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Abstract:
A general method for proving the existence of phase transitions

iz presented and applied to six nearest neighbor models, both classical and
quantum mechanical, on the two dimensional square lattice. Included are
some two dimensional Heisenberg models. All models are anisctropic in the
sense that the groundstate is only finitely degenerate. Using our method
vhich combines a Pelerls argument with reflection positivity, l.e. chessboard
estimates, and the principle of exponential localization we show that five
of them have long range order at sufficiently low temperature. A possible
exception is the quantum mechanical, anisotropic Heisenberg ferromagnet for
which reflection positivity is pot proved, but for which the rest of the

proof is wvalld,
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I. Summary of Results and General Strategy of Proofs.

One of the main purposes of this paper is to explain a general
method for proving the existence of phase transitions, in the sense of long
range order at sufficiently lov tempeératures, in classical and gquantum
lattice systems. In principle, our method can be applied to arbitrary lattice

systems satisfying reflection positivity (a condition closely related to

the existence of & self-adjoint positive definite transfer mtrul_the
groundstates of which are essentially finitely degenerate (e.g. the space
of groundstates decomposes into finitely many subspaces lebelled by &
digerete order parameter, scmetimes releted to & broken discrete symmetry
group).

Dur method is inspired by recent work of Glism, Jaffe and Spencer
concerning phase transitions in the f;l.-lll"]lir quantuz field model, . In
this paper thelr ideas are extended in two ways:

1. We systematize the use of reflection positivity and chessboard
estimates in obtalning upper bounds on the statistical weight of contours arising
in a Pelerls argument and we show how to apply these methods to gquantum
lattice systems. This reduces the proof of long range order to estimating
6o ratio between & constrained partition Tunction and the usual partition

function. (This is basically a thermodynamic estimate).

2, We introduce the principle of exponential localizatien in ordep

to derive upper bounds on constrained partition functions. This principle is

particularly useful in the analysls of quantum lattice systems.



Reflection positivity, originally inspired by work of Osterwalder
and Schrader ., and the prineiple of exponential localizatlon are
useful tools in contexts other than the theory of phase transitions.

In Section T1.A we introduce six different classical and quantum
mechanical models on the two dimensional square lattice inm terms of which
we develop and i1llustrate our general method. A summary of our main results
concludes that section.

In Section I.B we recall the connections between phase tranaitions
and the occurrence of various forms of long range order (LRO) at sufficiently
low temperatures.

In Section I.C, D and E we present the main ideas behind our general
method; (Section I.C contains a convenient wvarfiant of the Peierls argument,
essentially identical to the one of [1E] ; see also [10]).

In Section IT we establish, [or review) reflection positivity for
five of cur six models, the exception being the quantum Heisenberg ferromagnet.
We prove a generalization of the Hilder inequality for traces which,when
combined with reflection positivity, ylelds the chessboard estimates. They
extend constructive field theory estimates of .

In Section III we introduce the principle of exponential localization

and apply it to our models for the purpose of estimating constrained partition
functions. This is an expansion of the idea used in [22] .

In Seetion IV the proofs of our maln results are completed by
combining the estimates of Sections I.C , ITI mand III . Seections II and

IT1 contain resulte which are of some interest in their own right: Theorems



2.1, 2.24 3,1 apd Corollary 3.2. The reader can understand their statements
and proofs without being familiar with the rest of this paper.

Hext, we describe the models studied in this paper in general terms
and recall some typical aspects of two dimensional lattice systems .

Two facts are well established about two-dimensional (quantum or
classical) lattice spin systems with short range interactions:

(1) The Ising model has a first order phase transition (i.e.
long range order for large B = {Il.‘I'}-l ); for mll values 5=1f2,1, ...
of the spin.

(ii) Models with continuous symmetry (e.g. the isotropic Heisenberg
models) hawve no such ordering. The proof of this is due to Mermin-Wagner [1] ,
Mermin [2] and Hohenberg » (MWH) . Thus, a natural question is whether
the anisctropic models have LRO for all values of the anisctropy paraseter,
aswith 0 <a <1 . For the classical Heisenberg (H) model this was
proved recently by Malyshey [L] . Kunz, Pfister and Vuillermot [5] later gave
a simplified proof for the planar rotator. Ginibre [E] and Robinson [T]
proved LRO for the quantum Heisenberg ferromagnet for very small a .

In [B] we announced proofs of LRO for a variety of anlsotropic
models: ip particular for the quantum ferromagnetic H model, for all
a < 1. Bubgequently we became avare of a flav in one of the lemmas for the
Terromagretic model. Thise is baplcally the same flav as in the anhounced
Dyson, Lieb and Simon [9] proof of LRO for the three dimensional H model.

The other results stated in [BE] are correct. Here we will present the



details of the proofs, including the part of the proof for the ferromagnetic
H model that is correct. It is hoped that before very long the misasing piece
of the puzzle will be filled in.

An obvipus remark has to be made: All the models we consider have
no LRO at high temperature, a fact which can be proved by high temperature
expansions, for example. GSince LRO implies the existence of a spontaneously
polarized state, cur proof of LRO at low temperature implies the existence
of s phase transition.

The models discussed here are all two-dimensional but, as in the
usual Peierls argument [23], 81l our results and methode can be extended to higher
dimensions. They can also be cxtended to some other lattices, e.g. the
honeycomb lattice; see [IZ1.

Some of owr results were reviewed in [10] and . Additional

applications of the ideas presented here are to be found [10], [12] and :



I.A. Description of the Models and Main Results

All models are on the square lattice I * and have only nearest

neighbor interactions. Thus I means a sum over nearest neighbors, each
{j.h]}

term being included once; H i3 the Hamiltonlan.

{1) Classical HN-vector Model (N > 1) :

N
E = - (sl gl +a g gf } (1.1)
*§1.1=- X0 k-E-z i
N

Each Ei is & unit vector in B ; uniformly distributed on the sphere.
(More general rotationally symmetric spin distributions could be accomodated
by our methods.) HNote that in this classical case, the ferromagnet (minus
sign in (1.1) )} 1is equivalent to the antiferromagnet (plus sign) by reversing
the spins on the odd sublattice. This is pot true in quantum models.

Cur result in this case is that for every a < 1 there iz LRO at
low T . In other words for every a <1 there iz a B, {a) such that

there is LRD for B > ﬂcf-u} . Our estimate on ﬂchl is
g la) = o((1-a)t) (1.2)

The MWH result is that H:{u = 1) == Dur proof is simpler

than Malyshev's m .

{2) Classical Anharmonic Crystal (AC Model):

The Hamiltonian of this model is glven by

H = ix 2],
e:i_E'_]:r i J



whers :r.i iz the coordipate of an R=-vector classieal oscillator bound to

site 1 , with apriori distributicn ﬂ" x 3 4 is some continupus,

anisotropic interasction potemtial,
#lx , ¥) = 1-1(:1 + (x) + a0x,¥)

where #1 20 is & one body potential, and “'E is & two body potential.

In other words we are considering some sort of anharscnic,
anisotropic classical erystal (resp. a Fuclidean lattice field theory). We
will prove LRO &t high B under the following mssumptions on # :

min ¢lx ,¥y) = ¢

o
XY

occurs for x and ¥ in the same direction, (Typically st x=y = x

for some :niﬂ] . But ff ¥ and :rl (the l-components of =x, resp. y )

o ?

have opposite signs
#lx , ¥) 2 g, +a+ dlelx)+4y (y))

for some & > 0 and some X > 0 with the property that for sufficiently

large 8
Iu"‘"‘lh:’ : R

Examples of such potentials are:

8.8, L 1 2 =1
1. 4y(x) B gx' - fx)e (B4g)1, forsome g0, 4, (x,y) =
Vix = y) , where V(x) is some strictly convex function with minimum at

x=0 .



2. #llI} %8 4y® | ye<1, bs (x » ¥) = Vix=-y), with

2
vix) b m:h - %—{le . for some g> 0, f(or V an arbitrary continuous

function with two sharp minima at x = (8 , 0, ... ,0)) .
3. #(x) = ¥ log (x| +1) , 4, 8s in example 2 .

Examples 2 and 3 (of anti-ferromagnetic type) are not of the
general form of model AC , but can be brought into this form by replacing

x, by -%; on one of the sublattices.

Remarks: It is of interest to consider also the case where 11{1]
iz replaced by const. 5'111{:] . Then these models certainly do not have
LRO for large £ , @8 can be shown by a high temperature expansion.

The symsetry #(x ,¥) = ¢(-x , -y} is not crucial for our
arguments; see also . The main point of the study of model AC
is that epr-HiEE:r,.:f}] is pot required to be of positive type. Next
nearest neighbor interactions (coupling x{m,n} with Xims1 . ntl}} ecould
be included.

Physically more interesting models of an anharmonic crystal would
be obtained by setting ilhu:l =0 and assuming that L is translation

invariant. Our methods do not apply to such models.

