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Among the recent developments in the rigorous theory of phase
transitions have been the introduction of two powerful techniques
motivated in part by ideas from constructive quantum field theory: the
method of infrared bounds [10,4] which provides the only presently avail-
able tool for proving that phase transitions occur in situations where
a continuous symmetry is broken, and the chessboard estimate method
of estimating contour probabilities in a Peierls' argument [14,9]. This
is the first of three papers systematizing, extending and applying these
methods. In this paper, we present the general theory and illustrate it
by considering phase transitions in one and two dimensional models with
long range interactions. In II[7], we will consider a large number of
applications to lattice models and in III[8] some continuous models in-
cluding Euclidean quantum field theories. Reviews of some of our ideas
and those in [4,9,10,14] can be found in [5,6,23,27,43]. An application
can be found in [19].

Three themes are particularly emphasized in these papers. The
first, §2-4, 1is the presentation of a somewhat abstract framework, part-
ly for clarification (e.g. the tricks in [4] to handle the quantum anti-
ferromagnet may appear more natural in the light of §2,3 below) but mainly
for the extensions of the theory thereby suggested (e.g. the second theme
below and the use, for classical systems, of reflections in planes con-
taining sites: this ides, occurring already in [9] will be critical for
many of our applications, e.g. to the classical antiferromagnets in extern-
al field). The abstract framework also clarifies various limitations of the
theory such as its present inapplicability to the quantum Heisenberg ferro-

magnets and its restriction to reflections in planes between lattice planes
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for quantum systems. The second theme is the extension of the methods
beyond the nearest neighbor simple cubic models emphasized in [E:LEL[D.

It will turn out (§3) that rather few additional short range interactions
can be accomodated but that a larger variety of long range interactions

can be treated. This extension will allow us (§5) to recover and

extend to suitable quantum models the results of Dyson (resp.
Kunz-Pfister [26]) on long range one (resp. two) dimensional systems. It
will also allow us (see II) to discuss a number of lattice Coulomb gases:
for example, a "hard core model" where each site can have charge 0, +1 or
-1 will have two ''crystal phases" for sufficiently low temperatures and
large fugacity and, for sufficiently low temperatures and suitable fugacity,
a third phase which can be thoughtof as a 'plasma" or ''gas" phase. Finally
it will allow us to construct (see III) a two dimensional quantum field
theory (a ¢* perturbation of a generalized free field) with a spontaneously
broken continuous symmetry.

For pair interactions, Hegerfeldt and Nappi have proposed
our sufficient condition for reflection positivity but they did not
discuss the connection with phase transitions or the quantum case; see
also their footnote on pg. 4 of their paper.

The final theme involves the development of an idea in [[LO,H] for
proving that phase transitions occur in a situation where there is no sym-
metry broken and thus no a priori clear value of external field or fugacity
for the multiple phase point. 1In all cases, the value can be computed for
zero~temperature and one shows that there are multiple phases at some nearby
value for low temperature, although our methods do not appear to specify
the value by any computationally explicit procedure. This technique,
which we do not discuss until paper II, allows us in particular to re-
cover some results of Pirogov-Sinai including the occurrence of

transitions in the triangle model (ordinary Ising ferromagnet in external



_41—

field but with an additional interaction k z 0,0.0, over all triples

jk
ijk where i and k are nearest neighbors of j in orthogonal directions) and
the occurrence of three phases in the Fisher stabilized antiferromagnet in
suitable magnetic field (ordinary Ising antiferromagnet but with additional
next nearest neighbor ferromagnetic coupling). As another example we
mention an analysis of some models of Ginibre, discussed by Kim-Thompson
[32] in the mean field approximation,with the property that at low temp-
eratures there are an infinite number of external field values with
multiple phases.
Next we want to make some remarks on the limitations, advan-
tages and disadvantages of the reflection positivity (RP) methods.
As regards the chessboard Peierls argument, it is useful to com-
pare it with the most sophisticated Peierls type method that we know
of, that of Pirogov-Sinai (PS method) [B3,34,35,20](a comparison with
the 'naive'" Peierls argument can be found in [27]):
(1) The most serious defect in the RP method is that the
requirement of reflection positivity places rather strong restrictions
on the interactions, especially for finite range interactions. For

example, the PS analysis of the Fisher antiferromagnet would not be

affected if one added an additional ferromagnetic coupling Uioj for

pairs i j with i-j = (8,10) (for example) while our argument would be
destroyed no matter how small the coupling'! More significantly, the

RP analysis in this case requires that o and o

0,0°@,1) (0,07 (1,-1)
have equal couplings; PS does not. Similarly in the triangle model,
an RP argument requires the four kinds of triangles to have equal
couplings while PS does not.

(2) RP can handle certain, admittedly special, long range

couplings, among them interactions of physical interest such as

Coulomb monopole and dipole couplings. PS in its present form is res=
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tricted to finite range interactions.

(3) Inherent in the PS method is the notion that one is looking

at a system with a "finitely degenerate ground state.'" This is not in-
herent in the RP method: all that is important is that a finite numr

ber of specific periodic states have a larger internal energy per unit
volume than the true ground states. In some cases, e.g. the antiferro-
magnet without Fisher stabilization, there is no practical difference since
the finite number of states of importance in RP are among the infinitely
many ground states that prevent the application of PS. However, there is

a model (of a liquid crystal) with an infinitely degenerate ground state

to which Heilmann and Lieb have applied the RP method with success.
This model has only two ground states in finite volume with suitable
boundary conditions, but infinitely many ground states in the PS sense in
infinite volume.

(4) The PS method gives much more detailed information than the
RP method on the manifold of coexisting phases. For example in the
Fisher antiferromagnet, there:is,for T small, an external field, u(T),
near the computable number u(0), so that there are three (or more) phases
at that value of T and pu. PS obtain continuity of p(T) in T while RP
does not, but shows only that u(T) » p(0) as T » 0.

(5) While neither PS nor we have tried hard to optimize the
lower bounds on transition temperatures, it seems reasonably clear that
RP methods would produce better bounds.

(6) PS require the number of values that a given spin takes to
be finite. RP methods effortlessly extend to models like the anisotropic
classical Heisenberg model (see [9]).

(7) PS can only handle classical models, at least in its present

version. RP methods can handle certain quantum models quite efficiently



(see [9ID.

(8) RP works most naturally for states with periodic boundary con-
ditions. This can occasionally be awkward.

(9) PS obtain the exact number of phases at the maximum phase points
while RP only yields a lower bound. This difference is probably not intrin-
sic,and RP methods could probably be combined with to yield the exact
number of phases.

(10) To our,admittedly biased, tastes the RP method seems considerabl
simpler than the PS method.

As regards the infrared bounds method, there is no comparable method
with which to compare it, but we note it is most unfortunate that the only
available method for proving phase transitions depends so strongly on
reflection positivity. We mention two examples to illustrate this remark:

(1) In [10], it is proven that the classical Heisenberg ferromagnet
with nearest neighbor interaction has a phase transition for a simple cubic
lattice. The methods of §2 -4 easily extend this result to face centered
cubic and many other lattices, but not to the body centered cubic lattice.
This remains an open problem.

(2) There has been some discussion recently (see and references
therein) of an intriguing model, originally due to Elliott [28], which should
have '"helical" long range order: consider a one dimensional plane rotor or
N-vector, N > 3 model with nearest neighbor ferromagnet coupling, J, and
somewhat stronger second neighbor antiferromagnet coupling, K. It will have

a helical ground state, i.e. in a ground state o = cosO for some O #

i 7141
0,n depending on the exact value of J/K. Of course, this helical ordering
won't persist to finite temperature in the one dimensional case, but if

one adds two more dimensions with conventional nearest neighbor ferromag-
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netic couplings one expects helical order will persist. We do not see
how to prove this with RP methods; indeed, infrared bounds obtained by
RP methods always seem to blow up at a single p while at least two p's
are involved here due to the evenness of the function EP. We note that
if one could prove an infrared bound, helical order would be proven since
Ep vanishes at precisely two p's with a zero of order p

Finally, we summarize the contents of the remaining sections. In
§2, we present an abstract framework for reflection positivity and provide
the basic perturbation criteria which allow one to go from reflection pos-
itivity for uncoupled spins to reflection positivity for suitably coupled
spins. In §3, we specialize to spin systems and examine two questions:
about what kinds of planes does one have reflection positivity for the
system of uncoupled spins, and what kinds of interactions obey the basic
perturbation criteria of §27 1In §4, we review and describe the two basic
RP methods of proving phase transitions when one has reflection positivity
about the large family of planes obtained by translating a basic family of
planes. 1In §5, we discuss the applications to recover the Dyson and Kunz-
Pfister results already mentioned.

It is a pleasure to thank F. Dyson, 0. Heilmann, L. Rosen,

E. Seiler, J. Slawny and T. Spencer for valuable discussions.
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2. Abstract Theoxy of Reflection Positiyity

Reflection positivity was introduced in quantum field theory by
Osterwalder and Schrader and it has continued to play an important
role there, Its significance in the study of phase transitions for lat-
tice gas_es was realized in [[I0,F,9]], although we must emphasize that trans-
fer matrix ideas are intimately connected with reflection positivity. A.
Klein has considered other abstractions in somewhat different con-
texts.
To understand the framework we are about to describe, it is use-

ful to keep in mind a particular example, describing a chain of Ising
spins, that is essentially that given in [Eﬂ,[ﬂ (we describe the example af-
ter the basic framework).

ot will be a real algebra (with unit) of observables. (We note that
to say ot is a real algebra does not preclude ot from being, say, an al-
gebra of complex valued functions: 'real" means that we only suppose that
one can multiply by real scalars.) Below we will freely use and expand
exponentials and use the Trotter-product formula (in cases where OC is
non-abelian). In most applications these manipulations present no problem
since 0t is usually finite dimensional. 1In III, we will deal with some un-
bounded operators and exercise some care on this point. We suppose we are
given a linear functional AI—)<A>0 on gt with <l>o = 1. Given HEOL, we

define

(APH = <Ae-H>0/<e_H>o . (2.1)

Moreover, we suppose Ol contains two subalgebras OI+ and o(_ and a real
linear morphism 0; 0‘[+ > 0t_ (the phrase '"real linear" does not preclude
© from being complex linear or complex antilinear; morphism means 0(AB) =
0(A)O(B). In most examples, © has an extension to OH}JGL obeying 02 = 1,

but this property plays no role in our considerations below.)



