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Abstract:

We present and discuss a lizt of important, mostly open proble=s in copstructive
gquantus field theory and equilibrium statistical mechanics the solution of which
requires (in rare cases : regquired) nev ideas going beyond high - and lowv - tempera-
ture expansions guided by standard (super-renormelizable end infrersd finits) partur-
bation theory about the critical points of scme ection or Hamilton funetlen, deyond
Peierls-type arguzments and their variants and beyond spin wave “Zeory end its rigorous
counterparts. This list of problems ineludes higher order phase transiticns, eritical
phenomena, long runée forces, gauge theories, quantu=m solitoas, ste.
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I... Introduction:
A list of important problems and table of contents.

I.1 Personal problems and acknowvlegements.

"Die Phantasie wird nur von dem erregt, was man noch nicht oder nicht mehr besitzi;..."
(R. Musil, Der Mann chne Eigenschaften).

A free translation of this quote might read as follows: Our imagination gets only
excited (inspired) by what we do not possess yet, or not possess anysore.

¥When I recently learpned this guote I felt it would be the right motto for these notes
to two lectures I presented at M M ¢ 4n Rome. First reason: In these notes I try
to speak about some proble=s in theoretical and mathematical physics vhose solutions
we do pnot possess, yet. At best we have some vague ideas of how to approach them or
some prelimipary results. My hope is that stating those problems in a precise way
will stimulate our imagination and eventually lead to significant progress. Gecond
reason: - I found those ten days in Fome very exciting not' only because of the inter-
asting news about M M ¢ I learned, but at least as much because Rome is a place
that inspires our imagipation by showing us vitnessea of some wvealth ve do oot possess
anymore ! an overvhelming variety of past culture and civilization sunken into history;
{end it excites ocur imagination by its wide wvariety of future possiblities).

Visitors of Rome face & serious problem. Unless they have a vast asount of time
available they have to make & choice:

1) They might Just en)oy themselves, relax and have Frascati, Espresso and good meals.
2) They might concentrate on seeing only some of the antigue, or the Renaissance or
the =modern sites.

3) They might rush through all or most of Rome and then try to lock at this or that
in more detail.

When preparing =y lectures and writing these notes I ves facing a sizilsar problem:

Should I relax and Just write a few pages of trivielities, should I concentrate on

one specific problem and try to discuss it carefully, or should T rush through many
ef the problems that excite me and look only at a few in some more deteil?

These potes are probably a bad compromise of altermatives 2) and 3). It might well be
that they shov nothing more than the author's ignorance, somevhat contrary to his
intention and presumably the one of all those people from whom he has profited in
innumerable discussions (or through correspondence): E. H. Lieb, 0. MoBryan, Y. M.
Park, E. Seiler, B. Simon, T. Spencer and others. They should have written these
notes. Apart from those people I wish to thank the organizers of ¥ M & for thelr
great work and for giving me the opportunity to pressnt ideas that are in part, to
say the least, doubtful,



1.2 The main thene and table of contents.

In these potes we are concerned with problems in constructive quantum field theory

end equilibrium statistical mechanics a complete solution of which requires to go
beyond - standard (super-rencrmalizable and infrared finite) perturbation theory absout
finitely many isolated (constant) degenerate minimas of some classicel mction or
Hamilton functlon and its convergent versions: High and low tempersture exXpansions,
Pelerls-type contour arguments, ete.; - super-reporsmalizeble perturbation expansions

or approximations (e.g. spin wave thecry) about infinitely many, non-isolated (but con-
stant ) degenerate minimas of some classical action or Hamilton function end its rigor-
ous versions: BSpin wave analysis and Infrared {Gaussian) domination, the Galdstone
theorem (and scattering theory for zero mass particles or excitations).

Among such problems there are

A. BRigorous treatzment of non-super-rencrmalizable ultraviclet divergences, field
strength - and charge renormalization.

B. Gauge theories in general, (meaning of gauge invariance in the presence of in-
stantons, infrared divergences, confinement, lattice approximation, ete.); super-re-
porsalizable gauge theories, such as the abelisn Higgs model in two space-time di-
mensions (which has instantons) or QED in three dimensions (existence, physical posi-
tivity, phase transitions, ete.).

€. The theory of (topolegical) charges and super-selection sectors; quantum solitons.

D. Higher order phase transitions, critical phenomena mnd infrared divergences, the
theary af critical points, interactions of very long range.

E. Secattering of charged particles interacting with the rediption field.

None of the problems A.-E. has so far been understood-not to mention solved-in a methe-
matically rigorous way. (The great importance of these problems for theoretical
physics need not be explained here).

To make it clear at the beginning: I have nothing interesting to sey about A. Al-
though mathematical physicists {Eehraderl and Glimm—JnfftE. Bee also 31have tried to
formulate this problem in a precise vay and developed some preliminery ideas, one is
far from knowing vhat the main difficulties are and one could view it &s a scandal thet
we still do not have any concrete ideas about how the predictions of the rencrmali-
zation group (e.g. asyoptotic freedom and its conversejore say also think of super-
symmetry) cen be mede into precise hints to the constructivists or; more embitiously,
into provable resultas.

