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1. Introduction

Among the recent developments in the rigorous theory of phase
transitions have been the introduction of two powerful techniques
motivated in part by ideas from comstructive quantum field theory: the
method of infrared bounds [10,A] which provides the only presently avail-
able tool for proving that phase transitions occur in situations where
8 continuous symsetry is broken, and the chessbeoard estimate metheod
of estimating contour probabilities in a Peierls' argument [14,9]. This
is the first of three papers systematizing, extending and applying these
methods. In this paper, we present the general theory and illustrate it
by considering phase transitions in one and two dimensional models with
long range interactions. In II[7], we will consider a large mumber of
applications to lattice models and in 111[8] some continuous models in-
cluding Euclidean quantum field theories. Reviews of some of owr ideas
and those in [E.] can be found in [@,miﬁl. An application
can be found in [19].

Three themes are particularly emphasized in these papers. The
firse, §2=4, 18 the presentation of a somevhat abscrace Eramework, partc-
ly for clarification (e.g. the tricks im [4] to handle the quantum anti-
ferromagner may appear more natural in the light of §2,3 below) but mainly
for the extensions of the theory thereby suggested (e.g. the second theme
below and the use, for classical systems, of reflections im planes con=
taining sites: this ldea, occurring already in E:l will be cricical for
many of our applications, e.g. te the classical antiferromagnets in extern-
al field). The abstract framework alsc clarifies various limitations of the
theory such as its present inapplicability to the quantum Heisenberg ferro-

magnets and its restriction to reflectioms in planes between lattlce planes
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for quantum systems. The second theme is the extension of the mechods
bevond the nearest neighbor simple cubic models emphasized in [E.ELEIL
It will turn out (§3) that rather few additional short range interactions
can be accomodated but that a larger variety of long range interactions
can be treated - This extension will allow us (§5) to recover and
extend to suitable quantum models the results of Dyaon (reap.
Kunz-Pfister [26]) on long range one (resp. two) dimensional systems. It
will also allow us (see II) to discuss a number of lattice Coulomb gases:
for example, a "hard core model" where each site can have charge 0, +1 or
=1 will have two "crystal phases" for sufficiently low temperatures and
large fugacicy and, for sufficiently low temperatures and suitable fugacity,
a third phase which can be thoughtof as a “plasma” or "gas" phase. Finally
it will allow us to construct (see III) a two dimensional quantum field
theory (a gt perturbation of a generalized free field) with a spontancously
broken continuous symmetry.

For pair interactions, Hegerfeldt and Happi have proposed
our sufficient condition for reflection positivity but they did not
discuss the connection with phase transitions or the gquantum case; sece
also their footnote on pg. & of thelr paper.

The final theme involves the development of an idea in [[LO,H] for
proving that phase transitions cccur in a situation where there is no sym-
metry broken and thus no a priori clear value of external field or fugacity
for the multiple phase point. In all cases, the value can be computed for
zero-temperature and one shows that there are multiple phases at some nearby
value for low temperature, although our methods do not appear to specify
the value by any computationally explicit procedure. This technigue,
which we do not discuss until paper II, allows us in particular to re-
cover some results of Pirogov-Sinai including the ocecurrence of

transitions in the triangle model (ordinary lsing ferromagnet in external
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field but with an additional interaction k E a over all triples

17 1%k
ijk wvhere i and k are nearest neighbors of j in orthogonal directions) and
the occurrence of chree phasea in che Fisher stabilized antiferromagnet in
suitable magnetic field (ordinary Ising anciferromagnet but with additiomal
next nearest neighbor ferromagnetic coupling). As another example we
meéntion an analysis of some models of Ginibre, discussed by Kim-Thompson
[32] in the mean field approximation,with the property that at low temp-
eratures there are an infinite number of external field values with
mulciple phases.

Hext we want to make some remarks on the limitations, advan-
tages and disadvantages of the reflection positivity (RP) methods.
As regards the chessboard Pelerls argument, it is useful to com-
pare it with the most sophisticated Peierls type methed that we know
of, that of Pirogov-Sinai (PS method) [(3.34,35,E0](a comparison with
the "naive" Peierls argument can be found in [27]):

(1) The most serious defect in the RP method is that the

requirement of reflection posicivicy places rather strong restrictions
on the interactions, especially for finite range interactions. For
example, the PS5 analysis of the Fisher antiferromagnet would not be

affected if one added an additional ferromagnetic coupling 40y for

pairs 1 j with 1i-j = (8,10) (for example) while our argument would be
destroyed no matter how small the coupling! More significantly, the
RF analysis In this case requires that u{ﬂ.ﬂ}“{l.l] and ufn.ﬂﬁnfln'll
have equal couplings; PS5 does not. Similarly in the triangle model,
an RP argument teéquires the four kinds of triangles to have equal
couplings while PS5 does mot.

(2) BP can handle certain, admittedly special, long range

couplings, among them interactions of physical interest such as

Coulomb monopole and dipole couplings. PS5 in its present form is res-
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tricted to finite range interactions.

{3} Inherent in the P5 method is the npotion that one is loocking
at a system with a "finitely degenerate ground state." This is not in-
herent in the RP metheod: all that is important is that a finite num-
ber of specific periodic states have a larger internal energy per unit
volume than the true ground states. In some cases, e.5. the antiferro-
magnet without Fisher stabilization, there is no practical difference since
the finite number of states of importance in RP are among the infinitely
many ground states that prevent the application of PS. However, there is
a model {of a liquid ervstal) with an infinitely degenerate ground state
to which Heilmann snd Lieb have applied the RP method with success.
This model has only two ground states in  finite volume with suitable
boundary conditions, but infinitely many ground states in the PS5 sense in
infinite wolums.

{4} The P5 method gives much more detailed information than the
RP method on the manifold of coexisting phases. For example in the
Fisher antiferromagnet, there-is for T small, an external field, u(T),
near the computable nusber p(0), so that there are three (or more) phases
at that value of T and w. PS obtain continuicy of u(T) in T while RP
does not, but shows only that u(T) + p(0) as T + 0.

{5) While neither PS5 nor we have tried hard to optimize the
lower bounds on transition rtemperatures, it seems reasonably clear that
EP methods would produce better bounds.

(6) PS require the number of values that a given spin takes to
be finite. RP methods effortlessly extend to models like the anisotropic
classical Helsenberg model (see [T]).

(7) P5 can only handle classical models, at least in its present

veraion. RP methods cam handle certain quantum models quite efficiently



(seec [31).

{8) RP works most naturally for atates with periodic boundary con-
ditions. This can cccasionally be awkward.

{9} P5 obtain the exact number of phases at the maximum phase points
while HF only vields a lower bound. This difference is probably not intrin-
sic,and RP methods could probably be combined with [I1] to yield the exact
number of phases.

(10) To our, admittedly biased, tastes the RP method seems considerabl
glmpler than the PS sethod.

As regards the infrared bounds method, there is no comparable method
with which to compare it, but we noteé it Is5 most unfortunate that the only
available method for proving phase transitions depends so strongly om
reflection positivity. We mention two examples to fllustrate this resark:

(1) In [1I0], it is proven that the classical Helsenberg ferromagnet
with nearest neighbor interaction has a phase transition for a simple cubic
lattice. The metheds of 52 -4 easily extend this result to face centered
cubic and many other lattices, but not to the body centered cubic lattice.
This remains an open problem.

(2} There has been some discussion recently (see and references
therein) of an intriguing medel, originally due to Elliott [Z8], which should
have "helical™ long range order: consider a one dimensional plane rotor or
N-vector, N > 3 model with nearest neighbor ferromagnet coupling, J, and
somewhat stronger second neighbor antiferromagnet coupling, K. It will have

a helical ground state, i.e. in a ground state o = cofb for some O ¢

"7 441
0, depending on the exact value of J/K. Of course, this helical ordering

won't persist to finite temperature in the one dimensional case,butr 1if

one adds two more dimensions with conventional nearest neighbor ferromag-
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netic couplings one expects helical order will persist. We do not see
how to prove this with REP methods; indeed, infrared bounds obtained by
RPF methods always seem to blow up at a single p while at least two p's
are involved here due to the evenness of the function EF. We note that
if one could prove an infrared bound, helical order would be proven since
Ep vanishes at precisely two p's with a zero of order pzi

Finally; we summarize the contents of the remaining sections. Im
§2, we present an abstract framework for reflection positivity and provide
the basic perturbation criteria which allow one to go from reflection pes-
itivity for uncoupled spins to reflection positivity for suitably coupled
sping. Inm §3, we specialize to spin systeéms and eéxamine two questions:
about what kinds of planes does one have reflection positivity for the
svstem of uncoupled spins, and what kinds of interactions obey the basic
perturbation criteria of §27 In §4, we review and describe the two basic
BP methods of proving phase transitions when one has reflection positivity
about the large family of planes obtained by translating a basic family of
planes. 1Inm §5, we discuss the applications to recover the Dyson and Kunz-
Pfister results already mentioned.

It is a pleasure to thank F. Dyson, 0. Heilmann, L. Rosen,

E. Seiler, J. Slawny and T. Spencer for valuable discussions.
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2. Abscract Theory of Reflection Posiciwicy

Reflection positivity was introduced in quantum field ctheory by
Osterwalder and Schrader [30] and it has continued to play an important
role there., Its significance in the study of phase transitions for lat-
tice gas_es was realized in [010,E.9], although we must emphasize that trans-
for matrix ideas are intimately conmected with reflection positivicty. A.
Klein [25] has considered other abstractions in somewhat different con-
Lexts.