-09—

The example to keep in mind involves 2n spin 1/2-Ising

spins © o - Then 01 is the family of polynomials in all

—n+1? ont22

L]
the o's, o1 respap_) the polynomials in © .,Un(resp Go’c—l"-n+lL and

1*°
) . . :
0@ is defined so that G(Gi) O_i41° <A(c)>0 = 7n z A(oi). Although
o,=+1

+(

0[+ andtﬂ; have trivial intersection in this example, we will not suppose

hot
this to be true in the abstract setting; we will even suppose that &, and

+
01_ commute with each other, although it will turn out that there are no
cases for which we can prove perturbed reflection positivity with non-

mutually-commuting 01+ and 0t , (with the exception of some Fermion systems).

Definition A real linear functional <+> on & is called reflection positive

(RP) if and only if <A®(A)> > 0 for all AEOt_]_.
The reader should check RP and GRP (defined below) for the functional
<->O in the example. Unfortunately, we know of no abstract perturbation
theory for functionals satisfying RP in the fully non-commutative setting,
but a slightly stronger notion is preserved under suitable perturbations:

Definition <+> is called generalized reflection positive (GRP) if and only

if
<A18(Al)...AmG(Am)> >0
for all Al,...,Am€01+. .
Theorem 2.1 If -H = B + 0(B) + Z CiG(Ci) (or more generally B + O(B)
j=1

+ J' C(x) ©[C(x)]do(x) for a positive measure dp) with B, Cié 0’.’.+ and

if <->0 is GRP, then <+> defined in (2.1) is GRP.

H’

Proof; For simplicity, let us consider first the case where 61 is abelian

even though it is a special case of the general situation we then discuss.
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Then, since @ 1s a morphism

H o BoeBy J2C0C))

Expanding the exponential, we see that

e = sum of terms of the form (Dle(Dl)...DjO(Dj)),

. -H -H
so that by GRP for < =2 <e > > 0 and <e Ale(Al).“AmG(Am)%) >0

For the general non-abelian case, we first use the Trotter

product formula to write

/k

e“H = lim [eB/k

k
G(eB ) T ecie(ci)/k]

i

koo

and then expand to get e"H as a limit of sums of n[DjO(Dj)], .

In the next section, we will give a relevant example (Example 6)
of a situation with 4050 RP but not GRP. There is one case where RP
implies GRP (this, in fact, is the only case for which we know how to
prove GRP!)

Theorem 2.2 1If ot , and o(_ commute with each other, a linear functional

is RP if and only if it is GRP.

Proof: nAiO(Ai) = (nAi) OCwAi) since the A, and e(Ai) commute

j

and 0O is a morphism. l
We will also need:
Theorem 2.3 I at+ and ol _ commute with each other and if <?30 is

RP, then for any A,B,Ci,Dié 01!+:

I A+OB + IC.0D
<e

{ i>0|2 < <eA.-l-@A + ZCiOCi> <eB + 0B + ZDiG(Di)>O

(o)

Proof: For simplicity of notation we suppose that 6U is abelian.

The general case follows by using the Trotter formula as in the proof

of Theorem 2.1. Since S22 is RP, we have a Schwarz inequality i<A9B>O|2

< <A9A>0 <BGB>0 and so (here we use that Ot+ and O(_ commute )
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2
|<A,0(B))+ 800> |2 <

<A;0(A;)-.A{0 (Ay)> <B,O(B,)...BjO(By)> - (2.2)

Now

_ eA + 0B + ZCiG(Di)

= eA O(eB) ezc:'.@(]):i.)J

so expanding the sumg we can write it as sum of terms of
the form Ele(Fl)u”EE G(Fg). Using (2.2), we see that

/2 o

1 1
|<0r.>0| < T <nE0(E,)> "<m FO(F))> "7,

so using the Schwarz inequality for sums

[<a> |2 < [ <nE; O(E))> ] [E <nF0(F)> ]

We can now resum the exponential and so obtain the desired
result. l

Remarks: Notice that only (2.2) was needed to obtain the
result, so we could have paralleled the discussion of GRP and
given (2.2) a name. We only know how to prove (2.2) when

Ot, and OU_ commute.

+
The theorems in this section are only mild abstractions

of ideas in [MOLE]J. 1In fact, already noted the importance of

inequalities like those in Theorem 2.3 and of Hamiltonians of the form

singled out in Theorem 2.1.

Remark: Independently, Osterwalder and Seiler have discussed RP

for Fuclidean Fermi lattice (leld theorles [31] using ideas simllar to

ours.

There is a generalization of Theorem 2,3, which, while it will

not be used in the sequel, is potentially of interest.
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Theorem 2.4 1If Ot+ and OT_ commute with each other and <'>o
is RP, then for any Ci,Die 0’£+

¥C.0D c.oc LD,OD
S A L it Pop <e Tt

|<

Proof The same as for Theorem 2.3. One merely has to notice that
the first term (namely 1) in the expansion of the exponential cancels. .
Remark Theorem 2.3 is a Corollary of Theorem 2.4. Merely add o~ lam)

x()\-l@B-l-A) to the exponential in Theorem 2.4 and then let A -,
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S Rgf}ept}ons_in\a Single Plane

In this section, we consider the case where ol is an algebra
of observables for a classical or quantum spin system on a lattice, AR
is an uncoupled expectation and © is a reflection in a plane. We con-
centrate on two distinct questions which are connected with our discussion
in the last section: (a) When is S RP and/or GRP? (b) What inter-
actions lead to a Hamiltonian with -H = B + OB + ECiOCi? We discuss

the first question in a series of examples.

(1) Reflections in a Plane without Sites-Classical case

We imagine the finite lattice A (which may be a torus) being divided
by a plane m into two subsets ﬁ+(to the "right" of 7) and A_, with

no sites on m. There is some 'reflection'" r on A such that r takes f\+

into A_ and r2 = 1. The "spin" at each site is a random variable taking

values in a compact set K with some "a priori'" Borel probability dis-

tribution dp. Let KA = 1IN K, and K, = I Ki (where each I(i is a
ien * = i€t

copy of K.) For x € {Ki}iEA » define ©,x€&K, by (G)*x)i = X 4)

take 0T to be all real-valued continuous functions on Kﬁ with 0t+ the

We

subalgebras of functions depending only on the spins in A+. Define O©O:

01+ —> 0T _ by
(OF) (x) = F(0,x)

Finally , we let ~=F>-0 = I F(x) I dp (xi). Then <°>0 is RP since
K i€eA
A
<FEF> = [ [ F@®FOy) T  do(x) T do(yy)

KK, 1€N, JE€N_

=[] F(x) 1 dp(xi)]2 > 0

K+ i€A+



~14~
Since 0L 1is abelian, <->0_ is GRP, This example includes the kind of
classical system in [10]. Alternatively, we could allow 0T, O(+
to be complex valued and then define (OF) (x) = FZ@;:)

(2) Reflections ina Plane without Sites-'""Real' Quantum Case

The setup is very simiiar to (1) but. now for each i& A, we take a
copy J{i of lRm with the natural inner product.  One defines
{ - ,.®Ri and &_ (resp H+) as the tensor product of the spaces
associ:tid with sites in A_ (resp A_l_). ot is. now all matrices on J-E
and <A>0 = Tru(A)/TrA(l). ot (resp 0‘(_) conéists of ?.ll operators of
the form 1®A(resp A ®1l) under the tensor decomp_ositlion & - (;E__ ®;§_
Finally 0(1®A) = A@1l. Then for B = 1®A

Tr (BOB) = Tra(AﬂA) = 'I‘r”'_‘-(xe\)2 >0

since Tr(A) is real. Thus SEN is RP and, since 0‘(+ and O(_ commute,

GRP. This example includes the quantum xy model [4] in the realization

o = (0 lJ, gy = (l 0 ) . Alternatively, we could take . = ¢™ and

10 0 -1 1
0(1 ® A) = A®1 where — is complex conjugation.

(3) Reflections in a Plane Without Sites - General Quantum Case

This is identical to the setup in (2) except for the fact that ﬁﬁi is

a copy of €. If we take 0(1®A) = A®1, then <*>_ is not RP

since Tr(A) may not be real. 1Indeed if 0l and © are chosen in some
other way so that Tr is GRP, then the ferromagnetic Heisenberg Hamiltonian
will not be expressible as -H = B + OB + ECiE)Ci,
Of course, if one takes @,(1 ®A) =

since Tr(cl'oo)3< 0,while
) 3
(Ul°00) is a sum of AleAl...A36A3.

A® 1 where — 1is ordinary matrix complex conjugation, then for B = 1 & A

- 2
Tr(BO,B) = Trg (A®A) = |Tr‘£+(A)| >0
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So one recovers RP and GRP, but the usual Heisenberg ferromagnet

+
is no longer of the form 2010101,31nce cl-qgl = Glx?ox + Ulé’oz -

0. 0  in the usual realization of the o's.
ly oy
The fact that L is not RP does not stop it from being
RP on a subalgebra; indeed in the Heisenberg case, for functions of
Uz's alone, it is RP. It could happen that for the usual (anisotropic)

Heisenberg case, <*>_ is also RP on this subalgebra and this would

H
lead to phase transitions in the two dimensional anisotropic case [:].
However, the failure of full GRP implies that our simple perturbation

scheme of §2 will not yield a proof of this type of restricted RP.

