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phenomena, long range forces, gauge theories, quantum solitons, =tec.
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I.., Introduction:

A list of important problems and table of contents.

I.1 Personal problems and acknowlegements.

"Die Phantasie wird nur von dem erregt, was man noch nicht oder nicht mehr besitzt;..."

(R. Musil, Der Mann ohne Eigenschaften).

A free translation of this quote might read as follows: Our imagination gets only

excited (inspired) by what we do not possess yet, or not possess anymore.

When I recently learned this quote I felt it would be the right motto for these notes
to two lectures I presented at M M ¢ in Rome. First reason: In these notes I try
to épeak about some problems in theoretical and mathematical physics whose solutions
we do not possess, yet. At best we have some vague ideas of how to approach them or
some preliminary results. My hope is that stating those problems in a precise way
will stimulate our imagination and eventually lead to significant progress. Second
reason: - I found those ten days in Rome very exciting not' only because of the inter-
esting news about M () ¢ I learned, but at least as much because Rome is a place
that inspires our imagination by showing us witnesses of some wealth we do not possess
anymore : an overwhelming variety of past culture and civilization sunken into history;

(and it excites our imagination by its wide variety of future possiblities).

Visitors of Rome face a serious problem. Unless they have a vast amount of time
available they have to make a choice:

1) They might just enjoy themselves, relax and have Frascati, Espresso and good mezals.
2) They might concentrate on seeing only some of the antique, or the Renaissance or
the modern sites.

3) They might rush through all or most of Rome and then try to lock at this or that

in more detail.

When preparing my lectures and writing these notes I was facing a similar problem:
Should I relax and just write a few pages of trivialities, should I concentrate on
one specific problem and try to discuss it carefully, or should T rush through many

cf the problems that excite me and look only at a few in some more detail?

These notes are probably a bad compromise of alternatives 2) and 3). It might well be
that they show nothing more than the author's ignorance, somewhat contrary to his
intention and presumably the one of all those people from whom he has profited in
innumerable discussions (or through correspondence): E. E. Lieb, O. McBryan, Y. M.
Park, E. Seiler, B. Simon, T. Spencer and others. They should have written these
notes. Apart from those people I wish to thank the organizers of M N ¢ for their
great work and for giving me the opportunity to present ideas that are in part, to

say the least, doubtful.



I.2 The main theme and table of contents.

In these notes we are concerned with problems in constructive quantum field theory

and equilibrium statistical mechanics a complete solution of which requires to go
beyond - standard (super-renormalizable and infrared finite) perturbation theory about
finitely many isolated (constant) degenerate minimas of some classical action or
Hamilton function and its convergent versions: High and low temperzture expansions,
Peierls-type contour arguments, etc.; - super-renormalizeble perturbation expansions

or approximations (e.g. spin wave theory) about infinitely many, non-isolated (but con-
stant) degenerate minimas of some classical action or Hamilton function and its rigor-
ous versions: Spin wave analysis and Infrared (Gaussian) domination, the Goldstone

theorem (and scattering theory for zero mass particles or excitations).
Among such problems there are

A. Rigorous treatment of non-super-renormalizable ultraviolet divergences, field

strength - and charge renormalization.

B. Gauge theories in general, (meaning of gauge invariance in the presence of in-
stantons, infrared divergences, confinement, lattice approximation, etc.); super-re-
normalizable gauge theories, such as the abelian Higgs model in two space-time di-
mensions (which has instantons) or QED in three dimensions (existence, physical posi-

tivity, phase transitions, etc.).
C. The theory of (topological) charges and super-selection sectors; quantum solitons.

D. Higher order phase transitions, critical phenomena and infrared divergences, the

theory of critical points, interactions of very long range.
E. Scattering of charged particles interacting with the radiation field.

None of the problems A.-E. has so far been understood-not to mention solved-in a mathe-
matically rigorous way. (The great importance of these problems for theoretical

physics need not be explained here).

To make it clear at the beginning: I have nothing interesting to say about A. Al-

though mathematical physicists {Schraderl and Glimm—Jaffe2, see also 3)have tried to
formulate this problem in a precise way and developed some preliminary ideas, one is
far from knowing what the main difficulties are and one could view it as a scandal that
we still do not have any concrete ideas about how the predictions of thne renormali-
zation group (e.g. asymptotic freedom and its converse;ore may also think of super-
symmetry) can be made into precise hints to the constructivists or, more ambitiously,

into provable results.

I shall not say much of interest about problem B. either. (A preliminary outline of

a program towards constructing continuum gauge guantum field theories and some rigcrous

! ] . : ' -
results for simple models in two space-time dimensions were first given in ). What I

could say about B. may well not be of much interest and, furthermore, it would require
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mucih more space. It is limited to some partly rigcrous 22> end rarily semi-rigorous
results on two dimensional gauge theories and scze comments on l1zitice theories and

. . : . . ST 2 -
on the meaning of gauge invarinace in theories with instantonz “7. Fzwever, I do want

2.9.10
\J,j;_J,ll,le and

JIn Section III a few results are skatcrzed. In vzriiculer, we find

to recommend the following references to the readsr's zttention:
13,1h4,15,16,27,28

phase transitions and a breakdown of the Higgs mecxzznis~ in arzroxizziz models of gauge

w

theories with instantons; (for the 6 = m vacuum): A rzw resuit i%z% night be inter-

esting for particle physics.

