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1. Introduction 

Among the recent developments in the rigorous theory of phase 

transitions have been the introduction of two powerful techniques 

motivated in part by ideas from constructive quantum field theory: the 

method of infrared bounds [10,4] which provides the only presently avail-

able tool for proving that phase transitions occur in situations where 

a continuous symmetry is broken, and the chessboard estimate method 

of estimating contour probabilities in a Peierls’ argument [14,9]. This 

is the first of three papers systematizing, extending and applying these 

methods. In this paper, we present the general theory and illustrate it 

by considering phase transitions in one and two dimensional models with 

long range interactions. In II[7], we will consider a large number of 

applications to lattice models and in III[8] some continuous models in-

cluding Euclidean quantum field theories. Reviews of some of our ideas 

and those in [4,9,10,14] can be found in [5,6,23,27,43]. An application 

can be found in [19]. 

Three themes are particularly emphasized in these papers. The 

first, §2-4, is the presentation of a somewhat abstract framework, part-

ly for clarification (e.g. the tricks in [4] to handle the quantum anti-

ferromagnet may appear more natural in the light of §2,3 below) but mainly 

for the extensions of the theory thereby suggested (e.g. the second theme 

below and the use, for classical systems, of reflections in planes con-

taining sites: this idea, occurring already in [9], will be critical for 

many of our applications, e.g. to the classical antiferromagnets in extern-

al field). The abstract framework also clarifies various limitations of the 

theory such as its present inapplicability to the quantum Heisenberg ferro-

magnets and its restriction to reflections in planes between lattice planes 
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for quantum systems. The second theme is the extension of the methods 

beyond the nearest neighbor simple cubic models emphasized in [10,4,9]. 

It will turn out (§3) that rather few additional short range interactions 

can be accomodated but that a larger variety of long range interactions 

can be treated . This extension will allow us (§5) to recover and 

extend to suitable quantum models the results of Dyson [3] (resp. 

Kunz-Pfister [26]) on long range one(resp. two) dimensional systems. It 

will also allow us (see II) to discuss a number of lattice Coulomb gases : 

for example, a "hard core model" where each site can have charge 0, +1 or 

-1 will have two "crystal phases" for sufficiently low temperatures and 

large fugacity and, for sufficiently low temperatures and suitable fugacity, 

a third phase which can be thought of as a "plasma" or "gas" phase. Finally 

it will allow us to construct (see III) a two dimensional quantum field 

theory (a φ4 perturbation of a generalized free field) with a spontaneously 

broken continuous symmetry. 

For pair interactions, Hegerfeldt and Nappi [18] have proposed 

our sufficient condition for reflection positivity but they did not 

discuss the connection with phase transitions or the quantum case; see 

also their footnote on pg. 4 of their paper. 

The final theme involves the development of an idea in [10,5] for 

proving that phase transitions occur in a situation where there is no sym-

metry broken and thus no a priori clear value of external field or fugacity 

for the multiple phase point. In all cases, the value can be computed for 

zero-temperature and one shows that there are multiple phases at some nearby 

value for low temperature, although our methods do not appear to specify 

the value by any computationally explicit procedure. This technique, 

which we do not discuss until paper II, allows us in particular to re-

cover some results of Pirogov-Sinai [33,34,35] including the occurrence of 

transitions in the triangle model (ordinary Ising ferromagnet in external 
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field but with an additional interaction k Σ σi σj σk over all triples 
Σ oi σj σk 

ijk where i and k are nearest neighbors of j in orthogonal directions) and 

the occurrence of three phases in the Fisher stabilized antiferromagnet in 

suitable magnetic field (ordinary Ising antiferromagnet but with additional 

next nearest neighbor ferromagnetic coupling). As another example we 

mention an analysis of some models of Ginibre, discussed by Kim-Thompson 

[32] in the mean field approximation, with the property that at low temp-

eratures there are an infinite number of external field values with 

multiple phases. 

Next we want to make some remarks on the limitations, advan-

tages and disadvantages of the reflection positivity (RP) methods. 

As regards the chessboard Peierls argument, it is useful to com-

pare it with the most sophisticated Peierls type method that we know 

of, that of Pirogov-Sinai (PS method) [33,34,35,20](a comparison with 

the "naive" Peierls argument can be found in [27]) : 

(1) The most serious defect in the RP method is that the 

requirement of reflection positivity places rather strong restrictions 

on the interactions, especially for finite range interactions. For 

example, the PS analysis of the Fisher antiferromagnet would not be 

affected if one added an additional ferromagnetic coupling for 

pairs i j with i-j = (8,10) (for example) while our argument would be 

destroyed no matter how small the coupling ! More significantly, the 

RP analysis in this case requires that
 0)

σ

(1, 1) and
 σ

(0 0)
Q

(1, -1) 

have equal couplings ; PS does not. Similarly in the triangle model, 

an RP argument requires the four kinds of triangles to have equal 

couplings while PS does not. 

(2) RP can handle certain, admittedly special, long range 

couplings, among them interactions of physical interest such as 

Coulomb monopole and dipole couplings. PS in its present form is res-
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tricted to finite range interactions. 

(3) Inherent in the PS method is the notion that one is looking 

at a system with a "finitely degenerate ground state." This is not in-

herent in the RP method : all that is important is that a finite num-

ber of specific periodic states have a larger internal energy per unit 

volume than the true ground states. In some cases, e.g. the antiferro-

magnet without Fisher stabilization, there is no practical difference since 

the finite number of states of importance in RP are among the infinitely 

many ground states that prevent the application of PS. However, there is 

a model (of a liquid crystal) with an infinitely degenerate ground state 

to which Heilmann and Lieb [19] have applied the RP method with success. 

This model has only two ground states in finite volume with suitable 

boundary conditions, but infinitely many ground states in the PS sense in 

infinite volume. 

(4) The PS method gives much more detailed information than the 

RP method on the manifold of coexisting phases. For example in the 

Fisher antiferromagnet, there is,for T small, an external field, μ(Τ), 

near the computable number μ(0), so that there are three (or more) phases 

at that value of T and μ. PS obtain continuity of μ(Τ) in T while RP 

does not, but shows only that μ (T) → μ(0) as T → 0. 

(5) While neither PS nor we have tried hard to optimize the 

lower bounds on transition temperatures, it seems reasonably clear that 

RP methods would produce better bounds. 

(6) PS require the number of values that a given spin takes to 

be finite. RP methods effortlessly extend to models like the anisotropic 

classical Heisenberg model (see [9]). 

(7) PS can only handle classical models, at least in its present 

version. RP methods can handle certain quantum models quite efficiently 
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(see [9] ) . 

(8) RP works most naturally for states with periodic boundary con-

ditions. This can occasionally be awkward. 

(9) PS obtain the exact number of phases at the maximum phase points 

while RP only yields a lower bound. This difference is probably not intrin-

sic, and RP methods could probably be combined with [11] to yield the exact 

number of phases. 

(10) To our, admittedly biased, tastes the RP method seems considerable 

simpler than the PS method. 

As regards the infrared bounds method, there is no comparable method 

with which to compare it, but we note it is most unfortunate that the only 

available method for proving phase transitions depends so strongly on 

reflection positivity. We mention two examples to illustrate this remark: 

(1) In [10], it is proven that the classical Heisenberg ferromagnet 

with nearest neighbor interaction has a phase transition for a simple cubic 

lattice. The methods of §2-4 easily extend this result to face centered 

cubic and many other lattices, but not to the body centered cubic lattice. 

This remains an open problem. 

(2) There has been some discussion recently (see [36] and references 

therein) of an intriguing model, originally due to Elliott [28], which should 

have "helical" long range order: consider a one dimensional plane rotor or 

N-vector, N >_ 3 model with nearest neighbor ferromagnet coupling, J, and 

somewhat stronger second neighbor antiferromagnet coupling, K. It will have 

a helical ground state, i.e. in a ground state = cosO for some Θ ≠ 

Ο,π depending on the exact value of J/K. Of course, this helical ordering 

won’t persist to finite temperature in the one dimensional case, but if 

one adds two more dimensions with conventional nearest neighbor ferromag-
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netic couplings one expects helical order will persist. We do not see 

how to prove this with RP methods; indeed, infrared bounds obtained by 

RP methods always seem to blow up at a single p while at least two p’s 

are involved here due to the evenness of the function Ep . We note that 

if one could prove an infrared bound, helical order would be proven since 

Ep vanishes at precisely two p's with a zero of order p2 . 

Finally, we summarize the contents of the remaining sections. In 

§2, we present an abstract framework for reflection positivity and provide 

the basic perturbation criteria which allow one to go from reflection pos-

itivity for uncoupled spins to reflection positivity for suitably coupled 

spins. In §3, we specialize to spin systems and examine two questions: 

about what kinds of planes does one have reflection positivity for the 

system of uncoupled spins, and what kinds of interactions obey the basic 

perturbation criteria of §2? In §4, we review and describe the two basic 

RP methods of proving phase transitions when one has reflection positivity 

about the large family of planes obtained by translating a basic family of 

planes. In §5, we discuss the applications to recover the Dyson and Kunz-

Pfister results already mentioned. 

