volume, etc.) concerning the

abelian case are proven in Sections 4-6. They are important for the construction
of abelian Higgs models in the continuum limit. In particular;, Theorems A and B
are applied in our construction of the two dimensional, abelian continuum Higgs
model, Previously, Schrader has applied the continuum version of Theorem B, (1)

to study the F{j.}2 models in an external Yang-Mills field [227.

The following result belongs to line (4), (lattice gauge theories) :
Consider a general abeliasn or non-abelian gauge theory on the simple cublc lattice
describing two scalar fields, § and v , interacting with a gauge field through
minimal coupling. We assume¢ that § and y cransform under the same represen-
tation of the gauge group:; #& may have arbitrary, local gauge-invariant self-
interactions, the bare mass of 4 18 =0 . We choose the gauge in which the

"angular components” of # are eaten up by the gauge field,

Theorem C, (S5ee [13] ., hereafrer referred to as TI1)

In dimension w 2 3 , the two polnt-function of y has exponential

clustering,
=]

This i{s interpreted as the dynamical generation of a mass for the
y=fleld through minimal coupling. (The methods used to prove Theorem C can also

be applied to estimate the radlative corrections to the physical mass of a



Dirac field ¥ (in place of + ) coupled to the Higgs system, In the large
bare mass limit). Results related to Theorem C have previously been proven in
statistical mechanics models [247. They are based on Inequalities such as the
ones of Theorem B, (1) (resp. the Feynman-Kac formulas of Section 3) and
chessboard estimates, For a precise statemeént and proof of Theorem C we refer

the reader to T11.

Mext, we discuss abellan Higgs models on the lattice.Abellan gauge
theories can be put onto the lattice in a gauge-invariant manner in many diffe-
rent ways. For example, we can always work with a (transverse) Gausslan expecta-
tion for the pure gauge fleld (free, electromagnetic fleld on the lattice)
which is gauge-invariant, Furthermore, Lf the gauge [ield only couples to con-
served currénts wé can change the gauge freely and we can give the gauge fleld
a positive bare mass, These observations are important In our constructlon of
the continuum Higgs model in two space-time dimensions which is completed in

[25] (hereafter referred to as II).

Other lattice approximations for the abelian gauge fleld are the one
proposed by Wilson [ 9] and the one used by Polyakov [ 97 (which differs
from Wilson's one as the rotator model differs from its Villain approximation.
Polyakov's approximation is hence forth called PV-approximation, It was previ-
ously used In [26,27,2875ee Sectlon 4 for definitions), Most of the following
results can be proven in many of these lattice approximations, In two dimensions
we usually find the Caussian lattlce approximation for the pure gauge field
and the PV-approximacion for the action of the Higgs field in an electromagnetic
field most attractive, In higher dimensions a class of PV-approximations (with

different, but discrete frequency spectral,

One peneral Lldea behind our analysis of abelian Higgs models on the



lattice is to use Fourler transformation ("duality transformation") in the
electromagnetic fleld, see [26,28,29 and III, This converts the Higgs models
into models familiar In classical statistical mechanics, (E.g., the two dimen-
sional abelian Higgs model is, by duality, i{somorphic to a classical spin system
with spins taking values In Z and nearest neighbor coupling. This model is
i1somorphic to a Yukawa type lattice gas; see e.g. [28,29]). The isomorphism
described here permitsus to apply high - and low temperature expansions similar
to the ones applied in Ising models which are considerably simpler than the

ones developped for contlinuum fleld theorles In Eﬂ,al,azl.

As a consequence we obtaln a domaln Im the coupling constant space for
which the Higgs mechanism is known to occur which is much larger than the one
found for general Higgs models in [177. Since these expansion methods are

quite standard we shall not present detailed proofs; but see I1I.

Furthermore, for the abellan Higgs models {and thelr duals) we have
found varlous new correlatlon Inequalitles of the type of Glnibre's inequalities
[33] and EH,]S] which can be used to exteénd some expansion results beyond the
reglon of convergence of the expansions. The most important application of
these inequalities (see Sectlon 6) is the following : They are stable under-
taking the continuum limit, whenever the latter exlsts. Therefore they permit
us to construct the Infinite volumeé limit for the continuum Higgs model Iin two
dimensions and to prove that, in this limit, the Schwinger functlons are

Euclidean inmvariant.

Rather than summarizing these results in the form of theorems we refer

the reader to Secclom 6 and co II and III.

We conclude this introduction with summarizing some results for the

two dipensional, abellan Higgs model on the lattlce which we find amusing.



(The reader should think of a mixed Gaussian-PV-lactice approximation but our

results can also be formulated for other lattice approximations),

Theorem D. (See III)

The two dimensional, abelian lattice Higgs model has a family of physi-
cally different "equilibrium (= Euclidean vacuum) expectations", denoted

< = »_ , which are labelled by an angle g € [0,2m) .

Dlfferent values of the angle @ correspond to different boundary,

conditions at = , inttrprtttd as classical charges at spatial = ,

At @ = , there is a first order phase transition accompanied by

spontaneous breaking of parity, and there are at least two different pure equi-

librium expectations corresponding to a non-zero, universal electric fleld
polnting to spatial += , resp. -= , provided the self-interaction of the
Higgs fileld increases sufficiently rapidly at infinity, and the electric charge
iz large enough,

]
Remarks : This effect can also be seen in the dilute gas approximation [lj.l&.}ﬁ]
to the two dimensional, abellan Higgs model; see [287. A-vacua in gauge theories
with instantons were discovered in [37,38 ]. In the case of the Schwinger model
with massive Fermions they were earlier found i{n [39] and further analyzed, more
rigorously, in [ 27]. The situation described in Theorem D is closely related

to the oné met In the massive Schwinger model,

We have checked that In & dilute gas approximaticn to a four dimensio-
nal SU(2) Higgs wodel (with total "symmetry breakdown" and without quarks),
a theory which has @-vacua, a phase transition and parlcty breaking occur at

@=m, too, (This 1is a problem in the statistical mechanics of classical dipole
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gasos [14] with short range interactions and complex, chemical potential).

Finally we mention a result concerning the confinement of wvery heavy,
fractionally charged quarks coupled to the two (or more) dimensional, abelian
lattice Higgs model, (resp. the three dimensional U(1l) lattice gauge theory

in the Villain approximatiom [@,28]).

Let e(n) denote the vacuum energy density (in some fixed normaliza-
tion) of the two dimensional, abelian lactice Higgs model for a given value,

A, of the angle.

Theorem E, (See 1I1)

et q be a fraction of the electric charge of the Higgs scalar inm the

two dimensional lattlice Higgs model. Then

1> g o Le(2m)-¢(0) 7| - P

< explfiq T "‘1
i
A=

<, J=€T

vhere T 1s a closed loop, |T| the area enclosed by it, and ﬁij is the

abelian gauge fleld,
For all q <1, e{2mq) < ¢(0) , and ¢(2mq) =< (0} If e.g. the

electric charge is large enough. Then the Wilson loop (1) has area decay.

Eemarks :

{1) The proof of Theorem E i3 not based on expansion methods. It follows from
chessboard (see Section 2) and "thermodynamic" estimates, so that (1) is true
in general, For values of @ different from O , Wilson's confinement ericerion

doés nol seem to be applicable, due to the presence of non-zero charges at spa-

tial Infinity,
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Some new results concerning the Villain model and the pure U(1)
latcice gauge theories in the PV-lattice approximation, similar in spirit to

the ones reported in Theorem E are given elsewhere. See also [40,27].

(2) The circle of results described here can be regarded as a partial confirma-
tion of Wilson's conjecture [417 : In a theory where the gauge field acquires

a mass (in the model of Theorem E via a Higgs mechanism), the Fermions ("quarks")
are confined, unless thelr charge can be shielded by the Higgs scalar, {.e,

q=1 . We are grateful to M, Luscher for polnting out to us Wilson's conjecture,

(3) In many circumstances the Wilson loop does not seem to be applicable as a
eriterion for confinesent; (e.g. when the mass of the Fermions is small, see
[42,437, or for the two dimensional Higgs model with @ # O . See also III).
It i{s therefore of incerest to note that confinemeént of fractionally charged
Fermions can also be verified In the dilute gas approximation to the twe dimen-
sional, abelian Higgs model; see [367 and [287] (where no use of the Wilson

loop 15 made),

For results useful for the constructlon of the conmtinuum Higgs model

(e.g, correlation inequalicies, etc,) see Sections &-6,

Hotes

1. After completion of the manuscript of this paper we have received a Harvard
Preprint, by R. Israel and C. Nappi, which contains a proof of Theorem E for the
special case of a two dimensional Higgs wodel where the radial degrees of freedom
of the scalar field are “"frozen" ("StUckelberg model"), in some region of coupling

constants,

We thank R, Israel and C. Mappi for sending us their paper prior to public-

ation and correspondence.
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2. a) We have recently shown that, in some special cases, diamagnetic inequal-
ities of the type summarized in Theorem A have the following physical consequences :
- The interactions between gauge field and matter fieldstend to increase the

physical mass of the gauge field.
- The interactions between gauge field and matter fields produce an attractiwve,
effective "gluon-gluon" Interactiom.

In view of Wilson's conjecture [41] and recent speculations due to Mack [15]

these diamagnetic effects appear to be of interest.

So far, rigorous proofs are limited to abelian lattice gauge theories, but
similar diamagnectic effects are expected In the non-abelian case, too, among them
a generalized Meissner effect !

2. b) For a class of sbelian lattice gauge theories (in particular Higgs models)
in arbitrary dimension v, one can show that the potential betwean two heavy charges of
opposite sign, defined in terms of the Wilson loop, ils never stronger than the

(v = 1) dimensional Coulomb potential. In particular, in w = 4 dimensions these
models do not confine the charge (in the sense of the Wilson loop criterion).

2. ¢) The main method developped in Section & has been axtended to general, non
abelian Higgs models.

Dectailed statements, proofs and further discussion will be given elsewhere.

3. After completion of the manuscript of this paper we became aware of some papers
by B, Simon (besides ref. [7], see also : B. Simon, Math. Z. 131, 361, (1973),
Phys. Rev. Lett. 36, 1083, (1976), Ind. Univ. Math. J. 26, 1067, (1977)) which

have played an important role in developping a mlthutn#lll}r rigorous theory of diam-
agnetism and are relevant for the material presented in Section 3.
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Part 1

2. Lattice GuuaE_Thmnriu:

In this section we briefly review the general formaliem of lattice
gauge theories [10,177] as proposed by Wilson [ 9], emphasizing some slightly
novel points of view. We then prove the general diamagnetic inequalities
(Theorem A), chessboard estimates and Infrared bounds, In our presentation
of the general formalism and some basic results we follow closely [17]. Some

techniques were inspired by statistical mechanics [18].

2.1, The general formalism of lattice gauge theories

For convenience we only study gauge theories on the simple, cublc lattice

E;-z”+{§“,”§L'

a) First we define a multi-component, scalar fleld ("Higge field") on the lattice :

Lek v' be a finite dimensional, real or complex Hilbert space, and G a com-

pact Lie group, the gauge group. The space v'

uI of G . (Generally u"'- 1 @ug

carries a unitary representation

where C denotes "colour™).

A field configuration on a bounded subset A of E; is a map
p: A=v? (2.1)
The class of fileld configurations on J can obviously be identified with

$ 8
® Vi=yrl , (2.2)
xep = A

* At a later stage it might be advantageous to conslder, instead of Ez # Ethe
vertices and edges of more general (e.g. triangular) lattices, as this might do
more justice to the geometry of gauge flelds. Some of our results (see e.g.

section &) can be extended to this more genmeral situation,
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wvhere U: is a copy of V*, for all =x ,

The set of all bounded, continuous complex-valued Ffunctions on '.I'!

A
is denoted by H: , the "fileld algebra™. Let dp be a regular Borel probability
mEASUre on "l" vhich 1s invariant under the action Ui of G on T.,.i . For
arbitrary F € iI:l » we define its expectation by
fF}: -Jn dpl 8({x)) PEE ' (2.3)

xEN

where § = [H“”:E.ﬁ .

b} Mext, we Introduce Dirac Ferml flelds on the lattice, [17] : With each site
1 2
v, vt

. s 0f a fixed, finite dimensional com-
] X

®x £ A we assoclate two coples,

plex Hilbert space vY

¥

. Furthermore, we are given a unitary representation

2
U" of the gauge group G on V° . The action of G om 'l.'::I 1s then given by

1 et
T.ri , and on 1.’: by t.li (the representation conjugate to l.T*} .
The space v? is a tensor product
| L v
Vi=veevVo eV, . (2,4)

with 5§ for "spin"™, F for "flavor and € for "colour", In the sequel we

will often suppress flavour, (e.g. replace '.I'; by E) .
In accordance with (2.4) we assume IJ. te be of the form

V. ¥
U lsﬂ lrﬂl IJE : (2.5)

Om v; we have a representation of the Dirac-Clifford algebra

v:_"l'! +* "I"-:"Fi - EﬁiJ [ {2-5}
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by hermitean matrices of determinant 1. (For y = & one may choose e¢.g. the

representation

0 0
- -(g“ ], %~ :( ﬂ"). k= 1,2,3, (2.7)
5 0 -q, -6, ©

where the g's are the Paull matrices, This representation has the required
properties, Note that the +'s are the Euclidean Dirac matrices),
Let
1

2
¥ £k ' R
uﬂ % {v! v I} ; {2.8)

and ﬂgv:? the exterior algebra over vh

A field configuration {8 a cholce of an orthonormal basis [dinlu}}n‘ ,
k
for each u: . (Here g labels spin and flavour, and a colour). In AEUI]
ve may consider the polynomials in the basis vectors, 1.e, the totally antisym-

metric tensors. We define a "fleld algebra"

w: = [all polynomlials in the basis vectors]) (2.9)

Hote that H. thus conslists of the functlons from the fleld eomfigurations

A
into hEU:] s In analogy to our definltlon of ﬂ; for the Bose field &

i

Following Berezin [44] we define a (by now well known) expectation
L)

on ﬂ: as the unique linear functional < — > obeying
1 2 ¥
< A (g (x) A g (x)>" =1, and {2.10)
aa aa a
s L
xeh
<P ﬁ: =0 , for all polynomials P (z.11)

of less than maximal degree. (In our notation the dependence of < — ?: on A



R, | e

is usually suppressed!).

