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A general method for proving the existence of phase transitions 

is presented and applied to six nearest neighbor models, both classical and 

quantum mechanical, on the two dimensional square lattice. Included are 

some two dimensional Heisenberg models. All models are anisotropic in the 

sense that the groundstate is only finitely degenerate. Using our method 

which combines a Peierls argument with reflection positivity, i.e. chessboard 

estimates, and the principle of exponential localization we show that five 

of them have long range order at sufficiently low temperature. A possible 

exception is the quantum mechanical, anisotropic Heisenberg ferromagnet for 

which reflection positivity is not proved, but for which the rest of the 

proof is valid. 
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I. Summary of Results and General Strategy of Proofs. 

One of the main purposes of this paper is to explain a general 

method for proving the existence of phase transitions, in the sense of long 

range order at sufficiently low temperatures, in classical and quantum 

lattice systems. In principle, our method can he applied to arbitrary lattice 

systems satisfying reflection positivity (a condition closely related to 

the existence of a self-adjoint positive definite transfer matrix), the 

groundstates of which are essentially finitely degenerate (e.g. the space 

of groundstates decomposes into finitely many subspaces labelled by a 

discrete order parameter, sometimes related to a broken discrete symmetry 

group). 

Our method is inspired by recent work of Glimm, Jaffe and Spencer 

concerning phase transitions in the (λϕ
4
)
2
 quantum field model, [16] . In 

this paper their ideas are extended in two ways: 

1. We systematize the use of reflection positivity and chessboard 

estimates in obtaining upper bounds on the statistical weight of contours arising 

in a Peierls argument and we show how to apply these methods to quantum 

lattice systems. This reduces the proof of long range order to estimating 

a ratio between a constrained partition function and the usual partition 

function. (This is basically a thermodynamic estimate). 

2. We introduce the principle of exponential localization in order 

to derive upper bounds on constrained partition functions. This principle is 

particularly useful in the analysis of quantum lattice systems. 
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Reflection positivity, originally inspired by work of Osterwalder 

and Schrader [18] , and the principle of exponential localization are 

useful tools in contexts other than the theory of phase transitions. 

In Section I .A we introduce six different classical and quantum 

mechanical models on the two dimensional square lattice in terms of which 

we develop and illustrate our general method. A summary of our main results 

concludes that section. 

In Section I.B we recall the connections between phase transitions 

and the occurrence of various forms of long range order (LRO) at sufficiently 

low temperatures. 

In Section I.C, D and E we present the main ideas behind our general 

method; (Section I.C contains a convenient variant of the Peierls argument, 

essentially identical to the one of [16] ; see also [10]). 

In Section II we establish, (or review) reflection positivity for 

five of our six models, the exception being the quantum Heisenberg ferromagnet. 

We prove a generalization of the Hölder inequality for traces which,when 

combined with reflection positivity, yields the chessboard estimates. They 

extend constructive field theory estimates of [19]· 

In Section III we introduce the principle of exponential localization 

and apply it to our models for the purpose of estimating constrained partition 

functions. This is an expansion of the idea used in [22] . 

In Section IV the proofs of our main results are completed by 

combining the estimates of Sections I.C , II and III . Sections II and 

III contain results which are of some interest in their own right: Theorems 
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2.1, 2.2, 3.1 and Corollary 3.2. The reader can understand their statements 

and proofs without being familiar with the rest of this paper. 

Next, we describe the models studied in this paper in general terms 

and recall some typical aspects of two dimensional lattice systems . 

Two facts are well established about two-dimensional (quantum or 

classical) lattice spin systems with short range interactions: 

(i) The Ising model has a first order phase transition (i.e. 

long range order for large ß = (kT)-1); for all values S = 1/2, 1 , ... 

of the spin. 

(ii) Models with continuous symmetry (e.g. the isotropic Heisenberg 

models) have no such ordering. The proof of this is due to Mermin-Wagner [l] , 

Mermin [2] and Hohenberg [3] , (MWH) . Thus, a natural question is whether 

the anisotropic models have LRO for all values of the anisotropy parameter, 

α , with 0 < α < 1 . For the classical Heisenberg (H) model this was 

proved recently by Malyshev [4] · Kunz, Pfister and Vuillermot [5] later gave 

a simplified proof for the planar rotator. Ginibre [6] and Robinson [7] 

proved LRO for the quantum Heisenberg ferromagnet for very small α. 

In [8] we announced proofs of LRO for a variety of anisotropic 

models: in particular for the quantum ferromagnetic H model, for all 

α < 1 . Subsequently we became aware of a flaw in one of the lemmas for the 

ferromagnetic model. This is basically the same flaw as in the announced 

Dyson, Lieb and Simon [9] proof of LRO for the three dimensional H model. 

The other results stated in [8] are correct. Here we will present the 
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details of the proofs, including the part of the proof for the ferromagnetic 

H model that is correct. It is hoped that before very long the missing piece 

of the puzzle will be filled in. 

An obvious remark has to be made: All the models we consider have 

no LRO at high temperature, a fact which can be proved by high temperature 

expansions, for example. Since LRO implies the existence of a spontaneously 

polarized state, our proof of LRO at low temperature implies the existence 

of a phase transition. 

The models discussed here are all two-dimensional but, as in the 

usual Peierls argument [23], all our results and methods can be extended to higher 

dimensions. They can also be extended to some other lattices, e.g. the 

honeycomb lattice; see [12]. 

Some of our results were reviewed in [10] and [11] . Additional 

applications of the ideas presented here are to be found [10], [12] and [13] . 



- 5 -

I.A. Description of the Models and Main Results 

2 
All models are on the square lattice 2 and have only nearest 

neighbor interactions. Thus Σ <i , j> means a sum over nearest neighbors, each 

term being included once; H is the Hamiltonian. 

(l) Classical N-vector Model (N > l) : 

(1.1) 

Each Si is a unit vector in N, uniformly distributed on the sphere. 

(More general rotationally symmetric spin distributions could be accomodated 

by our methods.) Note that in this classical case, the ferromagnet (minus 

sign in (l.l) ) is equivalent to the antiferromagnet (plus sign) by reversing 

the spins on the odd sublattice. This is not true in quantum models. 

Our result in this case is that for every α < 1 there is LRO at 

low T . In other words for every α < 1 there is a ßC (α) such that 

there is LRO for β > βc (α) . Our estimate on βc (α) is 

β
c
 (α) = 0 ( (1 - α)

-1

 ) (1.2) 

The MWH result is that βc (α = 1) = ∞ . Our proof is simpler 

than Malyshev’s [4] . 

(2) Classical Anharmonic Crystal (AC Model): 

The Hamiltonian of this model is given by 
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where x
i
 is the coordinate of an N-vector classical oscillator bound to 

site i , with apriori distribution dN x ; ϕ is some continuous, 

anisotropic interaction potential, 

ϕ(x , y) = ϕ
1

(x) + ϕ
1

(y) + ϕ2 (x , y), 

where ϕ1  0 is a one body potential, and ϕ2 is a two body potential. 

In other words we are considering some sort of anharmonic, 

anisotropic classical crystal (resp. a Euclidean lattice field theory). We 

will prove LRO at high β under the following assumptions on ϕ : 

occurs for x and y in the same direction, (Typically at x = y = X
0
 , 

for some X
0
 ≠ 0) . But if x1 and y1 (the 1-components of x, resp. y ) 

have opposite signs 

ϕ (x , y)  ε
0
 + α + λ(ϕ

1
 (x) + ϕ

1

 (y)) , 

for some α > 0 and some λ > 0 with the property that for sufficiently 

large β 

Examples of such potentials are: 

1. ϕ
1
(x)

 e
=
g

* gx
4
 - Ç (x )+ (6Ug)“ , for some g > 0 , ϕ2 (x , y) = 

V(x - y) , where V(x) is some strictly convex function with minimum at 

x = 0 . 
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2. ϕ1(x) 
e.g. γx2 , γ  1 , ϕ2 (x , y) = V(x - y) , with 

V(x) e.g. g
X

4 - 1/4 (x1)2 , for some g > 0 , (or V an arbitrary continuous 

function with two sharp minima at x = ± (0 1x , 0 , . . . , 0 )) . 

3. ϕ1(x) = γ log (|x| + 1 ) , ϕ2 as in example 2 . 

Examples 2 and 3 (of anti-ferromagnetic type) are not of the 

general form of model AC , but can he brought into this form by replacing 

xi by -xi on one of the sublattices. 