I shall not say much of interest about problem B. either. (A preliminary cutline of

a program towvards constructing continuum gauge quantum field theories and some rircrous
L

results for simple models in two space-time dimensions were first given in ). What I

could say about B. may well not be of such interest and, furthermore, it would reguire
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L,5.6 Eni zzrily seml-rigorous

much more space. It is lisited to some partly rigsrous

T results on twe dimensional gauge theories end so== cacsents on lui:zize theories and
2%

on the meaning of gauge invarinace in theories with ipnstuntons Fzvever, 1 do went

|
to recommend the following references to the repds='s sttens iﬁ.‘.‘ »7210,11 112

1
13'1L‘15‘15'?T*EQIn Section IIT a few results are sisicied. In periizuler, we find

phase tranzitions and a breakdown of the Higes mecheniz- in s-zroxizeis models of gauge

theories with instantons; (for the 6 = w vacuwn): A raw res:z't =he: =ight be inter-
esting for icle gics.
For reasons of page limitetion I cannot describe the recent rigoro:z work concerning C.

{qu.ln't.un la.r:rl_ii;.nna:l either; see 17, 18 19_ But I war%t to emphasize irzsi in these refer-

ences ¢ paint of vievw has been developed vhich I ezl 1z the correzt cne end will sur-
vive (e.g. because of its mathematical precision, which hes moc:t ye* been widely apprec-
iasted, though). A rather general theory of Polncerf coverient supzr-selection sectors
with non-trivial (e.g. topological) charges is nov available ED'IT’T'El,und for a large
class of two dimensional models with non-trivisl superselectics (s2liton) sectors e

17

quantum field theory of solitons has been developed ™', and it hac beea proven that,

to leading order, the mass of the quantum soliton is given by the rest energy of the
classical soliton 19. The question of whether an sxpacsion in A of 21l interesting

quantuz soliton effects about classical soliton seolutions Is es;mziotic at A =0 can
22,23,2h,25,7

now be posed in a precise fashion and is presently studied; ses el:es
A discussion of D. (higher order phese transitions, eriticel zhenz=ane,...) is the
main part of these notes. As to the methods availe:le for preving rizorous resulis

in the field of eriticel phenomens one is still al=sst eatirel; 1i=It=d to using corre-
lation i{nequalities, infrared domination (and reflecticz positiviziy) - see Sections IT,
III - and scme special inequalities (e.g. for Couls=b systenms] - o else rely on exactly
solvable models 26 aebout which I have nothing to sey. Such peitolz srs ipsufficient
and may not lend themselwves to much hard anslysis. Whet Is sissinz is & constructive
version of the renormalization group (or other metksds for setiing up expansions ebout
zero mass situations) applicable to physicaelly intsresting nofsls eni emencble to rigor-
oug matheostics. An exception is the very recent wark of Glir= exZ Jefie 27 concerning
the U[l) lattice gauge theory in four dimensions shich may turn o=t “o be intereszting
for statistical mechanicse, too. In Section II1 ve give 2 new éeriveslon of their ap-
proximetion end In Section III we present some results :n:pi::gnttry 1o theirs. Our

=
-

pethods also apply to the abelian Higgs model on t:e leitice é .

Az to protlem E: The reader is adviced to consult the sontrpitatllun of D. Buchhol:
to these proceedinrgs and refls. E’E'.,'_'Iﬂ,jl_ Buchholz' resulls 23 Eni swvijer proposuls

uwnd results of the outhor o may supply o suitable axizsatie froazewizr for under-
stunding the acattering of churged particles enl pratons. Thiz freesvwark has been
bented and partinlly confirmed in o oieple model of asso-relativiiiis wlestrona inber=

acting with massless, scalor photons which hos Infrereld divergonsos Sipizcal of JED, 31.



II Mpdels, mathematical structures, ipegquaslities.

IT1.1) Lattice spin systems and - gauge theories.

Let Z" be the simple, cubie lattice in v dimensicas. A% es2h site 1€ Z2Y there

is & randem variable (classical spin) Ei & MY asssributed as =oriing to a (generally,
but not always finite) measure d1[§} an IRH . With a boundes zute AC Y we
agsoclate & Hamilton function
B{E1,) = - a(s-)8,- E& +he( 8. (11.1)
i,Jeh ien

We usually impose periodie (A viewed as a torus) or free {?1 =0, for all 1 & 4)
boundary conditions. The couplings J(m) are assu=ed to be noc-rezetive for nm ¥ O

(ferromagnetic), of exponential decrease in le o Ieflecticn sosizive 32 (vhich is
equivalent to the existence of a selfadjoint transfer metrix 3":;1-.1 isctropie (v.r. te
interchanging lattice axes). Finally ﬂ is a fixed externel Ji2ld which we mssume,

from now on,; to point in the l-directicon : h o= h-al.

We let 'F—#AIIH. h) denote the Gibbs equilibrium expestetics of <he system so defined.
We set t—uA[a] = —:—u-ﬂ{'ﬂ. 0). Here B8 is the inverse tecpesrazire.

For measures dA of compact support a standard compectness erzi=en: glves existence
of at least one limiting Gibbs expectaticn, <=>(B, h), 2z A » Z Y and pericdic
boundary conditions (or correlstion inequalities) gusrantee “re=sla<ifon invariance.
The susceptibility yx iz definsd by

x(g, n) = J éﬁn - 8.5(a, B) , (11.2)
J J

and the inverse correlatiocn length (mass) by

1
ml8, h) = = ﬂf < lug-':gu . Ene::a, B (11.3)

vhere e, is the unit vector in the positive a-direction. lots ==at (B, h) > ©
implies x(B, h) € =,
We pnow consider some examples:

II.1) H-vector models : N = 1,2,3.0004,

ar(®) = s(|8] - va¥s .