It is a pleasure to thank F. Dyson, 0. Heilmann, L. Rosen, 

E. Seiler, J. Slawny and T. Spencer for valuable discussions. 
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2. Abstract Theory of Reflection Positivity 

Reflection positivity was introduced in quantum field theory by 

Osterwalder and Schrader [30] and it has continued to play an important 

role there. Its significance in the study of phase transitions for lat-

tice gashes was realized in [10,5,9],although we must emphasize that trans-

fer matrix ideas are intimately connected with reflection positivity. A. 

Klein [25] has considered other abstractions in somewhat different con-

texts . 

To understand the framework we are about to describe, it is use-

ful to keep in mind a particular example, describing a chain of Ising 

spins, that is essentially that given in [10,9] (we describe the example af-

ter the basic framework). 

Oc will be a real algebra (with unit) of observables. (We note that 

to say oc is a real algebra does not preclude oc. from being, say, an al-

gebra of complex valued functions : "real" means that we only suppose that 

one can multiply by real scalars.) Below we will freely use and expand 

exponentials and use the Trotter-product formula (in cases where oc is 

non-abelian). In most applications these manipulations present no problem 

since oc is usually finite dimensional. In III, we will deal with some un-

bounded operators and exercise some care on this point. We suppose we are 

given a linear functional A →<A>o on oc with <1>O = 1· Given H ϵ oc , we 

define 

(2.1) 

Moreover, we suppose oc contains two subalgebras and oc_ and a real 

linear morphism ϴ : oc+ → oc_ (the phrase "real linear" does not preclude 

Θ from being complex linear or complex antilinear ; morphism means Θ(ΑΒ) = 

Θ(Α)Θ(Β). In most examples, Θ has an extension to obeying Θ2 = 1, 

but this property plays no role in our considerations below.) 
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The example to keep in mind involves 2n spin 1/2-Ising 

spins σ_n+1'

 σ-

 -n+2, …, σn.
 Then oc is the family of polynomials in all 

the σ ’ s, oc+(resp oc_) the polynomials in σ1, … ,
 σ
n
(resp σo,σ-1 ..σ_

n+1), and 

Θ is defined so that A(σi). Although 

oc+ and oc have trivial intersection in this example, we will not suppose 

this to be true in the abstract setting; we will not/Λeven suppose that and 

oc _commute with each other, although it will turn out that there are no 

cases for which we can prove perturbed reflection positivity with non-

mutually-commuting oc+ and oc-, (with the exception of some Fermion systems). 

Definition A real linear functional <·> on oc is called reflection positive 

(RP) if and only if <ΑΘ(Α)> > 0 for all A ϵ oc 

The reader should check RP and GRP (defined below) for the functional 

<·>
ο
 in the example. Unfortunately, we know of no abstract perturbation 

theory for functionals satisfying RP in the fully non-commutative setting, 

but a slightly stronger notion is preserved under suitable perturbations: 

D efinition <·> is called generalized reflection positive (GRP) if and only 

if 

<Α
1
θ(Α

1
)...Αm Θ(Αm )> > 0 

for all A1,,...,A ϵ oc+ . 

Theorem 2.1 If -H = B + Θ(Β) + Ci ϴ(Ci) (or more generally B + Θ(Β) 

+ ∫ C(x) Θ [C(x)]d p(x) for a positive measure do) with B, CiEoc+ and 

if <·>o is GRP, then<.>H' defined in (2.1) is GRP. 

Proof : For simplicity, let us consider first the case where oc is abelian 

even though it is a special case of the general situation we then discuss. 
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Then, since Θ is a morphism 

e-H = eB Θ (eB ) eΣC iΘ(Ci) 

Expanding the exponential, we see that 

e-H = sum of terms of the form (D1Θ (D1)... DjΘ (Dj )) , 

so that by GRP for <·>o’ <e- H>o >0 and <e- H A1Θ(Α1)...Αm Θ (A )>o ≥ 0 

For the general non-abelian case, we first use the Trotter 

product formula to write 

e-H = lim [eB/K Θ(eB/K) Π eCiO(Ci)/k]k 

k→∞ i 

and then expand to get e-H as a limit of sums of π[DiO(D)]. 

In the next section, we will give a relevant example (Example 6) 

of a situation with <·>o RP but not GRP. There is one case where RP 

implies GRP (this, in fact, is the only case for which we know how to 

prove GRP!) : 

Theorem 2.2 If oc+ and oc_ commute with each other, a linear functional 

is RP if and only if it is GRP. 

Proof: πΑiΘ(Αi) = (πΑi) Θ(πΑi) since the Ai and Θ(Αi) commute 

and Θ is a morphism. 

We will also need : 

Theorem 2.3 If oc+, and oc commute with each other and if <·>o is 

RP, then for any Α,Β,Ci,Di ϵ 

Proof : For simplicity of notation we suppose that oc is abelian. 

The general case follows by using the Trotter formula as in the proof 

of Theorem 2.1. Since <.>o is RP, we have a Schwarz inequality |<A0B>o|2 

< <A0A>o <B0B>o and so (here we use that oc+ and oc- commute ) 
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|<A
1
0(B

1
)-..A

j
0(B

j
)>o|2 ≤ 

< A1 O (A1)… Aj O (Aj) > o <B1 O(B1)… Bj O (Bj) > . (2.2) 

Now 

a ≡ eA + ΘΒ + ECi O(Di) = eA O A (eB) e ΣCi O(Di) , 

so expanding the sums we can write it as sum of terms of 

the form E10 (F1)...El 0(Fl). Using (2.2), we see that 

|<a>o| | < Σ <πΕi0(Εi)>o
1/2

<π Fi0(Fi))>o
1/2,

 , 

so using the Schwarz inequality for sums 

|<α>o |2 < [Σ <πΕi 0(Ei)>o ] [Σ <πFi0(Fi)>o ] 

We can now resum the exponential and so obtain the desired 

result. | 

Remarks : Notice that only (2.2) was needed to obtain the 

result, so we could have paralleled the discussion of GRP and 

given (2.2) a name. We only know how to prove (2.2) when 

oc+ and oc_ commute. 

The theorems in this section are only mild abstractions 

of ideas in [10,4]. In fact, [4] already noted the importance of 

inequalities like those in Theorem 2.3 and of Hamiltonians of the form 

singled out in Theorem 2.1. 

Remark: Independently, Osterwalder and Seiler have discussed RP 

for Euclidean Fermi lattice field theories [31] using ideas similar to 

ours. 

There is a generalization of Theorem 2.3, which, while it will 

not be used in the sequel, is potentially of interest. 
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Theorem 2.4 If oc+ and oc commute with each other and <.> 

is RP, then for any Ci, Di ϵ oc+ 

Proof The same as for Theorem 2.3. One merely has to notice that 

the first term (namely 1) in the expansion of the exponential cancels. | 

Remark Theorem 2.3 is a Corollary of Theorem 2.4. Merely add (λ-1 Α+λ) 

x(λ-1 ΘΒ+λ) to the exponential in Theorem 2.4 and then let λ →∞. 
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3. Reflections in a Single Plane 

In this section, we consider the case where oc is an algebra 

of observables for a classical or quantum spin system on a lattice, <.>o 

is an uncoupled expectation and Θ is a reflection in a plane. We con-

centrate on two distinct questions which are connected with our discussion 

in the last section: (a) When is <.>

0 and/or GRP ? (b) What inter-

actions lead to a Hamiltonian with -Η = B + ΘΒ + ΣCi OCi ? We discuss 

the first question in a series of examples. 

(1) Reflections in a Plane without Sites-Classical case 

We imagine the finite lattice A (which may be a torus) being divided 

by a plane π into two subsets A (to the "right" of π) and A , with 

no sites on π. There is some "reflection" r on A such that r takes Λ
+ 

into A and r2 =1. The "spin" at each site is a random variable taking 

values in a compact set K with some "a priori" Borel probability dis-

tribution dp. Let KΛ = Π Ki and K+ = Π Ki (where each Ki is a 

copy of K.) For x ϵ { Ki} i ϵ Λ , define 0*x ϵ K
+
 by (Θ*x)i = x

r
(i). We 

take oc to be all real-valued continuous functions on KΛ with oc± the 

subalgebras of functions depending only on the spins in A . Define Θ: 

oc+ → oc by 

(0F) (X) = F(0*x) 

Finally , we let Then <·>o is RP since 
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Since oc is abelian, <.>o is GRP. This example includes the kind of 

classical system in [10]. Alternatively, we could allow oc, oc + 

to be complex valued and then define (OF)(x) = F(0*x). 

(2) Reflections in a Plane without Sites-"Real" Quantum Case 

The setup is very similar to (1) but now for each i ϵ Λ , we take a 

copy Hi of IRm with the natural inner product. One defines 

H = Θ Hi and H_ (resp H+) as the tensor product of the spaces 

associated with sites in A (resp Λ+). oc is now all matrices on H 

and <A>O = TrH(A)/TrH (1). oc+ (resp oc_) consists of all operators of 

the form l(x)A(resp A®1) under the tensor decomposition H = H_ ®H+. 

Finally O (1®A) = A®1. Then for B = 1®A 

Tr(ΒΘΒ) = TrH(AOA) = TrH+ (A)
2
 >_ 0 

since Tr(A) is real. Thus <.>O is RP and,since oc+ and oc commute, 

GRP. This example includes the quantum xy model [4] in the realization 

Alternatively, we could take Hi = Cm and 

0 (1 O A) = A®1 where _ is complex conjugation. 