Remarks : It is of interest to consider also the case where ϕ1 (x) 

is replaced by const. 3 β-1 ϕ1(x) . Then these models certainly do not have 

LRO for large β , as can be shown by a high temperature expansion. 

The symmetry ϕ(x , y) = ϕ(-x , -y) is not crucial for our 

arguments; see also [10, 12] . The main point of the study of model AC 

is that εxp [- βϕ2 (x, y) ] is not required to be of positive type. Next 

nearest neighbor interactions (coupling x
(m, n)

 with
 x(m±1, n±1))

 could 

be included. 

Physically more interesting models of an anharmonic crystal would 

be obtained by setting ϕ1(x) = 0 and assuming that ϕ2 is translation 

invariant. Our methods do not apply to such models. 

(3) Quantum Antiferromagnetic Heisenberg Model: 

H = Ha = S-2 [HZ + α Hxy] (l.3) 
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(1.4) 

S = 1/2 , 1 , 3/2 , ... is the total spin at each site. We will prove 

that there is LRO at sufficiently large β and small α . For each S 

there is an α(S) and βc (α) such that for α < α(S) and β > βc (α) 

there is LRO. As S → ∞ , α (s) → 1 . We do not know if there is 

LRO for all α < 1 when S is finite. This is an open problem. Because 

the S →∞ limit is the same as the classical model [14] , we have here 

a generalization of the Malyshev result. 

There is an equivalent form for (1.4) which is more convenient 

for our purposes, namely 

(1.4a) 

This is obtained by making a rotation of π about the y-axis for the spins 

on one of the two sublattices; for such spin operators Sz → -Sz , Sx → -Sx , 

Sy → - Sy . In this representation all the terms in (1.3) are then of the 

form - (real matrix at i)(real matrix at j). Then reflection positivity, 

as discussed in section II.A , holds. See [9] for more details. 

(4) Quantum Ferromagnetic Heisenberg Model: 

H = Hf = -Ha . (1.5) 
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The announced result [8] vas that there is LRO for all α < 1 

when β is large enough (uniformly in S) . Unfortunately we cannot prove 

this because the proof of reflection positivity (Section II) is missing, 

but the second stage of the proof is correct and is given in Section III . 

(5) The two quantum models can be modified as follows: 

H = S-2 [HZ + α Hxy] (1.6) 

This was mentioned in [8] . We will not give the details of the proofs here 

which are straight forward variants of the ones for (3) , (4) . This model 

is, however, interesting for the following reasons: 

First, consider this model classically. When a = 0 there is no LRO 

for any β by the Brascamp-Lieb argument [15] . Refined statements about 

exponential clustering were proved in [21] . When α = 1 there is no 

LRO by MWH . We expect that there is no LRO for any 0 < α < 1 and 

any β . 

However, the quantum model has a phase transition. In view of the 

foregoing remark, it is not surprising that our method yields the following 

in the ferromagnetic case (assuming reflection positivity): For α < 1 

there is a βc (α , S) , with LRO when β > β
c
(α , S) . However, 

β
c
(α , S) → ∞ as S → ∞ or a → 1 . 
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(6) Quantum and Classical xy Model : 

For convenience we take this model in the form 

(1.7) 

This is the ferromagnet. However by making a notation by π about the 

y-axis for all spins on one sublattice (as in model (3)) , we see that the 

antiferromagnet (defined with a + sign in (1.7)) is equivalent to the 

ferromagnet. See [9] for further details. For this model, as given by 

(1.7) , reflection positivity does hold; (see Section II.A and use the 

standard representation in which Sz and Sx are real matrices). 

Since the results and proofs for this model are the same as for the 

antiferromagnet (model (3)) , resp. for model (l) , we will not give 

further details. 
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I.B. Remarks about Long Range Order 

Let < - >  be the Gibbs state of a system in a bounded rectangle 

Λ  2 with periodic boundary conditions, at inverse temperature β . The 

system in the thermodynamic limit ,  ↑ 2, is said to have LRO if 

(1.8) 

where m = |1/| Σ i ϵ ϵ mi is the magnetization, and mi is defined, in the 

different models, by 

(1) m
i

 = S1
i 

(2) mi = x1
i 

(3) m = S_1(-l) i1 + i2 Sz

i 

(this is the staggered magnetization) 

(4) , (5), (6) m
i
 = S

-1

 S
z
i 

The inequalityσ(β) > 0 implies that there is spontaneous magnetization; 

see e.g. [9] · It is well known that σ(β)  M2 >0 is implied by 

< m
o
 m

j

>.  Μ2 > 0 , (1.9) 

uniformly in Λ and j . We will establish (1.9) at small temperature. 

For this purpose, define P±δi to be the projection operator onto all 

configurations satisfying mi  δ , resp. mi  - δ . Moreover 
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(1.10) 

is the projection onto all configurations for which |mi| < δ . Finally, 

Ρi(λ) = P-λi
 +

 P<λi is the projection onto all configurations for which 

mi < λ . For all models, except the AC model, |mi| ≤ 1 . Then 

(1.11) 

The three terms on the right side of (l.11) are labelled I, II, III . 

First we discuss II . Since, in all models, m0 and mj commute, 

for all j , Ρ+δ0 P-δj  P+
0
 P-j , for δ > 0 , with 

P+
j
 = P+ (δ=0)

j
 = 1 - P

j

(0) , 

P-
j

 = Pj (0) (1.12) 

Therefore 

(1.13) 

The right side of (1.13) will be estimated by means of a new version of the 

Peierls argument inspired by work of Glimm, Jaffe and Spencer [16] , and will 

be shown to be small, for large β , in the following sense which depends on 
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the model; For some ε > 0 and β large enough 

(1.14) 

uniformly in Λ and j . Thus, 

II > - ε . (1.15) 

Next we discuss term III on the right side of (l.11) . By the 

Schwarz inequality for the state < -

(1.16) 

and we have used 

and 

which follows from the translation invariance of < - >Λ. We will prove by 

purely thermodynamic considerations that for some ε > 0 and sufficiently 

large β (depending on the model) 

< P<δ0 >Λ

 < ε (1.17) 

Therefore 

III > - εδ > - ε (l.l8) 

Finally we discuss term I on the right side of (l.11) . 
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(1.19) 

In all the models considered in this paper there is a symmetry taking mj 
J 

to -mj , for all j ϵ Λ , Therefore 

so that 

(1.20) 

Combination of (l.l4) , (1.17) , (1.19) and (1.20) yields 

(1.21) 

uniformly in A and j , (provided β is large enough, depending on the 

model). Therefore 

I  δ2 - 4δ2ε . (1.22) 

Insertion of (1.15) , (1.18) and (1.22) into inequality (l.11) gives 

< m
0
 m

j
 >

Λ
  δ

2
 - 4δ

2
ε - 2ε > δ

2
 - 6ε , (1.23) 

uniformly in Λ and j . Therefore 
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σ(β) > δ2 - 6ε . (1.24) 

In each model we will choose δ and ε to depend on β in such a way that, 

for sufficiently large β , δ2 6ε > 0 . 

The most difficult inequaltiy to prove is (1.14) . The strategy 

will he explained in three steps, C , D and E below. The inequality 

(1.17) is relatively simple and will be given in Section IV . 
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I.C. The Peierls Argument 

In this section we describe a general form of the Peierls argument. 

We consider a finite classical or quantum lattice system in a square 

Λ  2. For convenience we wrap Λ on a torus, but this is inessential 

for this part of the argument. At each site i ϵ Λ we are given two 

orthogonal projection operators, P±

j
, with 

P+j + P-j = 1, for all j . (1.25) 

In the following < - > ≡ < - >. We propose to derive an upper bound 

on < P
+

m
 P

-
n
 > , where m and n are arbitrary, fixed sites in Λ , 

and m ≠ n . The first step is the trivial identity 

, (1.26) 

an immediate consequence of (1.25). We now expand the product on the right 

side of (1.26). 

Definition 1 : 

A configuration c is a function on A with values in {+, -} , and 

c(m) = + , c(n) = - . A contour γ  Λ is a family of nearest neighbor 

pairs { <ί1 , j1 >,... , <il, j
l

> : l = 4, 6, ...} which 

decomposes A into precisely two disjoint subsets 

Λm = Λm (γ) {i
1

, ... , il , m } , and 
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Λ
n
 = Λ

n
 (γ)  {j

1

, ... , j
l

 , n} with 

Λm  Λn = Λ. 