(3) Quantum Antiferromagnetic Heisenberg Model:

Ho= B* = 82 (W + aw¥) (1.3)



W = § (55 & + 8 &) (1.4)
'l::l_h]:l J

§ = 1/2 ,1, 3/2, ... is the total spin at each site. We will prove
that there is IR0 at sufficiently large B and small o . For each 8
there is an a(S8) and B_(a) such that for a <afS) ana &> 8 (a)
there 18 LRO. As 8 —+ = | a(8) = 1 . We do not know if there is
IR0 for mll a <1 when E {8 finite. This is an open problem. Because
the S —+ = 1limit is the same as the classical model » wWe have here
a generalization of the Malyshev result.

There is an equivalent form for (1.4) whieh is more convenient

for our purposes, namely

- z =
H: = -ﬂ?p 5] 8
x - 11
Y = -115!? Is’; ) tiﬁ{ltisf'}'n {1.ka)

This is obtained by making a rotation of ¥ about the y-axis for the spins
on one of the two sublattices; for such spin operators g% — 5" 5 g* — -g* *
59 — =8¥ . 1In thic representation all the terms in (1.3) are then of the
form = (real matrix at 1)(real matrix at J). Then reflcction positivity,

as discussed in section II.A , holds. See [9] for more details.

(4) Quantum Ferromagnetic Heisenberg Model:

H = Hf L -Hn . LllE}



The announced result [B] was that there iz IR0 for all a < 1
when B 4s large enough (uniformly in 8) . Unfortunately we cannot prove
this because the proof of reflection positivity (Section II) is missing,

but the second stage of the proof is correct and is given in Seetion III .
(5) The two guantum models ean be modified as follows:

i = § (s} - 8h°®
<i;)= J

2 2
Y = I {3: - E}j * {Eg - Eg} ¥ .

H = 8 [HI + o H;qr.] {1161

This was mentioned in [8] . We will not give the details of the proofs here
which are straight forward variants of the ones for (3) , (4) . This model
iz, however, interesting for the following reasocns:

First, consider this model clasgically. When a = 0 there i no LRO
for any B by the Brascamp-Lieb argument + Refined statomonts about
exponential clustering were proved im [21] . When @ =1 there is no
L0 by MWH . We expect that there fs no IRO for eany 0 <a <1 and
any B .

However, the guantum model has a phase transition. In view of the
foregoing remark, it is not surprising that our method yields the following
in the ferromagnetic case (assuming reflection positivity): For a <1
there is a ﬂn{u s 8) , with LRO when £ > En{u » 8] . However,

EE{E y 8) =+ = pgg §=—+= or ag—1.
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(6) Quantum and Classical xy Model :

For convenlence we take this model

E‘E

=2 £
H - 8 ] (=8 )

=1,.)= i

This is the ferromagnet. However by making

in the form

x
+ a 3:.: EJ } (1.7)
a notation by ¥ about the

y=-axis for all spine on cne sublattice (as in model (3)) , we see that the

antiferromagnet (defined with = + sign in

ferromagnet. See [9] for further details.

(1.7)) 1is equivalent to the
For this model, as given by

{1.7) , reflection positivity does hold; (see Section II.A and use the

standard representation in which 5 and 5° are real matrices).

Since the results and proofs for this model are the same as for the

antiferromagnet (model (3)) , resp. for model (1) , we will not give

further details.
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1.B. BHemarks about Long Range Order

Let = = L be the Gibbse state of a system 1n & bounded rectangle
2

A & with periodic boundary conditions, at inverse temperature B . The
system in the thermodynamic limit , A 4 EE s I8 said to have LRO if
alg) = 1im 2 iunzrn =l 5 {1.8)
A+ Z

vhere my = 111'1 L my is the magnetization, and =, is defined, in the

1€ i
different models, by
(1) =, = 5;
(2) m, = :}
(3) = = syt 2 s¥

(this is the staggered magnetization)

(8) , (5)s (6) m, = 8§15

3
| i

The inequality alf) > 0 implies that there is spontanecus magnetization;

see e.g. [9] - It is well known thet olB) 2 M° > 0 is implied by
mom>y 2 ¥ s 0 . (1.9}
uniformly in A and J . We will establish (1.9) at small temperature.

For this purpose, define Piﬁ to be the projecticn operator onto all

configurations satisfying m, 2 &, resp. m, £ -§ . Moreover



Pt Yim P w {1.10)

is the projection onto all configurations for which |mif < & . PFimally,
Piu.:l = P-: + P:l is the projection onto all configurations for which

m < A. For all models, except the AC model, |mi| < 1. Then

o “fﬁ = J AAtcad Pﬂ{h] de{Ju} :n

> &% {«<P P.'.l Wy an PJ :-h}
w1 =l =i +
- { qu I'-"1 >, * tPﬂ PJ *a }
2 < <
=G P Y P J > {1.11)

The three terms on the right side of (1.11) are labelled I, II, III .

First we discuss II . Since, in all models, my and ::|:|.‘J commute,
+&

for all § , Pﬁ PJ L3 Fn PJ g for & =0, with
ptoa pHE%0) L g _pto)
J J J
PE - PJ{D} {1.12)
Therefore
i PE‘ 5y &% PN (1.13)

The right side of (1.13) will be estimated by means of a new version of the
Feierls argument inspired by vork of Glimm, Jaffe and Spencor o ond will

be shown to be small, for large B , In the following sense which depends on



e, 1

the model: Por some € > 0 and _ﬂ large enough

= £
i 11'1,.i P T @ o (1.14)
uniformly in A and J . Thus,
II > -¢ . (1.15)

Next we diseuss term III on the right side of (1.11) . By the

Sehvarz inequality for the state < = >

A
<8 < <f
2 A R S T (1.16)
and ve have used
£5, 2 <
P = P
{ 3 ) p
and
< P;ﬁ :'-]'|| = :p:ﬁ :|--lrll -

which follows from the translation invariance of < = }ﬂ. «  We will prove by

purely thermodynamic considerations that for some € > 0 and sufficiently

large B (depepding on the model)

. p:‘ 5 < € (1.17)
Therefore
IIT > =g&° > =g (1.18)

Finally we discuss term I on the right side of (1.11) .



+§ +§ +& =8 <f
pY p - <P I e
£ 8. Tigmy motly Wl 3 1%
+& +& <&

+ =8
= o P'D PJ '.|-n
g <& R R
SRR 2GR SERE & ol RIS 2 M g0\ {1.19)

In all the models considered in this paper there is & symmetry taking lIIJ

to -HJ 3 for all Je A . Therefore

< P = -ﬂ'F*ﬁ}
4]

A

so that

1 1 L1
< P ::l-nﬂ E s E {Fﬂ }H. (1.20)

Combination of (1.1k) , (1.17) , (1.19) and (1.20) yields

EPHPH& »

1
At AR I S {1.21)

uniformly in A and J , (provided B is large enough, depending on the
model), Therefore

I = & - M . (1.22)

Insertion of (1.15) , (1.18) &and (1.22) into inequality (1.11) gives

2 e )
udnaﬁ-hﬁc-ﬂt:\-d-ﬁt, (1.23)

uniformly in A and J . Therefore
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ofB) > &+ B¢ . {1.2k)

In each model we will choose § and ¢ to depend on B In such & way that,

for sufficiently large B , -.l.E - Ge *» 0.

The most difficult inequaltiy to prove is (1.1k) . The strategy
will be explained in three steps, C ; Dand E below. The lnequality

(1.1T) 4is relatively simple and vill be given in Section IV .
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I.C. The Peierls Argument

In this section we describe & general form of the Felerls argument.
We copnsider a fipite claessicel or quantum lattice system in m square
A *'-:ESE « For convenlence we wrap A on a torus, but this is incssentiol
for this part of the argument. At each site 1 &£ A we are given two

orthogonal projection operators, F‘:; s with

P, + P, = 1, forall J. {1.25)
In the following =< - > E oy We propose to derive an upper bound

- -
on < Fn Fn > o, wWhere m and n are arbitrary, fixed sites In A&

and m¥ n . The first step is the trivial identity

4+ - &+ - + -
i Pn % W R B n {FJ + EJ} > (1.26)
Js A
o# j#n

an immediate consequence of (1.25). We now expand the product om the right
side of (1.26).

Definition 1 :

A configuration ¢ is a function on A with values im {#,-} , &and

elm) = + ,eln) =-. Aconmtour ye A is & family of pearest neighbor

pairs <1, . Jl SUIETTIE I I PR h ,6, ... 1 which

decocmposes A into precisely two disjoint subsets

hl L -ﬂlm {T] - {-[1 § sa® 3 i.'. a Iﬂ-] 1 ud
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nn = .nn (v) o {,11, ,.]L,n.'r with

Given & configuration ¢ , we let T(c) denote that class of all contours
Y= Ut gy 2 e sty . 32 ) with elry) = ¢, 4 e (y),
ﬂ‘:.}k]' B o=, dki. ﬂn{‘r} sk =1 5 a3 L. Since, for any configuration
c, e¢lm) =+, eln) =-, we conclude that, given an arbitrary ¢ ,
there exists a contour ¥(c) € TI({c) with the property that there exists
s connected set A, < A (v(c)) such that m = L cli) =+ , for all
} = A, o (A set X is connected If any two

]

sites 1 ,J in X belong to a chain { 1 nin,i

il-hc. {il"”'i

i i =J 1

k * k¥l
£ X osuch that i, and 1., are nearest neighbors, & = 0, ... » k) .