(3) Reflections in a Plane Without Sites - General Quantum Case 

This is identical to the setup in (2) except for the fact that is 

a copy of Œm. If we take O(1©A) = A©1, then <·>o is not RP 

since Tr(A) may not be real. Indeed if and O are chosen in some 

other way so that Tr is GRP, then the ferromagnetic Heisenberg Hamiltonian 

will not be expressible as -H = B + OB + ΣCi OCi, since Tr(σ1 . σo )3< 0, while 

(σ1·σo )3 is a sura of Α1 ©A1 ...A3OA3, Of course, if one takes O1(1®A) = 

A © 1 where - is ordinary matrix complex conjugation, then for B = 1 O A 
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So one recovers RP and GRP, but the usual Heisenberg ferromagnet 

is no longer of the form ΣCiO1Ci,since 

σly σoy in the usual realization of the σ's. 

The fact that <.>O is not RP does not stop it from being 

RP on a subalgebra; indeed in the Heisenberg case, for functions of 

σ
 z's

 alone, it is RP. It could happen that for the usual (anisotropic) 

Heisenberg case, <·>H is also RP on this subalgebra and this would 

lead to phase transitions in the two dimensional anisotropic case [9]. 

However, the failure of full GRP implies that our simple perturbation 

scheme of § 2 will not yield a proof of this type of restricted RP. 

(4) Twisted Reflections in a Plane without Sites 

It is sometimes useful to define Θ with a "twist." For example, in 

the setup of (3), take m = 2S + 1 and take σx , σy , σz as the usual 

spin S spins; i.e. σz is diagonal and σx± iσ y are raising and lowering 

operators. Thus σy,σz are real and σy is pure imaginary. Let U be the 

operator on H_ which rotates about the y axis by 180° at each site. Let 

O (1 O A) = (UAU-1 ) O 1 

Then for B = 1®A 

Tr(ΒΘΒ) = Tr(UAU-1 Θ A) = Tr(UAU_1)Tr(A) = 

= | Tr(A) |2 >_ 0 

So <.>o is RP and GRP. Moreover, Θ(σi)=-σr/(j) so that the antiferro-

magnet -Η = -Σ σi . σj with a sum over nearest neighbors, is of the 

form B + OB + ΣCi OCi. This is essentially the method [4] used to discuss 

the antiferromagnet. 

(5) Reflections in a Plane Containing Sites-Classical Case 

The setup is very similar to (1), but now there may be sites on π. 



Therefore we break up A into three pieces, Λ_ , Λo , Λ+ corresponding 

to sites to the ’’left” of π, on π, and to the right of π. r now 

maps Λ
+ to Λ_ and leaves Λo invariant. oc+ (resp oc_ ) is the family 

of all functions of the spins in Λo U Λ+ (resp Λ_ U Λo) and for x = 

{xi} iϵΛ_ UΛo’ O*x = xr(i)ϵ
 K

+ x
 K

o. As before <G>o = ∫ G Π dp (xi ) 

and (OF) (x) = F(O*x). Then writing (x,y,z) according to the decomposition 

K x Ko x K+ : 

(3.1) 

Thus we have RP and GRP since oc is abelian. This kind of reflection is 

mentioned in [9] and will play a major role in many of the examples in II. 

(6) Reflections in a Plane containing Sites - "Real” Quantum Case 

The setup is as in (2) but with the modifications in (5). Thus 

H = H_ O Ho O H+, oc+ is the linear span of the 1 O A ® B ,and oc the 

one of the B(x)A(x)1. We take O(1O A O B) = B O A O 1. Noticing that for 

C, an operator on Ho OH+ (the analog of (3.1)) : 

where is the partial trace on H+ , we see that <·>o is RP. In 

this case oc+ and oc_ are not mutually commuting so that GRP is not automatic ; 

indeed it is false. For let and let 

OC = σx @ (1+σz) O 1+ σz © (1 + σx ) O 1 

OD = σx ® (1 - σz) O 1 + σ z © (1 - σx ) © 1 
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in terms of the usual Pauli matrices. Then: 

Tr ( C (OC) D (D)) = 8 Tr ((1+ oz) (1+ox) (1-oz) (1- ox)) 

= -32 < 0. 

Since this example is not so far from what could arise when 

expanding realistic spin systems, we conclude that reflections in 

planes containing sites are not likely to be permitted for quantum 

spin systems, even "real" ones. 

We summarize the above examples in: 

Theorem 3.1 <·>o is GRP for conventional reflections in planes without 

sites for classical and simultaneously real quantum systems and for 

reflections in planes with sites (lattice planes) for classical systems. 

* * * 

Now we turn to the question of which interactions lead to 

Hamiltonians of the form 

-Η = ΘΒ + B + ∫ C (x) Θ [C(x)] dp (x) (3.2) 

To illustrate the ideas, we will first consider the case of pair inter-

actions in one dimension and then more general cases. The main result is 

that the interaction has to be "reflection positive" for (3.2) to hold. 

The net result of the analysis and theorem 2.1 is that <.>H is RP if and 

only if the interaction is reflection positive. This is very reminiscent 

of theorems of Schoenberg [40] (see also [2,12,38])relating positive def-

initeness of e+tF to (conditional) positive definiteness of F, and, indeed, 

our results can be viewed as a special case of that circle of ideas. (See 

Theorem 3.5). 

We begin with consideration of spins σ_n+1 ,…, on. 
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Definition A function (J(j)) j> _ 1 will be called reflection positive if 

and only if for all positive integers m . and z1,..., zm ϵ C ; 

(3.3) 

If we know apriori that J is real-valued (it is by (3.3)) 

(3.3) need only be checked for z real. In this case the left side of 

(3.3) can be viewed as the interaction between spins at sites 1,…, m with 

values z1, …, zm and the reflections of these spins at j = ½ if the basic inter-

action is Σ J(a-B)σa Ba . This explains the name given. 

The following comes from the realization of (3.3) as the condition 

of solvability of the Hamburger moment problem. For the readers ease, we 

sketch a standard proof ([37]) : 

Proposition 3.2 Let (J(j))j≥1 be a real-valued bounded function. Then 

(3.3) holds if and only if 

(3.4) 

for a positive measure dp and c >_ 0 

Remark If we interpret 0j-1 as , then cδ j1 is just the contribution 

of a δ (λ) piece of dp. We write it as cδ j1 to be explicit. 

Proof If (3.4) holds, then 

so (3.3) holds, Conversely, if (3.3) holds, form a Hilbert space, H , 

by starting with finite sequence (Ζ1, …, zm) (arbitary m) and letting 

< (z) , (w) > = Σ zi wi J(i+j-l) 
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and then dividing out by z's with < (z),(z) > = 0 and completing. 

For a finite sequence (z1 , …, zm ), let Α(z1 , …, zm) = 

(0, z1, …, zm) and note that by repeated use of the Schwarz inequality : 

||AZ|| ≤ | |z| |1/2 ||A
2

Z ||
1/2 <_ || z ||1-1/2n ||A2n z || 1/2n 

But 

|| A2n z ||2 = Σ zi zj J (i + j +2n+1 -1) 

<_ (Σ | zi | )2 sup | J(j) | 

so, lim || A2 z | |½ <_ 1 as n →∞. We conclude that | | Az | | <_ | | z | | , 

so A extends to a map of to H . Moreover, by a direct cal-

culation (z, Az) = (Az,w). We conclude that A is self-adjoint. Thus 

for any z 

by the spectral theorem, where
 0j-1 =

 δ jl. Let z (1,0, …) so 

that (z, Aj-1z) = J(j) and (3.4) holds. 

We want to emphasize two features of (3.4). First J >_ 0 

is not required. Secondly only the function J(j) = cδ j1 obeys (3.4) 

and has bounded support. 

In order to obtain the simplest result relating (3.2) to (3.3) we 

consider free boundary conditions : 

Proposition 3.3 Let (J(j))j>_1 be given. For each m, consider spin 1/2 

Ising spins, σ -m+1, … , σm and let Oσi = σ-i+1 . 
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Then has the form (3.2) for every m if and only if J obeys (3.3). 

Remark One half of this theorem is also contained in Hegerfeldt and 

Nappi [18]. 

Proof If J obeys (3.3), then J has a representation (3.4), so that 

where and Cm (λ) 

Conversely, suppose that has the form (3.2). Then C(x) = 

and so 

where, for l<_i , j <_m : J(i+j-l) = ∫ μ1(x)μj(x) dp (x) because if F(σ) = 

Σ Kij o i oj. then Kij is unique. Thus Σ zizj J(i+j-l) = 

1<_i, j<_m 

ziμi(x)|2 dp(x) and therefore J is reflection positive. 

This proposition is the basic result; we present a number 

of extensions and variations : 

(A) In applications, it is useful to know that periodic boundary 

conditions lead to a state obeying OS positivity. Given m as above, 

we define for i = 1, 2,.., 2m-1. 

(3.5) 

The Hamiltonian 

is the Hamiltonian with periodic boundary conditions. If J has the 

form (3.4), then 
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so by the above arguments, -H = B + OB + ∫ [C(x)OC(x)dn (x) for 

suitable C’s. We summarize in: 

Propositions 3.4 Under the hypothesis above, if J obeys (3.3), then 

Hper has the form (3.2). 

(B) We could consider reflections about a plane containing 

a site. Then the above arguments imply that J(1) is arbitrary and 

dp (x) for i>_2. In particular, in that case, 

one can have second "linear" neighbor coupling. 