Given a configuration c , we let Γ(c) denote that class of all contours 

γ = { < i
1
, j1 >, ... , < il , jl > } with c(ik) = + , i

k
 ϵ Λ

m
 (γ), 

c(j
k

) = - , j
k
 ϵ Λn (γ) , k = 1 , ... , l. . Since, for any configuration 

c , c(m) = + , c(n) = - , we conclude that, given an arbitrary c , 

there exists a contour γ(c) ϵ Γ(c) with the property that there exists 

a connected set Λc  Λm (γ(c)) such that m ϵ Λc , c(i) = + , for all 

i ϵ Λc, {i1, ... , il}  Λc . (A set X is connected if any two 

sites i , j in X belong to a chain { i = i0, i1 , ... , ik , ik+1 = j } 

 X such that i
l
 and i

l+1

 are nearest neighbors, l = 0 , ... , k) . 

Using Definition 1 we get from (1.26) by expanding 

(1.27) 

Next, we note that 

For i ≠ j , arbitrary c . Hence, for Y  X , 

so that 

(1.28) 
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for all c . Therefore 

(1.29) 

Therefore we have the inequality 

(1.30) 

Let |γ| denote the number of nearest neighbor pairs in γ , (the "length" 

of γ ) . 

Theorem 1.1 : (Peierls argument) 

Suppose that (for large enough |Λ| ) 

(1.31) 

for some constant K > 1n 3 (independent of Λ ) . Then 

(1.32) 

for arbitrary m and n in Λ (and all sufficiently large squares Λ ) . 

Remark: The assertions of Theorem 1.1 do not depend on the size of Λ and 
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extend without change to the infinite system Λ = 2 ; (see the subsequent 

proof and [10 , Section 3]). 

Proof : By Definition 1 the length of a contour is always even. The smallest 

contours are {<m, j1> , <m, j2> , <m, j
3
> , <m, j4>} and {<il, n> , ... , <i4, n>} , 

i.e. have length 4 . Hence, by (2.7), 

(1.33) 

(When Λ is finite these sums are finite). Given some fixed length 2l , 

well known combinatorics shows that there are no more than 2(l-1) 32l-2 

contours of length 2l , provided A is large enough, depending on m 

and n. (The factor 32l-2 comes from a standard _ argument 

and the fact that all contours consist of one or two closed pieces. The 

factor 2(l-2) comes from the fact that each contour must separate m from 

n) . Theorem 1.1 now follows from (1.33) and the inequality K > 1n 3 

which guarantees that the series Σ∞ l=2 2(l-1) 32l-2 e-2lk converges. 

Q.E.D. 

Theorem 1.1 has the following 

Corollary 1.2: 

Given ε > 0 , there exists some finite Κ(ε) such that, for all K  Κ(ε), 

Remarks. 

1. The relevance of Coròllary 1.2 for the proof of long range order has 
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been explained in Section l.B. 

2. Theorem 1.1 and Corollary 1.2 can easily be generalized to the case 

of more than two positive operators (e.g. projections) 

say, with 

We could apply this more refined Peierls argument to the quantum ferromagnet, 

model (4), with . This extension 

is important in models with more complicated phase diagrams involving at 

least Μ > 2 pure phases ; (see e.g. [10] , Sections 3 and 8) . 

3. Clearly these techniques extend to arbitrary dimensions  2 and other 

than simple, cubic lattices. See also [12] . 
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I.D. Reflection Positivity and Chessboard Estimate 

In Section I. C. we have seen that in order to prove 

uniformly in m and η , it is sufficient to show 

(1.34) 

for some constant K = Κ(ε) >> 1n 3 . Here we want to sketch how 

(1.34) can he reduced to a purely thermodynamic estimate. 

Let Λ he a square with sides of length N = 4M, Μ = 1, 2, 3, .... 

We define a "universal projection" 

(1.35) 

The following self explanatory figure illustrates equation (1.35) 

Fig. 1 N = 8 , Μ = 2 
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One of the key estimates in our approach to proving LRO is the inequality 

(1.36) 

which we shall prove for models (l) , (3) , (5) (antiferromagnetic case) 

and (6), i.e. all models except the quantum ferromagnets and the anharmonic 

classical crystal, model (2). For the former, we believe that (1,36) holds 

but we have no proof; (1.36) will be assumed to hold in the sequel. 

For the AC model, the definition of the universal projection has 

to be modified: Let Λ be a square with sides of even length N = 2M . 

We define 

(1.37) 

The following figure explains the definition of 

N = 8, M = 4 

In the case of the anharmonic classical crystal we prove 

(1.38) 
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(This inequality also holds for the classical N-vector model, model (l) ) . 

Our proofs of inequalities (1.36) and (1.38) are based on the notion of 

reflection positivity (or 0-S positivity) which we now explain: 

We choose a pair of lines l parellel to one of the coordinate axes, cutting 

A into two congruent pieces Λ
+ and Λ- (Note: l is a pair of lines, 

because Λ is wrapped on a torus). In models (l) , (3) , (4) and (5) 

the lines l are between two lattice lines, so that Λ+ ∩ Λ- =  , 

whereas in model (2) l consists of two lattice lines, and Λ
+
 ∩ Λ

-

 = l . 

Let be the reflection at l . Let F = F(m)Λ+ be a complex-valued 

function of all the mi’ s (see Section l.B) , with l ϵ Λ+ . We define 

θl F = θl F(m)Λ-
 to be the function obtained from F by substituting 

mθlj for mj. Reflection positivity is the inequality 

< F ( θl F ) >  0 , (1.39) 

where F is the complex conjugate of F . A somewhat more general inequality 

(also called reflection positivity) is discussed in Section II ; as an 

example we mention that in the N-vector model, (1.39) is true for arbitrary, 

complex-valued functions F of { S
i

 : i ϵ Λ
+
 } and both choices of l 

(between two lattice lines or coinciding with a lattice line). 

Reflection positivity (1.39) yields the following Schwarz inequality 

If F and G are functions of (m)Λ+ then 

(1.40) 
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Next, we indicate how (1.36) , resp. (1.38) follow from (1.40). Let 

γh be all pairs <i, j> of the contour γ for which j - i points in the 

1-direction. Such pairs are called "horizontal". Furthermore 

γν = γ \ γh denotes all "vertical" pairs in γ . For <i, j> ϵ γ
h

 , let 

i ^ j denote the site with smaller 1-coordinate; for <i, j> ϵ γV , i  j 

is the site with smaller 2-coordinate. Suppose that reflection positivity 

(1.39) holds for reflections at lines l between two lattice lines. 

Then we define 

Similarly γV, e and γV, o are defined. By the standard Schwarz inequality 

for < - > we have 

(i.4i) 

To each factor on the right side we now apply reflection positivity (1.39) 

and inequality (1.40) repeatedly, for many different choices of l . This 

yields 



- 25 -

(1.42) 

This inequality is a special case of a general corollary of reflection 

positivity, called chessboard estimate [19] , which we prove in Section 2. 

Clearly, inequalities (1.41) and (1.42) yield the key inequality (1.36) . 

In the classical, anharmonic crystal, model (2) , we first decompose 

γ into two pieces, γh consisting of horizontal and γV consisting of 

vertical pairs. For <i, j> ϵ Y^ , let (ij)
2
 denote the 2-coordinate of 

both i and j , for <i, j> ϵ γV , let (ij)1 be the 1-coordinate of 

i and j . We define 

γ
h, e

 = { <i, j> ϵ γh
 :
 (ij)2

 even } 

γ
h, o

 = { <i, j > ϵ γ
h

 : (ij)2
 odd } 

γv, e = { <i, j> ϵ γv
 : (ij)l

 even } 

γV, ο
 = { <i, j> ϵ γ

V
 : (ij)

1
 odd } . 

Applying again the standard Schwarz inequaltiy for < - > , we obtain 

(1.43) 

To each term on the r.s. of (1.43) we apply the Schwarz inequality (1.40) 

repeatedly, for all allowed choices of reflections at lattice lines l . 

This yields (see Section II) 

(1.44) 
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The key inequality (1.38) follows from inequalities (1.43) and (1.44). 