For N=1 this is the Isiog model, for N = 2 the rotator arnZ for H = 3 the

elassicnl Helsenbers model. The rotator model can be rewritter In ter=s of angle

variables:

gi = (cos ﬂi, gin Bi}, Eii [0, 2n]

a8
2n '

ar(d) |

i



H({e},) = “1E;en”1"ﬂ[mmi- &J} - 1]
; (I1.4)
+h ] cose®

ich 4

For the Isipg and the rotator model it is known that the eguiliiriu= expectation in
the limit A =2" 1is unigue for h # 0 33,34 and for h = 2 in the absenze of
spontaneous magnetization (i. e. :si:ta, 0,) = a), 33’35.

IT.2) Dual Villain - (or V=) model :

This is the model with N=1, h=0, di(8) = (| &(S-=))as azd free boundary
EeZ

conditions. If J(m) 1is the kernel of the finite differercs Laplasess on Z°

(nearest neighbor coupling) and v = 2 (in which cese the =sments “1&.&51’{” de

presumably not exist for small £ 1) this model is an approxicetion to the dual of

the pearest neighbor rotator model at h = 0, providsd one sets

- ami
b * Prot° (11.5)
This follows from replacing exp Blcos & - 1] by
I expl- &6 + 2n n)?) (11.6)

nEZL

in the definition of the partition function and the Gibbs expesiation of the rotator
model, then taking the Fourier transform with respect to {Ei} ard making a change
of variables; see e.g. 36 and refs. given there. Naxs, we intrsduce atelian lattice
gauge theories lh,lE.lﬁ,ET‘ For this purpose we consider
on Z". Sucha p=form valued r.f. @ is of the forz

"e-fora valusd randem fields

“lll‘u
) VP arenne

" 7y ﬂl a ]

1- ulqpqlfn l P {IIJT]

ﬁ I-Il'u_
where, for each i and given ul,””np ﬂi P is & resl randso= veriable which
is totally antisyometric in ul"”'np' For such p=Torms one cen Zafline the usual
duality map # so that w#u is a (v=p)=-form when & is & p-for=. Furthermore, we

define

u r"n
a, = [ "at Peaaen-ae , (11.8)
6,8, < " <a S P
a ¥ _ ¥
with a*af n{ﬂn - of (11.9)

II.3) The U(1) lattice gauge theory:

At each site 1€ Z° we are given & 1-form



E =]
ni-:Eai e, s 0g0, gar. (1I.10)
We write d !i as
o
4y = 7 $,""e Ao
nlﬂu.a u.'l. “E
= a, a a., a
with 111 ey lﬂf -2 Eail . (I1.11)

The single spin distribution 43 of the U{l) lattice gauge theory is gilven by
v

T {EI}'I 48" , and the Hamilton function (which should be called sction in this

am]

context) by

HH!H“}*} =~ 1 [cn-h:lual - 1] (11.12)

ieh :l.l{uE

These definitions also determine the partition function and the Gitbhs eguilibrium
expectation of this model which is non-trivial only for v 2 3. Siz=iler expressions

define the abelian Higgs model on the lattice which describes an additional pair of
rlﬂd.ﬂ-ﬂ fiﬂldl {F1| Ii]. ﬂiEm+1 IiE [n'l El..:l:l 31'

SBuppoae we now replace, in the definition of the partiticn function end the Gitbs

axpectations, the factors
%1%
exp B[coslé )} = 1] by

@, a.a
) expl- 20,1 % 4+ 2n 0P 57 (11.13)
a

e

n, %E_E
and take the Fourier transform with respect to fE:}i E4-"
Then we cbtain, after some straight-forvard caleulations, rewriting & 2-Torm a3 the

®aofn (v-2)-form and using Poincaré's lesma

du=0 =) u=dy (II.14)

(alvays valid on the lattice) : 27,28

IT.L) For v = 3 the nearest neighbor Villain model with E? = Eﬁ%l} i

IT.5) For v = b a model (vhich ve call the wector Villaln - or VW-nadel, Ea}fur B

l1-forem lattice random [ield li with single spin distribution



ax(s, ) -'IT a:nh .

i [ (1r.1%)
di(a) = (] é&(a-m))da ,
mEZ J
Hamilton function (or action)
B((a%},) =% [ (as,)? (11.16)
i LA Jﬂ i
and vith Boy © ﬁE’}‘l} . (11.17)

In both cases we impose free boundary conditions at the bounda—ry 30 of A. Similar
gauge-invariant approximations can be made for the abelian Zigss zclel EB. Finelly

wve briefly discuss an iscmorphism of the V- and the VW-model onio Couloob-type models:

Given & V-model with couplings J(m), let J(m) be - the (convelution) inverse of
J{m) and let dl{iaﬁ be as in defintion II.2) of the V-model (wit: 5 replaced by
9/,,)» but replace the Hamilton function H by

f(tal,) = 2 3(1-1) (11.18)
A T2, ;.Ea 449

The model so obtained is called the ?Tlﬂd¢1+

If vw= 2 and J is the kernel of the finite difference Leplezesac J is the two
dimensional lattice Coulomb potential (which is only conditicnelly nositive definite;

gee I1.2) and we replace Tr dl{q_i',i by &(0, E q_l} ]T di'.{l:: ) , ¥were &{m, n) is
ien ie€h
the Kronecker §. (II.19)

Finally we introduce a VV-model: dl(qil 1s as in (I1.15) (1/2= replacing li}.
We choose as an a priori measure on IR FAI the measure

1]‘;]'!L dilg,)é(0, #am q,) (11.20)

and as Hamilton function (mection)
H({g}) =% | Wy(1-4)a,q, (11.21)

1,3)eA

where Hh iz the Green's functicn of the finite difference Larlecesn on z:h {the

lattice Coulomb potential) with free boundary conditionz a%t 3., 3; is a conserved
vector charge. Using generalizations of the sics pl: identities

1
- u -
]g 2 l:i“d,t= (ET'!E Eu : (11.22)
and
R a7 1L (11.23)
nsZ meld

we obtain



Theorem IL.1:

l]jﬁ The V-model at ilnverse temperature '51,- is Isocorphic to the V -model delfined

in (I1.18) (II.19) at B8, = ﬂ;l ; in perticuler the nesrest neighbor V-model is =apped
o v

ento the V-podel with the Coulomb potential as couplings.

