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I. Summary of Results and General Strategy of Proofs.

One of the main purposes of this paper is to explain a general
method for proving the existence of phase transitions, in the sense of long
range order at sufficiently low temperatures, in classical and quantum
lattice systems. In principle, our method can be applied to arbitrary lattice

systems satisfying reflection positivity (a condition closely related to

the existence of a self-adjoint positive definite transfer matrix),the

groundstates of which are essentially finitely degenerate (e.g. the space

of groundstates decomposes into finitely many subspaces labelled by a
discrete order parameter, sometimes related to a broken discrete symmetry

group).

Our method is inspired by recent work of Glimm, Jaffe and Spencer

L

concerning phase transitions in the (¢ )2 quantum field model, . In
this paper their ideas are extended in two ways:

1. We systematize the use of reflection positivity and chessboard

estimates in obtaining upper bounds on the statistical weight of contours arising
in a Peierls argument and we show how to apply these methods to guantum

lattice systems. This reduces the proof of long range order to estimating

a ratio between a constrained partition function and the usual partition

function. (This is basically a thermodynamic estimate).

2. We introduce the principle of exponential localization in order

to derive upper bounds on constrained partition functions. This principle is

particularly useful in the analysis of quantum lattice systems.



Reflection positivity, originally inspired by work of Osterwalder
and Schrader ,» and the principle of exponential localization are
useful tools in contexts other than the theory of phase transitions.

In Section I.A we introduce six different classical and quantum
mechanical models on the two dimensional square lattice in terms of which
we develop and illustrate our general method. A summary of our main results
concludes that section.

In Section I.B we recall the connections between phase transitions
and the occurrence of various forms of long range order (LRO) at sufficiently
low temperatures.

In Section I.C, D and E we present the main ideas behind our general
method; (Section I.C contains a convenient variant of the Peierls argument,
essentially identical to the one of ; see also ).

In Section IT we establish, (or review) reflection positivity for
five of our six models, the exception being the quantum Heisenberg ferromagnet.
We prove a generalization of the H6lder inequality for traces which,when

combined with reflection positivity, yields the chessboard estimates. They

extend constructive field theory estimates of .

In Section III we introduce the principle of exponential localization

and apply it to our models for the purpose of estimating constrained partition
functions. This is an expansion of the idea used in

In Section IV the proofs of our main results are completed by
combining the estimates of Sections I.C , II and III . Sections II and

ITT contain results which are of some interest in their own right: Theorems



2.1, 2.2, 3,1 and Corollary 3.2. The reader can understand their statements
and proofs without being familiar with the rest of this paper.

Next, we describe the models studied in this paper in general terms
and recall some typical aspects of two dimensional lattice systems .

Two facts are well established about two-dimensional (quantum or
classical) lattice spin systems with short range interactions:

(i) The Ising model has a first order phase transition (i.e.
long range order for large B = (kT)—l ); for all values S = 1/2, 1 ,
of the spin.

(ii) Models with continuous symmetry (e.g. the isotropic Heisenberg
models) have no such ordering. The proof of this is due to Mermin-Wagner "
Mermin and Hohenberg » (MWH) . Thus, a natural question is whether
the anisotropic models have LRO for all values of the anisotropy parameter,

o swith 0 < a <1 . For the classical Heisenberg (H) model this was

proved recently by Malyshev [L] . Kunz, Pfister and Vuillermot later gave
a simplified proof for the planar rotator. Ginibre [E] and Robinson [T]
proved LRO for the quantum Heisenberg ferromagnet for very small o .

In [B] we announced proofs of LRO for a variety of anisotropic
models: in particular for the quantum ferromagnetic H model, for all
o < 1 . Subsequently we became aware of a flaw in one of the lemmas for the
ferromagnetic model. This is basically the same flaw as in the announced
Dyson, Lieb and Simon [9] proof of LRO for the three dimensional H model.

The other results stated in [8] are correct. Here we will present the



details of the proofs, including the part of the proof for the ferromagnetic
H model that is correct. It is hoped that before very long the missing piece
of the puzzle will be filled in.

An obvious remark has to be made: All the models we consider have
no LRO at high temperature, a fact which can be proved by high temperature
expansions, for example. Since LRO implies the existence of a spontaneously
polarized state, our proof of LRO at low temperature implies the existence

of a phase transition.

The models discussed here are all two-dimensional but, as in the
usual Peierls argument [23], all our results and methods can be extended to higher
dimensions. They can also be extended to some other lattices, e.g. the
honeycomb lattice; see [12].

Some of our results were reviewed in and . Additional

applications of the ideas presented here are to be found [10], [12] and .



I.A. Description of the Models and Main Results

All models are on the square lattice Z s and have only nearest

neighbor interactions. Thus Z means a sum over nearest neighbors, each
<i’j>

term being included once; H 1is the Hamiltonian.

(1) Classical N-vector Model (N > 1)

k

1.1)
s } (

N
H= -7 { si sl +a J s* s
<i,3> J k=2 1

Each Si is a unit vector in IKN » uniformly distributed on the sphere.
(More general rotationally symmetric spin distributions could be accomodated

by our methods.) Note that in this classical case, the ferromagnet (minus

sign in (1.1) ) 1is equivalent to the antiferromagnet (plus sign) by reversing
the spins on the odd sublattice. This is not true in quantum models.

Our result in this case is that for every o < 1 there is LRO at

low T . In other words for every o < 1 there is a Bc (a) such that
there is LRO for B > Bc(a) . Our estimate on Bc(a) is
=1
B (a) = 0((1-a)) (1.2)
The MWH result is that B (o =1) = , Our proof is simpler
Cc

than Malyshev's [E] .

(2) Classical Anharmonic Crystal (AC Model):

The Hamiltonian of this model is given by



where xi is the coordinate of an N-vector classical oscillator bound to
site i , with apriori distribution dN X 3 ¢ 1is some continuous,

anisotropic interaction potential,

¢(X 5 Y) = ¢l(x) i ¢l(Y) + ¢ (x s Y) >

2

where ¢l > 0 is a one body potential, and ¢2 is a two body potential.
In other words we are considering some sort of anharmonic,
anisotropic classical crystal (resp. a Buclidean lattice field theory). We

will prove LRO at high £ under the following assumptions on ¢

min  ¢(x ,¥) = e
X,y
occurs for x and y in the same direction, (Typically at x =y = X
for some x_ # 0) . But if x* and yl (the 1l-components of x, resp. y )

have opposite signs
¢(X s Y) 2 €0 +a+ A(¢l(x) + ¢l (Y)) >

for some o > 0 and some A > 0 with the property that for sufficiently

large B

J B SN o .

Examples of such potentials are:

2
Y- 1 =i
1. ¢, (x) “af gxh - %(x )+ (6hg) ™ , for some g>0, ¢, (x,y) =
V(x - y) , where V(x) is some strictly convex function with minimum at

x =0 .



2. ¢(x) %8 yx® |, ye«1, 4, (x,y) = Vlx-y), vith
e.g. b o1,1,°
V(x) °= gx - E—(x ) , for some g > 0, (or V an arbitrary continuous
function with two sharp minima at x = i(%l S ¢ RPN » T 1
3. ¢l(x) = vy log (|x| + 1), ¢, as in example 2 .

Examples 2 and 3 (of anti-ferromagnetic type) are not of the
general form of model AC , but can be brought into this form by replacing

X, by -X; on one of the sublattices.

Remarks: It is of interest to consider also the case where ¢l(x)
is replaced by const. B—1¢l(x) . Then these models certainly do not have
LRO for large B , as can be shown by a high temperature expansion.

The symmetry ¢(x , y) = ¢(-x , -y) is not crucial for our
arguments; see also 10 12| . The main point of the study of model AC
is that exp[-6¢2(x,y)] is not required to be of positive type. Next
could

nearest neighbor interactions (coupling x(m ) with x(

m+l nil))

be included.
Physically more interesting models of an anharmonic crystal would
be obtained by setting ¢l(x) = 0 and assuming that ¢, is translation

invariant. Our methods do not apply to such models.

(3) Quantum Antiferromagnetic Heisenberg Model:

H = 8% = 52 [ + o®¥] (1.3)



Y = § (st sF + &7 &) ; (1.4)
iy i
s = 1/2 ,1, 3/2, ... is the total spin at each site. We will prove

that there is IRO at sufficiently large B and small o . For each S
there is an a(S) and Bc(a) such that for o < a(S) and B > Bc(u)
there is LRO. As S —>® , a(S5) — 1 . We do not know if there is

LRO for all o <1 when S is finite. This is an open problem. Because

the 8 — « 1imit is the same as the classical model » Wwe have here
a generalization of the Malyshev result.
There is an equivalent form for (1.4) which is more convenient

for our purposes, namely

B = - s? g”
<i§J> . J
- X X T TP
BY = - J {s; sy + (is])(isy)) (1.ka)

<i,J>

This is obtained by making a rotation of m about the y-axis for the spins

Z

X
on one of the two sublattices; for such spin operators s% — -8 ST -s* .

s¥ — -8¥ . 1In this representation all the terms in (1.3) are then of the
form - (real matrix at i)(real matrix at j). Then reflection positivity,

as discussed in section II.A , holds. See [9] for more details.