We now define the ("Euclidean fleld") algebra for the mactter fields
k

] and 1 by
i u¥
.1: 'u:m: ', and (2.12)
a:-:-:--:-}:a{-}: (2.13)

as an expectation on ﬂ: i (H stands for "matter"), In the following HI"

denoces the even subalgebra of !'.1 and ﬂ:'a - Il;-ﬂ H:" . (Mote that 'H:
is normed in the obvious way, and ‘1 can be normed, using the Hilbert space
structure of ﬂ(“:} . 8o, .: is a normed algebra),

c¢) Finally, we introduce gauge fields on the lattice, and here we deviate

slightly from the standard presentatlion. Dur definitions are somevhat more com-

plicated, but have somé advantages which will become clear later,

Given a site x £ } , ﬂ! denotes the family of all directed bonds
joining = to one of its nearest neighbors; {clearly, there are 2y directed
bonds In Eh )., Elements of H! are denoted by b = bix) m € x,v > , with ¥
the nearest neighbor of x joined to x by b . With each pair (x,b) ,

b = ﬂ1 , W& associate a copy © of the gauge group G ., Elements of G

%x,b %,b
are denoted Yoy H: b iIs the algebra of all complex=-valued, continuous
¥ L
functions en G .
x, b
G
Glven a bond <= X,y > we define ﬂﬁ 7> to be that subalgebra of
L]
o’ & e consisting of all complex-valued, continuous functions on

EyoE, ¥ ¥y, =
G x G which are of the form

-1
”“u.ﬂ:.y} . HFH—'}"J:J] (2.14)
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We denote ux'qﬂ_'. . "jr.qr.:-:::- by g“y s with the convention

-1

T (2.15)

in accordance with (2.14), The group element g’w is the value of the gauge

field, g ,» on the bond < x,y >

] -~ < (]
W \ W j x
F :I':lq:“:" :"5:1,? r!.s 1
.L___,-F-I"-'_-__;
By
We define
'I_.Ii- @ (@ “:.H , and (2.15)
xeh bEﬂ:

o o8 Ty
=1 & = ; (2.17)

A x5 A =, y> A

(These algebras are obviously normed),

Hext, we define an expectation « — }E on Hi :

<A>=|1 T dw Al{:_]l . {2.18)
KEM bEBx x,b
G
vith 8% Bnhieg nen e 4 €%
Here dw {5 the normalized Haar measure on G . Since this
¥, b w,b

measure Is right and left invarlant and of total mass 1; we obtaln from {2.18)

<B >0 -j no dg B(g) (2.19)
<, ¥> c A ¥ ™
with [ {Exjr}ﬂl.‘,l'} =k B £ lﬁ and dgﬂr the normalized Haar measure

on G ,
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We also introduce the algebras

(-} (=) (-) (-)
-G e _ G -
IlrlL hgll’;, uﬂ ﬂh-su: , (2.20)

and the expectation

. = [ > M
Rl Ml it S e (2.21)

Finally, we define local gauge Erans Enr!.ll:iu'u.l : These are maps h

from E: to the gauge group G ,
E::EE; +h €C , (2.22)

with 'h.: ¥ 1 (the identity) only for finitely many x . Under a local gauge

trans formation the basic flelds Introduced so far transform as follows :

h
$00 + 700 = vhn ) #0

$(x) + 4 Yx) = E;Ih:} ¢ (x)

(2.23)
Yo+ %0 = o) oo
2 -1
Htjh i w;'|h 3 w:.h hl
From the last equation im (2.23) we get
h
: (2.24)

+g = h_
g“!" E?-H' 1I7‘:!|" ¥

The following lemma is easy, but important. It is therefore stated ex-

plicitly, but the proof is left as an exercise to the reader,
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Tesma 2.1 :

(1) The expectations < - ;: y €= bﬁ y < - :: » and hence < - :g and

< - =, are invariant under local gauge transformations.

(2) The expectation < = h: is invarlant under arbitrary transformations of

U; - see (2.8) - of determinant 1, In particular, it i{s invariant under the
transformatlon : .k{:u:] -+ "'_]{It ) ik(!} - see (2.6), (2.7) - for all x {in an
]

arbitrary subset of A .

We now consider a subset } :E: invariant under a reflection r at
some glven hyperplane perpendicular to the j-direction, § £ [0,...,w-1] ,
which lies in between two lattice planes containing sites; e.g. r may be
reflection at {:ﬂ =0} .

Let A,

denote the part of A lying "above", resp. "below" the glven
hyperplane. Clearly A = 'I!'ﬂ._+ . If A 1s a rectangle with opposite faces
{dencified (L.e. A 1is wrapped on a torus, corresponding to perlodic boundary
conditions) then the reflections r are defined relative to a palr of hyper-

planes decomposing A into two subsets, .F|.+ and A, of equal size.

Given a reflection r , we introduce an anti-linear map (anti-morphism

A “ﬂ - Eﬂ, ; defined by
: ¥

{a) a[Fl#(x))] = Fla(rx)) (2.25)

{with F the complex conjugate of F ) ,

k = 3=k
(b) Alz imlx}] l':'l"j ¥ 1"1:! (rx) ., (2.26)

where £ 18 an arbitrary complex number and j Is the directlion perpendicular

to the hyperplane of reflecilon; [17] ,
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{e) E[ﬁ{wﬂlb}] = Alw (2.27)

rx,rh
with rh=<rx,ry >, for b= <x,v =,
Moreover,

nrn{3!311 = Blg ) -

™= Iy

The map & can be extended in a wnique way to an anti-linear map from Iﬁh (-]

iﬂ satlsfying

alF-c] = afc] 8[F] . (2.28)

for arbitrary F,G in ;ﬂ

For completeness we reécall the following result of [177 which plays

an important role in the sequel.

Lemma 2.2 :

Ftn‘ arbit rary Fl BoE o ’Fﬂ in “n-l- #

n
< JEl{F]H[Fj“ = 20,

in particular,

< FO[F] > 20 (2.29)

for Fell
A,

Proof : 1t is shown in Section II., 3 of [17] that

n i | n
ni{FraFll=(nr)a{n r 1, Le,
j-l J .! _‘!-1 j j-] .'F
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n
pe [EFO[F1:Fell , for all 1} (2.30)
qap BRSCLT

is a multiplicative cone. (This follows from the commutation - , resp. anti -

commutation properties of the !'j*l and equ. (2.28)). Hence we must only prove

(2.29). It is not hard to see that it suffices to prove (2.29) for F the

following monomial in tl,*i =

‘- 1 2
F=fw,§) un. fu,.n‘.:} A *.;;,."‘ﬂ ; (2,31}

::E_|l|.+

with £ £ l: ﬂ': . We use (2.25) - (2.28) to compute @A[F] . Then we apply
i y
Lemma 2.1 , (2) to evaluate < Fa[F] >, - This gives

G

<rolFD) >, = | < €500 220

Let F and G be in ¥, . Since <-> is linear, < Fa(G) > s

A,

linear in the first and anti-linear In the second argumént, Moreower
< r-n-[r]u:- 30, by (2.29), Thus < - @[-] > 1s a positive semi-definite Lnner

product on ] , and we have the Schwarz inequality

M,

| < rale] :.PI << FHI'_F]:E < Ga[c) :-E (2.32)

Since H: can be {dentiflied with the subalgebra 1 & H: of lTn ; Inequalicy
4 e +

(2,32) glves

3

| < rafc] ::-: | = [ < re[F) }:'I [ < ca[c ::-m'li ’ (2.33)

for arbitrary F and G in HH

A,
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S0 far this set up us completely analogous to the one developped in
[18,21] for classical and quantum lattice systems in statistical mechanics,
In order to describe Interacting lattice gauge theories in a general way we
could thus follow 8217 . A brief outline is given In Subsection 2.2. The mate-
rlal glven there may eventually be fmportant for the study of the renormalization
group {"block spin transformation"), applied to lattice gauge theorles, The

reader not Interested in "abstract nonsense” should directly proceed to 2.3,

2.2, Intéractlion poteéntlals and interacting expectations

Following [i.ﬂ,-ﬁ_"p] we may introduce a "cone of reflection-negative poten-
tials" in one of the standard Banach spaces [46,47T) of potentials used in statis-
tical mechanies. A large space of "actlons" for Interacting lattice gauge theories
may be needed for doing renormalization group (block spin) transformations and

permits us to study long range interactions leading to interesting phenomena

such as phase transitions, [1821]. (We note that, by the general results of
[477, there do exist lattlee gauge theorles with first order phase transitiomns).

We briefly recall the definition of potentials : A potential U is a map from

bounded subsets, X , of the laccice E.; Lo EE; satisfying

(1) !.I:}t-il.erig

{(2) U 1is translation invariant and reflection covariant (1.e. H‘.I‘H - T'Fl.'l:. -

see [46,18] .

(3) Each “}L is a polynomial in “k'{::]"ll with coefficlents (antl-symmetric

ex
tensors) in tﬁﬂn'ﬂ'}: . A norm [[U ] can be defined e.g. as the sum of the

supremum norms of these coefficients. One requires e.g.

5 <.
X0



(4) U 4is invariant under local gauge transformatioms,

(5) U is reflection-negative see [187, This conditlon guarantees that the
resulting lattice gauge theory satisfies Ostervalder-Schrader (= reflection)

positivity, or, in other words, has a selfadjoint, generalized transfer matrix.

{(6) U has a formal continuum limit (as the lattice spacing tends to 0O )
which is compatible with Euclidean invariance; Iin particular U 1s isotroplc

{i.e. satlsfles "Nelson's symmetry™),

Glven a potentlal U satisfying (1) - (8) , an action A, for a

il
lattice gauge theory In the region A 18 Iintroduced by
A= F 0 ,
A Xep K
and an interacting expectatlon = - jh by
A
=8 .
-t T Ayt e Ay (2.34)
e
A
-#

(1t is shown in Proposition 2.7 below that < e h:-ﬁ = 0) .

The definition (2.34) of interacting expectations can be gencrallzed
by intreducing (reflection positive [187) boundary conditions. One can then
apply Dobrushin-Lanford-Ruelle equations [477 te characterize general interacting

expectations; see also [47,18] |

The resulting lartice gauge theory is invariant under local gauge trans-

formations, satisfies reflection positivity (for reflection symmetric A ) , has

at least one limit as §} faz which Is gauge - and translation invariant and

reflection positive (use a sequence of hypercubes with periodic b.c.) and satis-

fles Helson's symmetry.
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All results discussed throughout Section 2 except Proposition 2.7, (2},
are valid in the general centext described here. The reader familiar with [18,45]
may verify this as an exercise, Here we do not give further detalls, but we em-
phasize that the concepts described Iin this sectlon will appear quite natural im

the light of Sections 2.3 and 2.4,

2.3 Matter interacting with an external gauge fileld

In this section we prove the diamagnetic inequality : Theorem A of

Bection 1.2,

Glven a bond < =,y » we défine a Dirac matrix t’l}’ by

if -y = Ej
= (2.35)

TYg LRI R Ay

wvhere e is the basis vector of Z' in the positive j-direction,

1 . 2
¥ (x) + U I{g!r.'! H!-" ¥ (y)

(2.36)
- ‘
E U {s )b xrlua [ultul A ¢ 52
as8
This combination is clearly gauge invariant, i.e.
¥ -{x]' . Uiigx Yoy ¥ h{:r}
(2.37)

= v oty V)

It can be rewrlitten more symmetrically as
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T ) gl - uhw ) v 42 (y) (2.38)

o, ¥> bl o AT 1y

Remark : There is a wellknown problem with lattlce Ferml flelds [&-E-,f-l] i They
describe too many degrees of freedom and therefore fall to réeproduce the stan-
dard perturbation theory in the continuum limit. There are varlous ways to

cure this disease (at the price of giving up chiral invariance even wheén the

mass s 0 ), involving replacing ?'.!'l:f by some matrix !":w such that

= T

(L) Voy T:; Yoy .y

@ [r,,. ven-=o ;

(1) ensures Osterwalder-Schrader positivity (see [177 and Section 2.4) and
(2) gauge invariance. T;T can be a linear combinmatfon of 1, qu . 1?5 .
[17] ; (for a different proposal see [4,,497) . In the sequel all will remain

unchanged Lf Yoy is replaced by some rl? obeying (1) and (2) |

Furthermore, we deflne

s 3
800 - vl ) By = (a0, o) My

(2.39)

= u¥w ) #tx) + uXe ) #ly)

W
M, =N, ¥ WSy 1

where (+ , ) 18 the scalar product on ﬂi . Again, this is ¢learly gauge

fovariant.