lil

For reasons of page limitation I cannot describe the recent rigorc work concerning C.
lT 18 19

(quantum solitons) either; see But I wari to emphasize <72t in these refer-

ences a point of view has been developed which I feesl is the correzt cne and will sur-
vive (e.g. because of its mathematical precision, waich hes nci yz* besen widely apprec-~

iated, though). A rather general theory of Poincar2 ccvarient surszrselection sectors

20,17,7,21

with non~tr1vial.(e.g._topologlcal) charges is now zvailable ,and for a large

class of two dimensional models with non-~trivial surzerselection (soliton) sectors a

17

quantum field theory of solitons has been developed s and it hea:z Teen proven that,

to leading order, the mass of'the quantum soliton is given by th energy of the

classical soliton 19. The question of whether an =xparsion in A of 211 interesting

quantum soliton effects about classical soliton solutions is esymziotic at A =0 can
22,23,24,25,7

-

now be posed in a precise fashion and is presently studied; sez =2l:sc

A discussion of D. (hlgher order phase transitions, eritical thersranz,...) is the

main part of these notes. As to the methods availetle for prcvinzg rigorous results

in the field of critical phenomena one is still al=ost entirel; 1i=It=4 to using corre-
lation inegualities, infrared domination (and reflecticn positivi<:) - see Sections II,
IIT - and some special inequalities (e.g. for Coulczb systems) - cr else rely on exactly
solvable models 26 about which I have nothing to sz;. Such methol:z =zr= insufficient

and may not lend themselves to much hard analysis. Wheit is missirzg is a constructive
version of the renormalization group (or other metkods for setiinz up expansions about
zero mass situations) applicable to physically interssting modsls =zn% zmenable to rigor-
ous mathematics. An exception is the very recent work of Glir= ari J=zffe =i concerning
the U(1) 1lattice gauge theory in four dimensions which may turn out to be interesting

for statistical mechanics, too. In Section I1 we give 2 new csrivzticn of their ap-

proximation and in Section III we present some results :amplezﬁntary +o theirs. Our
methods also apply to the abelian Higgs model on txe lzitice g2

As to protlem E: The reader is advised to consult the contritiilicn of D. Buchholz

to these proceedings and refs. 29’30’31. Buchholz' results 2 eni zzylier proposals
and results of the author 30 may supply a suitable exicratic Tramower: for under-
stunding the scattering of charged particles and protons. This frarewsrk has been
tested and partially confirmed in a simple model of non-relativiziiz zlectrons inter-

. . . s Ao S . 31
acting with massless, scalar photons which hag infrarsd diverzerncss fipical of QED, .



II. Models, mathematical structures, inequalities.

II.1) Lattice spin systems and - gauge theories.

Let Z° be the simple, cubic lattice in v dimenszions. A%t esz2h site i € zz" there
is a random variable (classical spin) gi € D%N distributed sccoriing to a (generally,
but not always finite) measure dA(3) on rY . With a boundei cute AC Z° we

associate a Hamilton function

> -
H({8},) = -] J(i-J)§i° S, + Be 13). (II.1)
i,JeA ieA
We usually impose periodic (A viewed as a torus) or free (::‘*i =0, forall 1iéA)
boundary conditions. The couplings J(m) are assured to te ncrn-rezztive for m # 0
(ferromagnetic), of exponential decrease in |m| sy reflectizsn =ssitive 32 (which is

3z,

[$7]

equivalent to the existence of a selfadjoint transfer matriz znid isotropiec (w.r. to
-
interchanging lattice axes). Finally h is a fixed externzl f:ield which we assume,

from now on, to point in the l-direction : h = h°el.

We let <—9A(B, h) denote the Gibbs equilibrium exvecteticrn of =<he system so defined.

We set <—9A(B) = <—9A(a, 0). Here B 1is the inverse temperaiure.

For measures dX of compact support a standard compzctness zrzument gives existence

of at least one limiting Gibbs expectation, <—>(B, n), as A 4 Z:V, and periodic

boundary conditions (or correlation inequalities) gusrantee trznslz<ion invariance.

The susceptibility ¥ 1is defined by

x(B, h) = J <8 - 8>(8, n), (II.2)
j °
and the inverse correlation length (mass) by
N o L 1
m(B, h) = - lim = log<§6 S _>(8, n), (11.3)
n-+e a

where ea is the unit vector in the positive a-directicon. Iots izt r(B, h) > 0

implies x(B, h) < .
We now consider some examples:

II.1) N-vector models : N = 1,2,3,....,

ax(3) = s(|3| - 1)d"s .