(4) Quantum Ferromagnetic Heisenberg Model:

H = H = -H . (1.5)



The announced result [8] was that there is ILRO for all a < 1
when B 1is large enough (uniformly in S) . Unfortunately we cannot prove
this because the proof of reflection positivity (Section II) is missing,

but the second stage of the proof is correct and is given in Section III .

(5) The two quantum models ean be modified as follows:

e = z (S? _ Sz) 2
<i50> 00
Y o= ] o (s* - K24 (¥ - )2
<y T =
H = s2 [#2 + o HY) (1.6)
This was mentioned in [8] . We will not give the details of the proofs here
which are straight forward variants of the ones for (3) , (4) . This model

is, however, interesting for the following reasons:

First, consider this model classically. When o = 0 there is no LRO
for any B by the Brascamp-Lieb argument . Refined statements about
exponential clustering were proved in . When o =1 there is no
IRO by MWH . We expect that there is no LRO for any 0 < a < 1 and
any B .

However, the quantum model has a phase transition. In view of the
foregoing remark, it is not surprising that our method yields the following
in the ferromagnetic case (assuming reflection positivity): For a < 1
there is a Bc(a , S8) , with LRO when B8 > Bc(a , S) . However,

Bc(a ,8) = ag S—® or ao—>1.
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(6) Quantum and Classical xy Model :

For convenience we take this model in the form
H = -8 1 (s 5y + a5 8} (1.7)
<1’J)

This is the ferromagnet. However by making a notation by m about the
y-axis for all spins on one sublattice (as in model (3)) , we see that the
antiferromagnet (defined with a + sign in (1.7)) is equivalent to the
ferromagnet. See [§] for further details. For this model, as given by
(1.7) , reflection positivity does hold; (see Section II.A and use the
standard representation in which Sz and S* are real matrices).

Since the results and proofs for this model are the same as for the
antiferromagnet (model (3)) , resp. for model (1) , we will not give

further details.



T

I.B., Remarks about Long Range Order

Let < - >, be the Gibbs state of a system in a bounded rectangle
A 61352 with periodic boundary conditions, at inverse temperature B . The

system in the thermodynamic limit , A+ 212 , is said to have LRO if

o(B) = 1lim 5 <mﬁ2>h > 0 , (1.8)
A Z
where my = lil L m, is the magnetization, and m, is defined, in the

1en * .
different models, by

S |
(1) m, = o

_ .1
(2) m, = xg

i, + i

_ -1 1 2 z

(3) m = s7(-1) S5
(this is the staggered magnetization)
(4) , (5), (6) m = st
i

The inequality o(B) > 0 implies that there is spontaneous magnetization;

see e.g. . It is well known that o(B) > M° > 0 is implied by

mymy 2 M > o, (1.9)
uniformly in A and j . We will establish (1.9) at small temperature.

+
For this purpose, define P;a to be the projection operator onto all

configurations satisfying my 2 § , resp. m, < -8 . Moreover
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P, =1- P, - P, (1.10)
is the projection onto all configurations for which |mi| < & . Finally,
- <
Pi(l) = P ; + PiA is the projection onto all configurations for which

m, < A . For all models, except the AC model, !mi| < 1 . Then

@, m> = J A A< a P (A) dPJ(A') >
> 6° (<p*8 133"’5:"’1L + <P;6 P36>ﬂ}
- { <P:;6 P35>ﬁ + <P;6 P:;"'j>ﬁ }
- &° <P;6 P<§ > (1.11)

The three terms on the right side of (1.11) are labelled I, II, IIT .

First we discuss II . Since, in all models, m and m,:j commute,
+ — —
forall 3, P p® < P P, for >0, with
) J = o J
+ +(6=0)
P, = P = 1-P,(0
) ) j() )
P, = P,(0)
3 3 (1.12)
Therefore
+§ -6 + -
<P PJ > &£ < P P; >y (1.13)

The right side of (1.13) will be estimated by means of a new version of the
Feierls argument inspired by work of Glimm, Jaffe and Spencer , and will

be shown to be small, for large B , in the following sense which depends on



e

the model; For some € > 0 and B large enough

€
< P PJ > < 3 (1.14)
uniformly in A and j . Thus,
IT > -e . (1.15)

Next we discuss term III on the right side of (1.11) . By the

Schwarz inequality for the state < - >

A
<§ _<§ <§
B RSB (1.16)
and we have used
<§,2 <§
P = P
( ) ) )
and
<§ <8
<PJ >A = <Po >J'L .
which follows from the translation invariance of < - >A . We will prove by

purely thermodynamic considerations that for some € > 0 and sufficiently

large B (depending on the model)

< P>, < g (1.17)

Therefore

III > -e6° > -e (1.18)

Finally we discuss term I on the right side of (1.11) .



+6 +§ +8 -6 <§
<P P, > = <P 1 ~-P - P >
° J oA ° ( J J ) A
= < P+6 > - < P+6 <6 >
o A 0 J A
. P+G P-d 5
0 J A
+8§ <§ +5 _-§
> < P > - < P > =« < P P > B
. o] A o] A o] J A ( 9)
In all the models considered in this paper there is a symmetry taking Eﬁ
to —mJ » for all Jje A . Therefore
) _ +6
< PO )A = < P0 >ﬂ
so that
+§ I 1 <8
< P0 S U Po >0 (1.20)
Combination of (1.1L4) , (1.17) , (1.19) and (1.20) yields
+§ _+6 1
sSBS PJ > > 5 - 2 (1.21)

uniformly in A and j , (provided B is large enough, depending on the

model). Therefore
I > 82 - L% . (1.22)

Insertion of (1.15) , (1.18) and (1.22) into inequality (1.11) gives

<m_ m, >, > 82 - k&% - 2¢ > &% - 6

o My 7a , (1.23)

uniformly in A and J . Therefore



=5 =

o(B) > 62+ 6 . (1.24)

In each model we will choose ¢ and € to depend on B in such a way that,

for sufficiently large B , 52 - 6e > 0.

The most difficult inequaltiy to prove is (1.14) . The strategy
will be explained in three steps, C , D and E below. The inequality

(1.17) is relatively simple and will be given in Section IV .
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I.C. The Peierls Argument

In this section we describe a general form of the Peierls argument.

We consider a finite classical or quantum lattice system in a square

2 . S .
AN <Z”™ . For convenience we wrap A on a torus, but this is inessential

for this part of the argument. At each site i el we are given two

+
orthogonal projection operators, P, , with

J

P, + P, = 1, for all J . (1.25)

In the following <=> = <= >A . We propose to derive an upper bound

+
on < Pm Pn >, where m and n are arbitrary, fixed sites in A ,

and m # n . The first step is the trivial identity

+ - + .- + -
SOELRERE= RSN el P J 2 R (PJ + PJ) >, (1.26)
m#J#n

an immediate consequence of (1.25). We now expand the product on the right
side of (1.26).

Definition 1 :

A configuration ¢ 1is a function on A with values in {+,-} , and

ec(m) = +,c(n) =-. Acontour Yc A is a family of nearest neighbor
pairs | <il s dy 7 s e s S 1,032 2= L, 6, ... } which

decomposes A into precisely two disjoint subsets

nm = A (y) o {il s e s ip ,m } , and



e

A = A (?)3{31,...,J£,n} with

Given a configuration ¢ , we let T(c) denote that class of all contours

Yy = (<1, 3, > .. » <1, , J, >} with c(ik) = +,ike,nm(~r),
c(,jk) = = € hn('\r) s,k =1, ..., & . Since, for any configuration
¢, clm) =+, c(n) =-, we conclude that, given an arbitrary c ,

there exists a contour y(e¢) € T(c) with the property that there exists

a connected set A C A, (y(c)) such that m e A, s c(i) =+ , for all
ied,, { ) } < Ac . (A set X is connected if any two

sites 1, J in X belong to a chain { i =4 , i, , ... s iP5 Iy = }
< X  such that I'LR and 124_1 are nearest neighbors, & = 0, ... , k)

Using Definition 1 we get from (1.26) by expanding

<P P >-= EQEHA PC§J)>

-1 1 oeWINL e
Y e y(e)=y) Jei
Next, we note that
* cli
0 < P £ 1, [Pil), Pc;‘”] = 0,
For i#J , arbitrary ¢ . Hence, for YC X ,

o« 1 P < o1 W) oo that
jex Jey Y

J
0 < it Pc('j) < i pc(J) < 1 (1.28)
“ \jex Y T \Jey y -
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for all ¢ . Therefore
) I PC(J)
{c: y(e)=v} jen 9
< 1 ped)
T {e: T(e) 3 v} jeh J
= P; P~ I P; PS
<i,J>¢ v
+ -
< 1 P. P (1.29)
<d,ppey Tt

Therefore we have the inequality

+ - + -
P P )< I P, P (1.30)
<m ‘>" ;r <<i,3>£1' S

Let |y| denote the number of nearest neighbor pairs in y , (the "length"
of vy ) .

Theorem 1.1 : (Peierls argument)

Suppose that (for large enough |A| )

I P; 120 < e'KlYl R (1.31)
<i,J>ey

for some constant K > 1n 3 (independent of A ) . Then

28-2 -28K
e

- - oo
<P P > g z 22 3 < w (1.32)

=2

for arbitrary m and n in A (and all sufficiently large squares A ) .

