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We present and discuss a list of important, mostly open problems in constructive 

quantum field theory and equilibrium statistical mechanics the solution of which 

requires (in rare cases : required) new ideas going beyond high - and low - tempera-

ture expansions guided by standard (super-renormalizable and infrared finite) pertur-

bation theory about the critical points of some action or Hamilton function, beyond 

Peierls-type arguments and their variants and beyond spin wave theory and its rigorous 

counterparts. This list of problems includes higher order phase transitions, critical 

phenomena, long range forces, gauge theories, quantum solitons, etc. 
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1. 
I... Introduction: 

A list of important problems and table of contents. 

I.1 Personal problems and acknowlegements. 

’’Die Phantasie wird nur von dem erregt, vas man noch nicht Oder nicht mehr besitzt ;.. 

(R. Musil, Der Mann ohne Eigenschaften). 

A free translation of this quote might read as follows: Our imagination gets only 

excited (inspired) by what we do not possess yet, or not possess anymore. 

When I recently learned this quote I felt it would be the right motto for these notes 

to two lectures I presented at Μ ∩ ϕ in Rome. First reason: In these notes I try 

to speak about some problems in theoretical and mathematical physics whose solutions 

we do not possess, yet. At best we have some vague ideas of how to approach them or 

some preliminary results. My hope is that stating those problems in a precise way 

will stimulate our imagination and eventually lead to significant progress. Second 

reason: I found those ten days in Rome very exciting not only because of the inter-

esting news about Μ ∩ ϕ I learned, but at least as much because Rome is a place 

that inspires our imagination by showing us witnesses of some wealth we do not possess 

anymore : an overwhelming variety of past culture and civilization sunken into history; 

(and it excites our imagination by its wide variety of future possiblities). 

Visitors of Rome face a serious problem. Unless they have a vast amount of time 

available they have to make a choice: 

1) They might just enjoy themselves, relax and have Frascati, Espresso and good meals. 

2) They might concentrate on seeing only some of the antique, or the Renaissance or 

the modern sites. 

3) They might rush through all or most of Rome and then try to look at this or that 

in more detail. 

When preparing my lectures and writing these notes I was facing a similar problem: 

Should I relax and just write a few pages of trivialities, should I concentrate on 

one specific problem and try to discuss it carefully, or should I rush through many 

cf the problems that excite me and look only at a few in some more detail? 

These notes are probably a bad compromise of alternatives 2) and 3). It might well be 

that they show nothing more than the author's ignorance, somewhat contrary to his 

intention and presumably the one of all those people from whom he has profited in 

innumerable discussions (or through correspondence): E. H. Lieb, 0. McBryan, Y. M. 

Park, E. Seiler, B. Simon, T. Spencer and others. They should have written these 

notes. Apart from those people I wish to thank the organizers of Μ ∩ ϕ for their 

great work and for giving me the opportunity to present ideas that are in part, to 

say the least, doubtful. 
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I. 2 The main theme and table of contents. 

In these notes we are concerned with problems in constructive quantum field theory 

and equilibrium statistical mechanics a complete solution of which requires to go 

beyond - standard (super-renormalizable and infrared finite) perturbation theory about 

finitely many isolated (constant) degenerate minimas of some classical action or 

Hamilton function and its convergent versions: High and low temperature expansions, 

Peierls-type contour arguments, etc.; - super-renormalizable perturbation expansions 

or approximations (e.g. spin wave theory) about infinitely many, non-isolated (but con-

stant) degenerate minimas of some classical action or Hamilton function and its rigor-

ous versions: Spin wave analysis and Infrared (Gaussian) domination, the Goldstone 

theorem (and scattering theory for zero mass particles or excitations). 

Among such problems there are 

A. Rigorous treatment of non-super-renormalizable ultraviolet divergences, field 

strength - and charge renormalization. 

B. Gauge theories in general, (meaning of gauge invariance in the presence of in-

stantons, infrared divergences, confinement, lattice approximation, etc.); super-re-

normalizable gauge theories, such as the abelian Higgs model in two space-time di-

mensions (which has instantons) or QED in three dimensions (existence, physical posi-

tivity, phase transitions, etc.). 

C. The theory of (topological) charges and super-selection sectors; quantum solitons. 

D. Higher order phase transitions, critical phenomena and infrared divergences, the 

theory of critical points, interactions of very long range. 

E. Scattering of charged particles interacting with the radiation field. 

None of the problems A.-E. has so far been understood-not to mention solved-in a mathe-

matically rigorous way. (The great importance of these problems for theoretical 

physics need not be explained here). 

To make it clear at the beginning: I have nothing interesting to say about A. Al-

though mathematical physicists (Schrader1 and Glimm-Jaffe2 , see also 3)have tried to 

formulate this problem in a precise way and developed some preliminary ideas, one is 

far from knowing what the main difficulties are and one could view it as a scandal that 

we still do not have any concrete ideas about how the predictions of the renormali-

zation group (e.g. asymptotic freedom and its converse;one may also think of super-

symmetry) can be made into precise hints to the constructivists or, more ambitiously, 

into provable results. 