Further details concerning reflection positivity and the chessboard estimates 

(1.42) and (1.44) are given in Section II . 
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I.E. Estimate of < PΛ > and Exponential Localization 

In this section we sketch the main ideas of how to estimate 

RΛ (β) ≡ < Ρ
Λ
 > and 

By definition of < - > , 

(1.45) 

where means either RΛ or RACΛ . Here HΛ is the Hamiltonian of 

the model under consideration, and Tr is the usual trace in the quantum 

mechanical models, and in the classical models, an integral with measure the 

product of the single spin distributions over all sites in A . Let E
Λ
 (de) 

denote the spectral measure of the Hamiltonian HΛ . By the spectral theorem 

(1.46) 

where e
o

 ≡ e
o
 (Λ) = infspec HΛ is the groundstate energy, and C is 

an arbitrary operator, resp. function. We will choose some positive number 

Δ = Δ (β) , depending on the model under consideration, and decompose 

into two pieces 
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(1.47) 

where (1.48) 

is the partition function. We estimate R+
(AC)

 (β, Δ) by 

(1.49) 

The Peierls-Bogoliubov inequality will be shown to give 

(1.50) 

for β sufficiently large. Thus 

(1.51) 

Next we consider R-
(AC) (β, Δ) . In the classical cases this will 

vanish for the following reason: Δ will he chosen sufficiently small so 

that will he a projection onto configurations with energy greater 

than e
o
 + Δ ]Λ| . Thus the integral for R-

(AC)
 (β) will vanish identically. 

In the quantum cases, the situation is more complicated. Although 

will he a projection onto states whose average energy exceeds e
o
 + Δ|Λ|, 

the integral does not vanish, because PΛ will have nonvanishing matrix 
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elements in eigenstates of HΛ with energy < e
0
 + Δ|Λ| . To be explicit, 

let e0 ≤ e1 ≤ be the eigenvalues of HΛ with eigenvectors ϕ0 , ϕ1 , ... . 

Then 

R
-

 (β, Δ) = Ζ
Λ
(β)

-1

 Σ'iΔ C
i

 exp [- βe
i

] (1.52) 

where Σ'
Δ
 means a sum over i such that e

i

 ≤ e0 + Δ |Λ| , and 

C
i

 ≡ (ϕ
i

 , ΡΛ ϕi) , (1.53) 

Now Ci is independent of 3 , and therefore R (β, Δ) does not 

necessarily vanish as exp [- β (const.)] . What we have to show is that 

Ci → 0 sufficiently fast as i  0 . Then we can hope that R (β, Δ) 

goes to zero sufficiently fast as β → ∞ , for a suitable choice of Δ . 

The estimate on Ci , carried out in section III , comes about 

in the following way: We write HΛ = ΑΛ + BΛ , where BΛ is suitably 

small compared to AΛ, and such that PΛ is an eigenprojection for 

onto A Λ eigenvectors having energy > e
0
 + n Δ | Λ | for some n. In model 

(3) , for example, A = S-2 HZ . If B were zero then Ci = 0 for 

ei ≤ e
0
 + Δ |Λ|. The principle of exponential localization will tell us 

that AΛ eigenvectors of AΛ energy greater than e
0
 + n Δ | Λ | , (n  2) 

when expanded in the ϕi , are strongly (indeed, exponentially well in |Λ| ) 

localized around ϕ
i

 with e
i

 > e0 + Δ | Λ | . This, in turn, will lead to 

C
i

 being small for e
i
 ~ e0 . 

Acknowledgements : We thank B. Simon for some very useful suggestions. 
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II. Reflection Positivity and Chessboard Estimates 

II. A. Reflection Positivity 

In this section we recall the proofs of reflection positivity, 

inequality (1.39), for the models studied in this paper. For the classical 

N-vector models, reflection positivity is shown in [20]. In terms of a 

transfer matrix formalism it is used in [10] . For the quantum anti-

ferromagnet and the quantum mechanical xy model (models (3) and (6)) 

reflection positivity was discovered in [9] · The proof given there also 

applies to the classical N-vector models. 

First we consider the classical, anharmonic crystal, model (2) , 

for which (1.39) is new. We choose a pair of lattice lines l cutting A 

into two congruent pieces, Λ
+ and Λ

-

 , with Λ+ ∩ Λ- = l . Let 

Λ
±
 = Λ

±
 \ l . The N-vector oscillators attached to sites in Λ

±
 have 

coordinates (y)
±
 ≡ {y j ϵ N : Λ

+
) . The coordinates of the N-vector 

oscillators attached to sites in l are denoted by 

(z) ≡ {Z
j
 ϵ 
N

: j  l}. 

Given a function F of (y)
+

 , (z) , we define θl F to be the function of 

(y)
-

, (z) obtained by substituting y for yj, for all j  Λ±, 

i.e. θl F is the reflection of F in the lines l . The Hamilton function 

of the AC model is given by 
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Let dN x be the a priori distribution of a single oscillator, and set 

Let F = F ((y)
 +

 , (z)) be an arbitrary function localized on Λ
+

 . Then 

(2.1) 
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î. e. 

(2.2) 

which is reflection positivity. Clearly, this form of reflection positivity 

also holds for the classical N-vector models. Next, we consider the 

quantum mechanical models and the classical N-vector models. We let l 

he a pair of lines between lattice lines cutting Λ into two disjoint , 

congruent pieces, Λ
+
 and A . Let M

j
 denote the family of all hounded 

functions of the spin S
j

 ("algebra of observables" at site j ) . We define 

and 

Given some B e Of , we define ΘΒ ≡ θℓΒ by 

(θΒ)((S)Λ) = Β((θS)Λ) , (2.3) 

where (S)Λ = { Sj : j Є Λ } , and 

(θS)Λ= { Sθℓj : j Є Λ}. , 

i.e. θΒ is obtained from B by substituting Sθlj for Sj , all j  Λ 

Clearly θ defines an isomorphism from M+ onto M- (and conversely). 

Furthermore we define 

B = (BT)* (2.4) 

to be the complex conjugate (not the adjoint) of B , for arbitrary B Є M 
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Following [9] we study Hamiltonians of the following general form: 

Η = B + θ(B) - ∑ Ci θ (Ci), (2.5) 

where B , C1 , ... , Ck , ... are in M+ , (and B = B , Ci = ±Ci , 

for all i , so that H is selfadjoint). The following result is a slight 

variation of Theorem E.l of [9] . 

Theorem 2.1: (Reflection Positivity) 

Let F M+ . Then 

where "Tr" means the usual trace in the quantum case and an integral in 

the classical case. 

Proof: It clearly suffices to prove that Tr (e -BH F(θF)) ≥ 0. 

By the Trotter product formula, 

where 

(2.6) 

Thus, Theorem 2.1 is proved if 

Tr (Gn F (θF)) ≥ 0 , for all η . (2.7) 

To prove (2.7) , note that all elements in M+ commute with all elements 
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in M. In (2.7) all elements with a θ (which are in M_) can 

therefore be moved to the right of all elements without a θ (which are in 

M+ ) . This shows that Tr (Gn F(θF)) is a sum of terms of the form 

Tr (D1 ... Dm F θD1 ... θDm θF) = Tr (D1 .. DmF θ (D1. ... Dm F)) 

= Tr (D1 ... DmF) Tr (D1 ... DMF) , 

with D1, ..., Dm in M+· Here we have used the obvious facts that 

Tr (AB) = Tr (A) Tr (B) , for A Є M+ , B Є M_ , and Tr (θΑ) = Tr (A ) , 

for all A Є M . Finally 

Tr (D1 ... DmF) Tr (D1 ... Dm F ) 

2 
= Tr (D1 ... DmF) | ≥ 0, 

by definition of complex conjugation (B → B) . 

Q.E.D, 

We leave it to the reader to check that the Hamiltonians HΛ of models (l) , 

(3) and (6) are of the form (2.2). See also [9]. Hence Theorem 2.1 

proves reflection positivity, inequality (1.39),
 for these models. However, 

for the quantum ferromagnet, models (4) and (5) (ferromagnetic case), HΛ 

is not of the form (2.2) (becuase of the Syi Syi terms) , and the proof of 

Theorem 2.1 breaks down. At present, no useful form of reflection 

positivity is known for these models. In the sequel, we will assume that 

inequality (1.36), which follows from reflection positivity (as shown in 

Section II. B) does hold for the ferromagnetic models, even though we have no 

proof of it. 
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II.B. Chessboard Estimate 

Our goal in this subsection is to use reflection positivity to prove 

inequalities (1.36) and (1.38) (chessboard estimate). We prove a general 

theorem that includes (1.36) as a special case. 