An action 1s now defined in terms of the bulldlng blocks (2.37) - (2.39):

M 1 ¥ 2
Kid, b 8= -E [!,l' ¥ x) - 0 ) 4 (y)
I.I e - '?} - h ljr E:.'f

IR L CHR R %) (2.40)

+ T v, 0, #x)
%€



= Fh =

where V 1is some G-invarlant, scalar function of 11{:1 ' iz{u] and §(x) ,

1.6, Ved"®  and
fx]

vl oo, ¥, f00) = viile), $0, #)
(independent of g) . For example,

vigt(x), ix), s(x)) = B[(#(x),8(x))]
(2.41)
¥ i]'h:l -rtzl'ulﬂhl + Hvtlhi] tiix] ,

5 k
where + = ITJ] are N = dim V' matrices of size M x M , with M = dim ?' £
satlisfying
utw* Jut) = 5 vton) -4, (2.42)
i
1 j.2 : |
and B lx) 4 (x) ., E ‘ﬂl{x] A Tiﬁnﬂrﬂ' tn.afﬁu] '
at,a'

P 1s & polynomlal bounded from below, and M is the bare mass of the Fermions;
(More generally, M can be a mass matrix scting on flavour indices. It may
also contaln terms proportlonal to 1v5 77 without belng incompatible with

conditions (1) = (6) of Section 2.2 !). We define

We define

2(g) =<ce Ammy, (2.43)
The first main result we propose to prove Is Theorem A of Section 1.2,

Theorem 2.3 :

Choose a bounded, rectangular reglon § .|:E""r with opposice faces
:

idencified (torus) and sides of even length, and impose periodic boundary con-
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ditions on A _ . Then

A

z (g)]| =<2 (1) .
Remark : If the "vacuum energy densicy", €y » is defined by

1
e lg) = - — log|z ig}l

the inequality of Theorem 2.3 says
(g) 1 2.44)
e\(8) 2 Eﬂin} " (
which Is Theorem A,

Proof : We choose a palr of hyperplanes, w , lying in between lattice planes
and cutting the rectangle p {into two pleces, h+ and A » of equal size,
(5ince the sides of J have even length, many such m's exist. In fact, there
are ]M.n"zu different choices of m , where |A| f&s the number of sites in 7).
We label the sites bordering m by 1L,...,M, 1',...,H' , where |[M| = |H'|

is an even integer, with |M| = § of sites in {1,...,M]} ; [1,....M} c A,

and {1',...,N']JecpA_.

The basic idea of our proof iz to find an upper bound for In{g} in

terms of zh': in which all the gauge flelds,

are replaced by 1 (the unit element in G ).

{E£11].!‘l.---.l‘|: , crossing

In accordance with the above decomposition of p we write the action
M M
(E&j : ﬁ.h_f.i_} and A (g _) . Here

.'.H{E} as & sum of three terms, A Aoh ‘En

A A,
= y M
Ei' - [a‘xr]'{;'}r:. = .ﬂ+ § E' “ fall']l-lji-ii- M ; the terms *ﬂ*{E'!'i are E’-'V-E'I'I

by (2.40), with } -rlplat:td by |I'|,i_ s Land '!i' - L suppressed in our notation).
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In order to define .h.H
h+:

-1 - -1
W . W , B g, W =
%,y " s B Y s T By

A {!.n} we write each air as

(I ﬂ.l.'l-":-l-'tl:“ =1, ete.

We then set
H*Fu ) = n {g y , and (2.45)
*ipf" g )= AE-‘-JLK:!: . :-f.'l
T (g E‘{".;.q.z‘:-j Vi - uihl',ﬂ'.l}} v
”a':ﬁt{"s'.ﬂ‘.p—} AR u'h.ﬂ-ﬂ.l'}} V)

- E [U'{H

ot ,
i 23 g s BB PN ) R

+ (2o ")) (2.46)

Recalling now the definition (2.25) - (2.28) of @8 , (2.36) and (2.39)

and regarding the «'s as external variables, one verifies that

M M
-A, (w ) &, (w_ )
e A~ agre ATy, (2.47)

and using, in additlon, (2.46) one sees that

n*n o) = - pp ) orr, )], (2.48)

with Fi{ﬂ} and Fi{::_} in !IIH ; and r:_ defloed In the obvious way,

A,

Equation (2.48) 1is the basic ingredient,

Next, we note that ﬁ“ and *H are in ﬂi {(L.e. even in

A, Aol
t '2 ) so that they all commute with each other. Thus
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M M M L
& (w ) A (w ) -A (w', w')
zh{g}-:t N R L LR ;.:'

H H ™ Ll
A" (W) A% (w ) B ACKHE: AU
.- ce '"'-v-"‘*n[e .|!,+J~._|!:';1...+ 1,_.-,_1_?

If we expand the third exponential on the r.s, we see that Eﬂ{g} is

of the form

M
i < f l[n':{:*} 'E[Hilfr:_:'ﬂ g

for some D'i{:t} ; II':{:‘_} in iﬁ* .
Wow we apply Lemma 2.2, resp. (2.29) and (2.33) to conclude that
a o M
< Ilj Dy, ) H[Di'[:r#_l] el

= < [ 1 03(w)) oln oty )] e

3

a o H
<[ = E nil::*:l “[“:‘.:ﬂ-” o 1

% [ < n oftw, ) eo[0ltw, 17> Y L

for all o . Applying now the Schwarz Inequality with respect to the sum 7
o

and resumming under the square roots we obtaln

M M ™
AL (w)  -at(w) TR M g, )
28| s (<o M~*gre A qal 1 T u
M M mn "
=&y (w_ ) =AW ) F,(w_ Ja[F (w_}] &
K{<e Mo gre Ay of e TNy

M M m
ik i e-&htf*]e-ﬁﬂ-tﬁ”}e-&"‘-r'h} I E“]? E ‘l\i

A

M M M n
Bl L I ol VI T il O LR LS |
gp e Nty Moreg UApi R ecin t (2.49)
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== B [y TV ) ¢t v ) 42 e")
G ®

! i<t t'> <t n'>

=¥ Lo viyop¥ 2
+ ""':':.U {"z.ﬂ.;":} (e {"l.ﬂ.;'}} i

- § . 3 '
Fl.?--..ﬂw Wpict pral PR st BELE o0 ]

1,1, (2.50)

since, by (2.36) and (2.38),

B RPN (L O R

T} Lachs '

- ] ¥ = 4 - .
0 ¥ ()-U Ewl.ﬂ.t'}} u t"t.ﬂ.t':ﬂ-} ¥ (')

' ilh’}lﬁzu'} , Bte. ..

Yir

By the same reasoning,

RUEEUR Y R O s (2.51)

")
g Ve

%

so by (2.49) - (2.51) ,
) L
IEHEE}' |z;|,{§..+ J A 51” 3 zh‘f&'ﬁr#yi zh:-g-r-':gu- 'L} &-3¢)

Mote that on the r.s. of (2.52) all gauge flelds on bonds crossing
have been replaced by 1 ! This is the baslc inequality. We now iterate it :
In both factors on the r.s. of {2.52) we choose a new palr of hyperplanes

n' # v and apply (2.52) again. As a result, all gauge flelds on bonds crossing
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mm and m' are replaced by 1 . To replace all gauge fields by 1 we make all
Iﬁlf!“ possible cholces of palrs of hyperplanes (perpendicular to all + di-

rections of the lattice), This yields

W W
l2,(8)| < iz, (0?7 [Aly1A1/2% 2, (1) (2.53)
Q.E.D.

Remarks : The theorem just proven is reminiscent of Theorem 2.3 of [18b]. The
kind of book-keeping necessary to arrive at (2.53) can be replaced by an inductive

argument; (see e.g. [184) .

Theorem 2.3 extends to the more general framework considered In Sub-
sectlon 2.2. Also note that we did not make uwse of gauge Invarlance in the proof
so that the inequality can be exteénded to certain actions with gauge dependent

L& rms .

We believe that Theorem 2.3 I8 true for a more general class of boundary
conditions and more general lattices. Indeed, for the abelian Higgs models we

prove Theorem 2.3 under very general assumptions in Section &,

Theorem 2.3 has two noteworthy corollaries.

1/
Let £= lim [Zﬂﬂll] Al
ntm‘; -

Standard arguments of statistical mechanics show that this limic exists
and is independent of b.c. Mimicking proofs of relaced inequalities in continuum
field cheorles [507 based on Infinitely many applications of the Schwarz inequa-
1icies (2.49), (2.52) (and using the DLR equations te show that boundary condi-

tions have a negligible effect, see e.g. [45]) we obtaln
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Corollary 2.4 :

For arbitrary, bounded reglons A and "arbitrary" b.c. at ap

izﬁFEll < E'ﬁl Jﬂilaﬂll

Hext, let 5&1{'k{1},1{:}} be a perturbation of the action ﬂﬁ localized ac

site x , 1.e. depending only on Til{ul,iz{nl*i{xll . Let

BA, = T BA(#x),8x)) , and
A oxen *

ﬁh:' r ﬁhxuk{ﬂ,ﬂﬂl. De fine
yER

Mooy
A, (4 8:8) Mﬂ{!—".—!}}ﬁ

EHFE;EHAI "

o

Corollary 2.5 :

1/
Al
lz,(ss8a )| < 0 2 (1;84%) ]

Proof : This follows again by applylng the Schwarz Inequalities (2.49), (2.52),
corresponding to all possible cholices of palrs of hyperplanes, as in Theorem 2.3,

and keeping track of all terms produced in this way : See the proaf of Theorem 2.2

of [184)] .
Q.E.D.

Mext, we briefly discuss gauge Invarlance.

Definitlon :

The subalgebra of ﬂh invariant under local gauge transformations is

denoted ﬂ;ﬁv' . L.e. F(&,4:2) € ﬂ;""' if F e ﬂﬂ and

F{i?l' # "Er H E‘!l"'j' - F{!‘.!‘;sj # (2.54)

L e

for arbitrary, local gauge transformations h ; see (2,22) - 2.24) .

o



For Fed, , let

M
=A {'1';31 M
Z (w ;Flw)) = « F(§,4iv) e e

P
(]

If Fegar we write this as Z

A AEE;F{EH ’

Theorem 2.6 : (Gauge-invariance)

nv,

Fo F
r E!h

2 (g sP(ED) = 2 (giF(g)) ,
for arbltrary local gauge transformations,

The proof is a direct consequence of Lemma 2.1,

Remarks :

Theorem 2.6 1s a strong restriction on the possible form of the functlonal
zhii;rlﬁ}} : It depends only on products of g“'n along closed loops. Further-
more, this theorem permlts us to choose any gauge that is convenlent to calculate
{or estimate) Green's functions of gauge Invarlant observables. This Is very help-
ful in the constructlon of contlouum lez ; (see also Sectlon 5). By expanding

both sides of Theorem 2.6 in a parameter {(e.g, the loop parameter H | or a

coupling constant) one obtalns Ward identities for the lattice theorles,

Finally, we remark that Inl'.i}l is real : Let E—' - {s::.r]qt,jr}: y b

with B:F | g}m ., It 18 not hard to show, using arguments similar to Lemma 2.1

(e.g. invariance of « - }: under .k -+ 'E-E:' that

= ' -
Eh{y zh{‘&l zn[E_fl ; (2.55)
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2.4 Fully interacting lattice gauge theorles.

Following Wilson's proposal [ 97 one introduces an action for the gauge
field as follows; see also [10,17] : Choose a representation “?H. of G , Pour
nearest neighbor sites xyzu in a plane, forming a unit square, are called a

plaquette, abbreviated by P

}r z
-P. Flg. 2
D m
® u
We define
A;“ = . Eii Re I&[HTH:EKF Eos Bry Eu:}] 4 (2.56)

o
where Ea is the bare Yang-Mills coupling constant, (From the point of view of
general lattice theories one could omit taking the real part, but then a consis-
tent, universal orientation of the plaquettes must be chosen). This action can

be written as

2 ™ _ PP _ PP =P
26, A, = - Re Tr C'D iﬁ Cyy Dy &1;,; E':'j Fer s (257)
F_ L H =
e G {'1":':3\1} sl"‘ “=t¢:“} ) '’
-1

P_.YM g

and D=0 (Hh,ﬂﬂjlb ux “i,:x,r} )

A straighforvard computation shows that

Fiyic gl

LCH 4

and therefore

3. _ P P =P =P
T bkl #ﬁ S CHE it? Cpy 8C;) (2,58)



e 1

Furthermore, 1f P 15 strictly above n

nr.t.:""q - .t.:: \ (2,59)

where rP 18 the reflection of P (note that the orlentation of the plaquettes

is unimportant when we take real parts, but (2.59) remains true in general).

We now Iintroduce the action for the gasuge (Yang-Mills) fleld :

M

Ay (2.60)

n';"-z
Py

The total actionm of a lattice gauge theory in the réglon §J 1s then

given by
- s H M 4
.ﬁn lﬂ {E':' + Ah{'!-_!.&" (2.61)

The interacting expectation of this theory is defined by
c-> =ce M = c-& M = (2.62)

For F = Fi8,4;w) £ 1 s Ehis can also be vritten as

- A
™M ™
=& [B} G =1 =, (I} c
<FP> =[<2(g)e A= <czmptv) e A~
Ay A L gt el :

In order for these definitions to make sense we must check cthat
-A
ce M > is strictly positive, This is asserted in

Propositlon 2.7 :

m
{1} Let A be a rectangular reglon with sides of length 2 ] s § =m0yl

and impose free or periodic boundary conditions. Then
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{2) For an arbitrary rectangle j with sides of even length and periodic

boundary conditions,

Although quite simple to prove, this proposition is a basic result for
studying lattice gauge theories in the weak coupling region (where high tempera-

ture expansiens, see [17] , do not converge), We prove it after the following

Theorem 2.8. (Osterwalder-Schrader positivicy)

Choose a hyperplane T (resp., a pair of hyperplanes) and a bounded region
(resp. rectangle) p reflection symmetric with respect to w, L.e. A= h_i_i_] A

with th = A_. Let @ be given by (2.25) - (2.28) , and let F Eun . Then,

b
for free (resp. periodic) boundary conditions,
<FE[F] >, 20.
A
Proof : By (2.62) and Proposition 2.7 it suffices to show
---lﬁnl
< Fa[F] e >, 2 0 (2.63)
By (2.47) and (2.59)
-A -A
n+} = g
Set hyH
- b hl" . Then (2.58) implies
Msh ppnmi e
™ 1 =
A - (T C, afct, ]+ £ 8fC;, ) »
Ao A Egzl’l"rri'ﬂit 11 r” 1y 4 t”]

with C., ¢ ﬁ: . This and (2.48) prove that
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= aTH H m ey el
o T il Y Ay o Vo L) =B ONIG)
with Gl £ ‘I"+ ;, for all 1 .
Moreover, ﬁl'lq.' Aﬁ_ and *ﬂ.l_lﬁ_ all commute with each other, since
they are even in 11. 11 . Therefore
i 1 -A -A f G, 8[6, ]
<Fo[Fle N> =<rorie M gle Mje . (2.64)

o

By expanding the exponential we see that the r.s. is of the form
£ < nof e(o}l) >
a =]

which i{s non-negative by Lemma 2.2. (This proof i{s almost identical to one glven

in Section 2.3 of [17] , except that we do not have to choose a special gauge).