I shall not say much of interest about problem B. either. (A preliminary outline of 

a program towards constructing continuum gauge quantum field theories and some rigorous 

results for simple models in two space-time dimensions were first given in 4). What I 

could say about B. may well not be of much interest and, furthermore, it would require 
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4, 5, 6 

much more space. It is limited to some partly rigorous and partly semi-rigorous 
7 

results on two dimensional gauge theories and some comments on lattice theories and 
28 on the meaning of gauge invarinace in theories with instantons . However, I do want 

8, 9, 10, 11, 12 
to recommend the following references to the reader's attention: and 
13, l4 , 15, 16, 27, 28 

.In Section III a few results are sketched. in particular, we find 

phase transitions and a breakdown of the Higgs mechanism in approximate models of gauge 

theories with instantons; (for the θ = π vacuum): A new result that might be inter-

esting for particle physics. 

For reasons of page limitation I cannot describe the recent rigorous work concerning C. 
17, 18, 19 

(quantum solitons) either; see . But I want to emphasize that in these refer-

ences a point of view has been developed which I feel is the correct one and will sur-

vive (e.g. because of its mathematical precision, which has not yet been widely apprec-

iated, though). A rather general theory of Poincaré covariant superselection sectors 

with non-trivial (e.g. topological) charges is now available 20, 17, 7, 21, and for a large 

class of two dimensional models with non-trivial superselection (soliton) sectors a 
17 quantum field theory of solitons has been developed 17, and it nas been proven that, 

to leading order, the mass of the quantum soliton is given by the rest energy of the 
19 classical soliton . The question of whether an expansion in h of all interesting 

quantum soliton effects about classical soliton solutions is asymptotic at h = 0 can 
22, 23, 24, 25, 7 

now be posed in a precise fashion and is presently studied; see also 22, 23, 24, 25, 7. 

A discussion of D. (higher order phase transitions, critical phenomena,...) is the 

main part of these notes. As to the methods available for proving rigorous results 

in the field of critical phenomena one is still almost entirely limited to using corre-

lation inequalities, infrared domination (and reflection positivity) - see Sections II, 

III - and some special inequalities (e.g. for Coulomb systems) - or else rely on exactly 
26 

solvable models about which I have nothing to say. Such methods are insufficient 

and may not lend themselves to much hard analysis. What is missing is a constructive 

version of the renormalization group (or other methods for setting up expansions about 

zero mass situations) applicable to physically interesting models and amenable to rigor-
27 ous mathematics. An exception is the very recent work of Glimm and caffe concerning 

the U(l) lattice gauge theory in four dimensions which may turn out to be interesting 

for statistical mechanics, too. In Section II we give a new derivation of their ap-

proximation and in Section III we present some results complementary to theirs. Our 
28 

methods also apply to the abelian Higgs model on the lattice 

As to problem E: The reader is advised to consult the contribution of D. Buchholz 
29, 30, 31 29 

to these proceedings and refs. 29, 30, 31. Buchholz' results and earlier proposals 
30 

and results of the author may supply a suitable axiomatic framework for under-

standing the scattering of charged particles and photons. This framework has been 

tested and partially confirmed in a simple model of non-relativistic electrons inter-
31 acting with massless, scalar photons which has infrared divergences typical of QED,31. 
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II. Models, mathematical structures, inequalities. 

II.l) Lattice spin systems and - gauge theories. 

Let ZZv be the simple, cubic lattice in v dimensions. At each site i € ZZv there 

is a random variable (classical spin) Si. £ IRN distributed according to a (generally, 

but not always finite) measure dλ (S) on IRN . With a bounded cube Λ C ZZv we 

associate a Hamilton function 

(II.1) 

We usually impose periodic (Λ viewed as a torus) or free (S
i
 = 0 , for all i £ Λ) 

boundary conditions. The couplings J(m) are assumed to be non-negative for m = 0 

(ferromagnetic), of exponential decrease in |m| , reflection positive (which is 

equivalent to the existence of a selfadjoint transfer matrix 32) and isotropic (w.r. to 

interchanging lattice axes). Finally h is a fixed external field which we assume, 

from now on, to point in the 1-direction : h = h•e1. 

We let ↔ (B, h) denote the Gibbs equilibrium expectation of the system so defined. 

We set ↔ (β) = ↔ 0)· Here 8 is the inverse temperature. 

For measures dλ of compact support a standard compactness argument gives existence 

of at least one limiting Gibbs expectation, λ (β, h), as Λ t ZZV, and periodic 

boundary conditions (or correlation inequalities) guarantee translation invariance. 

The susceptibility χ is defined by 

(II.2) 

and the inverse correlation length (mass) by 

(II.3) 

where eα is the unit vector in the positive α-direction. Note that m(β,, h) > 0 

implies x(β, h) < ∞. 