(4) Twisted Reflections in a Plane without Sites

it is sometimes useful to define © with a "twist." For example, in
the setup of (3), take m = 2S + 1 and take Ux’cy’cz as the usual

spin S spins; i.e. o, is diagonal and cxtisy are raising and lowering
operators. - Thus cy,az arereal and oy is pure imaginary. Let U be the

operator on Jﬂ_ which rotates about the y axis by 180° at each site. Let

0(1®A) = (UAU'l) ®1

Then for B = 1®A

Tr (BOB) = Tr(UAU-1® A) = Tr(UAU_l)Tr(A) =

= |trw|® > 0
- S .
So <->0 is RP and GRP. Moreover, O(Uj)=-cr(j) so that the antiferro-
net -H = -L 0.*0, with a sum over nearest neighbors, is of the
1S g 3 3 g ,

form B + @B +ZC_,0C

19C4 - This is essentially the method [4] used to discuss

the antiferromagnet.

(5) Reflections in a Plane Containing Sites-Classical Case

The setup is very similar to (1), but now there may be sites on .
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Therefore we break up A into three pieces, A_,AO,A_l_ corresponding
to sites to the "left" of m, on 7, and to the right of =. r now
maps A_ to A_ and leaves A, invariant. OC (resp 0U) is the family
of all functions of the spins in AOU A+ (resp !t_U!\o) and for x =

{xi} 0.x K, % KO. As before ~ﬂG>'0 = _f G I do (xi)

i6h UA’ #X =X 4y€ K
VA r(i) i€ A

and (OF)(x) = F(O,x). Then writing (x,y,z) according to the decomposition

K_x Ko X K+:
<FOF>_ = | FG,2) FE,xy) T do(x,) T do(y,)
1€ 1" yen i
= Q
T dp(z)) = [ m do (y,) | [ Fy,2) T dp(z)[? >0
kA K jeh k€A
[s} [o] +

(3.1)
Thus we have RP and GRP since ot is abelian. This kind of reflection is

mentioned in [9] and will play a major role in many of the examples in II.

(6) Reflections in a Plane containing Sites - "Real' Quantum Case

The setup is as in (2) but with the modifications in (5). Thus
& = # @ ®Fff, 0t is the linear span of the 1® A® B,and 0L the
one of the B®OA® 1. We take 0(L®AR®B) =B®A® 1. Noticing that for

C, an operator on &’O @ﬁ_'_ (the analog of (3.1)):

Tr(coc) = Tr, () (©1%) > 0

Ho = Ry

(P)
iy

where Tr is the partial trace on cﬁf.+, we see that <'>0 is RP. 1In

this case 0'(+ and ¢¢_ are not mutually commuting so that GRP is not automatic;

indeed it is false. For let = # = & = ¢* and let
oc = Ux® (1 +oz)®1 + cz®(1 +0x)®l

oD = cx®(l —UZ)QDL + oz® (1 —cx)®1



e
in terms of the usual Pauli matrices. Then:

Tr(C(@CD©@D)) = 8 Tr(( + 0,0 (L +0,) (-5 ) (L ~ )

= ~32 < 0.

Since this example is not so far from what could arise when
expanding realistic spin systems, we conclude that reflections in
planes containing sites are not likely to be permitted for quantum
spin systems, even "real' ones.

We summarize the above examples in:
Theorem 3.1 SR is GRP for conventional reflections in planes without
sites for classical and simultaneously real quantum systems and for
reflections in planes with sites (lattice planes) for classical systems.

* % *

Now we turn to the question of which interactions lead to

Hamiltonians of the form

-H= 0B+B+ [ c(xo[C(x)] do (x) (3.2)

To illustrate the ideas, we will first consider the case of pair inter-
actions in one dimension and then more general cases. The main result is
that the interaction has to be "reflection positive" for (3.2) to hold.
The net result of the analysis and theorem 2.1 is that <°>H is RP if and
only if the interaction is reflection positive. This is very reminiscent
of theorems of Schoenberg [Z0] (see also [B,[[3,B§])relating positive def-
initeness of e+tF to (conditional) positive definiteness of F, and, indeed,
our results can be viewed as a special case of that circle of ideas. (See

Theorem 3.5).

We begin with consideration of spins O 1’ 2%
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and only if for all positive integers m . and zl,".,%mé C s

Y 7z JGHAD 20 (3.3)
i,3>1

If we know apriori that J is real-valued (it is by (3.3))
(3.3) need only be checked for z real. In this case the left side of
(3.3) can be viewed as the interaction between spins at sites 1,..,m with

values zl,...,zm and the reflections of these spins at j = % if the basic inter-

action is ¥ J(a-R)o . This explains the name given,

R
a5 R e
The following comes from the realization of (3.3) as the condition

of solvability of the Hamburger moment problem. For the readers ease, we

sketch a standard proof ([37]):

Proposition 3.2 Let (J(j))j>l be a real-valued bounded function. Then

(3.3) holds if and only if

1 j-1
J(G) = cajl + J A dp (A) (3.4)
-1
for a positive measure dp and ¢ > 0
Remark If we interpret OJ_l as Gjl , then céjl is just the contribution
of a §(A) piece of dp. We write it as cajl to be explicit.
Proof If (3.4) holds, then

i7]

~ 2 [t = Li-1
Y 2.z, J(i+j-1) = clzy | + J |2: A z,|2 do() >0
i,3>1 o *

so (3.3) holds, Conversely, if (3.3) holds, form a Hilbert space, &E ,

by starting with finite sequence (zl,.“,zm) (arbitary m) and letting

<@),> = ] z Wy J(+-1)
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and then dividing out by z's with <(z),(z)> = 0 and completing,
For a finite sequence (zl,“qzm), let A(zlv."zm) =

(0,21,"qzm) and note that by repeated use of the Schwarz inequality:

azl] < [1=l1M2 182 | Y2 < pa] (2020 (1027 M2

But
||A2nz||2 = Yzz, 3G+ + 2" o
i%j J
2 .
< ¢lz; DT sup |3
— 2" 172"
so, lim J}|A® z|] <1 as n>w., We conclude that ||Az|]| < ||z]],

so A extends to a map of £ to & . Moreover, by a direct cal-
culation (z,Az) = (Az,w). We conclude that A is self-adjoint. Thus

for any z

. 1
(z,a712) = [ T 00
-1

-1

by the spectral theorem,where Oj = § Let z = (1,0,...) so

i1’
that (z,A371z) = J(§) and (3.4) holds. |
We want to emphasize two features of (3.4). First J > 0
is not required. Secondly only the function J(j) = cﬁjl obeys (3.4)
and has bounded support.
In order to obtain the simplest result relating (3.2) to (3.3) we
consider free boundary conditions:

Proposition 3.3 Let (J(j)) be given, For each m, consider spin 1/2

Jz1
Ising spins, O mtl’* % and let Oci = 0_i4
m
'ﬂﬁ°)= z JUﬁﬂUf.
i,j=~mtl .

i<)



Then Hm has the form (3.2) for every m if and only if J obeys (3.3).

Remark One half of this theorem is also contained in Hegerfeldt and
Nappi .

Proof If J obeys (3.3), then J has a representation (3.4)350 that

1
—HmGJ) = Bm + BBm + J_l Cm(A)G[Cm(A)] do (M)

m

- - = j-1
where B_ = ) J(i-}) 049 and C_(A) R o,
1<i<j<m j=1
Conversely, suppose that Hm has the form (3.2). Then C(x) =
m
= I ui(X)Ui and so f C(x) [OCc(x)] dp(x) = E: J(i-3) Uioj s
i=1 j<0<1<i
where, for 1<i,j<m: J(i+i-1) = I ui(x)uj(x) dp(x) because if F(@) =
z Kijoi.%’ then Kij is unique. Thus E zizj J(i+j-1) =
1<i, j<m
m
- I ] 2 ziui(x)]z dp(x) and therefore J 1is reflection positive. l
i=1

This proposition is the basic resuylt; we present a number
of extensions and variations:

(A) In applications, it is useful to know that periodic boundary
conditions lead to a state obeying OS positivity. Given m as above,

we define for i=1,2,..,2m-1.

Fa = I 3(]it2ka)) (3.5)

k==o

The Hamiltonian

_gPer . Z .
Hm Jm(j i)cjci

~m+l<i<j<m

is the Hamiltonian with periodic boundary conditions. 1If J has the

form (3.4), then



==

@) = cldy, +6 212" o (0

1
1-1 | -i+l 2m 2m

=1
so by the above arguments, -H = B + @B + I[C(x)@C(x)]dn(x) for
suitable C's. We summarize in:

Propositions 3.4 Under the hypothesis above, if J obeys (3.3), then

Hier has the form (3.2).

(B) We could consider reflections about a plane containing

a site. Then the above arguments imply that J(1) is arbitrary and

1 :
J(1) = céiz + J Ai-2 dp (x) for i>2. 1In particular, in that case,

~1

one can have second "linear' neighbor coupling.
(C) If one considers a multidimensional cubic system and
considers reflection in the plane il = 1/2, the kind of analysis above

shows that what one needs is that

§: ziz:.I J(1l+jl—l,12—32,...,1u—3u) > 0 (3.6)
il,jlz}
which leads to the requirement that for ili;
1 i,-1
A . BN IR B L ! § + J A dp )
1’72 v iz,..iu ill -1 iyseesi
where 4 i is a positive definite function on 2“-1 and dp
JLRRETE

obeys a similar condition. In particular, if

R1E ST S PO L PR L

I

2 2
B 1f 1] +---+|iv| - 2,

1}

0 otherwise
(i.e. nearest neighbor coupling o, next nearest B8), then one will have

RP about any plane bisecting a nearest neighbor bond as long as
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a-2|g| (v-1) > 0 . (3.7)

In particular, B can be negative. The case B = -a/2(v-1) is of some
subtlety and is discussed in detail in paper II.(To check (3.7) is equivalent

to RP, we note that the functien c,which has to be positive definite on

v=1 v-1
Z “,has a Fourier transform c(p) = o - 28 z c05pj so that the infimum

j=1
m

occurs at pj = 0 (all j) if B>0 and at p,= (all j) if g<0).

h|
(D) Some clarity is' obtained by considering a lattice gas in a

very general language,i.e.by allowing multi-particle interactions. We will
not explicitly use Theorem 2.1,and the connection with Schoenberg's work

on conditionally positive definite functions will be manifest.