To understand the frasework we are about to describe, 1t is use=
ful to keep in mind a particular example, describing a chaim of Ising
spins, that is essentially that given in [D0,5]] (we describe the example af-
ter the basic framework).

or will be a real algebra (with unit) of observables. (We note that
to say ot is a real algebra does not preclude &t from being, say, an al-
gebra of complex valued functions: "real" means that we only suppose that
one can multiply by real scalars.) Below we will freely use and expand
exponentials and use the Trotter-product formula (Iin cases where &€ is
non=-abelian). In most applications these manipulations present no problem
gince &t {g ugually finite dipensiomal. In 111, we will deal with some un-
bounded operators and exercise some care on this point. We suppose we are
given a linear functional A.H{Mn on i with ﬂl:ﬂ =1, Given HE® , we

def ina

Ay = ‘M_'H:u"r‘ﬂ_ﬂjn . (2.1)
Moreover, we suppose o1 contains two subalgebras Ot and o and a real
linear morphism 0; ﬂtk"ﬂt_ (the phrase "real linear" does not preclude
B from being complex linear or complex antilinear; morphism means @(AB) =

B{AY2{B). In most examples, © has an extension to ﬂh}JﬂL obheying 8% = 1,

but this property plays no role inm our considerations below.)
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The example to keep in mind involves 2n spin 1/2-Ising

spins o Then 0T is the family of polynomials in all

—n#l’ Toppar 0 lye

the o's, ﬂi_{'l'lipﬂ'l'.__] the polynomials in Byn- .,ﬂ“{tunp I:ru,u_lﬂgml'.l, and

1
0 1is defined so that 8(s )= g_; i <Alo)> = 7= ¥ Alo,). Although

o, =+l

#‘E_'_ and & have trivial intersection in this example, we will not suppose

mal

this to be true in the abstract setting; we will even suppose that It+ and
9 commute with each other, although it will turn out that there are no
cases for which we can prove perturbed reflection positivicty with non-

mutually-commuting H+ and &8 , (with the exception of some Fermlon systems),

Definition A real linear functional <-* on & is called reflection positive
(RP) 1if and only if <A8(A)> > O for all AE0OL .
The reader should check RP and GRP (defined below) for the functional
ok in the example. Unfortunately, we know of no abstract perturbation
theory for functionals satisfying RP in the fully non-commutative setting,
but a slightly stronger notion is preserved under suitable perturbations:

Definition <-> is called generalized reflection positive (GRF) if and only

if

P .‘I.la‘ﬂl.l} ain hmﬂ-{.lm}:r > 0

fuf Ell A .+1+.ﬁm'E't++

k
Theorem 2.1 1f =H = B + 6(B) + E Eiﬂf_ﬂij {(or more generally B + @(B)
=1

+ I Ci{x) @B[C{x)]dplx) for a positive measure dp} with B, E1£ﬂ+ and
if s is GRF, then LI defined in (2.1) is GRP.
Proof; For simplicity, let us consider first the case where ¢T is abelian

even though it is a special case of the general situation we then discuss.
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Then, since & is a omorphism
ﬂ_H = aEH &ﬁ} arciﬂ mi}
Expanding the exponential, we see that

e u gum of terms of the form {DIE{DII---D_.;B{D:[H '

so that by GRP for <+>_, ce-H:-ﬁ > 0 and ce™™ ""1“"‘1}“’%“"‘111:; 2 0
For the general non-abelian case, we first use the Trotter
product formula to write
oBa 1ta [M* oe®®y g uciami}"rh]k
- :

and then expand to get e 45 & limit of sums of l{i:l-jﬂ{nj]], B

In the next section, we will give a relevant example (Example 6)
of a situation with tﬂ'r.__' RF but not GRF. There is one case where RP
implies GRPF (this, in fact, is the only case for which we know how to
prove GRP.) :

Theorem 2.2 1f gz and o1 _ commute with each other, a linear functional

is RP if and only if it is GRP.

Proof: 'rrA.iEl I{_all.i} - [n‘l.i} H(lﬁil since the A, and lEI-{.hi} commute

T b

and 9 is a morphism. [
We will alse need:
Theorem 2.3 1f ﬂt_]_ and ol commute with each other and 1f <% '-n is

RF, then for any ﬁ.E.EL,,DiE ﬂ+1

|¢th+EBi + EC 8D

+
900 |2 < <gMOA +ICHC B +0B+ID0O(D,),

i i}u 5

Proof: For simplicity of notatlion we suppose that L is abelian.
The genmeral case follows by using the Trotter formula as in the proof
of Theorem 2.1. Since gk 8 is RP, we have a Schwarz Inequalicy Itmmﬂl’

< t.\\ﬂ.ﬂ?u "Hﬂ.'ﬂ"“ and so (here we use that 01 and O commute )
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. z
RUCICRRRCI U L

A8 (A )eeByB(Ay)> <B B(B, ) ByB(By)> . (2.2)

_ A HOBFICED) | A B ICB(D),

=]
I

Bio

80 expanding the sums we can write it as sum of terms of
the form EIEI{FlL._Et {i{["’_}. Using (2.2), we see that

2

1
o> | < £ <wBo(E)> 2 po(r))L/2,

so using the Schwarz inequality for sums

2
I-tu:?ﬂl' < [E <rE 0(E)> ] [T <aF8(F)> ]

We can now resum the exponential and so obtain the desired
result. l
Remarks: HNotice that only (2.2) was needed to obtain the
result,; so0 we could have paralleled the discussion of GREP and
given (2.2) a name. We only know how te prove (2.2) when
or, and M_ commute.
The theorems in this section are only mild abstractions
of ideas in [ID,E). 1In fact, [&] already noted the importance of
inequalicties like those in Theorem 2.3 and of Hamiltonians of the form
singled out in Theorem 2.1.
Remark: Independently, Osterwalder and Seiler have discussed RP
for Euclidean Ferml lattice (leld theorles using ldeas simllar to
QULS .,
There is a generalization of Theorem 2.3, which, while it will

not be used in the gequel, is potentially of interest.
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Theorem 2.4 If ﬂt+ and Of_ commute with each other and e
is RP, then for any Bi,niEﬂ+

c.an C,oC ED. 8D
iﬂaii i {{cil i

i ? = = i t —_— -
»|* s 1)> <(e 1)

Proof The same as for Theorem 2.3. One merely has to notice that
the first term (namely 1) in the expansion of the exponential cancels. I
Remark Theorem 2.3 is a Corollary of Theorem 2.4. Merely add {1‘1.&1-1}

:{l_lﬂﬂ-ﬂ} to the axponential in Theorem 2.4 and then let A +=,
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3. BReflections in a Single Plane

In this section, we consider the cagse where ¢l is an algebra
of observables for a classical or quantum spin systém on a laccice, i-*ﬁ
is an uncoupled expectaction and©® is a reflection im a plane. We con=
centrate on two discinct quescions which are comnected with our discussion
in the last section: (a) When is <+> RP andfor GRF? (b) What inter-
actions lead to a Hamiltoniam wicth -H = B + ©B + Eciﬂﬂi? We discuss

the first question in a series of examples.

(1) Reflections in a Plane without Sites-Classical case

We imagine the finite lattice A (which may be a torus) being divided
by a plane ¥ into two subsets A+{tﬂ the "right" of =) and A_, with

noe sites on #. There 1is some "reflectlon" r on A such that r takes h+

inte A_ and r2 = 1. The "spin" at each site is a random variable taking
values in a compact set K with some "a priori" Borel probabilicy dis-

eribution do. Lec Kﬁ = 0 Hi and H+ = Ei (where each Ei is a
18 — {8A2

copy of K.) For x & {Kil

ten_* define 8 _x& ﬁ+ by {E*x}i - II{i}+ We
take & to be all real-valued continuous functions on Rﬂ with o the
subalgebras of functions depending only on the spins in h++ Define ©:

ﬂT+ —3 OT_ by
(@F) (x) = Fla x)

Finally , we let <F>_ = [ F(x) 01 dp(x,). Then <*>_ 1is RP since

Ky 1€A
<FeF)> = [ [ F&@FEy) T dolx) 1 doly)
il & e LR, % eR
= [[] P& 1 mixi}lz > 0
K L€ A

+ +
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Since 0T 1s abelian, "iﬂ'n is GRP. This example includes the kind of
classical system in [10]. Alternatively, we could allow &1, o+

to be complex valued and then define (9F)(x) = ﬁ_ﬂﬁ+

(2) Reflections ima Plane without Sites-"Real" Quantum Case

The setup is very gimilar to (1) but now for each {1E A , we take a
copy H_i of R* with the natural inner product. One defines
H = @"1 and R'_ (resp H+) as the tensor product of the spaces
nnan:i:ttd with sites in A_ (resp l'l.+}. ¢t is now all matrices on §f
and <A> = Tr.n,u”r’ﬂ,u:" o1, (resp 81 ) consists of all operators of
the form 1(®A(resp A @®1) under the tensor dacu-;:u-nil:i:m # - H_ @%,,
Finally @a(l@A) = A@l. Then for B = 10A
2
Tr(B&B) = rrﬂ_{mj = Tra+{.ﬁ.,‘.l >0

since Tr{A) is real. Thus i is RP and, since 'Eh"'._._ and ol  commute,

GRP. This example includes the gquantum xy model [4] in the realization

1 - " and

g = 0 1 - L © « MAltermatively, we could take #.
* 12 0f ¥ (01

a{l @A) = ALl vhere — is complex conjugation.

{3} Eeflections in a Plane Without S5ites - General Quantum Case

This is identical to the setup in (2) except for the fact that ﬂi is

a copy of €. 1f we take o(1&A) = A®1, then <> is not RP

since Tr(A) may not be real. Indeed L{f ® and @ are chosen in some
other way so that Tr ia GHEP, then the ferromagnetic Helsenberg Hamiltonian
will not be expressible as -H = B + 8B + EciErEi. since Tr{ul-nn}lc 0,while
{ul-un}!is a sum of ‘*‘1“1"""3“3' Of course, LIf one takes Elltlﬂ.h} -

A1 vhere — 1is ordinary matrix complex conjugation, then for B = 1 & A

- 2
Tr(89,B) = Try (A@A) = |'1'ru+|{.|’|.'}|| >0
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So one recovers KP and GRP, but the usual Heisenberg ferromagnet
+
is no longer of the form Eclﬁlci' gince “l'*l = qlﬂﬂﬂﬂ +n1:un: =
g, @ in the usual realization of the o's.

Iy oy

The fact that ot is not RP does mot stop it from being
RF on a subalgebra; indeed in the Heilsenberg case, for functlons of
Uz'ﬂ alone, it is RP. It could happen that for the usual (anisotropic)
Heigenberg case, *'?H is also RP on this subalgebra and this would
lead to phase transitions in the two dimensional anisotropic case [9].
However, the failure of full GRP implies that our simple perturbation
scheme of §2 will not yield a proof of this type of restricted RP.