For N =1 this is the Ising model, for N = 2 the rotator arZ for N = 3 the

classical Heisenberg model. The rotator model can be rewriitern In terms of angle

variatbles:

S, = (cos 8, sin 8,), 8, < [0, 2n]
i = cos i sin i i.q Q, 2n

ar(3) — %% ,



H({e},) = - ) J(i-3)[cos (8, - ej) - 1]

i,JEN
(1I.4)
+h Z cos Gi
iel
For the Ising and the rotator model it is known that the equilizrium expectation in
L
the limit A = Z° is unique for h # 0 33,3 and for h = 1in the absence of

spontaneous magnetization (i. e. <S§>(B, 0,) = 0), 33,35,

II.2) Dual Villain - (or V-) model:

( E 8(S-m))dS =and free boundary
neZ
conditions. If J(m) is the kernel of the finite differerce Leplacesn on 7 °

This is the model with N =1, h = 0 , dx(8)

I}

(nearest neighbor coupling) and v = 2 (in which cese the moments <wieASi>(B) do
presumably not exist for small B !) this model is an approxirztion to the duel of

the nearest neighbor rotator model at h = 0, provided one sets

v rot (11.5)
This follows from replacing exp B[cos 6 - 1] by

I exol- &6 + 2r n)?] (II.6)
nezz

in the definition of the partition function and the Gibbs expeciation of the rotator

model, then taking the Fourier transform with respect to {Ei} erd making a change
36

of variables; see e.g.

gauge theories lh’15’16‘27. For this purpose we consider

and refs. given there. WNsxt, we intrcduce stelian lattice

"p-fcrm valusd randem fields

on Z“. Such a p-form valued r.f. w 1is of the form

al.l .a

P
o, = I a PRSI
a aicidicn i ay ap (II.7)
1
al...a
where, for each 1 and given al,...,ap Qi P is a real rzndom veriable which

is totally antisymmetric in o

1,...,ap. For such p-forms onre czn Zefine the usual
duality mep % so that #w is a (v-p)-form when w is a p-forz. Furthermore, we
define
a ul...a
do, = ) a@Q Pe Ae Aeeene (11.8)
A S i a @y ap
» l P
: a ¥ _ #
with o q, = gi+eu - (11.9)

II1.3) The U(1l) lattice gauge theory:

At each site i€ Z° we are given a 1-form



_ o o
0, = E 0; e, » 020, s2m. (11.10)
We write 4d Gi as
a. o
¢ o z ® 12 e Ae
i - i al aa
1°%2
a.a a o a o]
with @il P 3_“912 -3 2011 . (11.11)

The single spin distribution d)A of the U(1l) lattice gauge theory is given by

Y

TT (2n)™ a6® , and the Hamilton function (which should be called sction in this
a=1
context) by

a _ %1%
H(©°},) = -] I [eos(e,” %) -1] (11.12)

iel al<a2

These definitions also determine the partition function and the Gitbs equilibrium
expectation of this model which is non-trivial only for v 2> 3. Similar expressions

define the abelian Higgs model on the lattice which describes an additional pair cf

+ .
random fields (pi, xi), pPJER, xile.[o, on], 37.

Suppose we now replace, in the definition of the partition function z2nd the Gibbs
expectations, the factors

2120

exp Blcos(® ) =11 vy

(11.13)

and take the Fourier transform with respect to {Gg}i c A

Then we obtain, after some straight-forward calculations, rewriting a 2-form as the

.

* of a (v-2)-form and using Poincaré's lemma

dw =0 =) w=dy (I1.1k)
(always valid on the lattice) : 27,28
II.4) For v = 3 the nearest neighbor Villein model with By G%l) ;
II.5) For v = L4 a model (which we call the vector Villain - or VV-model, 28)for a

l1-form lattice random field ai with single spin distribution



L
dA(ai) =GII; dI(Q:) s

(11.15)
arx(a) = ( Z §(a-m))da ,
meZ J
Hamilton function (or action)
H({a®},) == ] (4aa,)? (II.16)
A 2 €A i
and with Byv = BEI%:L) : (II.17)

In both cases we impose free boundary conditions at the boundary 3SA of A. Similar

gauge-invariant approximations can be made for the abelian Zigss nciel 28. Finally

we briefly discuss an isomorphism of the V- and the VV-model orio Coulomb-type models:

Given & V-model with couplings J(m), let j(m) be - the (convclution) inverse of
J(m) and let dl(E%) be as in defintion II.2) of the V-model (wit: S replaced by
Yy 21'), but replace the Hamilton function H by

B({a},) =3 I J(i-3)a (11.18)

:Q
€ 1,30 13

The model so obtained is called the \}-model.

If v=2 and J 1is the kernel of the finite difference Lzplazean 3 is the two
dimensional lattice Coulomb potential (which is only conditionzlily positive definite;

see I1.2) and we replace || dh(qi) by 6&(0, § qi) T dl{qi) , wrere 6&(m, n) is
ieAl iel i€l
the Kronecker &. (I1.19)

~ q'
Finally we introduce a VV-model: dl(Eﬁj is as in (II.15) (%:i/2r replacing ai).

We choose as an a priori measure on ﬁ?hlhl the measure
[T ax(q.)s(0, %ax q.) (I1.20)
. i i
ieh

and as Hamilton function (action)

1
H({q},) == ] W, (i-3)a.q, (II.21)
A 2 i,3€h A a By
where Hh is the Green's function of the finite difference Larlszceszn on ZZh (the

lattice Coulcmb potential) with free boundary conditions at 3., 3, 1is a conserved

vector charge. Using generalizaticns of the simple identities

1,02 2
e 2 iM%y /-—%‘ A (IT1.22)
and
X 32" L E &(x-nn) (11.23)
ne?Z meZZ

we obtain



Theorem II.1:

l)36 The V-model at inverse temperature BV is isomorphic to the G-model defined

in (11.18) (II.19) at B_ = B}l ; in particular the nearest neighbor V-model is mapped
\')

onto the V-model with the Coulomb potential as couplings.