At each site j ¢zV we are given a copy Kj

space K and a fixed probability measure dp(xj) on Kj H xj denotes a point

in K, . (For the mathematically inclined reader we remark that K 1is assumed

]

to be a compact Hausdorff space, and dp 1is chosen to be a regular Borel measure.

of some configuration

In fact all our spaces, resp. measures will have these properties).

It helps one's intuition to imagine that K 1is the two point set
{1,-11 , and dp the measure assigning probability % to 1 and -1 . This

will correspond to Ising models; (see also Corollary 3.6, below).

Given a subset X czZV , we define

v
Kx = X K, and K% = iz .

je&Xx

(Since K 1s a compact Hausdorff space, so is K , for all x &zV) .

To each bounded subset A\ czV there corresponds a finite system in /

\an_slgebra of "observables™

with configuration space K ,C(Kﬁ) , and whose states are the probability mea-
A

sures on K (These are precisely the continuous, normalized, positive linear

functionals on C(Kﬂ)) .
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We denote by tr the expectation on C(K®) given by the product measure

m v dp(xj) . Clearly tr defines a state of the finite system in p , denoted
jez

tr by restriction to cxh .

A
The dynamics of such systems is given in terms of an interaction, § .
b/ e

This is a map from bounded subsets X czV to C(K®) with the properties that

5(X) € (&) , and (3.8)
tr (3(X)) = n dp(xj) 8(X)(x) =0, (3.9)
y jey

for all Y with YNX#6; x={x} 2,

Condition (3.9) is no loss of generality : Given an arbitrary interaction

3 satisfying (3.8), one can always find a physically equivalent interaction

obeying (3.8) and (3.9) !

The Hamilton function of a finite system in ) with interaction § 1is

given by

= v ax ,

A xen
and the Gibbs equilibrium state with boundary condition oap € LI(KA’jEA dp(xj)) ,
describing the interactions of the system in p\ with its complement in Ac

(recall the Dobrushin-Lanford-Ruelle equations [B9,R2]]), is given by

—HQ

<F> (§,paA) = zil trA(Fe A Dan) s (3.10)

for arbitrary F ¢ c(xd) . Here

gl
Z, = tr (e

A
A A oap
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We now consider a decomposition of zV into two disjoint sublattices

T;, T (generally separated by a hyperplane); r 1is the reflection taking
T to r; and 9* the obvious reflection map from Kr; to KT# . For

F ¢ C(Kr;) , we set
HF(K_) = F(B*K_i s

where x, = [xj} ; we set A

\ j€r+ o = AN T} , and if A+ = rnw we say that A\

is reflection symmetric (RS) .

Our previous notion of RP 1is equivalent to
< FOF > (@,pah) 20 , (3.11)

for all F ¢ C(KA+) . In this case < - > (@,pan) is said to be RP .

3

We say that a b.c. py) Satisfles RP Lff trA(FBPpaA) 20 o)

for all F ¢ C(KA+) .

Clearly there are b.c. Pap which are not RP , but there are also
plenty of b.c. which are; (e.g. p =yG6G , Ge C(KA+) for all k) !
3l k &k k
Remark : Consider two b.c. Pap and pgh such that
LA
p! L (K dp(x,))

%30 Pan € g e
If Pap and D;A are RP then so is

" = e (3'13)

Pan ~ PanPan

by Schur's theorem,

From now on we shall always assume that & 1s reflection covariant, i.e.
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p8(X) = 8(rx) , (3.14)
for arbitrary X C:I; .

Our aim is to state and prove a necessary and sufficient condition on an

interaction § such that < - > (E,QBA) is RP , for all RP b.c. Pap and

all bounded, RS regions Q.

We call an interaction CRN (for "conditionally reflection negative")

if and only if

) tr(FoF (X)) <0 , (3.15)
xnr, # @

for all F ¢ C(KY) , with Y an arbitrary bounded subset of T; , obeying

tr(F) = 0 .
We call an interaction & RN (for "reflection negative") if and only if

i tr(FoF 3(X)) €0 , (3.16)
Xnr, # @

for all F ¢ C(KY) and for arbitrary, bounded Y c:]_'j+ .

Let diam X = max{|i-j|: 1,j € X}, let X+a denote the translate of X
by a vector a ezﬂ’, and let Ta denote the natural isomorphism from
X KX+a
c(kK") to c( ) , for arbitrary X , i.e. [Ta] are the translations. Finally,

let ||-|| denote the supnorm on C(K%) .

Theorem 3.5

(1) The Gibbs state < - > (Bg,paA) is RP , for all inverse temperatures

=20, all RP b.c. paA and all RS regions A 1if and only if § 1s CRN .

(2) Suppose an interaction § fulfills (3.9) and has the property that
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supf||3(X)|| : diam X 2 r} * 0 , (3.17)

as r * o ; (this condition is fulfilled if § obeys any reasonable condition

of thermodynamic stability) ! Then § 1is CRN if and only if § 1is RN .
(3) If $ 1is RN and JA some RS bounded set then

z 3(X)
XnA # 0

is a weak limit of functions of the form

Sy G£ 8 Gi? ’
k
A Ay
where Gk € C(k'*) , for all k . An analogous statement holds for RP b.c. P3p
Remarks :

(1) The class of (C)RN interactions & forms a convex cone. An analogous
statement holds for RP b.c.. By (3.13), the convex cone of RP b.c. 1is multipli-
cative. Furthermore, note that RP 1s stable under taking the thermodynamic

limit A tzV through a sequence of RS regions J , with RP b.c, P3A

These facts and Theorem 3.5 represent a rather complete, mathematical

characterization of RP Gibbs states in the classical case; see also Corollary 3.6.

(2) Generally, CRN interactions and periodic b.c. lead to RP Gibbs states;
(see also Proposition 3.4). If § obeys (3.17) and the periodic Gibbs states

are RP , for all bounded hyper cubes p) , then § must be RN .

Clearly, periodic b.c. 1lead to translation invariance, so that A 1is
RS with respect to many different pairs of hyperplanes, and - if
3(X+a) = Ta(Q(X)) (translation invariance) - the Gibbs state is translation

invariant, For these reasons translation invariant §'s and periodic b.c. play
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an (annoyingly)important role in our theory.

Proof of Theorem 3.5 .:

(1) First we choose =1 . This b.c. 1is clearly RP . In this case, the

O3
Gibbs state < - > (g§,1) 1is RP 1if and only if

RB§ = expr- 3 B@(X)]
A XA
xnr;% @

has the property

tr(FQF Riﬁ) 20,

for all F ¢ C(KA+) . This follows easily from (3.14) and the definition of the
Gibbs state, If Rii(x+,x_) denotes the integral kernel of Riﬁ the above
inequality takes the form

\Jﬂ m dp(xj)dp(yj) F(x+) F(y+) Rié(x+,e*y+) >0 (3.18)
jer,

for all F ¢ C(KA+)

Assuming that (3.18) holds for arbitrary RS regions p and all g =0
and using a straight forward extension of Schoenberg's theorem

(Theorem XIII.52) we conclude that & must be CRN , i.e.

)X tr(FeF 3(X)) €0,
Xnr, 0

A
for all F € C(K+) with tr(F) = 0 and arbitrary, bounded ACET, . (Here

we have used (3.9) to include regions X ¢ A 1in the summation., We recall that
gb, .
Schoenberg's theorem says that a matrix (bij) has the property that (e 1J)

is positive definite for all g >0 1if and only if 3 7z, 2z 0 for all

b, g
i o]
z's with $z, =0 ). This proves one direction of Theorem 3.5, (1). Conversely
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A
suppose now that § 1is CRN . Then b3 tr(FQF §(X))€ 0 , for all F ¢ C(K¥)
. Xnr, # ¢

with tr(F) = 0 , for any RS region J . Now fix some RS , bounded A . By (3.9),

it follows that

PN tr(FoF 3(X)) = T tr (FoF §(X)) <0 ,
XA, # XnA, # @ A
X CA

A
for all F ¢ c(K' ) with trﬁ(F) =0 . If we write this out as an integral and
use Schoenberg's theorem in the other direction we immediately conclude that

Bd
RA (x+,e*y+) is a positive definite kernel,

Next, if PyA is RP then the kernel of Pyp paA(x+,9*y+) is positive
1 gd® :
definite, By Schur's theorem, RA (x+,e*y+) DaA(x+,Q*EL) is positive definite,
so that

3
‘S'jgﬂ dp(xj)dp(yj) F(x+) Fty+5 Rﬁ (x+,B*y+)paA(x+. *Y+)
+

- 214 >
trA(FBF Ry pah) 20,

for all F € C(KA+) .

-gH -uP?
Since, by condition (3.14), e N=e Ao s obviously of the form

Gﬁe G"\Rﬁ‘§ , with GA € C(KA+) , Theorem 3.5, (1) is now proven,

(2) 1t is trivial that if § 1is RN then & 1is CRN . Therefore we must only
show that 1f § 1is CRN and satisfies (3.9) and (3.17) then § is RN . For
this purpose, let F ¢ c(x’) , for an arbitrary, but hence forth fixed Y c T, -

We define

G=F - Ta(F) :

where a 1s a translation such that Y+a c:r; , 1.e. G ¢ C(KYUY+a) with

YUY+tacT, . Clearly tr(G) = tr(F) - tr(Ta(F)) = tr(F) - tr(F) = 0 . Hence 1if
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& 1s CRN then

Z tr(Gec 8(X)) S0, i.e.

an; #0
z tr(FgF (X)) - X tr(FSTa(F)Q(Xl))
xnr; #0 xlnr} #0
-3 tr(Ta(F)BF a(xz)) + 3 tr(Ta(F)BTa(F)Q(X3)) <0 .
xznr; #0@ X,NT, #0

By condition (3.9), the only non-vanishing terms in the last three sums
on the 1.s. of this inequality fulfill the conditions
X cYu r(Y+a), X, cY+a U ry and x3c:(Y+a) U r(Y+a) . Moreover

J
sums thend to 0O as a tends to e« 1in a direction for which T; + a CZT; s

X;. NT, #0 , j=1,2,3 . Applying now condition (3.17) we see that these three

for all a of this direction. Thus

T tr(FOF §(X)) £0 ,
xnr& 70
for all F ¢ C(KY) . Since Y 1is an arbitrary, bounded set in T, » this proves
Theorem 3.5, (2).
2 _ .2, A
(3) Let P be an orthogonal projection on L, =L (k™, m dp(x,)) . Then the

‘ ) |
JjeA
distribution kernel of P, P(x+, y+) , 1s a weak limit of fuﬁctions of the form

2
E ?k(x+) ?k(y+5, where vy, €L, , for all k.

This observation combined with the spectral theorem for negative, (resp. positive)
bounded operators and the relation Yk(e*y_s = (ewk)(y ) clearly proves Theorem

S0 SRR Ty A

As an application of this general theory we consider a classical spin

system with many body interactions. The classical spin at site 1 1s denoted oy »
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and g, = [ o, . The expectation tr 1is chosen such that tr(g. ) = 0 and
X 1ex i X
tr(gi) > 0 , for all non-empty X . The interaction & is given by
$: X -Jo, (3.19)

XX

where J = [Jx] is a family of real numbers indexed by the bounded subsets

of zZY . The interaction ¢ 1s translation invariant if J = J

X+a X ? for all

a ezY , and reflection covariant, see (3,14), if J_ = J

X X ° for all X c r+ .