We now consider some examples: 

II. l) N-vector models : N = 1,2,3,...., 

For N = 1 this is the Ising model, for N = 2 the rotator and for N = 3 the 

classical Heisenberg model. The rotator model can be rewritten in terms of angle 

variables : 

Si. = (cos ϴi., sin ϴ.), ϴiE [0, 2π] 
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(IX.4) 

For the Ising and the rotator model it is known that the equilibrium expectation in 
v 33 34 the limit Λ = ZZ is unique for h φ 0 33, 34 and for h = 0 in the absence of 

1 33 35 spontaneous magnetization (i. e. <st>(3, 0+) = 0),33, 35 . 

II.2) Dual Villain - (or V-) model: 

This is the model with N = 1, h = 0 , dλ (s) = ( Σ δ(S-m))dS and free boundary 
m£ZZ 

conditions. If J(m) is the kernel of the finite difference Laplacean on ZZV 

(nearest neighbor coupling) and v = 2 (in which case the moments <πi.ASi.>(β) 

presumably not exist for small β !) this model is an approximation to the dual of 

the nearest neighbor rotator model at h = 0, provided one sets 

(II.5) 

This follows from replacing exp β[cos Θ - l] by 

(II.6) 

in the definition of the partition function and the Gibbs expectation of the rotator 

model, then taking the Fourier transform with respect to {ϴi} and making a change 
36 

of variables; see e.g. and refs, given there. Next, we introduce abelian lattice 

gauge theories For this pUrp0se we consider "p-form valued random fields 
V" 

on ZZ . Such a p-form valued r.f. ω is of the form 

(II.7) 

αl···α 
where, for each i and given a1 ,...,α 1. p is a real random variable which 

J- p i . 
is totally antisymmetric in a1 ,...,α . For such p-forms one can define the usual 

1 p 
duality map * so that *ω is a (v-p)-form when ω is a p-forn. Furthermore, we 

define 

(II.8) 

with (II.9) 

II.3) The U(l) lattice gauge theory: 

V 
At each site i£ ZZ we are given a 1-form 
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(II.10) 

We write d ϴ. as 
i 

with (II.11) 

The single spin distribution dλ of the U(l) lattice gauge theory is given by 
v π (2π) dϴ , and the Hamilton function (which should be called action in this 

a = 1 

context) by 

(11.12) 

These definitions also determine the partition function and the Gibbs equilibrium 

expectation of this model which is non-trivial only for v ̂  3· Similar expressions 

define the abelian Higgs model on the lattice which describes an additional pair of 
+ 

random fields (pi, Xi), piE IR , Xi £ 

Suppose we now replace, in the definition of the partition function and the Gibbs 

expectations, the factors 

(11.13) 

and take the Fourier transform with respect to {ϴa}. . . . 
l l 6 Λ 

Then we obtain, after some straight-forward calculations, rewriting a 2-form as the 

* of a (v-2)-form and using Poincaré's lemma 

dm = 0 =*=> ω = dy (II.14) 

27 28 
(always valid on the lattice) ’ 

II. 4) For v = 3 the nearest neighbor Villain model with 

28 
II. 5) For v = 4 a model (which we call the vector Villain - or W-model, 28 )for a 

1-form lattice random field with single spin distribution 
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(II.15) 

Hamilton function (or action) 

(11.16) 

and with (XX.17) 

In both cases we impose free boundary conditions at the boundary 3Λ of Λ. Similar 
28 

gauge-invariant approximations can be made for the abelian Higgs model 28. Finally 

we briefly discuss an isomorphism of the V- and the VV-model onto Coulomb-type models 

Given a V-model with couplings J(m), let J(m) be - the (convolution) inverse of 

J(m) and let άλ(p/2π) be as in definition II.2) of the V-model (with S replaced by 

q/2π ) , but replace the Hamilton function H by 

(II.18) 

The model so obtained is called the V-model. 

If v = 2 and J is the kernel of the finite difference Laplacean J is the two 

dimensional lattice Coulomb potential (which is only conditionally positive definite; 

see II.2) and we replace TT dλ (qi ) by δ (0, Σ qi ) TT dλ (qi ) , where δ (m, n) is 
iE Λ i i£Λ 1 i E A i 

the Kronecker 5. (11.19) 
qi q 

Finally we introduce a W-model: dX(~) aS (^1/2ττ replacing ai). 

We choose as an a priori measure on the measure 

(11.20) 

and as Hamilton function (action) 

(11.21) 

where is the Green’s function of the finite difference Laplacean on ZZ4 (the 

lattice Coulomb potential) with free boundary conditions at dΛ, q. is a conserved 

vector charge. Using generalizations of the simple identities 

(11.22) 

and 
(11.23) 

we obtain 
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Theorem II.1: 

\ 36 1) The V-model at inverse temperature
 BV

 is isomorphic to the V -model defined 
V 

in (II.18) (II.19) at B = Bv ; in particular the nearest neighbor V-model is mapped 
V 

onto the V-model with the Coulomb potential as couplings. 