(C) If one considers a multidimensional cubic system and 

considers reflection in the plane i1 = 1/2, the kind of analysis above 

shows that what one needs is that 

which leads to the requirement that for i1 >_1 

where ci2, …, iv 
is a positive definite function on Zv-1 and dp 

obeys a similar condition. In particular, if 

J(i) = a if | i1 |
 2
+...+ | iv |

2
= 1 

= B if | i1 |2 + … + | iv |2 = 2, 

= 0 otherwise 

(i.e. nearest neighbor coupling a, next nearest 3), then one will have 

RP about any plane bisecting a nearest neighbor bond as long as 
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a-2 | B | (v-1) ≥ 0 . (3.7) 

In particular, B can be negative. The case B = —a/2(ν—1) is of some 

subtlety and is discussed in detail in paper II. (To check (3.7) is equivalent 

to RP, we note that the function c, which has to be positive definite on 

Zv-1 , has a Fourier transform c(p) = a - 2b cospj so that the infimum 

occurs at pj = 0 (all j) if B>_0 and at pj = π (all j) if β<0). 

(D) Some clarity is obtained by considering a lattice gas in a 

very general language, i.e. by allowing multi-particle interactions. We will 

not explicitly use Theorem 2.1, and the connection with Schoenberg's work 

on conditionally positive definite functions will be manifest. 

At each site j ϵ we are given a copy of some configuration 

space K and a fixed probability measure dp(xj) on Kj ; xj denotes a point 

in . (For the mathematically inclined reader we remark that K is assumed 

to be a compact Hausdorff space, and dp is chosen to be a regular Borel measure. 

In fact all our spaces, resp. measures will have these properties). 

It helps one's intuition to imagine that K is the two point set 

{1, -1} , and dp the measure assigning probability ½ to 1 and -1 . This 

will correspond to Ising models ; (see also Corollary 3.6, below). 

Given a subset X C ZZV , we define 

and 

(Since K is a compact Hausdorff space, so is KX , for all X CZZ
v

) . 

To each bounded subset Λ C ZZV there corresponds a finite system in Λ 
Van algebra of "observables" 

with configuration space KΛ , C(KΛ) , and whose states are the probability mea-

sures on . (These are precisely the continuous, normalized, positive linear 

functionals on c(KΛ)) . 
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We denote by tr the expectation on C(K°°) given by the product measure 

Π dp(xj ) . Clearly tr defines a state of the finite system in Λ , denoted 
j ϵ ZZv 

trΛ , by restriction to C(KΛ) . 

The dynamics of such systems is given in terms of an interaction, Φ . 

This is a map from bounded subsets X c ZZV to C(K∞) with the properties that 

Φ(X) € C(KX) , and (3.8) 

(3.9) 

for all Y with Y U X ^ 0 ; x = {xj}jϵ ZZv . 

Condition (3.9) is no loss of generality : Given an arbitrary interaction 

Φ satisfying (3.8), one can always find a physically equivalent interaction Φ 

obeying (3.8) and (3.9) ! 

The Hamilton function of a finite system in Λ with interaction Φ is 

given by 

and the Gibbs equilibrium state with boundary condition paΛ ϵ L1(KΛ,iΠ/ϵΛ dp(xj)) , 

describing the interactions of the system in Λ with its complement in Λc 

(recall the Dobrushin-Lanford-Ruelle equations [39,22]), is given by 

(3.10) 

for arbitrary F ϵ C(KΛ) . Here 
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We now consider a decomposition of ZZv into two disjoint sublattices 

Γ+ , T_ (generally separated by a hyperplane) ; r is the reflection taking 

Γ_ to Γ+ and Θ* the obvious reflection map from KΓ- to KΓ+ . For 

F ϵ c(ΚΓ+) , we set 

OF(x ) = F(O* x_ ) , 

where x± = {xj} jϵΓ± ; we set Λ+ = Λ U Γ+ , and if Λ+ = rΛ we say that Λ 

is reflection symmetric (RS) . 

Our previous notion of RP is equivalent to 

< FOF > (Φ, paΛ ) ≥ 0 , (3.11) 

for all F ϵ c(KΛ+) . In this case < - > (Φ, paΛ ) is said to be RP . 

We say that a b.c. paΛ satisfies RP iff trΛ(FOFpaΛ ) ≥ 0 , 
(3.12) 

for all F ϵ c (KΛ+) . 

Clearly there are b.c. paΛ which are not RP , but there are also 

plenty of b.c. which are ; (e.g. paΛ =

 Σ Gk Θ Gk , Gk ϵ C(KΛ+) for all k) ! 

Remark : Consider two b.c. paΛ and p'aΛ such that 

If paΛ and p'aΛ are RP then so is 

PSA P3A 
(3.13) 

by Schur's theorem. 

From now on we shall always assume that Φ is reflection covariant, i.e. 
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ΘΦ(Χ) = Φ(rX) , (3.14) 

for arbitrary X C Γ+ · 

Our aim is to state and prove a necessary and sufficient condition on an 

interaction Φ such that < - > (Φ, oaΛ) is RP , for all RP b.c. paΛ and 

all bounded, RS regions Λ · 

We call an interaction CRN (for "conditionally reflection negative") 

if and only if 

(3.15) 

for all F ϵ C(Ky ) , with Y an arbitrary bounded subset of Γ+ , obeying 

tr(F) = 0 . 

We call an interaction Φ RN (for "reflection negative") if and only if 

(3.16) 

for all F ϵ C(Ky) and for arbitrary, bounded Y C Γ+ · 

Let diam X = max{|i-j|: i, j ϵ X}, let X+a denote the translate of X 

by a vector a ϵ ZZv , and let Ta denote the natural isomorphism from 

C(KX) to c(KX+a) , for arbitrary X , i.e. {τa} are the translations. Finally, 

let || . || denote the supnorm on C(K∞) . 

Theorem 3.5 

(1) The Gibbs state < - > (βφ,ρaΛ ) is RP , for all inverse temperatures 

B > 0 , all RP b.c. paΛ and all RS regions Λ if and only if Φ is CRN . 

(2) Suppose an interaction Φ fulfills (3.9) and has the property that 
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sup{ || Φ(x) || : diam X ≥ r} → 0 , (3.17) 

as r → ∞ ; (this condition is fulfilled if Φ obeys any reasonable condition 

of thermodynamic stability) ! Then Φ is CRN if and only if Φ is RN . 

(3) If Φ is RN and Λ some RS bounded set then 

Σ Φ(X) 
X ∩ Λ+ ≠ Ø 

is a weak limit of functions of the form 

- Σ GΛ/k O GΛ/k , 
k 

where GΛ/k ϵ c(kΛ+) , for all k . An analogous statement holds for RP b.c. paΛ . 

Remarks : 

(1) The class of (c)RN interactions Φ forms a convex cone. An analogous 

statement holds for RP b.c.. By (3.13), the convex cone of RP b.c. is multipli-

cative . Furthermore, note that RP is stable under taking the thermodynamic 

limit Λ ↑ ZZV through a sequence of RS regions Λ , with RP b.c. paΛ . 

These facts and Theorem 3.5 represent a rather complete, mathematical 

characterization of RP Gibbs states in the classical case; see also Corollary 3.6 

(2) Generally, CRN interactions and periodic b.c. lead to RP Gibbs states ; 

(see also Proposition 3.4). If Φ obeys (3.17) and the periodic Gibbs states 

are RP , for all bounded hyper cubes Λ , then Φ must be RN . 

Clearly, periodic b.c. lead to translation invariance, so that Λ is 

RS with respect to many different pairs of hyperplanes, and - if 

Φ(X+a) = τa (Φ(X)) (translation invariance) - the Gibbs state is translation 

invariant. For these reasons translation invariant Φ's and periodic b.c. play 
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an (annoyingly)important role in our theory. 

Proof of Theorem 3.5 : 

(1) First we choose paΛ = 1 . This b.c. is clearly RP . In this case, the 

Gibbs state < - > (BΦ, 1) is RP if and only if 

has the property 

for all F ϵ C(KΛ+) . This follows easily from (3.14) and the definition of the 

Gibbs state. If RB/ΛΦ(x+, , x- ) denotes the integral kernel of RB/ΛΦ the above 

inequality takes the form 

(3.18) 

for all F ϵ C(KΛ+) . 

Assuming that (3.18) holds for arbitrary RS regions Λ and all B ≥ 0 

and using a straight forward extension of Schoenberg's theorem [38] 

(Theorem XIII.52) we conclude that Φ must be CRN , i.e. 

tr(FOF Φ(X)) ≤ 0 , 

for all F ϵ C(KΛ +) with tr(F) = 0 and arbitrary, bounded Λ+ C Γ+ . (Here 

we have used (3.9) to include regions X C Λ in the summation. We recall that 

Schoenberg's theorem says that a matrix (bij) has the property that (eBb/ij ) 

is positive definite for all B > 0 if and only if Σ zi zj bij ≥ 0 for all 

z's with Σ zi = 0 ). This proves one direction of Theorem 3.5, (1). Conversely 
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suppose now that Φ is CRN . Then Σ tr(FOF Φ(Χ)) ≤ O , for all F ϵ c(KΛ +) 

x∩Γ ± ≠ Ø 

with tr(F) = 0 , for any RS region Λ . Now fix some RS , bounded Λ . By (3.9), 

it follows that 

for all F ϵ c(KΛ
+

) with trΛ(F) = 0 . If we write this out as an integral and 

use Schoenberg's theorem in the other direction we immediately conclude that 

RBΦ/Λ(x+ , O*y+ ) is a positive definite kernel. 