Example : 1Ising model with multi-spin interactionms.

Definition : We say that J 1is RP 1if and only if

)X Eﬁ 2y JeUpy 20 5 (3.20)

X,Ycﬂ+

for arbitrary, finite sequences of complex numbers,

{lexcr;

Corollary 3.,6.

(1) Let § be given by (3.19). Then & is CRN if and only if J is RP .

(2) The family of all RP J's forms a convex, multiplicative cone.

Proof :

(1) 1t is not hard to see that if J 1is RP then § , given by (3.19), is
RN , thus CRN . Conversely, if § 1s CRN then, for an arbitrary function F

of [C,JJjEF+ with tr(F) =0

) » J tr(Fg,) tr(Fg,) >0 (3.21)
X,YeT, XUrY X Y

Now choose F =} ;i Oy » where Z_ = z tr(gi)-l , and {z is a finite

X X

sequence of complex numbers. Then

}
X XeT,



- 31 -

tr(F) = ¥ z.

X tr(ox) =0, and

tr(ng) = ”Y tr(ngx)

I
=M™
N

(3.22)

~ 2
§ z, tr(cYnx} tr(UYﬁX)
~ 2
= zy tr(UX) =zy,
so

T g tr(Fck) tr(FgY) = b

X, YeT,, XuryY X,YC T,

2% %y Jxiry °

and, by (3.21) and (3.22), this is non-negative. Since {zx} is arbitrary, it

follows that J 1s RP .
(2) Cconvexity is obvious. Given J and J' , both RP , we define J" by

"1, 1Y
Jx Jx Jx , for all X .

By Schur's theorem J% is then also RP .

Remark : There are plenty of RP J's with the property that Iy # 0 , for sub-
sets X containing an arbitrarly large number of sites. (As an exercise we
recommend that the reader construct some explicit examples of this type). As a
largely open problem we propose to investigate the detailed geometric properties

of the cone of RN interaction within one of the standard Banach spaces of inter-

actions, [39].

Theorem 3.5 and Corollary 3.6 provide a rather satisfactory, general
theory of RP Gibbs states for classical systems. See also [:j. In the quantum

case no complete characterization of RP Gibbs states is available, yet.
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The reader can check that Theorem 3.5/Corollary 3.6 includes

results in Proposition 3.3 and its consequences via Theorem 2.1 as a

special case. In particular, the following should be noted. In propo-

sition 3.3, we assumed that H has the form (3.2). This form was

chosen so that the Gibbs state <'>BH is RP for all B. If, instead,

one starts with the apparently weaker

requirement that <->B is

RP for all B, then Theorem 3.5, (3) tells us that

H has to be of the form
(3.2).

Example Consider a two-dimensional Ising model with 2,3, and 4 body

interactions. Let X =094 0) “(0,1) °(1,1) °(1,0)* ¥ =%(0,0) ° (1,0
°kkl,l) + U(O’l)], Z= U(O,O)U(Ll). Let -H = E

T [JX + KY + LZ] where
a€eh a

J,K,L are numbers and T_ represents translation by a unit. H will be
RN with reflection about the plane i, =1/2 if k? = JL and J,L>0, To

see this, note that in this case ~H has the form B + OB + ECiQCi, where
= g Bo - 2}{ 82
C uo(l,o) a,1) + a,0) [and hence OC a“X 4+ aBY 4 B°Z), and the

sum on i is over translations in the plane i, = 1 i
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4. Chessboard Estimates and Infrared Domination

In this section, we review, systematize and extend the basic
methods of [|:Q|,|Z|,] which are based on the use of RP about a large
number of planes. For this reason, we will have to work with periodic
boundary conditions or directly in infinite volume. We begin by de-
scribing '"chessboard estimates', then mention the way these can be used
in connection with a Peierls argument, and finally discuss the method

of infrared bounds.

Theorem 4.1 (Abstract Chessboard Estimates [9]) Let ot be a real vector

space, let rano > ot be a real linear map with r? = 1 and let F(al,...,azn)

be a complex-valued multilinear map obeying:

F(al,...,aZn) = F(az,...,azn,al) (4.1)
and
|F(a1,...,an,bn,...,b1)12
< F(a],...,an,ran,...,ral)F(bl,...,bn,rbn,.,.,rbl) (4.2)
Then ||a|| = |F(a,ra,a,...,ra)|l/2n is a semi-norm and
2n
[F(al""’azn)! §_¥=l|]aill (4.3)

Remarks 1. 1In the example of 2n spins on a line, one should think of

Capln.acs, N
o as functions of avsingle site, and F(al,...,a )y =< (o

a )>;
2n {=-n+1 i+n

i
r(a) = a (or @ if we take complex valued functions) so that (4.1) is true

if periodic boundary conditions are used and (4.2) is an expression of RP.
2. The statement and proof are patterned on [9]. For a discussion of its
field theory forebears see [43]. For applications to Hélder's inequality

for matrices, see [6].

3. It is a worthwhile exercise to prove this directly for the case

2n = 4, see [@,E3]).
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4. By (4.2) the F(al,...,an,ran,...ral) are either all >0 or all <0. We

can suppose the former without loss.

Proof: We first prove (4.3) and then it follows that ]

| is a semi-norm,
since (4.3) implies the triangle inequality. Let ayseeesd, be given and

suppose that ||ai|| # 0 for all i. Let bl""’b be any 2n elements

2n

each of which is either an a_ or an r(ai). Let
1

B 2n
ls-o-,b ) = F(bl’.'.,bZ'ﬂ),izl!lbill

and let 8, = max|g(bi)] as the bi run through the (Zm.)2n possibilities,
Among all choices with |g(bi)| =8, pick one with the longest string of

the form ai,r(ai),ai,...,r(ai) for bl""’bzg' Since (4.1) implies that
]|r(ai)|| = I|ai]|, (4.2) shows that g obeys the same Schwarz inequality

as F. Thus, if |g(b1,...,b

= we ave that
2n)| 8, must h a

]g(bl,...,bn,rbn,...,rb1)| =8, If 22 is not 2n in the above choice,

let b;,...,b'

be a cyclic permutation of b ,...,b with
2n 1 2n

1 L) 1 = -
ay ,r(ai),...,ai,r(ai) occuring as bn—j""’bn where j = n-1 if
22 > n and otherwise j = 22~1. But then bl""’bn’rbn"'°’rb1 has a
string of the form ai,r(ai),... of length 2j+2. It follows that

g

0 = |g(ai,r(ai),...,r(ai))| for some a. But such a g 1is always 1

so g < 1. This implies (4.3) if each ||ai|| # 0.

If some [laifl = 0, we claim that F(ai) = 0. For, if not, let
bl""’bzn be a sequence with some bj = a, so that the longest string
ai,r(ai),...,r(ai) occurs consistent with F(bj) # 0. As above bl""’bzn

must be ai,r(ai),...,r(ai) so there is a contradiction. .
Typical of the explicit versions of Thm 4.1 are the following:
Theorem 4.2 Let A be a rectangular subset of Z° with sides

2nl><---><2n\J (nl""’nv positive integers). Let <+> be an expectation



s
value for a classical spin system which is invariant under translations

mod ny (periodic boundary conditions) and which is RP with respect to
(untwisted) reflections (mod ni) in all planes perpendicular to coor-
dinate axes running mid-way between neighboring points of A. Then for

any functions {Ga}a_e,'\. :

1/]A]|

|<-|TG(0)>I5 T<wmG (0 ))>
N

(4.4)
a€N BEA @

Proof Let ot be the functions of spins {Gu}aeﬂ; a,=1

and let
F(al,._..,a2n ) = <j£1aj({ca u1=j)>
1
Using the assumed RP and Theorem 4.1 , and setting aj= m
Uza-- 30'\)
G we obtain < T, G
Y L | aFh n(”cs)>1
A\
2n 2n
s ml< mh ™ (ele (ck )>1/2n1
j=l k=1 az,-."av J,uz,--.,uu ,az,..-,av

Repeating the argument in the other v-1 directions, (4.4) results. l

Now let j be an element of the dual lattice, K, to A, i.e.

j 1is the center of a unit cube, A contained in A. Let F be a

k|
function of the spins in A. We say that F € Ej if and only if F is
only a function of spins at the cornersof aj. Given such an F we set
. 1/|A|
F) = < F >
ALt ien (1)

where F(i) is F for i =3j and for nearest neighbor cubes A and

Ai" F(i) = eii'[F(i)] with eii' untwisteé reflection in the plane
separating ﬁi and ﬂi" Thus, if i-j has all even components, then

F(i) is a translate of F and if i-j has v, odd components F is



T

a translate of F reflected in s orthogonal planes. The proof of
Theorem 4.2 extends to:

Theorem 4.3 If A is the set in Theorem 4.2, <+> is translation
invariant and RP with respect to planes perpendicular to the coor-
dinate axes but through the sites then

< ﬂyFi> < wvy(F,)
i€l jep

for F, &€ I, .
i i
There are clearly quantum variants and variants with various
oblique planes . Except for some discussion of the face
centered cubic lattice at the close of this section we do not make

these explicit. Reflections at oblique planes have also been used in a1, 7).