LR

Using Definition 1 we get from (1.26) by expanding

+ - (1)
£hn 2= EQ&HIL PE.] >

) ) I P‘”‘j” . {1.27)
¥ {e: yle)=y} €A

Next, we note that

2 %y PEPR Lt e gy

For i#) , arbitrary c . Hence, for Y X ,

D < M cf.ﬂ < “L”, 5o that
yex Jey

r:{
<¢gx JJ> <| ﬁ{'”> 1, (1.28)

L
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for all e . Therefore

: (i )
{e: ylel=y} JeA
{e E rie) v} <]f'.h Pﬁ{j>
) <P: o fil:.!ﬂ't Y P: P3>
< <ciT:.}:-n P, P3> (1.29)

Therefore we have the inegquality

PP Y n il (1.30)
<" I> E <'=1.:l=£‘r ! ‘]>

Let |'|'| denote the number of nearest neighbor pairs im y , (the "length"

i~

of v ) .
Theorem 1.1 : (Pelerls argument)

Suppose that (for large enough [A]| )

m P‘I PE < Kl : {1.31)
b PR |

for some constant K > 1n 3 (independent of A ) . Then

L]
<P P > &£ ] 2t gl e (1.32)

i=2

for arbitrary m and n in A (and all sufficiently large squares A ) .

Remark: The assertions of Theorem 1.1 do not depend on the afize of A and
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extend without change to the Infinite system A = E‘.E : [see the subsequent
proof and [10 , Section 3]).
Froof: By Definition 1 the length of a contour is always even. The smallest
contours are {tu,,}lw : m,jer " m,jf " -:m,,gh:-] and {til.n:- S aaE “Ihiﬂ}} .

i.e. have length L4 . Hence, by (2.7),

& = . +* i,
<F P> % T ¥ n P, PG {i.ma)
= =2 {y: |v| = 28} <‘i1.!?f"r : ">

(When A is finite these sums are finite). Given some fixed length 2t ,
well known comblnatorics shows that there are no more than 2(L-1) JEP"E
contours of length 28 , provided A i3 large encugh, depending cn m

and n . (The factor 3°°° comes from & standard _!'“‘ +s =~ argument
and the fact that all contours consist of one or two cleosed pleces. The
factor 2(1-2) comes from the fact that each contour must separate m from
n) + Theorem 1.1 now follows from (1.33) and the inequality K > 1n 3

-
vhich guarantees that the geries E 2(e-1) EEEFE Rl

=2

converges .

Q.E.D.

Theorem 1.1 has the following

Corollary 1.2:
Given ¢ > 0 , there exists some finite K(c) such that, for all K z K{c),

<P Fa» ¢ £
m n 2

Hemarks.

1. The relevance of Coréllary 1.2 for the proof of long range order has
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been explained in Section 1.B.
2, Theorem 1.1 and Corollery 1.2 can easily be generalized to the case

of more than two positive cperators (e.g. projections) Pi R Pl: f

say, with

H
EF:F]..
i=1

We could apply this more refined Pelerls argusent to the gquantum ferromagnet,

1 8 .2 <t 3 -6
y " Py =B B By o

is important im models with more complicated phase disgrams involving at

model (L), with P This extension
least M > 2 pure phases ; (see e.g. , Bections 3 and 8) .
3. Clearly these techniques extend to arbitrary dimensions > 2 and other

than sisple, cubic lattices. See also A



-] -

I.0. BHeflection Positivity and Chessboprd Estimate

In Bection LC, we bave seen that in order to prove

uniformly in m mnd n , it is sufficient to show

. R A TP (1.34)
i, )>€ ¥ J

for some constant K = K(e) >> 1a 3 . Here we want to sketch how
{1.34) can be reduced to a purely thermodynamic estimate.
Let A be a square with sides of length N = LM , M= 1, 2, 3, «0c. &
We define a "universal projection"
M=1 H-1

¥ - - *
& -Eu n:D Plumyn) Fllme1,n) Flimez,n) Pl hm+3,n)

{1.35)

The following self explanatory figure illustrates equation (1.35)

Fig. 1

[ —— e

+
*
+
Y
# |lal=]*]+t]=]|=-1%
+
_+
&
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Cne of the key estimates in our approach to proving LRO is the inequality

“i.J*er ’

vhich we shall prove for models (1) , (3) , (5) (antiferromagnetic case)
apd (6), i.e. all models except the quantum ferromagnets and the anharmonic
classical crystal, model (2). For the former, we believe that (1.36) holds
but we have no proof; (1.36) will be assumed to hold ip the sequel.

For the AC model, the definition of the universal projection has

to be modified: Let A be a sguare with sides of even length H = 2M .

We define
M-1 M-1
e - n ph P (1.37)
A w=d. | o=0 (2n,2m) °{2n+1,2m)

The following figure explains the definition of F:c

s =4 s P, 4 . & s
+ - + = + - -
N=8 , M=k
s T + = s e & it
g - -+ - * - * -

In the case of the anharmonic <¢lasslcel cryatal we prove

I i=; :'3 < < Jvlrzal (1.38)
<1,0%€ ¥ A
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(This inequality alse holds for the classical N-vector model, medel (1) ) .
Our proofs of inequalities (1.36) and (1.38) are based on the notion of

reflection positivity (or 0-5 positivity) which we now explain:

We choose a palr of lines 1§ parellel to one of the coordinate axes, cutting
A inte twe congruent pleces ﬁ+ and A_ (Note: R is a pair of lines,
because A 4is wrapped on a torus). In models (1) , (3) , (k) and (5)
the lines 1 are between two lattice lines, so that A A_ = g,
whereas in model (2) & consists of two lattice lines, and A, A= .

Let B, be the reflection at £ . Let F = F{m]h be & complex-valued

3 +

function of all the li'a {see Section 1.B) , with & & A, - We define

8,7 = 0 F{nln* to be the function obtained from F by substituting

mg for m, . Reflection sitivity is the lnequality
X g o Hzflestion peeltivity
<F(o,F)> 2 0 , (1.39)

where F is the complex conjugate of F . A somewhat more general inequality

{also called reflection positivity) is discussed in Section IT ; as an
example we meéention that in the N-vector model, (1.39) is true for arbitrary,
complex-valued functicns F of §i : 1 & A} and both choices of &
({between two lattice lines or coinciding with a lattice line).

Reflection positivity (1.39) yields the following Schwarz inequality:

If F end G are fuonctions of {-lFI then
L 3

|<P(e,G)>]|®2 < <Fle, P> <ale,T)>. (1ko)
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Next, we indicate how (1.36) , resp. (1.38) follow from (1.40). Let

L™ be all pairs <i,})* of the contour ¥ for which J - i points in the
l-direction. BSuch pairs are called "horizontal”. Furthermore

Ty = T‘\_Th denotes all "vertical” pairs in y . For <i,J> ¢ Ty » let

i .3 denote the site with smaller l-coordinate; for <i j> &€ Ty v i A
is the site with smaller 2-coordinate. Suppose that reflection positivity

(1.39) holds for reflections El at lines £ betwveen two lattice lines.

Then we define

¥ = [ edgrey, 2 L4y even )

h,e
e { <i,)>c T ¢ iA)g odd } = 1hx Toie

Similarly v, a and vy, . &re defined. By the standard Schwarz Inequality
" n

far < = > wa hawve

PR W - + N e
e, i)y,

" 2 1/4
n n P, P.!II (1.41)
a=h,V fi,j}i:yu B
B=e,0 '

To each factor on the right side we now apply reflection positivity (1.39)

in

and inequality (1.40) repeatedly, for many different choices of L . This

yields
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2 |v, |/ 14l
* o= a,B
<=11 Py PJ> £ < P> (1.k2)

10767 8

This inequality is a special case of a general corellary of reflection
positivity, called chessboard estimate [19] , which we prove in Section 2.
Clearly, inequalities (1.41) and (1.42) yield the key inequality (1.36) .
In the classical, anharmonic erystal, model (2) , we first decompose
¥ into tvo pieces, T consiating of horizontal and Ty consisting of
vertical pairs. FPor <i,j*€y, , let {1,}}2 denote the 2-coordinate of
both 1 and J , for <i,J>€vyy let (i) }l be the l-coordinate of

i mnd J . We define

e = { <1,)>¢ Ty, IiJ}E even |

= | <, Jrey (1)), oada }

h :

"h,0 2
1'.".'2 = { <i,j>€ Yy o [ij}l even |}
Tyo = [ <ldrey, : (1)), odd }

Applying again the standard Schwarz lnequaltiy for < - > , we cbtain

+ - l'lih
i P: Pl < n n L {1.k3)
i Jrey 1 a=h,v i,j>¢ Tﬂ.,ﬂ

E= e,0

To each term on the r.s. of (1.43) we apply the Schwarz inequality (1.k0)

repeatedly, for all allowved choices of reflections EE et lattice lines & .

This yields (see Section II)

2]y, gl/18l
< n F: P3> < P,‘:‘C> (1.44)
“d47e v, g



The key inequality (1.38) follows from inequalities (1.43) and (1.L44).
Further details concerning reflection positivity and the chessboard estimates

(1.42) and (1.44) are given in Sectiomn ITI .