Next, if paΛ is RP then the kernel of paΛ , paΛ (x+ , O*y+) is positive 

definite. By Schur's theorem, RBΦ/Λ(x+, O*y+ ) paΛ (x+ , Θ* y+ ) is positive definite, 

so that 

for all F ϵ c(KΛ+) . 

Since, by condition (3.14), is obviously of the form 

Λ O GΛRB/Λ, with ϵ c(KΛ+) , Theorem 3.5, (1) is now proven. 

(2) It is trivial that if Φ is RN then Φ is CRN . Therefore we must only 

show that if Φ is CRN and satisfies (3.9) and (3.17) then Φ is RN . For 

this purpose, let F ϵ C(Ky ) , for an arbitrary, but hence forth fixed Y C Γ+ · 

We define 

G = F - τa (F) , 

where a is a translation such that Y+a C Γ+, , i.e. G ϵ c(Ky Uy+a ) with 

Y U Y+a C Γ+. · Clearly tr(G) = tr(F) - tr(τa (F)) = tr(F) - tr(F) = 0 . Hence if 
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Φ is CRN then 

By condition (3.9), the only non-vanishing terms in the last three sums 

on the 1.s. of this inequality fulfill the conditions 

X1C Y U r(Y+a), X2 C Y+a y
 rY and X3C (Y+a) U r(Y+a) . Moreover 

Xj ∩ Γ+
 ≠ Ø , j = 1,2,3 . Applying now condition (3.17) we see that these three 

sums thend to 0 as a tends to ∞ in a direction for which Γ+ + + a C Γ+ , 

for all a of this direction. Thus 

for all F ϵ C(Ky ) . Since Y is an arbitrary, bounded set in Γ
+

 , this proves 

Theorem 3.5, (2). 

(3) Let P be an orthogonal projection on L2+ = L2(KΛ+, Π dp(xj)) . Then the 

distribution kernel of P, P(x+ , y+) , is a weak limit of functions of the form 

where for all k . 

This observation combined with the spectral theorem for negative, (resp. positive) 

bounded operators and the relation ) =

 (θΨk)(y_ ) clearly proves Theorem 

3.5, (3) . 

As an application of this general theory we consider a classical spin 

system with many body interactions. The classical spin at site i is denoted , 
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and σX = Π σi . The expectation tr is chosen such that tr(σX ) = 0 and 

tr(σ2/X) > 0 , for all non-empty X . The interaction § is given by 

Φ : X → -Jxδx , (3.19) 

where J = {JX} is a family of real numbers indexed by the bounded subsets 

of ZZV . The interaction Φ is translation invariant if JX+a = JX , for all 

a ϵ ZZV , and reflection covariant, see (3.14), if JX = JrX , for all X C Γ+ · 

Example : Ising model with multi-spin interactions. 

Definition : We say that J is RP if and only if 

(3.20) 

for arbitrary, finite sequences {zX}XCΓ+ of complex numbers 

Corollary 3.6. 

(1) Let Φ be given by (3.19). Then Φ is CRN if and only if J is RP . 

(2) The family of all RP J's forms a convex, multiplicative cone. 

Proof : 

(1) It is not hard to see that if J is RP then Φ , given by (3.19), is 

RN , thus CRN . Conversely, if Φ is CRN then, for an arbitrary function F 

of with tr(F) = 0 

(3.21) 

Now choose F = Σ zX σΣ , where , and is a finite 

sequence of complex numbers. Then 



- 31 -

tr(F) = Σ zX tr(σX) = Ο , and 

(3.22) 

so 

and, by (3.21) and (3.22), this is non-negative. Since {zX} is arbitrary, it 

follows that J is RP . 

(2) Convexity is obvious. Given J and J' , both RP , we define J" by 

J"/X = Jx· J'x , for all X . 

By Schur's theorem J"X is then also RP . 

Remark : There are plenty of RP J's with the property that JX ≠ 0 , for sub-

sets X containing an arbitrarly large number of sites. (As an exercise we 

recommend that the reader construct some explicit examples of this type). As a 

largely open problem we propose to investigate the detailed geometric properties 

of the cone of RN interaction within one of the standard Banach spaces of inter-

actions, [39]. 

Theorem 3.5 and Corollary 3.6 provide a rather satisfactory, general 

theory of RP Gibbs states for classical systems. See also [6]. In the quantum 

case no complete characterization of RP Gibbs states is available, yet. 
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The reader can check that Theorem 3.5/Corollary 3.6 includes 

results in Proposition 3.3 and its consequences via Theorem 2.1 as a 

special case. In particular, the following should be noted. In propo-

sition 3.3, we assumed that H has the form (3.2). This form was 

chosen so that the Gibbs state <'>

BH

 is
 RP

 for all
 B · If, instead, 

one starts with the apparently weaker requirement that <·>BH is 

RP for all B, then Theorem 3.5, (3) tells us that H has to be of the form 

(3.2). 

Example Consider a two-dimensional Ising model with 2,3, and 4 body 

interactions. Let X = σ
 (0,0)

 σ
 (0 , 1) σ (1 , 1) σ (1 ,()) ’ Y = σ (0,0) σ (1 , 0) . 

Let where 

J , K , L are numbers and τa represents translation by a unit. H will be 

RN with reflection about the plane i1 = 1/2 if K
2
 = JL and J , L>_0. To 

see this, note that in this case -H has the form B + ΘΒ + ΣiCi OCi , where 

C = ασ(1,0)σ (1,1) + Bσ (1 , 0) [and hence CO C = α2X + aBY + B2 Z], and the 

sum on i is over translations in the plane i1 = 1/2. 
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4. Chessboard Estimates and Infrared Domination 

In this section, we review, systematize and extend the basic 

methods of [10,4,14,9] which are based on the use of RP about a large 

number of planes. For this reason, we will have to work with periodic 

boundary conditions or directly in infinite volume. We begin by de-

scribing "chessboard estimates", then mention the way these can be used 

in connection with a Peierls argument, and finally discuss the method 

of infrared bounds. 

Theorem 4.1 (Abstract Chessboard Estimates [9]) Let oco be a real vector 

space, let r :oto → σto be a real linear map with r2 = 1 and let F (a1 , ..., a2n ) 

be a complex-valued multilinear map obeying: 

F(a1, … a2n) = F(a2 , …, a2n’a1) (4.1) 

and 

| F(a1,…, an , b n ’… , b1 ) |2 
< F(a1,…., a

n
 , ra

n
 , ..., ra1)F(b1,...

, b
n
 , rb

n , …, rb1 ) (4.2) 

Then || a || ≡ |F(a,ra,a,...,ra)|1/2n is a semi-norm and 

(4.3) 

Remarks 1. In the example of 2n spins on a line, one should think of 
(spin ata 

οto as functions of a single site, and F (a1, ..., a2n ) = < N/π a. ai+n (oi) > ; 

r (a) = a (or a if we take complex valued functions) so that (4.1) is true 

if periodic boundary conditions are used and (4.2) is an expression of RP. 

2. The statement and proof are patterned on [9]. For a discussion of its 

field theory forebears see [43]. For applications to Hölder's inequality 

for matrices, see [6]. 

3. It is a worthwhile exercise to prove this directly for the case 

2n = 4, see [6,43]. 
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4. By (4.2) the F(a1 , ... , an ,ran , ...ra1) are either all ≥ 0 or all ≤ 0. We 

can suppose the former without loss. 

Proof : We first prove (4.3) and then it follows that || . || is a semi-norm. 

since (4.3) implies the triangle inequality. Let a1 ,...,a be given and 

suppose that || ai || ≠ 0 for all i. Let b1, ... , b2n be any 2n elements 

each of which is either an a or an r(ai). Let 

and let go = max|g(bi)| as the run through the (4n)2n possibilities. 

Among all choices with |g(bi)| = go , pick one with the longest string of 

the form ai, r(ai) , ai, … , r(ai) for b1, , … , b2l . Since (4.1) implies that 

|| r (ai) || = || ai || , (4.2) shows that g obeys the same Schwarz inequality 

as F. Thus, if |g (b1, ... , b2n )| = go, we must have that 

|g(b
1
,..., b

n
, rb

n
 ,..., rb1)| = go. If 2l is not 2n in the above choice, 

let b'l ,...,b’ be a cyclic permutation of b1 , ..., b2n with 

ai ,r(ai) , … , ai , r(ai) occuring as b'n-j, …, b'n where j = n-1 if 

2l > n and otherwise j = 2l-1. But then b1, … , bn , rbn , ... , rb1 has a 

string of the form ai , r(ai) ,... of length 2j+2. It follows that 

go = | g(ai, r(ai
) , ,r (ai)) | | for some ai. But such a g is always 1 

so go ≤ 1. This implies (4.3) if each | | ai || ≠ 0. 