E}ET'EE The YW-podel at inverse temperature Bf.r'.r is iscmorphic to the ﬁwﬁel de=

fined in (I1.20) (II.21)at8, = B71 .

v
In both cases, the partition function of the V-, resp. VW-model is the product of the
partition function of the 'ITF-, resp. VW-model and a spin vave partition function
d.t{-ﬂ@ifan}‘l. The VW-model was first discussed in oI,

Remark: In Theorea II.1, 2) we recover (in & novel wey) the Glimm-Jaffe approxination
te the U(1)-moael, 2T, see 27*2 for actails.

II.2 Classical gases

Let x be a position vector in & configuration space C = ®Y or Z ", and let q be
& generalized charge, a vector in some topological vector space @ .

The potential between a particle with charge q at position x end one with charge
q' at position x' 4is given by a function V(g,x; q@',x') omn (Q x -l:]IE of positive
type, satisfying translation invariance and

vig,x; q',x") = -¥{-q,x; q',x') = -¥{q,x; -q',x') (II.24)
38

and V(g,x; q,x) £ v < = ; see also ~ .
The potentiml for n particles with parameters Hi - {ql.::l:l. iml,...,n 1is given hy
ut(w) ) = I vl W) . (I1.25)
14<)p :
We let di be a finite, positive measure on Q with di(gq) = dil-q). (II.26)
r n
set arlq) =[] dalq), alx)_ = T duxi :
i=1 i=]
The grand cancnical partition funmction for the system in e bounded region AC C is

glven by (W) )
= =BULLW
z,(8,2) = ] i?- alq)_ a(x)_ e o
n=0 n 4B

Q

vhere T 1s the activity {nnd J - d{x}n denotes the sum over mll sites in ﬁn = ﬂxn’
A

when C = Z"). Pressure phfﬂ,z} and correlation fumstions nhfﬂ,:; W

yessyd ) are
391 1 n

defined in the usual way; see

Examples:
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11.6) Coulcmb-type potentials

Q= 1] and di(qg) €ab: (8{q=1) + &(q+l))dq, Vig,x; 3",x") = 5+3" W[x=x'), where W

is a potentinl on C of positive type and arbitrarily lens rinze. The following

cages are of special interest:

6.a) C = '.Eu. v 22, W the Creen's function of the finite ZiZlerence Laplacean
({.e. the lattice Coulomb potential). When v =2 W is pmet =7 positive type, but
it is conditionally of positive type, 1.e.

1 E} <y Wlx, - 1d} 20, (11.28)
for arbitrary complex numbers Cyn Spares with I g, = 0. Thls will suffice for
i
& study of the neutrsl Coulomb gas; (see also {II.1%)). As z + = this model
1 3c

converges to the nearest neighbor V-model at B, = BEuulnnh‘ .
6.b) Cm= IH“. v 22, W aregularized version of the Coulo=b zotential; {("ultra=-

vielet cutoff").

]
6.c) C= ]'EE, ¥ the tvo dimensional Couleomb potential; see 'j.

In cases 6.B), v = 2, and 6.c) the same comment as in 6.a), i.e. (II.28), applies.

II.7) Dipole potentials

g =", ar(q)®€ &(|q]-1)a% , Vig.x; ¢'.x') = {q-?:th'-?x,::fx-x'} . With W a
potential of positive type on m* (or 2") s @B & (regale-izei) Coulomb potential
such that V{q,x; q.x) < =

I1.3 Functional integrals

Let ’?l:‘; be the Hilbert space of real functicons f,5,hy+++ o2 = = with scalar

product

<f &% 5y = j a'x a"x' arlq)arlq" ) T{q.x)

oy (11.29)

x BV(q,x; q',x")glq" ,x')

Let & %be the Gaussian process with mean O and covarfance £V , indexed by ﬁ'fv i
and let f—u“ denote the corresponding Gaussian expectaticn "ziven by a Gaussian

DeEAsure d.uml. with mean © , covariance @8V , defined om & sulzasle measure space;

hl]
see :
One defines Wick ordering with respect to 'l'-ﬂ"w by
ttii:rjf - ¢'i#:r}"ei¢{r}=‘;$ {II-E’B]

We set

e, 2.5 = I dr(q) J a¥x : cos & : (g,x) (11.31)

A A

] A
The follovwing glves a connection between the guantities =, ani 2y Introduced in
ik i

IT1.2 and (Gaussian) functional integrals.



10.

Theorez II1.2, L2 ,IHJ,3ET

Ehfﬂ,ﬂ = <exp z Cy>.., , =nd

TRLE TS WO 5 T sn{a.ﬂ'l 2"

n is(W, ) zC
f HL : - h:“ {II!HE)
i=1
n ig(w, )
= < - i :?ﬂ{E,l] .
i=]

Next we discuss a general inequality extending Ginitre's 1:*.5-.11.1.-.:.1‘::; for the rotator
'3 and some recent inequalities of Park and the suthor hh}:‘

Let % and 4' be two isomorphic random fields indsxed bty a r2al Hilbert space ;‘f.
and distributed according to some measure d4dup . Let Ml-l dencte expectation w.r. to
dp . Let X be some messure space and dp & filpite messure o X . Let x ]—h t::
be a measurable mapping : X —> ﬂl S H . Derine

clp) = I dp(x)cos o),
X

“I[:{p-}};l <— Eﬂfﬂ}}u , and

LIL]

=31, )

<Ay Br(u,p) = <aB>(u,p) - <a>(p,0)*<B>(u,e) .