I.BE. Estimate of = E‘JIL * and BExponential Localization

In this section we sketeh the main ideas of how to estlsate

P = AC
R, (8) = < P, > and H:C 8=z « pAs |

By definition of <- > ,

Tr (expl-8H, ] Fm”}
niﬁc} (g) = A . (1.45)
Tr {w[-ﬂﬂnll
whersa Hﬁm] Eeang either Hn ar H:E « Hers Hﬁ is the Hamiltonian of

the model under consideration, and Tr is the usual trace in the quantusm
mechanical models, and in the classical models, an integral with measure the
product of the aingle spin distributions over mll sites in A . Let Ehfde]

denote the spectral measure of the Hamiltonian H By the spectral thecorem

- n ’
Tr (exp [-8H,] C) = ] Paadt (E, (de) C) , (1.46)
&ﬂ
where e = e (A) = infspec Hﬂ is the groundstate energy, and C is

an arbitrary operator, resp. function. We will choose scme positive number

& = 4(p) , depending on the model under consideration, and decompose

RAAC) ()

into two pieces
¢D+a1aj
R4 (g,0) = 2, (877 j B mr (g (2e) BIAC) )

]
=)



{AC) -1 -fe {ac)
Ry (8,2) = oz, (8) e Tr (B (ae) §,"7 ), (1.47)
e, +a|A|
vhere Z (8) = Tr (exp [-8H ]} = ] e P Tr (E, (de)) {1.48)
Eﬂ
iz the partition function. We estimate ni“ci (B,A) by
A (g,0) < zhta}'l exp { -8 [e +a|A] ]} T (E,(de))
e +a|A]

exp (-8 [e+alA] 1}  Te(1) z,(8)7'} (1.k9)
The Pelerls-=Bogoliubov inequality will be shown to glve
(1) / 2, (8) < exp B [es3a[A]] , (1.50)
for B8 sufficiently large. Thus

ni“c} (g,2) < expl-8 a|a| f2 )} {1.51})

Hext we consider REAE] {(B,A) . In the classical cases thias will

vanish for the following reason: & will be chosen sufficiently small so

that Pt:ﬂ} will be a projection onto configurations with energy greater

than e + 4 |A| . Thus the integral for RUAC) (8) will vanish identically.

In the quantum cases, the situation is more complicated. Although

Fn will be a projection onto states wvhose average energy exceeds un +* ﬂlﬂl.

the integral does not vanlsh, because P will heave nonvanishing matrix

A



elements in elgenstates of H, with energy <e_  + &|A] . To be explicit,

let L :‘Hl < be the eizenvalues of Eﬂ with eigenvectors *ﬂ . ‘1 e
Then
Ro(8,8) = zy(e) ¢ exp [-ge) (1.52)
where I; means a sum over 1 such that i R Pl ala] , eand
G, = 4y 2Py, {1.53)

Now C; 1is independent of § , and therefore R_ (8,4) does not
necegsarily vanish as  exp [-B(const.)] . What we have to show is that
G — 0 sufficiently fast as i ™% 0 . Then we can hope that R_(B,4)
goes to zero sufficiently fast ez B —+ = , for & suitable cholce of A .

The estimate on El y carried out in sectiom III , comes about
in the following way: We write Hﬁ = .An-r Bﬂ » where B, is suitably

small compared to }Lh » and such that is mn eigenprojection for Ap,

'Fl
A
anto Aﬂ elgenvectoras having snergy > En +
2

n 4|A| for scme n. In model

{3) , for example, A =8 ° K . If ?h were zero then ¢, = 0 for

e, fe *+ ﬁlﬁl . The prineiple of exponential localization will tell us

that eigenvectors of energy greater than e + n 4alA] , (0 2 2)
Ry u

vhen expanded in the ¢, , are strongly (indeed, exponentially well in |a] )

localized around ¢, with e, > e + 4|A|] . This, in turn, will lead to

i

i kst - s
. being nmill lor e e

Avknowledgements : We thank . Simon or some very uselul suggestions.



II. Reflection Positivity and Chessboard Estimates

II. A. Reflection Positivity

In this section we recall the proofs of reflection positivity,
inequality (1.39), for the models studied in this paper. For the classieal
N-vector models, reflection positivity is shown in [20] . In terms of a
transfer matrix formalism it is used in [I0] . For the quantum anti-
ferromagnet and the quantum mechanical  xy model (models (3) and (6))
reflection positivity wvas discovered in [9] . The proof given there also

applies to the classical HN-vector models.

First we consider the classical, apharmonic erystal, model (2) ,
for wvhich (1.39) 18 new. We choose a pair of lattice lipes & cutting A

into two congruent pleces, A, and A, with A pn A =1 . Let

* ¥ -

H'lI-

=

= ht‘-.. £ . The H-vector pgelllators attached to sites in i have

-]
coordinates l{:.r}li E [yJ.g RH : Je ;Li] . The coordinates of the N-vector

oscillators attached to sites in 2 are denoted by

(z) = {li]lH:

] JEi} .

Given & function F of (y) ., (z) , we define 8,F to be the function of

{¥) , (z) obtained by substituting Yo 1 for yﬂ  for mll ) = ;: ¥
- L

1.e. BIF is the reflection of F 11 the lines & . The Hamilton funetion

H‘,. of the AC model is given by



Hy = § olx, . x,)

A i, J>c A i J
5 E #ilx, , x,) + E dlx, , x,)
<i,)>ch, $ ] i, J><h_ k J

{#lx, , x,) + @lx i e i
caipen, 1T 0,1 * %09

B {ly), » (2)) + (8B) (ly)_, ()

[

Let d“: be the a priori distribution of & single oscillator,; and set
dly), = n. dHyJ
J=h
diz) = n :lH':J
jeL

Let F=F ((y)_,(2)) ve an arbitrary function localized on A_. Then

< FEHLFF »
) -
=z, (8) alz) aly), aly)_ e M r(ly), , (2)) F((y)_.(2))
i -8B{(y), (=z))
-z, (0 [ a2 {[d{3!+ e Flly) ,(=)) )

-pleB)((y) .(z))
i Idf:r}_ﬂ ORI .20 )

= zhm}l_l Jdl’a} 1 [d{;,r}+

‘HHI: L'I'},',, |:.=}] 2
L Plly), Wl=)) 3 (2.1}



i.&.

-triali"i: > 0, (2.2)

vhich is reflection positivity. Clearly, this form of reflection positivity
also holds for the classical N-vector models. Next, we consider the
quantum mechanical models end the classical HN-vector models. We let £

be a palr of lines between lattice lines cutting A Into two disloint ,
congruent pleces, A+ and A . Let M’J lil.'nn;:t the family of all bounded

functions of the spin &, ("algebra of cbservables” at site J )} . We define

J
M, = o &, ,
% JE.ﬁ.t J
and
Ef’!" = '-'H; B L"ﬁ"f_ .

Given some Be O , wve define eB = ELH by
(eB)((5),) = B((e5),) , (2.3)

where (3), = {§J=Jﬁﬁ].md

A
{aE]ﬂ- {EE‘;-T: J & A} ,

i.e. 6B 1is ebtained fro= B by substituting EB for E,j , &all J < A .

¢l

Clearly @ defines an isomorphism from T onto & (and conversely).

-

Furthermore we define

Ba= (B0) (2.4)

to be the complex conjugate (pot the adjoint) of B , for erbitrary B¢ r"l'.['.
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Following [9] we study Hamiltonians of the following general form:

H = B+e(B) - ] coe(c) , (2.5)
i
] L]
where B, Cy 4 «er 3 Cp 4 «o. are in &(, , (and B=B ,C =iC |,

for all { , so that H 1is selfadjoint). The following result is a slight

variation of Theorem E.1 of [3] .

Theorem 2.1: (Reflection Positivity)

Let FE:B(P. Then

Ty { E.H'“' Fi HF',' '..

< F (8F) » =
Tr (e”BH)

where "Tr" means the usual trace in the quantum case and an integral in

the classical case.

Proaf: It elearly suffices to prove that Tr '[E-EH F{-EF.” > 0,

By the Trotter product formula,

=BH

e = nlin" G_ » where
6 = '.'E-%B EHE'BE[:L‘_% Eciﬂﬁilln {2.6)
Thus, Theorem 2.1 is proved if
T (G_F (6F)) > © , for all n . {2.1)

To prove (2.7) , note that all elements in ff*_ commute with all elements
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in ff . 1In (2.7) &ll elements with a & (which are in M ) can
therefore be moved to the right of all elements without m 8 (which are in

JTZFJ . This shows that Tr {Gn F(6F)) is & sum of terms of the form

Tr (D, ...DF6D ... 68D OF) = Tr (D, ... n.F e (D ... D F))
= Tr {[:»1 nnr} Ty {nl D.F] -

with Dl i sia'w 4 Dm in {9{‘_'. + Here ve have used the obvious facts that
Tr (AB) = Tr (A) Tr (B) , for A ,Be O , and Tr (8A) = Tr(a) ,

for all A € e‘."f"+ . Finally

Trl_'l:ll.H umﬂ *r-:{ul an}
2
= | Tr (D, ... D F) = -0

by definition of complex conjugation (B r— i} .
2. E.D.