If some ||ai|| = 0, we claim that F(ai) = 0. For, if not, let 

b
1
,...,b

2
n be a sequence with some bj = ai so that the longest string 

a., r(ai),...,r(a.) occurs consistent with F(bi) ≠ 0. As above b1 , ..., b2n 

must be ai,r(ai),...,r(ai) so there is a contradiction. | 

Typical of the explicit versions of Thm 4.1 are the following: 

Theorem 4.2 Let Λ be a rectangular subset of ZZV
 with sides 

2
n1

x···x2nv (n1 , ... , nv positive integers). Let <.> be an expectation 
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value for a classical spin system which is invariant under translations 

mod ni (periodic boundary conditions) and which is RP with respect to 

(untwisted) reflections (mod ni) in all planes perpendicular to coor-

dinate axes running mid-way between neighboring points of Λ. Then for 

any functions {Ga }aϵΛ : 

(4.4) 

Proof Let oto be the functions of spins {σa }a ϵ Λ ; a1 = 1 . 

and let 

Using the assumed RP and Theorem 4.1 , and setting 

Gj, a2, …, av , we obtain 

Repeating the argument in the other v-1 directions, (4.4) results. 

Now let j be an element of the dual lattice, Λ, to Λ, i.e. 

j is the center of a unit cube, Δj contained in Λ. Let F be a 

function of the spins in Λ. We say that F ϵ Σj if and only if F is 

only a function of spins at the corners of Δj... Given such an F we set 

where F(i) is F for i = j and for nearest neighbor cubes Δi and 

Δi ,, F(i) = Oii' [F(i)] with Oii' untwisted reflection in the plane 

separating Δi and Δi' . Thus, if i-j has all even components, then 

F(i) is a translate of F and if i-j has VO odd components F is 
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a translate of F reflected in
 VO

 orthogonal planes. The proof of 

Theorem 4.2 extends to : 

Theorem 4.3 If A is the set in Theorem 4.2, <·> is translation 

invariant and RP with respect to planes perpendicular to the coor-

dinate axes but through the sites then 

for Fi ϵ Σi. 

There are clearly quantum variants and variants with various 

oblique planes . Except for some discussion of the face 

centered cubic lattice at the close of this section we do not make 

these explicit. Reflections at oblique planes have also been used in [41,17]. 

* * * 

To explain schematically the Peierls-chessboard method, con-
the configuration spaced 

sider a classical spin system and break up K into pieces- K1U...UK
m 

(For example, if K is finite, each could be a single point. For 

the anisotropic classical Heisenberg model, K = unit sphere
 y
 and K1 

and K2 are the two "polar caps" of the sphere
,
 and K

3
 is the temp-

erate and tropical regions.). Let P&(j) be the function which is 1 

(resp. 0) if σa is in Kj (resp. not in Kj). Let 

<A>B, Λ = <Ae-BHΛ>o /<
e-

 BHΛ>o where B > 0 and HΛ is the Hamiltonian 

for the lattice Λ. Let <·>B, ∞ be some weak-* limit point of <·>B, Λ 

as A → ZV. As we will describe, the Peierls-chessboard method typ-

ically allows one to show that for 

B → ∞ uniformly in Λ,α,γ. Suppose that we also know that for 

Then for large B , 

cannot go to zero in the average, 
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which would be required if <·>B, ∞ were ergodic, so there are two or 

more phases, and <P(2)>B, ∞P(1) - <P(1)>B, ∞P(2) will be a long range 

order parameter. Actually one can say more; namely if lim <P(i)>B > 0 

for i=1,..., k there will be, for B large, at least k phases; for, if 

< >Λ were a convex combination of k-1 or fewer ergodic states, then 

would exist and would be a matrix of rank at most k-1 with Σaij = <p(i)> 

Under the given supposition it has rank at least k for B large. See 
also [9,5]. 

How does one show that <P(1) P(j) > is small for j ≠ i ? Let 

Γ be a contour in the elementary Peierls argument (see e.g. [39,16]) 

sense. Let ρi(Γ) = probability that each spin immediately inside Γ 

is in and each spin outside Γ is not in Ki. Suppose that 

Ρi(Γ)<e-c(B) | T | with C → ∞ as B → ∞. Then, by the usual argument 

for cubes Λ: 

for suitable d and N independent of B (but dependent on v). Thus 

to show that <Pa(i)Pγ(j)> is small uniformly in α,γ and A as B→∞ , 

we only need to show that 

(4.5) 

for any choice of the ja' s (all distinct from i), for then 

(m-1) |Γ|e-Co (B) |Γ| ≡ e- C(B) | Γ 
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Finally (4.5) is proven by using chessboard estimates, either directly 

in the form of Theorem or an extended form of Theorem 4.2 which ex-

ploits a two site basic element. The net result is that the left side 

of (4.5) is dominated by the product of |Λ| terms (or in the two site 

picture of |Λ|/2 terms) most of which are 1. But 0(|Γ|) of them are 

of the form f ≡ < π/aϵΛ pa(ka) > 1/ |Λ|
 where a

→ka
 is a function that has 

to be worked out in each case. Typically f can be easily estimated 

to be small by energetic considerations. See [14,9,5,19 ]and paper II 

for explicit examples. 

Of course, that leaves the questions of showing that 

for several i’s. We discuss this in detail in 

paper II, but note that this often follows from symmetry, or by applying 

the chessboard estimate to obtain an upper bound on which is 

small. See also [9,5,19]. 

* * * 

Thus far, Peierls-type arguments have not been applicable in 

cases where a phase transition is accompanied by a spontaneously 

broken continuous symmetry. The only tool available is that invented 

in [10] : in the notation of example (1) of §3, let σ be a function 

on K, and let σa be the function σ on the ath copy of K. For 

Λ a cube, let p be in Λ* , the Fourier dual for Λ (= 1st Brillouin 

zone ; = dual group to Λ viewed as a torus) and define 

gΛ(Ρ) = < σpσ-p > B, Λ 
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Suppose that one can prove that for p ≠ 0 : 

gΛ(p) ≤ l/2BE
p
 (4.6) 

for Ep a function satisfying 

(4.7) 

and that for B > Bo 

<σ2>c > D > 0 (4.8) 

Then (following the version of the argument in [4]) for B > max(B0,B1) 

where B1 = CO/2D, we will have (assuming some regularity on Ep ) 

(4.9) 

since 

(4.10) 

where the first sum is controlled by a Plancherel formula, and the 

second by (4.6). With minimal regularity assumptions on E, 

so (4.9) holds. By an argument of Griffiths (see e.g. [4]), (4.9) 

implies a first order phase transition with as order parameter. 

In certain quantum cases (where Σ oa and H do not commute) 

and, as we shall see below, for some other than simple, cubic lattices 
like the 
face centered cubic lattices, it is necessary or more convenient 

to rely not on (4.9) but rather on a direct infinite volume 
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argument which is explained in detail in [5,6,4]. 

We note that sometimes (4.8) follows by a symmetry argument 

(e.g. in the classical Heisenberg model) but that in general one can 

try to use a chessboard argument to show, e.g. that 

Prob(σ2/a < 2D) < 1/2 for B > Bo · 

* * * 

The only known way of proving (4.6) is via a "Gaussian 

domination" or related estimate : Let K be a compact subset of IRN 

and let dp be a measure on K. Let σ(1) , …, σ (N) be the coordinate 

functions on K. Suppose that H has the form 

(each pair counted once) 

and define for (haγ }a≠γ real, 

where <·>o = ∫. πdp(σa) as usual. We claim that the two conditions: 

Jaγ = Ja-γ = Jγ-a and 

Z(haγ) ) < Z(0) (Gaussian domination) (4.11) 

imply (4.6) with 

Ep = ½ Σ/aϵΛ (1-eip.a )Ja0 (4.12) 

Before proving this, we note that one point of the definition (3.5) is 

that it makes independent of A for pEΛ* . 

Since the argument to go from (4.11) to (4.6) is only a mild 

extension of that in [10] , we only sketch the details. By translation 
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invariance, so that (4.11) implies that 

This is equivalent to : 

(4.13) 

(4.13) only holds apriori for real h but it extends to complex h. 

Now take haγ = (eip. α - e ip. γ)|Λ|-½ and find that (4.13) implies 

(4.8) with Ep given by (4.12). We summarize : 

Theorem 4.4 The Gaussian domination bound Z(haγ) < Z(0) together 

with Jaγ = Ja-γ, 0 = Jγ-a, 0 implies the infrared bound 

gΛ(ρ) < (2BΕ
ρ

)-1 with 

* * * 

We next turn to a detailed investigation of (4.11). 

Proposition 4.5 Suppose that Jaγ > 0. Then it suffices to check 

(4.11) for haγ of the form ha -hγ . 

Proof Since Jaγ > 0, Z -> 0 as any haγ → ∞ and thus Z takes its 

maximum at some finite point. But aZ/ahaγ = 0 implies that 

Jaγ (haγ - < σa - σγ >) = 0 

for the obvious expectation. Thus, letting ha ≡ <σ
α
>

,
 we see that 

haγ = ha - hγ for those αγ with Jaγ ≠ 0. Z is independent of the 

other haγ so we can take haγ = ha - hγ for such (αγ) without 

changing Z ; i.e. Z takes its maximum value at a point 

haγ = hγ - hγ . 

Remark The proof of Theorem 4.4 only used (4.11) for the special case 

haγ = ha - hγ so that Prop 4.5 is, at this stage, primarily of academic 
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interest. Indeed, there are Jaγ not all non-negative so that (4.11) 

holds for haγ of the form ha - hγ , and thus (4.6) holds, even though 

for such J's, Z → ∞ for a suitable choice of haγ not of the form 

ha - hγ . 