Q.E.D.
Proof of Proposition 2.7:
By (2.64), with F =1 ,
- -A -A m L
= @ "'-_.- = n%{u h+g{e ﬂ+]nciia[(;i]i:.
¢ m=0,1,9,., g 5
=A =A
g <e A fale 'ﬁ-l-'1 = 5
o
gince the terms for which = > 0O, for some 1 , are all non-negactive by Lemma 2.2,
Hence
= =&
< 8 ﬂ:’n 3 <e ""'l-:-z. (2.65)
o

Now we choose a hyperplane ' bisecting ,|l|+ - ,|‘|,+ - hi U ,ﬂ,i ; with

ef, = AL , and we apply (2.65) again. This ylelds
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-

1
= B A - T = E h+ - » BEE.. .

=]
=]

Since each side of A has length 2 i . mj = 1,2,...; we arrive sfter a large

number, n , of applications of (2.65) at a one-site set ﬁ: . Clearly

=A n
< @ 'h'-l-}--!:l:-n'l.

This completes the proof of (1); (this proof extends to the general situation

described In Section 2.2).

Proof of (2) : Let A= ([-L+ %, L- 2] 2. x[-L _+d.L ,-2].

Note that Ah only couples nearest neighbors. This and (2,63) permit
us to define a positive seml-definite transfer matrix T = TL L {the square
B

1
of a hermitean matrix) such that

=4 L
<8 ﬂ-,u = TelT ) .

It follows from the definition of the trace and the concavity of x> i

for 0 <ga<1, that
L "a Lb L
Te(T ) g Te(r? ) 12 °

;e

1f m is so large that z L.:I ;

betails of very similar arguments (applied to classical statistical
mechanics) may be found in Section & of [517. Applylng the same inequality in the

other wy=1 directions ("Nelson's symmetry") we find

-A - A
“:-u. 1 ﬁﬂhﬁbl IIiIIEI-

< 8

m, +1
where F  1s a rectangle with sides of length 2 i gL, . J =0, .

i
Q.E.D.
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The vacuum energy density, ¢ , is defined as

---lﬁlﬂ
log < & >, 8- u-.h (2.66)

[l

Let {m) cz.; denote a cube with sides of length m .

Corollary 2.9 :
For rectangular réglons and perlodie boundary condtlons we have

< 2¥

_ (V.
by § gy Al

(1) (25t~

{(2) 1f [th] is an arbitrary increasing sequence of rectangles with sides of

even length then

is increasing In hﬂ .

A

(3) 1lim . = ¢ exists,
ma!; h =

Proof : This is Lemma 4.6 and Corellary 4.7 of [517.

{The proofs of (1) and (2) follow by refining the arguments used in the proof

of Proposition 2.7, (2); and (3) follows from (1) and (2)).

The final results of Sectlon 2 are the chessboard estimate and infrared

bounds .

Given two sites, x and vy , we define
oy = Er‘l- x) mod. 2.

Let r denote reflection at the hyperplane fr.j = 0] (lying in between two

i
lattice planes of E"; ) , and let Bj be given by (2.25) - (2.28) , § = 0,...,v1 .
: vl o
Ler be the translation from (N = j'.l: to ¥ .
iy jmo i



Given a function F  of E't:}‘*tlj;"x,h’ b e H!] » 1.e. F € ﬁ{u} '
and given a aite y we define

w1 ay

n B11 1 [FI]}

o ™ m'LT

The following portraits this definition for + = 2 :

o lale|a

Fig. 3

v ||| o
»lalr]a
v d ]| | &

Theorem 2,10 : {(Chessboard estimate)

Lect 4 be a rectangle with sides of even length. Then, for pericdic

boundary condliclons,

1/
lem ¥_> M <=0 F |“|
xel = A =

-
Al % xep yep &9 A,

Froof : Given Theorem 2.8, this follows directly from Theorem 2.2 of [lﬂ{l {as
explained there in a somewhat different context). The reader can construct a proof
by using the Schwarz inequality with respect to < -@[-] >,  many times as Iim

the proof of Theorem 2.3 and Corollaries 2.4 and 2.5.

Q.E.D,

Remark : Theorem 2.10 is a basic tool for the proof of Theorems C - E of

Section 1.2; see IIT.

We end this section with a brief sketech of Infrared bounds for the non-

abelian lattice gauge theories. For this purpose we define a distorted action for

the vang-Mills field



o

™ 1 ™ -1 -1
th )} = - Tel ¢ h
Ap by ba? T oy Py Yy Yy aaes yz
o
) =1 Y w1

W W h W
24CE, P> E,,Un EU U, <U,X>  UX :,:x,ua}]

with P = (x,y,z,u) as in Fig. 1 and (2.56), and hP = {hxy,hyl,hzu,hu“} four

(arbitrary) elements of G . We then set

Al = ¢ A™m) + %G, 48 .
e AbiiE

Theorem 2,11 : (Infrared bounds)

-A _(h) -A

<e M “';h < <8 A >,

Proof : As in (2.57) - (2,58) one shows that, for m a plane bisecting P (see

afrer (2.57)),

P

282 AZMh) = - £ €} jb,) vMen_ ) a[c_"!_{h“n u:’f{h“:- A

ye' T ji Eu

with the obvious definition of ﬂfj(hl . With this equation at hand, the proof is

completed by repeating the arguments used In the proof of Theorem 2.8 and noting

that

™ P M ™ P
£ afu, (h_ ) afc_ {(h ) umi{h“n u_,lklih“.‘l Blc,

T
14" zua mi ux {hux}} Un[[h )

k Xy

_ P P
T cmth“.'l chm;,“‘ux:'] )
because H?ch}* HEH{h} = 1 . See also proof of Lemma 2.2. Detalls are very simi-
lar to the ones given in the proof of Theorems 2.3 and 4.7 of ref,[18b].
Q.E.D,

Remarks : (1) "Infrared" upper bounds on certain expectations (two point funmctions)

2
- g 2 3
are obtained from Theorem 2,11 by setting hxy 1 + - s Yy + 0(g") , where



THF is an element of the Lie algebra of G , expanding the j.s. of Theorem 2.11

in g, dividing by EE and taking the limit ¢ w0 ; see [217. In the non-abelian
case these estimates only take a simple form In the formal continuum limit. This is

not 8o in the abelian case for which these estimates are further discussed in Sec-
tion &,
(2} Further infrared bounds can be obtained by changing the parametrization of

the pauge fleld or Inserting h's at other places, e.g.

Al ) » M v i L

Lol

Theorems 2.10 and 2.11 show that the cholce of paramectrization of the
gauge fleld (here the w-"parameters") can be quite cruclal, at least technically,
We believe that this, in fact, might be one of the key problems to be resolved

in quantizing Yang-Mills fields in the continuum,
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3. Estimates on Green's Functions and Diamagnetic Inequality Revisited

In this section we review, within the context of lattlce theories, some

important inequalities due to Schrader et al., 6 ,197 and [ 77. They are impor-
tant in our construction of the continuum abelian Higgs model In two dimensions;
see 1I. Therefore, and because our proofs, inspired by [24d, are very short and
simple, we feel it worth reporting them here. The main results of this section

are

- "Kato-inequalities" [ 6, 77 for the Euclidean propagator of the free, scalar
lattice field in a fixed,external gauge fleld, i.e. bounds on the Green's function

of the covariant finite-difference Laplacean

- the (Schrader-R. Seller) special diamagnetic inequality for a free scalar fleld
in an external gauge fileld, with general boundary conditlions (and on general lat-

tleces),

3.1, The basic method

In this section the action is given by

n:u-.sl -3 » e, vk ) sty))
b <x,y> C A ¥
3 (3.1)
nﬂ
+ lw+ "z':' T (alx), 8lx))
xEA

It 1s quadratic in § . Thus the two point function (Euclidean propagator)

-.'s:{!;_@ =1 —AHEI;EJ M
ﬁl.rigv [« e 2] = l'nfﬂ i!fﬂ e >,
4
2 =1
is given by f-ﬁE. . mﬂlusin,yl : (3.2)

where g.g is the finite difference, covarlamt Laplacean which we now define

in terms of its "integral®™ kernel :



- il =

1@ EU'(:HJFE s 1f x and y are nearest neighbors
ﬁ!.h'” - ~2vle(l), , 1f x=y (3.3)

0 , otherwlse

Clearly, the first factors on the r.s, of (3.3) are irrelevant in this

sectlon, and we lgnore them henceforth. Defining As by

- - I.T'l'g“i , 1f x and y are nearest neighbors

2
2y rbm
aglxy) = 2 (3.4)
ad 0 , otherwise
we have
( 5wt 2,7 = (3.5)
-.53+ = 2u+uu 1 -ﬁ! 3.5

In order to derive estimates on the Green's function (3.2) we expand
the r.h,s, of (3.5) in a Neumann serles, (It 18 clear from (3.4) that, for
m, > 0 , this Neumann serles converges absolutely, for all 31 . Lf m = o
one gets convergence only im + 3 3 dimensions, whereas in = 1,2 dimensions

thare are the well known infrared divergences).

Using (3.4) we observe that each term In the Neumann series for

(1 - AE];;{:,:.!'.I can be labelled by a path, w , starting at x and ending at vy ;

see also [24a). Glven a path ¢ , we introduce a path parameter s ¢ [0,1,2,...N{g)

with w, = wl0) = x and w = wi(w)) = vy . Then

(2 +~m.!1|'1 (1 -A ]'1;: )
=z 2y + o2 0 ) 2y + )
o 8%0,L,. . Wgel o0 Eg(edake+1)” igp Y T Vo
=X
""1_ (3.6)
we™ ¥
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Hence, for = ¢ 1.Fl' ;

3. =1
!E 'I'u{-ﬁi + nﬂ]ﬂah,y]:g!

=4 _l _1
2 § 2
< & W=, | (2ytm’) V(g Jz) | (2y4m)
o 8=0,1,...,8(w)-1  © wl@)atsrn) =) |24
e Sl
we= ¥
L] 1 B
(z,z2) T n —= ., since |UT{gd||l=1 ,
& R R I
oy~ *
I!I.!If-
-+ =1 -1
= % (s n (2v + m2)  u¥()2) (2y + nd)
(L1] .'.u:.]-pq-.-rp“{w}‘-l o
o Bl
m[' ¥
o - 2.=1
T :u[ %l + ln}uﬁfx,y} IE , 1l.e,
(2, {-nE-I-n:J_l(x,y}t} g (2,00 + D) M) (3.7

where A= ,51 » for all =z € 'l.fi and all =x,¥y in the lattice. This 1s Theorem B,

{1} of the introduction,

E
Hext, we study the kernel of e ‘i . Clearly

“'h aue ® oM g
e - g r —B8 , (3.8)
n=e L -1

with Bi = (2y + n::lhi (the off diagonal part of ﬁij Clearly the series on

the r.h.s, of (3.8) converges absolutely, for all ¢t .

For each n the kernel of B: ; li!:} (x,y) , can again be written as

— — uﬂ
a sum over paths, w , starting at x and ending at y . (Depending on the

distance between x and y , the sum is empty for small n , and the corresponding
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kernel 18 0 ), The prévious reasoning implies
t
(z,(e ‘!?Jh.r]:} < (z,(e"Bix,y)2) , {(3.9)
for all =z ¢ '&"* and all =x,¥ 1in the lattice,

£
One Ls often interested in writing e ﬁﬁ In terms of a Feynman-Kac

formula and, moreover, exhibiting the dependence on the lattice spacing.

The lattice spacing is glven byan arbitrary, positive number a , and

the covarlant finlite difference Laplacean, ﬁ; ; on a lattice 'tn = lﬂ;l with
lactice spacing a 1s related to ,I_-,a by

o

ﬁ;h.ﬂ = a_zﬁs{l_lx,n_ly} .

From this, the definition of I!.B , see (31.4) , and (3.8) we obtaln

=

™ -2 N(w) -1
=2ya E 1 -2 & P
(e Brx,y) = e E Wt sl * U (Byeyean))  3:67
W= *
W™ ¥

E

This Feynman-Kac formula clearly proves (3.9). It is, however, rather
inconvenlent for taking the limit a -+ 0 . Therefore we rewrite the r.s. of (3.6")
a
in another form : When g =1 , (3.6") shows that {Iu" Mx,¥) 4is non-negative.
Hence 1t 1s the transition functlion of a Markov process, let Eﬂ.- fnir be
L
the space of paths r(t) ¢ £+t 20, and let Erl:r{d[}a denote the usual,

Polason-type path space measure of this process, Then we obtaln from the r.s. of

(3.6")
th . e/-1
(e 2)x,y) = 4 Pr“{dz}l ;: 11;“ u (iulﬁ*ﬁmlh'[ﬁll*}} . (3.10)

[
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with the convention that gw =1 4f x =1y . (The limlt under the integral on

the r.s, of (3.10) exists almost every where),

A standard argusent shows that Pr:rl‘.dg}n can be vieved as a measure

on = mY* Ry , and one can show that

it

4 L
::: "‘;y“‘-ﬂ. = Pt“:r(dg}

exists as a weak limit omn I::{E.n] s the space of continuous functions on E'h ;
Thus we obtain from (3.10) the following formal expression for a = 0 :
P y) -J Pr :ﬂg}p[ud:'au:;“'”ﬂ!u{t'l (3.10")
ag =3 Xy Ja.a :

where P iIndicates "path ordering" -see (3.10) - which can be omitted in the
abelian case, and ﬁu is the vector potential, an element of the Lie algebra
of U'IG}. Clearly (3.10') ylelds a formal proof of (3.9) in the continuum limit,
a=0, In the abelian case {3.10') can be given a rigorous meaning, see e.g,
[51‘], so that it proves (3.9) for a = 0 . (Alternately one can show that, in
{3.9), both sides have a limit, as a + 0 , Lf one sets

ta A_ (X

g ) me P2

, and AHI-II is uniformly bounded and C€* on RY .,
These results are of some Importance in the proof of convergence of the lattice

approximation for the abelian Higgs model in two space-time dimensions. See II).