;&! Twisted Reflections in a Plane without Sites

It is sometimes useful to define © with a "twist." For example, iIn

the setup of (3), take m = 25 + 1 and take o_,0 W9, as the usual

x' ¥
spin 5 apins; i.e. ”5 is diagomal and nxllny are raising and lowering
operators. Thus ﬂy,ﬂz aow real and uF is pure Imaginary. Let U be the

operator on ﬁﬂ_ which rotates about the y axis by 180" at each site. Let

(1@A) = {uau'l} &1

Then for B = 1{®A

Tr(BIB) = :r{u.u.r'il:Eaj - Ir{LI'JLLI'-l:JTrEM =

- |'IL"|{.|’LZI|2 >0
o c-hu is BP and GRP. Moreover, 13'{; J--—*

i)

magnet =-H = :ij:. ui-qj with & sum over nearest nelghbors, is of Ethe

form B + EB+EE13C1. This 1is essentially the method [4] used to discuss

the antiferromagnet.

g0 that the antiferro-

(5) Reflections in a Plane Containing Sites-Classical Case

The setup is very similar to (1), but now there may be sites on 7.
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Therefore we break up A into three pieces, J'I._,Jl.ﬂ,h_" corresponding
to sites to the "left" of #, on v, and to the right of w. r now
maps A, to A_ and leaves A_ invariant. OU_ (resp OL) is the family
of all functions of the spins im Aau Ay (resp A ‘U'}I.n} and for x =

(x,} 0% = % )€ K XK. As before <G_ = e n do (x,)

+
1€ A
and (0F)(x) = F(8 x). Then writing (x,y,z) according to the decomposition

"
Leh_Uh

K« K, = K.

<P = [ Fly,2) FOxy) I do(x) 0T dply,)
1eh_ j6h 1

I dplz,) = [ ©m dply) Fly,z) n dplz, )2 >0
k"'ll'.l. k : th j | I ¥ kEA_+ IE [ L

(3.1)
Thus we have RF and GRF since et 1is abelian. This kind of reflection is
mentioned in [9] and will play a major role in many of the examples im II.

(6) Reflections in a Plane containing Sites - "Real" Quantum Case

The setup is as im (2) but with the modifications inm (5). Thus
f - H Elﬂb @H , ﬂ_'_ is the linear span of the 1 & A® B and &L the
one of the B A® 1. We take B8({1EHA®B =BE A 1. Noticing that for

C, an operator on Eﬂ IIE}R_I_ {the analog of (3.1)):
Tr{Cac) = ﬁﬂu“Tﬁ} ©1% > 8

B

where is the partial trace on &l , we see that <+*> 1is EP. In
H, + o

this case ﬂ+ and #_ are not mutually commuting so that GRP is not automatic;

indeed it is false. For let H'l' - H_ = J-Eu - ':.2 and let
oc = n:@ L+ )@1+ 0o, ®(1+a )1

apn = :r:lE: (1 -ir:}Li:ll + -:l:r.'i:l {1 - uljc’;:n
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in terms of the usuval Pauwli matriees. Thant

Te(c(@c)p(eD)) = 8 Tr((l + o )(1 + o, ) (1-g,)(1 - o))

= -32 < 0.

Since this example is not so far from what could arise when
expanding realiscic spin systems, we conclude that reflecctions in
planes containing sites are not likely to be permitted for quantum
spin systems, even "real" ones.
We summarize the above examples in:
Theorem 3.1 e is GRP for conventional reflections in planes without
sites for classical and simultaneously real quantus systess and for
reflections in planes with sites (lattice planes) for classical systems.
& * -
How we turn to the gquestion of which interactions lead to
Hamiltonians of the form

-H= @B+B+ [ c(x)8[C(x)] dp (x) (3.2)

To illustrate the ideas. we will firet consider the case of pair inter-
actions in one dimension and then more general cases. The main result is
that the interaction has to be "reflection positive" for (3.2) to hold.
The net result of the analysis and theorem 2.1 is that ™ is RP if and
only if the interaction is reflectionm positive. This Is very reminiscent
of theorems of Schoenberg (see also [E,[3,E8])relating positive def-
initeness of a+lP to (conditional) positive definiteness of F, and, indeed,
our results can be viewed as a speclal case of that circle of ideas. (See
Theorem 3.5).

g«

We begin with consideracion of spins PRI
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Definition A function “””3:1 will be called reflection positive if
and only if for all positive integers m . and :1,...,=-E C:

PO J{i+i-1) > O (3.3)
1,31

If we know apriori that J is real-walusd (it is by (3.3))
(3.3) need only be checked for z real. In this case the left side of
(3.3) can be viewed as the interaction between spins at sites 1,..,m with

values :l.m.:n and the reflections of these spins at § = i 1f the basie inter-

action ias
HEP J(n—#?ﬂﬂﬁu
¥

. This explains the name given,

The following comes from the realization of (3.3) as the condition
of solvability of the Hamburger moment problem. For the readers esase, we
sketch a standard proof ([37]):

Proposition 3.2 Let EJ{j]’j{i be a real=-valued bounded function. Then
{(3.3) holds if and only if

S
I(5) = ebyy 4 J A da (1) (3.4)
=1

for a positive measure dp and ¢ > 0

Eemark 1If we interpret u-"l ag § P then b, is just the contribution

] n

of a §(A) plece of dp. We write it as cﬁjl to be explicit.

Proof If (3.4) holds, then

E 2z, J(iH-1) = c| |1 + . [ - 11_1 |2 d@) >0
1%4 [ :1 I E z; | R

hazt =1

so (3.3) holds. Conversely, 1f (3.3) holds, form a Hilbert space, & ,

by starting with finite sequence !',:l,i.u:‘] (arbitary m) and letting

<(z),lw)> = | Z, W J{i+{-1)
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and then dividing out by z's with <{z){z)> = 0 and completing.
For a finite sequence (:l.uﬂ:n]. let A{:l,.ﬂzmj =

{ﬂ,:l,hﬁ;m} and note that by repeated use of the Schwarz inequality:

ael] < 12l M2 1a22) Y2 < ] 2020 (a2 ) 12

But
zﬂ
| 1A% 3} ]* = Eiiaj I+ 1+ 2"
'
< (2lz, D7 sup [3(D)]
—— LS ¥}
so, lim ||A® z|] <1 as n +=, We conclude that ||Az|| < ||z]],

so A extends to amap of H te . Moreover, by a direct cal-
culation (z,Az) = (Az,w). We conclude that A is self-adjoint. Thus
for any =

1
(z,a1712) = J I a0
-1

by the spectral theorem,vhere uj'l = §

that (z,Ad 7 z) = J(J) and (3.4) helds. ff
We want to emphasize two features of (3.4). First J > 0
is not required. Secondly only the function J(j) = Eﬁjl obeys (3.4)
and has bounded support.
In order to obtain the simplest result relating (3.2) to (3.3) we
consider free boundary conditions:

Proposition 3.3 Let (J(j)) be given. For each m, consider spin 1/2

iz1

Ising spins, LTTLY- and let Bo, = P g4l
m
w6 = L I-1do o,
i,)=-mtl

i<]
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Thin 'iIIII has the farm (3.2) feor every m if and only if J obeys (3.3).
Remark One half of this theorem is also coptained in Hegerfeldt and
Nappi [1H].

Proof If J obeys (3.3), then J has a representation (3.4), so that

1
-Hn{u} - !- - Ell-n + l—l l:-{llﬂll:-{l}j dp (A )
m
where B_ = E J{1-1) 0,0, and l::n{i"-l'l - ¥ y3-1 :ri.
l<i<j<m j=1
Conversely, suppose that Hm has the form (3.2). Then C(x) =

m
= E uif:ﬁ}ﬂl and so j' Ci{x) [Bc(x)] dp(x) = E J{1=1) ui“j .
i=] J=0<ls<i

where, for l<di,jem: J({i+j-1) = I ui_{:l:}uj{'.l.] dp(x) because if Fi) =

E H’iflﬁ" then ii” is unlgque. Thus E :1!:,' J{i+j-1) =

1<1,j<m

m
- |1 :_Lui{::]li dp(x) and therefore J 1is reflection positive. |
i=]
This proposition is the basic result; we present a number

of extensions and varlations:

{A) In applications, it is useful to know that periodic boundary
conditions lead to a state obeying 05 posivivity. OGiven m as above,

we define for i=1,2,..,2m-1.

ray= L J(jezia)) (3.5)
k=
The Hamiltonian
AP o Boes
HII- ‘Z Jm“ ﬂnjnl

~mtl<i< j<m

is the Hamiltonian with periodic boundary conditions. If J has the

form (3.4}, then



=-2]-

1
]+ J PR S b Loy ') B e T

=1

F
o) =eldy, + 81, 2m1

so by the above argusents, -H = B +gB + [[C{x)eC(x)]dn(x) for
sultable C's. We susmarize in:

Propositions 3.4 Under the hypothesis above, 1f J obevs (3.3), then

HEEE has the form (3.2).

(B) We could consider reflections about a plane containing
a site. Then the above arguments imply that J(1) is arbitrary and

1
J(1) = :612 +-j e do (x) for i>2. In particular, in that case,

=1
one can have second “linear" neighbor coupling.

(C) If one conslders a multidimensional cubic svstem and
considers reflection in the plane 11 = 1/2, the kind of analysis above

shows that what one needs is that
Y Ty dMpLigigenifd) 00 (.6)
11‘111}

which leads to the requirement that for 111}

1 i:=1
- 1
STC PR nia:--du 5111 + J-l A ﬂpii‘.-‘iv[l]

where ¢i is 3 positive definite function on :u-l and dp

21 n-a..lu

cbeys a similar condition. In particular, 1f
2
J(1) = a 1f |1l|2+---+|i“| -1

I L T S PR L S

= {J ptherwise
{i.e. nearest neighbor coupling a, next nearest A), then one will have

RF about any plane bisecting a nearest neighbor bond as long as
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a=2|gf(v-1} > 0 . (3.7

In particular, B can be negative. The case 8 = -a/2{v=1) is of some
subtlety and is discussed in detail in paper II.(To check (3.7) is equivalent
te R¥, we note that the funceion e,which has to be positive definite on
i‘v_l.hu a Fourler transform c(p) = a - 28 uil r;nnpj g0 that the infimum
occurs at Py = 0 (all §) Lf B>0 and at Py" E-l (all §) if g<D).

(D) Some clarity is obtained by considering a lattice gas in a
very general language,l.e.by allowing multi-particle interactions. We will

not explicitly use Theorem 2.1,and the connection with Schoenberg's work

on conditionally positive definite functions will be manifest.