Theorea II.3, 33:
3

Let S be the class of random variables of the for= || [cos :'f:'i.« t cos '(f,)],
i

fiE #C.l «+ Suppose that

[l N g=5"
d dula’ & = dy Yau( 5,
plelauls') | {-’E E}l‘

for some finlte measure dw.
Then, for arbitrary f and g in #1 b

1) <cos ¢{f)>(u,p) 2 0 ,» (provided u 1is of positive type)

2) <cos ¢(f); cos ¢(g)>{up) 2 0

Remark: 2) implies e.g. that <cos 4(f) »(u,p) is comoton= incrsssing in p .
(11.33)

L
Application 1: Ginibre's inequalities 3 for tre retator, tkhe J(1) lattice g:u,g;e
theory and the abelian Higgs model; (the il.'at.ter tvo cases have taen noticed In 5'31-
3 )

They are straightforvard consequences of ~, resp. Theores II.3.

Application 2: The ins=qualities of Park and the authar 3 for the correlation funcstions
of elassical gases, e.g., for mll f, g in ?‘C',r -



1%.
'ﬂ:!i“r}:?hfﬁﬁ} 20

-l::niﬂﬂl: i 1cos8 Hg]‘:}ﬂ{ﬁ‘-,ﬂ 20 ¢ (1I.3L)

t:ei‘if}:hhfﬂ,al #in A and =

(They follow from (II.30) and Thm. II.3:1), 2), (II.33), resp., by noting that
:ui'{fltliens $(f): + 1 i8in ¢(f): and that t-ﬂn{E,zl is inveriant under ¢ |—> -3).

II.b Functional integrals and quantum field thesry

Functional integrals are also used to construct reletivistic guantum Tleld models such

4 4,40,5,44

as the *2 i hﬁ'hT'hﬂ. E;-I}E g 49,50,51 or the sine-Gordon model ete.

In the coptext of Buclidean field theory gq latels different flelds in the theory, x
is a Buclidean space-time point; é(q,x) 15 a generslized stcchastic process with
expectation <=+ given by some probabllity meesure on a space of generalized

functions. The moments < ifqi.:i}? are tepntatively interpreted as the Euclidean
i=1

Green (or Schwinger) functions of a relativistic quantu= field theory satisfying all
the Wightman axioms (except possibly uniqueness of the vacuum). Sufficient conditions

for this interpretation to be correct have been given In a basiz paper of Osterwmlder

and Schrader 5Ei For detailed, rigorous informetion on the Buzlidsan descriptiom of

reletivistic qyantuT field theory and Tunctional integrals see elzo 47,48 and refs.

Eiﬂ!E there, and 3 ‘53. A formal version of the econditions of Osterwvalder and Bchrader
52,3 is as follows: Let S(¢) = I a¥x S(el+,x}) be the slassical Puelidean action
of some field theory. Formally, the expectation <= : = 1—55 is given by the

Euelidean Gell'Mann-Lovw formuls

J atis ).
"{_ﬂ,E = - I .

a1 [H'UEH:
- J R r'eh.

-1

1 e(gq,x)
(11.35)

n&r ﬂ'{q.I:IH 1

vhere - 4{s (proportional to) Planck's constant, the double cclons denocte some Wick
order (depending on the curvature of the classical aztion at scze of its absolute
minimas), and S is the renormalized sction {possibly including = (for - > C)

ren.
counterterms).

Quasi-Theorem II.k:

Suppose (II.35) can be given & rigorous meaning, and
1) 5 on Eﬁlfaﬁ}: is Euclidean invarient;

2) if & represents Puclidean time reflection on random variables



- /2, .- Lo, ;&fﬂ - .
{with expectation c—vE] then & .sr'nltnl slx,tl}): ,sren_id s{x,~t)): with

(Xat) = x &

3) ﬁa‘{f}hs exists for a suftable class of test fu-ctions. Then <he moments of t-ws

exist and are the Schwinger functions of a unique relativistic jusntum field thecry.
o . 2 2.2
For §(¢) = 5_(¢) = 5 [(ve)" + 2%"] , (11.36)

g ("given" bty (II.35)) is the Gaussian expectation with =eec 0O and covariance

[-ﬁ*m?}'l » the kernel of which is the Yukawa-(m > 0), resp. the Coulezb potentiel
(m=0). {11.37)

Its moments are the Schwinger functions of the free field. For == 0 and
5(¢) = 8 (4) + X cos ¢ (11.38)
we obtain the sine-Gordon theory. If we compare (II.35) - (II.33) with (II.30)-(II.32)
and with model II.6.c) we obtain
Theorem II.5:

1} For 1 < bw ("no ultravioclet divergences") the sine-Gordon <heary is isomorphic
to the two dimensional, two component Coulomb gas II.6.c) hﬂ’ and

2) The inequalitites of Theorem II.3 apply to the Schwinger fuzcticns of the ficlds