Remark: The assertions of Theorem 1.1 do not depend on the size of A and
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extend without change to the infinite system A = 232 ; (see the subsequent
proof and [10 , Section 3]).

Proof: By Definition 1 the length of a contour is always even. The smallest
contours are {<m,jl> > <m,J5> s <m,33> . <m,jh>} and {<il,n> S ey <ih,n>} R
i.e. have length L4 . Hence, by (2.7),

) T P, Pl ). (1.33)

<
=2 {y : |y|= 22} <i,j>e€y 1o

A
g
av)
I
v
Il ~1 8

(When A is finite these sums are finite). Given some fixed length 2% ,

well known combinatorics shows that there are no more than 2(2-1) 329’-2

contours of length 2% , provided A 1is large enough, depending on m

and n . (The factor 322"2 comes from a standard '—————f“*“'* = argument
and the fact that all contours consist of one or two closed pieces. The
factor 2(%-2) comes from the fact that each contour must separate m from
n) . Theorem 1.1 now follows from (1.33) and the inequality XK > 1n 3

24-2 -20K
e

which guarantees that the series 2(2-1) 3 converges.

l~—8

=2

Q.E.D.

Theorem 1.1 has the following

Corollary 1.2:

Given € > 0 , there exists some finite K(e) such that, for all K > K(e),

E
m n 2
Remarks.

1. The relevance of Cordllary 1.2 for the proof of long range order has
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been explained in Section 1.B.

2. Theorem 1.1 and Corollary 1.2 can easily be generalized to the case

of more than two positive operators (e.g. projections) P% SaRReteT PM .

i
say, with

+ < -
model (4), with PY = PO, P2 = P, B3 - % | 1Tnis extension
i i i i i i
is important in models with more complicated phase diagrams involving at
least M > 2 pure phases ; (see e.g. , Sections 3 and 8) .
3. Clearly these techniques extend to arbitrary dimensions > 2 and other

than simple, cubic lattices. See also



o]

I.D. Reflection Positivity and Chessboard Estimate

In Section I.C. we have seen that in order to prove

uniformly in m and n , it is sufficient to show
I ptopT ) < oKl (1.34)
ey /)T
for some constant K = K(e) >> 1n 3 . Here we want to sketch how
(1.34) can be reduced to a purely thermodynamic estimate.
Let A be a square with sides of length N = M, M=1, 2, 3,

We define a "universal projection"

M-1 N-1 " _ n
P = Il Il P P m P
A o =0 (bmyn) ° (4m+l,n) P(hm+2,n) (km+3,n)
(1.35)
The following self explanatory figure illustrates equation (1.35)
+ |- -1+ +]-1-1*+
+ |- =1+ +|=-]-1H%
+ | -1 =-1+1+]-1-1H+ ’f‘ﬁ
+ | -] -1+ +]-1-1H+%
Fig. 1 — N=8,M=2
+ |- =1+ ]+ ]|-1-1H% '
+ | ==+ +]-1-1H%
-l -+ 1+ |-1-1+%
+ |- =1+ |+ |=-1-1H%




- P2

One of the key estimates in our approach to proving LRO 1is the inequality

fiA

<ij>ey ¢

which we shall prove for models (1) , (3) , (5) (antiferromagnetic case)
and (6), i.e. all models except the quantum ferromagnets and the anharmonic
classical crystal, model (2). For the former, we believe that (1.36) holds
but we have no proof; (1.36) will be assumed to hold in the sequel.

For the AC model, the definition of the universal projection has
to be modified: Let A Dbe a square with sides of even length N = 2M .
We define

M-1 M-1
c _ + -
Pﬁ - mzo nzo P (2n,2m) P(2n+l,2m)] (1.37)

The following figure explains the definition of P:C

+ = B = + = + -
+ - + - + - + -
N=8 , M=k
+ = + = .- — + -
+ - + = + = + -

In the case of the anharmonic classical crystal we prove

) o\ < < phc LIzl (1.38)
<i, ey
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(This inequality also holds for the classical N-vector model, model (1) )
Our proofs of inequalities (1.36) and (1.38) are based on the notion of

reflection positivity (or 0-S positivity) which we now explain:

We choose a pair of lines & parellel to one of the coordinate axes, cutting
A into two congruent pieces A+ and A_ (Note: % is a pair of lines,

because A 1is wrapped on a torus). In models (1) , (3) , (4) and (5)

the lines & are between two lattice lines, so that A_»n A_ = 9§,

whereas in model (2) & consists of two lattice lines, and n+ n h_ = 2 .
Let 62 be the reflection at 2 . Let F = F(m)A be a complex-valued
function of all the m,’s (see Section 1.B) , with fe€ A . We define

eg F = 92 F(m)ﬂ_ to be the function obtained from F by substituting

mg 3 for mJ . Reflection positivity is the inequality
2
F)> 2 0 , (1.39)

where F is the complex conjugate of F . A somewhat more general inequality

(also called reflection positivity) is discussed in Section II ; as an
example we mention that in the N-vector model, (1.39) is true for arbitrary,
complex-valued functions F of { gi : i€ A+ } and both choices of &
(between two lattice lines or coinciding with a lattice line).

Reflection positivity (1.39) yields the following Schwarz inequality:

If F and G are functions of (m) then

A,

|<F(e£§)>f2_i_<1i'(e F) > <G (6,G)>. (1.%)

L
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Next, we indicate how (1.36) , resp. (1.38) follow from (1.40). Let
Yh be all pairs <i,j> of the contour vy for which J - i points in the
l-direction. Such pairs are called "horizontal". Furthermore

Yy = Y \‘Yh denotes all "vertical" pairs in y . For <i,j> ¢ Y, » let

i ~ J denote the site with smaller 1l-coordinate; for <i,j> € Yy o iAj
is the site with smaller 2-coordinate. Suppose that reflection positivity
(1.39) holds for reflections 81 at lines & ©between two lattice lines.

Then we define

Th,e = { <1,j>s_yh : 1A J even }
Yh,o = { <i,j>e Yy ¢ i Aj odd } = Yh\ Yh,e
Similarly Yy e and Yy o are defined. By the standard Schwarz inequality
E] ]
for < - > we have
i PZ P
<i,J> € v
B 1/2 " _ 1/2
< Il P P Il P, P
<ij>e¢v J <i,j>ey 1o
? h 8 v
+ _ 1/k
< I I P, PJ (1.41)
o = h,V <i,:j>c-*ra B
B=e,0 ’

To each factor on the right side we now apply reflection positivity (1.39)
and inequality (1.40) repeatedly, for many different choices of & . This

yields
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2 |y, gl /1]
I P, P < < py>  E (1.42)
13> €v, g

This inequality is a special case of a general corollary of reflection

positivity, called chessboard estimate [19] , which we prove in Section 2.

Clearly, inequalities (1.L1) and (1.42) yield the key inequality (1.36) .

In the classical, anharmonic crystal, model (2) , we first decompose

Y into two pieces, consisting of horizontal and YV consisting of

Yh

vertical pairs. For <i,j>e.yh , let (i,j)2 denote the 2-coordinate of

both i and J , for <i,j>evy , let (i,j)l be the 1l-coordinate of

i and j . We define
Yh,e = { <i,j>¢ Y, (1.})2 even }
Yh,o = { <i,j>¢ Yy, (i,j)2 odd }
YV,e = { <i,j>¢ A (13)1 even !}
YV,O = { <i,j>¢ Ty ° (13)l odd }

Applying again the standard Schwarz inequaltiy for < - > , we obtain

. _ 1/b
n P, P < I || P, P (1.43)
<i,Jrey T :

To each term on the r.s. of (1.43) we apply the Schwarz inequality (1.40)

repeatedly, for all allowed choices of reflections GE at lattice lines & .

This yields (see Section II)

2|y, gl/IAl
n > P > (1.44)
<i)>e v, 8
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The key inequality (1.38) follows from inequalities (1.43) and (1.k4).

Further details concerning reflection positivity and the chessboard estimates

(1.42) and (1.44) are given in Section II .



ST

I.E. Estimate of < PA > and Exponential Localization

In this section we sketch the main ideas of how to estimate

_ AC _ AC
R, (B) = < P, > and RA (B) = < PA > .
By definition of < - >
(AC) Tr (exp[-BHA] PiAC))
Ry (B) = . (1.45)
Tr (exp[-BHh])
where RﬁAC) means either RA or Ric . Here Hﬂ is the Hamiltonian of

the model under consideration, and Tr is the usual trace in the quantum
mechanical models, and in the classical models, an integral with measure the

product of the single spin distributions over all sites in A . Let E, (de)

A
denote the spectral measure of the Hamiltonian HnL . By the spectral theorem
Tr (exp ["BHA} C) = e-Be Tr (Eh(de} ) (1.46)
e
()
where e = = e/ (A) = infspec Hﬂ is the groundstate energy, and C is

an arbitrary operator, resp. function. We will choose some positive number
A = A(B) , depending on the model under consideration, and decompose
RéAc) (B) into two pieces
e +a|A|
0

RAC) (g,0) = z,(8)7 e 1 (5 (ae) A% )
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R (8,0) =z () o (g a0 B,
e, +A|ﬁ]
where ZA (B) = Tr (exp [-BHﬁ]) - J e PE 1p (EA (dae)) (1.48)
e
(o]
is the iti i i (aC)
partition function. We estimate R (B,A) Dby
RiAC) (8,8) < ZA(B)_l exp { -8 [eo+a|A[ 1} Tr  (E,(de))
e0+ﬂlA|

exp (-8 [e+alA] 1} (r(1) z,(8)7") (1.49)
The Peierls-Bogoliubov inequality will be shown to give

Tr(1) / Z, (B) < exp B [eo+%ﬂ|ﬁl} . (1.50)

for B sufficiently large. Thus

RiéC) (8,0) < exp{-8 A|A| /2} (1.51)
Next we consider REAC) (B,A) . In the classical cases this will

vanish for the following reason: A will be chosen sufficiently small so

that PS?C) will be a projection onto configurations with energy greater
than e, + A ]ﬂ| . Thus the integral for REAC) (B) will vanish identically.