* * *

To explain schematically the Peierls-chessboard method, con-
(the configuration space ’
sider a classical spin system and break GBY K into pieces KIU---UKm

(For example, if K 1s finite, each Kj could be a single point. For
the anisotropic classical Heisenberg model, K = unit sphere , and K,
and K, are the two "polar caps" of the sphere,and K, is the temp-

erate and tropical regions.). Let PéJ) be the function which is 1

(resp. 0) if o, is in Kj (resp. not in Kj)’ Let

<y, = <Ae"BHﬂ>o;<e'BHﬁ>o where B > 0 and H, is the Hamiltonian

for the lattice A. Let <= be some weak-% limit point of ¢->B A

78,
as A > 2 . As we will describe, the Peierls-chessboard method typ-

1),34)
PY >B

ically allows one to show that for 1 # j, <Pa + 0 as

B + » wuniformly in A,a,y. Suppose that we also know that for

i=1,2, lim <P(i)>8 » > 0. Then for large B8,
B-&uu ’
W2, _ LM, L@ _
(Pa PY )B,“ Pa -B'mﬂ’Y >B,m cannot go to zero in the average,
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which would be required if <'>B » were ergodic, so there are two or

<P(2)>B mP(l) - <P(l)>B mP(z) will be a long range
3 »

order parameter. Actually one can say more; namely if lim <Péi)>e -
B ’

more phases, and
>0
for i=1,...,k there will be,for B large,at least k phases; for,if

< >, were a convex combination of k-1 or fewer ergodic states, then

-2 1)p @)
= lim |A I <PP_ 77>
3y = jim Il ager @ B =

would exist and would be a matrix of rank atmost k-1 with ?a = <P(i)>.

ij

Under the given supposition it has rank at least k for B large. See
atso [B,8]. (1), 3)
How does one show that <Pal PYJ > 1is small for j # i? Let

I be a contour in the elementary Peierls argument (see e.g. [B9,Ld])
sense. Let pi(P) = probability that each spin immediately inside T
is in Ki and each spin outside T' 1is not in K,. Suppose that

i
-c@B)|r|

pi(r) < e with C + » as B =+ =, Then, by the usual argument

for cubes A:

W), Ioop M+ T p(M)+ I p(D)
a Y I around o I around B * I' wrapped *
around |A|

® (|P|+1)NedIP[E—C(B)|F|
|=2v

I~

|r

for suitable d and N independent of B (but dependent on v). Thus

to show that 4P§i)P$J)> is small uniformly in a,y and A as B+,

we only need to show that

P LUg),
o

< - 3 e-Co(B)lrl (4.5)

o inside T % o outside T

for any choice of the ja's (all distinct from i), for then

@-1y /Tl Co® ] - -c@®]r]
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Finally (4.5) is proven by using chessboard estimates, either directly
in the form of Theorgﬁ*gg)an extended form of Theorem 4.2 which ex-
ploits a two site basic element. The net result is that the left side
of (4.5) is dominated by the product of |A| terms (or in the two site
picture of IA|/2 terms) most of which are 1. But O(IF[) of them are
of the form f = < 7 P(k“)>lilnl

a€N &
to be worked out in each case. Typically £ can be easily estimated

where a+kOl is a function that has

to be small by energetic considerations. See [[4,0],[F,09d Jand paper II
for explicit examples.
Of course, that leaves the questions of showing that
éig <Péi)>n=m > 0 for several 1i's. We discuss this in detail in
paper II, but note that this often follows from symmetry, .or by applying
the chessboard estimate to obtain an upper bound on < 3 P(k)> _  which is

small. See also [[,[E,[9].

Thus far, Peierls-type arguments have not been applicable in
cases where a phase transition is accompanied by a spontaneously
broken continuous symmetry. The only tool available is that invented
in [I0): 4in the notation of example (1) of §3, let ¢ be a function
on K, and let S, be the function o on the ath copy of K. For
A a cube, let p be in ﬁ*, the Fourier dual for A (= 18t Brillouin

zone; = dual group to A viewed as a torus) and define

g (p) = <00 _2>g .
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Suppose that one can prove that for p # O:

gA(P) < 1lstp (4.6)

for Ep a function satisfying

-V =1

(27) | E_ d’p = C,6 <= (4.7)

|p;| <m

i=1,...,v
and that for B 2 Bo

2c

<g<> 2 D> 0 . (4.8)
a

Then (following the version of the argument in [4]) for B > max(BO.Bl)

where Bl = CO/ZD, we will have (assuming some regularity on Ep)

Lim [|A]7Yg, (=0)] > © (4.9)
since
-1 -1 =1
A (p=0) = |A z - |A L g, (
|A]™"g, (p=0) 7] pen*gh(p) |4 ] Loa®
c -
2 <c§>A - |A] 1 1/28€ (4.10)

p#0 P
where the first sum is controlled by a Plancherel formula, and the

second by (4.6). With minimal regularity assumptions on E,

1im(4.10) = <o2¥ - (23)"10
N ) o

so (4.9) holds. By an argument of Griffiths (see e.g. [4]), (4.9)
implies a first order phase transition with ca as order parameter.

In certain quantum cases (where uéﬂca and H do not commute)
and, as we shall see below, for some other than simple, cubic lattices

1 g
[face centered cubic lattices, it is necessary or more convenient

to rely not on (4.9) but rather on a direct infinite volume
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argument which is explained in detail in r5,6,4].

We note that sometimes (4.8) follows by a symmetry argument
(e.g. in the classical Heisenberg model) but that in general one can
try to use a chessboard argument to show, e.g. that

Prob(ci < 2D) < 1/2 for B 2 B,

The only known way of proving (4.6) is via a "Gaussian

domination"” or related estimate: Let K be a compact subset of RN

(1) (™)

and let dp be a measure on K. Let o e elas 0 be the coordinate

functions on K. Suppose that H has the form

H =

|-

tJ (o -0 )2 (each pair counted once)
afy 9 &Y

and define for {haY}OﬁeY real,

2

) 1>

B 1 -
Z(hay) = <exp| ZBQQYJGY(UG GY hGY o

where <+>, = f-ndp(ca) as usual. We claim that the two conditions:

4] =J =J and
Z(hq ) < Z2(0) (Gaussian domination) (4.11)
v

imply (4.6) with

E = 13 (1-eP"%;

: Boch @0 (4.12)

Before proving this, we note that one point of the definition (3.5) is

that it makes Ep independent of A for peh¥.

Since the argument to go from (4.11) to (4.6) is only a mild

extension of that in , we only sketch the details. By translation
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invariance, 0 so that (4.11) implies that

d2
nZ z(lhay)1=0 < 0. This is equivalent to:

d _
& 201,01, -

1 g2 . 2 1 2
5 B <|a§TJaY(ou-Uy) haY| > < 3 Bagylh“Yl Iy - (4.13)

(4.13) only holds apriori for real hOLY but it extends to complex h.
Now take haY = (eip°a -e ip.Y)]A|-1/2 and find that (4.13) implies
(4.8) with Ep given by (4.12). We summarize:

Theorem 4.4 The Gaussian domination bound z(huy) < Z(0) together

with J =17 =7 implies the infrared bound
ay a-y,0 Y-a,0
-1 1 ip*a
< (2BE with E =5 I (l-e T
gy (P) < (28E) o T2, X
* * *

We next turn to a detailed investigation of (4.11).

Proposition 4.5 Suppose that JaY > 0. Then it suffices to check

(4,11) for h of the form h -h .
oy a Y

Proof Since JaY >0, Z-+ 0 as any huy + o and thus Z takes its

maximum at some finite point. But BZImaY = 0 dimplies that

J - < - =
OLY(hOtY 9, cY>) 0

for the obvious expectation. Thus, letting ha = <0a>, we see that

h_ =h -h for those ay with J _ # 0. Z is independent of the
oy a Y oy

other h so we can take h =h -h for such (ay) without
ay ay oy

changing Z; i.e. Z takes its maximum value at a point
%Y=%—%.I
Remark The proof of Theorem 4.4 only used (4.11) for the special case

hclY = ha -hY so that Prop 4.5 is,at this stage, primarily of academic
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interest. Indeed, there are JaY not all non-negative so that (4.11)
holds for hOw of the form hm—-hY, and thus (4.6) holds, even though
for such J's, Z + = for a suitable choice of haY not of the form
h -h .

a Y

It is an important and interesting open question to char-

acterize the ferromagnetic interactions for which the spin 1/2 Ising
model obeys Gaussian domination. We only have partial results on this

gzsi:}ggmgg_zsflEEEEQH positivity, )
questionY We begin with some examples which delimit the class and, in

particular, demonstrate the falseness of the apriori attractive con-
jecture that Gaussian domination holds for all ferromagnets:

Example 1 Consider two spins, one,ol,with values *1 and the other,
o, with values *2, all values having equal apriori weight. Then
4e“J(q2—01_h)2> has its maximum near h = *1 as J » «. This shows
that equality of the single spin distributions is essential for

Gaussian domination in general (but see examples 5,6).

Example 2 Let o, = =t 8 0, = +1, then

[e—Jh2 e—J(Z—h)z

Z(h) =

N =

+

]

has its maximum near h =1 as J -+ 0. The given distribution for
o, can be thought of as that of an Ising spin in an intense positive
magnetic field. The failure of RP in this case shows that even
equality of the magnetic fields at each point is also essential for

Gaussian domination.