E
If we integrate (e bﬁf}“h.r] with an arbitrary positive, finite mea-

sure dplt) supported on [0,m) we obtain further inequalities analogous to
t
(3.9) . In particular, for dplt) = e dt, t 3 0 , ve recover (3,7) from (3.9).
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3.2 Some generalizations

Consider a Euclidean propagator

E - = . : =1 ]
Gﬁﬂh.?.i} jﬂ ( e.ﬁ-l- ll'ma{x.y} dpla); dp > 0 (3.11)

(which comes from some long range actlom, quadratic im & , that still ylelds

Osterwalder-Schrader positivity; see [1§8]) . As an example we mention

{-ﬂf :T“ - %f‘ a e .ln{mﬂ-ﬂhi- -: + -l'I da , (3.12)
o ~

with 0 <a <1 . Obviously, (3.11), (3,12) and {3.7) immediately show that

(I.G:E{I.I;E}:} < {E.Giaix,r;l}:} . (3.13)

and by (3.7) and (3.12) this remains true for g > 1 in (3.12). Furthermore using

2.8 _ 2.8 o (o130 @y AR
t-bi-u} (2y + =) ni(-” () hi,ﬂa':u;l. {3.14)

with AE given by (3.4), we see by expanding the exponential in a double power
series, using (3.14) and (3.8), that

2.0 2\a
-tl-p 4m") -t{-ptm_ )
te,fe B ° (xyde) < (x,[a " § e, ,

for all = E'if' » all =,y 1in the lattice, O <ggl and m 0. (This
inequality may be useful to analyze relativistic, spinless particles in an external

vector potential; the case where o= % ) .

3.3 The diamagnetic inequality of R. Schrader and R. Seiler

For the action introduced in (3.1), Z (g) (defined in (2.43)) is

glven by



.

2,.=1
o atgay

- _ B 2,=1
EhFEI [det( ﬁh + mb} 1 (3.16)

where g denotes a boundary condition at 3p for which Inequality (3.7) remains
true., As an exercise, the reader may check that (3.7) is valid for the classical
lattice boundary conditions, (Dirichlet,...}. Thus

T

z (g) =expflim) dt 7 T (-2 +m° + ) xyn)
ARz (1) T_Jn S &*% an

B, 2 -1
= (=g u_ # tiﬂﬂix,xl]]

£1.
by (3.7). Hence
Ih{gl < iﬁﬁl} . for all b.c. g (3.17)

for which (3.7) is valid. This is the argument of Schrader-Seiler [197. Clearly
det{G!{-.'EE}}% < dutiﬁgi~.-;1}}# ' (3.18)

for any propagator GE satisfying (3.13); (same proof). This remark and (3.13)
2}'1

permits one to regularize the propagator {uﬂh +m in such a way that the

continuum limit of EHFQ} exists without destroylng the diamagnetic inequalicy!
In contrast to the proof of Theorem 2.3, the arguments leading to (3.17), (3.18)

¢in be applied for a large class of boundary conditions and latticea,

Hote that, for free massive Permions in an exteérnal gauge field with
periodic b.c,,; Theorem 2.3 and identities analogous to the ones used here prove

that the Fermionic Creen's functions cannot obey an inequality of the form (3.13)!
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Finally we wish to present an alternate, somewhat more instructive

proof of (3.17), vielding a stronger result. By (3.16),

dee((2v + miln.ilfz -1/2
= det(ll -AIEJI = const. Iﬂ{*&} '

g8 2.1/2
det{—%ﬂ + ub}

(and we impose e.g. Dirichlet boundary conditions at 3aA) . Now, use the loop

expansion

=1/2
det(ll -A ) = =1/2 Tr {nfl-A )}
L] ’E BIP[ IE ]

(3.19)

= axp[lfﬂ £ (1/mn) Tt{ln}] '
n={) B

-1
which converges for ué >0 . Using (3.4) we see that T ila’n]Tri-i;} is a
n={
sum of characters of products of group elements, gﬂy ; along closed loops,
with positive coefficients. Thus the maximum is taken vhen g = I which proves

(3.17). In the abelian case, the above fact implies that the photon-photon

interaction will be attractive, [35]!

For abelian Higps models without Dirac fieldiuﬂry general diamagnetic

inequalities are proven im Sectiom 4.

The results of this and the next section will be applied, in an essen-
tial way, in our construction of the continuum abelian Higgs model in two space-

time dimensions which is presented in paper II.
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4. Abelian Higegs Models : Strong Diama tic Imequalities and Infrared Bounds

In Part 2 we investigate the abelian Higgs models, resp. scalar QED,
on the lactcice emphasizing those results which will survive taking the continuums
limit {whenever it exists) and, in fact, are important inm our constructionm of
the continuum Higgs model in two spaceé-timé dimensions. For this reason we shall
display the dependence of all quantities on the lattice spacing explicitly. In
the abelian case it is convenient to represent eélements inm the gauge group
G = U(l) as exponentials of elements in the Lie algebra :

le:ﬁh

= ¥
”me , A“ ER (4.1)

where & is5 the electric charge and a > 0 is the lattice spacing. Let

< x,¥ > be a nearest neighbor bond in the direction u € {0,1,...,v=11 with

cyd and x® =y | for a ¥y . We also use the notation

Alx)=A
W]

= A & .
L - xy L4.2)

Given a plaquette P = {x,y,z,ul , in the (y,a) plane, (i.e. < x,y > poincs
in the positive py - and < v,z > in the positive 0 -diremtion),

S 4

Y =




-5 .

we define
1
Bp = (curt AX(P) = :{.ltr+ Aﬂ+ AFAL)
1 1 (4.3)
= oA ) - A W]+ Ay -A ] .

A local gauge transformation is stil given by amap h : x —>h_€ U(l) of

%

compact support which weé now write as h“ =5 . Y E R . Then

hugxyh}r-l = ﬂ:p[iaa{aﬁxr + ‘:—l['gx - y?]'.ﬂ

(4.4)
1
= e:-:p{iu{hu{:-:l - ;I{auﬂ{mﬂ? .
with <= x,v > pointing in the positive p -direction and
1
':Eiu‘.r.Hﬂ = :[);f N ';:_ﬂ] .
Thus gauge transformations can be defined within the Lie algebra :
Kx) = _1
Auh-:]l —t lul'.ﬂ Auiﬂ ‘Hu);.'l{x.'l i (4.5)

Clearly BP is gauge-invariant.

In the abelian case the Higgs field is a complex scalar field

4 :x—> #(x) € € . (There are no Dirac fields throughout Part II).

The usual action for the Higgs field in an electromagnetic field des-

cribed by A : < x,y > —> &IT E B is given by

H,. v . M 1
G = M) @
iead
-% E a”l%[lfﬂ-e “Fﬂﬂlfz-l-zt"'ﬂ“h][}
w<x,y>c i x €A
- %t,t.ﬂ*!]' + 2, a%(|aca]) (4.6)

B xEA
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where A, is the covariant Laplacean introduced inm Section 3 with Dirichlet
Ea

or periodic boundary conditions at 3A , V 1is some function of Ill bounded

from below. The measure dp introduced in (2.5), Part I, is chosen to be a

Gaussian measure

-2 Ve $(x)4TET, ,  40x)-B0x)
dp(#(x)) = e adixdtad, &0g-20), . (4.7

Some other actions are considered in III. In contradistinction to the non-
abelian case oné has many natural, gaugé-invariant options for defining the
action of the gauge field, due to the gauge invariance of BP . Here some
prominent ones :

(W) .H.TE. - - pgﬁlu“ﬁ :nnl[tzﬂpfl : (4,8)

this corresponds precisaly to definitions (2.56), (2.60).

This action is pericdic in A“ with period % i.2. can be

réstricted to [- % 8 %] + The expectation for a pure gauge field is given by
™
=8
@ote A Tl . (4.9)

<x,y>cA ¥

T m TH
where dﬁx}r is the Lebesgue meéasure on [- i ;] and E.ﬂ.l is the obvious
normalization factor. This example was proposed by Wilson [9]. It must be
leah
assumed that the lectric charge, e , is an incteger, so that e Xy has
period EE ¢ hence -I'E
TR
=4 2 2
(a"B_+2m n,)
”"'E'I:E-I-Ee 2 P P )
&Y s Em
P (4.10)
TH
=
Aa
e AN .



. T T

™

Clearly A 2m

is periodic in ﬁxy with period ol The function P. is

the kernel of exp %—ﬂ with periodic boundary conditions at + E . (The

action defined in (4.10) is useful to discuss the relations between the
"Euclidean" and the Hamiltonian formulation of lattice gauge theories). The
remaining definitions and constraints are as in (W) . This example was proposed
by Polyakov [2€] and has been used in [27 ,28] and III. The relation between
(W) and (P} is identical to the one between the classical rotator model and

its Villain approximation, [23]

{G) Finally one can also choose a quadratic action

2
™M Ty 2 M oo 2
A = ;. a4 B, +— # A , m, 20 3 (%.11)
A =y P 2 *::T;:?Ciﬂ.“? A

Of courseé, the mass térm on the r.s. of (4.11) breaks gauge invariance when

m, >0 , but this does not cause problems in an abelian model, because A

couples to a conserved current. In varfous situvations ve shall be able to pass

to the limikt m, = 0 , recovering gauge {nvariance. See papers II and III. In

particular, Theoréms D and E of the introduction are results for the case

wheéré m

h-ﬂ ! Hote that, for

m, = 0 , (4.10) and (4,11) become equivalent.
The measure for the pure pgouge field i{s then defined as the Gaussian
M

=
u.'f{'.}'le Aa T dh. ., A _ER ,
{x'}‘}:ﬂ Ib}. “?

which is well defined, for m, >0 . It has a unique limit (in the sense of

convergence of moments or generating functionals), as A1 'E¥f2 . This

limiting Gaussian measure is denoted d. {2} . It has mean 0 and covariance
1]
.}

c determined by
A
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c;l = cug® eurl +m, . (4.12)

A

Example (G) is the lattice approximation to be used to construct the Higgs
models in the continnum limit ; see Sections 5,6 and paper II. Clearly, any

value of the electric charge, e , {8 possible i{n example (G).

4.1 Strong Diamagnetic Inequalities.

In the proofs of the following results it is convenient to choose

polar coordinates for the Higgs field -t-

ig

#x) =r e *,0 €[0,2m), r er"

Then
W ieah
a gl ® 2
Slotetao- ey
--""_2 r cos(-§ + eadh + :|'+!-w;2[1--|-E {4.13)
e" T r, cosl-g, sy T Oy L r:r] . .1
We propese to consider a general, non-translation invariant action

ﬁ"(Ei.tiél' - - Z e r_r_cos(-§_+ ead 48 ) (&.14)
A <x,y>ch ¥ * ¥ x xy ¥
where [:“] are arbitrary non-negative numbers. At each site x € A we

are given a finite measure dp“{rHJ' on E+ with the property that

2
fiu dpx{r'.l < = .

for all o 20 and all x € A . (This condition is somewhat stronger than

necessary).

Let 3A be the set of all sites in Jf = 5 I:,zm with a nearest

neighbor in A , and A= AU 3A



W ¥ - g
Given an arbitrary set JXc a Ry, o we set = {:# : x € Al

ne: &g {o, x €1} . Also A= E-‘tw:*‘:u.y }:uﬂr”‘L

Given a function G?L{rl,q?:i} we let Eﬁrkuﬁ.ﬁ} denote the partial
Fourier transform of ﬁl in the variables H?L i my are the variables conj-
ugate to B}L . Furthermore, E?k{r?f“?f‘!':. is the Fourier transform of G4

di
in el and f‘., , with a the variables conjugate to .-j'... .

1f E:IIL- Gan'aﬁ'aarf-ﬁ] only depends on ri.ﬂ.' “aﬁ. we say that

Ga}. is a boundary condition. We define

niig;i;n]
E -l.’c G; M lf jﬂ. dp-xl:l'ulﬁ e Glirl.aﬂ,y . (4.15)
We add some examples for the -l:hu-i-l:t of dph . B sy * G ¢
lf'"'h,ﬂ;:2 -n""E:h,r s 15 r ]
dpxlirl - @ e de .

with dr the Lebesque measure on E+ s B —> h“ a real-valued function
on A, 1 >0

gx? - au'zfl-hf_:?] , with £ @ < %,y > —> fx:r a non-negative func-
tion on the bonds of A .

E.5. m,  +m g

Gy = ]T 1-:_:-Jl e 4% Gyp + where G, is a function imposing

- x, EXC A )
lattice Dirichlet - or Beumann - or periodic b.c. at 3A . For these choices,

Eh‘.'i,{:;‘._t‘} represents unnormalized Green's functions of a Higgs field in an

external vector potential (resp., for X =@§ , the generating functional of

gauge-invariant, unnormalized Green's functions), and the usval partition func-

tion of this theory iz obtained by setting 1.:;_ - 'g_ =0 and X =¢
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Theorem 4.1 :

(1) 1f |IE:IIL {rh.'nﬁ.!t}! EE}Lrﬁ'nﬂ"E} then Iihfi,ﬂ;ﬁ}l < Eﬂii.ﬂ;ﬂi

(strong diamagnetic inequality).

{2) If cﬂ

in particular, (1) helds,

is non-négative them Eji,ﬂ;r&} is of positive type in HJ; !