In the quantum cases, the situation is more complicated. Although

PA will be a projection onto states whose average energy exceeds EDNt A|A|,

the integral does not vanish, because PA will have nonvanishing matrix
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elements in eigenstates of Hy with energy <e =+ AlA] . To be explicit,
let e, 5_91 = be the eigenvalues of HA with eigenvectors ¢0 - ¢1 .
Then
-1
R = ' -
_ (B,4) Z,(B) ?a c; exp [-Be,] (1.52)

where Eé means a sum over 1 such that e; £ &, + aln] , and

c, = (¢ , B ¢.) . (1.53)

Now Ci is independent of B , and therefore R_ (B,4) does not
necessarily vanish as exp [-B(const.)] . What we have to show is that
Ci — 0 sufficiently fast as 1 W0 . Then we can hope that R_ (B,4)
goes to zero sufficiently fast as B — = , for a suitable choice of A .

The estimate on Ci , carried out in section III , comes about
in the following way: We write Hn_ = A;\* Bﬁ » Wwhere B, is suitably

small compared to Aﬂ. ,» and such that is an eigenprojection for Aﬂ

P
A
+

onto A;\ eigenvectors having energy > e, *n a|A| for some n. In model

(3) , for example, A = 8-2 H? . If %\ were zero then Ci = 0 for

e j_eo + ﬂ|h| . The principle of exponential localization will tell us

that A eigenvectors of A energy greater than e +n AlA] 5 (n 2 2)

when expanded in the ¢i , are strongly (indeed, exponentially well in |A| )

localized around ¢, with e, > e + A|A| . This, in turn, will lead to

C, bei sma. 5 .
;  being mall for ei €,

Acknowledgements: We thank B. Simon for some very useful suggestions.
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IT. Reflection Positivity and Chessboard Estimates

IT. A. Reflection Positivity

In this section we recall the proofs of reflection positivity,

inequality (1.39), for the models studied in this paper. For the classical

N-vector models, reflection positivity is shown in [20] . In terms of a
transfer matrix formalism it is used in [10] . For the quantum anti-

ferromagnet and the quantum mechanical xy model (models (3) and (6))
reflection positivity was discovered in [Q] . The proof given there also

applies to the classical N-vector models.

First we consider the classical, anharmonic crystal, model (2) ,
for which (1.39) 1is new. We choose a pair of lattice lines & cutting A

into two congruent pieces, A+ and A_, with ﬁ+ n A_=2. Let

A, = A N\ 2. The N-vector oscillators attached to sites in A, have

coordinates (y)+ = {yJE-E{N : Je A} . The coordinates of the N-vector

oscillators attached to sites in & are denoted by
- N
(z) = {zJé R : je€g} .

(z) , we define 6 F to be the function of

for yj , for all ] e'Ai -

Given a function F of (y)+ R

(y) , (z) obtained by substituting Vg

J
'}
i.e. BEF is the reflection of F in the lines &£ . The Hamilton function

HA of the AC model is given by



H = ¢(x s X )
g <i,j>c A * J
= o(x, , x,) + ¢(x. , x,)
d,ppen, b pen 1
— {o(x, , x,) + o(x s X, )}
<i§J><:A+ 1o Op1 7 8y

= B ((y), » (2)) + (6B) ((y)_, (2))

Let de be the a priori distribution of a single oscillator, and set

aly), = m. a'y

E Jeh | J

a(z) = 1 a'z,
JE2

Let F=F ((y),_, (z)) be an arbitrary function localized on A_ . Then

+ ]

< FEBEFS >
-1 ~FHy
= 2, (8) J atz) aly), aly)_ e M E((y), > (2)) (G ST2D)
-8B((y), ,(2z))
-z, () Ja(z) {[d(y)+ e T Ry @)
-g(8B)((y)_,(2))
<t | aty)_e R ()5 (z)) )
- 207 [ate) | [ at,
-88((y), ,(2)) 2
N P, ) | 2.1)



<F(6,F) > > 0 , (2.2)

()

which is reflection positivity. Clearly, this form of reflection positivity
also holds for the classical N-vector models. Next, we consider the

quantum mechanical models and the classical N-vector models. We let 2

be a pair of lines between lattice lines cutting A into two disjoint ,
congruent pieces, ﬁ+ and h_ . Let JZJ deno;e the family of all bounded

functions of the spin §5 ("algebra of observables" at site j ) . We define

& e X, ,

+ jen, 3
and
O - & e O
Given some Be O , we define @B = BiB by
(eB)((3),) = B((e3),) , (2.3)
where (g)A = | gﬁ : Je€ AN}, and
(88), = {S%j: Jj € A}

g for 8 , all Je A .
GEJ J

Clearly 6 defines an isomorphism from CT( + onto CV’_ (and conversely).

i.e. 6B 1is obtained from B by substituting

Furthermore we define

5= (0" (2.1)

to be the complex conjugate (not the adjoint) of B , for arbitrary B¢ O(.
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Following [9] we study Hamiltonians of the following general form:

H = B+o(B) - [ C.e (c,) (2.5)
i

* *
y > -+ are in & , (and B=B , C, =#C, ,

for all i , so that H is selfadjoint). The following result is a slight

where B , Cl Ga0 o

variation of Theorem E.1 of [9] .

Theorem 2.1: (Reflection Positivity)

Let Fe @a . Then

e (P R(6F) | ,

rr (e~ FH)

where "Tr" means the usual trace in the quantum case and an integral in

the classical case.

Proof: It clearly suffices to prove that Tr (e PH F(oF)) > 0.

By the Trotter product formula,

e = lim G where
n -» =
B B =
"'_B —— eB = n
G = (e® e® [1+2 TcoeT 1) (2.6)
n n % 7i i
1
Thus, Theorem 2.1 1is proved if
T (G F (6F)) 2 0 , foralln. (2.7)

To prove (2.7) , note that all elements in ff*_ commute with all elements
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in 0( . In (2.7) all elements with a 6 (which are in & _) can
therefore be moved to the right of all elements without-a 6 (which are in

J(+) . This shows that Tr (Gn F(6F)) is a sum of terms of the form

Tr (Dl...DmF 6D ...enm 8F ) = Tr (D ...DmFe(Dl... N ))

1 1

Tr (D

. D F) Tr (D, ...DF) ,

1" 1 m

with D, , ... , D in C%’ . Here we have used the obvious facts that
m +
Tr (AB) = Tr (A) Tr (B) , for A&OC_; , Be OC , and Tr (6A) = Tr(a) ,

for all A€ & , - Finally

Tr (D D, F) Tr (D.

NEERE g +-+ D F)

= Tr (Dl...DmF) > 0

by definition of complex conjugation (B B) .
Q.E.D.

We leave it to the reader to check that the Hamiltonians Hﬂ of models (1) ,

(3) and (6) are of the form (2.2). See also [9). Hence Theorem 2.1

proves reflection positivity, inequality (1.39), for these models. However,

for the quantum ferromagnet, models (4) and (5) (ferromagnetic case), Hy

is not of the form (2.2) (becuase of the 83.1’ Sg terms) , and the proof of
Theorem 2.1 breaks down. At present, no useful form of reflection
positivity is known for these models. In the sequel, we will assume that
inequality (1.36), which follows from reflection positivity (as shown in

Section II. B) does hold for the ferromagnetic models, even though we have no

proof of it.
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IT.B. Chessboard Estimate

Our goal in this subsection is to use reflection positivity to prove
inequalities (1.36) and (1.38) (chessboard estimate). We prove a general

theorem that includes (1.36) as a special case.