We leave it to the reader to check that the Hamiltonians H, of models (1)
(3) and (6) are of the form (2.2). See also [9), Hence Theorem 2.1
proves reflection peeitivity, inequality (1.39), for these models. However,
for the quantum ferromagnet, models (4) and (5) (ferromagnetic case), H,
is not of the form (2.2) (becuase of the 3:{ E:"; terms) , and the proof of
Theorem 2.1 breaks down. At present, no useful form of reflection
poaitivity i3 known for these models. In the sequel, we will assume that
inequality (1.36), which follows from reflection positivity (ms shown in

Seetion 1I1. B) does hold for the ferromagnetic models, even though we have no

proof of it.
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II.B. Chessboard Estimate

Our goal in this subsection is to use reflection positivity to prove
inequalities (1.36) and (1.38) (chessboard estimate). We prove & general

theorem that includes (1.36) as & apecial case.

Theorem 2.2: (generalized HSlder inequality) Let M tbe a vector space with
antilinear involution J (to be thought of as complex conjugation). Let

be a multilinear functicnal on -‘.’f"m y for some integer M > 0 , with the

properties

(c) wlhy s een s Agy) = w (Ay 4 ey Ay o A)) (eyelicity)
and
(8) The matrix ¥ whose matrix elements HL! are given hy

H = w {Jhijl § wea § JALiH L] Anjil §osaw IAJjH} i

i)

with A, _ an arbitrary vector in & , for all =1, ... , n,m=1 , ... M,
¥

is a positive semi-definite =n * n matrix, for all n=l,2, ... ;

(Reflecticn Positivity). Then

oM 1/2M
(1) | (A 4 e s Ay | = JE]. wlJA v Ay e .,.I.FLJ.,A.J]I ;
({chessbtoard estimate)
and
1/2M
(2) ”ﬂ”m E wlJA , A 5 «ov 5 Jh 4, A)

in a peml=norm on 'A{‘ '



Proof:

12 A Schwarz ineguality:

Let x{ MHH} be the vector space over the complex numbers spanned by all
elements in ﬁm R Hypothesis (@) tells us precisely that w defines an
ipner product on axft-ﬂfuﬂ] . As a special consequence of the Schwars
inegquality for this inner product we have

1/2
Iuthl-.lil 'ﬁmjl i ﬂ{’l.l‘-i-i ..H.H.Jﬁ”.lhq- |JA1}

g e W R 3 ibgd e (2:8)

22 Proof of Theorem 2.2 for M= 2 :

% wlJA

This serves to exhibit the main ideas behind the proof of the general

ease. By (2.B) and hypothesis (C) ,

(A , B,C,D)] £ win,B,J8, a2 utap , 3¢, ¢, D)2

V2 S e,c,n,m?

1/4

wg (B,JB,JA,A)

/4

¢ W (BT ,B,JB)"" w(IA A, J4,AQ)

/% ( 1/k

w (JC , C ,JC , C) D.,JD , D , JD)

1/h 1/k

= o (JA , A, JA,A) & (B , B , JB , B)

wige,c,d,c wtm,n, o, )"

=

vhich s (1) ; (2) follows from the multilinearity of w and (1) .

33 The general case:

Since w is multi-linear and



J L] A L] L § J k] - L3 . N * ¥ ]
w ( AJ 3 Ay v Ay ) "{Ad TA, A, Jldi
by hypothesis (C) , we may assume that
w {Jﬂd . AJ SRl Jﬁd . Ad Yy = 1, {2.9)
=1/2M

for all J =1, ... , 24 ; (if not, replace A, by wl{JA ,A ,...,J4 ,A. )

J - S R

. H.J] . We set JAJ 8 ﬂjﬁ-E'H s d =1, ... y M. A configuration ¢

is a functlomon (1, «.. , ®M} with values in {1 , ... , LM} . Let

T = m.:: f w {*C‘{lj ¥ A.E{Ej § orea oy AE{EH]':I I 4 1.2

z 2 |w (Aiay » = v Aoy | » for a11 ¢ . (2.10)

Proof: For ¢ defined by

ef(2m-1) = g+ 24, e{2m) =3,

[Fi (Aﬂ‘tl} 3 == 5 hﬂ{m; = 1 ¥
bty (2.9) . Hence = 2> 1 . Thus, it suffices to show z < 1 . Let &

be o configuration for which

| < tﬁﬁ{l} 4 EEE § AE‘{E‘!}JI' L E .

Let cfM + 1) =3 . Then, by the Schwarz inequality (2.8},

2= | wlhgigy e s Aggayy) |

1/2
£ w {ﬂﬁilj oA hE{Hj A JAE{H} PR JAE{I}}
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% {J“E{EH}' W Jﬂu R R e AEEEH}} 1/2
1/2 1/2
i z w EJAE{H‘-}' aa s g JA.J ¥ AI.J # s88 3 AIEEEH}} ¥ b:f f?-l'ﬂ'}
V- 1/2
£ w {J*E{zuhl}' ks o Jnd 5 AJ voeee w Rgpoyy s IAE{EH}] ,
by hypothesis (C)
3/k 1/k
: & =] {JA.E{E{_:L}-' aas g JAJ 3 A.J » LTA.J ¥ ﬁJ By = ¥ AIEIH‘-].}} ¥
by (2.8) and (2.10)
: =8 8B
=(m=1} ={m=1)
1-2 2
Lk N‘{JA 'I'A"I -:Jﬁ 1A- 1‘1-‘- -}
=1 ) "’-._,-..‘__ . !
N | — d _ & =
- =M
< % (A, . &, L IR AJ]IE ;
by (2.8) and (2.10)
-m
= 17? : by (2.9) ,
=I5
fnrﬂmenuithﬂmhl;H?Em-E.Hmr:eaa £ 1, 1. 3 £ 1.
Q.E.D
To prove Theorem 2.1 , (1) , let ¢ be given by <(J) = J .,
J=1, ... ,24 . By (2.10) and the Lesma,
@ gy v eos whgqa) [ Tu (g o ey ag) |
£ gz = 1, (2.11)
The multilinearity of w and (2.11) completes the proof of (1) . Theorem
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2.2 , (2) follows from the multilinearity of w and hypothesis (8) (whieh
imply |[all,, 2 0 ana [[aa]l,, = Ir] [la]],,) end frem (1) (whien

implies that  ||a + B||,, = [lall,, + |IBll,) -
Q.E.D.

To apply Theorem 2.2 to the proof of estimates (1.36) , resp.

(1.38), cne makes the following identifications:

W le ) = a s

hJ s PI P; » with 1 , ) nearest neighbors;

Theorea 2.2 pust be applied twice, once in the vertical
direction and once in the horizontal direction. This gives (1.42) , resp.
(1.bh) . We now must check that w [ *+ ) = < « > gatisfies the hypothesis
of Theorsm 2.2: Clearly <I1 B> ig sulti-linear in each EJI 5

€0
yielding sulti-linearity of o .

Since we have wrapped A on a torus (periodie boundary conditions),

e - G

for arbitrary ac A . This shows that w satisfies hypothesis (C) im both,
the vertical and the horizontal directions. Finally, hypothesis (8) of
Theorem 2.2 in both, the verticel snd the horizeontal directions, is an

irmediate consequence of reflection positivity (inequality (2.1) , reap.

Theorem 2.1) . A more direct proof of inequalities (1.42) and (1.44)

proceeds as fellows; (we sketeh the argument leading to (1.L42); the case
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of the anharmonic crystal is treated similarly). Let Bh. - denote all palrs
"

of horizontal nearest meighbors <i,)> (directed, "horizontal bonds") with

i =) eren . Lest f”' be an arbitrary, non empty subset of Bh.u « Let

| ﬁ | denote the number of horizontal bounds in H" ¥e consider the family

+ =N\ /2|8 |
{ <:1I,[j:-£ﬂ' 4 PJ> » B Bhu&] d

. 1!2]&!} :
Let = = max n Pi P 5 and let /= be
&[ <1,)8 :

some subset of directed, horizomtal bounds on which the maximum z is taken.
Using translation invariance of < - > (corresponding to hypothesis (C) of
Theorem 2.1) and reflection positivity of < - » (corresponding to (8))
and applying the Schwerz inequality (corresponding to (2.8)) repeatedly,
as in inequality (2.11), in the horizontal and vertical direction, we

obtaln
1/k|A]

z = l’n} =1 - 1/k "

1/]4]
h >
obtain (1.42) . Finally we remark that Theorem 2.2 can be used to give

for some integer k>0. Hence =z < P from which we

-
alterpate proofs of the general chessboard estimates of the last reference in
[19] (Theorem 2.3, periodic boundary conditions) and of (Lemma  L.5).
Furthermore Theorem 2.2 implies the HSlder inequality for general traces

and the Peierls-Bogolubov and Golden-Thompson inequalities.
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ITI. Exponential localization

In this section we explain the difficult part im the reguired
estimate of Hn () = fPhb s defined in (1.45) , for the quantum
mechanical models. We recall that in Section I.E. we have split Ry (@)

into tvo pleces

Ry (B) = R_(8,8) + B (8,8) , (3.1)
where
R_(8.a)= 2z, (8" [, ¢ expl-ge);  (3.2)
i
here I; means a sum over all i such that e, fe_ + ala] , and
i
¢, = {*1 ' By *1} . (3.3)

The easy estimate of R+ (8 , &) 1is postponed to Section IV . In this
section we prove upper bounds on R_(B , 4) for models (1) - (6) . We
claim that, for the classical models, models (1) , (2) and (&)

(classical case),
R_(B,48) = 0 (3.4}

for sufficiently small & . To show this we first estimate the minimum

('f‘ '[F_,_ {‘m}} of the Hamilton function Hﬂ restricted to the conflgurations

{8 ¢+ 8« P, } (models (1), (6)),

F AC }

A (model (2) ) .

resp. {x : z2«
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for models (1) and (6)

F (p,) = -%h’.l - %lﬂ . (3.5)
For model (2)
E 0 = 2¢|al + 3l . (3.6)
Therefore
ir 4 < (L-a)/2 (models (1) , (6) ) (3.7)
resp. 4 < a /2 (model (2) ) (3.8)

then R_ (B , 4) = 0

vhich proves ocur conmtentiom.