Example 3: (Mean field model) This is the most involved but also the

most significant of the examples we present. Z(h) < Z(0) implies that

M = - 321nZ is positive semi~definite. For a spin 1/2 model
ay BhQBhB hy =0
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with

L tJ (6 =-o )2

H =
ZY#G ay o Y

a simple calculation shows that (set Jcm = 0)

May GuY(EJuG) - JuY'-gkau6J71<(ca'-UG)(UY'-UK)>

Take n+l spins, Ops+++»0  with only Jo1 # 0, all equal

to a . Then
n

= -— 2 2 2.. - 2
MOO no un[n +n+(n n)<Uicj> 2n <coci>]
§ 1 2 + d th
= = - —_ <> o
Take e 1/\ln, so that H % /ﬁli oy const and thus ,as n 5

a coupling of a Gaussian and a spin 1/2 spin. Thus as n »>

1 1 n
<040,> ./Emofr‘f iilci‘» c/\ln

Lol B2, g0
<0404 == [<(/‘ﬁ Eo'i) >=1] ~ d/n

for finite non-zero, ¢ and d. Thus

MOO = -n-1+4+2c/n

is negative for n large and therefore MaY is not positive definite
for n large.

Our next example, while a trivial extension of RP ideas
illustrates that Gaussian domination can hold in some cases where
RP fails:
Example 4 Let <.> be an expectation for a string of 6n spins with
third neighbor ferromagnetic coupling. Then RP fails both for

reflections about the midpoint of bonds and for reflections on sites.
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Since Z(h) 1is a product of three nearest neighbor 2n-point 2's,
Gaussian domination for that case yields it for the case at hand.
Our final three examples show that special features of the
J's and/or the single spin distributions can allow one to prove
Gaussian domination without RP and/or translation invariance. We
hasten top add that phase transitions will not occur in examples 5, 6

and 7.

2
Example 5 Suppose that H = EJaB(ca-cB) with JaB arbitrary

positive numbers and that each single spin measures dpa(ua) equals

Fadca with Fﬁ log concave and even, but not necessarily o inde-

ehH(U“—-h“)‘nFu
o

pendent. Since is a log concave function of {cu,ha},

Z(hu) is log concave in ha by a general theorem (see e.g. [1]).

Since azfaha 0, all ha = 0, by symmetry, log concavity implies
that z(ha) < Z2(0).

- 2 -
Example 6 Suppose that H = JaB(Ua-—UB) with JaB arbitrary pos
itive numbers and that each single spin measure dpa(ca) equals Fudca

with Fﬁ positive definite and real (hence even), but not necessarily

o independent. Then

z(h) = [eHC~ha) v (J Mo gy (k )) do]

ik o _
Iﬂ dp(ka)eikuha I g(dﬁﬁe o Qye H(Gg)
a

is positive definite in the h's since the Fourier transform of a
Gaussian 1s a Gaussian. In particular, Z(ha) takes its maximum value
at ha = 0 (In essence, the above calculation is proving that the
convolution of positive definite functions is positive definite).

Example 7 Consider an array of n spin 1/2 Ising spins, s s_on

10008,
a line with arbitrary positive, nearest neighbor couplings,
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J Let T(J,h) be the two by two matrix

J12,J23. ey nlo

eH%th e-%J(Z-h)z

o83 (2+h)2 ~aJh?

i.e. if we label matrices as a4+ :+‘) , then
-t B

T(J,h)0102 = exp(-w%J(cl_-Uz —h)z). We want to note two critical

facts about these matrices: first T(J,0) is positive definite and

T(J,O)-l/2 T(.],h)']T(J,O)-—]'/2 is a contraction in the norm

/2

1
|| (@,8)|| = (a2+82) '“ -this is proven in [I0]. Secondly, the T(J,0)

all commute, are positive definite and when diagonalized simultaneously
by
their largest eigenvalues correspond to a common eigenvector - this follows ¢
1 -1

value for the first eigenvector is always largest. Since

noting that 7—1:}- (1) and ‘/—]i-(l) are the eigenvectors,and the eigen-

Z(hys...5h ) = Tr(T(J by =hy) ... T(J ;5h = h )) we can write
Z (hl lelele hn) = Tr (AlBl... Aan)
where A, = T(J 0)1/2 T (J 0)1/2 (where J.. = J )
i i-1,1i’ i,i+1° 01 = "nl

and Bi is a contraction,by the first fact noted above. Let
ul(C),...,um(C) be the singular values of an mx m matrix (eigenvalues
of (C"“C)lf2 ordered so that Hp 2 My 2 == 2 0). An inequality of

Horn (see Cor II.4.1 of [15]) asserts that
m | m
iilui(cl - Ck) < iglui(Cl).;.ui(Ck)

Thus, we have that

Z(h

A
e
=
~~
>
o
o

19‘t'shn)

1Y

2
E ui(Al)ui(Az)...ui(An)

2
iil].li(A]... Al‘l) = 4’.’.(0, s ,0) ’



N

where we use the fact that u (Bi) < 1, since B, is a contraction, in

) i

the second inequality,and use the second noted fact in the
equality that follows.
To illustrate the close connection between chessboard es~
timates and Gaussian domination, we note:
Theorem 4.6 Let A be a anx...x2nv rectangle in z’. Let JOlY

be given on A so that the chessboard estimate (Thm 4.1) holds for

<o> = Z"l I'e"H(ca) m dp(o.) for all dp 1in BH and
) o

1 2
H = = J (0 -0
ZGiraY(a Y)

Then the Gaussian domination estimate Z(ha) < Z(0) holds for ar-
bitrary dp and, in particular, gﬁ(p) < (ZBEp)—l.

Proof By a limiting argument, we can suppose that dp(c) = F(U)dNU
with F > 0 on all of BF. Then, if we define Ga(c) = F(U+-ha)/F(U)

we have that

Ie—H(UU- - ha)

Z(.hu) Edp (ca)

Je—H(UG) & dp (0u+ hu)

Z(0) <gGagca)>

1/ ||

"

2(0)3 < gGa (08)>

1/|A]

~H(o,,) =
T [fe Y %(rdp(oY+ hu)] = 2(0)

where the inequality is a chessboard estimate and the last equality

comes from H(ca-h) = H(Ua) for constant h. I

Remark : ysing the Dobrushin-Lanford-Ruelle equations one can prove Theorem 4.6 directly

in infinite volume for RP Gibbs states,

The above argument has a defect:it does not obviously extend to the

quantum case,



N .

Fortunately, one can use a version of the original argument given
in , based on Theorem 2.3 : Namely, in the case of 2n spins,
Theorem 2.3 says that

| Z(h .»h )|

-n+l’"’ n

< Z(h SN s Y] 1 A . eeyh b ,000,h )

)z(hn’hn_ 1! lt ’ n

-n+l’"’ 0’0’ -1’ -n+1 1’

so that translation invariance and the argument in Theorem 4.1 show
that max|z(hi)| occurs when all h's are equal. Since
Z(h,...,h) = Z(0) ,the maximum is Z(0). As of now, this is the most
widely applicable proof of Gaussian domination we know of.

We remind the reader that in the quantum case there is one
additional complication in that Gaussian domination does not lead to

a bound on <& 6_p> but rather on a 'Duhamel two point function'",

(op,e_p). This problem and its resolution are discussed in [4], for

the case of nearest neighbor interactions. The present generalization is

straight forward.
The argument based on Theorem 2.3 has an additional advantage,

4"
even in the classical case. Suppose that l{=-% £J (o0 -0 )2 + H'
afy 4Y @y
where <o>H, is RP and J obeys (3.3). 1If

Z(h ) = <exp-(% £J (0 -0 -h +h )2 + H')> then, as above, Theorem
a a Y o Y o

Y
2.3 implies that Z(ha) < Z(O), and infrared bounds follow. We
summarize with
Theorem 4.7 Let H have the form of Thm 4.6 with J RP. Let
0 = 1 ! - . 1
H H+H' with H' RN. Let Z(ha) <exp(H(aa hu) + H )>°.
Then Z(ha) < Z(0) and gﬁ(P) < (ZE'»EP)_'1 with Ep depending
on J , as in Theorem 4.4.
ay
Finally, we want to mention a problem ( and its resolution)
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that occurs for certain special models like gﬁ%ﬁ%zziﬂientered cubic
lattices. The infinite volume lattice is reflection invariant about
any plane which is the perpendicular bisector of a bond, but any
finite volume cut off will destroy many of these symmetries. The
resolution is the following: Let <+*> denote an infinite volume

expectation and, given, {ha}aeﬁu with only finitely many non-zero

h's, let
o

1 2

ghy) = <exp(G 33 [, -0)% - (o -0 -h +h)7)>

If we can show that |g(ha)| <1 for all ha, then by following the
arguments in [1I0] one will get infinite volume infrared bounds and
therefore long range order. To prove that |g(ha)| < 1, one need
only show that <+> has a kind of RP about each"bond'plane, i.e.

that

lg(ha)l2 < g(h))g, (hy) (4.14)

where hj (resp hy) 1is obtained by taking h, ~on the left (resp.
right) side of the plane and reflecting in the plane. Given (4.14)

it is not hard to redwe the proof of !g(hu)| < 1 to showing that

|lf|A|

lg(ha) + 1 for a set of h&s constant at h, on a nice set

0
clan|
A. But it is easy to see that [g(ha)| <e for such h's.

(Instead one can use Theorem 4.6 in infinite volume; see e.g. [:j).
We can see two ways of proving (4.14). 1In cases where
correlation inequalities are available, one can prove (4.14) for a
given plane by taking a suitable sequence of "+ boundary condition
states'"where the given plane euts A exactly in half. Since the
the

limit is independent ofYsequence, (4.14) holds for the + boundary
condition state. When correlation inequalities are not available,
one can at least prove there are multiple phases; for, if not, then
all periodic states converge to a unique state which would then obey

(4.14). 1If <« qi >B has a lower bound that is uniform in g one would
y®
'

obtain long range order : a contradiction :
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5. Long Range Models

In [3], Dyson showed that a spin 1/2 Ising model with
Jm = (1 +|n|)—a has a phase transition if 1l<a<2 (a>1 is
needed for sensible thermodynamics), and did not if 2<a. His
method works for any classical model with correlation inequalities
such as the plane rotor model [13]. Using similar ideas, Kunz and
Pfister [26] treated the two dimensional plane rotor model with
J(n) = (l-F|n|)—i proving a phase transition if 2<a<A4,

In this section, we illustrate the general methods of this
paper by recovering these results (many more examples are presented
in [7,8]) and extending them in several directions: (a) cases where
correlation inequalities are unknownsuch as the classical Heisenberg
model can be accomodated; (b) logarithmic improvements in Dysons's
conditions are given; (c) certain quantum models are accommodated.