Theorem 2.2: (generalized H8lder inequality) Let 01’ be a vector space with

antilinear involution J (to be thought of as complex conjugation). Let w

be a multilinear functional on ﬁZx2M , for some integer M > 0 , with the

properties

(c) w (Al Sy Aam) = (A2 s oeee s Ay Al) (eyclicity)

and

(8) The matrix K whose matrix elements K, are given by

iJ

Kij = w (‘mi’l i JAi’M , Aj’l RPN AJ,M) R
with A£ n &0 arbitrary vector in 57 sy forall %=1, ... 0, ,m=] , ... M,
is a positive semi-definite n X n matrix, for all n=1,2, ... ;

(Reflection Positivity). Then

M 1/2M
(1) o (A 5 «en s AQM) | < le m(JAJ s Ay s e s TAS Aj) ,
(chessboard estimate)
and
| 1/2M
(2) w(JA , A, ... , JA , A)

Al ]y ©

fa a gemi=norm on A/.
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Proof':

12 A Schwarz inequality:

Let B(( 0{>(M) be the vector space over the complex numbers spanned by all

o T T (L Hypothesis (6) tells us precisely that w defines an
inner product on é%i( 0(XM) . As a special consequence of the Schwarz

inequality for this inner product we have

1/2
u(Al soeee s Ay s JAL e, JAl)

1/2
x w(JAzM s oeee s I Bgg » oo o AQM) (2.8)

22 Proof of Theorem 2.2 for M = 2 :

This serves to exhibit the main ideas behind the proof of the general

case. By (2.8) and hypothesis (C) ,

1/2 ol 1/2

dDRIC RGN
1/2

lo(A,B,C,D)| < w(A,B,JB, JA)

=w (B, JB, JA , A)l/2 w (J¢ , ¢, D, JD)

w(B,JB, B, Jls)l/h w (JA , A, JA , A}l/h

1/4

<
[

1/4

X

w (Jc , Cc, Jc, C) w (D., JD , D, JD)

w (3A , A, 38, &Y% 5B, B, I8,

B)lfh
x w (d0Cc ,C, JdC, c)l/h w (JD,D, JdD, D)l/h

which is (1) ; (2) follows from the multilinearity of w and (1) .

32 The general case:

Since w is multi-linear and



s

w (JA A . JA A, ) = oA JA, , , A, , JA,)

3 23 S B ( J J it
by hypothesis (C) , we may assume that

w (JA, , A, , ... , JA, , A =] (2.9)
J 3 J J ) i
: -1/2M

forall j=1, ... , 24 ;3 (if not, replace Aj by m(JAJ,AJ,...,JAj,Aj)
. Aj) . We set JA'j = AJ+2M s J=1, ... ,2M . A configuration c
is a functionon {1, ... , 2M} with values in {1 , ... , UM} . Let

z Zmax | w (Ac(l) , Ac(2) S Ac(2M)) | , i.e.

&
z > | w (Ac(l) s e Ac(QM)) | , for a11 ¢ . (2.10)
Lemma: z =1.
Proof: For c¢ defined by
c (2m - l) = J+ 2M 3 c(2m} = j 3

e(r) > 0 Ae(am)
by (2.9) . Hence 2z > 1 . Thus, it suffices to show z <1 . Let ¢

be a configuration for which

I w (Aé(l) s s+ 3 A&(ZM))l — Z .
Let c¢(M + 1) =3 . Then, by the Schwarz inequality (2.8),

Z = | wiAE(l) s s g A§(2M)) I
) 1/2
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1/2
X W (JAé(zM), e JAJ , AJ R AE(2M))
1/2 1/2
<z w (JAE(EM), cee JAj R Aj . ey Aa(ZM)) , by (2.10)
12 1/2
= Z w (JAE(2M—1), v e s 5 JAJ 3 Aj 5 s s 5 AE{2M) 3 JAE(ZM)) s
by hypothesis (C)
3/k 1/h4
by (2.8) and (2.10)
; LY
-(m-1) -(m-1)
< g1™® W (JA, J A, 5 vue J JA, 3 A, L *, %, ...)°
= J g tjj “ SR °
M T o M
-m -m
1-2 2
< z w (JA, , A, , , JA, , A R
= d J J J)
by (2.8) and (2.10)
=1
= 21_2 s by (209) s
m-1 -2 o™
for some m with 2 > M > 2"°¢ . Hence z £ 1, i.e. 2 £ 1.
QcEaD.
To prove Theorem 2.1 , (1) , let c¢ be given by c(j) = j ,
j=1, ... ,2M. By (2.10) and the Lemma,
| w (Aiqy » +ov s AC(EM)) | = | w (A) » oee s By) I
< z = 1. (2.11)

The multilinearity of w and (2.11) completes the proof of (1) . Theorem



SR

2.2 , (2) follows from the multilinearity of w and hypothesis (6) (which
imply IlAl‘ZH > 0 and }|AA||2M = [a] ||A|]2M) and from (1) (which

= lally, + 1Bl

o

implies that ||A + BIIQM
Q.E.D.

To apply Theorem 2.2 to the proof of estimates (1.36) , resp.

(1.38), one makes the following identifications:

w(*)M(o}

A, — P, P, , with i , j nearest neighbors;

J 1

Theorem 2.2 must be applied twice, once in the vertical

direction and once in the horizontal direction. This gives (1.42) , resp.

(1.44) . We now must check that w ( *+ ) = < « > satisfies the hypothesis
of Theorem 2.2: Clearly I B is multi-linear in each B.j ’
er J

yielding multi-linearity of w .

Since we have wrapped A on a torus (periodic boundary conditions),

Il B - Il B H
<;c=ﬁ ;> jen 9*8
e N .

for arbitrary a This shows that w satisfies hypothesis (C) in both,
the vertical and the horizontal directions. Finally, hypothesis (6) of
Theorem 2.2 in both, the vertical and the horizontal directions, is an

immediate consequence of reflection positivity (inequality (2.1) , resp.

Theorem 2.1) . A more direct proof of inequalities (1.42) and (1.hk)

proceeds as fcllows; (we sketch the argument leading to (1.42); the case
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of the anharmonic crystal is treated similarly). Let Bh o denote all pairs
]
of horizontal nearest neighbors <i,j> (directed, "horizontal bonds") with
i~ j even . Let é} be an arbitrary, non empty subset of Bh e Let
2

| E}] denote the number of horizontal bounds in 69'. We consider the family

+ p- /2161
{ I P; By 6] .(95]3!]’&} i

<i,jpe@ *
+ -\ 12|6] -
Let 2z = max I B 5 and let {§ Dbe
g L\i.p0e6

some subset of directed, horizontal bounds on which the maximum 2z is taken.
Using translation invariance of < - > (corresponding to hypothesis (C) of
Theorem 2.1) and reflection positivity of < - > (corresponding to (6))
and applying the Schwarz inequality (corresponding to (2.8)) repeatedly,
as in inequality (2.11), in the horizontal and vertical direction, we

obtain
1/k|A|

<PA> .1 - 1/k ,

1/|n]
for some integer k>0. Hence =z < < Pﬁ > from which we

N
A

obtain (1.42) . Finally we remark that Theorem 2.2 can be used to give
alternate proofs of the general chessboard estimates of the last reference in
[19] (Theorem 2.3, periodic boundary conditions) and of (Lemma. L4.5).

Furthermore Theorem 2.2 implies the H6lder inequality for general traces

and the Peierls-Bogolubov and Golden-Thompson inequalities.
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ITI. Exponential localization

In this section we explain the difficult part in the required
estimate of RA (B) = <PA> , defined in (1.45) , for the quantum
mechanical models. We recall that in Section I.E. we have split R, (B)

into two pieces

R, (B) = R_(8B,8) + R (B, ) , (3.1)

where

R_(B,8)= 2, (B I, c expl-Be];  (3.2)

L
here za means a sum over all i such that eNs e A|A] , and
i

C. = (65 , P 6.) . (3.3)

1 1 1

The easy estimate of R, (B, A) is postponed to Section IV . In this
section we prove upper bounds on R (B , A) for models (1) - (6) . We
claim that, for the classical models, models (1) , (2) and (6)

(classical case),

R (B, A) = 0 (3.4)

for sufficiently small A . To show this we first estimate the minimum

5 (PA (AC)) of the Hamilton function H, restricted to the configurations

A

{3 : 38 <P, } (models (1) , (6) ) ,

resp. {x : xe€ PﬁAC } (model (2) ) .
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for models (1) and (6)

E) = -2 a - &1 . (3.5)
For model (2)
E ) = 2c [n] + (3.6)
Therefore
if A < (1-a) /2 (models (1), (6)) (3.7)
resp. A < a /2 (model (2) ) (3.8)
then R_ (B, 4) = 0

which proves our contention.
As already noted in Section I.E , (3.4) 1is false for the quantum
mechanical models, and we have to work much harder in order to obtain a good

upper bound on R_ (B , 4) . The idea is to show that c, = (¢. , P, ¢.)

i a

is very small for eigenvalues e of le‘1 close to the ground state energy
eo . Although PA is a projection onto states of relatively high Hz—energy,

(¢i » Py ¢i) does not vanish, even for e, very close to e_ , as it

does in the classical case.

ITI. A . Principle of Exponential Localization

The following general result will be crucial for our analysis.

Theorem 3.1 , (exponential localization of eigenvectors):

Let A and B be selfadjoint operators (typically finite, hermitean

matrices) on a Hilbert space fxf such that
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(1)

=

> 0

(ii)

I+

B < ¢4,
with 0 < € < 1 . Suppose that

(A+B)v = aw , |Jy]] =1.