As already noted in Section I.E, (3.4) is false for the quantum
machanical models, and we have to work much harder in order to obtalnm s good
upper bound en R_ (B , 4) . The idea is to show that €, = [11 + Py 111
iz very small for eigenvalues & of Hh elose to the ground state energy
L Athough PJ'I. is a projection onto states of relatively high Hz-unergr.

Hi H Pﬂ. ‘i} does not vanish, even for e, very cloge to e, » 88 it

does in the classical case.

III. A . PFrinci af nentinl Loe zation

The following general result will be crucisl for our analysis.

Theorem 3.1 , !t;ggnnntinl localization of eigenvectors):

et A and B be selfadjoint operators (typleally finite, hormitosn

matrices) on o Hilbert space ‘LI' guch that
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with 0 £ £ < 1 . GSuppose that

(A+B)e = 29 , |l#]|] =1.

0 such that

g Eiap la=ayeid 1% {3.9)

Let P be the spectral projection of A corresponding to [p , =) , and
Hp = Fﬂ ;{l‘ (a1l "eigenvectors" of A corresponding to elgenvalues
> p) . MNote that (A = 1) restricted to HD *» 0 . Fipally, let

N !-'El]I be & unit wvector with the property

e
(i11) ( B (A = 1) } ¢ = M

for =0 ,1, ... ,d=1, with a21.

Then 69 = o (3.10)

Remarks: 1. Since B > =-e A , by (ii) ,

A+B > (L-c¢)Aa 2 D, (3.11)

g0 that all eigenvalues A of A+ B are nonnegative.

2. Clearly the condition |B] < eA implies (ii) , but the

converse ia false, asz the example



- 4 -

2 2 1 o
N oo B, = s IBl=1, e=1
5 o 0 -1

shows. Hypothesis (ii) is all we need to prove (3.10).

Proof: By hypothesis,
(A+B}e = Ap , flee. (A=-A)p = Bp .,
Thus, for some & 20,

b o= (A-2+18 )Y (Bp+ ity) ,

80 that

106 o #)] = [(6 . (A =2+ 18 (o + 189))]

= [{tA-2-18" & , e+ i&)]
Since llrvEHp and X < p , by hypothesis,

1w (A-2-1814 = (a-ay1 4,
G40

hence

6 9] = [ B WR=2T285 9 [ (3.12)

J
By hypothesis (ii1) , {B(A - A)7%) $EM. . for J=0,1, ... ,41.

Therefore, for d > 1 ,
““ 1 *}[ - “Fﬂ‘ B(A - 1}-1 I *” 1 {3--12"]

and wve can {terate (3.12") d =1 times and then apply (3.12) . This
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yields

d=1

e . ¥}l [(B (& - A} {PP 3 (A= X" 3 | I 1|

= |22 gia - )2 (¢ B(A - Ay Ppld'l-t A2 0

ia

o (17 e I [ TR (3.13)

where we have used that [A , Fﬁ] = 0. Now

“n-lfﬂ BIA - 11“1.;2 Pp” » “A-lfﬂ H-ﬁ-LFE“ ||A1.|'r2 T Jl.]-le Pn “

1/2

€ ple {p - 11-1f2 = (co) .

<
=

(3.14)

e, (a - ) HE pix ) E el

2
- =1 =172
. ||Fp{h =3} 1/2 ﬂleII | |4 fe ga=1f I
< p (p- LJ'l £ = g . (3.1%)
and we have used the definition of Fp and hypothesis (ii). Finally

N =220 |] = [1a-20720 4 || 206 - 072 |1l

(3.16)

1/2

HA2 )] = [lv . a9

Q-2 o L w2, w (3.1)

i~

lil-r:l"1 1]1"2 < nuz . (3.17)



I T

since o = gp (p-AVT< 1, f.e. A<p(l-¢). If we combine
(3.13) = (3.17) wertmd (4,9 )] £ ovWe M2, gy1f2 M2 4

q.E.D.

Carallary 3.2

Suppose N C Hﬂ is a subspace of Hﬂ such that each $a N satisfies
hypothesis (1ii) of Theorem 3.1 . If P is the projection onte N then

(in the notaticns of Theorem 3.1)

<p,Pp> £ o,

The proof is essentially identical to the one of Theorem 3.1. We now apply
Corallary 3.2 to estimating the overlap of the universal projection 1"4,,4

with the low lying elgenstates of H, , 1.e. the nusbers Cy = {*i s By ii} s
vhen the eigenvalues e, < e + A[A| , for models (3) and (4),

{quantum mechanical antiferromagnet, resp. ferromagnet. The case of the

x - y model is similar to the antiferromagnet). For this purpose we ldentify

B = B (3.18)

-2 E

A = 8" H - e, (a =1) , (3.19)

where e {a = 1) is the groundstate energy of the lsgtropic Hemiltomian,

B o= af g™ (3.20)

In all the models discussed here, the goundstute energy e, (@ =1) of

the Hamiltonian H = 82 (B + HY) is bounded above by the groundstate
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Therefore A 2 0. (3.21)

Purthermore A+14 B o 5° (1 4 ™) - e (1) 2 © (3.22)

If we rotate all spinz on one of the sublattices by an angle =» arcund

the z-axis we see that A + % B is unitarily equivalent to A - %'B ’

as K is taken inte -H" under this unitary transformation, but H*
is unchanged. Therefore
B £ ah , l.e. c=a . (3.23)
Finally we set
z
g = B fa=1) + nd |.FI.| . (3.24)

vhere 4 and n will be chosen to be dependent on the model. Thus the

hypothesis of Theorem 3.1 and Corocllary 3.2 are satiasfied.

IIT. B. Estimates for the Antiferromagnet:

Next we consider the quantum mechaniecal antiferromagnet, model (3),

in detail. We shall estimate the overlap coefficients

for all eigenvectors {1 of the Hemiltonian Hj. corresponding to eigenvalues

&, with

i
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T 4 q: + 4 |l (3.25)

From (3.19) and (3.20) we infer that

A+B = Hﬁ - eq{u =1) .

Therefore the eigenvalue A of A + B introduced in Theorem 3.1 ,Corollary

3.2 satisfies

L

s &[] + ala| , (3.26)
vhers

& = T%T- faz - e, fa = 1)) .
It is shown in [17] that
e, la=1) 2 - (1+iz) 2| (3.27)

g0 that

§ < (28)7) (3.28)

Combining (3.23) and (3.24) with (3.26) and (3.28) we arrive at

the following eatimate for o :

_ g 5+ na) |A
°F ET_R S T (m- 1AM
1+ 284
£ 8 (1 ¢ Soiperer) (3.29)

Lt



B

be the minimal A-energy of any state in N = Pn'ﬁfff . Recalling definition

{1.35) of the universal projection Pﬂ ve see that

P () 2 e - e (a=1) +%|n[ ¥

so that
EF () -6 2 (3 - o)Al . (3.30)
A 2
Bince Pﬁ plays the role of the projection P introduced in Corollary
3.2 , we have the constraint
1
5 - ot > 0 (3.31)

Lemma 3.3, (Estimate op d for sntiferromagnet) :

Let.AEE'EH"-ea{n-ll
(1) Let ¥ be a vector of A-energy at least e , f.e. (1 - Pp_ﬁ] =0,
Than the A-snergy of Y ¢ 4o at least & - B8°Y |, f.e. (1 - P,_pe-1} B4 = 0,
f2) a » [%{l—ﬂn.&}ﬂhﬂl. for 2nA <1 , where [a] 1s the

largest integer <a .

Proof: In our representation (1.40) of the antiferromagnet

¥ - g2 {s* 8F + (187) (i87) }
alpen 150 %7 2080 5
1 + _* - =
S 8.8, « 8,8 . .32
252 {iEjn:h : i i : VA

* -y
where § L, 8 are the spin-raising, resp. spin-lowering operstors. Using

(3.32) we see that one application of K™ to & vector ¢ can ralse



(resp. lewer) the z-components of the spins of one nearest neighbor pair
i J>< A By 1 . Clearly, this canpot change the minisal A-energy of @

by more than E'E- B = 55-1 y &8 a minute of reflection showa.