At each site j £ZY we are given a copy “_1 of some configuration
space K and a fixed probability measure dg{le on uj P denotes a point

in K (For the mathematically inclined reader we remark that K {is assumed

g
to be a compact Hausdorff space, and dp 1s chosen to be a regular Borel measure.

In fact all our spaces, resp. measures will have these properties).

It helps one's Intultlon to imagine that K 1is the two polnt set
f1,-1} , and dp the measure assigning probability % to 1 and -1 ., This

will correspond to Ising models; (see also Corollary 3.6, below),

Given a subset X CEY , we define

K= X K, and T A
jex

(Since K 18 a compact Hausdorff space, so is Hx , for all x &z2Y) .

To each bounded subset § g” there corresponds a finite system in §
ian algebra observables"

with configuration space K",C(K") , and whose states are the probability mea-

sures on Kl . (These are precisely the continuous, normalized, positive linear

functionals on E{K‘I"}} :
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We denote by tr the expectation on C(K®™) given by the product measure

n i dn{le . Clearly tr defines a state of the finite system in j , denoted
jeZ
tr, by restriction to c(k") .

The dynamics of such systems is given In terms of an interaction, & .

This is a map from bounded subsets X cz” to c(k™ with the properties that

$x) e c() , and (3.8)
er (§(X)) = f T dolx.) #(X)(x) =0 , (3.9)

for all ¥ with YNX#8; x= [x], p,

Condition (3.9) is no loss of generality : Given an arbitrary interaction

¥ satisfying (3.8), one can always find a physically equivalent interaction &

obeying (3.8) and (3.9) !

The Hamilton function of a finite system Iin A with interaction § 1is

glven by
H:- = T i‘EI} i
Xch
and the Glbbs equilibrium state with boundary condition Oan [ Lliﬂh.jgh dn{xl.‘!.‘l ;

describing the interactions of the system {n j with i{ts complement in ;.':

(recall the Dobrushin-Lanford-Ruelle equations [B3,EZ]), is given by
=1
<F > “'F'an:' = EA “h{“ uml . {3.10)

for arbitrary F ¢ EIK""]I . Here

3
= A 1
zh trhﬁa nM .
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We now consider a decomposition of ZY into two disjoint sublattices

T‘+- ™ (generally separated by a hyperplane); r 18 the reflection taking

T te 1"+ and n* the obvious reflection map from H.r' to H,r+ . PFor

) Y - ::l:xrﬂ , wWe set
pF(x_) = Pl x ) ,

where !._! = [x : we aet ,|IL* = AN I"i , and 1f A, = Th_ we say that A

1
} et
is reflection sysmetric (RS) .

Our prévious notionm of RP 1s equivalent to
{rar:;-‘.hnm} T0 {3.11)
for all F ¢ E{D‘.'ﬂ""} . In this case < - = “”'"hn} is said to be RP .

We say that a b.c. satlafies RP 1{ff tr (F
Y rﬂ HF‘“-} g0 ,

B
ah (3.12)

for all F ¢ C{Hh":' ;

Clearly there are b.c, nE!.FI. vhich are not HRP , but thére are also

plenty of b.ec, which are; (e.g. 0 = E {:kE Gk i GHE l:[j:'ﬂ'-l-} for all k) !

Remark : Consider two b.c. Bap and n.;'m such that

1, A
otpt. e L KN, [ dplx,)) .
2 P jen 3

LE “hn and DT:lh. are RP then so 1s

L1d

A - Dhﬂ-n;h ¥ (3.13)

by Schur's theorem,

From now on we shall always assume that & 1s reflectlion covariant, i.e.



A

g§(x) = #lrX) , (3.14)
for arbitrary X c T, -

OQur aim is to state and prove a necessary and sufficient condition on an

interaction § such that < - » {"EHA: is Rp , for all RP b.c. By and

all bounded, RS reglons § .

We call an interaction CRN (for "conditionally reflection negative")

i{f and only 1f

T er(FaF §(X)) #0 , (3.15)

IﬂT} ¥ 0

for all F ¢ GiK?] » with Y an arbitrary bounded subset of T, , obeying

tr(F) = 0 .

We call an interaction § RN (for "reflection negative") Lf and enly Lf

. tr{FpF (X)) £ 0 , (3.18)
‘.!l:r'nrt i@

for all F ¢ E{I{T} and for arbltrary, bounded ¥ eT, -

Let diam X = u:fli-”: 1, € X}, let X+a denote the translate of X
by a vector a EE"" , and let Ta denote the natural lsomorphlsm from
c{t:} to g{“1+I} , for arbitrary X , i.e. [T!} are the translations, Finally,

let [|-|]] dencte the supnorm on C(E™) .

Theorem 3.5

(1) The Gibbs state < - = tgi,gan} is RP , for all inverse temperatures

R&0, all RF b.c. and all RS reglons pj 1f and only 1if & is CREN .

Pan

(2) Suppose an interaction § fulfills (3,9) and has the property that
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supflla(x}]| : diam X & ¢} 0 , (3.171)

a8 r =+ & ; (this condition is fulfilled if § obeys any reasonable condition

of thermodynamic stabilicty) | Then & 48 CRN 1f and only Lf § 18 &N .
(3) 1f 4 1s BN and j some RS bounded set then

Z 5(x)
XN ﬂ+ fa

iz a weak limit of functions of the form

A

-EGEH(:E.
k
where Gﬂ £ ﬂ{ﬂﬂ+l , for all k . An analogous statement holds for RP b.c. Bap

Remarks :

(1} The class of (CIRM Interactlons & forms a convex cone, An analogous
statement holds for RP b.e.., By (3.13), the convex cone of RP b,c, 15 multipli-
cative, Furtheérmore, note that RP 4is stable under taking the thermodynamic

limic 4 FAd through a sequence of RS reglons A , with RP b.c, Bap

These facts and Theorem 3.5 represent a rather complete, mathematical

characterlzaction of RP Gibbs states Iim the classical case; see also Corollary 3.6.

(2) Generally, CRN Interactions and perliodic b.c. lead toe RP Gibbs states;
(see also Proposition 3.4), If & obeys (3.17) and the periodic Gibbs states

are RP , for all bounded hyper cubes §A , then § must be RN .

Clearly, pericdic b.c. lead to translatlion invarlamce, so that §J 1s
RS with respect to many different palrs of hyperplanes, and - 1if
g(X+a) = Tl(iiliﬁ (translacion invariance) - the Gibbs state is translation

invariant, For these reasons translation invariant §'s and periodic b.c. play
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an (annoyingly) important role in our theory.

Proof of Theorem 3.5 :

(1) First we choose 1 . This b.c. 18 clearly RPF . In this case, the

nan =
Glbbs state < - » (g§,1) 1is RP 1f and only 1f
B¥
R

[}

= l::':pf- BHEI]

z
X
:ltr'1'|!"+:* @

has the property

tr(FAF ER'!I £0 ,

for all F g ::{btr""}l . This follows easily from (3.14) and the definitlon of the
Gibbs state, If R,:l'{x+,x_} denotes the integral kernel of Hi* the above
inequality takes the form

f T dolx)dply,) Flx) FJ Eﬁ'tx+,aly+] >0 (3.18)
jer,

for all F ¢ [‘.{I:'II"F.I' .

Assuming that (3.18) holds for arbitrary RS reglons ) and all g2 0
and using a stralght forward extension of Schoénberg's theorem

(Theorem XIII.52) we conclude that & wmust bé CRR , 1.e,

z tr{FaF X)) £0 ,
xnr, £d

for all F E{:EH“H with ¢tr{(F) = 0 and arbltrary, bounded AET, . (Here

we have used (3.9) to include reglons X ¢ A in the summation, We recall that
gb

Schoenberg's theorem says that a matrix Eh”.'l has the property that (e iy

is positive definite for all g2 0 1If and enly 1f FF, :j hij €0 for all

z's with T z, = 0 ), This proves one direction of Theorem 3.5, (1). Conversely

|
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A
suppose now that & 4s CRN . Then b tr(FOF §{XN & 0 , for all F g C{K *)
Inrt ¥ o

with tr(F) = 0 , for any RS reglon J . Now fix some RS , bounded p . By (3.9},

it fallows that
T tr(FaF $(X)) = T tr (FaF 8(X)) 20 ,
Xnp, ¥ @ xn, #0 A

XA

for all F ¢ E{Hn*i with tran} =0 , If we write this out as an Integral and
use Schoenberg's theorem in the other direction we immediately conclude that

Rﬁ't“+'ai?+} is a positive definite kermel.

Next, Lf P is RP then the kernel of P * Faﬁh-l-'a*!ﬂ is posicive
eé
definite. By Schur's theorem, RJ'I. {:I+,E'}r+'.l ""M{“#“**‘i] is positive definice,
go that

jjgmdphj}duwj] !'(:.+} ﬂhj RE‘E!+’EIF+]"B}L{=+'EJ+}

- Bé

for all F & E{Hhﬁl .

§ 1
- -H
Since, by condition (3.14), e hao A g4 obviously of the form

chg {:"‘HE‘ , with 6l ¢ e’ , Theorem 3.5, (1) is now proven.

(2) 1t is trivial cthac 4f § 1s RN cthem § 48 CREN . Therefore we must only
show that If § 1s CEN and satisfles (3.9) and (3.17) then § 1is RN . For

this purpose, let F g E{I:‘E]I , for an arbitrary, but hence forth fixed Y c Fiis

We define
G=F - T.{F} ¥

Y 4+a

where a 1s a translatlon such that Y+a cT , l.e. G ¢ clK ) with

TUYaCT, Clearly ctri(g) = er(F) - l:rl'-r.l[}'}} = tr{F) - tr(F) = 0 . Hence if
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§ Is CRN chen

i tr{Gac $(X)) S0, 1i.e.

Xnr, ¢ @
X te(FaF §(X)) -7 tr(Fis {r)i{xln
XnT, ¢ ¢ X,T, ¥ @ o
z 23
- er(r (FloF #(x,)) + T erlr (Flar (F§X,)) <0 .
X,Mr, ¢ @ X T, # @

By condition (3.9), the only non-vanishing terms in the last three sums
on the 1.8, of this inequality fulfill the conditions
xeyYu r{Y+al), 1:2 cY+a | rY and 134: (Y+a) | r{Y+a) . Moreover

X, NT, i@, j=1,2,3 . Applying now condition (3.17) we see that these three

i
gums thend to 0 as a tends to = iIin a direction for which T, +a c:T; .

for all s of this directlon. Thus

T te(FaF (X)) =0 ,
b <aindt )

for all F ¢ ﬂ{KT} , Since ¥ 18 an arbitrary, bounded set in r; s this proves
Theorem 3.5, (2).