2)27’28 The VV-model at inverse temperature va is isomorphic to the VW-model de-

-1

fined in (II.20) (II.21)atB . = By -

v
In both cases, the partition function of the V-, resp. VV-model is the product of the
partition function of the ﬁ-, resp. VV-model and a spin wave partition function
det (-v21 JA)_l, The VV-model was first discussed in 67.

Remark: In Theorem II.1l, 2) we recover (in a novel way) the Glimm-Jaffe epproximation

to the U(1)-model, 27. See 27,28 for details.

IT.2 (Classical gases

v

Let x ©be a position vector in a configuration space C = IR or ZZv, and let q be

a generalized charge, a vector in some topological vector space Q .

The potential between a particle with charge q at position x and one with charge
q' at position x' is given by a function V(q,x; q',x') on (Q x C)2 of positive
type, satisfying translation invariance and

V(g,x; q',x") = -V(-q,x; q',x") = -V(q,x; -q',x') (II.24)
38

and V(q,x; q,x) £ v < = ; see also ~ .
The potential for n particles with parameters Wi = (qi,xi), i=l,...,n is given by

W) = 1 v W) . (11.25)
J
1<i<izn

We let d\ be a finite, positive measure on Q with di(q) = di(-q). (II.26)

n n
- v
Set di(a)_ -i11;.dh(qi), a(x)_ -iIJ; ax; .

The grand canonical partition function for the system in a bounded region A CC 1is

given by
= n -8U((w) )
Eﬁ(ﬁ,z) =] = dl(q)n d(x)n e
n=0 Qn An

=

where 2z is the activity (and J - d(x)n denotes the sum over all sites in A" = A*%,
A

when C = Z°). Pressure pA(B,z) and correlation functions DA(B’Z; W

L l""'Jn) are
ee 7.

defined in the usual way; s

Examples:



II.6) Coulomb-type potentials

Q =IR and di(q) €.8: (6(q-1) + 8(qg+1))dq, V(g,x; q',x') = ¢c*2' W(x=-x'), where W

is a potential on C of positive type and arbitrarily lonz rzrnze. The following

cases are of special interest:

6.a) C = ZZU, v > 2, W the Green's function of the finite Zifference Laplacean
(i.e. the lattice Coulomb potential). When v =2 W is nct 27 rositive type, but

it is- conditionally of positive type, i.e.

z E; cJ W(xi— X >0 (11.28)

J

for arbitrary complex numbers Cys Cporene with Z ¢y = 0. Trnis will suffice for

i
a study of the neutral Coulomb gas; (see also {II.19)). As 2z = = this model
converges to the nearest neighbor V-model at &, = gt 3¢,

Coulecmb’
6.b) C=1R", v > 2, W a regularized version of the Coulozb sctential; ("ultra-
violet cutoff").

).
6.c) C= 182, W the two dimensional Coulomb potential; see =

In cases 6.b), v = 2, and 6.c) the same comment as in 6.a), i.e. (II.28), applies.

II.7) Dipole potentials
Q=Mm", dr(q)%® &(|q|-1)a"a , V(g,x; q',x') = (a+v )(q'-7 ,)¥(x-x") , with W a
potential of positive type on R’ (or ZV) , e.g. a (regulzrizei) Coulomb potential

such that V(q,x; g,x) < =,

II.3 Functional integrals

Let :?ﬁv be the Hilbert space of real functions f,z,h,... on & x C with scalar

product
<f,8>gy = J dx a%x' ar(q)dar(a')f(q,x)
(11.29)
x BV(g,x; q',x")g(q",x")
Let ¢ Dbe the Gaussian process with mean 0 and covariance £ , indexed by %V ,
and let <—aav denote the corresponding Gaussian expectaticn ‘ziven by a Gaussian
measure duav with mean 0 , covariance BV , defined on 2 sulizztle measure space;
see *1).
One defines Wick ordering with respect to <—9BV by
i i io(f) -
:el¢(f): = el¢(r)<e1¢(‘)> = (11.30)
BV
We set
Cp = -5, = J dx(q) J a’x : cos ¢ : (g,x) (I1.31)
Q A

o) introduced in

The following gives a connection between the quantities =, 3 \
ik 4

[
et
[ ¥}

II1.2 and (Caussian) fuanctional integrals.



10.

Theorem II.2, LL2’hO’3B:

':‘A(ﬁ,z) = <exp z C,> and

Bv'r 3

)-l n

pﬂ(B,z; Wl,...,wn) = EA(B,z z

A (11.32)

Next we discuss a general inequality extending Cinitre!

s ire
43 Lk, 33

and some recent ineqgualities of Park and the =uthor .

Let ¢ and ¢' Dbe two isomorphic random fields indexed by a r=22l Hilbert space 4'/’(
and distributed according to some measure du . Let <-'>u dencte expectation w.r. to
duy . Let X ©be some measure space and dp a finite measure cn X . Let x ]——> £x

be a measurable mapping : X — %1 _C, ﬁ . Define

o) = [ an(xleos o(z)
X

<eCfP)>;l o eC(p)>

<—>(u,p) , and

<AB>(u,p) = <A>(u,p)*<B>(u,e) .

m

<A; B>(u,p)

Theorem II.3, 38:

!