27 28 
2) 28 The W-model at inverse temperature BVV is isomorphic to the W-model de-

fined in (II.20) (II.2l)at B = 8Γ* . v v 
W 

In both cases, the partition function of the V-, resp. W-model is the product of the 

partition function of the V-, resp. W-model and a spin wave partition function 

det(-v^rT J^) \ The W-model was first discussed in 67, 

Remark : In Theorem II.1, 2) we recover (in a novel way) the Glimm-Jaffe approximation 

to the. U(l)-model, See
 27, 28

 for details. 

II.2 Classical gases 

v v 
Let x be a position vector in a configuration space C = IR or ZZ , and let q be 

a generalized charge, a vector in some topological, vector space Q . 

The potential between a particle with charge q at position x and one with charge 
2 

q’ at position x' is given by a function V(q,x; q',x’) on (Q x C) of positive 

type, satisfying translation invariance and 

V(q,x; q',x') = -V(-q,x; q',x') = -V(q,x; -q', x') (II.24) 
38 

and V(q,x; q,x) v < ∞ ; see also 

The potential for n particles with parameters = (qi, xi ), i=l,...,n is given by 

U((W) ) = Σ V(Wi ; Wi ) . (II.25) 
l<i<J<h 1 J 

We let dλ be a finite, positive measure on Q with dλ (q) = dλ (-q). (II.26) 
n n 

Set dλ (q) = TT dλ(qi ), d(x) = TT dvxi · 
n i = 1 1 n i = l 

The grand canonical partition function for the system in a bounded region Λ C C is 

given by 

where z is the activity (and d(x) denotes the sum over all sites in Λn = ΛXn, 
JA

n n 

when C = ZZV). Pressure pΛ(B,z) and correlation functions pΛ(B,z; Wi ,... ,W ) are 
Λ 39 Λln 

defined in the usual way; see 

Examples : 
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II.6) Coulomb-type potentials 

Q = IR and dλ (q) e=g‘ (δ(q-l) + δ (q+l))dq, V(q,x; q’ ,x’ ) = q•q' W(x-x'), where W 

is a potential on C of positive type and arbitrarily long range. The following 

cases are of special interest: 

6.a) C = ZZV, v < 2, W the Green’s function of the finite difference Laplacean 

(i.e. the lattice Coulomb potential). When v = 2 W is not of positive type, but 

it is- conditionally of positive type, i.e. 

(II.28) 

for arbitrary complex numbers c1, c2,··· with Σ ci = 0. This will suffice for 
i 

a study of the neutral Coulomb gas; (see also (II.19)). As z → ∞ this model 
-1 38 

converges to the nearest neighbor V-model at BV = B0OU2_cm·^ » 

6.b) C = IRV, v ̂  2, W a regularized version of the Coulomb potential; ("ultra-

violet cutoff”). 

2 40 
6.c) C = IR2 , W the two dimensional Coulomb potential; see 

In cases 6.b), v = 2, and 6.c) the same comment as in 6.a), i.e. (II.28), applies. 

II.7) Dipole potentials 

Q = IRV , dλ (q)e=g. δ(|q|-l)dVq , V(q,x; q',x’) = (q'Vx)(q'·7x,) W(x-x') , with W a 

potential of positive type on IRV (or ZZV) , e.g. a (regularized) Coulomb potential 

such that V(q,x; q,x) < ∞. 

II.3 Functional integrals 

Let be the Hilbert space of real functions f,g,h,... on Q x C with scalar 

product 

(11.29) 

Let Φ be the Gaussian process with mean 0 and covariance 97 , indexed by , 

and let <->> denote the corresponding Gaussian expectation given by a Gaussian 
BV 

measure dμBV with mean 0 , covariance BV , defined on a suitable measure space; 
41) BV 

see ) · 

One defines Wick ordering with respect to <—>Bv by 

(11.30) 

We set 

(11.31) 

The following gives a connection between the quantities Ξ, and o introduced in Λ A 
II. 2 and (Gaussian) functional integrals. 
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II 2
 42, 40, 38 

Theorem II.2, : 

(II.32) 

Next we discuss a general inequality extending Ginibre's inequality for the rotator 
43 4 4 , 33 33 

and some recent inequalities of Park and the author 

Let Φ and Φ' be two isomorphic random fields indexed by a real Hilbert space . 

and distributed according to some measure dμ . Let <—> denote expectation w.r. to 

dμ . Let X be some measure space and dp a finite measure on X . Let x —> lχ 

be a measurable mapping : X —> . Define 

and 

Theorem II. 3, 

Let S be the class of random variables of the form π [cos o ( fi ) ± cos Φ '(fi)], 
i 

fi. · Suppose that 

for some finite measure dv. 

Then, for arbitrary f and g in Ήi , 

1) <cos Φ(f)>(μ,ρ) 0 , (provided y is of positive type) 

2) <cos Φ(f); cos Φ(g)>(μ,ρ) > 0 

Remark : 2) implies e.g. that <cos Φ(f) >(μ,p) is monotone increasing in ρ . 

(II.33) 

43 
Application 1: Ginibre's inequalities for the rotator, the U(l) lattice gauge 

45 37 
theory and the abelian Higgs model; (the latter two cases have been noticed in 

43 . 
They are straightforward consequences of , resp. Theorem II.3). 