::1.: of the sine=Gordon theory,

Rigorous connections between the standard #z -end (3:3)Pmoiers (T = E#l.ig}} and

the classical N=-vector models, example II.1),due to LE'ED‘gh,aru by now well known.
The case v =2, 5ﬂ{¢} = I 4 J{ivd]iiﬁj
1,e2

b {11.39)

s(¢) = 5 (s) + 2 E cos(¢, - 8), 8 & [0,2v],

Hitth-l - qﬂ?t + W, where Tc is the two dim. lattice Coulozt sotential apd W is

a positive type potential of very short range gives an approxiceze description of the
Euclidean vortex (magnetic) field in the abelian Higrs model iz <wc space-time di-
mensions if q is chosen to be the ratio of the electric cherge of a massless fermion

Direc field and the Higgs scalar T. The intersction term A ¥ cosls, - 8) comes fro=
i i

the instantons of this model: the Hielsen-0Oleszen ?crtI:ESSE- Tor g=0 the angle
8 paragstrizes the d=vacua first deseribed in 11‘1‘. Using Trecre= II.2 one seos Shat
our approximation is obwiously a version of the éilvte ges spproxizetion of Polyskov

9 and others 15'13. In this Torm it is proposed and discussed ia T. The lattiec Higss

model in the Villain approximation lends to o sizmiler affestive Tield theory, but there

are some important differences.
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IIT Critical points, critical phenomena, long rengs forces
III.1 Critical int in the N-vector arnd l;fhfcudtls

First we consider the N-vector models defined in Sectiom II.1I, f3r N = 1, 2, 3, i.e.
the Ising, the rotator and the classical Heisenberg =odel. They are known to satisfy
the Lee-Yang theorem of EE,EG‘ From thiszs wve get
Theorem III1.1:

a
1) For Re h# 0 the correlation functions < ]T 31

iEA
and real anelytic in £ 4in an h-dependent neighborkood of (C,=). Pericdic and free

boundary conditions coincide in the thermodynemic limit.

i (8,h) emre apalytic in h

2) For real h # 0, m(B,h) > 0 , and m(B,h) = 0O(h) when =m(3,7) = 0. For real
b ¥ 0 the exponential decay rate of all truncated correlations is uniformly bounded
avay from 0O .

This theorem has been derived in Ly 88 & consequence of the Les-Yang theorem. It
holds for the {I-;]g 3-:1:4;15 {I-Hl,...,#r,'l, Hw=3l, 2, 3), ta0 hg.?lr‘l:- 2) extends
L]

earlier results of 57'53.
Open problem: Do Lee-Yang theorem and Theorem III.]1 remain true for N > 3 7
Theorem III.2:

1) For HN=1, v> 2, and for N= 2, 3, v > 3, there exists i <= guch thet ,for

B> Eb.lim <gts (B,h) £ 0 (sponteneous magoetizetion).

h+0
2) For h=0, N=1,2, 3, I there exists B, ;,EE (with E.<e for H=1,

v:2 and N=2, 3, L, v> 3) such that 1im m{B) = 0, lin 3(8) = =,
B+B g+8

=L =
For v 2 3 the expectation 1—#{Ec] = 1im «<—=(B) is clusterizz. I.e. there exists
Bt
a critcal model with mass = 0, infinite susceptibility, but no lzng range order.
|-{d-e+n].

3) Ir tﬁu-ﬁdb (8] % as |J] += ,then 0 <n < 2.

Remarks and comsents: 1) For N =1, 2 m-lfﬂ.'l and x(B) e&re —onctone inereasing

L
in B (for h=0): A consequence of Theorem II.3, resp. 3. 2} For N 2 2, part 1)

follows from infrared domination 59; for more details concerzizg =his and related
Eﬂlﬁl =g L]
end List's contribution te

9

results for these znd a class of quantus models see

these proceedings. Fart 2) iz based on infrared bounds
a_ A

rnd <ze "Lebowitz ineguali-

ties" fEl, EJ; E:; S:? {(B) £0 , and
a8 T o
:sq Sy3 8y 8,7 (8) <0
1
proven in EE‘EE. Sew 64,65,2 for H=1, an§ % for H=2, 3, L. Finally 3) follows

59 59, 2

from infrared domlinatlion and 2); see



1k,
3) Clearly i& == for N2>2 and v = 2.

L) Theorem III.2 extends to {1-?1§I3{H=1,2.3} for which the Tsllowing additional
results hold: Absence of t{wvo particle bound states 65,63 and sxistence of N degener-
ate elementary particles {for almost every physical mass > 2; et h = 0, in the one
phase region.

Cpen problems:
1) Show (or disprove that gc = Eh for w23, (or ve2 pnd Hzx3, ET}
and that lim -ES‘}: (B, 0+) = 0; (for N =1 this would I=ply =(B, O+) + 0, as
E+Bc
31
B + o’ |

2} Frove [or disprove) the existence of & Fuclidean invarient sceling limit (and hepce
of an associated relativistic quantum field theory, e.g. 32*53} for <> {!c}. For the
vm 2 Isging model this problem has been partially solved in b5y rather direct, very
difficult calculations. A proper, general and rigorous underss ing of the scaling

limit is howvever still missing; see e.g. 53.
3
3) Does the secaling limit in ‘2 3 = teach us sooething about non-super renormael-
k]

L
izable ultraviolet divergences and triviality or non-trivislity of *h 1,2,53 7

Theaorem IIT.3:
Let Nw= 2, 3,.s. and v = 2,

1) ™ por arbitrary € > 0 there exists En{:}-f = guch tke: for all B > EQE:}

=1
‘ﬁ;-gjh (B) £ const. - IJI-[EE'+t}B'
51 p—— i
2) m(B) £ const. e . » for B > 1.
Hemark: This result has been extended to all tranceted correletlcns in 53« A new
proof of 1) has been found in 71. Part 2) also holds for the Z21z1Z theory case TE,

Tl

and it seems to us that the metheds of presuzably give 1) for the field theory case,

too.