Theorem 2.2: (generalized Hölder inequality) Let M be a vector space with 

antilinear involution J (to be thought of as complex conjugation). Let ω 

MX2M X2M 
be a multilinear functional on Mx2M , for some integer Μ > 0 , with the 

properties 

(C) ω (A
1

 , ... , A2M) = ω (A2 , ... , A2M , A1) (cyclicity) 

and 

(θ) The matrix K whose matrix elements are given by 

Kij = ω
 (JAi, 1 * ··· , JAi,M ’ Aj,1 , ··· ,M) , 

with Aℓ, m an arbitrary vector in M , for all ℓ=1 , ... , n , m=1 , . . . Μ , 

is a positive semi-definite n x n matrix, for all n=l,2, ... ; 

(Reflection Positivity). Then 

(chessboard estimate) 
and 

(2) 

is a semi-norm on M. on 
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Proof: 

1° A Schwarz inequality: 

Let L(MxM) be the vector space over the complex numbers spanned by all 

elements in MxM . Hypothesis (θ) tells us precisely that ω defines an 

inner product on L(MxM) . As a special consequence of the Schwarz 

inequality for this inner product we have 

1/2 
|ω(Α1 ,..., A2M) | ≤

 ω(A1
 , ... , AM, JAM, ...., JA1) 

X W(JA2M,..., JAM+1, AM+1, ..., A2M)1/2 (2.8) 

2° Proof of Theorem 2.2 for Μ = 2 : 

This serves to exhibit the main ideas behind the proof of the general 

case. By (2.8) and hypothesis (C) , 

|ω(Α , B , C , D) | ≤ ω (A , B , JB , JA)½ ω(JD, JC, C, D)½ 

= ω (B , JB , JA , A)½ ω (JC, C, D, JD)½ 

≤, ω (B , JB, B, JB)¼ ω (JA , A , JA , A)¼ 

x ω (JC , C , JC , C)¼ ω (D, JD , D , JD)¼ 

= ω (JA , A , JA , A)¼ ώ (JB , B , JB , B)¼ 

x ω (JC , C , JC , C)¼ ω (JD , D , JD , D)¼ 

which is (l) ; (2) follows from the multilinearity of ω and (l). 

3° The general case: 

Since ω is multi-linear and 
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ω (JAj , Aj , ... , JAj , Aj ) = ω(Αj , JAj , ... , Aj , JAj) , 

by hypothesis (c), ve may assume that 

ω (JAj , Aj, ... , JAj, Aj) = 1 , (2.9) 

for all j = 1, ..., 2M ; (if not, replace A. by ω(JAj, Aj,..., JAj, Aj) 

• Aj). We set JAj ≡ Aj+2M , j = 1 , ... , 2M . A configuration c 

is a function on {1 , ..., 2M} with values in {1 , ... , 4M}. Let 

z ≡ max c | ω (Ac
(l)

 , A
c(2)

 ...., Ac(2M) | , i.e. 

z ≥ | ω (Ac(1), ..., Ac(2M)) |, for all c. (2.10) 

Lemma : z = 1. 

Proof: For c defined by 

c (2m - 1) = j+ 2M , c(2m) = j , 

m = l , . . . , Μ , 

ω(Ac(l),..., Ac(2M) 1, 

by (2.9) · Hence z ≥ 1 . Thus, it suffices to show z ≤ 1 . Let c 

be a configuration for which 

I " (A
c(l)

 AS(2M))I 
z . 

Let c(M + l) ≡ j . Then, by the Schwarz inequality (2.8), 

z = | ω(Αc
(1)

, ..., Ac
(2M)

)| 

= ω Ac(l), ..., Ac(M), JAc(M),..., JAc(1)) 
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ω (JAc(2M), ..., JAj, Aj, ..., Ac(2M)) 

≤ z½ ω (JAc
(2M)

, ..., JAj, Aj, ..., Ac
(2M)

)
 1/2

, by (2.10) 

= z½ ω (JAc(2M-1), ...., JAj, Aj, ..., Ac(2M), JAc(2M) 

by hypothesis (C) 

≤ z3/4 ω (JAc(2M-1),... JAj, Aj, JAj, Aj, ..., Ac(2M-1)1/4, 

by (2.8) and (2.10) 

≤ .... 

by (2.8) and (2.10) 

by (2.9) , 

for some m with 2m-1 ≥ M > 2m-2 . Hence z2-m ≤ 1 , i.e. z ≤ 1 . 

Q.E.D. 

To prove Theorem 2.1 , (1) , let c be given by c(j) = j , 

j = 1 , ... , 2M . By (2.10) and the Lemma, 

| ω (A
c(1)

 , ... , Ac(2M) | = | ω(A1; ..., A2M)| 

≤ z = 1 . (2.11) 

The multilinearity of ω and (2.11) completes the proof of (1). Theorem 
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2.2 , (2) follows from the multilinearity of ω and hypothesis (θ) (which 

imply ||A||2M ≥ 0 and ||λA||2M = |λ| ||A||2M) and from (1) (which 

implies that ||A+B||2M ≤ ||A||2M + ||B||2M). 

Q.E.D. 

To apply Theorem 2.2 to the proof of estimates (1.36) , resp. 

(1.38), one makes the following identifications: 

ω ( · ) →·< · > 

Aj → P+i P-j , with i , j nearest neighbors; 

Theorem 2.2 must be applied twice, once in the vertical 

direction and once in the horizontal direction. This gives (1.42) , resp. 

(1.44) . We now must check that ω ( · ) = < · > satisfies the hypothesis 

of Theorem 2.2: Clearly is multi-linear in each Bj , 

yielding multi-linearity of ω . 

Since we have wrapped Λ on a torus (periodic boundary conditions), 

for arbitrary a Є Λ . This shows that ω satisfies hypothesis (C) in both, 

the vertical and the horizontal directions. Finally, hypothesis (θ) of 

Theorem 2.2 in both, the vertical and the horizontal directions, is an 

immediate consequence of reflection positivity (inequality (2.1) , resp. 

Theorem 2.1) . A more direct proof of inequalities (1.42) and (1.44) 

proceeds as follows; (we sketch the argument leading to (1.42); the case 
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of the anharmonic crystal is treated similarly). Let Bh,e denote all pairs 

of horizontal nearest neighbors <i, j> (directed, "horizontal bonds") with 

i ^ j even . Let O be an arbitrary, non empty subset of Bh,
 e

 · Let 

| O | denote the number of horizontal bounds in O . We consider the family 

Let and let be 

some subset of directed, horizontal bounds on which the maximum z is taken. 

Using translation invariance of < - > (corresponding to hypothesis (C) of 

Theorem 2.1) and reflection positivity of < - > (corresponding to (θ)) 

and applying the Schwarz inequality (corresponding to (2.8)) repeatedly, 

as in inequality (2.11), in the horizontal and vertical direction, we 

obtain 

for some integer k > 0 . Hence z ≤ < P Λ > from which we 

obtain (1.42) . Finally we remark that Theorem 2.2 can be used to give 

alternate proofs of the general chessboard estimates of the last reference in 

[19] (Theorem 2.3, periodic boundary conditions) and of [10] (Lemma 4.5). 

Furthermore Theorem 2.2 implies the Holder inequality for general traces 

and the Peierls-Bogolubov and Golden-Thompson inequalities. 
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III. Exponential localization 

In this section we explain the difficult part in the required 

estimate of RΛ (β) = <PΛ> , defined in (1.45) , for the quantum 

mechanical models. We recall that in Section I.E. we have split RΛ (β) 

into two pieces 

RΛ (β) = R_ (β , Δ) + R
+
 (β , Δ) , (3.1) 

where 

R_ (β , Δ) = Ζ
Λ
 (β) -1 ∑'Δ Ci exp [-βei] ; (3.2) 

here ∑'Δ. means a sum over all i such that ei ≤ e + Δ|Λ| , and 

CI ≡ (φi , PΛ φi). . (3.3) 

The easy estimate of R+ (β , Δ) is postponed to Section IV . In this 

section we prove upper bounds on R (β , Δ) for models (l) - (6) . We 

claim that, for the classical models, models (l) , (2) and (6) 

(classical case), 

R_ (β , Δ) = 0 (3.4) 

for sufficiently small Δ . To show this we first estimate the minimum 

(PΛ (AC) ) of the Hamilton function ΗΛ restricted to the configurations 

{ S : S Є Ρ
Λ
 } (models (l) , (6) ) , 

resp. { x : x Є P Λ AC } (model (2) ) . 
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for models (l) and (6) 

(3.5) 

For model (2) 

(3.6) 

Therefore 

if Δ < (1 - α) / 2 (models (l) , (6)) (3.7) 

resp. Δ < α / 2 (model (2) ) (3.8) 

then R_ (β , Δ) = 0 

which proves our contention. 