It is an important and interesting open question to char-

acterize the ferromagnetic interactions for which the spin 1/2 Ising 

model obeys Gaussian domination. We only have partial results on this 
(relying on reflection positivity. 

questions We begin with some examples which delimit the class and, in 

particular, demonstrate the falseness of the apriori attractive con-

jecture that Gaussian domination holds for all ferromagnets : 

Example 1 Consider two spins, one,σ1,with values ±1 and the other, 

with values ±2, all values having equal apriori weight. Then 

<e- J(σ2- σ1-h)2 > has its maximum near h = ±1 as J → ∞ . This shows 

that equality of the single spin distributions is essential for 

Gaussian domination in general (but see examples 5,6). 

Example 2 Let σ1 = ±1, σ2 = +1, then 

has its maximum near h = 1 as J → 0. The given distribution for 

σ22 can be thought of as that of an Ising spin in an intense positive 

magnetic field. The failure of RP in this case shows that even 

equality of the magnetic fields at each point is also essential for 

Gaussian domination. 

Example 3 : (Mean field model) This is the most involved but also the 

most significant of the examples we present. Z(h) < Z(0) implies that 

is positive semi-definite. For a spin 1/2 model 
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with 

a simple calculation shows that (set Jaα = 0) 

Take n+1 spins, σ0,···
,σn with only J0i ≠ 0, all equal 

to an . Then 

Take an = l/\fn, so that const and thus, as n → ∞ , 

a coupling of a Gaussian and a spin 1/2 spin. Thus as n →∞ 

for finite non-zero, c and d. Thus 

M00 = -n-1+2c√n 

is negative for n large and therefore Maγ is not positive definite 

for n large. 

Our next example, while a trivial extension of RP ideas 

illustrates that Gaussian domination can hold in some cases where 

RP fails: 

Example 4 Let <.> be an expectation for a string of 6n spins with 

third neighbor ferromagnetic coupling. Then RP fails both for 

reflections about the midpoint of bonds and for reflections on sites. 
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Since Z(h) is a product of three nearest neighbor 2n-point Z's, 

Gaussian domination for that case yields it for the case at hand. 

Our final three examples show that special features of the 

J’s and/or the single spin distributions can allow one to prove 

Gaussian domination without RP and/or translation invariance. We 

hasten to add that phase transitions will not occur in examples 5, 6 

and 7. 

Example 5 Suppose that H = ΣJaB(σa-σB)2 with
 JaB arbitrary 

positive numbers and that each single spin measures equals 

Fadσa with Fa log concave and even, but not necessarily a inde-

pendent. Since e-H(σa- HA)πFa is
 a

 log concave function of {σa , ha}, 

Z(ha ) is log concave in ha by a general theorem (see e.g. [1]). 

Since aZ/aha = 0, all ha = 0, by symmetry, log concavity implies 

that Z(ha ) < Z(0). 

Example 6 Suppose that Η = JaB(σa - σB)2 with arbitrary pos-

itive numbers and that each single spin measure dpα(σa) equals Fadσa 

with Fa positive definite and real (hence even), but not necessarily 

a independent. Then 

is positive definite in the h's since the Fourier transform of a 

Gaussian is a Gaussian. In particular, Z(h
a

) takes its maximum value 

at ha = 0 (In essence, the above calculation is proving that the 

convolution of positive definite functions is positive definite). 

Example 7 Consider an array of n spin 1/2 Ising spins, s1,..., sn on 

a line with arbitrary positive , nearest neighbor couplings, 
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J12, J23, … , Jn1. Let T(J, h) be the two by two matrix 

i.e. if we label matrices as , then 

We want to note two critical 

facts about these matrices: first T(J,0) is positive definite and 

T(J,0)-½ T(J,h) T(J,0)-½ is a contraction in the norm 

| | (a,B) | | = (α2+β2)½ -this is proven in [10]. Secondly, the T(J,0) 

all commute, are positive definite and when diagonalized simultaneously 

their largest eigenvalues correspond to a common eigenvector - this follows/ 

noting that and are the eigenvectors, and the eigen-

value for the first eigenvector is always largest. Since 

Z(h1,..., hn ) = Tr(T(J12 , h2 -h1) … T(Jn1 , h1 - hn )) we can write 

Z(h1, …, hn) = Tr(Α1Β1...An Bn ) 

where Ai = T(Ji-1,i ,0)1/2T(Ji, i+1 ,0)1/2 (where J01 ≡ JN1 ) 

and is a contraction,by the first fact noted above. Let 

μ1(C),...,μm (C) be the singular values of an mxm matrix (eigenvalues 

of (C*C)½ ordered so that ≥ µ2 ≥ -- ≥ 0). An inequality of 

Horn [21] (see Cor II.4.1 of [15]) asserts that 

Thus, we have that 



- 46 -

where we use the fact that μj(Βi) < 1, since Bi is a contraction, in 

the second inequality,and use the second noted fact in the 

equality that follows. 

To illustrate the close connection between chessboard es-

timates and Gaussian domination, we note : 

Theorem 4.6 Let A be a 2n1 x...x2n rectangle in ZZV. Let Jaγ 

be given on Λ so that the chessboard estimate (Thm 4.1) holds for 

<·> = Z-1 ∫· e-H(σa) π dp (σa ) for all dp in and 

Then the Gaussian domination estimate Z(ha ) < Z(0) holds for ar-

bitrary dp and, in particular, gΛ(p) ≤ (2BEp)-1 . 

Proof By a limiting argument, we can suppose that dp(σ) = F(σ)dN σ 

with F > 0 on all of RN. Then, if we define G
a
(σ)

 = F(σ + ha)/F(σ) 

we have that 

where the inequality is a chessboard estimate and the last equality 

comes from Η(σa - h) = Η(σa ) for constant h. 

Remark : Using the Dobrushin-Lanford-Ruelle equations one can prove Theorem 4.6 directly 

in infinite volume for RP Gibbs states. 

The above argument has a defect:it does not obviously extend to the 

quantum case. 
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Fortunately, one can use a version of the original argument given 

in [10], based on Theorem 2.3 : Namely, in the case of 2n spins, 

Theorem 2.3 says that 

|Z(h-n
+
l, …, hn)|2 

< Z(h
-n+1

,..., h
0

, h0, h-
1

, ..., h-n+1) Z (hn,hn-1, ..., h1, h1, ..., h
n) 

so that translation invariance and the argument in Theorem 4.1 show 

that max|z(hi)| occurs when all h’s are equal. Since 

Z(h,..., h) = Z (0) , the maximum is Z(0). As of now, this is the most 
widely applicable proof of Gaussian domination we know of. 

We remind the reader that in the quantum case there is one 

additional complication in that Gaussian domination does not lead to 

a bound on <σp σ-p > but rather on a "Duhamel two point function", 

(σp , σ-p ). This problem and its resolution are discussed in [4], for 

the case of nearest neighbor interactions. The present generalization is 

straight forward. 
The argument based on Theorem 2.3 has an additional advantage, 

even in the classical case. Suppose that 

where <·>H' is RP and J obeys (3.3). If 

then, as above, Theorem 

2.3 implies that Z(ha) < Z(0)
, and infrared bounds follow. We 

summarize with 

Theorem 4.7 Let H have the form of Thm 4.6 with J RP. Let 

H = H + H' with H' RN. Let Z(ha ) = <exp(H(oa - ha ) + H') >o . 

Then Z(h
a

) < Z(0) and gΛ(p) ≤ (2βΕρ)-1 with Ep depending 

on Jaγ , as in Theorem 4.4. 

Finally, we want to mention a problem ( and its resolution) 
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ones on 
that occurs for certain special models like the face centered cubic 

lattices. The infinite volume lattice is reflection invariant about 

any plane which is the perpendicular bisector of a bond, but any 

finite volume cut off will destroy many of these symmetries. The 

resolution is the following: Let <·> denote an infinite volume 

expectation and, given, {ha} a ϵ ZZv with only finitely many non-zero 

h's , let 

If we can show that |g(ha )| ≤ 1 for all ha, then by following the 

arguments in [10] one will get infinite volume infrared bounds and 

therefore long range order. To prove that |g(ha)| ≤ 1, one need 

only show that <·> has a kind of RP about each "bond" plane, i.e. 

that 

|g(
ha
)|

2
 | g(h'a)ga(h"a) (4.14) 

where h'a (resp h'a) is obtained by taking ha on the left (resp. 

right) side of the plane and reflecting in the plane. Given (4.14) 

it is not hard to reduce the proof of |g(ha)| < 1 to showing that 

|g(ha ) | 1/|Λ| → 1 for a set of ha’s constant at h0 on a nice set 

Λ· But it is easy to see that |g(ha )| < ec|aΛ| for such h’s. 
(Instead one can use Theorem 4.6 in infinite volume; see e.g. [6]). 

We can see two ways of proving (4.14). In cases where 

correlation inequalities are available, one can prove (4.14) for a 

given plane by taking a suitable sequence of " + boundary condition 

states"where the given plane outs A exactly in half. Since the 

limit is independent of sequence, (4.14) holds for the + boundary 

condition state. When correlation inequalities are not available, 

one can at least prove there are multiple phases ; for, if not, then 

all periodic states converge to a unique state which would then obey 

has a lower bound that is uniform in B one would 

obtain long range order : a contradiction ! 
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5. Long Range Models 

In [3], Dyson showed that a spin 1/2 Ising model with 

J (n) = (1 + |n| )-a has a phase transition if 1 < at < 2 (a > 1 is 

needed for sensible thermodynamics), and did not if 2 < a. His 

method works for any classical model with correlation inequalities 

such as the plane rotor model [13]. Using similar ideas, Kunz and 

Pfister [26] treated the two dimensional plane rotor model with 

J(n) = (1+|n|)-a, proving a phase transition if 2<a<4. 