We give details in the one dimensional classical case and
then treat two dimensions and quantum models in a few remarks. When
correlation inequalities of Griffiths type are available, improvements
of our results of the following sort are possible: If a phase trans-
ition is known for an RP J, which is also positive, it holds for

0

any larger J even if the larger J is not RP. We suppose in all

cases that £|J(n)| < .

We begin our analysis with:
Theorem 5.1 Let K be a compact subset of BF and let dp be a
measure different from §&(c), invariant under o - -o . Let

-8H = B % J(i-j)o,*o, and let E_ = ¢t J(n)(l-cos pn). If O < J(n) and
i>j i3 P n=1 =

J 1is RP, and if g Idp/Ep< o, then there is a first order
phase transition with o as order parameter,at some

sufficiently large, finite g .
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Theorem 5.2 Let J(i-j) be RP. Then the classical isotropic
Heisenberg model has a first order phase transition for B 1large if
and only if g = _fdp/Ep < o,

Proofs The absence of a first order phase transition (asserted in
Thm. 5.2) if g = o follows from a slight extension of an argument
of Mermin [29], so we concentrate on the existence question. Since

g < », this follows'according to the strategy of §4 ,if we show that

<8_6_ > < 1/28E_ and lim <|o|% > 0. J being RP
P -p periodic P B> 8>
implies that <-> TR is RP by Thms. 2.1 and 3.4. The method
periodic

of §4 then yields the infrared bounds. In the case of Thm. 5.2,

<[o[2>m = 1 while in the case of Thm. 5.1, choose ry > 0 so that

J]d|>r dp > 0 and use a chessboard estimate to see that
0

<(lo| < r0)>B’;*0,as B > . The right side of this chessboard
estimate is controlled by noting that RP dimplies that the ground
state with the restriction ]Gal < T, has all spins equal,
and then by noting that the energy when all o, = ¥ is strictly

-
monotone increasing in [r|,since J(n) 20 . I

These theorems reduce the study of the long range one
dimensional case to the study of two questions: (1) When is J RP?
(2) When is IEgldp < o, In studying the first question the
following is useful:

Definition A distribution F on B?\go} is called 0S positive
(for Osterwalder-Schrader [30]) if and only if F is continuous

and

v
o

[F(x-y) g(x) g(y) dx dy (5.1)

for all ge Cj (x;>0) where E&(y;,...,y ) = 8T=¥ V55 -r0s7)
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Theorem 5.3 (a) If ' F is an 0S positive distribution on R’

then J, defined on {(nl,...,nv)|n1> 0} by

J(n) = F(nl,...,nu) sony >0,

is RP.

)
(b) If Jl and J2 are RP on {nf>0}cz , then so is JlJZ‘

(c) If J(n)=J;°°e‘“ydp(y), (n21), then J is RP on Z-

Proof (a) In (5.1), let g approach a sum of delta functions. This
shows at once that J 1is RP.

(b) Follows from the fact (Schur's theorem) that if aij

and bij are positive definite matrices, so is cij with
15~ 213Pi;

(c) A restatement of Prop. 3.2; it also follows from (a) and

c

well-known structure theorems for 0S positive distributions. I

Proposition 5.4 The following functions on Z are RP in the

region n 2z 1:
(a) J(m) =n" (b) J(n) = (1+n)™"
for all o > 0.
Proof (a) {:ﬂ e ™ ya-]' dy = I'(g,)n_a (use Thm. 5.3(c)).

(b) Jm e e-yya-l dy = P(a)(n-+l)“u (use Thm. 5.3(c)). I

0

As for the second question, we note:

Theorem 5.5 Let Ep = 7 J(n)(1-cos pn) with J(n) > 0. Then
n=1
1

(a) If T n-3.I(1:1)-l < ® , then Idp E = < o .
n=1 P

al

n
8

-1IN =
(b) If 1im sup (log N) l[E nJ(n% < «, then Jdp E
N + o 1 P
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Remarks 1. The condition in (a) is slightly weaker than the one that
Dyson needs for a phase transition. The condition in (b) is
slightly weaker than the one that Dyson needs to prove that there
is no phase transition in the Ising model; (b) will only imply the
absence of continuous symmetry breaking. This is as it must be if
the n"2 Ising model has a phase transition (as is believed), since
J(a) = n-z obeys the conditions of (b).

2. (b) includes the case J(n) = n-z. This case can be done
by explicit calculation of Ep ,(contained in the tables, e.g.
(516) of [24]) or by noting that Ep = £(0) - £(p) with
f(p) ==§n-2 cos pn obeying f"(p) = m8(p) - %— with periodic boundary
conditions at *m. One sees that E(p) ~ |p| in that case.

3. If J(n) ~ n % at infinity, we are in case (a) if a < 2
and in case (b) if o > 2. Actually with regard to (a) one cannot

for -2 1+¢

improve even logs,since, J(n) v n "(log n) ...(1ogmn) , then
Ep N [p](log P) -.-(1ogmp)1+a. For (b), improvements are presumably
possible: with little change (log N)-1 can be replaced by
[(log N)(logz)(N) ---logm(N)]_l which allows only
n_z(logzn) ...(1ogmn)1+€ .

|n|-1

4, If J(n) = [}il dp, then Ep = 3 J(n) (1 - cos pn)

increases when dp 1increases, "

This remark allows one to obtain results for J's which are
RP but not positive from those in this theorem.
Proof (a) We need a lower bound on Ep = ?J(n)(l-—cos np).

For |x| < 7w, (L-cos x) 2 :%{ xz so that

[n/]p]|]
E > }: ;2—2-p2n2J(n)

where [x] = greatest integer less than x. Thus we need only show



e S

that

By the Schwarz inequality

74
[m/ /
[n/p]z ) ( TrEP] l) c [[HEP] 2 J(n)] [[ﬂép] (n2 J(n))_l]

so that

= _o [m/p] - [/p] -
Mapp2tn/p) 2 1 23N < & Mpr @i
0 1 ™™ 0 1

since 1'12[n]-2 <* ([n]--l-l)z[n]_2 < 4 for n 2 1 and

m/p 21 for 0 < p < w. Finally we note that

]

'p“x (n“J(n)) T (n“Jm) dp = min J .
o /pl -1 @ , 2 -1 ¢n/n % 1 o
0 1 n=1 0 1

(b) We need an upper bound on Ep. Since (1-cos x) < |x|

we have that

N o
E < |p/ZnJ(n) + 2T J(n)
P I |1 N

for any N. To estimate the second term, let K(j) = %n J(n)

so that

M M M
%J(n) % L k() - K1) HEN[% K(n)- ¢ K(n-l)] + ;ﬁ K (n-1)

- —-K(M) ——E-K(N -1) + E K(n-1)

;
n-1)
Thus, if % K(M) > 0 as M > =, we have that

% J() = g n(n+1) K(n)
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If K(n) < C log n, we see that

Ep < C|p| log N + CN "1log N

Choosing N = []p['l], we see that Ep < C|p|Clog(|p|'1)), so that

By combining the previous results of this section we
conclude that
Theorem 5.6 If dp # §(p) is a measure on ‘EN symmetric under
0> -0 and J(n) = n—a, then there is a first order phase transition
for the one dimensional spin model when 1 < a < 2.
Remark If N =1 (or if dp 1is anisotropic in a suitable sense)
but dp 1is not even, there will be a phase transition in suitable
external magnetic field when 1 < o < 2; see or [7].

We describe the extensions in a series of remarks:
(A) In two dimensions, the functions pa-l have O0S positive
Fourier transforms for a > -1. This follows from

Jm dm mg _ Pa-l jw x%dx
o p2+m2 0 x2+1

and the fact that (p2+-m2)_1 has an O0S positive Fourier transform

(free Euclidean field [,])Since x-B (0 < B < 2) has a Fourier
transform cgP ", we see that I-.'1|_B is RP for 0< B < 2 by

Thm. 5.3(a). Then by Thm. 5.3(b), we conclude that ]n|-6 is RP

for all B > 0. Calculations similar to those above show that in
. -6 -1 -4
2 dimensions, _fdp/Ep < o if iO n J(n) < o3 and for J(n) = n ,
I
an explicit calculation involving periodic Green's functions for -A

2 -4

(and the fact that A(r ) ~ r @ at ») shows that Ep’bpzlog pi—O(pz)

at p =0, so fdp/Ep = » in that case. We thus obtain:
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Theorem 5.7 If dp # §(p) is a measure on BH symmetric under

g+ -0, and J(n) = n-a, then there is a first order phase transiti

for 2 < a < 4, 1in the two-dimensional spin model.

This result is of interest only in isotropic cases.
(B) It is easy to prove first order phase transitions in suitable
quantum systems which are simultaneously real by using the method
of [4]. 1In order for that method to be applicable one must check
an algebraic condition; in particular some double commutator should
not be large.’
[There are two cases where this condition is easy to verify : in
anisotropic models, such as chx + acycy with € < 1, the double
commutator is always small at low temperatures, and in a classical
limit, 1ike S + « 1in Heisenberg models, the double commutator is
small,for S sufficiently large,. We conclude :
Theorem 5.8 Fix J(n) = n ¢ for 1 < o < 2. Then the isotropic
antiferromagnet with -H = nﬁm(—l)n—mJ(In—ml)gn-gm for quantum
spins En of spin S has a first order phase transition if S
is sufficiently large (at some g sufficiently large).Moreover, for
€ with 0 < e < 1, the spin 1/2 model with
-H = nimJ(|n-m|)(S:S$ + eSiSi) has a first order phase transition

some B sufficiently large.

on

any

at
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