{3) Let P be an orthogonal projection on Li - l?cﬂh+, N dplx, ) . Then the

k
JEn
diseribution kernel of P, P(1+, y+] ; 1s a weak limit of fubctions of the form

2
E ?kiz+] 1kiy+5, where Y €L , for all k .

This observation combined with the spectral theorem for negative, (resp. posicive)
bounded operators and the relation ?EEH.?_I = Eﬂfklty_l clearly proves Theorem

3.5, {3) .

As an application of this general theory we consider a classical spin

system with many body interactions. The classical spin at site { is denoted Oy »



and Oy * n oy - The expectation tr 1s chosen such that tr{,:[::l = and
i

r.r(ni} =0, for all non-empty X . The Iinteraction & 1s glven by
§: X4l , (3.19)

where J = {J,] 1s a family of real numbers indexed by the bounded subsets

of 2V . The interaction § 1is translation invariant if J:H = 'IJ: N

for all H:T+.

for all

a eZY , and reflection covariant, see (3,14), Lf ‘JH - Jﬂ: "

Example : Ising model with multi-spin interactions.

Definition : We say that J 48 RF 1f and only 1if

T vy e w0, (3.20)

LA

for arbitrary, finlte sequences of complex numbers,

EEH'}HEI“_‘_

Corollary 1,6,

(1) Let § be given by (3.19). Then & {is CREN {if and only {f J 1is EP .

(2) The family of all RP J's forms a convex, sultiplicative cone,

Proof :

(1) 1t is not hard to see that Lf J is RP then § , given by (3.19), is

RN , thus CRN ., Conversely, i{f § {is CRHN then, for an arbitrary function F

of [gj‘r]Er with te(F) =0
Y
= J tr(Fa.) tr(F Y30 (3.21)
X,¥eT, XLy % Ty

Now choose F = T :I gy » where 'ix = :xtr(uill'l , and [z is a finite

Hjlcl"_{_
sequence of complex numbers. Then
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telF) = ¢ ;'x tr(g,) = 0, and

tr{Fq.) = T 2, trig.qo.)
O St (3.22)

. 7
= ¥ tr( J exl )
s *r Oy Ty x
- £ 2 i -
2y trioy) =z, ,
BO

tr{?uxj tl"[l"q.,i,.'l - E

£ I %, 5, J
%,Yer, ST x,ycr, * Y *U¥°

and, by (3.21) and (3.22), this is non-negative, Since fgx] is arbitrary, it

follows that J 1is RP .
(2) Convexity 1s obvlious. Given J and J' , both RP , we define J" by

B S I for all X .

X r "X°*

By Schur's theorem J; {5 then alse RP .

Remark : There are plenty of RP J's with the property that JI # 0 , for sub-
gets X contalning an arbitrarly large number of sites. (As an exercise we
recommeénd that the reader construct some explicit examples of this type). As a
largely open problem we propose to investigate the detalled geometric properties

of the cone of RN Iinteraction within one of the standard Banach spaces of Inter-

actions, [397.

Theorem 3.5 and Corollary 3.6 provide a rather satisfactory, general
theory of RP Glbbas states for classical systems, See also m In the gquantum

case no complete characterization of RP Gibbs states 1s avallable, yet.
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The reader can check that Theorem 3.5/Corollary 3.6 includes

results in Proposition 3.3 and its consequences via Theorem 2.1 as a

special case. In particular, the Eollowing should be noted. In propo-

aition 3.3, wo assuméd that H has the form (3.2). This form was

chosen so that the Gibbs state *"-‘EH is RPF for all B. 1If, instead,

one starts with the apparently weaker requirement that <-=» is

EH

RP for all B, then Theorem 3.5, (3) tells us that H has to be of the form

(3.2).

Example Consider a two-dimensional Ising model with 2,3, and & body

interactions. Let X = a{uTu} d(u,1} “Il.l} “tl,ﬂ}’ Y = "{ﬂ.ﬂ} u(l.ﬂ)-

T, * 20,00 E 790,00 01 Lot R E'En 1, LIX + KY + 12] vhere
J.K,L are numbers and T, Tepresents translation by a unit. H will be

RN with reflection about the plane i, = 1/2 1f K* = JL and J,L>0. To
see this, note that in this case ~H has the form B + 0B + E{:iﬂﬂi, whire
€0y 0,1y Y ¥, 0y [and hence (3C = o?X +aBY + 572), and the

sum on i is over translations im the plane L, = /2.
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&. Chessboard Estimates and Infrared Domination

In this section, we review, systematize and extend the basic
methods of [[I0,B]LZ,5]) which are based on the use of RP about a large
number of planes. For this reason, we will have to work with periodic
boundary conditions or directly inm infinite volume. We begin by de-
scribing "chessboard estimates", then mention the way these can be used

in connection with a Peierls argument,and finally discuss the method

of infrared bounds.

Theorem 4.1 (Abstract Chessboard Estimates[O]) Let o« be a real wvector
space, let i o be a real linear map with r¥ = 1 and let F[at.....ainl

be a complex-valued multilinear map obeying:

F{al""‘aﬂn} = F{‘:""":n'atl (4.1)

I-F{-!t.rl-.ﬂn.hn.---'hl'}lz
£ Fi'l*‘*"“n"“n'"*"“1}F{b1'*"'hn'rbu""-'blj {4.2)

ol X TR T T L TR ——

Zn
19(:1.....am}! < Ii_lllai]] (4.3)

Hemarks 1. In the example of 2n spins on a line, oné should think of

{8spin ata.
o, as funetions of ingle site, and F{.nl,.,.,;in} -c ¥

a, (o )>;
o4y 104

r{a) = a {or ¥ if we take complex valuad functions) so that (6.1) 1s true
1f periodic boundary conditions are used and (4.2) is an expression of RP.
2. The statement and proof are patterned on [9]. For a discussion of its
field theory forebears see [43]. For applications to Hilder's inequalicy
for matrices, see [§].

3. It is a worthwhile exercise to prove this directly for the case

In = &, see [E,E3].
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4. By (4.2) the F{a1.---.an.ran.---rl1} are either all 20 or all s0. We

can suppose the former without loss.
Proof : We first prove (4.3) and then it follows that |[|+|| is a semi-norm,

since (4.3) implies the triangle inequality. Let a . be given and

P

suppose that ||nL|| #0 for all 4. Let b,,...,b, be any 2n elements

2
each of which is either an ﬂi or an r{ai}; Let

)

in
gbysnesab F{h1,+++,hE“IIiEl|]hi||
and lec g = un:lg[hi}] as the b, run through the (4n) 0 possibilities,
Among all choices with Ig[hi]| - B pick one with the longest string of

the form ai,r{ail,ui,...,r{ai) for bl,.,+,b2 Since {(4.1) implies that

0
||t{nil|| - ||li||, (4.2) shows that g obeys the same Schwarz imequality

as F. Thus, if |tth]""*hzn}1 = B, We must have that

ls{hl"*"hn'rhn‘+"'rb]}] i If 22 is not 2n in the above cholce,
let b*,...,b' be a ecyclic permutation of b ,...,b with
1 2n 1 2n

a, +rla)seov,a,,rla,) occuring as by .yb! where § = n-1 if

g
26 » n and otherwise j = 2i-1. But then hl.....hn,rhn,...,rhl has a

string of the form ni,r{ai}.... of length 2j+2. It follows that

g = |3(H1.r(alj,+..,r{ai}}| for some a

G i But such a g 4is always 1

so g % 1. This implies (4.3) if each ||a || # 0.

If some ||a,|| = 0, we claim thac F(a,) = 0. For, if not, let
h].+++,h1“ be a sequence with some hj = a, 8o that the longest string
ai.r{ai}.....r{at} pccurs consistent with F(b ) & 0. As above hl.+++.h

i
must be Ii.t{ﬂil.--..r{nil so there {s a contradiction. .

20

Typlcal of the explicit versions of Thm 4.1 are the following:
Theorem 4.2 Let A be a rectangular subset of ¥ with sides

1n]x.iaginu tnl.---.nU positive integers). Let <+> be an expectation
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value for a classical spin system which is inwvariant under translations

mod n, (periodic boundary conditions) and which is RP with respect to
(untwisted) reflections (mod nl'_i in all planes perpendicular to coor-

dinate axes running mid-way between neighboring points of A. Then for

any functions [Gu}nl

«<w G (o0 )| g «<x G (o :lflh] (4.4)
| ul'ah a “:I | uEh El;n “{ }

Proof Let o be the functions of spins {a }

a ath; a -1

and lec

in,
P{nl,...,n ) = <w'a {{ol} b

znl =1 ] uu-j

Using the assumed RF and Theorem 4.1 | and setting a = ™

'I.'Izp-- + 2 p 0

G , we obtain |< e

i
.11-|:|2|“-|'|'.'l,.'|II el ﬂﬂ{ﬂﬂ'}}I

Zn Zn
nl <yl " I (o jjlflnl
j-]. E-l ui"""‘nu iiuzl-.-i'ﬂu k.ﬂi.....uu

Repeating the argument in the other w=1 directions, (4.4) tlaultlpll

How let | be an element of the dual lattice, A, to A, i.e.
i 1is the center of a unit cube, ﬁj contained in A. Let F be a

function of cthe spins in A. We say that F € Ej i1f and only if F 1is

only a function of spins at the cornemof &4, . Given such an F we set

3

- 1/]a]
v {F) ti;h?{i}:

where if.i.'l is F for {1 = j and for nmearest neighbor cubes & and
Lo t[i ii"ﬁlii]] with @, ., untwisted reflection in the plane
separating &, and bgv. Thus, 1f 1-} has all even components, Cthen

F{l} is a translate of F and 1f 1i-] has Vo odd components F is
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a translate of F reflected in v, orthogonal planes. The proof of
Theorem 4.2 extends to:

Theorem 4.3 If A 1is the set in Theorem &.2, <+> 45 translation
invariant and RF with reapect to planes perpendicular to the coor-
dinate axes but through the sites then