Let S be the class of random variables of the form TT'[cos ;_fi} * cos ¢'(fi)],
i
fié ;Qa . Suppose that

au(e)au(s') | s = av(&au(ERY I's
sl GRN s B

for some finite measure dv.

Then, for arbitrary f and g in g#(l .
1) <cos ¢(£)>(u,p) > 0 » (provided u 1is of positive type)

2) <cos ¢(f); cos ¢(g)>(u,p) 20

Remark: 2) implies e.g. that <cos ¢(f) >(u,p) 1is monotone incrsasing in p .

(1I.33)

Application 1: Ginibre's inequalities 43 for the rotator, trhe U(1) 1lattice gauge

45,37

theory and the abelian Higgs model; (the latter two cases have z=2n noticed in

: L :
They are straightforward consequences of 3, resp. Theoren I1.3).

8 . .
Application 2: The inequalities of Park and the author 3 for the correlation functions

of classical gases, e.g., for all f, g in Gﬁfv s



<:ei¢(f):>A(B,Z) 20

¥

<:ei¢(f):'

3 :cos ¢(g):>,(B,2) 20 (I1.34)

<:el¢(£)

:>A(B,z) +in A and z j

(They follow from (II.30) and Thm. II.3:1), 2), (II.33), resp., by noting that
:ei¢(f):=:cos ¢(f): + i :sin ¢(f): and that ¢—>A(B,z) is invariant under ¢ |—> -4).

II.4 Functional integrals and guantum field thecry

Functional integrals are also used to construct reletivistic cuantum field models such

L L6, 47,48 (1‘3)2 _ 49,50,51 L,40,5,4k
> _2‘3 »

2’3 - Etc.

as the ¢ or the sine-Gordon model

In the context of Euclidean field theory q labels different fields in the theory, x
is a Buclidean space-time point; ¢(q,x) is a generazlized stcchastic process with
expectation <—> given by some probability meesure on a space of generalized

functions. The moments < TT'¢(qi,xi)> are tentatively interrreted as the Euclidean
i=1

Green (or Schwinger) functions of a relativistic quentum field theory satisfying all

the Wightman axioms (except possibly uniqueness of the vacuum). Sufficient conditions

for this interpretation to be correct have been given in a basic paper of Osterwalder

52

and Schrader . For detailed, rigorous informetion on the Euclidean description of
relativistic QuantuT field theory and functionel integrals see elso hT,k8 and refs.
givei there, and 3 ’53. A formal version of the conditions of Osterwalder and Schrader
22,3 is as follows: Let S(¢) = | a°x S(¢(+,x)) be the classical Euclidean action
of some field theory. Formally, the expectation <—=> : = <—9S is given by the
Euclidean Gell'Mann-Low formula
x«t:s Gﬁi/2¢): -l
"<—->S = le Lol 14 ¢(q,x)
(11.35)
J —&f-l:Sren (ffljel#):
x | — @ ' ndr¢(q,x)" ,

where A is (proportional to) Planck's constant, the double colons denote some Wick
order (depending on the curvature of the classical action at some of its absolute
minimas), and Sren is the renormalized action {possibly including e« (for A > Q)

-

counterterms).

Quasi-Theorem IT.L:

Suppose (II.35) can be given a rigorous meaning, and

1) L fﬁl/2¢): is Euclidean invarient;

2) if © represents Euclidean time reflection on random variables



(with expectation <—>.) then 8 :sren_fnl/2¢(¥,t))i =5 25 (%.-4)):  with

(X,t) = x .
3) <e¢(f)>s exists for a suitable class of test functions. Then the moments of <—DS

exist and are the Schwinger functions of a unique relativistic zuantum field thecry.
_ 1 2 2.2
For s(¢) = 8 (¢) = 5 [(v¢)" + m%"] , (I1.36)

<—>g ("given" by (II.35)) is the Gaussian expectation with mean 0O and covariance

(—&+m?)-l , the kernel of which is the Yukawa-(m > 0), resp. the Coulomb potentiel
(m=0). (11.37)

Its moments are the Schwinger functions of the free field. For m = 0 and
5(¢) = 5,(¢) + A cos ¢ (11.38)

we obtain the sine-Gordon theory. If we compare (II.35) - (II.33) with (II.30)-(II.32)
and with model II.6.c) we obtain

Theorem II.5:

1) For 1 < Ur ("no ultraviolet divergences") the sine-Gordon :iaeory is isomorphic

to the two dimensional, two component Coulomb gas II.f.c) hO’ end

2) The inequalitites of Theorem II.3 apply to the Schwinger furnciicns of the fields

:ei¢: of the sine-Gordon theory, 3

Rigorous connections between the standard ¢t - and (;-g)ewzodels ($ = (¢l,¢2)) and

) L
the classical N-vector models, example II.1),due to “8’50’g',are by now well known.
\
The case v = 2, So(¢) = Z J(i-j)¢i¢3
1,3¢2°

, (I1.39)

S(¢) =8 (¢) + 1 ) cos(s, - 8), 8 € [0,21],
o) i i J

with g7 = q2VC + W, where V, is the two dim. lattice Coulom® gpotential and W is
a positive type potential of very short range, gives an apprcxirzte description of the