Choose some p > A

Iv

0 such that

g = ep (p- l)-l < (3.9)

Let Pp be the spectral projection of A corresponding to [p , =) , and
)

Mp = Pp (a1l "eigenvectors" of A corresponding to eigenvalues

> p) . Note that (A - A) restricted to Mp > 0 . Finally, let

¢ e Mp be a unit vector with the property

a
(iii) { B (A - 1) } ¢ e Mp ,
for j=0,1, ... ,d-1, with 4d>1.
Then (¢ , ¥)| < ¢ (3.10)
Remarks: 1. Since B > - A , by (ii) ,
A+B > (L-€¢)A > 0, (3.11)

so that all eigenvalues A of A+ B are nonnegative.
2. Clearly the condition |B| < eA implies (ii) , but the

converse is false, as the example
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» 2 1o
A = 5 , B = s Bl =1, e=1
-2— 2 0 -1
shows. Hypothesis (ii) 4is all we need to prove (3.10).
Proof: By hypothesis,
(A+B)yYy = Ap, i.e. (A=A = By
Thus, for some 6 > 0 ,
. -1 .
v o= (A-2x+is) (By + idy) ,
so that
(6, w)| = |(6, (A=2r+i8)L (By + ioy))]
= |((A-2r=-18)"" ¢ , By + isy)]
Since ¢€Mp and A < p , by hypothesis,
1im (A-2-48)"Y¢ = (a-a)1 ¢ ,
6¥o
hence
6 ,0)] = | B@A-0Te, v)]. (3.12)
1.9
By hypothesis (iii) , {B(A - ) 7} ¢€:Mp , for J=0,1, ..., d-1.
Therefore, for d > 1 ,
(6, w)] = |(» Bla- S IS | (3.12')

and we can iterate (3.12') d - 1 times and then apply (3.12) . This
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yields
I " d-1
(6 , ¥)] = [(B (A -21) BB (A-2)"P } ¢, ) |
|(A":'J2 B(A - A)7t (P B(A - )7L Pp}d_ltt , 4172 )|
< ||a7/2 p(a-n)71/2 Pl ile(A—A)'lfe B(A—l)-ljepplld-l
x [1(a-0"Y2 4|1 1Y% || (3.13)
where we have used that [A , Pp] = 0. Now
|1a™1/2 B(a - 2)72/2 Pl < |1a~2/2 s /2| ||a/2 (a - 0)72/2 Pl
< € o2 (o - )12 o (e0)2,
(3.14)
||Pp (A - A)_l/2 B(A - 1)'1/2 Pp||
i 2
N el S T i |
< p (p- MNTle = o s (3.15)

and we have used the definition of Pp and hypothesis (ii). Finally

=024 ) = [la-0M2e 6 |1 <6 - 072 ]
(3.16)
and
11aY2 )] = [, a1Y2
s Q-2 , wIM?, w (o)

[ (1-¢)? }\]M2 < 01/2 . (3.17)
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since o = ep (p - A)_l < 1, i.e. A <p (1l =-¢€) . If we combine

JA-1/2 /2 -1/2  1/2 a

(3.13) - (3.17) we find |( ¢ , v )| < - 1) p €= o

Corollary 3.2:

Suppose N C.Mp is a subspace of Mp such that each ¢e N satisfies
hypothesis (iii) of Theorem 3.1 . If P is the projection onto N then

(in the notations of Theorem 3.1)

<y, P> < ot

The proof is essentially identical to the one of Theorem 3.1. We now apply
Corollary 3.2 to estimating the overlap of the universal projection PA

with the low lying eigenstates of H i.e. the numbers ¢. = (¢, , PA b.)

A i i il

when the eigenvalues e, < e * A|A| , for models (3) and (L) ,
(quantum mechanical antiferromagnet, resp. ferromagnet. The case of the

X - y model is similar to the antiferromagnet). For this purpose we identify
P = P (3.18)
A = 8S°H - e (a=1), (3.19)
where eo (a0 = 1) 1is the groundstate energy of the isotropic Hamiltonian,

B = as5°gY (3.20)

In all the models discussed here, the goundstate energy e (0 = 1) of

the Hamiltonian H = 8-2 (8% + ¥Y¥) is bounded above by the groundstate
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energy eoz of S H

Therefore A > 0. (3.21)

Furthermore A+L B 572 (1% + ¥Y) - e (1) 2 0 (3.22)

If we rotate all spins on one of the sublattices by an angle 7w around
the 2z-axis we see that A + %—B is unitarily equivalent to A —‘% B,
as HY is taken into -H ) under this unitary transformation, but HZ

is unchanged. Therefore

B < oA, i.e. e=o0 . (3.23)

Finally we set

p = e - e (a=1) + nd |A|, (3.24)

where A and n will be chosen to be dependent on the model. Thus the

hypothesis of Theorem 3.1 and Corollary 3.2 are satisfied.

IIT. B. Estimates for the Antiferromagnet:

Next we consider the quantum mechanical antiferromagnet, model (3),

in detail. We shall estimate the overlap coefficients

c; = (¢i,P

L6

for all eigenvectors ¢i of the Hamiltonian HA corresponding to eigenvalues

e, with
i
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e, < e +a|A]. (3.25)
From (3.19) and (3.20) we infer that

A+B = H - e (@ = 1) .
o

Therefore the eigenvalue A of A + B introduced in Theorem 3.1 ,Corollary

3.2 satisfies

A o< §|A| + aln| o, (3.26)
where
§ = 'T%T (ez SC (@ =1)) .
It is shown in [[17] that
e, (@=1) 2 - (1+ ﬁ; ) 2]|A] (3.27)
so that
5 < (297t (3.28)

Combining (3.23) and (3.24) with (3.26) and (3.28) we arrive at

the following estimate for o :

1+ 28 A )

e (14 - SR
Let

2 - . Z
£° (p,) = inf spec (P, H P,)
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be the minimal A-energy of any state in N = Pﬁiﬁﬁ . Recalling definition

(1.35) of the universal projection P, we see that

A
K7 e, 2 eoz - e (a=1) + %.|A| ,
so that
€8 ®) - o 2 (3 - m) A . (3.30)

Since PA plays the role of the projection P introduced in Corollary

3.2 , we have the constraint

%— - nA > 0 (3.31)

Lemma 3.3, (Estimate on d for antiferromagnet) :

Let A = 82K - e (a=1)

(1) Let ¢ ©be a vector of A-energy at least e , i.e. (1 - Pp= )y =0 .
1

Then the A-energy of H©® y is at least e - 85~ , i.e. (1 - Pe_as_l) Yy = 0.

(2) a 2 [ %g (1 - 2na) S|A| 1, for 2nA <1, where [a] is the

largest integer < a .

Proof: In our representation (1.40) of the antiferromagnet

v o= -g7? {8, 8% + (i8,9) (18.Y) }
<i§3>cfx i ’ :
1 + ot -
= —— {s". s + 8.8, 1} , (3.32)
2s° <i§j>CZh 1 1o

+ -
where S , S are the spin-raising, resp. spin-lowering operators. Using

(3.32) we see that one application of Y to a vector V¥ can raise
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(resp. lower) the z-components of the spins of one nearest neighbor pair
<i,j>< A by 1 . Clearly, this cannot change the minimal A-energy of
by more than s2. 85 = 8™t , as a minute of reflection shows.

More precisely,

(1 Y P, = 0. (3.33)

- Pe—BKS)

This completes the proof of (1) . The proof of (2) is an immediate

consequence of the definition of d , of inequality (3.30) and of part (1) .

Q.E.D.
Proposition 3.k:
R =< o2d s Where
_ -1 -£
6 = o (1+ (Sn) + 0(B °)) and
(1L - n)s
2 [’“i?s"’“‘" 4]
for arbitrary E <1 and n <1
“roof: We choose
A=g" and n = %ﬂBE (3.34)
1 1 :
Then Z-nA = 3 (L-n) > 0, for n<1l, so that the constraint

(3.31) 1is fulfilled. By equation (3.2) , (3.3) ,
-Be.
1

e < e +ﬁ]ﬂl
1 [e]

-Be.

I e °

R = R (B,d) =



oy

< max (¢i » Py o.) (3.35)

e, <e + ﬁ]ﬁ] *
i o
Suppose the maximum on the right side of (3.35) occurs for i = i
ei < e0 + a|h| . We set ¢i =y Ph = P and apply Corollary
O
3.2 . This gives

» Py ¢, )| < o2 , i.e. R < 29

(o] o]

[,

1

By (3.34) and (3.29)

o < (4 gmr )
2 -1 ,1+ 28"
= o [1+ (1 - =5 ) (———Hg“"““ ) ]
ne
= o 1+ (&) + 0 (%)
Furthermore, by Lemma 3.3, (2) and (3.34)
1
a > [ 4 (1 - 2na) s |A]]
1-n
SN
16 Q.E.D.