More precisely,

(1-P_gse) i P, = 0. (3.33)

This completes the proof of (1) . The proof of (2) is an immediate
consequence of the definition of d , of inequality (3.30) and of part (1) .

Q.E.D.

Proposition :.h:

Rivﬂ.uherﬁ

o = a {1+ + 0(g"%)) and
oz [S2

for arbitrary E <1 and n %1 .

Troof: We choose

p= gt and n = %naE (3.34)

Then %-nﬁ- - %[1_.-.} * 0, for n<1l1, so that the constraint

(3.31) is fulfilled. By equation (3.2) , (3.3) , ;
-fe
I} (4, + P, #,) e A
qii en*ﬁlﬂl
E = R (B,4) = o

[« °
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<  max (¢, , P, &) {3.35)
£ o <4 v alal i * A%y
a

Suppose the maximum on the right side of (3.35) occurs for 1 = lﬂ *

[
L
L J

o
Ll

€, < &+ ala] . We set ¢ P and apply Corocllary
o

j:I;'.'l
3.2 . This gives

=] Q

By (3.34) and (3.29)

o =& 1+ 537y

il
=}
_—
=
+
—
'.'l
1

= a (1+(m8) + o))
Purthermore, by Lemma 3.3, (2) and (3.34)

a 2 [

-[%Elﬁl]

(1 - 2na) 8 |a]]

ke

Q.E.D.

The dependence of o and 4 on the total spin & will permit us
to show that the critical anisotropy nEEE), below which a phase transition

ooours,tends to 1 ag S +w= ,

Cur estimate for 4 is not very geod and can be improved; we
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illustrate hov to do so for spin 1/2 . We claim d > |A| (1 - na)/b
instead of |[A[(1 - 2n8)8/8 = [A[(1 - 2n8)/16 ; P, (Fig. 1) now
means o projection onto a definite pattern of up or down spins ;

g (P,) = =|A] +6 , and we wish to lower it to an A- energy of
-2|A] + a|A] + & . Let e be the H'-energy of the horizontal bonds

h

Initially, e, =0 ; finally e

energy > -|A| . Alse, € = -|A] + 26 where b 1s the number of bad

< =|A] + na |A] , since the vertical

(f.e. + - or = +) horizontal bonds. At least k = |A| (1 - na)/2 bed
horizontal bonds must be removed; d > d' = number of steps to do this,
while d' » d"/2 , where 4" is the number of single spin flips required
to do the same thing. Since the initial horizontal pattern in each row

ifs bgbgb... (g = good bond), it is easy to see that d" = k . These

arguments give the following improved estimates for 5= 1/2 :
o = a [ 1+ %— + 087 ), {3.36)

a2 [F Q-n2) a] . (3.37)

111.€. Estimates for the Ferromagnet:
It {g well known that in the quantum mechanical ferromagnet (model
(L))

e, (a) = -&: , for all Ja] £ 1; (3.38)

o faet, the groundstates for  |a] < 1 are ldentieal with the two groundstates

aff W7 . There Poee
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p = npda |A] , by (3.24) , and

T -un‘-‘, B=as™ g

We estimate the overlap coefficients “i y By "'i} for all eigenvectors

of the Hamiltonian H, corresponding to eigenvalues with e, < e; + ala| .

®3 i
Thus the eligenvalue A of A+ B introduced in Theorem 3:1 and Corollary

3.2 must satisfy A £ & |A| . Therefore

- n
o EEJ-lT. 8 =" {3.39)
As in the antiferromagnet one shows that
R = Sl (3.k0)

see the proof of Proposition 3.4. We are left with estimating the
"distance” d on the right side of (3.40) .
Estimate on 4 :

Let § be an integer such that EJ'L[”E { L is an integer. We decompome A

2
into |A| / & disjoint, congruent squares, b (=boxes), with sides of length
X .
i

eigenvector of A . For ¢ , & perfect sguare i{s defined to be a sgquare b = hq.

L. Let ¢ be an eigenvector of (B8 ie€lA} . Clearly ¢ 18 also an

such that E: ¢ = a4 and one of the following two properties holds:

(1) o 2 (0.9)8  forall i p,

{11} g, < -(0.9)8 for a1l 1€ b

i L]
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Suppose now that the A-energy of ¢ 1s < nﬁ]hl + We proposs to

cotimate the mini=mal pumber, k , of perfect squares h* for this ¢ .

For this purpose we assign an A-energy to every b pguare in A in such

& vay that the sum of the epergles assigned to all squares in A s =

the A-esnergy of & . The A-energy of a perfect square is zero. Therefore,
to & square which is pot perfect, an A-energy of at least 2(0.1) must

be assigned. There are (|A| i™%) - k squares which are not perfect. Since

the A energy of ¢ i3 £ na |h[ s we obtaln the inequality

(|a] ©°% - k) (0.2) = nala] .

k = |A] (£7% - spa) (3.41)

Since L * 2 , we require that nd < 1/20 . Let § be an arbitrary vector
in the range of P, , i.e Pﬁ v=¢ . Define d (see Theorem 3.1) by

the condition

.-1"1
(Q-p dBE@R-2)T]1 % ¢ 0,

1.4 (3.h2)
but (1-P )[BA=-2)] % =0 ,
nd
for all J<4.
d
We expand [B (A - 11-1] % in terms of eigenvectors #: "
of {Ei: fich} . Let ¢$ = = be a vector of A-energy < nb .

]
By (3.42) sucha ¢# 0 exists. By (3.81) ¢ bas k2 |A] (272 - nas/2)

perfect squares. In order to obtain & perfect square by repeated applicatiom



B -

of BlA-2)"" to %, B(A-=2)"" has to be applied to ¥ at least

m times, vhere

2
m > (0.9) 2 -s-]‘fI= ¥ {3.L3)

- 2

This is so , because % 13 an eigenvector of Pﬂ ¥
2

of *':Eﬂpln.ﬂ in abox b have to be raised from Et;\_:, 0 to 8° = (0.9)8,

g0 that the z-components

resp. lovered from g* 2 0 to g% = -{0.9) 8 , 4in order to convert b

into a perfect box. (Recall that Pﬂ is pictorislly given by Figure 1 ,

Section I.D) .

For the quantum mechanical ferromagnet

B o= - ] (8*s* « 8¥s¥}
<,pecp + 0 J 1
1 + = - .+
= - = (8,8 ,+58, 8, 1} (3.LL)
2 5 1ral - oy - izl

Equation (3.44k) shows that when the z-component of a spin at some site
iz raised (lowered) the z-component of a spin at 8 nearest nelghbor site
is lovered (raised). Thus, in order to raise the z-component of a
spin at some site i€b from 5° <0 to 5° = (0.9) 8 without lowering
the z-components of other spins in b , B has to be applied
(0.9) dist (1 , boundary of &) - 8
times; hence, on the average, (0.9) 5 = 'E times:. This completes the proof

af (3.43) . If we combine (3.41) with (3.h3) we obtain

3
d 2 m+k > |4] (2 = sma ) iai (o.9) .



o

Choosing & = [ (1oma)™2/? ) (>2) yields

Proposition 3.5: Provided nA < 1/L0
R = uEE ,
whers g = o o and
n=1"

a 2z (0.9) JA] 8 [16 (na)*/2 ) e
Remark: The estimate on d obtained in Proposition 3.5 for the ferromagnet
is vastly superior to the estimates on d obtained for the antiferromagnet
(Proposition 3.4 and (3.37)) . This will become apparent in the next
section vhere we will allov nd topo to zero us B+ =, Then d + =
for the ferromagnet, but not for the antiferromagnet. Finally we note that
the general methods developed in this section can be appllied in other contexts
than the one considered heres in order to get bounds on expectations of

global cbservables in equilibrium states.
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IV . Estimates on H+ and Completion of the Proof

A. Summary of Previous Results

Recall that our proof of LRO at low temperatures is completed by

showing that
R, (B) = <P, >

iz "small" for large B , namely we require that

El

I o 3° Hﬂ’iﬁ] < T (k.1)
n=2

see Section I.C, Theorem 1.1 and Section I.D , inequalities (1.3h),

(1.36) and (1.38) . In Section III we decomposed R, (B) into two parts,
R, (8) = B_(8,8) + R (8B, 8), [k.2)

and we have established upper bounds on H (B , A) , namely:
(a) In models (1) amd (6) (classical case), i.e. the classical HN-vector

models:

R (B,4 = 0, for & £ ~(1-a); (k.3)

(=S

gee (3.T).

(b) In model (2), the elassical, anharmonic eryatal:

R (B,4) = 0, for & = af2 ; (l.b)

gee (3.8) .

{e) In model (3) , the quantum antiferromagnet:
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R (8, 4)3 uﬂd , fTor & = H‘E . (4.5)
vhere o = a (1+ (80)70 +o0 (5%,
and d 2 {;l-fgnlg |ﬂ|;]-
resp. d 2 [-% (1-n/2) |A] 1, fer B=1/2,

with 0 <£<1, 0<n=<l

(to be chosen later). See Propositions 3.4 mnd (3.37) . The estimates
for model (&) (guantum xy model) are identical.