38 
Application 2: The inequalities of Park and the author for the correlation functions 

of classical gases, e.g., for all f, g in Hv,, 
V 
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(II.34) 

(They follow from (II.30) and Thm. II.3:l), 2), (II.33), resp., by noting that 

:eiΦ(f) : = cosΦ(f): + i :sin Φ(f): and that <—>Λ(β,z) is invariant under Φ —·> -Φ). 

II.4 Functional integrals and quantum field theory 

Functional integrals are also used to construct relativistic quantum field models such 

4 46,47,48 49,50,51 4,40,5,44 
as the - * * , (φ·φ) or the sine-Gordon model 4, 40, 5, 44 , etc. 

, 3 

In the context of Euclidean field theory q labels different fields in the theory, x 

is a Euclidean space-time point; Φ(q,x) is a generalized stochastic process with 

expectation <—> given by some probability measure on a space of generalized 

functions. The moments < TT Φ(qi,xi)> are tentatively interpreted as the Euclidean 
i = 1 

Green (or Schwinger) functions of a relativistic quantum field theory satisfying all 

the Wightman axioms (except possibly uniqueness of the vacuum). Sufficient conditions 

for this interpretation to be correct have been given in a basic paper of Osterwalder 
52 

and Schrader . For detailed, rigorous information on the Euclidean description of 
47,48 

relativistic quantum field theory and functional integrals see also and refs. 
31 53 

given there, and ,53 . A formal version of the conditions of Osterwalder and Schrader 

is as follows: Let S(Φ) ≡ dVx S (Φ(·,x)) be the classical Euclidean action 

of some field theory. Formally, the expectation <—> : = <—>g is given by the 

Euclidean Gell’Mann-Low formula 

(11.35) 

where is (proportional to) Planck’s constant, the double colons denote some Vick 

order (depending on the curvature of the classical action at some of its absolute 

minimas), and S is the renormalized action (possibly including ∞ (for h > 0) 
ren. 

counterterms). 

Quasi-Theorem II. 4: 

Suppose (II.35) can be given a rigorous meaning, and 

1) :S (h1/2 Φ): is Euclidean invariant; 
ren. 

2) if ϴ represents Euclidean time reflection on random variables 
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(with expectation :>S) then ϴ
 :S

ren
 (h
1/2

Φ(
x,
t) ) : = :S (h1/2Φ (x,-t ) ) : with 

(x,t) ≡ x . 

Φ(f) 
3) <εΦ(f ;>

σ
 exists for a suitable class of test functions. Then the moments of <—>S S S 

exist and are the Schwinger functions of a unique relativistic quantum field theory. 

For S(Φ) = So(Φ) ≡ 1/2 [ (νΦ)
2
 + πι

2
Φ
2

] , (II.36) 

<—>
c
 ("given” by (II.35)) is the Gaussian expectation with mean 0 and covariance 
^ 2 —1 

(-Δ+m ) , the kernel of which is the Yukawa--(m > 0), resp. the Coulomb potential 

(m=0). (II.37) 

Its moments are the Schwinger functions of the free field. For m = 0 and 

S(Φ) = S (Φ) + λ cos Φ (II.38) 
o 

we obtain the sine-Gordon theory. If we compare (II.35) - (II.38) with (II.30)-(II.32) 

and with model II.6.c) we obtain 

Theorem II.5· 

l) For h < 4π ("no ultraviolet divergences") the sine-Gordon theory is isomorphic 

to the two dimensional, two component Coulomb gas II.6.c) and 

2) The inequalitites of Theorem II.3 apply to the Schwinger functions of the fields 
iΦ 44. 

:eiΦ : of the sine-Gordon theory, 

Rigorous connections between the standard Φ4 - and (î'I^-nodels ("φ = (φ
Ί
,ψ
0
)) and 

^ 48, 50, 54 1 
the classical N-vector models, example II.l),due 40, 50, 54, are by now well known. 

The case 

(11.39) 

with = q2V + W, where V
p
 is the two dim. lattice Coulomb potential and W is 

a positive type potential of very short range, gives an approximate description of the 

Euclidean vortex (magnetic) field in the abelian Higgs model in two space-time di-

mensions if q is chosen to be the ratio of the electric charge of a massless fermion 

Dirac field and the Higgs scalar . The interaction term λ Σ cos (Φi - θ) comes from 
i 

the instantons of this model: the Nielsen-Olesen vortices55. For q = 0 the angle 
11 12 

ϴ parametrizes the θ-vacua first described in 11, 12 . Using Theorem II.2 one sees that 

our approximation is obviously a version of the dilute gas approximation of Polyakov 
9 10 13 7 
and others * . In this form it is proposed and discussed in . The lattice Higgs 

model in the Villain approximation leads to a similar effective field theory, but there 

are some important differences. 
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III Critical points, critical phenomena, long range forces 

III·l Critical point in the N-vector and [Φ 4-modsls 

First we consider the N-vector models defined in Section II.1, for N = 1, 2, 3, i.e. 

the Ising, the rotator and the classical Heisenberg model. They are known to satisfy 

the Lee-Yang theorem of From this we get 

Theorem III.l: 
a. 