Remark:

The dependence of ¢ and d on the total spin S will permit us
to show that the critical anisotropy uC(S), below which a phase transition

occurs,tends to 1 as S » o ,

Our estimate for d 1is not very good and can be improved; we
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illustrate how to do so for spin 1/2 . We claim d > |A| (1 - na)/k4
instead of |A|(1 - 2nA)S/8 = |A|(1 - 2nA)/16 ; P, (Fig. 1) now
means a projection onto a definite pattern of up or down spins ;

532 (Pﬁ) = -|A| 48, and we wish to lower it to an A- energy of
-2|n] + AA] + & . Let e, be the H%-energy of the horizontal bonds

Initially, e, = 03 finally e < -|A| + na |A| , since the vertical

energy 3_~|A] . Also, 8 = —|A| + 2b where b 1is the number of bad
(i.e. + - or - +) horizontal bonds. At least k = |A| (1 - nA)/2 ©bad
horizontal bonds must be removed; d > d' = number of steps to do this,
while d' > d"/2 , where 4" 4is the number of single spin flips required
to do the same thing. Since the initial horizontal pattern in each row

is bgbgb... (g = good bond), it is easy to see that d" = k . These

arguments give the following improved estimates for S = 1/2 :

o = a ( 1+ % + 0 (87%), (3.36)
a2 [f (-n/2) |a]]. (3.37)

IIT.C. Estimates for the Ferromagnet:

It is well known that in the quantum mechanical ferromagnet (model

e, (a) = eoz , for all |a| = 1 ; (3.38)

in rfact, the groundstates forv |a| < 1 are identical with the two groundstates

ot 17 . Theretore



ko)
n
]
=
=
o’
L=
w
no
=
—
[N

We estimate the overlap coefficients (¢i . Pf.1 ¢i) for all eigenvectors
. z
of the Hamiltonian H‘.1 corresponding to eigenvalues e with e 3 e + ﬁ|A|

Thus the eigenvalue A of A + B introduced in Theorem 3.1 and Corollary

3.2 must satisfy X < A |A| . Therefore

o = etg = a7 . (3.39)
As in the antiferromagnet one shows that

_ 02d ; (3.40)

By
A

see the proof of Proposition 3.4. We are left with estimating the
"distance" d on the right side of (3.L40)

Estimate on d :

Let & ©be an integer such that !A|lf2

/ % is an integer. We decompose A
into |A| / 22 disjoint, congruent squares, b (=boxes), with sides of length

2 . Let ¢ be an eigenvector of {Si : ielA} . Clearly ¢ 1s also an

eigenvector of A . For ¢ , a perfect square is defined to be a square b = b

¢

such that S; ¢ = ci¢ and one of the following two properties holds:

(1) o, 2 (0.9)s for all 1ie by

(ii) o, < -(0.9)s for all i€ by
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Suppose now that the A-energy of ¢ is < nA|A| . We propose to

estimate the minimal number, k , of perfect squares b, for this ¢ .

¢
For this purpose we assign an A-energy to every b square in A in such

a way that the sum of the energies assigned to all squares in A is <

the A -energy of ¢ . The A-energy of a perfect square im zero. Therefore,
to a square which is not perfect, an A-energy of at least 2(0.1) must

be assigned. There are (|A| 2-2) - k squares which are not perfect. Since.

the A energy of ¢ is < nA [hl ,» Wwe obtain the inequality

(|a] ™2 - k) (0.2) < nalp| ,

k > |A] (272 - 5na) (3.41)

Since # > 2 , we require that nd < 1/20 . Let ¢ be an arbitrary vector
in the range of Pﬁ , 1l.e. P,q Yy =y . Define d (see Theorem 3.1) by
the condition

_ld
1-p)BGA-20)7T v 0,

1.9 (3.42)
but (b-P )[BMA-X)"] v = o0,
nl
for all j < 4d .
d
We expand [B (A - A)—l] ¢ in terms of eigenvectors ¢§ v
3
of {SiZ : ieh'} . Let ¢ = ¢§ > be a vector of A-energy < nA .
3

o]
By (3.42) sucha ¢ # 0 exists. By (3.41) ¢ has k > |A] (2_2-nﬂ8/2)

perfect squares. In order to obtain a perfect square by repeated application
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-1

of B(A - A to ¢y, B (A - A)-l has to be applied to ¢ at least

m times, where

2
m o2 (0.9) & s f (3.13)
This is so , because ¥ 1is an eigenvector of Pﬁ » so that the =z-components
2
of % spins in a box b have to be raised from S, < 0 to 8% = (0.9) 5,
resp. lowered from s? > 0 to SZ = -(0.9) S, in order to convert b

into a perfect box. (Recall that P, is pictorially given by Figure 1 ,

Section I.D)

For the quantum mechanical ferromagnet

B = - {s*¥s®* + s¥sY
<i£j>(:f\ L) o
1 + = - +
- = {s.s8.+s,8.} (3.44)
2<i§j>cﬁ i ] i

Equation (3.44) shows that when the z-component of a spin at some site
is raised (lowered) the z-component of a spin at a nearest neighbor site
is lowered (raised). Thus, in order to raise the z-component of a

Z

spin at some site ie€b from s? <0 to 8% =(0.9) s without lowering

the z-components of other spins in b , B has to be applied
(0.9) dist (i , boundary of b) =+ S

. L = .
times; hence, on the average, (0.9) S - i times. This completes the proof

of (3.43) . If we combine (3.41) with (3.43) we obtain

& >2m-k 2 |A] (2% ) 22 (0.9)
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Choosing L = [(10na)'1/2] (>2) yields

Proposition 3.5: Provided nA < 1/L40

where g = o . and
n-1

e = (0.9) |A] 8 [16 an)¥2]
Remark: The estimate on d obtained in Proposition 3.5 for the ferromagnet
is vastly superior to the estimates on d obtained for the antiferromagnet
(Proposition 3.4 and (3.37)) . This will become apparent in the next
section where we will allow nA to go to zero as B + ® . Then d > e
for the ferromagnet, but not for the antiferromagnet. Finally we note that
the general methods developed in this section can be applied in other contexts
than the one considered here in order to get bounds on expectations of

global observables in equilibrium states.
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IV . Estimates on R+ and Completion of the Proof

A. Summary of Previous Results

Recall that our proof of LRO at low temperatures is completed by

showing that

is "small" for large B , namely we require that
J on 3872 RE/IM < %; ; (4.1)
n=2

see Section I.C, Theorem 1.1 and Section I.D , inequalities (1.34),

(1.36) and (1.38) . 1In Section III we decomposed R, (B) into two parts,

A

R, (B) = R_ (B, A) + R, (8 , 4) , (k.2)

and we have established upper bounds on R_ (B, A) , namely:
(a) In models (1) and (6) (classical case), i.e. the classical N-vector

models:

see (3.7).

(b) In model (2), the classical, anharmonic crystal:

R (B,A) = 0, for A < a/2 ; (h.4)

see  (3.8) .

(¢) In model (3) , the quantum antiferromagnet:



R (8,8) < o , for & =g, (4.5)
where o = a1+ (50) +0 (875,
and d > {}1—igﬂl§ |A|;],
resp. a > [ %- (L-n/2) |A| 1, for s=1/2,
with 0 <g<1l, 0<n<1

(to be chosen later). See Propositions 3.4 and (3.37) . The estimates
for model (6) (quantum xy model) are identical.

(d) In model (%) (quantum ferromagnet)

R (B,A) < o2 | (.6)

where o = o7 > (4.7)

-1
and d

v

(0.9) |A] s [16 ()21 (4.8)

with n>1 and A > O to be chosen later. We require nA < 1/L0 .

B. The R+ Estimate

We now estimate R_ (B , A) for these models.

(a') Models (1) and (6 classical):

Let PKG be the subset of configurations such that m, = st si > (1 - 6)1/2
for all i€ A . Then (with Tr defined by the usual normalized integral,

2

i.e. Tr(l) =1)
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§
z, (8) > T {(P° exp [-gH,]}
[} §
> {Tr %} exp (-6 Tr [P0 K]/ TP )

by Jensen's inequality. By symmetry, the term proportional to o vanishes

in Tr P;a Hy, . Furthermore, H, < -2|A](1 - §) whenever PZG # 0.
Moreover,
0y
Tr (P;G) = { %- [1-(-6%3 . (4.9)

Hence, choosing 6 = A/b = (1 - a)/8 , we obtain

-1

R, (B, 8) < exp [B[]7A] (2-28)] 2z}

+
- g (1 - a)fﬁl cla) |A]
e e s (4.10)

where c(a) «=a - 2n (1 - a) for a x 1, is independent of B .

Thus

/A _ R, (g)L/ 1A R, (8 , 0y 14l

—%(l-a)+0(a)
e s (4.11)

< >
P

fIA

which tends to 0, as B + = . This completes the proof of LRO for

models (1) and (6 , classical) for large enough B . An estimate on
the spontaneous magnetization <m > = st < Sz > , resp. o(B) (see

Section I.B) as a function of B is given later.
(b') Model (2) :

By definition of model (2) (anharmonic crystal, Section I.A) ,



- 60 -

min ¢ (x ,y) = €,

occurs when x and y have the same direction. Without loss of generality

we may assume that there exists some xo # 0 such that
¢ (x_ xo) = ¢ . (k.12)

But when xl and yl (the 1l-components of x , resp. ¥ ) have opposite

sign
o(x , ¥) 2 e +a+ l(¢l(x) +6,(9)) (4.13)

1l
for some X > 0 ; see Section I.A. We now choose 6>0 such that X, - § >0

and

o(x , y) < e, * a/2 ,

for all x and y in a ball of radius 6 centered at X, We can do so

since the interaction potential ¢ is by assumption continuous.