(d) In model (L) (guantum ferromagnet)

R (8,a) g o, (4.6)
n
where 0 m g—— ' (&,7)
LIy
and d 2 (0.9) || 8 [16 (na)™'" ] » (4,8)

with n>1 and A > 0 to be chosen later. We reguire na < 1/40 .

B. The H+ Estimate

We mow estimate H+ (g , &) for these models.

{a') Models (1) and (6 classical):
> o I 1/2
Let P," be the subset of configurations such that m =87 8/ 2 (1 - &) .

for all 1 &€ A . Then (with Tr defined by the usual normalized integral,

f.e. Tr(l) =1)
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Tr | Fiﬂ exp [-6H,] )

é

Zy (8)

| W

»§

>§
A }

A

¥

(Tr F: } exp (-8 Tr [P .h] [ Tr P

by Jensen's inequality. By symmetry,; the term proporticmal to & wvanlshes

in Tr F}° B, . Furthermore, H, ¢ -2|A|(1 - §) whenever P, # 0.
Moreover,
>6 1 1/2, 1M
TriF, ) ={5 [L-(1-877]) . (L.g9)

Hence, choosing &6 = Afh = (1 - a)/8 , we obtain

R, (8 ,8) s exp [B]A] (2-a)] 2%

- f (1 - a)|a] ela) |A]
B [ L]

< ; (4.10)
vhere cla) eaa -tn (1 -a) for a =1, is independent of B .
o Il | ]
1/|A 1/|A 1/|A
et/ = g (a1 & (8, 2)
- £ (1-a)+ela)
£ g (b.11)

vhich tends to 0, as B += . This completes the proof of LRO for

models (1) and (6 , classical) for large epough B . An estimate on

the spontanecus magnetization <m > = 571 < E: > , resp. of{B8) (ace

Bection 1.B) as a function of B is glven later.
(v') Model (2

By definition of model (2) (anharmonic erystal, Section I.A) ,



min ¢ (x , y) = €y

occurs when x and ¥y have the same direction. Without loss of generality

we may assume that there exists some x, d 0 such that

$ {::D . :u'.! - g (k.12)

2]

But when :1 nnd :_ur]' (the l-components of X , TesSp. ¥y ) have opposite

gign
.'{I ] :fl ; Eﬂ +a¥ h{‘ltl} + *1{3'1} M {hlli]

1
for some A > 0 ; see Section I.A. We now choose $>0 such that x - & 20

and

#lx , ¥yl e, + afz,

for all x and ¥y in a ball of radius § centered at X, We can do so

since the interaction potential & 4is by assumption continuous.

Hence

-28le_ + af2)|A]
2, (8 2 ¢ ° (uytenA (k. 14)

H L]

where uF{ﬁ]I is the volume of a ball of radius & in IR Furthermore,

for &=af2 d.e. K'C (8,48) =0 (see (h.4)),
AC
RiC (8) = R (B, 8= af2)

< exp [-28 (e, +a) M) & @Mz (0, (uas)
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-kgag, (x)

where glg) = [ e 1 ﬂHI "

This is an immediate consequence of (4.13); (see also inequality
{1.49) of Section I.E}) . Combination of (L.1hk) and (L.15) yields

B (8, a/2) < exp [-galAl] (e (an!*]

By definition of the AC model (model (2) , Section I.A.) there exists
some finite Hﬂ such that for all 8 2z Hﬂ
~hgAg, (x)

glg) = I e N

d'x < =

Obvicusly g(B) is monotone decreasing in 8 , as 11 is positive. Thus

there exists & finite constant ¢ such that

glB) / wyl8) = e® , for all BzB

Hence

RC (g) = Hf“{a . a/2)

< exp [-Ba + el |A] , {4.16)

which tends to O as B + = . FRecalling condition (4.1} (resp. Thecrem

1.1 of Section I.C and Section I.D , ineguality (1.38)) we observe

that inequality (U4.16) gcompletes the proof of LRO for the AC model
for large enough &

(c') Models (3) msnd (4) (quantum Heisenberg models):

In order to estimate R (B ,4 ) we need a lower bound on the partitien
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function 3,-, {(8) . This is done by comparing it with the partition function

of the corresponding spin & Ising model (anisctropy o = 0) by means of
the Peierls-Bogolyubovy inequality.

Lemma L.l: For models (3) and (4) the partition function satisfies

i |
B, * Ty {L.17)
Where E: is the partition function of the spin S Ising model (i.e.

a=0 in (1.3) and (1.5)}) .

Proof: By the Pelierls-Bogolyubov ineguality,

Z, =z I exp [-g {wj 5 H#J]] (k,18)

J
for any set HI,]} of orthonormel vectors. Choose the ',j to be eigenvectors

of all the 8 , {€A . Then the right side of (k.18) is precisely

i
ai because {1] L Y ¢JJ = 0 for all J§ .

Lemma  b.2: For models (3) mand (L)

Z

g 2 Hﬁf&]tﬁsd]]m exp {28|a] (1 - &)1

for any 0 < & <1.
Proof: Using Lemma L.1 ,

7 > I' exp (48572 HY)

g L B

I
A

where L' means a restricted summation in which each 3: > 8(1 - ”.UE .

(Rote: the partition function for the Ising ferro and antiferromagnet are
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fdentical.) Then, H- > 2|A| 8° (1 - &) . To complete the proof we
have to bound E'1 Z ulh] :

v = [8-801 - 6}1f2 #1). = [+ 88/2], > s&/2 > (28 +1) &§/8

for 8§ > 1/2 , and where | ]_, means integral part. To
complete the bound on R, wve use the fact that 1 = (28 + 1)l

For the ferromagnet, &y = -2|hi « Thus, provided
a8 > L§ (ferrcmagnet) (k.19)

(1.50) and (1.51) are established for £ sufficiently large. For the

antiferromagnet, e, > -2|A] (1 +1/k8) . Thus, provided

=1

A > & + 8 {antiferromagnet) (L.20)

{1.50) and (1.51) are established for £ sufficiently large.

The final estimate for the ferromegnet le obtained from (L.6)-(4.8)

and (1.51) . Choose n= (1 +a)/(l -a) < 2/{(1 -a) . Thus
del+alfa < 1. Chooss &m=xit™3
-1/2

ufl'ﬂlst"xj 116 ¢ K2 gyig can ve done uniformly in S > 1/2 .

where K 1is chosen such that

For sufficiently large B , nA < 1/40 . Furthermore, with this choice of

A& , H+ *R_ . Hence

1n < VI < e (et (.21)

i+ -

which tends to zero as B tends to infinity. Note that there is a H'IH 5



- 64 -

instead of a B dependence in (L.21) . This completes the proof of
IR0 for the quantum ferromagnet, except for the assumption that the

chessboard estimate holds.

The calculation for the antiferromagnet is more complicated. We
1/ ]|

—rﬂ.

have to combine (L4.5) with (1.51) . As @+ =,R_ (B, &)
provided £ < 1, by (1.51) and (L.5) . The problem resides in
R_ (B, 4) . This will not go to zero as 8 + = , but for small
enough a (depending on 5) , which we call uEIEL we can make
R_(8, #}Hlﬁl

smaller than any given member, say w . Choose w such
that (4.1) is satisfied. We omit details, but note that a_(S) tends
to 1 as 5 tends to infinity.

C. Estimate of the Spontanecus Magnetization

Consider the order parameter which satisfies the previocusly derived

inequaltiy
o (B) > & - 6e (1.24)

provided <P * P> < /2 wnd < Pn‘ﬁ » < ¢ . Inthe classical

models (1) and (6) these inequalities hold for all € » 0 and & < 1

it 8 1is large enough. This follows from chessboard estimates applied

to < :Pu"ﬁ' > , and the results of section IV . Thus alB) — 1

as B—+=,

&
For the quantum antiferrcmegnets (3) , (6) , an estimate on -fP;

>



oy

can be obtained using chessboard estimates and exponential localization,
ss before, with the following result: Givem € » D , & <1 and a < 1
there exists an S{e , 6, a) < = such that (1.24) holds as B + =

for 85> 8(e , 8§ , a) . For the ferromagnet (4) , chessboard estimates,
if they could be shown to be true, would easily yleld ofB) —+ 1 as
B+w forall 5 and all a <1 . Without using chessboard estimates,
wve can show that iP:G?-Du B+= forall &§<1 and all a<l .
This is proved by meanz of the following thermodynamic ergument: It is

sufficient to show

1:{5:}21- - 1 ns Bew
By the Schuwarz inequality and translation invarisnce

5% qg.H5 sop 27y <’ &f >
|i-0]=2

This latter quantity is half the II:li - energy per site. The ground state

has the property that E-E*'-'E: S;:- = 1 forall 1,3 - If

5¢ 15:3:; —~4+ 1 as B+= , for |i-0|= 1, then the free energy

would not approach the ground state energy as B += ., This, it is easy to

see by the previous arguments, would be a contradiction.
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