As already noted in Section I.E , (3.4) is false for the quantum 

mechanical models, and we have to work much harder in order to obtain a good 

upper bound on R (β , Δ) . The idea is to show that Ci = (φi , P Λ φi) 

is very small for eigenvalues ei of close to the ground state energy 

eo . Although PΛ is a projection onto states of relatively high Hz -energy, 

(φi , PΛ φi) does not vanish, even for ei very close to eo , as it 

does in the classical case. 

III. A . Principle of Exponential Localization 

The following general result will be crucial for our analysis. 

Theorem 3.1 , (exponential localization of eigenvectors): 

Let A and B be selfadjoint operators (typically finite, hermitean 

matrices) on a. Hilbert space H such that 
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(i) A  Ο 

(ii) ±B  ε A , 

with 0  ε < 1 . Suppose that 

(A + B) ψ = λψ , ||ψ|| = 1 . 

Choose some p > λ  0 such that 

σ ≡ ε ρ (p - λ) -1 < 1. (3.9) 

Let Pp he the spectral projection of A corresponding to [ρ , ∞) , and 

M
ρ
 ≡ P

ρ 
H (all "eigenvectors" of A corresponding to eigenvalues 

 ρ) . Note that (A - λ) restricted to > 0 . Finally, let 

ϕ  Mρ he a unit vector with the property 

(iii) { B (A - λ)-1 } j ϕ  Μρ , 

for j = 0 , 1 , ... , d - l, with d  1 . 

Then | ( ϕ , ψ ) |  σd (3.10) 

Remarks : 1. Since B  - ε A , by (ii) , 

A + B  (l - ε ) A  0, (3.11) 

so that all eigenvalues λ of A + B are nonnegative. 

2. Clearly the condition |B εΑ implies (ii) , hut the 

converse is false, as the example 
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|B| = 1 , ε = 1 

shows. Hypothesis (ii) is all we need to prove (3.10). 

Proof : By hypothesis, 

(A + Β)ψ = λψ , i.e. (A - λ)ψ = Βψ 

Thus, for some  0 , 

ψ = (A - λ + i δ )-1 (Βψ + i δψ) , 

so that 

|(ϕ , Ψ)| = |(ϕ , (A - λ + i δ) -1 (Βψ + i δψ ) ) | 

= |((A - λ - i δ)-1 ϕ , Βψ + i δψ)| 

Since ϕ  Mρ and λ < ρ , by hypothesis, 

lim (A - λ - i δ) -1 ϕ = (A - λ)-1 ϕ , 
δ ↓ 0 

hence 

|(ϕ , Ψ)| = | (Β (Α - λ)-1 ϕ , ψ ) | . (3.12) 

By hypothesis (iii) , {Β(Α - λ)-1 } ϕ ϵ M for j = 0 , 1 , ... , d-1 . 

Therefore, for d > 1 , 

|(ϕ , Ψ)| = |(Ρρ Β(Α - λ) -1 ϕ , ψ)| (3.12') 

and we can iterate (3·12') d - 1 times and then apply (3.12) . This 
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yields 

(3.13) 

where we have used that [A , Pρ ] = 0 . Now 

(3.14) 

(3.15) 

and we have used the definition of Pρ and hypothesis (ii). Finally 

(3.16) 

and 

by (3.11) 

(3.17) 
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since σ ≡ ερ (ρ - λ)-1 < 1, i.e. λ < ρ (l - ε) . If we combine 

(3.13) - (3.17) we find |( ϕ , ψ )|  σd-1/2 ε1/2 (ρ - λ)-1/2 ρ1/2 = σd 

Q.E.D. 

Corollary 3.2: 

Suppose N  Mρ is a subspace of Mρ such that each ϕ  Ν satisfies 

hypothesis (iii) of Theorem 3.1 . If P is the projection onto N then 

(in the notations of Theorem 3.1) 

< ψ , Ρψ >  σ2d 

The proof is essentially identical to the one of Theorem 3.1. We now apply 

Corollary 3.2 to estimating the overlap of the universal projection PΛ 

with the low lying eigenstates of HΛ , i.e. the numbers Ci = (ϕi , PΛ ϕi ) , 

when the eigenvalues e
i
  e

0
 + Δ | Λ | , for models (3) and (4) , 

(quantum mechanical antiferromagnet, resp. ferromagnet. The case of the 

x - y model is similar to the antiferromagnet). For this purpose we identify 

P = ΡΛ (3.18) 

A = S-2 HZ - e
0
 (α = 1) , (3.19) 

where e0 (α = l) is the groundstate energy of the isotropic Hamiltonian, 

B = α S-2 Hxy (3.20) 

In all the models discussed here, the goundstate energy e0 (α = l) of 

the Hamiltonian H = S -2 (HZ + Hxy) is bounded above by the groundstate 
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energy e
0
z of S-2 Hz 

Therefore A  0 . (3.21) 

Furthermore A + 1/α B = S-2 (HZ + Hxy) - e
0
 (1)  0 (3.22) 

If we rotate all spins on one of the sublattices by an angle π around 

the z-axis we see that A + 1/α B is unitarily equivalent to A - 1/α B , 

as is taken into - Hxy under this unitary transformation, but Hz 

is unchanged. Therefore 

±B  αΑ , i.e. ε = α (3.23) 

Finally we set 

(3.24) 

where Δ and n will be chosen to be dependent on the model. Thus the 

hypothesis of Theorem 3.1 and Corollary 3.2 are satisfied. 

III. B. Estimates for the Antiferromagnet: 

Next we consider the quantum mechanical antiferromagnet, model (3), 

in detail. We shall estimate the overlap coefficients 

C
i

 = (ϕ
i

 , P
Λ

 ϕ
i

) , 

for all eigenvectors of the Hamiltonian HΛ corresponding to eigenvalues 

ei with 
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e
i

  e
0
Z + Δ | Λ | . (3.25) 

From (3.19) and (3.20) we infer that 

A + B = H
Λ

 - e0 (α = 1) . 

Therefore the eigenvalue λ of A + Β introduced in Theorem 3.1 ,Corollary 

3.2 satisfies 

λ  δ | Λ | + Δ | Λ | , (3.26) 

where 

It is shown in [17] that 

(3.27) 

so that 

δ  (2S)-1 (3.28) 

Combining (3.23) and (3.24) with (3.26) and (3.28) we arrive at 

the following estimate for σ : 

(3.29) 

Let 

ξ Z (P
Λ

) ≡ inf spec (Ρ
Λ
 HZ Ρ

Λ
) - e

0
 (α = l) 
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be the minimal A-energy of any state in N ≡ PΛ H · Recalling definition 

(1.35) of the universal projection we see that 

so that 

ξ Z (Ρ
Λ

) - ρ  ( 1/2 - nΔ) | Λ | (3.30) 

Since PΛ plays the role of the projection P introduced in Corollary 

3.2 , we have the constraint 

(3.31) 

Lemma 3.3, (Estimate on d for antiferromagnet) : 

Let A ≡ S-2 HZ - e
0
 (α = l) 

(l) Let ψ be a vector of A-energy at least e , i.e. (l - Pρ=e ) ψ = 0 . 

Then the A-energy of H
xy

 ψ is at least e - 8S
-1

 , i.e. (l -
 Pe- 8S

-1) Η
zy
 ψ = 0. 

(2) d  [ 1/16 (1 - 2nΔ) S| Λ | ] , for 2nΔ < 1 , where [a] is the 

largest integer  a . 

Proof : In our representation (1.40) of the antiferromagnet 

(3.32) 

where S+ , S- are the spin-raising, resp. spin-lowering operators. Using 

(3.32) we see that one application of Hxy to a vector ψ can raise 
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(resp. lower) the z-components of the spins of one nearest neighbor pair 

<i, j>  Λ by 1. Clearly, this cannot change the minimal A-energy of ψ 

by more than S-2 . 8S = 8S-1 , as a minute of reflection shows. 

More precisely, 

(3.33) 

This completes the proof of (l) . The proof of (2) is an immediate 

consequence of the definition of d , of inequality (3.30) and of part (l) . 

Q.E.D. 