1) For Re h φ 0 the correlation functions <π Si1> ( B ,h) are analytic in h 
i£ A 1 

and real analytic in 2 in an h-dependent neighborhood of (0,∞). Periodic and free 

boundary conditions coincide in the thermodynamic limit. 

2) For real h φ 0, m(B,h) > 0 , and m (B,h) = 0(h) when m(B,0) = 0. For real 

h Φ 0 the exponential decay rate of all truncated correlations is uniformly bounded 

away from 0 . 

49 
This theorem has been derived in as a consequence of the Lee-Yang theorem. It 

holds for the (φ·φ)
2
 -models (φ=(φ

1
,.·.,φ

Ν
), N = 1, 2, 3), too 49.Part 2) extends 

57 58 earlier results of . 

Open problem: Do Lee-Yang theorem and Theorem III.l remain true for N > 3 ? 

Theorem III.2: 

1) For N = 1» v 2, and for N = 2, 3, v ̂  3, there exists BC < ∞ such that,for 

2 > B
C
,lim <S > (B,h) ί 0 (spontaneous magnetization). 

L h+0 

2) For h = 0, N=l, 2, 3, 4 there exists BC <, BC (with BC < ∞ for N = 1, 

v >. 2 and N = 2, 3, 4, v >. 3) such that lim m(B) = 0, lim χ(β) = ∞. 
B1BC B1BC 

For v >. 3 the expectation <—>(BC) Ξ lim <—>(β) is clustering. I.e. there exists 

a critcal model with mass = 0, infinite susceptibility, but no long range order. 

3) If <
So

-Sj > (BC) ≈ I j |-(d-2+n),
 as

 | J | ∞ then 0 η <, 2. 

Remarks and comments: l) For N = 1, 2 m (B) and χ(B) are monotone increasing 
43 

in B (for h=0): A consequence of Theorem II.3, resp. . 2) For N > 2, part l) 
59 follows from infrared domination ; for more details concerning this and related 

results for these and a class of quantum models see and Lieb's contribution to 
59 these proceedings. Part 2) is based on infrared bounds and the "Lebowitz inequali-

ties" <s“; S*; s“; S^> (3) <, 0 , and 

proven in 62,63. See
 64’65’21 f

or
 N = 1, and

 28
 for N = 2, 3, 4. Finally 3) follows 

59 59 21 
from infrared domination and 2); see 
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3) Clearly BC = ∞ for N >, 2 and v = 2. 

4) Theorem III.2 extends to (Φ • Φ)? (N=l,2,3) for which the following additional 

results hold: Absence of two particle bound states 66,63 and existence of N degener-

ate elementary particles 21 (for almost every physical mass > 0) at h = 0, in the one 

phase region. 

Open problems : 

1) Show (or disprove that BC = BC for v >_ 3 , (or v = 2 and N > 3 , 67) 

and that lim BC <Sli> (β, 0+) = 0; (for N = 1 this would inply m(B, 0+) + 0, as 
i 

β + Bc, 21)· 

2) Prove (or disprove) the existence of a Euclidean invariant scaling limit (and hence 

of an associated relativistic quantum field theory, e.g. 32, 53 ) for <-> (BC). For the 

v = 2 Ising model this problem has been partially solved in 69 by rather direct, very 

difficult calculations. A proper, general and rigorous understanding of the scaling 

limit is however still missing; see e.g. 53. 

3) Does the scaling limit in Φ 4 23 2, 3 teach us something about non-super renormal-

izable ultraviolet divergences and triviality or non-triviality of Φ4 1, 2, 53, 4? 

Theorem III.3: 

Let N = 2, 3,... and v = 2. 

1) 70 For arbitrary ε > 0 there exists βo (ε) - < - ∞ such that for all β > βo (ε) 

<So Sj > (B) < const. · |j |-CCaTT+eJe]"1 

2) 51 m(β) < const. e-const. BN-1 , for β » 1. 

Remark: This result has been extended to all truncated correlations in 63 . A new 

proof of l) has been found in 71. Part 2) also holds for the field theory case 73, 

and it seems to us that the methods of 71 presumably give l) for the field theory case, 

too. 

Conjecture III.4, 67,36,73. 

For N > 3, v = 2 βC is infinite, for N = 2, v = 2 βC, is finite, more specifically, 

the bound of Theorem III, 3.l) is saturated for N = 2, and the factor "N-1" in the 

exponent on the r.h.s. of 2) can be replaced by (N-2)-1, provided β is very large; 

see also 68. 

Obvious open problem: Prove Conjecture III.4. 