Remark : It is easy to check that, in the above examples, the hypotheses of

Theorem 4.1, (1) and (2) are sacisfied.

Proof : We apply a "duality transformation" : Let P!?{ L. ] be the
Fourier transform of nxp[¢H rxty cﬁu{a ]] in the variable ny EF -8,

By power series expansion of the exponential one verifies the well known fact

that

F&¥{r3r¥.nxyj'? i ; (&.16)

The Fourier transform of Exp[txytxr? ¢nu{B!y + nnﬁuﬁl] in ny - g! -8, 1a
clearly given by
iunﬂxyul!

Fi?(rxr?:nxﬁl [ ; (4.17)

If <x,y > points in the positive p-direction we write nH(x) for

fyy Let & be the unit vector in the positive |-direction. Then
w=1
nlx) = T nuht}lgu defines a vector field on the lattice, We define
u=0
w=-1
(div n)(x) = v nM(x)- “1x-¢ ) X (4.18)
=0

Given a site % |, the 2v + 1 functions exple r r cos( + gak = 3

Plegyryty cos(, xy " 0’
with v a nearest neighbor of x , and Gh(rh,qh,i} depend on 8, -
Representing them by thelr Fourier series we obtain a facter

uxp[—lgxlfﬂiu nilx) - mxﬁ] and we can do the H“-integral explicicly :
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—.
1 m ) H-iax[{div n){x) - nll
Zn H:‘.

* Srdew ) (x),m,

This shows that

1: G; lu..'l [IIA dnﬂf‘r ) }__ ‘"- i “Er:r nm'.'!

nyl L

LuunH (4.19)
¥ XY .
gt Blrgompshdy ¢ 4 Scaty R x) ,m '

Therefore, using (4.16) and the hypothesis of Theorem 4.1, (1) we find

|2 4. 68| "-:] t-ll-ﬂdp"& "'n m {Irrx 1_!':1#{':'? Ty
] i'l- ] d

fean

"Hl" xy
x|e I(6Cr g, ms; =1 TI' “:m 2)x),m

-I— dnﬁ&xj—rz Tll- Fx}r{rur i“:nrl',l".'

xE A n,nh{:n‘.,:.r}fzﬁ. y

X E{r}:-ﬁﬂ} 1‘!;1;‘ E'{uii'.T n){x) L™

f _IT dg_ -.t (= <;4;0) ¢ ;
- dp r_le— @ Gqir+,85,0
A x"2m A AT~

which completes the proof of (1).

iean h,;

To prove (2) we note that, by (4.16), F ErIrF,n F]' -

is of positive type in ""1_? . Since, by hypothesis of (2), Gﬁirl’tl'.!-} is
non-negative, Eﬂrwna,ﬁ} is of positive ctype inm r& ; for all « ,'m}‘

Since a product of functions of positive type is again of positive type, (4.19)
shows that EJJE__.E;*:I is of positive type in !; « Finally, each functiom

f{A) of positive type in A satisfies |£(A)]| < £(0) , so that (2) implies (1).

Q.E.D.
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Remarks

(1) In the proof we have only used that n:pi:lyr:rrculiaty}} is a function

of positive type in EET . Therefore Theorem 4.1 remains true 1f we modify the

action J}}:;i,ﬁ} in any way that satisfies this constraint. Iqulrtlcullr. we
i -&

A
may replace each factor e:pi:lrr:rycuufay # tnhly-ﬂx}} in e by
T el-SLEX(p + + 21 k%) (4.20)
woez 2 Pt = R ' ‘
¥

thus obtaining Theorem 4.1 for the Higgs wodels in the Polyakov - ¥Villain

approximation which is considered in III.

(2) Theorem %.1 and its proof can obwiously be extended to a large class

of lattices.

(3) We feel that the method of proof of Theorem 4.1 can be extended to

non-abelian Higgs models without fermions, but this is not investigated here.

Let duﬂﬂﬂi be a normalized Gaussian measure for the vector potential

ol of co-

A with mean O and covariance € ; We say that a sequence [E“1

variances is increasing iff O 5Z¢“ ﬁ ¢“+ ; in the sense of quadratic forms,

L
for all m = 1,2,3,... »

Corollary &.2 :

Under the hypotheses of Theorem 4.1, (2)
I{e,C) = fzh'[f_:ﬂ;r{t_} du.(A) ’

where e {s the electric charge, is monotone decreasing in C . In particular

I{e,C}) is monotone decreasing in |n] ; iand for C = Em + gauge terms, with
A

c. given by (4.12) and a gauge-invariant -Gh 4 I(e.ﬂn ) is monotone in-

my "
creasing in the mass =, of the vector potential.



Remark : This result also holds in Wilson's and Polyakov's lattice theories ;

i.e. 1if hi"l is the action for the abelian gauge field introduced in
(W), resp. (P) and e =1 in .l.: then
=2 ¥M -2, ¥YM
-B, A -§_ A
o Aa Gq-1 - o Aal
[<e IL::-ﬁ] < Z,(c,GAde g

is monotoneé decreasing im Igﬁl . This is an example of a general class of
monotonicity results which follow from Theorem 4.1 , (2) and correlation in-

equalities of [3§ .53]
Proof :

Since I'{.E."G;ﬁ} is of positive type in A (Theorem 4.1, (2)) it has

the representation
i A

Z .(c.G;A) -fdu;ﬂ{m} 1T e ey xy . (4.21)

i Y ex,y>
where m is real-valued, and di.‘“ is a positive measure. But

— i A
I i e Txyxy dy(A) = exp| - %{r‘l..':g}]
TE¥ -

is monotone decreasing in C . This prowves the first part of Corollary 4.2 .
To prove the second part we set A" = eA which makes “:‘Eﬁiiﬁ" independent

of e , (provided normal eordering is independent of e , which is only pos-

sible if a > 0 ) See (4.14).

We note that r'-.;.‘l has méan O and covarliance nzﬂ . Hence
2
I{e,C) = 1(1,e"C) 5 (5.22)

Clearly e2C 1s monotone increasing in |e| .
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Finally, we know from Theorem 2.6 (see also Scetion 5.1) that, for
G?s gauge-invariant, Zﬂig.ﬂ:‘y is gauge-invariant. Therefore gauge terms in
the covarianmce € can be chosen at convenience, i.e. I{e,C) is independent
of gauge terms. To prove the last part we may therefore choose

el

2
oy - E'uu{ -8 * “.h} ;

g0 that E_ is decreasing in = .

A Q.E.D.

Next, we recall a few well known properties of functions of positive
type : Let F(x) , W{x) and H{x) be functions of positive type on ‘HH

Then Wix) Hix) is of positive type, too, and
|fd":t Fix#a) W(x) H(x)|
- !Id“p uipa ;{p](i » ﬁ”p]l

< Ja® Fepy G * R)(p)

- [ a™ pex) W) 1) ; (4.23)
Let
1 '..IEI
-<a
F(A) = ﬂ- e & Pa eup{-—{ﬁ.ﬂn f__]'l ;
Pc X
where

Xz, a=(a 1

xy <X,y >C K ?

and Qu is a positive seml-definite quadratic form.

WA) = exp[- % (A,Q A)] ;

where Q is a positive semi-definite quadratic form ; W is a Gaussian which

fixes a gauge. The "unitary gauge™ for a massive vector field corresponds to
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(a0 = 5 R Y

<iysch X

Another example is the "Feynman gauge" :
Q=6 (-4+m)-Q 30
LV A o ’

Clearly F and W are of positive type in A , a well known property of

Gauvssians with mean 0 , and

Hl','._P;:l = 7 E‘E_.,G:}uj

A

is of positive type, by Theorem 4.1, (2), for E;J'LE 0 . S0 we may apply in-

equalicy (4.23).

Given a bond < x,y > , there are 2(v-1) plaquettes,

Fl.Pi....

Pi are in the same plane, i=1,...,v-1 . For a functien h : P—!-hp E R

=y with < x,¥y > as a common bond and such that P, and

L]
u-l*Pu—l i

on plaguectes in X, we define

(6h) = h_ -h_, +...+h -, . (4.24)
= 1;1 Fl Pu-'l Pu—-l

Applying (4.23) we obtain

[easen) weay weay T

da_ |
<x,yrch W

< J p(a) w(a) nea) dA ; (4.25)
iz {:I.r:,- =X ¥
But
1 5 w2
. a¥Bh, -3 “h
* !'g]'. e PLX: 40
F(A + 6h) = e e PLA)

+ 8w -1/2n)l3
i

E Fii] i (4.26)
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Since B {is gauge-invariant, (4%.25) and (4.26) provide an a priori upper
bound on the interacting expectation of exp + Bﬁh] which is independent of
the gauge chosen, i.e., holds in any gauge, and of the coupling constants of the

theory ; (see also Sectiom 53).

The same method supplies an upper bound on the interacting expectation
of
W
expt: .Ej ahA ]
g xyCxy
(which of course does depend on the gauge chosen) :
e+ ooy TT da__ |
Lt -'E' N{xhyx‘l ]{F

< [tra H(ﬁ]{n. an, . (4.27)
F.}P}C?h

Upon normalization the bound obtained from (4.27) is still independent of the

coupling constants., We will not use it.

Suppose now that @ is translation-invariant (up to a boundary con-

dition) and strictly positive. Then, for a suitable choice of C and of ;ﬁ. i

a¥ 2 1
=1 =7 B, 74
duglA) = tim 20 (] e ) e ~ dA_  exists,
Rz Pc i <x,y>ch

{in the sense that the characteristic functionals and moments converge). We now

get from (4.25) and (4.26),
Theorem 4.3

[ + Blh)
J’ &= ['t!' zh{Ea'G‘l'-ﬁ} dl.]c{r-&_}

1rz||h|',§
<e ‘[Eﬂﬁz,ﬂiﬁl dUtLQ] a
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Remarks
{1) Let rzE'E:I - E n“r:g: with y a real-valued function omn A .
xEA
In the definition (4.14) of ANwe set 0, = a2 . and we chooss the dis-
tribution
w 2
-a'r
dpx{r] =g xBx dplr) '

(with dp independent of x ). Furthermore Gl- GM. is a boundary condition
with E-‘:! >0 . Finally, <— 2> denotes the normalized , interacting
A= 'lﬁ e,
expectation determined by duﬁ{ﬂ- and the above choices for hH..{‘E;,_t;,&] and
£
de - dp,liﬁ = 0} . Then Theorem &.3 contains as a speclal case

+8(h) (g 2l g
™ e - L L >

<8 i < < Ay (4.28)
In Section 6 we shall show chat, for g >0 ,
2(g) 2(g)
<e :‘*ﬂg <e }Aﬂtn-m (4.29)

i.e. the expectation of exp rz{ﬁj is bounded above by the ome for 0 electric
charge, provided Wick ordering can be chosen to be independent of e ,

(i.a. a>0).

(2) Clearly, Theorem %.3 and (4.28) - (4%.29) represent a stronger version
of Theorem 2.11, restricted to the abelian case. (Of course, the proof of the

latter applies to the present case -see Section 5 - but yields weaker bounds).

(3] Obviously the methods used to prove Theorem 4.3 canm be applied to the
abelian gauge theories obtained from the actions (W) and (P), since those are
alsc of the form - fog F(A) , with F(A) of positive type. This cbservation
vields a priori upper bounds for the expectations of a class of functions of
B . Since we shall not use them, we leave 1t to the reader to write them

down explicitcly.
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5. Gauge invariance, Osterwalder-Schrader positivity and gauge-variant Green's

funccions

The set up in this section is the same as in Section &4 : We restrict our dis-
cussion to abelian models, although some of the general statements in 5.1 and
5.3 extend to non-abelian models. The action Ar{naz:&} is defined as in (4.14),

and the gauge field action is one of the actions introduced in (4.8)-(4.11).

5.1. Gauge-invariance

Gauge transformations are defined by (4.4), (4.5), i.e.
1
A x) —> Hﬁ{xl = A (x) - 23 X)) g (5.1)

Let Ehu] be a family of bounded, strongly decreasing functions on the lattice

with the property that
hud.-ﬁn y A5 k> = . (5.2)

For purposes that will become clear in I1I (convergence of the lattice approximation

as a%0) we define a gauge field ""?‘11 i with uleraviolet cutoff x by

A (x) =(h *A& )(x) (5.3)
T 3 XU

with the aim of showing that gauge-invariance and Osterwalder-Schrader posicivity
can be discussed in the presence of certalnm uletraviolet cutoffs ; (see alse Section
6) . Furthermore we emphasize that all results of Section & are still valid when

.-.“".. is replaced by .‘.".‘“i (The verification is trivial).
Definitions (5.1) and (5.3) give

" LA
'{‘u.u "E'l-lpﬂ e a||-I“:IN- e ‘3}

1
A = b
= - 3 X (5.4)

1
l‘.f“ oy al.l'E}H



By Lemma 2.1 and Theorem 2.6 we have
1
Ehli_g,l}.fﬂ.'! - Ifi'u'f* ":a'..ﬂg} (5.5)

(gauge invariance )

when E}'L is gauge-invariant. More generally,
" 11 = l
I.’;{i*u'f-x} - IAE'E,G fu . a'-l'iu:' % (5.6)
with 6% the gauge-transformed of G .

We note that if G-JL- GEu‘I. is strictly localized near 3A , for all A

v
1/2

result one shows that, unless gauge fixing terms are added to the action, the

and Y 18 a local gauge transformation then Gt e g , a8 Atazm . As a
expectation of a lattice gauge theory is automatically gauge-invariant in the
thermodynamic limit. Seealso Guerra etal. [11] and Section 2.2, Mext, we discuss
the consequences of (5.5) - (5.6) for fully interacting abelian lattice gauge
theories in case (G) ; see (4.11). Let duc%} be a Gaussian measure with mean
0 and covariance C and let dy(y) be an arbitrary probability measure for a

random field ¥ ¢+ X E IET” , With values in R . We define

13

1
= -ﬁ B a-E L
and

(5.7)
dufA) = dpc(rﬁﬁdﬂﬂ .