<a F>» 5 wy(F,)
sk 1 it

for Fil Ii :
There are clearly quantus variants and variants with various
oblique planes + Except for some discussion of the Face

centered cuble lattice at the close of this section we do not make

these explicit. Reflections at oblique planes have also been used in M1, 7]

& & E

To explain schematically the Pelerls—hessboard method, com-
kgggﬁ:rpfigurltlnn apace /
sider a classical spin system and break up¥ K Into pleces HIU*'*UH-

(For example, if K 18 finite, each [i:jl could be a single point. For
the anisotropic classical Heisenberg model, K = unit sphere , and K,
and K, are the two "polar caps" of the sphere and Kl is the temp-
erate and tropical regions.). Let Pijj be the function which is 1
(resp. 0) 1if un ig in K, {(resp. not in K,}. Let

i 1

-:.m:rﬂ A - tne-ﬂﬂ"lbnhe'ﬁ“ﬁan where £ > 0 and H.ﬂ. is the hamiltonian
L]

for the lattice A. Lec <= be some weak-# limit point of b
L]

.‘.‘-E =
as A+ Z. As we will describe, the Pelerls-chessboard method typ-
ically allows one to show that for 1 # i, ‘Pji}ﬁjj}*ﬂ e 0 as

b

B+ = uniformly in A,a,y. Suppose that we also know that for

i=1,2, lim *F{l}*a w * 0. Then for large £,
ﬁ_lu— a ¥
L), ), ()
Pu. P‘l‘ ?H‘" Pq E;'{P'r }ﬁ." cannot go to zere in the average,
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which would be required if f*ba o were ergodic, so there are two or
»

PO M, @)

more phases, and tPII}T will be a long range

B
order parameter. Actually one can say more; namely if &iE tP:l}JE -
for i=1,...,k there will be;for & large at least k phases; for,if

< >\ were a convex combination of k-1 or fewer ergodic states, then

2 -2 (1), (1),
%44 e Il {:.gEﬂ,{Pﬂ Fe T

would exist and would be a matrix of rank atmost k-1 with fﬂij = *Piij?-

Under the given supposition it has rank at least k for 8 large: See
atso [B,8]. (1), (4)
How does one show that ﬂPu FT * iz small for j # L7 Let
I' be a contour in the elementary Pelerls argument (see e.g. [B3,0d)])
sense. Let piﬂ','l = probability that each spin immediately inside T
is in Hl and each spin outside T is not in Ii' Suppose that

Fi{T} € E-E{H}l?[ with C+ = gag B + =, Then, by the usual argument

for cubes A:

(1),
<priptis ¢ 3 p,(ry + z p, (F) + T (r)
a I around o 1 I around g 1 I wrap Edpi
around |A|

- N d|r| -c(e)|r]
- |T1€Eu{|r|+l} E E

for suitable d and N independent of 8 (but dependent on w). Thus
to show that tPii}P:j}h is small vniformly in a,y and A as B+,

we only need to show that

. . Pii] . Pijn}, . '*ﬂg{51|r| (4.5)
a inside ' ¢ & outsida ' ©

for any choice of the ju‘l (all distinct from i), for then

@-13/TleCat®r] . -c@)r]



e
Finally (4.5) is proven by using chessboard estimates, either directly

&.
in the form of TheoremYor an extended form of Theorem 4.2 which ex-

ploits a two site basic elesent. The net result is cthat the left side
of (4.5) is dominated by the product of |A| terms (or in the two site
picture of |A|/2 terms) most of which are 1. But ﬂ(|l‘|} of them are
of the form [ = < m F{k“}?”lﬂl

ot O
to be worked out in each case. Typically f can be easily estimated

where u—rk.n ig a function that has

to be small by energetic considerations. See [EL,, Jand paper II
for explicit examples.

Of course, that leaves the questions of showing that

1im cl"{”r > 0 for several 1i's. We discuss this in detail in

paper II, but note that this often follows from symmetry, or by applying

the chessboard estimate to obtain an upper bound on < T P"‘“:- which is
i & K=

small, See also [@,[H,L4].

Thus far, Pelerls-type arguments have not been applicable in
cases where a phase transition is accompanied by a spontaneously
broken continuous symmetry. The only tool available is that invented
in [I0): in the notation of example (1) of 53, let ¢ be a function
on K, and let g be the function o on the ath copy of K. For
A a cube, let p be in A*, the Pourier dual for A (= 15t Brillouin

zone; = dual group to A wviewed as a torus) and define

= 1 ipa

o -
P YT uEhﬂ “a

B lp) = <O 9 e -
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Suppose that one can prove that for p # 0:

By (P} £ L/2BE, (4.6)
for EF a function satisfying

)™ [ E'd% =z c <= (4.7
le,| 5=
1-11,'. 5wy

and that for B8 2 Eu
wif : D>0 . (4.8)

Then (following the version of the argument in [&]) for B » lnxiﬂu.ﬂl}

where El - EEIED. we will have (assuming some regularity on EF]

ifm (1A g, (p=02] > 0 (4.9)

gince
=1 -1 -1
A - A I = (A L
[A] g, (p=0) |A] Ftﬂ*:h{pl Al S8 (P

c

&Y
2 <gix - | T 1/28E (4.10)
a i ] ! Pﬁu 4]

where the first sum is controlled by a Plancherel formula, and the

second by (4.6). With minimal regularity assumptions om E,
14m(4.10) = <o2¥ - (28)7 ¢
Jrm x a

so (4.9) holds. By an argument of Griffichs (see e.g. [4]), (4.%)
implies a first order phase transition with o, a8 order parameter.

In certain quantum cases (where :Enu“ and H do not commute)
and, as we shall see below, for some other than simple, cuble lattlces

él:t centered cubic lattices, it is necessary or more convenlent

to rely not on (4.9) but rather on a direct infinite volume
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argument which is explained in detail in [5,6,4],

We note that sometimes (4.8) follows by a symmetry argument
{e.g. in the classical Helsenberg model) but that in general one can
try te use a chessboard argument to show, e.g. that

P:abfui < 2D) £ 1/2 for Bz B,.

The only known way of proving (4.6) is via a "Gaussian
domination"” or related estimate: Let K be a compact subset of EH
and let dp be a measure on K. Leat nu}‘,...,q{m be the coordinate

functions on K. Suppose that H has the form

H = %— ETJF'I'{E'E-E'I']: {each pair counted once)
a

and define for {hmr]uﬁ real,

z:h
a Oy Byy) ]

1
E{‘nw} - “IF[FEE-:-ETJ“'!' {0 _=o A

where <>, = I-ndn(uu} as usual. We claim that the two conditions:
J':'I"l' - J#"I‘ B J‘l"ﬂ g

zthnw} « Z{0) (Gaussian domination) (4.11)
fmply (4.6) wicth

1 __ ip*a
E'.Ill zqiﬂ.“ @ }Ja.ﬂ i (4.12)

Before proving this, we note that one point of the definition (3.53) is

that it makes EF independent of A for p:ﬁ*,

Since the argument to go from (4.11) cto (4.6) is only a mild

extenslon of that in s wit only sketch the details. By translation
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tnvariance, - 20h, )], = 0 so that (4.11) fmplies chat

2
ﬁ%r'zthhuyll-ﬂ £ 0. This is equivalent to:

z
L N (R & )

5 1
Be< J (o =0 )*h > £ 58I
E] IniT u?( a T} ETI 2 afy

(4.13) only holds apriori for real hu*-.r but it extends to complex h.
Now take h = @S g Y ATM2 L find chat (4.13) fmpliss
(4.8) with EP glven by (4.12). We susmarize:

Theorem 4.4 The Caussian domination bound 1{!’:.“] £ Z(0) ctogether

with J“ - J“_“n - J‘r—u,ﬁ implies the infrared bound
-1 IS Bt
5, (P) S (BB with B, =3 Z (1-4"0 033,
* * *

We next turn to a detailed investigation of (4.11).
Proposition 4.5 Suppose that Jﬂ z 0. Then it suffices to check
(4.11) for hﬁl"l" of the form hu-h';'

Proof Since ']wr 0, EZ+ 0 as any hu"f + = and thus Z takes its

maximum at some finite point. But HzfﬂhﬁT = 0 implies that

‘lm,-{hu-f - 'ﬂ:ru- :rT:-j =

for the obvious expectation. Thus, letting hh <0 >, we see cthat

h“ = hﬂ-h,' for those ay with 'll::'r # 0. Z 18 independent of the
other h g0 we can take h _=h =-h for such {ay) without
oy oy a v

changing Z; 1.e. Z takes its maximum value at a point
b= B [ ]
Remark The proof of Theorem 4.4 only used (4.11) for the special case

hn‘r - hn-h_‘ so that Prop 4.5 is,at this stage, primarily of academic
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interest. Indeed, there are JET not all non-negative so that (&4.11)
holds for hn? of the form hmvrhr, and thus (4.6) holds, even though
for suech J's, Z -+ = for a suitable choice of hnv not of the form
h =h .

a

It is an important and interesting open question to char-

acterize the ferromagnetic interactions for which the spin 1/2 Tsing
model obevs Gausslan domination. We only have partial results on this

relying on reflection positivity.)
question™" We begin with some examples which delimit the class and, in

particular, demcnstrate the falseness of the apriorl attractive con=
jecture that Gausslan domination holds for all ferromagnets:

Example 1 Consider two spins, nnu.ul.uith values 21 and the other,
%, with values 2, all values having equal apriori weight. Then
<1-qui-n1-h32? has its maxisum near h = %1 as J =+ =, This shows
that equality of the single spin distributions is essential for
Gaussian domination in general (but see examples 5,6).

Example 2 Let o= 11, T, = +1, then

-T2 o Y2
2y = L [eIW 4 YW

=

has its maximum near h = 1 as J + 0. The given distribution for
g, can be thought of as that of an Ising spin in an intense positive
magnetic field. The failure of ERP in this case shows that even
equalicy of the magnetic flelds at each point is also essential for

Gaussian domination.