A proof would be an impressive and promising beginning in our understanding of higher 

order phase transitions and critical phenomena. 
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III.2 Gases with lons range forces 

Theorem III.5, 38: 

In the notations and under the hypotheses of Section II.2 

limΛ C p.Λ (B, z) ≡ p(B, z) and, for all n, (III.l) 

limΛ C pΛ.(B,z; W1 ,...,Wn) ≡ ρ (B,z; W1,...,Wn ) (III.2) 

exist and are independent of {Λ}. Moreover, the correlation functions ρ(Λ) (β,z;···) 

are monotone increasing in z , the Fourier transform of the "effective potential 

function" <Φ (q, k) Φ (q,-k)> (B, z) is monotone decreasing in z and bounded above 

by BV(q,k; q,-k), (its value for z = 0!). (III.3) 

This Theorem is a direct consequence of Theorems II. 2 and II.3. It is proven in , 

where it has also been shown to be true for the corresponding quantum gases with 

"Boltzmann statistics". To our knowledge this is the first existence theorem for 

thermodynamic and correlation functions valid for potentials of arbitrarily long range 

and for all positive B, z. Part (III.l) extends to certain gases with statistics 

and to potentials that include hard cores ; (III.3) is an infrared bound to be 

compared with the one of 59. Under various additional assumptions it implies clustering 

of the correlation functions in the thermodynamic limit 

Corollary III.6: 

The thermodynamic limit of the pressure (resp. vacuum energy density) and all corre-

lation (resp. Schwinger) functions of the following models exists and is shape inde-

pendent : 

l) The two dimensional Coulomb gas-example II.6.c)-above collapse temperature 40, 

equivalently (see Theorem II. 5) , the v = 2 sine-Gordon theory for h < 4Π; see 

44 . The "bosonized" 74,5 v = 2 Yukawa - and a model for v = 2 QED of massive 

fermions and massive photons 4; see 6. 

2) The classical gases of examples II.6.a) - c) and II.7), the V- and W-models 

(examples II.2), II.6.a), II.5)), and the isomorphic V- and W-models; (see Theorem 

II.1). 

3) The rotator the U(l) lattice gauge theory
 an

d
 a
 class of abelian Higgs 

models on the lattice 37, resp. their Villain approximation 28. 

Remarks : 

l) Cor. III.6 is a direct consequence of Thms. II.2, II.3 38, 28 . It would be of 

considerable interest to prove Thm. II.3 resp. Cor. III.6.1) for the Yukawa model in 

the Matthews-Salam-Seiler 75 representation. 
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to the U(l) (resp. the abelian Higgs 28) lattice gauge theory complementary to the 

(deeper!) one of Glimm and Jaffe 27. 

Next we state a beautiful result due to Brydges 76. 

Theorem III.7: 

For the lattice Coulomb gas, example II.6.a) in v dimensions exponential Debye 

screening is valid in a region of high enough temperature and activity approximately 

given by the scaling properties of the corresponding continuum Coulomb gases. 

Remarks : l) This result is a lot more difficult to prove than a corresponding result 

that affirms exponential Debye screening for the V- and W-models which are isomorphic 

to special types of Coulomb gases (Thm. II.l). Brydges' methods 76 are based on the 

difficult ’’expansion in phase boundaries" due to Glimm, Jaffe and Spencer. 77 (which 

can be. applied to this problem thanks to Thms. II.2, II.5 40, whereas in the case of 

V-resp. W-models standard Peierls arguments (convertable into high temperature ex-

pansions) suffice. 

2) Brydges' methods apply to a larger class of lattice gases than the one he considers 

If W-1 (m) is of exponential decrease in |m| one always gets screening in some range 

of (high) temperatures and activities. This may show that screening (in particular 

Debye screening) may not really depend too much on special properties of the Coulomb 

potential (such as Newton's theorem 78). 

3) Applied to the v = 2 lattice Coulomb gas (example II.6.a)) Brydges' results give 

Debye screening only for high temperatures. The obvious open problem is thus: Is 

there a
 BC

 < ∞ such that for B > BC Debye screening disappears, e.g. in the sense 

that the susceptibility (defined in terms of the effective potential function) is 

infinite? The following inequalities are relevant to this problem. 

Theorem III.8 38, 28 : 

Let <S(k)s(-k)>V(B) be the two point function of the nearest neighbor V-model and 

<Φ (k) Φ (-k)> (B, z) the effective potential function of the lattice Coulomb gas, in 

v-dim. momentum space. Then 

1) <S(k)S(-k)>
v
(B-1) = <Φ (k) Φ (-k)> (Β,Z = ∞) 

< <Φ(k)Φ(—k)> (B, z) < 0(Bk-2). 

2) In any V-model <S(k)S(-k)>V(B-1 ) is monotone increasing in B. 

3) in the W-model <|da(k)|2 >W (B-1 ) is monotone increasing in B and <.0(B). 

Remark: The V- and the W-model satisfy "inverse" Lebowitz inequalities 38. 

This theorem follows from Theorems II.2, II.3, III.5· 

Some consequences of it are: 
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If the susceptibilities XV (B) and. XW (B) (= [k-2 <|da(k)|2
> W(B )]K= 0) of the V-resp. 