Euclidean vortex (magnetic) field in the abelian Higzs model in %wc space-time di-

mensions if q 1is chosen to be the ratio of the electric charze oI a2 massless fermion

Dirsc field and the Higgs scalar T

. The interaction term A Z'cos(¢{ - 8) comes from
i i

the instantons of this model: the Nielsen-Olesen vorticesbs. T

11,12

or q =0 the angle

6 parametrizes the 8-vacua first described in Using Trhegrem II.2 one sees that

9 10,13

our approximation is obviously a version of the dilute ges approxizstion of Polyakov
and others . In this form it is proposec and discussed

in '. The lattice Higgs
model in the Villain approximation leads to a similar effective Tield theory, but there

are some important differences.
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IIT Critical points, critical phenomenz, long range forces

- L
III.1 Critical point in the N-vector and |¢| -models

First we consider the N-vector models defined in Section II.1, for N =1, 2, 3, i.e.
the Ising, the rotator and the classical Heisenberg model. They sre known to satisfy

56,50

the Lee-Yang theorem of . From this we get

Theorem III.1:

a
1) For Re h # 0 the correlation functions < || Sii> (B,n) ere analytic in h
ieA
and real analytic in B in an h-dependent neighborhcod of (C,=). Periodic and free

boundary conditions coincide in the thermodynamic limit.

2) For real h # 0, m(B,h) > 0 , and m(B,h) = 0(h) when m(2,0) = 0. For real
h # 0 the exponential decay rate of all truncated correlations is uniformly bounded
away from O .

L9

as a consequence of the Lee-Zang theorem. It
L
holds for the (;-3)2 3-models (3¥(¢1,---,¢N), N=1, 2, 3), too 9-Part 2) extends
. .
57,58

This theorem has been derived in

earlier results of
Open problem: Do Lee-Yang theorem and Theorem III.1 remain trus for N > 3 ?

Theorem III.2:

1) For N=1, v>2, and for N =2, 3, v 2 3, there exists % < = such that,for

B > Eb,lim <sts (B,h) # 0 (spontaneous magnetizetion).
h~+0
2) For h=0, N=1, 2, 3, 4L there exists B8

< B, (with Z.<e for N =1,

e 2z
v>2 and N=2, 3, 4, v > 3) such that lim m(B) = 0, 1im x(B) = =,
' B+§C S+§C
For v > 3 the expectation <-b(§C) = 1im <—>(B) is clusterizng. I.e. there exists
: g+
a critcal model with mass = 0, infinite susceptibility, but no lcng range order.
3) 1 <8 8> (8,) % IJ]“(d“E“”‘)' as |j| + = ,then 0 <n < 2.
o J =
Remarks and comments: 1) For N =1, 2 m-l(B) and x(B) =are —onotorne increasing
. I
in B (for h=0): A consequence of Theorem II.3, resp. 3. 2) For N 2 2, part 1)
follows from infrared domination 59; for more details concernirz “his and related
results for these and a class of quantum models see 60,61 earnd List's contribution to
59

these proceedings. Part 2) is based on infrared bounds end <ze "Levowitz ineguali-

] a. O
ties" <Si; Sj; Si; S;> (B) <0, and
@ L& LY QY
<, sJ, s, S,> (B) <0
l ~
proven in 62'63. See 6k,65,2 £ N=1, anf 28 for N =2, 3, 4. Finally 3) follows
59 59, 2

from infrared domination



1k,
3)  Clearly Eb =o for N22 and v = 2.

L) Theorem III.2 extends to ($-$)g 3(N=1,2,3) for which tha “ollowing additional
> 66,63
and

results hold: Absence of Ewo particle bound states existence of N degener-
ate elementary particles E (for almost every physical mass > C; at h = 0, in the one

phase region.

Open problems:

1) Show (or disprove that B, = B, for v 23, (or v=2 2nd ¥ 23,
and that lim <s§> (B, 0+) = 0; (for N =1 this would i=ply m(B, O+) + 0, as
B+
C
B + Bc’ )‘
2) Prove (or disprOVQ) the existence of a Euclidean inveriant sceling limit (and hence

of an associated relativistic quantum field theory, e.g. 32’53) for <> (B,). For the

=
v = 2 Ising model this problem has been partially solved in és oy rather direct, very

difficult calculations. A proper, general and rigorous undersisnding of the scaling

1imit is however still missing; see e.g. °-.

23

3) Does the scaling limit in. ¢g 3 teach us something ebcut non-super renormel-
g L 1,2,53
?

izable ultraviolet divergences and triviality or non-trivizlity of ¢h

Theorem III.3:

Let N=2, 3,... and v = 2.

1) e For arbitrary € > O there exists Bd(c)-<-ﬂ such tkes for all B > Bo(e)
-1
<§;-§3> (B) < const. |j|-[(2“+e)81
51 —const.BN
2) m(B) < const. e SORSY , for B >> 1.

Remark: This result has been extended to all trunceted correlsticrns in 63. A new
Tl. Part 2) also holds for the Zizld theory case ?2,

T1

proof of 1) has been found in
and it seems to us that the methods of presumably give 1) fcr ths field theory case,
too.