Conjecture I11.4, ET'35"73:

For HN2>23, v=2 Ec is infinite, for H = 2, vw= 2 Ec is fizite, core specifically,
the bound of Theorem III.3.1) is saturated for o = 2, and the Tasz<or mIn gn the
exponent on the r.h.s. of 2) can be replaced by fH-E]-l, provided B 1z wery large;

see also EE.

Obvious open problem: Prove Conjecture III.L.

A proof would be an impressive and promising beginning in our understanding of higher

order phase transitions and eritical phenomena.
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III.2 Gases with long range forces
38,

Theorem III.S,

In the notaticns and under the hypotheses of Section II.2

lim p, (8, z) = pl#, z) and, for &1l n, {III.1)
A%C

1m p (B,2; W o,enu W ) 5 p(Buzs W puuu M) (111.2)
A+C A 1 n 1 n

exist and are independent of {A}. Moreover, the correlation functions #{h}EB.:;'**l
are monotone increasing in z , the Fourler transform of the "effective potentinl
function” <#(a, k};Eq,-k}? (B, z) 1is monotone decreasing in =z and bounded above
by ﬂi{q.h; q.,-k), (its value for =z = O1). (111.3)

38

This Theorem is & direct consequence of Theorems II.2 and II.3. It is proven in
vhere it has also been shown to be true for the corresponding quantum gases with
"Boltzmann statistics". To our knowledge this is the first existence theocrem for
thermodynamic and correlation functions valid for potentials of arbitrarily lomg rence
and for all positive B, z. Part (III.1) extends to certain gases with statistics

and to potentials that include hard cores ; (III.3) is an infrared bound to be
compared with the one of 59- Upder various additiopal assumptions it implies clustering

of the correlation functions in the thermodynamic limit 35.

Corollary III.E:

The thermodynamic limit of the pressure (resp. vecuum energy density) and all corre-
laticn (resp. Schwinger) functions of the following models exists and is shape inde-

pendent :

1) The two dimensional Coulomb gas-example II.6.c)-above collapse temperaturs J'm.
equivalently (see Theorem II.5), the v = 2 sine-Gordon theory for 47 < huy see
h. The "bosonized" 45 ve=2 Yukawva - and a model for v = 2 QED of massive
[

fermicons and massive photons h; SE8 .

2) The classical gases of examples II.6.a) - ¢) and II.T), the V- and VW-zmodels
(examples II.2), II.6.a), II.5)), and the fscmorphic V- and VV-zodels; (see Theorem
I11.1).

L k
3) The rotator -, the U(1) lattice gauge theary 543T 4na a class of abelian Higgs

models on the lattice 3T. resp. their Villain approximation 2GE'-

Hemarks:

1) Cor. II11.6 is a direct consequence of Thms. I1I1.2, II.3 BB'EE. It would be of
considoroble intervst to prove Thm. II.3 resp. Cor. III.6.1) for the Yukswa model in
the Hatthews-Salam-Seiler d revresentation.
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to the U{l) (resp. the abelian Higgs EE] lattice gauge theory cozplesentary to the
(deeper!) one of Glimm and Jaffe ET.

Hext we state a beautiful result due to Brydges Tﬁ.

Theorea 1II.T:

For the lattice Coulomb gas, example II.6.a) in v dimensions exponential Dehye
screening is valid in a region of high encugh tespereture end sztivity approxioetely
given by the scaling properties of the correspondicg continuum Coulozmb gases.

Remarks: 1) This result is & lot more difficult to prove than & corresponding result
that affirms exponential Debye screening for the 7- and W-codels which are isomorphic
to special types of Coulomb gases (Thm. II.1l). BErydzes' methods 76 are based on the
difficult "expansicn in phase boundaries” due to Glizm, Jaffe and Spencer |1 (which
can be applied to this problem thenks to Thms. II.2, II.5 hu.. wherees in the case of
i—rn:p. VW-models standard Peierls arguments {(conver:table irto high tezperature ex-
pansions) suffice.

2) Brydges' methods epply to & larger class of lattice gases than the one he considers:
Ift Wi(m) is of exponential decrease in |m| one slwvays zets screening in some range
of (high) temperatures and sctivities. This may show that screening (in particular
Debye screening) may not really depend too much on special prozerties of the Couloah

potentinl (such as Newton's theorem TH}.

3) Applied to the v = 2 lattice Coulomb gas (exa=zle II.S.a)) Brydges' results give
Debye screening only for high temperatures. The obvious opsn sroblem is thus: Is
there & BE < = guch that for B 2 ﬂc Debye screening dizepressrs, e.g. in the sense
that the susceptibility (defined in terms of the effsstive potentisl Puncstion) is

infinite? The folleowing inequalities are relevant to this preblen.

Theorem III1.8 35'EE:

Let ﬂé{k}ﬁ[uk}?¥{ﬂ} be the two point function of the nearest neighbor V-model and
f;ik];{—k}i (B, z) the effective potential function of the lattice Coulomb gas, in
v=dim, momentum space. Then

1) <E(k)E(-k)>y (87) = <4(k)3(-k)> (8,2 = =)

< <b(k)B(-k)> (B, z) £ o(ek™2).

2) In any V-model té{k]ﬁ{-k}:viﬂ'l} is nmonotone irsreasins in 8.

3) in the W-model ﬂldu{kllziuv{ﬁ-ll is monotone increasing in 8 and £ O(B).

Romark: The V- and the VW-model satisfy "inverse" Letowitz fnegualities 33‘

This theorem follows from Thecrems II.2, II.3, III.S.