Example 3: (Mean field model) This is the most involved but also the

most significant of the examples we present. Z(h) £ Z(0) implies that

M om w 3flnZ is positive semi-definite. For a spin 1/2 model
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with

2
,I.uJﬂ‘r o - :l,r".l'

a simple calculation shows that (set .Im| = 0}

M = & (L]

ey ay & u&} - J“— 1'. J 6 h:{u "uﬁ”"v'"l:'}

Take o+l spins, Tgereesd with only "Im * 0, all equal

ke 4 . Then
n

- - il 2
M na un[n dm+{n“=n)<o

o 2
00 a,> = In -t:ruufl

1]

Take o = 1/Vn, so that H = =g Ft n:r) + const and thus as n + =,

a coupling of a Gaussian and a spin 1/2 spin. Thus as n + =

1
<g,0.> = ——-:uuf iEIu *» = gf\n

n-l

:uiuj:- [« {-';- :u ‘.I > =1] = d/n

for finite non-zere, ¢ and d. Thus

HDEI = -n=1+2edn

is negative for n large and therefore H:r-r is not positive definite
for n large.

Our next example, while a trivial extension of RP ideas
illustrates that Gaussian domination can hold in some cases where
RF fails:
Example &4 Let <.> be an expectation for a gtring of 6n spins with
third neighbor ferromagnetic coupling. Then RP fails both for

reflections about the midpoint of bonds and for reflections on sites.
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Since Z(h) 1s a product of three nearest neighbor Zn-point 2's,
Gaussian domination for that case yilelds it for the case at hand.
Our fimal three examples show that special features of the
J'se and/or the single spin distributions can allow one to prove
Gaussian domination without ®RP and/or translation invariance. We
hasten te add that phase tramsitions will not occur In examples 5, 6
and 7.
Example 5 Suppose that H = EJnﬂ{nn-uﬂ}z with Jﬁﬂ arbitrary
positive numbers and that each single spin measures ﬂp“{ﬂ“l equals
Fudu“ with Eﬁ log concave and even, but not necessarily o inde-
pendent. Since a’“(q“"h“};!n is a log concave function of {uﬁ.hn}.
E{hﬂ} is log concave in h_ by a general theorem (see e.g. [11).
Since 3E.|Fahu = 0, all hﬂ = 0, by symmetry, log concavity Implies
that Z(h ) < Z(0).

2 ith 3

Example & Suppose that H = JuE{uE-uHI aB arbitrary pos-
itive numbers and that each single spin measure dpn{:rn} aquals Fudﬂn
with Fu positive definite and real (hence even), but not necessarily

a independent. Then
zh ) = [eH(Caha) . (¢ f et % @ (k) d ]
Highy [ m(dg e O Gye-tilny)
- I;du{ku}e | Tda e e g

is positive definite in the h's since the Fourler transform of a
Gausslan 1s a Gaussian, 1In particular, I{hn] takes its maximum value
at hI=|| = 0 (In essence, the above calculation is proving that the

convolution of positive definite functions is positive definice).

Example 7 Consider an array of n spin 1/2 Ising spins, Sya=res®  ON

a line with arbltrary positive, nearest nelighbor couplings,




S 1

J J

12.-.!13."... al’ Let T(J,h) Bbe the twe by twe matrix

ostn? I (2-h)?

2 i
ol (2+h) o sTh

i.e. if we label matrices as C‘H‘ B‘+—) , then
e

T"J"h}uluz = a:xp(—%.l(ul-uz -'h:IE'_I. We want to note two critical

facts about these matrices: flrst T(J,0) is positive definite and

/2 'I'l:i.T.I.‘l]l'I'II:.J'J:I'.F-_:I'J'I2 is a contraction in the norm

a8l = Ca2+823/2

(3,09}
-this is proven in [I0]. Secondly, the T{J,0)

all commute, are positive definite and when diagonalized simultanecusly
by
their largest eigenvalues correspond te a common elgenvector - this follows ¢

noting that ?J::_ (l]'.] and :%!(_11] are the eigenvectors,and the eigen-

value for the first eigenvector is always largest. Since

z{-h'l_'ll"""Il]-l'ﬂl = TT{TEJIE'hE -hlj ++.T{J'n-llh1- hn}} We can “it-t
“hl'""hn} - Tr“lhl“'hnnn}

shate' &, = T o1 o

{ (where J

i-1,1 o1 & Jp1d

and Li is a contraction,by the first fact noted above. Let

i,i+1"

nl{'l:]”--.l:-{'l:] be the singular values of an m=m matrix (eigenvalues

of I{{!"'-':}I]"I|r2 ordered so that wu, z p, 2 ==12 0). An inequality of

Horn [Z1] (see Cor II.4.1 of [15]) asserts that
m m
JErglG e G s (G (G)

Thus, we have that

2

z{hl.....hnj 1£1uiiﬂ1.nﬁn}

(1%

[ 5

2
151]11{1‘1}“1{-&2} b H i{-ﬁn}

2
lELUl{lI“.ﬂ“} = Z2(0,....0);
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where we use the fact that "j {E—i} £ 1, since Hl is a contraction, in
the second inequality,and use the second noted fact in the
equality that follows.

To fllustrate the close connection between chesshoard es-
timates and Gaussian domination, we note:
Theorem 4.6 Let A be a Enlx---xzﬂu rectangle in 2. Let er
be given on A 8o that the chessboard estimate (Thm 4.1) holds for
<> = 20 [ee™C) 5 0 ) forall & tn B and

ogh @

1 2
H = f.,ETJuvwn_u‘r}

Then the Gaussian domination estimate Ethn} < Z(0) holds for ar-
bitrary dp and, in particular, gﬁll',p} < {IBEP}-1+

Proof By a limiting argument, we can suppose that dp(g) = F{ﬂjd“ﬂ
with F> 0 onall of B'. Then, 1f we define G_(9) = F(o+h )/F(a)

we have that

2(h.) foBEq = y) ndo(a,)

- IE-H{E“} adp {uu-l; hu}

Z{0) ﬂ;{:d{uu )=

1/ |A]

]

2O g <26, (09,)>

=H(o,) 1/]A]
: [J'.n ¥ ¥d.|:|'l:l:r,f+hﬂ}] z(0)

wvhere the inequality is a chessboard estimate and the last equality

comes from Hl“_ulu-—h} - Htun} for constant h. I

Remark : Using the Dobrushin-Lanford-Ruelle equatlons one can prove Theorem 4.6 directly

in infinite volume for ERP Glbbs states,

The above argument has a defect:it does not obviously extend to the

quanium cose,
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Fortunately, one can use a verslom of the original argument given
in [E, based on Theorem 2.3 : WNamely, In the case of 2n spins,

Theorem 2.3 sayvs that

2
|Hh-'rr+1""*hn”

i “h-n-l'l.""'hﬂ‘hﬂ’h—l'”"h—rrl-l}z{hu"hn-l'""‘hl"hl"'”"hn]

so that translation invariance and the argument in Theorem &4.1 show
that nﬂ!ll{hl}ll occurs vhen all h's are equal. Since
Z(h,...,h) = Z{0) ,the maximum iz Z(0). As of now, this is the most
widely applicable proof of Gaussian domination we know of.

We remind the reader that in the quantum case there is one
additional complication in that Gaussian domination does not lead to
a bound on iﬂpﬂﬁp? but rather on a “Duhamel two point function",

{EP.H_P}. This problem and its resclution are discussed In . for
the case of nearest nelghbor intervactions. The present generallzatlon s

stralght forward,
The argument based on Theorem 2.3 has an additional advantage,

A _ 2 .
¢ven in the classical case. Suppose that H= 5 ntﬁrJ“T i_'l:rn u:!_r:l- + H
where o3 is RP and J obeys (3.3). If
Z(h ) = -cenp.[% EJur{uu --«c|1|r-]1“+111r:|.2 + H'):u then, as above, Theorem

2.3 implies that E{hu.'! < Z(0), and infrared bounds follow. We

summarize with

Theorem &.7 Let H have the form of Thm 4.6 with J RP. Let
F E i = -

1} H+H" with H'" BRN. Let E{hn,'l ﬂu:p{H{uﬂ hn.'p + H*]:-b.

Then th] < Z(0) and Eﬂ{p} £ {EEEP}-]' with Ep depending

on J"—"‘f , a8 In Theorem 4.4,

Finally, we want to mention a problem ( and its resolution)
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that occurs for certaln special models like Lﬁ‘l}iﬁﬂimcind cubic
lattices. The infinite volume lattice is reflection invariant about
any plane which is the perpendicular bisector of a bond, but any
finite volume cut off will destroy many of these symmetries. The
resolution is the fellowing: Let <+*> denote an infinite volume
expectation and, given, [hh]ntIF with only finitely many non-zero

h's, let
a
glh) = <expl: T J [te -0)3% - (o -0 -h +h )]
a 2 niT ¥y " a oy e B ]

If we can show that |g(hﬂ}| £ 1 for all h:' then by following che
arguments in [I0] one will get infinite volume infrared bounds and
therefore long range order. To prove that |a{hﬂ}| £ 1, one need
only show that <+> has a kind of ERP about sach"bond'plane, 1.e.

that

e |® < smg, (Y (4.14)

vhere h] (resp h3) is obtained by taking hu on the left (resp.
right) side of the plane and reflecting in the plane. Given {&.14)
it is not hard to reduwe the proof of |g{hﬂ}| £ 1 to showing that
|g{hh]|lflﬁ| + 1 for a set of h;a constant &t hﬂ on a nice set
A. But it is easy to see that Eg{hﬂ}| < tcfah[ for such h's.
{Instead one can use Theorem 4.6 in Infinite volume; see e.g. [:j].
We can see two ways of proving (4.14). In cases where
correlation inequalities are available, one can prove (4.14) for a
given plane by taking a suitable sequence of "+ boundary condition
states"vhere the given plane guta A exactly in half. Since the
limict is independent afﬂgéauente, (4.14) holds for the <+ boundary
condition state. When correlation Iinequalities are not avallable,
one can at least prove there are multiple phases; for, if not, thenm
all periodic states converge to a unique state which would then obey

(4.14). 1If < ﬁi :: has a lower bound that 1s uniform in § one would
=
1

obtain long range order ; a contradiction .
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5. Long Range Models
In [3]. Dyson showed that a spin 1/2 Ising model with

Jin) = t11+i:1.]:||_"hI has a phase transition if l<a<2 (a>1 is
needed for sensible thermodynamics), and did not 1f 2<a. His
mathod works for any classical model with correlation inequalities
such as the plane rotoer medel [13]. Using similar ideas, Kunz and
Pfister treated the two dimemsional plane rotor model with
Jip) = {l-rlni}qﬁ proving a phase transition if 2Z<a<4,

In this section, we illustrate the general methods of this
paper by recovering these results (many more examples are presented
in [7.8]) and extending them in several directions: (a) cases where
correlation inequalities are unknownsuch as the classical Heisenberg
model can be accomodated; (b) logarithmic improvements in Dysons's
conditions are given; (¢) certain quantum models are accommodared.