Conjecture III.k, 67’36’73:

For N> 3, v=2 EC is infinite, for N = 2, v

the bound of Theorem III.3.1) is saturated for N = 2, and the facior "N

2 EC is finite, more specifically,
“Le  1n the
exponent on the r.h.s. of 2) can be replaced by (N—2)“l, previied B is very large;

see also

Obvious open problem: Prove Conjecture IIT.L.

A proof would be an impressive and promising beginnirng in our understanding of higher

order phase transitions and critical phenomena.
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IIT.2 Gases with long range forces

Theorem III.S5, 38:

In the notations and under the hypotheses of Section II.2

1im pn(e, z) = p(B, z) and, for 2ll n, (111.1)
A4C
iig pA(B,z; wl,...,wn) = p(8,2; Wl""*“h) (111.2)

exist and are independent of {A}. Moreover, the correlation functions o(A)iB,z;'--)
are monotone increasing in 2z , the Fourier transform of the "effective votential
function" <$(q, k);(q,~k)> (B, z) is monotone decreasing in z and bounded zbove
by BV(a,k; a,-k), (its value for z = O1). (III1.3)

This Theorem is a direct consequence of Theorems II.2 and II.3. It is proven in 38,
where it has also been shown to be true for the corresponding quantum gases with
"Boltzmann statistics". To our knowledge this is the first existence theorem for

thermodynamic and correlation functions valid for potentials of arbitrarily long range

and for all positive B, z. Part (III.1l) extends to certain gases with statistics

and to potentials that include hard cores 3  (III.3) is an infrared bound to be

compared with the one of 59. Under various additional assumptions it implies clustering

38

of the correlation functions in the thermodynemic limit .

Corollary III.6:

The thermodynamic limit of the pressure (resp. vacuum energy density) and all corre-

lation (resp. Schwinger) functions of the following models exists and is shape inde-
pendent:

1) The two dimensional Coulomb gas-example II.6.c)-above collapse temperature hO‘

equivalently (see Theorem II.5), the v = 2 sine-Gordon theory for AT < b, see
hh. The "bosonized" 4,5 v = 2 Yukawa - and a model for v = 2 QFD of massive
6

fermions and massive photons ; see .

2) The classical gases of examples II.6.a) - c¢) and II.T7), the V- and VV-models
(examples II.2), II.6.a), II.5)), and the isomorphic V- and f%—models; (see Theorem
II.1).

45,37

3) The rotator h3, the U(l) 1lattice gauge theory
37

and a class of abelian Higgs

models on the lattice , resp. their Villain approximation 28.

Remarks:
1) Cor. IIT.6 is a direct consequence of Thms. II.2, II.3 38’28. It would be of
considerable intercst to prove Thm. II.3 resp. Cor. III.6.1) for the Yukawa model in
5

the Matthews-Salam-Seiler representation.
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to the U(1) (resp. the abelian Higgs 28) lattice gauge theory complementary to the

(deeper!) one of Glimm and Jaffe i

Next we state a beautiful result due to Brydges 76.

Theorem III.T:

For the lattice Coulomb gas, example II.6.a2) in v dimensions exponential Debye
screening is valid in a region of high enough termperature and zctivity approximately

given by the scaling properties of the correspondinz contiruum Coulomb gases.

Remarks: 1) This result is a lot more difficult to prove than e corresponding result
that affirms exponential Debye screening for the V- and W-rodels which are isomorphic
to special types of Coulomb gases (Thm. II.1). Erydges' methods 76 are based on the
difficult "expansion in phase boundaries" due to Glizm, Jaffe en Spencer,TT (which
can be. applied to this problem thanks to Thms. II.2, II.5 hO’ whereas in the case of
ﬁ-resp. VV-models standard Peierls arguments (convertable into high temperature ex-

pansions) suffice.

2) Brydges' methods apply to a larger class of lattice gases than the one he considers:
If W’l(m) is of exponential decrease in |m| one always gets screening in some range
of (high) temperatures and activities. This may show that screening (in particular
Debye screening) may not really depend too much on special prozerties of the Coulomb

potential (such as Newton's theorem 78).

3) Applied to the v = 2 1lattice Coulomb gas (exarple II.6.a)) Brydges' results give

Debye screening only for high temperatures. The obvious orsn croblem is thus: Is

there a BC < =« such that for B8 2> BC Debye screerning disspresrs, e.g. in the sense
that the susceptibility (defined in terms of the effsctive potentizl function) is

infinite? The following inequalities are relevant to this prcblem.

Theorem III.8 38’28:

Let <§(k)§(-k)>v(8) be the two point function of the nearest neighbor V-model and
<4 (k) (-k)> (B, z) the effective potential function of the lattice Coulomb gas, in

v-dim. momentum space. Then

1) <S(k)8(-k)>, (87) = ()3 (-k)> (8,2 = =)

< <b(k)(-k)> (8, z) < 0(BK™2).

2) In any V-model <§(k)§(-k)> (Bﬂl) is monotone irsreasirz in 8.

| 2

v
=1 . : : : =
> (B ) 1is monotone increasing in B and 530(8).

W
38

Remark: The V- and the VV-model satisfy "inverse" Letowitz inegualities :

3) in the VV-model <|da(k)

This theorem follows from Theorems II1.2, II.3, III.S.