Hence
-28(e_ + a/2)|A| 1|
z, (8) 2 e (v (8)) (4.14)
where UN(é) is the volume of a ball of radius ¢ in H?N .  Furthermore,
for A =a/2 i.e. Rfc (B, A) =0 (see (L.4)),
AC _ LAC _
REC (8) = RXC (B, A= o/2)

exp [-28 (e, + o) 0] & ()M 2 ()1, as)

A

A



==

-Lgxrg. (x)
J ] 1 de .

where g(B) =
This is an immediate consequence of (L4.13); (see also inequality

(1.49) of Section I.E) . Combination of (4.14) and (4.15) yields

R (8, a/2) < exp [-8ala]] (a(8)vy(snIA]

By definition of the AC model (model (2) , Section I.A.) there exists

some finite BO such that for all B ;‘Bo

g(B) =

X < o

-L4B2rg, (x)
Je 1 By

Obviously g(B) is monotone decreasing in B , as ¢1 is positive. Thus

there exists a finite constant ¢ such that

g(B) / UN(G) < e , forall B2 B,
Hence
R (g) = R (8, a/2)
< exp [-Ba +c] [pA] , (4.16)

which tends to 0 as B + » . Recalling condition (4.1) (resp. Theorem
1.1 of Section I.C and Section I.D , inequality (1.38)) we observe

that inequality (k.16) completes the proof of LRO for the AC model

for large enough B .

(¢') Models (3) and (4) (quantum Heisenberg models):

In order to estimate R+(B ,A ) we need a lower bound on the partition
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function Zﬂ (B) . This is done by comparing it with the partition function
of the corresponding spin S Ising model (anisotropy o = 0) by means of

the Peierls-Bogolyubov inequality.

Lemma L4.1: For models (3) and (4) the partition function satisfies

I
2, > Zj (4.17)

Where Zi is the partition function of the spin S Ising model (i.e.

@ =0 in (1.3) and (1.5)) .

Proof: By the Peierls-Bogolyubov inequality,

» HY,)] (4.18)

2y 2 T oexp [-8 (4, 3

J

to be eigenvectors

J
of all the S? , i€A . Then the right side of (L.18) is precisely

Zi because (wj , BV wj) = 0 for all

for any set {wj} of orthonormal vectors. Choose the ¢

Lemma L4.2: For models (3) and (L)

Zy > [(5/8){2s+1)]|“’ exp {28|A] (1 - 6)}

for any 0 < 6 <1 .

Proof: Using Lemma L.1 ,

Z, > Z, > L' exp (+BS-2 HZ)

I
A A

al
where I' means a restricted summation in which each Si > s(1 - 8) /2 .

(Note: the partition function for the Ising ferro and antiferromagnet are
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identical.) Then, H” > 2|A| s (1 - §) . To complete the proof we

ulAl

have to bound i |

1/2 +

p o= [s-8(1-239) 1], > [1 + s8/2] > s8/2 > (25 + 1) ¢/8

for 8 > 1/2 , and where | ], means integral part. To

complete the bound on R, we use the fact that Trl = (es + l)lﬂl

For the ferromagnet, ey = —2|A| . Thus, provided

A > LS (ferromagnet) (4.19)

(1.50) and (1.51) are established for B sufficiently large. For the

antiferromagnet, e, > -2|A| (1 + 1/48) . Thus, provided
A > 4§ + st (antiferromagnet) (4.20)

(1.50) and (1.51) are established for B sufficiently large.

The final estimate for the ferromagnet is obtained from (4.6)-(4.8)

and (1.51) . Choose n= (1 +a)/(l -a) <2/(1 -a) . Thus
/3

0¥ (1 +a)/2 < 1. Choose A = KB_2 where K 1is chosen such that
-1/2

U{l.B)S(nK) /16 < e_K/Q This can be done uniformly in S > 1/2 .

For sufficiently large B , nA < 1/40 . Furthermore, with this choice of

A, R+ >R . Hence

lim <P, I o e (-keY/3) (4.21)

T

/3

which tends to zero as B tends to infinity. ©Note that there is a Bl »
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instead of a B dependence in (4.21) . This completes the proof of
LRO for the quantum ferromagnet, except for the assumption that the

chessboard estimate holds.

The calculation for the antiferromagnet is more complicated. We

have to combine (4.5) with (1.51) . As B »> = ,R+ (8 , A)lflﬂl — 0

provided & < 1, by (1.51) and (4.5) . The problem resides in

R (B, A) . This will not go to zero as B + «® , but for small

enough o (depending on S) , which we call ac(S), we can make

R (s, n) Al

smaller than any given member, say u . Choose u such
that (4.1) is satisfied. We omit details, but note that ac(S) tends

to 1 as S tends to infinity.

C. Estimate of the Spontaneous Magnetization

Consider the order parameter which satisfies the previously derived

inequaltiy
o (B) > 6° - 6e (1.24)

provided < P0+ P,” > < g/2 and < PO(G > < g . In the classical

J
models (1) and (6) these inequalities hold for all € > 0 and 6 <1

if B 1is large enough. This follows from chessboard estimates applied

to < POQ5 > , and the results of section IV . Thus o(B) =1

as B — = ,

<§
For the quantum antiferromagnets (3) , (6) , an estimate on <P_

>
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can be obtained using chessboard estimates and exponential localization,
as before, with the following result: Given € >0, &6 <1 and o <1
there exists an S(e , 6, a) < © such that (1.24) holds as B + =

for S >8(e , §, a) . For the ferromagnet (L4) , chessboard estimates,
if they could be shown to be true, would easily yield o(B) — 1 as
B+~ forall S and all a < 1 . Without using chessboard estimates,
we can show that <P;6 >+ 0 as B+« for all &8 <1 and all a<l .

This is proved by means of the following thermodynamic argument: It is

sufficient to show

((32)2‘) - 1 as B+ o«

By the Schwarz inequality and translation invariance

-2

572 <(s.%)? L g2

<g® g% >
|i-o]= ° %

This latter quantity is half the Hz - energy per site. The ground state

2 < a2 Z

has the property that S~ 85 sJ > = 1 forall i, J . If
572 < s28]> — 1 as B>= , for |i-0|= 1, then the free energy
would not approach the ground state energy as B -+ « ., This, it is easy to

see by the previous arguments, would be a contradiction.



10.

11.

12.

1 b

- 66 -

References

Mermin, N. and Wagner, H.: Phys. Rev. Lett. 17, 113 (1966).

Mermin, N.: J. Math. Phys. 8, 1061 (1967).

Hohenberg, P.: Phys. Rev. 158, 383 (1967).

Malyshev, S.: Commun. Math. Phys. 40, 75 (1967).

Kunz, H., Pfister, C. and Vuillermot, P.: J. Phys. A 9 , 1673
(1976); Phys Lett. 54A , 428 (1975).

Ginibre, J.: Commun. Math. Phys. 1L, 205 (1969).

Robimson, D.: Commun. Math. Phys. 1L, 195 (1969).

Fr8hlich,J. and Lieb, E.: Phys. Rev. Lett. 38, Lho (1977).

Dyson, F., Lieb, E. and Simon, B.: Phys. Rev. Lett. 37, 120 (1976).
The details are in Phase Transitions in Quantum Spin Systems
with Isotropic and Nonisotropic Interactions, Jour. Stat.
Phys., in press.

Fréhlich, J.: Acta Phys. Austriaca, Suppl. 15, 133 (1976).

Lieb, E.: New Proofs of Long Range Order, Proceedings of the
International Conference on the Mathematical Problems in
Theoretical Physics, Rome, 197T7. Lecture Notes in Physics,
Springer, in press.

Fr6hlich, J., Israel, R., Lieb, E. and Simon, B.: papers in preparation.

Heilmann, 0. and Lieb, E.: Lattice Models of Liquid Crystals,

in preparation.



14,

15.

16.

5T

185

19.

20.

21.

225

- 67 -

Lieb, E.: Commun. Math. Phys. 31, 327 (1973).

Brascamp. H. and Lieb, E.: Some Inequalities for Gaussian Measures and

the Long-Range Order of the One-Dimensional Plasma. In:
Functional Integration and its Applications, A.M. Arthurs, ed.,

pp. 1-14, Clarendon Press, Oxford 1975.

Glimm, J., Jaffe, A. and Spencer, T.: Commun. Math. Phys. 45, 203 (1975).

Anderson, P.W.: Phys. Rev. 83,1260 (1951). See also the second
paper cited in Ref. 9. above.

Osterwalder, K., and Schrader, R.,: Commun. Math. Phys. 31, 83
(1973) and 42, 281 (1975).

Fréhlich, J.: Helv. Phys. Acta LT, 265 (197L).

Seiler, E., and Simon, B.: Ann. of Phys. (N.Y.) 97, 470 (1976).

Fréhlich, J., and Simon, B.: Ann. Math. 105, 493 (1977).

Frdhlich, J., and Spencer, T.: in: "New Developments in Quantum
Field Theory and Statistical Mechanics", M. Lévy and P. Mitter,
eds., Plenum Publ. Corp., New York, 1977; (Theorem 5.2, Lemma
5.3). The basic idea is due to:

Fr&hlich, J., Simon, B., and Spencer, T.: Commun. Math. Phys.

50, 79 (1976).

Mc Bryan, 0., and Spencer, T.: Commun. Math. Phys. 53, 299 (1977).

Hepp, K. and Lieb, E.H.: Ann. of Phys. (N.Y.) 76, 360 (1973),
(Theorem 3.15).

Peierls, R.: Proc. Camb. Phil. Soc. 32, 477 (1936).

Griffiths, R.: Phys. Rev. 136A, 437 (196k4).

Dobrushin, R.: Dokl. Akad. Nauk. SSSR 160, 1046 (1965).