Let B be the cury{ of A , defined in (4.3) which is gauge-invariant, i.e.

B=8 . Then we obtain from (5.4) and (5.5)
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(e ®z (e 68 )
B(h)
- [dpﬂtpﬁ_.}du{;gj e e EﬁL{E,G;’-&!}

Bn) : 1
- iﬁuﬂiiiﬂu(ﬂn Enii.ﬁ,ji o BII}

-jduiélt“‘h}z {c.G;__-F:;“} . (5.8)

A

These {dentities extend to the expectations determined by the actions (W) and
(P) and (mutatis mutandis, x = = ) to the non-abelian case, The Gaussian ex-
pectations for f}‘_ are the ones of primary importance for II. See [1?] for a

discussion of the Faddeev-Popov procedure in non-abelian lattice theories.

We now consider the case vhen dv is a Gaussian measure, d"'l' » of mean

0 and covariance F >0 . Then du{é.’l - d}%{i] s with

C=0C+ aFa* (5.9)
and
'“-E-}
(aucre™ 2 (e,0:8)
o fo072e%avg,F 2% g)
(A-e" L3y (g)

i

rjducti}dul,(ﬂa Z,(c.GiA, - Say)

2 . A -

For g = 6h , see (4.24) , A(sh) = B(h) = B(h) , and (g,3Fa%g) = O

Let E“ bt the"unitary” covariance given by

E;l = (curld)® curd + mi m, >0 (5.11)

AY A =
sée¢ (G) ., Let F be some quadratic form on !.E{lﬂrnl such that

EI-‘ . [.‘u + aFa®  ig non-negative . (5.12)
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By writing F as 1"1 ~ l"2 , with FI. 20 and PEED , and applying

(5.10) bwice, for 1"1 in one and for !2 in the other direction - with suitable

cholces for C and E - wit find

Theorem 5.1 : If G?L is gauge-invariant
Alg)
j‘a._.fnwa z,(e,GiA)
Alg) (5.13)

. -ua’Ee?Ig.aFa*s} ~ ;
J.f- Id'l..lcr ':rﬁ}. filcl.&“} ]

in particular

B(h) B(h)

gd%u{i}n Zili,ﬂ;ﬁu) = S‘dq_tr‘:_t}l Z‘FE’E,G;‘&“} . (5.14)

Remarks :

(1) (5.13) shows that, in a gauge which deviates from the"unitary' gauge by a
change in the covariance of A , the Yghost degrees of freedom" of i& hawve

Gaussian distribution and decouple.

(2) From (5.14) we find, using an interpolating covariance, ﬂ-tll:“+{1—n]EF ,

for which (5.14) remains clearly true, by differentiation in =

{Eu - GF} Z‘{E.ﬂif_‘} =0

(x,y) 1] &
T Muﬁc.'l Muﬁr]' ik

This follows alse from the infinitesimal form of equation (5.5) :

auaﬁ?f Eﬂfﬁl‘:r,ﬁ’;j_“:l = : (5.15)
|5

This identity is a summed wp version of the Ward Iidentities. (It is not hard to
see that the vsual Ward identities, in the form valid on the lattice, can be recov-

ered from (5.15) to all orders in az}



e

(3) TIdentity (5.8) and Theorem 5.1 permit us to choose a gauge for A adapted to
the problem under consideration. In the construction of the limit a0 , in two
dimensions, and the existence proof of the continuum Higgs model in two space-time

dimensions, see II, we choose the gauge with covariance € given, in momentum space,

by
C (k) = (& - —k“k—"”—}{k’ +ut) L (5.16)
Wy L kIﬂI A - ¥
F

The Green's functions of all gauge-invariant fields computed in the gauge
given by (5.16) are identical to the ones in the"unitary gauge. This, of course, is
shown by proving the convergence of the lattice approximation in the gauge determined
by (5.16) (corresponding to a particular choice of F in (5.12)) and applying
Theorem 5.1. The covariance (5.16) has good power counting properties and is there-
fore convenient to prove that the limit ¥ —= o (removal of ultraviolet cutoff)
exists in the continuum limit. It also permits us to discuss the limit nﬂﬂ

{using Corollary 4.2, for a > 0) which is painful when using the "unitary" covar-
Lance.

5.2 Osterwalder-Schradeér positivity

In accordance with our parametrization of the general gauge fiald B by an

auxiliary field w in Section 2 of Part 1 we introduce a field g

- B [ﬂxih‘l: E.Erfl b E B“ , {see Sectiom 2, c) ,

(2.14)-(2.15)). This is a real-valued random field in terms of which the gauge A'tr

is given by

-l -
L e R (5.17)

The gauge covariance properties of o are given by



e |

— 3 1
u"""{ :.}r - ﬂ:'{ .y } ukp-l:: X,y :;. ' 'r'r‘ - ts.l!-}

Note that (5.17)-(5.18) are consistent with (4.4)-(4.5). Let m be a hyperplane
{or a pair, in case of periodic boundary conditions) lying in between lactice plames.

E.g. nm=[x: x° = 0] . Let r denote reflection at m , and

E' ﬂxi.: Xy > = u'fll*": CE, 0¥ =
(5.19)
8[F(g)] = Flg a)
Lemma 5.2 :
A .
Let F{ﬁhyl be a function of positive type in - Then
(1) a[Fa_ g 1= F(A___) ry) = Fl-AL,) o and
(2) for y=x
I-""":l::.r}| ” Hu}r,{: N, ¥ > 2 II:l"l.*‘-:' X,¥ }j
-1 iph
- rdm{P}e Po,< %,y “e S
'lidqﬂpiE Pﬂ: S XY > [ Putiﬁ x;¥ }] 1
for some non-negative measure dplp) :
Proof : Since F is of positive type, it is of the form
Flx) = Jdglple™ | (5.20)

for some measure dp O . Hence

-ipA ipA
'E[F':ﬂ“r]] = qu;[pj.. Lxry -IMPJE LHLY

= F{-A ) = FiA Yy

EXTY ERTY
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(2) follows from (5.19) and (5.20) .
Q.E.D,
Let A be a bounded subset of lﬂ'l""” symmetric with respect to m
i.e. A= AU A= J'H_ Urd . Let ﬁﬂ( be the algebra of all bounded, cont-
+)
fnuous functlons of ..:H} - {i{u}'l-“ € ﬁ“} and -EH-? - {u':,h]u € ‘li{+}lh Eﬁ;

Let 'En be the lattice vector perpendicular te n . Let the ultraviolet cutoff

functions hu be of the form
hH{:t "'?u”'u.:jﬂ:' for all » (5.21)

f.e. thare is no cutoff in the direction perpendicular toe w . Suppose the a

priori measure dpr.r.'l y B |ih:} s is independent of x and assume that the

boundary condition G is reflection positive [lﬂb.-ﬁi] in the sense that

ah

<Fg[Fle,,> 20 , forall Fe E‘,.h' ' (5.22)

where =< = ::q is the uncorrelated expectation defined as im (2.21). Set

M -
'“"ﬁ i_ﬂ.u + ﬂjﬁ.’!.ﬁ“} »
with h::: defined as in (W) or (P) (see (&4.8), (4.10), resp.) and hﬂ. as in

(4.14) with

c = {':H:r} o a5 Ganstint -
Let
AL -5
< F }A"‘ =g f’a.fu < F e Ga.‘u =8 ; (5.23)
A %A

for arbitrary F € ﬁfh v
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In case (G) (see (4,11)) we define

A 3711
< =[ Ed“::u':f.‘.:' Z,(e.C,0iA 0]

- 2
An %A "
A [e-8:A )
Ji_n-.ruln-ﬂ H
i jdut“{_&} o< o e Eaﬂ:’ﬂ' i (5.24)

From Lemma 2.2 and Lemma 5.2 we¢ now obtain, by the arguments already used in the

proof of Theorem 2.8

Theorem 5.3 : (Osterwalder-Schrader positivity).
In all cases, (W), (P) and (G), and under the hypotheses stated above,

<Fo[F] > 20 , forall Fed

05, A

Remark : We emphasize that property (5.21) of the ultraviolet cutoffs hn is

esgential, (If it were violated Lemma 5.2 would not be applicable, and Theorem 5.3

would be false!).

inw.

Lar @G be the gauge-invariant subalgebra of i : Combining Theorem
L 76 Mo

5.3 with (5.8), resp. Theorem 5.1 we obtain

Corollary 5.4 :

Under the same hypotheses as in Theorem 5.3, the inequality

inv.
i} 3
A

< F alF] }.n.“ 20 , forall FEg¢
A %A

holds in every gauge, for all x 5 m . for all a >0 .
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Remarks :

(1) If there are no Fermi fields in & theory amd the action has only nearest
neighbor couplings (of the general form studied in [151]1. in particular for the
models studied here, Theorem 5.3 and Corollary 5.4 are also true for the case

where m is a lattice plane. (A proof can be found in [18a7, in a different context).

In this case one can define time O-fields and a "Schrtdinger representation™.
{Moreover, the lattice theory has the "Markov property"”, even in the thermodynamic

limie).

{(2) The standard boundary conditions (periodiec, half-Dirichlet,...) correspond

toa G which is RPF, in the sense of inequality (5.22).

A

(3) Corollary 5.4 is a basic tool for proving Osterwalder-Schrader positivity
of the gauge-invarfant Euclidean Green's functions of the continuum Higgs model

in two space-time dimensions (in the limits s —> = ..|'.|.:='It‘z ). See II.

5.3 Gauge-dependent Green's functions

There seems to be some amount of confusion about gauge-variant Creen's
functions in lattice gauge theories and about the rdle of the "global symmetry
group"” associated with a gauge group of the second kind which might juscify the

following comments.

Three facts, not too surprising in the light of the previous sections,

are namn:thJ ¢ (we do not claim to be original here)

(1) A gauge group of the second kind is not (or only accidentally) associated with
a physical, global symmetry group : If one adopts the point of view that all the

physics of a gauge theory can be éxtracted, in principle, from its gauvge-invariant
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Green's functions, this fact is obvious. More significantly, in a gauge theory
with macter fields (e.g. a Georgi-Glashow model) particles do, in general, not
form G -multiplets (G is the gauge group). This remains true in theories with
instantons : Such theories have in general particle multiplets which are not
classified by the representations of G , (the instanton corrections to the mass
spectrum in a model like the Georgi-Glashow model are small), and the instantons
"restore the symmetry " only in the sense that an unphysical (gauge-dependent)
order parameter vanishes which was formerly believed to be non-zeéro.

These statements can be tested rigorously, in principle ,

for lattice gauge theories. We shall further discuss them in III, at least in cthe

abelian case.

{2) 1f, in a lattice gauge theory, no gauge is fixed (or, equivalently, one inte-
grates over the group of all local gauge transformations) then, of course, the

expectation of a gauge-dependent observable (in the thermodynamic limit, and for
arbitrary b.c.) is equal to its average over the group of all local gauge trans-
formations, in particular the usual gauge-variant Green's functions vanish ; see

also Guerra et al. [11].

fn the other hand we know from Sectiom 5.1 (this remaim true im the non-
abelian theories, [l?]] that one can fix many different gauges, by adding terms

to the action of the gauge field (recall the measure dw(y) ). Once a gauge is

fixed and the integration over the group of local gauge transformations has
thereby been reduced, gauge-variant Green's functions do in general not vanish,

at all?

For example, let the action of the gauge field be defined as in (W) or
{(P) and choose a suitable gauge-fixing measure dw(y) - see Section 5.1 . Let

< = }ﬁ . G denote the corresponding interacting expectation with boundary
TTRTAA
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condition EM . Then, for suitable subsets X , ¥ of A with [11 = |'f'| ,
< T #(x) T Hﬂ > .
xEXc A y €Y A “*""Gat

This i{s quite easy to check e.g. im the axial gauge obtained by the following

pauge transformation, ¥

""y"“x-“r}r " with :|.r--|'.-:+'i'=|I
duly) = 6 (y )d .
T 8o 04,

Then one can use & cluster expansion to show that gauge -variant Green's functions

of the type defined above are non-vanishing, for suitable coupling constants.

It is of interest to consider non gauge-invariant boundary conditions

ik

follows :

. For example, Gah may specify the field configuration % on 3A as

#(x) = iu s X EBA ; (5.25)
where IIir is a positive number.

After a gauge has been fixed it is a meaningful problem to analyse the unphysical(obviously

gauge -dependent) order parameter < ¥(o) > . G . In fact, it is most inter-

esting to analyze whether iif:E.“ < §lo) :‘].-l-l viGy, with Em as in (5.25),

vanishes or not, (depending on the gauge chosen by w).

Suppose, the a priori distribution dplr) for the Higgs field is strongly
peaked at r = *u >0 , the boundary condition is as in (5.25) and the gauge
field is abelian. In dimeénsion w = 2

Lim < (o) :’u = ; (5.26)

W v G
At aZ, aA

in any gauge [51]. but, for three or more dimensions, we conjecture that



N |

tia . <#le) > T W (5.27)
Atz , Mo va Gy i

for a suitable gauge v , (with indefinite mecric). This conjecture is related to

the fact that the three or more dimensional continuum abelian Higgs models have no

instantons, whereas the two dimensional model has ; (the Nielsen-Olesen vortices).

Using a cluster expansion (see [17],11I) one can prove, on the other hand,
that when dp is strongly peaked at © = O
Lim < §(o) > = 0 . (5.28)
1/2
for "all" b.c. Gan. and in an arbitrary gauge. Hence, a proof of (5.27) might be
suggestive of the existence of a Higgs —> scalar Q.E.D. phase transicion (at least

in dimension & or more).

{3) It should be pointed out that there is no contradiction between (5.26) and

the fact that, in dimension 2 or more, the photon is massive and there is a standard
Higgs mechanism in some region of the coupling constant space, [H‘]. Moreover, the
fact that fractionally charged quarks are confined (see Theorem E, Section 1.2)
does not at all imply that the photon is massless or that the usual Higgs mechanism

breaks down! See also II1 and [231 F
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6. Some mew correlation ineéqualities for abelian Higgs models.