Some consequences of it are:




If the susceptibilities xv(s) and Xy (B)(= [k-2<]da(k)|2>vvf5}f. ) of the V-res:.
VV-model are infinite for some B = BC they ere infinite for 211 £ < Bc, and
screening in the V- resp. VV-model disappears. Furthermore

~

<3(0)8(0)>(8,2) 2 x,(87), ¥ (8,2),

so that the v dim. lattice Coulomb gas II.6.2) has a higher orZier thase transition

(break down of Debye screening) if the V-(resp. 7-) model have cre.

Furthermore, the connection between the v = 2 V-model and the v = 2 rotator sug-
36,73

gests that the v = 2 rotator has a higher order phase trzzsiticn, provided

the v =2 V-model has one. Motivated by the results of Sectizn III, the renormal-

36 67,27

ization group and we make the following

Conjecture III.9, 36“67’73’27:

1) The v = 2 rotator, V-model and lattice Coulcmb gas II.6.2) hzve a criticel
interval (BC. ®), Bo < = on which m(B) = 0 and the susceptitility is infinite;
(see also Thm. III.2.2)).

2) The v =3 U(1l) 1lattice gauge theory 27, the v =3 V-mciel and, presumably,

the v = 3 1lattice Coulomb gas have some form of screening for =11 B8 < =, However,

the v =3 VV-model has a phase transition 28.

3) The v =L4 U(1) 1lattice gauge theory and the v = L VV-rziel o1 have a phase

transition of the form described in 1).

Remarks: 1) From Theorem III.8 (see also Thm. III.2.2)) we kncw <hat it suffices to

such that m(BC) = 0, (x(Bc) = @), 2) Resulis c© Glimm and Jaffe

C
AY 6
will probably soon provide a proof of 3) ard pessibly of 1), too. See also T-

exhibit one B
27,79

An important open problem is to rigorously investigate the scaling trczerties of these

models for B8 2> BC (once Bc < ®» isg established) arnd their cczzinuum limits.

Finally we come to some comments on the v = 2 =sbelisn Higgzs =:3=> in the approxi-

mation of Section II.L, (I1.39). (We refer the reader to II.4 Zzr the definition of
the approximate, effective field theory for the vorticity, the znzie 6 and the

charge ratio gq). In the approximation (II.39) to the v = 2 <ccrniinuum abelian Higss

model the following results are rigorous 7’28’6:
1) For @ =0 and O = 0 the expectation <=5 hes cluster troperties (follows fro-
(II1.3) and 80), i.e. the vacuum is unique 52, for all 4 and . For small # and

all A or small X and all -H they are exponential.

2) For q =0 and 8 = we find, for small A and large ) , = first order phzase
transition in the vorticity and two different vacua (corresp, <> =+0, m-0) with

. 81,18,61)
16

We note that 1) also holds for an abelian Higgs model on the lstiiice , resp., its

opposite spontaneous vorticity; (this follows from a Peierls argizen




[
(o)

Villain approximation 28 (which we call H-V model).

The standard lattice Higgs, resp. H-V model only gives an analogue of the 6 =0
vacuum. However a modified lattice model 28 gives the 6-vacua; it has & first order

phase transition at 6 = w, and the existence of two different Gibbs expectations

(with opposite spontaneous "vorticity") can be proven rigorously in some range of
coupling constants 28. In particular, the usual Higgs mechanism cen be proven to

occur for arbitrary coupling constants only for the 6 = 0 H-V model. At the critical
point of the 6 = m theory the Higgs mechanism breaks dowﬁ. A heuristic approximation
to e non-abelian Higgs model with instantons in four space-time dimensions (similar

in spirit to the approximation (II.39) of Section II.4 with q = 0 - one may think of
an SU(2) Higgs model =~ without fermions) suggests that a first order phase transition
accompanied by spontaneous instanton density and the break down of the Higgs mecha-
nism at the critical point may be typical features of the 6 = m theory; see 28.
However, for the three - or more dimensional (abelian) H-V models there is only one
vacuum (equilibrium state), and the Higgs mechanism occurs for arbitrary values of

the coupling constants 28. -

3) For the two dimensional, abelian Higgs model coupled to massless fermions in the
approximation II.4, (II.39), i.e. for q > 0, and for O <-hq2 << 1 and large enough
A a slight variation of Brydges' results 76 (see Remark 2 following Theorem III.T)
gives exponential screening which can be intervreted as dynamical mass generation for

13,7

the fermions . If Conjecture III.9.1) is true this dynemical mass generation

disappears at large value of —hqe (which plays the role of B in the v = 2 lattice

Coulomb gas II.6.a));the collapse phenomenon encountered in model II.6.c) ko and the

renormalization group 36 predict ﬁqe pY br as the critical value).

4) For arbitrary gq > 0 chiral invariance is broken, and fermionic charges which are

13,7,

not an integer multiple of the charge of the Higgs scalar are confined. See

Remark: The resulting picture for the v = 2 continuum abelian Higgs model hes simi-

82,5

larities to the one found for v = 2 massive QED in

Open problems:

1) Construct the = 2 continuum abelian Higgs model rigorously and show the approxi-

v
mation II.k4, (II.39) discussed above gives qualitatively correct results.

2) Which version of gauge-invariant lattice approximation to this model has a continu-

um limit equal to it?

3) Does the v = 2 Higgs model teach us something about more interesting gauge

theories with instantons?
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