W-model are infinite for some B = BC they are infinite for all B <. BC , and 

screening in the V- resp. W-model disappears. Furthermore 

<Φ(0) Φ (0)>(β,z) > XV(β
-1

),ν(β,z), 

so that the v dim. lattice Coulomb gas II.6.a) has a higher order phase transition 

(break down of Debye screening) if the V-(resp. V-) model have one. 

Furthermore, the connection between the v = 2 V-model and the v = 2 rotator sug-

gests 36, 73 that the v = 2 rotator has a higher order phase transition, provided 

the v = 2 V-model has one. Motivated by the results of Section III, the renormal-

ization group 36 and 67, 27 we make the following 

Conjecture III.9,
 36, 67’73’27

: 

1) The v = 2 rotator, V-model and lattice Coulomb gas II.6.a) have a critical 

interval (βC, ∞), βC < ∞ on which m(β) = 0 and the susceptibility is infinite; 

(see also Thm. III.2.2)). 

2) The v = 3 U(l) lattice gauge theory 27, the v = 3 V-model and, presumably, 

the v = 3 lattice Coulomb gas have some form of screening for all β < ∞. However, 

the v = 3 W-model has a phase transition 28. 

3) The v = 4 U(l) lattice gauge theory and the v = 4 W-model 27 have a phase 

transition of the form described in l). 

Remarks : l) From Theorem III.8 (see also Thm. III.2.2)) we know that it suffices to 

exhibit one βC such that m(BC ) = 0, (X(βC ) = ∞). 2) Results of Slimm and Jaffe 

27, 79 will probably soon provide a proof of 3) and possibly of l), too. See also 67. 

An important open problem is to rigorously investigate the scaling properties of these 

models for β > BC (once BC < ∞ is established) and their continuum limits. 

Finally we come to some comments on the v = 2 abelian Higgs model in the approxi-

mation of Section II.4, (II.39). (We refer the reader to II.4 for the definition of 

the approximate, effective field theory for the vorticity, the angle ϴ and the 

charge ratio q). In the approximation (II.39) to the v = 2 continuum abelian Higgs 

model the following results are rigorous 7, 28, 6 : 

1) For q = 0 and 0=0 the expectation <—>S has cluster properties (follows from 

(III. 3) and 80), i.e. the vacuum is unique for all and λ. For small h and 

all λ or small λ and all h they are exponential. 

2) For q = 0 and θ = π we find, for small h and large λ , a first order phase 

transition in the vorticity and two different vacua (corresp, to π+0, π-0) with 

opposite spontaneous vorticity; (this follows from a Peierls argument 81, 18, 61). 

We note that 1) also holds for an abelian Higgs model on the lattice 16, resp. its 
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Villain approximation 28 (which we call H-V model). 

The standard lattice Higgs, resp. H-V model only gives an analogue of the ϴ = 0 

vacuum. However a modified lattice model 28 gives the θ-vacua; it has a first order 

phase transition at θ = π, and the existence of two different Gibbs expectations 

(with opposite spontaneous "vorticity") can be proven rigorously in some range of 

coupling constants 28. In particular, the usual Higgs mechanism can be proven to 

occur for arbitrary coupling constants only for the ϴ = 0 H-V model. At the critical 

point of the θ = π theory the Higgs mechanism breaks down. A heuristic approximation 

to a non-abelian Higgs model with instantons in four space-time dimensions (similar 

in spirit to the approximation (II.39) of Section II.4 with q = 0 - one may think of 

an SU(2) Higgs model 8 without fermions) suggests that a first order phase transition 

accompanied by spontaneous instanton density and the break down of the Higgs mecha-

nism at the critical point may be typical features of the θ = π theory; see 28. 

However, for the three - or more dimensional (abelian) H-V models there is only one 

vacuum (equilibrium state), and the Higgs mechanism occurs for arbitrary values of 

the coupling constants 28. 

3) For the two dimensional, abelian Higgs model coupled to massless fermions in the 

approximation II.4, (II.39)> i.e. for q > 0, and for 0 <hq2 « 1 and large enough 

λ a slight variation of Brydges' results 76 (see Remark 2 following Theorem III.7) 

gives exponential screening which can be interpreted as dynamical mass generation for 

the fermions 13,7. If Conjecture III.9.1) is true this dynamical mass generation 

disappears at large value of hq2 (which plays the role of B in the v = 2 lattice 

Coulomb gas II.6.a));the collapse phenomenon encountered in model II.6.c) 40 and the 

renormalization group36 predict hq2 ≈ 4π as the critical value). 

4) For arbitrary q > 0 chiral invariance is broken, and fermionic charges which are 

not an integer multiple of the charge of the Higgs scalar are confined. See 13,7 . 

Remark : The resulting picture for the v = 2 continuum abelian Higgs model has simi-

larities to the one found for v = 2 massive QED in 82, 5. 

Open problems : 

1) Construct the v = 2 continuum abelian Higgs model rigorously and show the approxi-

mation II.4, (II.39) discussed above gives qualitatively correct results. 

2) Which version of gauge-invariant lattice approximation to this model has a continu-

um limit equal to it? 

3) Does the v = 2 Higgs model teach us something about more interesting gauge 

theories with instantons? 
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