We give details in the one dimensional classical case and
then treat two dimensions and quantum models in a few remarks. When
correlation inequalities of Griffiths type are avallable, improvements
of our results of the following sort are possible: If a phase trans-
ition is known for an RP ‘Tﬂ which is also positive, it holds for

any larger J even if the larger J is not RP. We suppose in all

cases that E|J(n)| < =.

Wa begin our analysia with:
Theorem 5.1 Let K be a compact subset of tH and let dp be a
measure different from &(e)., invariant under o + -0 . Let

-AH = HifjJH-j}ni_':r and let EP - ElJl',n}{l -cos pn). If O < J(n) and

j n=

J 4is RP, and if g Idprpf w then there {3 a first order
phase transicion with o as order parameter.,at some

sufficiently large, finite g .
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Theorem 5.2 Let J{i-j]} be RPF. Then the classical isotropic
Helsenberg model has a first order phase transition for B large if
and only if g = _I'ui;r.u"E:F < =,

Proofs The absence of a first order phase transition (asserted in
Thm. 5.2) 4f g = = follows from a slight extension of an argument
of Mermin [29], so we concentrate on the existence question. Since
g < =, this fnllwulncnrdi.ug to the strategy of §4 ,if we show that

2
< » ¢ L/2RE. and lim <|o|™> * 0. J baing RP
apn-p periodie - p e ll Bimr

implies that <= iz RP by Thms. 2.1 and 3.4. The method

1'1,:':rr:.'l.qnn-d.tn:
of &4 then vields the infrared bounds. In the case of Thm. 5.2,

< rn[E}_ = 1 while in the case of Thm. 5.1, choose Ty * 0 so that

El}r: dg > 0 and use a chesshoard estimate to see that
]

-=I{||:r[5 'ru:I}E._"'D,nB B+ =, The right side of this chessboard
estimate is controlled by notinmg that RF 4implies that the ground
state with the restriction [n:r¢| < g has all spins equal,
and then by noting that the energy when all g * is strictly

=
monotone increasing in [r|, sinee J(n) 20 . [ ]

These theorems reduce the study of the long range one
dimensional case to the study of two gquestioms: (1) Whem i3 J RF?
{2) When is J'E?dp < =, In studying the first question the
following is useful:

Definition A distribution F on H”\{L'l]- is called 0S5 positive
(for Osterwalder-Schrader [30]) if and only if F is continuous

L
=

[Flx=y) glx) §(y) dx dy (5.1)

-
for all ge cl] {:l:' 0} where E{?I""‘ru} . Et-rll?2|+-”.¥u1
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Theorem 5.3 (a) If F 4s an 0S5 positive distribution on R’

then J, defined on {[ni,...,n‘r}lnlﬁ' 0} by
J(n) = F(njseeuan ) 3 my >0,

is RP.

(b) If J. and J, are RP on {nlil:r}ﬂ:”,:hau so is J.J,.

1 2
() If J(n) -L'-e-":"':lnl[y-}. (nzl), then J is RP on X.

Proof (a) In (5.1), let g approach a sum of delta functions. This

ghowa at once that J 1ia RP.

(b} Fallows from the fact (Schur's theorem) that if 'ij
and hi.’l are positive definite matrices, so is Eij with
I = a. . h

13 1313

{e) A restatement of Prop. 3.2;: it also follows from (a) and

well=-known structure theorems for 05 positive distributions. I

Proposition 5.4 The following functions on £ are RP in the

reglon mn = 1:
(a) J(@) =a " (b) J(n) = (L+n) "
for all o = 0.

Proof  (a) ju" a5l gy w P ™ (use Thm. 5.3(¢)).

) [" e e ¥yl ay = r@@+™  (use Thm. 5.3(c)). [}

As for the second question, we note:

Theorem 5.5 Let EF = I J(n){l-cos pn) with J(n) = 0. Then
n=1

(a) 1f .fln"" oy < =, then [dp E;l < -,

-1|N -1
(b) If J.I%m sup (log M) [E"“"] < =, then [dp Sl
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Remarks 1. The condition in (a) is slightly weaker than the one that
Dyson [3] needs for a phase transition. The condition in (b) is
slightly weaker than the one that Dyson [2] needs to prove that there
is no phase transition in the Ising model; (b) will only imply the
absence of continuous symmetry breaking. This is as it must be if

the 11-2

1sing model has a phase transition (as is believed), since
J(a) = n"* obeys the conditions of (b).

2. {b) includes the case J(n) = n_i. This case can be done

by explicit calculation of Ep ;{contained Ln the tables, e,.g.

(516) of [Z&]) or by noting that EP = £(0) - £(p) with

£(p) 'an-z cos pn obeying £"(p) = w&(p) - % with periodic boundary
conditions at *r. One sees that E(p) ~ |p| in that case.

3. If J(n) v o © at infinity, we are in case (a) if a < 2
and in case (b) if a > 2. Actually with regard to (a) one cannot
improve even 1ngs,ninuTJ{n} fu ﬂ.zl:l-n-i n) ... {lﬂﬂnﬂ}lﬁr then
EP v |p|(log p) --- (10EEP}1+=- For (b}, improvements are presumably
possible: with little change (log H]-l can be replaced by
[(log N)(log,)(N) --- log_(N)]™" which allows only
'n._riilngzn} v “u‘mn}l'l': :

4, If J(n) = I_llll“i'l

dp, then EP = nzlitn}tl-nnl pn)
inereases when dp increases,

This remark allows one to obtain results for J's which are
RP but not positive from those in this theorem.
Proof (a) We need a lower bound on EP - EJ[n}[l-l:ni npl.

F 2
For |[x| 2w, (1-cos x) 2 =7 %~ so that

[=/1p]1 .

2
E, 2 }1_' 5 p )

where [x] = greatest integer less than x. Thus we need only show



o

that
=]

4 E j"l' dp [['I%PIJ_PI“EJ':E}] & -

By the Schwarz inequality

)
[x/p)® = [“f” 1] ¢ r 1"] EJ{n.'!] [héﬂ (nz.ll{n”-l]

80 that
[/p] [n/p]
| -2 -2 2 -1 & 2 =1
e < [fap )T TG I@)T -—'ifﬁ I @ I(m)

=1

slnce nzinl <™ [[ﬂ'_l-I-l:l-z['n,'I-2 £ & for ne land

n/p 21 for 0% p < w. Finally we note that

L’Hp['é"] 2™ - F lat _[‘"’“ﬂp s Pl
1 n=1 1

{b) We need an upper bound on EP' Since (1-cos x) £ |x|

wi have that

E ||§:l J(n) + 2T J(n)
'I_'-' MmJin mn
P B N

for any H. To estimate the second term, let K(j) = En Jin)

go that
H H M
1 1 1 1
;I.T{I'I} - IEI; [K{ﬂj-ﬂ{ﬂ.—]}] - HEH[E K{nj__'n"l H{ﬂ‘lﬂ +__ﬂ|:ﬂ'ﬂ K{I‘l‘l]
) 1
- gm} oy FOe-1) + E 7 s 1) K(n-1)

Thus, 1if !—]ifh[{!-ﬂ-*l] as M+ =, we have that

Lo ¢ 1 sy k@
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If E(n) < € log n, we see that

% =1
B, s clp| log W + CN

log H
Choosing N = I|p|'l], we see that EP < E|p]c1ng(|p|'l]}. so that
=1
d - m

Je, " ap 1

By combining the previous results of this section we
conclude that
Theorem 5.6 1f dp # &(p) 1is a measure on IH symmetric under
g+ =g and J{n) = n"". then there is a first order phase transitliom
for the one dimensional spin model when 1 < a < 2.
Remark If M =1 ({or if dp is anisotropic in a suitable sense)
but dp 1is not even, there will be a phase transition in suitable
external magnetic field when 1 < a < 2; see ar [7].

We describe the extensions in a series of remarks:
(A} In two dimensions, the functions pu-l have 05 positive
Fourier transforms for a > =1. This follows from
J"' dn o _ a-l [ x%dx
B . - 2 x4
and the fact that [p1ﬁ=-21'1 has an 05 positive Fourier transform

(free Euclidean field [B0,EJNSince x P

(0« B < 2) has a Fourler
2-8 -B

transform c,p° ~, we see that |n| is RP for 0 <8 <2 by
Tha. 5.3(a). Then by Thm. 5.3(b), we conclude that |a|™® 1s BP
for all B > 0. Calculations similar te those above show that in

2 dimensions, fdpfﬂp < = Af 5nln-BJ{n1-l <= and for J{n) = n ',

n
an explieit calculation involving pericdic Green's functions for -A

(and the fact that A(r 2) ~ ¥ ' ar =) shows that Ep“upilng p*—ﬂ{pzl

at p = 0, so Idp!EF = = {n that case. We thus obtain:
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Theores 5.7 If dp ¢ &{p) 18 & measure on IH gyamétric under

g+ =g, and Jia) = n-“. then there is a first order phase transition
for 2 <a =< 4, in the two-dimensional spin model.

This result is of interest only in isotropic cases.
(B} It is easy to prove first order phase transitions in suitable
quantum systems which are simultaneously real by using the method
of [4]. In order for that method to be applicable one must check
an algebraic condition; in partiecular some double commutator should
not be large.’
fThere are two cases where this condition is casy to verify i iInm
anisotropic models, such as o, + Ed:fd:f with €& < 1, the double
commutator 1s always small at low temperatures, and in a classical
limit, 1ike 5 + = In Helsenberg models, the double commutater ia
small for § sufficiently .'Largg,. We conclude :
Theorem 5.8 Fix J(n) = n © for 1< a < 2. Then the isotropic
antiferromagnet with -H = “L{-L‘_i“‘“.n:ln—ulﬁn-ﬁm for quantus
spins Eﬂ of spin 5 has a first order phase transition if 5
is sufficiently large (at some g sufficlently large). Horeower, for any
¢ with 0 < ¢ < 1, the spin 1/2 model with
=H = “imJ{|n-m|'_I{5:5: + :sﬂsi: has a firast order phase transition at

sope B sufficiently large.
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