Proposition 3.4 : 

where 

and 

for arbitrary ξ < 1 and n < 1 

Proof: We choose 

Δ = β-ξ and n = 1/2nβξ (3.34) 

Then 1/2 - nΔ = 1/2 (l - η) > 0, for η < 1 , so that the constraint 

(3.31) is fulfilled. By equation (3.2) , (3.3) , 
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(3.35) 

Suppose the maximum on the right side of (3.35) occurs for i = i0 , 

< e
0
 + Δ | Λ | . We set ≡ ψ P

Λ
 ≡ P and apply Corollary 

3.2 . This gives 

By (3.34) and (3.29) 

Furthermore, by Lemma 3.3, ( 2 ) and (3.34) 

Q.E.D. 

Remark: 

The dependence of σ and d on the total spin S will permit us 

to show that the critical anisotropy α
e
 (S), below which a phase transition 

occurs,tends to 1 as S → ∞ . 

Our estimate for d is not very good and can be improved; we 
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illustrate how to do so for spin 1/2 . We claim d. ≥ |Λ | (l - nΔ) / 4 

instead of |Λ|(1 - 2nΔ) S/8 = | Λ | (1 - 2nΔ) / 16 ; PΛ (Fig. l) now 

means a projection onto a definite pattern of up or down spins ; 

ξz (P
Λ

) = - | Λ | + δ , and we wish to lower it to an A- energy of 

- 2 |  | + Δ |  | + δ . Let eh be the H
z
-energy of the horizontal bonds 

Initially, e
h
 = 0 ; finally e

h
 ≤ - || + nΔ |Λ| , since the vertical 

energy ≥ - | Λ | . Also, eh = - | Λ | + 2b where b is the number of bad 

(i.e. + - or - +) horizontal bonds. At least k = |Λ| (l - nΔ) / 2 bad 

horizontal bonds must be removed; d ≥ d' = number of steps to do this, 

while d' ≥ d"/2 , where d" is the number of single spin flips required 

to do the same thing. Since the initial horizontal pattern in each row 

is bgbgb... (g = good bond), it is easy to see that d" = k . These 

arguments give the following improved estimates for S = 1/2 : 

(3.36) 

(3.37) 

III.C. Estimates for the Ferromagnet: 

It is well known that in the quantum mechanical ferromagnet (model 

(4)) 

for all |α|  1 ; (3.38) 

in fact, the groundstates for |α| < 1 are identical with the two groundstates 

of Hz . Therefore 
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ρ = nΔ | Λ | , by (3.24), and 

A = S-2 HZ - e
0

Z , B = αS-2 Hxy 

We estimate the overlap coefficients (ϕi , P
Λ
 ϕi) for all eigenvectors 

of the Hamiltonian H
Λ
 corresponding to eigenvalues ei with e

i
  e

0

z
 + Δ | Λ | . 

Thus the eigenvalue λ of A + B introduced in Theorem 3.1 and Corollary 

3.2 must satisfy λ  Δ | Λ | . Therefore 

(3.39) 

As in the antiferromagnet one shows that 

(3.40) 

see the proof of Proposition 3.4. We are left with estimating the 

"distance" d on the right side of (3.40) . 

Estimate on d : 

Let l be an integer such that | Λ |1/2 / ℓ is an integer. We decompose A 

into | Λ | / ℓ2 disjoint, congruent squares, b (= boxes), with sides of length 

ℓ . Let ϕ be an eigenvector of Clearly ϕ is also an 

eigenvector of A . For ϕ , a perfect square is defined to be a square b = bϕ 

such that and one of the following two properties holds: 

(i) σ
i

 ≥ (0.9)S for all i ϵ bϕ 

(ii) σ
i

 ≤ - (0.9)S for all i ϵ bϕ. 
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Suppose now that the A-energy of ϕ is ≤ nΔ|Λ| . We propose to 

estimate the minimal number, k , of perfect squares b
ϕ
 for this ϕ . 

For this purpose we assign an A-energy to every b square in Λ in such 

a way that the sum of the energies assigned to all squares in Λ is  

the A-energy of ϕ . The A-energy of a perfect square is zero. Therefore, 

to a square which is not perfect, an A-energy of at least 2(0.1) must 

be assigned. There are (|Λ| ℓ-2 ) - k squares which are not perfect. Since, 

the A energy of ϕ is  nΔ |Λ] , we obtain the inequality 

(|Λ| ℓ -2 - k) (0.2)  nΔ | Λ | , 

i. e. 

k  | Λ | (ℓ-2 - 5nΔ) (3.41) 

Since ℓ ≥ 2 , we require that nΔ < 1/20 . Let ψ be an arbitrary vector 

in the range of , i.e. ΡΛ ψ = ψ . Define d (see Theorem 3.1) by 

the condition 

(1 - PnΔ ) [B (A - λ)-1] ψ ≠ 0 , 

but (l - ΡnΔ) [B (A - λ)
-1

]
j ψ = 0 , 

(3.42) 

for all j < d . 

We expand [B (A - λ)-1]d ψ in terms of eigenvectors ϕzj,ψ 

of {Si
z : i ϵ Λ } . Let ϕ = ϕz

j0,ψ
 be a vector of A-energy  nΔ . 

By (3.42) such a ϕ ≠ 0 exists. By (3.41) ϕ has k  | Λ | ℓ-2 - nΔS / 2) 

perfect squares. In order to obtain a perfect square by repeated application 
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of B(A - λ) to ψ , B (A - Λ)-1 has to he applied to ψ at least 

m times, where 

(3.43) 

This is so, because ψ is an eigenvector of P
Λ
 , so that the z-components 

of ℓ2/2 spins is box b have is be raised from S
z
  0 to S

z
 = (0.9) S, 

resp. lowered from SZ  0 to SZ = - (0.9) S , in order to convert b 

into a perfect box. (Recall that PΛ is pictorially given by Figure 1 , 

Section I.D) . 

For the quantum mechanical ferromagnet 

(3.44) 

Equation (3.44) shows that when the z-component of a spin at some site 

is raised (lowered) the z-component of a spin at a nearest neighbor site 

is lowered (raised). Thus, in order to raise the z-component of a 

spin at some site i ϵ b from Sz  0 to Sz = (0.9) S without lowering 

the z-components of other spins in b , B has to be applied 

(0.9) dist (i , boundary of b) · S 

times; hence, on the average, (0.9) S . ℓ/4 times. This completes the proof 

of (3.43) . If we combine (3.41) with (3.43) we obtain 
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Choosing ℓ = [ (10nΔ)-1/2 ] (≥ 2) yields 

Proposition 3.5: Provided nΔ < 1/40 

R
-

  σ2d , 

where and 

d  (0.9) |Λ| S [l6 (nΔ)1/2 ]-1 

Remark: The estimate on d obtained in Proposition 3.5 for the ferromagnet 

is vastly superior to the estimates on d obtained for the antiferromagnet 

(Proposition 3.4 and (3.37)) · This will become apparent in the next 

section where we will allow nΔ to go to zero as β → ∞ . Then d → ∞ 

for the ferromagnet, but not for the antiferromagnet. Finally we note that 

the general methods developed in this section can be applied in other contexts 

than the one considered here in order to get bounds on expectations of 

global observables in equilibrium states. 
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IV . Estimates on R
+ and Completion of the Proof 

A. Summary of Previous Results 

Recall that our proof of LRO at low temperatures is completed by 

showing that 

R
Λ
 (β) = < ΡΛ > 

is "small" for large β , namely we require that 

(4.1) 

see Section I.C, Theorem 1.1 and Section I.D , inequalities (1.34), 

(1.36) and (1.38) · In Section III we decomposed RΛ (β) into two parts, 

RΛ (β) = R
-

 (β , Δ) + R
+
 (β , Δ) , (4.2) 

and we have established upper bounds on R- (β, Δ) , namely: 

(a) In models (l) and (6) (classical case), i.e. the classical N-vector 

models : 

(4.3) 

see (3-7). 

(b) In model (2), the classical, anharmonic crystal: 

R
-

 (β , Δ) = 0 , for Δ  α/2 ; (4.4) 

see (3.8) . 

(c) In model (3) , the quantum antiferromagnet: 
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R
-

 (β , Δ)  σ2d , for Δ = β-ξ , (4.5) 

where σ = α (l + (Sη)-1 + 0 (β-ξ )) , 

and 

resp. for S = 1/2, 

with 0 < ξ < 1 , 0 < η < 1 

(to he chosen later). See Propositions 3.4 and (3·3Τ) · The estimates 

for model (6) (quantum xy model) are identical. 