In this section weé prove new corrélation inequalities of the Ginibre
type [ ]]] vhich we apply to prove bounds, monotonicity properties and the
existence of the thermodynamic limit for gauge-variant and - invariant Green's
functions. With a view on our applications to the continuum Higgs model in
two space-time dimensions presented in paper II we consider the action (G) for
the vector potential and, as in Section 5, we impose an arbitrary ultraviolet

cutoff on the gauge field in the matter action, defined in (4.6), (4.14).

Our inequalities are a synthesis of the ones of Ginibre [33} and their

extensions proven im [3&,]5].

For the action (W) Guerra et al. [117] bave pointed out that the Ginibre
inequalities apply and vield the existence of the thermodynamic limic. For the
action (P) correlation inequalities and applications to e.g. proving a conf-

inement bound for the U{l) theory are due to [53], based on [35}.

In this paper we explain the basic method and prove the most important

inequalities. Extensions and applications appear in papers II and III.

6.1 Definitions and the main inequality

We consider an arbitrary finite lattice A , e.g. & bounded subset

of BETI.? . We use polar coordinates for the Higgs ficld L]
I.'Ex
#x) =re "0 €[-2m2m)yr €R, . (6.1)

for a11 = € A . Hote that the angles B: vary over twice the circle with
distribution given by the Lebesgue measure on [-En.zn} ; the distribution of

L is given by a finite measure ﬁl{l‘x} » as in Section 4.1. We set

T [r:“-‘IEE!‘; ri' [H“lx £ A
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The matter action is still defined as im (4.14), {.e.

M
hﬁtii!jéj -

e, rr cos{-f_ +A  +8) - (6.2)
<x,y>cA Xy X ¥ X Ry ¥

where <x,y> 1is an arbitrary pair of neighboring sites in A

el'.l" 2 o, 1:? = gg hﬂ:"rﬂ. , with ® an arbitrary ultraviclet cutoff ; see

Bection 5 , (5.3).

Furthermore, duttil iz an arbitrary Gaussian measure with mean O

and covariance C 2 1

The total expectation is given by

<PPECF>, ,reﬁﬂ (6.3)
A G
A aA
vhere -r:—-r-}H is definmed im (5.24).
A .G
A TBA

For convenlience we choose

' (6.4)

i.e. we Impose Dirichlet boundary conditions en % , but more general b.c.

can be accomodated in Theorem 6.1, below ; e.g. periodic b.c. whem A is

W

a rectangular region in 'EU'E

Let X be a collection of real variables. We define E:: ke be the

L

multiplicative, positive cone of all polynomials im x with positive coeffi-

cients. let n = [ni-!: € h.m.... be¢ functions on A with values in the in-

tegers, and f = [{Ir]fl.}':ﬂ:h y Bs... real-valued functions on pairs of

neighboring sites in A . We define

ng +f.AmTna + 5

R A :

x *F cxysep T



- 79 -

For F and G in ﬁﬁ we set
CFREom<PFEi>-<F22=<6G>
Our main inequality is
Theorem 6.1 !
For all P and Q in l'.'.l_ and n,m,f and g as above,

< P(r)cos(n.g + £.4) ; Q(r) cos(m.8 + g.K) >z 0 )

Remark :
The trigonometric identity
k Lk T
Teos a, = (51" 2, cos( e .a.) ' (6.5)
. i SR
j=1 [ej'l-
with 'j =41 . 4 1,2, ok 5 yields obvious generalizations of the inequality

in Theorem 6.1.
6.2 Proof of Theorem 6.1

Following [33] we introduce identically distributed duplicate variables
5.'.5.:'4,’:;.5‘,1 and §' with expectations <— > and <—>' =< — 3> , The
product expectation <—» & <—>' {5 henceforth also denoted <—3> . We then

define new random variables -E'-'E'-E'JE'.-'.E. and & as follows :

A'hy & I:I':4:3||' - E:|'|::.r g {A}qr # '1'1:3 = Ex:p}
(6.6)
' = ] . =
Var Ty TRy By Ty R '
and the linear maps @ —=>n , § —> § are identical to the one taking A

te A and A' te A' . The transformations (6.6) are the composition of am



il

orthogonal transformation and a dilation by a factor 1/Y2 |, so that

Furthermore

rx-n:+i.: 2 r;-n:—.".“ » (6.8}
so that

o, = -I'E-I{rx +e)z0 . (6.9)
Finally

o = =8 g = e, +b_ - (6.10)

All functions ("observables") in G, , G' are periodic in H , resp. §'
A s X b

with period 2 . Therefore

1 . .
7 Y -2n,2m O ¥ _2nr, 2m (8, 790,98,
B L CR N TR LU S (6.11)

a8 conditional expectations on ﬁﬁ-ﬂi ﬁh [33-_[ {i.e. vhen restricted to functions

of Ex,ﬂ; with peried 2o ).

6} B4 /Je_

,:;% Fig. 4
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We also set

Yoy = Ex Ty Y Ey o Yy T b F B, H G,
Next, we summarize some basic identities.

rr =g +b , whera

xy xy Xy

.xy = p!pr + A L bxy = g:ir + prlt " (6.12)
and

' ' wma =bhb ; (6.13)

Using (6.12), (6.13), (6.8), (6.10) and the identity

cosla + B) = cos g cos B + 8in q sin 8
we find

rxrr tna(—&l + i“! + El?} + 1']:_II':III EGH{—H' + ﬁ-;!, *+ H::r]'

. cos ﬁ, cos 1 h:y sin xxy sin TET : (6.14)

Hence

H % H . (]
exp "‘ﬁ{f..i.!.'i] EXp "'in"rt 'é.}

= 11 exp 2¢

cos cos ¥+ b i in ¥ . (6.15)
AL o xﬂy 08 » L B nxqr gin I.'I"]

ny[“ny

For later use we note

1-:\‘1.‘:'I cuu{—ﬁl + A:y + EIF.'I -r r;' EM{'H;‘ + 1::'.? + E;’

- 2"":3 Co8 '&}r co8 tw + Eﬂw gln xﬂy ain 1':“ . (6.16)
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Finally we have the general identities

P(r) cos(n.p + £.A)

= ?{E.}J}[cuu(n;c + £.a) cosin.b + £.8)

{6.17)
+ sin(n.c + £.q) sin(n.5 + £.5)] :
with T e , and
2k
F{L} cosl{n.p + £.4) - Pl:ﬁl:‘r'.'! cos(n.g' + £.4')
- Pn.l:..E.'E'.,'-' cosin.e + I+E} cosi{n.8 + f‘fﬁ] (6.18)

+ P;':.E.*},:' sinln.c + £.a) sin(n.b + £.B)

where Pﬂ £ E.-E'.'&_. g odd im &, , and P‘ E E,E.-}._, is even im E._ : (6.16)

is an explicit special case of (6.18). Hence, using (6.7), (6.11) and (6.15)

to rewrite < — > @ < — ' and then applying (6.17), (6.18) and {dentity

(6.5) we obtain
4 HL} cos(n.g + f.4) ; QI[L'.I cosln.§ + 5,,1] -
= < P(r) cos(n.f + £.0[Qr) cos(m.n + g.&)

- Q') cos(m.p' - g.h")] >

2 5 o "
22 2 M [ Gergen] a0l d
n'.L'.g :Eﬁ.[ elm) R 0030 '-'uz.:.%:“[ -J: ]

m Z¢c_a_ cos cos ¥
x du tg_}ﬂ'[faa ] N [« %% ey xy
1/2¢c xE€A Zn n{‘l.y}:h

2ce b sin gin ¥
“Cxy xy oy xy
! [ ] Pﬂ:i'.E.{E'lﬂ}

L

X [JE can{ni.g + fj.& - l:li %}][? :uul‘.nj-b + Ej.ﬁ - ':I-:F %]] . (6.19)



where we have writtem Sin g as cos(g - %} £ >0 1is the partition func-

tion, P
n
e

'LE e EE.E.']" for all E' ,E,E" {(here we use that A is mul-
Fr i —

o
tiplicative), and u:'r € [0,11 , for all }

How wae expand the exponentials. If we apply identity (6.5) to each

term in this expansion and recall that cﬂr g0 , for all <=x,y > , we see,

using the mulciplicativity of E.E.""' again, that there results a sum of terms

of the form
PI.'.." 4‘-.19:.':3.}_}[‘; t-ﬂ-l{n;.t + f:i'_,i = u; %}]

T T T (6.20)
X [i: cun{nj.b + fj.ﬂ - Ej ‘2—.'!]
with P.'-"i." 3 (3 ':.E.'lu v for all n".f" and "' . Hext we integrate (6.20)

over g, and B, 5 with the measure written out in (6.19). Clearly, this

integration yields

P =K P

e
‘-E
4
='-

=l

EC = (6.21
Bk, :

In order to determine the sign of the integral

T, BB O

we note that the measure d""u{“x'l:} = drﬁ-'x{ rxl'd?xﬂr;{} is invariant under the

substitution

r : ! i
1—}:*“,1‘“—}:'“ P

o, —>p, ?;,: —t -JL! , (see (6.8)) ,



for all = € A . Therefore

jn-].ETﬁdL&Enxilx]P {E’,h:‘

- (6.22)
-L]-Er;uxiuxal,‘”‘fig,hl "
where 5'! is the part of qP that is even in l“ . For all x € A
Clearly E’t £ c.E.‘l'-_. . Hence
5;‘ﬂ~1’ >0 . (6.21)
since p 20 , for all x € A , (see (6.9))
But (6.19)-(6,23) complete the proof of Theorem 6.1 . G

6.3 Further inequalities

The method presented in the last section and variations can clearly
be uwsed to prove many moré correélation inequalicies ; see also []3.51-1* Here

we report some important ones (without attempting an exhaustive lisc). Let

2 2 L
r(g) = r o A(f) = A E
u%:ﬂ.xa: {I.]I'L:;:f:ﬁ =y

Theorem &.2 @

For g0, f real and h an arbitrary complex-valued funetion,
e2(g) 1ACE) 2
(1) <o’ By Jatmy|® =<0

2
(23 . lg]el.ﬂ{ﬂ;r

xTy cos(-g, + EH? + 3}'} >320
2
(3) <o WA L PP sso

2
-r (g} A(f)
(4) < e e ,,l'ml.':||II nun{-rﬁl + i.'n‘.}‘ + EII!] »>< 0 .
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Proof : Inequalities (1) and (2) are immediate consequences of Theorem 6.1 :

2
First, .r {E} is a limit of polynomials im I[::r « Becond, one can replace
o HME) by cos(A(f)) , since the expectation < — 73>, |-lnl:l'u3|'|'lI and
rr cos{-8 4+ A +8 ) are invariant under the substitution
Xy K Ky ¥
A—>-A, §—>-§ . Finally, for real h ,
A = Lim L (1-cos eAh)) (6.24)
ebo
and for h = hl * 111E s
|atny|? = all.{hl:-E ¢ at)? (6.25)

We also recall identity (6.16) which one applies in the proof of (2).

The proofs of (3) and (4) are constructed by repeating the arguments
given in the proof of Theorem 6.1, but exchanging the roles of E and 45-.
“1: o TR ,:Lx . r::_, i+ +1x:' » 8 and ﬂ" 2 ;E and ﬂ' and noticing, further-

mote, that

2 2 2
(a) e (8) o g A UB) Jlp-A)p) , where ePANE) o Limte
of polynomials in E.-E.'é.- '
and
(b} the measure dug' ; defined by
-0, NGB,
8 et % ‘
duu[n:".."x'.l . . draxtrx}{axtrxj
is invariant under Py —> 0, .1.1 — —1“ .
Q.E.D.
let <=— > =« ol e when the boundary condition
A M
A’ BA
“-H..l\ is given by (6.4}, (i.e, Dirichlet b.c. for r!. . amd A is a boumded

subset of 'E'.IJ.I'" ¥ .
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The following corollary is an easy consequence of (6.2)-(6.4) and
Theorem 6.2 ; see [55,35] and II.

Corollary 6.3 @

2
(1) <ot (B IME)

is decreasing in the covariance C of A,
L-F2(8) ALD)

- > 1z increasing in C

2 2
(2) P Eg}!LhIEJ o T {E;Eg{f; "

:?E is increasing in A = A is
decreasing in A .

EBEemarks :

(1) follows from Theorem 6.2, (1) resp. (3), as explained in [35] {Proof of
Corollary 3.2) ; (2) follows from Theorem 6.2, (2) resp. (4) ; see [15]

(Sectiom &).

As special cases of Corollary 6.3, (1) we have

2 2
<of B (o) < <of B (e m0)

(6.26)

(e - (g)

<

>(e) p<e > (e = Q) x

where e 1s the electric charge, g 2 0 . The proof is obtained from

Corollary 6.3 by the substitution of Section 4.1, (4.21)-(4.22).
Among our applications of Corollary 6.3 in papers II and III are :

(1) Construction of the thermodynamic limit, including the construction of

Euclidean invariant, gauge-invariant Creen's functions satisfying Osterwalder-
Schrader positivity for the continuum Higgs model in two space-time dimensions
in the thermodynamic limit. (This is derived from Corollary 6.3 by the method

of generating functionals. The inequalities of Corollary 6.3 are not affected
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when r2 = |!|2 is Wick ordered)!

(2) Construction of the limit q&i o , including a derivation of the correct
O-mass (continuum limit) Feynman rules (possibly of interest in non-abelian

two dimensional Yang-Mills theories, too).

{(3) Inequalities between correlations in the §-vacua (see Theorem D, Section

1.2), 0< § <2n , and correlations in the standard § = 0 wvacuum.

The material of Sections 3=6 plays a rather basic role in our further
analyses of the abelian Higgs models, in particular in our construction of

the continuum Higgs model in two space-time dimensions.
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