Soma conseguances of it are:



]-T'I
If the susceptibilities x,(B) and x, (8)(= [x “<|as(k)|®, 5.1 ) of the ¥-res:.
VWepodel are infipnite for scme E = ﬂc they are infinite for al. E =< ﬂc. and

screening in the ﬁ- Tesp. fa-nndel disappears. rFurthersore
<4(0)$(0)>(8,2) 2 x, (871), ¥ (8,2),

so that the v dim. lattice Coulomb ges II.6.a) has & higher orier znase transition
(break down of Debye screening) if the V-(resp. 7-) zodel have cze.

Furthermore, the connection between the v = 2 V-model and the v = 2 rotator sug-
36,73 that the v = 2 rotator has a higher order phase Tzazsitica, provided
the v =2 V-model has one. Motivated by the results of Sectizsn III, the rencrsal-
izatlion group 3 and 67,27 ve make the followving

gesta

Conjecture III.Q, 35.51,?3,27:

1) The v = 2 rotator, V-model and lattice Coulomb gas II.6.e) -sve a eritical
interval (B., =), By < = on which m{B) = 0 end the susceptitilizy i3 infinite;
(see also Tha. III.Z2.2)).

2) The w= 3 U(1l) lattice gauge theory ET. the w = 3 V-mciel and, presumably,
the w =3 lattice Coulomb gas have some form of screening for gll 6§ < =, However,

the v = 3 VV-model has a phase transiticn EB.

3) The v=k U(l) lsttice gauge theory and the v = & V-z=ie> 2! have a phase

transition of the form described in 1).

Remarks: 1) From Theorem III.B (see also Thm. IIT.2.2)) we kosw ==at it suffices to
exhibit one B, such that m[ﬂcj = 0, Ex{ﬁcl = w), 2) BResulzz c* 5ili=m and Jaffe

C
27,19 will probably scon provide a proof of 3) erd possibly of 1), =s0. See also ET+

An important open problex 1s to rigorously invesiige:e the sosllnz crozerties of these
models for B 3_BC (once Bc < w ig established) ezd their cczzizuum limits.

Finally we come to scoe t
mation of Seetion II.L, (II1.39). (We refer the reader to II.L Z:r the definition of

the approximate, effective field thecry for the vorticity, the angle 8 and the

o

g5 —-Za” i1z the approxi-

charge ratio q). In the approximation (II1.39) to the w = 2 zontinuum abelian Higss
model the followving results are rigorous T'EE'E:

1) For gq=0 and 8 = 0 the expectation <=>. has cluster praperties (followe fro=
(I11.3) and Eu}. i.&. the vacuum is unique 52. for all 4 and ~. For small 4 anid
all 3 or small )} and all -§ they are exporectial.

2) For q=0 and 8 = v we find, for small A and large ) ; & Tirst order phzas

transition in the vorticity and two different vacua {corresp. =z =+3, n-0} with

opposite spontanecus vorticity; (this folleows from & Pelerls argi=eat El.lﬂ,El:l

We note that 1) also holds for an sbellan Higes =odel on the leziice 15. resp. its
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Villain approximation 28 (vhich we call H-V model).

The standard lattice Higgs, resp. H-V model only gives an analogue of the 6 = 0
vacuu=. However a modified lattice model 28 glves the 8=vacua; it has & first order
phase transition at @ = ¥, and the existence of two different Gibbs expectations

(with opposite spontaneous "vorticity") can be proven rigorously in some range of
coupling constants EE+ In particular, the usual Higgs mechaniz= can be proven to

oceur for arbitrary coupling constants only for the & = 0 H-V model. At the critical
point of the 8 = v thesory the Higgs mechanism bresks down. A heuristic approximsation
to e non-abelian Higgs model with instantons in four space-time dimensions (similar

in spirit to the spproxizmation (II.3%) of Section II.L with gq = 0 - cne may think of
an SU(2) Higgs model 8 without fermiona) suggests that a first order phase transiticn
eccompanied by spontanecus Iinstanton density and the break down of the Higgs mecha-
nisz at the critical point may be typical features of the 8 = w theory; see EB.
However, for the three - or more dimensional (abelian) H-V models there is cnly one
vecuu= (equilibrium state), and the Higgs mechanism occurs for arbitrary values of

the coupling constants EE.

3} For the two dimensicnal, ebelian Higgs model coupled to messless fermions in the
approximation II.L, (II.39), f.e. for g > 0, and for O i-hqz << 1 and large snough
3 & slight varistion of Brydges' results 76 (see Remark 2 following Theorem III.T)
gives exponential screening which can be interpreted as dynamical mass gsnerstion for
the ferzmions 13’1‘ If Conjecture III.9.1) is true this dymamicel mass generation
disappears at large value of 'th (which plays the role of £ in the v = 2 lattice

Coulomb gas II.5.8));the collapse phencmenon encountered in model II.6.c) 4o and the

repormalization group 36 predict ﬂnE o kx as the oritical wvalue).

L) For arbitrary gq » 0 chiral invariance is broken, and fermionic charges which are
not an integer multiple of the charge of the Higgs scalar are confiped. GSee 13’7.

Hemark: The resulting picture for the v = 2 continuum abelian Higgs model has simi-
larities to the one found for v = 2 massive QED in 32,5_

Open problems:

1) Construct the w = 2 continuum abelian Higgs model rigorously and skow the approxi-
mation II.Lk, (I1.39) discussed sbove gives gualitatively correct results.

2) W¥hich version of gauge-invariant lattice approximation to this model has a continu-
= limit egqual to it?

3) Does the v = 2 Higgs model teach us something about more interesting gauge
theories with instantons?
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