In this section, we illustrate the general methods of this 

paper by recovering these results (many more examples are presented 

in [7,8]) and extending them in several directions: (a) cases where 

correlation inequalities are unknown such as the classical Heisenberg 

model can be accomodated ; (b) logarithmic improvements in Dysons’s 

conditions are given ; (c) certain quantum models are accommodated. 

We give details in the one dimensional classical case and 

then treat two dimensions and quantum models in a few remarks. When 

correlation inequalities of Griffiths type are available, improvements 

of our results of the following sort are possible: If a phase trans-

ition is known for an RP J0 which is also positive, it holds for 

any larger J even if the larger J is not RP. We suppose in all 

cases that Σ | J (n) | < ∞. 

We begin our analysis with: 

Theorem 5.1 Let K be a compact subset of IRN and let dp be a 

measure different from δ(σ), invariant under σ → -σ . Let 

-βΗ = Bi>j/Σ J J(i-j)oi . oj. and let Ep = Σ J(n)(1-cos pn). If 0 < J(n) and 

J is RP, and if g ≡ ∫dp/Ep< ∞, then there is a first order 

phase transition with σ as order parameter, at some 

sufficiently large, finite B 
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Theorem 5.2 Let J(i-j) be RP. Then the classical isotropic 

Heisenberg model has a first order phase transition for B large if 

and only if g ≡ ∫ dp/Ep < ∞. 

Proofs The absence of a first order phase transition (asserted in 

Thm. 5.2) if g = ∞ follows from a slight extension of an argument 

of Mermin [29], so we concentrate on the existence question. Since 

g < ∞, this follows, according to the strategy of § 4 , if we show that 

<ôp ô-p > 1/2 BEp and lim/B→∞ < | σ | 2 > > 0. J being RP 

implies that <·> periodic is RP by Thms. 2.1 and 3.4. The method 

of §4 then yields the infrared bounds. In the case of Thm. 5.2, 

< |σ |2 >∞ = 1 while in the case of Thm. 5.1, choose r0 >
 0

 so that 

∫ | σ |   > r dp > 0 and use a chessboard estimate to see that 

< ( | σ | < r0) > → O, as B → ∞. The right side of this chessboard 

estimate is controlled by noting that RP implies that the ground 

state with the restriction |σ | < r0 has all spins equal, 

and then by noting that the energy when all = r is strictly 

monotone increasing in |r|, since J(n) ≥ 0 . 

These theorems reduce the study of the long range one 

dimensional case to the study of two questions: (1) When is J RP ? 

(2) When is ∫E-1/P dp < ∞. In studying the first question the 

following is useful: 

Definition A distribution F on RV\{0} is called OS positive 

(for Osterwalder-Schrader [30]) if and only if F is continuous 

and 

∫F(X - y) g(x) g(y) dx dy > 0 (5.1) 

for all g ϵ C∞/0(
Xl
>0) where … , yv)

 =

 g(-y1, y2, … 
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Theorem 5.3 (a) If F is an OS positive distribution on RV 

then J , defined on {(n1,…., nv) |n1> 0} by 

J(n) = F(n1,..., nv ) ; n1>0, 

is RP. 

(b) If and J
2
 are RP on {n1> 0}CZZV, then so is J1 J2. 

(c) If J(n) = ∫∞/0 e-
 n
ydp(y), (n>1), then J is RP on 

Proof (a) In (5.1), let g approach a sum of delta functions. This 

shows at once that J is RP. 

(b) Follows from the fact (Schur’s theorem) that if a.. 

and bij.. are positive definite matrices, so is cij with 

cij. = aij bij 

(c) A restatement of Prop. 3.2 ; it also follows from (a) and 

well-known structure theorems for OS positive distributions. 

Proposition 5.4 The following functions on Z are RP in the 

region n ≥ 1 : 

(a) J(n) = n- α (b) J(n) = (1+n)-a 

for all α > 0. 

Proof (a) (use Thm. 5.3(c)). 

(b) (use Thm. 5.3(c)). 

As for the second question, we note: 

Theorem 5.5 Let with J(n) ≥ 0. Then 

then 

then 
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Remarks 1. The condition in (a) is slightly weaker than the one that 

Dyson [3] needs for a phase transition. The condition in (b) is 

slightly weaker than the one that Dyson [3] needs to prove that there 

is no phase transition in the Ising model ; (b) will only imply the 

absence of continuous symmetry breaking. This is as it must be if 

the n-2 Ising model has a phase transition (as is believed), since 

J(a) = n-2 obeys the conditions of (b). 

2. (b) includes the case J(n) = n-2 . This case can be done 

by explicit calculation of Ep ,(contained in the tables, e.g. 

(516) of [24]) or by noting that = f(0) - f(p) with 

f(p) = Σn/∞1 -2 cos pn obeying f"(p) = πδ(ρ) - ½ with periodic boundary 

conditions at ±π. One sees that E(p) ~ |p| in that case. 

3. If J(n) ~ n-a at infinity, we are in case (a) if a < 2 

and in case (b) if a ≥ 2. Actually with regard to (a) one cannot 

improve even logs, since
A
 J(n) ^ n-2 (log n) ... (logmn)i+ɛ , then 

Ep ~ |p|(log p) ··· (logm p)1+ɛ · For (b), improvements are presumably 

possible: with little change (log N)-1 can be replaced by 

[(log N)(log
2
)(N) …log

m
(N)]-1 which allows only 

n-2 (log
2
n) … (logmn)1+ɛ . 

then 

increases when dp increases. 

This remark allows one to obtain results for J’s which are 

RP but not positive from those in this theorem. 

Proof (a) We need a lower bound on 

For so that 

where [x] = greatest integer less than x. Thus we need only show 
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that 

By the Schwarz inequality 

so that 

since n2[n] -2 <' ([n] +l)2[n]-2 < 4 for n > 1 and 

ττ/ρ ≥ 1 for 0 < p < π. Finally we note that 

(b) We need an upper bound on Ep. Since (1-cos x) < |x 

we have that 

for any N. To estimate the second term, let K(j) = Σn J(n) 

so that 

Thus, if 1/M K(M) → 0 as M → ∞, we have that 
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If K(n) < C log n, we see that 

E
p
 < C|p| log N + CN-1 log N 

Choosing N = [|p|-1 ], we see that E
p
 < c|p|clog(|p|-1 )), so that 

∫Ep-
1
 dp = ∞ | 

By combining the previous results of this section we 

conclude that 

Theorem 5.6 If dp ≠ δ(p) is a measure on IRN symmetric under 

σ → -σ and J(n) = n-a , then there is a first order phase transition 

for the one dimensional spin model when 1 < a < 2. 

Remark If N = 1 (or if dp is anisotropic in a suitable sense) 

but dp is not even, there will be a phase transition in suitable 

external magnetic field when 1 < a < 2 ; see [10] or [7]. 

We describe the extensions in a series of remarks: 

(A) In two dimensions, the functions p have OS positive 

Fourier transforms for a > -1. This follows from 

and the fact that (p2 + m2 )-1 has an OS positive Fourier transform 

(free Euclidean field [30,42 ])Since x-B (0 < B < 2) has a Fourier 

transform cBp2- B ,
 we see

 that |n|-B is RP for 0 < B < 2 by 

Thm. 5.3(a). Then by Thm. 5.3(b), we conclude that |n|-B is RP 

for all B > 0. Calculations similar to those above show that in 

2 dimensions, ∫ dp/E
p
 < ∞ if Σ/n≠0 n-6 J(n)-1 < ∞ ; and for J(n) = n-4 

an explicit calculation involving periodic Green's functions for -Δ 

(and the fact that A(r-2 ) ~ r-4 at ∞ ) shows that Ep ~ 2p log p + 0(p2 ) 

at p = 0, so ∫ dp/E
p
 = ∞ in that case. We thus obtain: 
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Theorem 5.7 If dp ≠ δ(p) is a measure on symmetric under 

σ → -σ, and J(n) = η-a , then there is a first order phase transition 

for 2 < a < 4, in the two-dimensional spin model. 

This result is of interest only in isotropic cases. 

(B) It is easy to prove first order phase transitions in suitable 

quantum systems which are simultaneously real by using the method 

of [4]. In order for that method to be applicable one must check 

an algebraic condition; in particular some double commutator should 
not be large. 
There are two cases where this condition is easy to verify : in 

anisotropic models, such as σx σx + εσy σy with ε < 1, the double 

commutator is always small at low temperatures, and in a classical 

limit, like S →∞ in Heisenberg models, the double commutator is 

small, for S sufficiently large, [4]. We conclude : 

Theorem 5.8 Fix J(n) = n-a for 1 < a < 2. Then the isotropic 

antiferromagnet with -Η = Σ/n≠m (-1)n- mJ(|n-m|)Sn . Sm for quantum 

spins S
n
 of spin S has a first order phase transition if S 

is sufficiently large (at some β sufficiently large). Moreover, for any 

ε with 0 < ε < 1, the spin 1/2 model with 

has a first order phase transition at 

some B sufficiently large. 
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