(d) In model (4) (quantum ferromagnet) 

R
-

 (β , Δ)  σ2d , (4.6) 

where (4.7) 

and d  (0.9) |Λ| S [l6 (nΔ)1/2 ]-1, (4.8) 

with n > 1 and Δ > 0 to he chosen later. We require nΔ < 1/40 . 

B. The R+ Estimate 

We now estimate R
+ (β , Δ) for these models. 

(a') Models (l) and (6 classical): 

Let P>δΛ be the subset of configurations such that mi ≡ S-1 Szi  (l - δ)
1/2 , 

for all i ϵ Λ . Then (with Tr defined by the usual normalized integral, 

i.e. Tr(l) = l) 
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by Jensen’s inequality. By symmetry, the term proportional to α vanishes 

in Tr P>δΛ H
Λ

. Furthermore, H
Λ
 ≤ - 2 | Λ | ( 1 - δ) whenever 

Moreover, 

(4.9) 

Hence, choosing δ = Δ / 4 = (l - α) / 8 , we obtain 

(4.10) 

where c(α) α - ℓn (l - α) for α ≈ 1 , is independent of β . 

Thus 

(4.11) 

which tends to 0 , as β → ∞ . This completes the proof of LRO for 

models (l) and (6 , classical) for large enough β . An estimate on 

the spontaneous magnetization resp. σ(β) (see 

Section I.B) as a function of β is given later. 

(b' ) Model (2) : 

By definition of model (2) (anharmonic crystal, Section I.A) , 
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min ϕ (x , y) = ε
0

, 

occurs when x and y have the same direction. Without loss of generality 

we may assume that there exists some x0 ≠ 0 such that 

ϕ (x
0
, x

0
) = ε

0
. 

(4.12) 

But when x1 and y1 (the 1-components of x , resp. y ) have opposite 

sign 

ϕ (x , y)  ε
0
 + α + λ(ϕ

1
(x) + ϕ

1
 (y ) ) , (4.13) 

for some λ > 0 ; see Section I.A. We now choose δ > 0 such that x
1

0
 - δ  0 

and 

ϕ(x , y)  ε
0
 + α / 2 , 

for all x and y in a ball of radius δ centered at x0. We can do 

since the interaction potential ϕ is by assumption continuous. 

Hence 

(4.14) 

where v
N
 (δ) is the volume of a hall of radius δ in N Furthermore, 

for Δ = α / 2 i.e. RAC- (β , Δ) = 0 (see (4.4)) , 

(4.15) 
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where 

This is an immediate consequence of (4.13); (see also inequality 

(1.49) of Section I.E) . Combination of (4.14) and (4.15) yields 

By definition of the AC model (model (2) , Section I.A.) there exists 

some finite β
0
 such that for all β  β

0 

Obviously g(β) is monotone decreasing in β , as is positive. Thus 

there exists a finite constant c such that 

g(β) / ν
Ν
(δ)  eC , for all β  β

0
 . 

Hence 

(4.16) 

which tends to 0 as β → ∞ . Recalling condition (4.1) (resp. Theorem 

1.1 of Section I.C and Section I.D , inequality (1.38)) we observe 

that inequality (4.16) completes the proof of LRO for the AC model 

for large enough β 

(c') Models (3) and (4) (quantum Heisenberg models): 

In order to estimate R+ (β , Δ ) we need a lower bound on the partition 
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function ZΛ (β) . This is done by comparing it with the partition function 

of the corresponding spin S Ising model (anisotropy α = 0) by means of 

the Peierls-Bogolyubov inequality. 

Lemma 4.1: For models (3) and (4) the partition function satisfies 

(4.17) 

Where is the partition function of the spin S Ising model (i.e. 

α = 0 in (1.3) and (1.5)) · 

Proof: By the Peierls-Bogolyubov inequality, 

(4.18) 

for any set {ψ
j

} of orthonormal vectors. Choose the ψ
j
 to be eigenvectors 

of all the SZ
j

 , i ϵ Λ . Then the right side of (4.18) is precisely 

because (ψ
j

 , H
xy ψ

j

) = 0 for all j . 

Lemma 4.2: For models (3) and (4) 

Ζ
Λ
 ≥ [(δ/8)(2S+1)]

|Λ|
 exp {2β |Λ| (l - δ)} 

for any 0 ≤ δ ≤ 1 . 

Proof: Using Lemma 4.1 , 

Ζ
Λ
 ≥ Z

I
Λ
 ≥ Σ' exp (+ βS

-2

 H
Z

) 

where Σ' means a restricted summation in which each 

(Note: the partition function for the Ising ferro and antiferromagnet are 
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identical.) Then, HZ ≥ 2 | Λ | S2 (l - δ) . To complete the proof we 

have to hound Σ' 1 ≡ μ
|Λ|

 . 

y = [S - S(1 - δ)
1/2

 + l]
+
 ≥ [1 + Sδ / 2]

+
 ≥ Sδ / 2 ≥ (2S + l) δ / 8 

for S ≥ 1/2 , and where [ ]+ means integral part. To 

complete the hound on R
+
 we use the fact that Tr1 = (2S + l)

|Λ| 

For the ferromagnet, e0 = - 2|Λ| Thus, provided 

Δ > 4δ (ferromagnet) (4.19) 

(1.50) and (l.5l) are established for β sufficiently large. For the 

antiferromagnet, e0 > - 2 |Λ| (l + 1/4S) . Thus, provided 

Δ > 4δ + S-1 (antiferromagnet) (4.20) 

(1.50) and (1.51) are established for β sufficiently large. 

The final estimate for the ferromagnet is obtained from (4.6) - (4.8) 

and (1.51) · Choose n = (1 + α) / (1 - α) < 2 / (1 - α) . Thus 

Choose Δ = Κβ-2/3 where K is chosen such that 

This can be done uniformly in S > 1/2 . 

For sufficiently large β , nΔ < 1/40 . Furthermore, with this choice of 

Δ , R+ > R- . Hence 

(4.21) 

which tends to zero as β tends to infinity. Note that there is a β1/3 , 
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instead of a β dependence in (4.21) . This completes the proof of 

LRO for the quantum ferromagnet, except for the assumption that the 

chessboard estimate holds. 

The calculation for the antiferromagnet is more complicated. We 

have to combine (4.5) with (l.5l) . As β → ∞ , R
+

 ( β , Δ)
1/|Λ|

 → 0 , 

provided ξ < 1 , by (l.5l) and (4.5) · The problem resides in 

R- (β , Δ) . This will not go to zero as β → ∞, but for small 

enough a (depending on S) , which we call α
c
(S), we can make 

R
- (β , Δ)

1/|Λ|
 smaller than any given member, say μ . Choose μ such 

that (4.1) is satisfied. We omit details, but note that α
c
(S) tends 

to 1 as S tends to infinity. 

C. Estimate of the Spontaneous Magnetization 

Consider the order parameter which satisfies the previously derived 

inequaltiy 

σ (β) > δ2 - 6ε (1.24) 

provided < P0 + Pj

 > < ε/2 and < P0
<δ > < ε . In the classical 

models (l) and (6) these inequalities hold for all ε > 0 and δ < 1 

if β is large enough. This follows from chessboard estimates applied 

to < P
0

<δ
 >, and the results of section IV. Thus α(β) →1 

as β → ∞ . 

For the quantum antiferromagnets (3) , (6) , an estimate on <P
0 
<δ> 
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can be obtained using chessboard estimates and exponential localization, 

as before, with the following result : Given ε > 0 , δ < 1 and α < 1 

there exists an S(ε , δ, α) < ∞ such that (1.24) holds as β → ∞ 

for S > S(ε , δ , α) . For the ferromagnet (4) , chessboard estimates, 

if they could be shown to be true, would easily yield σ (β) → 1 as 

β → ∞ for all S and all α < 1 . Without using chessboard estimates, 

we can show that <P0<δ > → 0 as β → ∞ for all δ < 1 and all α < 1 . 

This is proved by means of the following thermodynamic argument: It is 

sufficient to show 

as β → ∞ 

By the Schwarz inequality and translation invariance 

This latter quantity is half the Hz - energy per site. The ground state 

has the property that S-2 < Si
z Sj

z > = 1 for all i , j . If 

as β → ∞ , for | i - 0 | = 1, then the free energy 

would not approach the ground state energy as β → ∞. This, it is easy to 

see by the previous arguments, would be a contradiction. 
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